Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 * Copyright (c) 2006 Oracle.  All rights reserved.
  3 *
  4 * This software is available to you under a choice of one of two
  5 * licenses.  You may choose to be licensed under the terms of the GNU
  6 * General Public License (GPL) Version 2, available from the file
  7 * COPYING in the main directory of this source tree, or the
  8 * OpenIB.org BSD license below:
  9 *
 10 *     Redistribution and use in source and binary forms, with or
 11 *     without modification, are permitted provided that the following
 12 *     conditions are met:
 13 *
 14 *      - Redistributions of source code must retain the above
 15 *        copyright notice, this list of conditions and the following
 16 *        disclaimer.
 17 *
 18 *      - Redistributions in binary form must reproduce the above
 19 *        copyright notice, this list of conditions and the following
 20 *        disclaimer in the documentation and/or other materials
 21 *        provided with the distribution.
 22 *
 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 30 * SOFTWARE.
 31 *
 32 */
 33#include <linux/module.h>
 34#include <linux/errno.h>
 35#include <linux/kernel.h>
 36#include <linux/gfp.h>
 37#include <linux/in.h>
 
 38#include <linux/poll.h>
 39#include <net/sock.h>
 40
 41#include "rds.h"
 42
 43char *rds_str_array(char **array, size_t elements, size_t index)
 44{
 45	if ((index < elements) && array[index])
 46		return array[index];
 47	else
 48		return "unknown";
 49}
 50EXPORT_SYMBOL(rds_str_array);
 51
 52/* this is just used for stats gathering :/ */
 53static DEFINE_SPINLOCK(rds_sock_lock);
 54static unsigned long rds_sock_count;
 55static LIST_HEAD(rds_sock_list);
 56DECLARE_WAIT_QUEUE_HEAD(rds_poll_waitq);
 57
 58/*
 59 * This is called as the final descriptor referencing this socket is closed.
 60 * We have to unbind the socket so that another socket can be bound to the
 61 * address it was using.
 62 *
 63 * We have to be careful about racing with the incoming path.  sock_orphan()
 64 * sets SOCK_DEAD and we use that as an indicator to the rx path that new
 65 * messages shouldn't be queued.
 66 */
 67static int rds_release(struct socket *sock)
 68{
 69	struct sock *sk = sock->sk;
 70	struct rds_sock *rs;
 71
 72	if (!sk)
 73		goto out;
 74
 75	rs = rds_sk_to_rs(sk);
 76
 77	sock_orphan(sk);
 78	/* Note - rds_clear_recv_queue grabs rs_recv_lock, so
 79	 * that ensures the recv path has completed messing
 80	 * with the socket. */
 81	rds_clear_recv_queue(rs);
 82	rds_cong_remove_socket(rs);
 83
 84	/*
 85	 * the binding lookup hash uses rcu, we need to
 86	 * make sure we sychronize_rcu before we free our
 87	 * entry
 88	 */
 89	rds_remove_bound(rs);
 90	synchronize_rcu();
 91
 92	rds_send_drop_to(rs, NULL);
 93	rds_rdma_drop_keys(rs);
 94	rds_notify_queue_get(rs, NULL);
 
 95
 96	spin_lock_bh(&rds_sock_lock);
 97	list_del_init(&rs->rs_item);
 98	rds_sock_count--;
 99	spin_unlock_bh(&rds_sock_lock);
100
101	rds_trans_put(rs->rs_transport);
102
103	sock->sk = NULL;
104	sock_put(sk);
105out:
106	return 0;
107}
108
109/*
110 * Careful not to race with rds_release -> sock_orphan which clears sk_sleep.
111 * _bh() isn't OK here, we're called from interrupt handlers.  It's probably OK
112 * to wake the waitqueue after sk_sleep is clear as we hold a sock ref, but
113 * this seems more conservative.
114 * NB - normally, one would use sk_callback_lock for this, but we can
115 * get here from interrupts, whereas the network code grabs sk_callback_lock
116 * with _lock_bh only - so relying on sk_callback_lock introduces livelocks.
117 */
118void rds_wake_sk_sleep(struct rds_sock *rs)
119{
120	unsigned long flags;
121
122	read_lock_irqsave(&rs->rs_recv_lock, flags);
123	__rds_wake_sk_sleep(rds_rs_to_sk(rs));
124	read_unlock_irqrestore(&rs->rs_recv_lock, flags);
125}
126
127static int rds_getname(struct socket *sock, struct sockaddr *uaddr,
128		       int *uaddr_len, int peer)
129{
130	struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
131	struct rds_sock *rs = rds_sk_to_rs(sock->sk);
132
133	memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
 
