Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/* XDP user-space ring structure
  3 * Copyright(c) 2018 Intel Corporation.
  4 */
  5
  6#ifndef _LINUX_XSK_QUEUE_H
  7#define _LINUX_XSK_QUEUE_H
  8
  9#include <linux/types.h>
 10#include <linux/if_xdp.h>
 11#include <net/xdp_sock.h>
 12#include <net/xsk_buff_pool.h>
 13
 14#include "xsk.h"
 15
 16struct xdp_ring {
 17	u32 producer ____cacheline_aligned_in_smp;
 18	/* Hinder the adjacent cache prefetcher to prefetch the consumer
 19	 * pointer if the producer pointer is touched and vice versa.
 20	 */
 21	u32 pad1 ____cacheline_aligned_in_smp;
 22	u32 consumer ____cacheline_aligned_in_smp;
 23	u32 pad2 ____cacheline_aligned_in_smp;
 24	u32 flags;
 25	u32 pad3 ____cacheline_aligned_in_smp;
 26};
 27
 28/* Used for the RX and TX queues for packets */
 29struct xdp_rxtx_ring {
 30	struct xdp_ring ptrs;
 31	struct xdp_desc desc[] ____cacheline_aligned_in_smp;
 32};
 33
 34/* Used for the fill and completion queues for buffers */
 35struct xdp_umem_ring {
 36	struct xdp_ring ptrs;
 37	u64 desc[] ____cacheline_aligned_in_smp;
 38};
 39
 40struct xsk_queue {
 41	u32 ring_mask;
 42	u32 nentries;
 43	u32 cached_prod;
 44	u32 cached_cons;
 45	struct xdp_ring *ring;
 46	u64 invalid_descs;
 47	u64 queue_empty_descs;
 48	size_t ring_vmalloc_size;
 49};
 50
 51struct parsed_desc {
 52	u32 mb;
 53	u32 valid;
 54};
 55
 56/* The structure of the shared state of the rings are a simple
 57 * circular buffer, as outlined in
 58 * Documentation/core-api/circular-buffers.rst. For the Rx and
 59 * completion ring, the kernel is the producer and user space is the
 60 * consumer. For the Tx and fill rings, the kernel is the consumer and
 61 * user space is the producer.
 62 *
 63 * producer                         consumer
 64 *
 65 * if (LOAD ->consumer) {  (A)      LOAD.acq ->producer  (C)
 66 *    STORE $data                   LOAD $data
 67 *    STORE.rel ->producer (B)      STORE.rel ->consumer (D)
 68 * }
 69 *
 70 * (A) pairs with (D), and (B) pairs with (C).
 71 *
 72 * Starting with (B), it protects the data from being written after
 73 * the producer pointer. If this barrier was missing, the consumer
 74 * could observe the producer pointer being set and thus load the data
 75 * before the producer has written the new data. The consumer would in
 76 * this case load the old data.
 77 *
 78 * (C) protects the consumer from speculatively loading the data before
 79 * the producer pointer actually has been read. If we do not have this
 80 * barrier, some architectures could load old data as speculative loads
 81 * are not discarded as the CPU does not know there is a dependency
 82 * between ->producer and data.
 83 *
 84 * (A) is a control dependency that separates the load of ->consumer
 85 * from the stores of $data. In case ->consumer indicates there is no
 86 * room in the buffer to store $data we do not. The dependency will
 87 * order both of the stores after the loads. So no barrier is needed.
 88 *
 89 * (D) protects the load of the data to be observed to happen after the
 90 * store of the consumer pointer. If we did not have this memory
 91 * barrier, the producer could observe the consumer pointer being set
 92 * and overwrite the data with a new value before the consumer got the
 93 * chance to read the old value. The consumer would thus miss reading
 94 * the old entry and very likely read the new entry twice, once right
 95 * now and again after circling through the ring.