134
135	/* racey, don't care */
136	if (peer) {
137		if (!rs->rs_conn_addr)
138			return -ENOTCONN;
139
140		sin->sin_port = rs->rs_conn_port;
141		sin->sin_addr.s_addr = rs->rs_conn_addr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142	} else {
143		sin->sin_port = rs->rs_bound_port;
144		sin->sin_addr.s_addr = rs->rs_bound_addr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
145	}
146
147	sin->sin_family = AF_INET;
148
149	*uaddr_len = sizeof(*sin);
150	return 0;
151}
152
153/*
154 * RDS' poll is without a doubt the least intuitive part of the interface,
155 * as POLLIN and POLLOUT do not behave entirely as you would expect from
156 * a network protocol.
157 *
158 * POLLIN is asserted if
159 *  -	there is data on the receive queue.
160 *  -	to signal that a previously congested destination may have become
161 *	uncongested
162 *  -	A notification has been queued to the socket (this can be a congestion
163 *	update, or a RDMA completion).
164 *
165 * POLLOUT is asserted if there is room on the send queue. This does not mean
166 * however, that the next sendmsg() call will succeed. If the application tries
167 * to send to a congested destination, the system call may still fail (and
168 * return ENOBUFS).
169 */
170static unsigned int rds_poll(struct file *file, struct socket *sock,
171			     poll_table *wait)
172{
173	struct sock *sk = sock->sk;
174	struct rds_sock *rs = rds_sk_to_rs(sk);
175	unsigned int mask = 0;
176	unsigned long flags;
177
178	poll_wait(file, sk_sleep(sk), wait);
179
180	if (rs->rs_seen_congestion)
181		poll_wait(file, &rds_poll_waitq, wait);
182
183	read_lock_irqsave(&rs->rs_recv_lock, flags);
184	if (!rs->rs_cong_monitor) {
185		/* When a congestion map was updated, we signal POLLIN for
186		 * "historical" reasons. Applications can also poll for
187		 * WRBAND instead. */
188		if (rds_cong_updated_since(&rs->rs_cong_track))
189			mask |= (POLLIN | POLLRDNORM | POLLWRBAND);
190	} else {
191		spin_lock(&rs->rs_lock);
192		if (rs->rs_cong_notify)
193			mask |= (POLLIN | POLLRDNORM);
194		spin_unlock(&rs->rs_lock);
195	}
196	if (!list_empty(&rs->rs_recv_queue) ||
197	    !list_empty(&rs->rs_notify_queue))
198		mask |= (POLLIN | POLLRDNORM);
 
199	if (rs->rs_snd_bytes < rds_sk_sndbuf(rs))
200		mask |= (POLLOUT | POLLWRNORM);
 
 
201	read_unlock_irqrestore(&rs->rs_recv_lock, flags);
202
203	/* clear state any time we wake a seen-congested socket */
204	if (mask)
205		rs->rs_seen_congestion = 0;
206
207	return mask;
208}
209
210static int rds_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
211{
212	return -ENOIOCTLCMD;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
213}
214
215static int rds_cancel_sent_to(struct rds_sock *rs, char __user *optval,
216			      int len)
217{
 
218	struct sockaddr_in sin;
219	int ret = 0;
220
221	/* racing with another thread binding seems ok here */
222	if (rs->rs_bound_addr == 0) {
223		ret = -ENOTCONN; /* XXX not a great errno */
224		goto out;
225	}
226
227	if (len < sizeof(struct sockaddr_in)) {
228		ret = -EINVAL;
229		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
230	}
231
232	if (copy_from_user(&sin, optval, sizeof(sin))) {
233		ret = -EFAULT;
234		goto out;
235	}
236
237	rds_send_drop_to(rs, &sin);
238out:
239	return ret;
240}
241
242static int rds_set_bool_option(unsigned char *optvar, char __user *optval,
243			       int optlen)
244{
245	int value;
246
247	if (optlen < sizeof(int))
248		return -EINVAL;
249	if (get_user(value, (int __user *) optval))
250		return -EFAULT;
251	*optvar = !!value;
252	return 0;
253}
254
255static int rds_cong_monitor(struct rds_sock *rs, char __user *optval,
256			    int optlen)
257{
258	int ret;
259
260	ret = rds_set_bool_option(&rs->rs_cong_monitor, optval, optlen);
261	if (ret == 0) {
262		if (rs->rs_cong_monitor) {
263			rds_cong_add_socket(rs);
264		} else {
265			rds_cong_remove_socket(rs);
266			rs->rs_cong_mask = 0;
267			rs->rs_cong_notify = 0;
268		}
269	}
270	return ret;
271}
272
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
273static int rds_setsockopt(struct socket *sock, int level, int optname,
274			  char __user *optval, unsigned int optlen)
275{
276	struct rds_sock *rs = rds_sk_to_rs(sock->sk);
277	int ret;
278
279	if (level != SOL_RDS) {
280		ret = -ENOPROTOOPT;
281		goto out;
282	}
283
284	switch (optname) {
285	case RDS_CANCEL_SENT_TO:
286		ret = rds_cancel_sent_to(rs, optval, optlen);
287		break;
288	case RDS_GET_MR:
289		ret = rds_get_mr(rs, optval, optlen);
290		break;
291	case RDS_GET_MR_FOR_DEST:
292		ret = rds_get_mr_for_dest(rs, optval, optlen);
293		break;
294	case RDS_FREE_MR:
295		ret = rds_free_mr(rs, optval, optlen);
296		break;
297	case RDS_RECVERR:
298		ret = rds_set_bool_option(&rs->rs_recverr, optval, optlen);
299		break;
300	case RDS_CONG_MONITOR:
301		ret = rds_cong_monitor(rs, optval, optlen);
302		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
303	default:
304		ret = -ENOPROTOOPT;
305	}
306out:
307	return ret;
308}
309
310static int rds_getsockopt(struct socket *sock, int level, int optname,
311			  char __user *optval, int __user *optlen)
312{
313	struct rds_sock *rs = rds_sk_to_rs(sock->sk);
314	int ret = -ENOPROTOOPT, len;
 
315
316	if (level != SOL_RDS)
317		goto out;
318
319	if (get_user(len, optlen)) {
320		ret = -EFAULT;
321		goto out;
322	}
323
324	switch (optname) {
325	case RDS_INFO_FIRST ... RDS_INFO_LAST:
326		ret = rds_info_getsockopt(sock, optname, optval,
327					  optlen);
328		break;
329
330	case RDS_RECVERR:
331		if (len < sizeof(int))
332			ret = -EINVAL;
333		else
334		if (put_user(rs->rs_recverr, (int __user *) optval) ||
335		    put_user(sizeof(int), optlen))
336			ret = -EFAULT;
337		else
338			ret = 0;
339		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
340	default:
341		break;
342	}
343
344out:
345	return ret;
346
347}
348
349static int rds_connect(struct socket *sock, struct sockaddr *uaddr,
350		       int addr_len, int flags)
351{
352	struct sock *sk = sock->sk;
353	struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
354	struct rds_sock *rs = rds_sk_to_rs(sk);
355	int ret = 0;
356
 
 
 
357	lock_sock(sk);
358
359	if (addr_len != sizeof(struct sockaddr_in)) {
360		ret = -EINVAL;
361		goto out;
362	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
363
364	if (sin->sin_family != AF_INET) {
365		ret = -EAFNOSUPPORT;
366		goto out;
367	}
368
369	if (sin->sin_addr.s_addr == htonl(INADDR_ANY)) {
370		ret = -EDESTADDRREQ;
371		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
372	}
 
373
374	rs->rs_conn_addr = sin->sin_addr.s_addr;
375	rs->rs_conn_port = sin->sin_port;
 
 
376
377out:
378	release_sock(sk);
379	return ret;
380}
381
382static struct proto rds_proto = {
383	.name	  = "RDS",
384	.owner	  = THIS_MODULE,
385	.obj_size = sizeof(struct rds_sock),
386};
387
388static const struct proto_ops rds_proto_ops = {
389	.family =	AF_RDS,
390	.owner =	THIS_MODULE,
391	.release =	rds_release,
392	.bind =		rds_bind,
393	.connect =	rds_connect,
394	.socketpair =	sock_no_socketpair,
395	.accept =	sock_no_accept,
396	.getname =	rds_getname,
397	.poll =		rds_poll,
398	.ioctl =	rds_ioctl,
399	.listen =	sock_no_listen,
400	.shutdown =	sock_no_shutdown,
401	.setsockopt =	rds_setsockopt,
402	.getsockopt =	rds_getsockopt,
403	.sendmsg =	rds_sendmsg,
404	.recvmsg =	rds_recvmsg,
405	.mmap =		sock_no_mmap,
406	.sendpage =	sock_no_sendpage,
407};
408
 