 96 */
 97
 98/* The operations on the rings are the following:
 99 *
100 * producer                           consumer
101 *
102 * RESERVE entries                    PEEK in the ring for entries
103 * WRITE data into the ring           READ data from the ring
104 * SUBMIT entries                     RELEASE entries
105 *
106 * The producer reserves one or more entries in the ring. It can then
107 * fill in these entries and finally submit them so that they can be
108 * seen and read by the consumer.
109 *
110 * The consumer peeks into the ring to see if the producer has written
111 * any new entries. If so, the consumer can then read these entries
112 * and when it is done reading them release them back to the producer
113 * so that the producer can use these slots to fill in new entries.
114 *
115 * The function names below reflect these operations.
116 */
117
118/* Functions that read and validate content from consumer rings. */
119
120static inline void __xskq_cons_read_addr_unchecked(struct xsk_queue *q, u32 cached_cons, u64 *addr)
121{
122	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
123	u32 idx = cached_cons & q->ring_mask;
124
125	*addr = ring->desc[idx];
126}
127
128static inline bool xskq_cons_read_addr_unchecked(struct xsk_queue *q, u64 *addr)
129{
130	if (q->cached_cons != q->cached_prod) {
131		__xskq_cons_read_addr_unchecked(q, q->cached_cons, addr);
132		return true;
133	}
134
135	return false;
136}
137
138static inline bool xp_unused_options_set(u32 options)
139{
140	return options & ~(XDP_PKT_CONTD | XDP_TX_METADATA);
141}
142
143static inline bool xp_aligned_validate_desc(struct xsk_buff_pool *pool,
144					    struct xdp_desc *desc)
145{
146	u64 addr = desc->addr - pool->tx_metadata_len;
147	u64 len = desc->len + pool->tx_metadata_len;
148	u64 offset = addr & (pool->chunk_size - 1);
149
150	if (!desc->len)
151		return false;
152
153	if (offset + len > pool->chunk_size)
154		return false;
155
156	if (addr >= pool->addrs_cnt)
157		return false;
158
159	if (xp_unused_options_set(desc->options))
160		return false;
161	return true;
162}
163
164static inline bool xp_unaligned_validate_desc(struct xsk_buff_pool *pool,
165					      struct xdp_desc *desc)
166{
167	u64 addr = xp_unaligned_add_offset_to_addr(desc->addr) - pool->tx_metadata_len;
168	u64 len = desc->len + pool->tx_metadata_len;
169
170	if (!desc->len)
171		return false;
172
173	if (len > pool->chunk_size)
174		return false;
175
176	if (addr >= pool->addrs_cnt || addr + len > pool->addrs_cnt ||
177	    xp_desc_crosses_non_contig_pg(pool, addr, len))
178		return false;
179
180	if (xp_unused_options_set(desc->options))
181		return false;
182	return true;
183}
184
185static inline bool xp_validate_desc(struct xsk_buff_pool *pool,
186				    struct xdp_desc *desc)
187{
188	return pool->unaligned ? xp_unaligned_validate_desc(pool, desc) :
189		xp_aligned_validate_desc(pool, desc);
190}
191
192static inline bool xskq_has_descs(struct xsk_queue *q)
193{
194	return q->cached_cons != q->cached_prod;
195}
196
197static inline bool xskq_cons_is_valid_desc(struct xsk_queue *q,
198					   struct xdp_desc *d,
199					   struct xsk_buff_pool *pool)
200{
201	if (!xp_validate_desc(pool, d)) {
202		q->invalid_descs++;
203		return false;
204	}
205	return true;
206}
207
208static inline bool xskq_cons_read_desc(struct xsk_queue *q,
209				       struct xdp_desc *desc,
210				       struct xsk_buff_pool *pool)
211{