 
 
 
 
 
 
 
409static int __rds_create(struct socket *sock, struct sock *sk, int protocol)
410{
411	struct rds_sock *rs;
412
413	sock_init_data(sock, sk);
414	sock->ops		= &rds_proto_ops;
415	sk->sk_protocol		= protocol;
 
416
417	rs = rds_sk_to_rs(sk);
418	spin_lock_init(&rs->rs_lock);
419	rwlock_init(&rs->rs_recv_lock);
420	INIT_LIST_HEAD(&rs->rs_send_queue);
421	INIT_LIST_HEAD(&rs->rs_recv_queue);
422	INIT_LIST_HEAD(&rs->rs_notify_queue);
423	INIT_LIST_HEAD(&rs->rs_cong_list);
 
424	spin_lock_init(&rs->rs_rdma_lock);
425	rs->rs_rdma_keys = RB_ROOT;
 
 
 
426
427	spin_lock_bh(&rds_sock_lock);
428	list_add_tail(&rs->rs_item, &rds_sock_list);
429	rds_sock_count++;
430	spin_unlock_bh(&rds_sock_lock);
431
432	return 0;
433}
434
435static int rds_create(struct net *net, struct socket *sock, int protocol,
436		      int kern)
437{
438	struct sock *sk;
439
440	if (sock->type != SOCK_SEQPACKET || protocol)
441		return -ESOCKTNOSUPPORT;
442
443	sk = sk_alloc(net, AF_RDS, GFP_ATOMIC, &rds_proto);
444	if (!sk)
445		return -ENOMEM;
446
447	return __rds_create(sock, sk, protocol);
448}
449
450void rds_sock_addref(struct rds_sock *rs)
451{
452	sock_hold(rds_rs_to_sk(rs));
453}
454
455void rds_sock_put(struct rds_sock *rs)
456{
457	sock_put(rds_rs_to_sk(rs));
458}
459
460static const struct net_proto_family rds_family_ops = {
461	.family =	AF_RDS,
462	.create =	rds_create,
463	.owner	=	THIS_MODULE,
464};
465
466static void rds_sock_inc_info(struct socket *sock, unsigned int len,
467			      struct rds_info_iterator *iter,
468			      struct rds_info_lengths *lens)
469{
470	struct rds_sock *rs;
471	struct rds_incoming *inc;
472	unsigned int total = 0;
473
474	len /= sizeof(struct rds_info_message);
475
476	spin_lock_bh(&rds_sock_lock);
477
478	list_for_each_entry(rs, &rds_sock_list, rs_item) {
 
 
 
 
479		read_lock(&rs->rs_recv_lock);
480
481		/* XXX too lazy to maintain counts.. */
482		list_for_each_entry(inc, &rs->rs_recv_queue, i_item) {
483			total++;
484			if (total <= len)
485				rds_inc_info_copy(inc, iter, inc->i_saddr,
486						  rs->rs_bound_addr, 1);
 
 
487		}
488
489		read_unlock(&rs->rs_recv_lock);
490	}
491
492	spin_unlock_bh(&rds_sock_lock);
493
494	lens->nr = total;
495	lens->each = sizeof(struct rds_info_message);
496}
497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
498static void rds_sock_info(struct socket *sock, unsigned int len,
499			  struct rds_info_iterator *iter,
500			  struct rds_info_lengths *lens)
501{
502	struct rds_info_socket sinfo;
 
503	struct rds_sock *rs;
504
505	len /= sizeof(struct rds_info_socket);
506
507	spin_lock_bh(&rds_sock_lock);
508
509	if (len < rds_sock_count)
 
510		goto out;
 
511
512	list_for_each_entry(rs, &rds_sock_list, rs_item) {
 
 
 