212	if (q->cached_cons != q->cached_prod) {
213		struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
214		u32 idx = q->cached_cons & q->ring_mask;
215
216		*desc = ring->desc[idx];
217		return xskq_cons_is_valid_desc(q, desc, pool);
218	}
219
220	q->queue_empty_descs++;
221	return false;
222}
223
224static inline void xskq_cons_release_n(struct xsk_queue *q, u32 cnt)
225{
226	q->cached_cons += cnt;
227}
228
229static inline void parse_desc(struct xsk_queue *q, struct xsk_buff_pool *pool,
230			      struct xdp_desc *desc, struct parsed_desc *parsed)
231{
232	parsed->valid = xskq_cons_is_valid_desc(q, desc, pool);
233	parsed->mb = xp_mb_desc(desc);
234}
235
236static inline
237u32 xskq_cons_read_desc_batch(struct xsk_queue *q, struct xsk_buff_pool *pool,
238			      u32 max)
239{
240	u32 cached_cons = q->cached_cons, nb_entries = 0;
241	struct xdp_desc *descs = pool->tx_descs;
242	u32 total_descs = 0, nr_frags = 0;
243
244	/* track first entry, if stumble upon *any* invalid descriptor, rewind
245	 * current packet that consists of frags and stop the processing
246	 */
247	while (cached_cons != q->cached_prod && nb_entries < max) {
248		struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
249		u32 idx = cached_cons & q->ring_mask;
250		struct parsed_desc parsed;
251
252		descs[nb_entries] = ring->desc[idx];
253		cached_cons++;
254		parse_desc(q, pool, &descs[nb_entries], &parsed);
255		if (unlikely(!parsed.valid))
256			break;
257
258		if (likely(!parsed.mb)) {
259			total_descs += (nr_frags + 1);
260			nr_frags = 0;
261		} else {
262			nr_frags++;
263			if (nr_frags == pool->xdp_zc_max_segs) {
264				nr_frags = 0;
265				break;
266			}
267		}
268		nb_entries++;
269	}
270
271	cached_cons -= nr_frags;
272	/* Release valid plus any invalid entries */
273	xskq_cons_release_n(q, cached_cons - q->cached_cons);
274	return total_descs;
275}
276
277/* Functions for consumers */
278
279static inline void __xskq_cons_release(struct xsk_queue *q)
280{
281	smp_store_release(&q->ring->consumer, q->cached_cons); /* D, matchees A */
282}
283
284static inline void __xskq_cons_peek(struct xsk_queue *q)
285{
286	/* Refresh the local pointer */
287	q->cached_prod = smp_load_acquire(&q->ring->producer);  /* C, matches B */
288}
289
290static inline void xskq_cons_get_entries(struct xsk_queue *q)
291{
292	__xskq_cons_release(q);
293	__xskq_cons_peek(q);
294}
295
296static inline u32 xskq_cons_nb_entries(struct xsk_queue *q, u32 max)
297{
298	u32 entries = q->cached_prod - q->cached_cons;
299
300	if (entries >= max)
301		return max;
302
303	__xskq_cons_peek(q);
304	entries = q->cached_prod - q->cached_cons;
305
306	return entries >= max ? max : entries;
307}
308
309static inline bool xskq_cons_peek_addr_unchecked(struct xsk_queue *q, u64 *addr)
310{
311	if (q->cached_prod == q->cached_cons)
312		xskq_cons_get_entries(q);
313	return xskq_cons_read_addr_unchecked(q, addr);
314}
315
316static inline bool xskq_cons_peek_desc(struct xsk_queue *q,
317				       struct xdp_desc *desc,
318				       struct xsk_buff_pool *pool)
319{
320	if (q->cached_prod == q->cached_cons)
321		xskq_cons_get_entries(q);
322	return xskq_cons_read_desc(q, desc, pool);
323}
324
325/* To improve performance in the xskq_cons_release functions, only update local state here.
326 * Reflect this to global state when we get new entries from the ring in
327 * xskq_cons_get_entries() and whenever Rx or Tx processing are completed in the NAPI loop.