513		sinfo.sndbuf = rds_sk_sndbuf(rs);
514		sinfo.rcvbuf = rds_sk_rcvbuf(rs);
515		sinfo.bound_addr = rs->rs_bound_addr;
516		sinfo.connected_addr = rs->rs_conn_addr;
517		sinfo.bound_port = rs->rs_bound_port;
518		sinfo.connected_port = rs->rs_conn_port;
519		sinfo.inum = sock_i_ino(rds_rs_to_sk(rs));
520
521		rds_info_copy(iter, &sinfo, sizeof(sinfo));
 
522	}
523
524out:
525	lens->nr = rds_sock_count;
526	lens->each = sizeof(struct rds_info_socket);
527
528	spin_unlock_bh(&rds_sock_lock);
529}
530
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
531static void rds_exit(void)
532{
533	sock_unregister(rds_family_ops.family);
534	proto_unregister(&rds_proto);
535	rds_conn_exit();
536	rds_cong_exit();
537	rds_sysctl_exit();
538	rds_threads_exit();
539	rds_stats_exit();
540	rds_page_exit();
 
541	rds_info_deregister_func(RDS_INFO_SOCKETS, rds_sock_info);
542	rds_info_deregister_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info);
 
 
 
 
543}
544module_exit(rds_exit);
545
546static int rds_init(void)
 
 
547{
548	int ret;
549
550	ret = rds_conn_init();
 
 
551	if (ret)
552		goto out;
 
 
 
 
 
553	ret = rds_threads_init();
554	if (ret)
555		goto out_conn;
556	ret = rds_sysctl_init();
557	if (ret)
558		goto out_threads;
559	ret = rds_stats_init();
560	if (ret)
561		goto out_sysctl;
562	ret = proto_register(&rds_proto, 1);
563	if (ret)
564		goto out_stats;
565	ret = sock_register(&rds_family_ops);
566	if (ret)
567		goto out_proto;
568
569	rds_info_register_func(RDS_INFO_SOCKETS, rds_sock_info);
570	rds_info_register_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info);
 
 
 
 
571
572	goto out;
573
574out_proto:
575	proto_unregister(&rds_proto);
576out_stats:
577	rds_stats_exit();
578out_sysctl:
579	rds_sysctl_exit();
580out_threads:
581	rds_threads_exit();
582out_conn:
583	rds_conn_exit();
584	rds_cong_exit();
585	rds_page_exit();
 
 
586out:
587	return ret;
588}
589module_init(rds_init);
590
591#define DRV_VERSION     "4.0"
592#define DRV_RELDATE     "Feb 12, 2009"
593
594MODULE_AUTHOR("Oracle Corporation <rds-devel@oss.oracle.com>");
595MODULE_DESCRIPTION("RDS: Reliable Datagram Sockets"
596		   " v" DRV_VERSION " (" DRV_RELDATE ")");
597MODULE_VERSION(DRV_VERSION);
598MODULE_LICENSE("Dual BSD/GPL");
599MODULE_ALIAS_NETPROTO(PF_RDS);
v6.13.7
  1/*
  2 * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
  3 *
  4 * This software is available to you under a choice of one of two
  5 * licenses.  You may choose to be licensed under the terms of the GNU
  6 * General Public License (GPL) Version 2, available from the file
  7 * COPYING in the main directory of this source tree, or the
  8 * OpenIB.org BSD license below:
  9 *
 10 *     Redistribution and use in source and binary forms, with or
 11 *     without modification, are permitted provided that the following
 12 *     conditions are met:
 13 *
 14 *      - Redistributions of source code must retain the above
 15 *        copyright notice, this list of conditions and the following
 16 *        disclaimer.
 17 *
 18 *      - Redistributions in binary form must reproduce the above
 19 *        copyright notice, this list of conditions and the following
 20 *        disclaimer in the documentation and/or other materials
 21 *        provided with the distribution.
 22 *
 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 30 * SOFTWARE.
 31 *
 32 */
 33#include <linux/module.h>
 34#include <linux/errno.h>
 35#include <linux/kernel.h>
 36#include <linux/gfp.h>
 37#include <linux/in.h>
 38#include <linux/ipv6.h>
 39#include <linux/poll.h>
 40#include <net/sock.h>
 41
 42#include "rds.h"
 43
 
 
 
 
 
 
 
 
 
 44/* this is just used for stats gathering :/ */
 45static DEFINE_SPINLOCK(rds_sock_lock);
 46static unsigned long rds_sock_count;
 47static LIST_HEAD(rds_sock_list);
 48DECLARE_WAIT_QUEUE_HEAD(rds_poll_waitq);
 49
 50/*
 51 * This is called as the final descriptor referencing this socket is closed.
 52 * We have to unbind the socket so that another socket can be bound to the
 53 * address it was using.
 54 *
 55 * We have to be careful about racing with the incoming path.  sock_orphan()
 56 * sets SOCK_DEAD and we use that as an indicator to the rx path that new
 57 * messages shouldn't be queued.
 58 */
 59static int rds_release(struct socket *sock)
 60{
 61	struct sock *sk = sock->sk;
 62	struct rds_sock *rs;
 63
 64	if (!sk)
 65		goto out;
 66
 67	rs = rds_sk_to_rs(sk);
 68
 69	sock_orphan(sk);
 70	/* Note - rds_clear_recv_queue grabs rs_recv_lock, so
 71	 * that ensures the recv path has completed messing
 72	 * with the socket. */
 73	rds_clear_recv_queue(rs);
 74	rds_cong_remove_socket(rs);
 75
 
 
 
 
 
 76	rds_remove_bound(rs);
 
 77
 78	rds_send_drop_to(rs, NULL);
 79	rds_rdma_drop_keys(rs);
 80	rds_notify_queue_get(rs, NULL);
 81	rds_notify_msg_zcopy_purge(&rs->rs_zcookie_queue);
 82
 83	spin_lock_bh(&rds_sock_lock);
 84	list_del_init(&rs->rs_item);
 85	rds_sock_count--;
 86	spin_unlock_bh(&rds_sock_lock);
 87
 88	rds_trans_put(rs->rs_transport);
 89
 90	sock->sk = NULL;
 91	sock_put(sk);
 92out:
 93	return 0;
 94}
 95
 96/*
 97 * Careful not to race with rds_release -> sock_orphan which clears sk_sleep.
 98 * _bh() isn't OK here, we're called from interrupt handlers.  It's probably OK
 99 * to wake the waitqueue after sk_sleep is clear as we hold a sock ref, but
100 * this seems more conservative.
101 * NB - normally, one would use sk_callback_lock for this, but we can
102 * get here from interrupts, whereas the network code grabs sk_callback_lock
103 * with _lock_bh only - so relying on sk_callback_lock introduces livelocks.
104 */
105void rds_wake_sk_sleep(struct rds_sock *rs)
106{
107	unsigned long flags;
108
109	read_lock_irqsave(&rs->rs_recv_lock, flags);
110	__rds_wake_sk_sleep(rds_rs_to_sk(rs));
111	read_unlock_irqrestore(&rs->rs_recv_lock, flags);
112}
113
114static int rds_getname(struct socket *sock, struct sockaddr *uaddr,
115		       int peer)
116{
 