328 */
329static inline void xskq_cons_release(struct xsk_queue *q)
330{
331	q->cached_cons++;
332}
333
334static inline void xskq_cons_cancel_n(struct xsk_queue *q, u32 cnt)
335{
336	q->cached_cons -= cnt;
337}
338
339static inline u32 xskq_cons_present_entries(struct xsk_queue *q)
340{
341	/* No barriers needed since data is not accessed */
342	return READ_ONCE(q->ring->producer) - READ_ONCE(q->ring->consumer);
343}
344
345/* Functions for producers */
346
347static inline u32 xskq_prod_nb_free(struct xsk_queue *q, u32 max)
348{
349	u32 free_entries = q->nentries - (q->cached_prod - q->cached_cons);
350
351	if (free_entries >= max)
352		return max;
353
354	/* Refresh the local tail pointer */
355	q->cached_cons = READ_ONCE(q->ring->consumer);
356	free_entries = q->nentries - (q->cached_prod - q->cached_cons);
357
358	return free_entries >= max ? max : free_entries;
359}
360
361static inline bool xskq_prod_is_full(struct xsk_queue *q)
362{
363	return xskq_prod_nb_free(q, 1) ? false : true;
364}
365
366static inline void xskq_prod_cancel_n(struct xsk_queue *q, u32 cnt)
367{
368	q->cached_prod -= cnt;
369}
370
371static inline int xskq_prod_reserve(struct xsk_queue *q)
372{
373	if (xskq_prod_is_full(q))
374		return -ENOSPC;
375
376	/* A, matches D */
377	q->cached_prod++;
378	return 0;
379}
380
381static inline int xskq_prod_reserve_addr(struct xsk_queue *q, u64 addr)
382{
383	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
384
385	if (xskq_prod_is_full(q))
386		return -ENOSPC;
387
388	/* A, matches D */
389	ring->desc[q->cached_prod++ & q->ring_mask] = addr;
390	return 0;
391}
392
393static inline void xskq_prod_write_addr_batch(struct xsk_queue *q, struct xdp_desc *descs,
394					      u32 nb_entries)
395{
396	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
397	u32 i, cached_prod;
398
399	/* A, matches D */
400	cached_prod = q->cached_prod;
401	for (i = 0; i < nb_entries; i++)
402		ring->desc[cached_prod++ & q->ring_mask] = descs[i].addr;
403	q->cached_prod = cached_prod;
404}
405
406static inline int xskq_prod_reserve_desc(struct xsk_queue *q,
407					 u64 addr, u32 len, u32 flags)
408{
409	struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
410	u32 idx;
411
412	if (xskq_prod_is_full(q))
413		return -ENOBUFS;
414
415	/* A, matches D */
416	idx = q->cached_prod++ & q->ring_mask;
417	ring->desc[idx].addr = addr;
418	ring->desc[idx].len = len;
419	ring->desc[idx].options = flags;
420
421	return 0;
422}
423
424static inline void __xskq_prod_submit(struct xsk_queue *q, u32 idx)
425{
426	smp_store_release(&q->ring->producer, idx); /* B, matches C */
427}
428
429static inline void xskq_prod_submit(struct xsk_queue *q)
430{
431	__xskq_prod_submit(q, q->cached_prod);
432}
433
434static inline void xskq_prod_submit_n(struct xsk_queue *q, u32 nb_entries)
435{
436	__xskq_prod_submit(q, q->ring->producer + nb_entries);
437}
438
439static inline bool xskq_prod_is_empty(struct xsk_queue *q)
440{
441	/* No barriers needed since data is not accessed */
442	return READ_ONCE(q->ring->consumer) == READ_ONCE(q->ring->producer);
443}
444
445/* For both producers and consumers */
446
447static inline u64 xskq_nb_invalid_descs(struct xsk_queue *q)
448{
449	return q ? q->invalid_descs : 0;
450}
451
452static inline u64 xskq_nb_queue_empty_descs(struct xsk_queue *q)
453{
454	return q ? q->queue_empty_descs : 0;
455}
456
457struct xsk_queue *xskq_create(u32 nentries, bool umem_queue);
458void xskq_destroy(struct xsk_queue *q_ops);
459
460#endif /* _LINUX_XSK_QUEUE_H */