117	struct rds_sock *rs = rds_sk_to_rs(sock->sk);
118	struct sockaddr_in6 *sin6;
119	struct sockaddr_in *sin;
120	int uaddr_len;
121
122	/* racey, don't care */
123	if (peer) {
124		if (ipv6_addr_any(&rs->rs_conn_addr))
125			return -ENOTCONN;
126
127		if (ipv6_addr_v4mapped(&rs->rs_conn_addr)) {
128			sin = (struct sockaddr_in *)uaddr;
129			memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
130			sin->sin_family = AF_INET;
131			sin->sin_port = rs->rs_conn_port;
132			sin->sin_addr.s_addr = rs->rs_conn_addr_v4;
133			uaddr_len = sizeof(*sin);
134		} else {
135			sin6 = (struct sockaddr_in6 *)uaddr;
136			sin6->sin6_family = AF_INET6;
137			sin6->sin6_port = rs->rs_conn_port;
138			sin6->sin6_addr = rs->rs_conn_addr;
139			sin6->sin6_flowinfo = 0;
140			/* scope_id is the same as in the bound address. */
141			sin6->sin6_scope_id = rs->rs_bound_scope_id;
142			uaddr_len = sizeof(*sin6);
143		}
144	} else {
145		/* If socket is not yet bound and the socket is connected,
146		 * set the return address family to be the same as the
147		 * connected address, but with 0 address value.  If it is not
148		 * connected, set the family to be AF_UNSPEC (value 0) and
149		 * the address size to be that of an IPv4 address.
150		 */
151		if (ipv6_addr_any(&rs->rs_bound_addr)) {
152			if (ipv6_addr_any(&rs->rs_conn_addr)) {
153				sin = (struct sockaddr_in *)uaddr;
154				memset(sin, 0, sizeof(*sin));
155				sin->sin_family = AF_UNSPEC;
156				return sizeof(*sin);
157			}
158
159#if IS_ENABLED(CONFIG_IPV6)
160			if (!(ipv6_addr_type(&rs->rs_conn_addr) &
161			      IPV6_ADDR_MAPPED)) {
162				sin6 = (struct sockaddr_in6 *)uaddr;
163				memset(sin6, 0, sizeof(*sin6));
164				sin6->sin6_family = AF_INET6;
165				return sizeof(*sin6);
166			}
167#endif
168
169			sin = (struct sockaddr_in *)uaddr;
170			memset(sin, 0, sizeof(*sin));
171			sin->sin_family = AF_INET;
172			return sizeof(*sin);
173		}
174		if (ipv6_addr_v4mapped(&rs->rs_bound_addr)) {
175			sin = (struct sockaddr_in *)uaddr;
176			memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
177			sin->sin_family = AF_INET;
178			sin->sin_port = rs->rs_bound_port;
179			sin->sin_addr.s_addr = rs->rs_bound_addr_v4;
180			uaddr_len = sizeof(*sin);
181		} else {
182			sin6 = (struct sockaddr_in6 *)uaddr;
183			sin6->sin6_family = AF_INET6;
184			sin6->sin6_port = rs->rs_bound_port;
185			sin6->sin6_addr = rs->rs_bound_addr;
186			sin6->sin6_flowinfo = 0;
187			sin6->sin6_scope_id = rs->rs_bound_scope_id;
188			uaddr_len = sizeof(*sin6);
189		}
190	}
191
192	return uaddr_len;
 
 
 
193}
194
195/*
196 * RDS' poll is without a doubt the least intuitive part of the interface,
197 * as EPOLLIN and EPOLLOUT do not behave entirely as you would expect from
198 * a network protocol.
199 *
200 * EPOLLIN is asserted if
201 *  -	there is data on the receive queue.
202 *  -	to signal that a previously congested destination may have become
203 *	uncongested
204 *  -	A notification has been queued to the socket (this can be a congestion
205 *	update, or a RDMA completion, or a MSG_ZEROCOPY completion).
206 *
207 * EPOLLOUT is asserted if there is room on the send queue. This does not mean
208 * however, that the next sendmsg() call will succeed. If the application tries
209 * to send to a congested destination, the system call may still fail (and
210 * return ENOBUFS).
211 */
212static __poll_t rds_poll(struct file *file, struct socket *sock,
213			     poll_table *wait)
214{
215	struct sock *sk = sock->sk;
216	struct rds_sock *rs = rds_sk_to_rs(sk);
217	__poll_t mask = 0;
218	unsigned long flags;
219
220	poll_wait(file, sk_sleep(sk), wait);
221
222	if (rs->rs_seen_congestion)
223		poll_wait(file, &rds_poll_waitq, wait);
224
225	read_lock_irqsave(&rs->rs_recv_lock, flags);
226	if (!rs->rs_cong_monitor) {
227		/* When a congestion map was updated, we signal EPOLLIN for
228		 * "historical" reasons. Applications can also poll for
229		 * WRBAND instead. */
230		if (rds_cong_updated_since(&rs->rs_cong_track))
231			mask |= (EPOLLIN | EPOLLRDNORM | EPOLLWRBAND);
232	} else {
233		spin_lock(&rs->rs_lock);
234		if (rs->rs_cong_notify)
235			mask |= (EPOLLIN | EPOLLRDNORM);
236		spin_unlock(&rs->rs_lock);
237	}
238	if (!list_empty(&rs->rs_recv_queue) ||
239	    !list_empty(&rs->rs_notify_queue) ||
240	    !list_empty(&rs->rs_zcookie_queue.zcookie_head))
241		mask |= (EPOLLIN | EPOLLRDNORM);
242	if (rs->rs_snd_bytes < rds_sk_sndbuf(rs))
243		mask |= (EPOLLOUT | EPOLLWRNORM);
244	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
245		mask |= POLLERR;
246	read_unlock_irqrestore(&rs->rs_recv_lock, flags);
247
248	/* clear state any time we wake a seen-congested socket */
249	if (mask)
250		rs->rs_seen_congestion = 0;
251
252	return mask;
253}
254
255static int rds_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
256{
257	struct rds_sock *rs = rds_sk_to_rs(sock->sk);
258	rds_tos_t utos, tos = 0;
259
260	switch (cmd) {
261	case SIOCRDSSETTOS:
262		if (get_user(utos, (rds_tos_t __user *)arg))
263			return -EFAULT;
264
265		if (rs->rs_transport &&
266		    rs->rs_transport->get_tos_map)
267			tos = rs->rs_transport->get_tos_map(utos);
268		else
269			return -ENOIOCTLCMD;
270
271		spin_lock_bh(&rds_sock_lock);
272		if (rs->rs_tos || rs->rs_conn) {
273			spin_unlock_bh(&rds_sock_lock);
274			return -EINVAL;
275		}
276		rs->rs_tos = tos;
277		spin_unlock_bh(&rds_sock_lock);
278		break;
279	case SIOCRDSGETTOS:
280		spin_lock_bh(&rds_sock_lock);
281		tos = rs->rs_tos;
282		spin_unlock_bh(&rds_sock_lock);
283		if (put_user(tos, (rds_tos_t __user *)arg))
284			return -EFAULT;
285		break;
286	default:
287		return -ENOIOCTLCMD;
288	}
289
290	return 0;
291}
292
293static int rds_cancel_sent_to(struct rds_sock *rs, sockptr_t optval, int len)
 
294{
295	struct sockaddr_in6 sin6;
296	struct sockaddr_in sin;
297	int ret = 0;
298
299	/* racing with another thread binding seems ok here */
300	if (ipv6_addr_any(&rs->rs_bound_addr)) {
301		ret = -ENOTCONN; /* XXX not a great errno */
302		goto out;
303	}
304
305	if (len < sizeof(struct sockaddr_in)) {
306		ret = -EINVAL;
307		goto out;
308	} else if (len < sizeof(struct sockaddr_in6)) {
309		/* Assume IPv4 */
310		if (copy_from_sockptr(&sin, optval,
311				sizeof(struct sockaddr_in))) {
312			ret = -EFAULT;
313			goto out;
314		}
315		ipv6_addr_set_v4mapped(sin.sin_addr.s_addr, &sin6.sin6_addr);
316		sin6.sin6_port = sin.sin_port;
317	} else {
318		if (copy_from_sockptr(&sin6, optval,
319				   sizeof(struct sockaddr_in6))) {
320			ret = -EFAULT;
321			goto out;
322		}
323	}
324
325	rds_send_drop_to(rs, &sin6);
 
 
 
 
 
326out:
327	return ret;
328}
329
330static int rds_set_bool_option(unsigned char *optvar, sockptr_t optval,
331			       int optlen)
332{
333	int value;
334
335	if (optlen < sizeof(int))
336		return -EINVAL;
337	if (copy_from_sockptr(&value, optval, sizeof(int)))
338		return -EFAULT;
339	*optvar = !!value;
340	return 0;
341}
342
343static int rds_cong_monitor(struct rds_sock *rs, sockptr_t optval, int optlen)
 
344{
345	int ret;
346
347	ret = rds_set_bool_option(&rs->rs_cong_monitor, optval, optlen);
348	if (ret == 0) {
349		if (rs->rs_cong_monitor) {
350			rds_cong_add_socket(rs);
351		} else {
352			rds_cong_remove_socket(rs);
353			rs->rs_cong_mask = 0;
354			rs->rs_cong_notify = 0;
355		}
356	}
357	return ret;
358}
359
360static int rds_set_transport(struct rds_sock *rs, sockptr_t optval, int optlen)
361{
362	int t_type;
363
364	if (rs->rs_transport)
365		return -EOPNOTSUPP; /* previously attached to transport */
366
367	if (optlen != sizeof(int))
368		return -EINVAL;
369
370	if (copy_from_sockptr(&t_type, optval, sizeof(t_type)))
371		return -EFAULT;
372
373	if (t_type < 0 || t_type >= RDS_TRANS_COUNT)
374		return -EINVAL;
375
376	rs->rs_transport = rds_trans_get(t_type);
377
378	return rs->rs_transport ? 0 : -ENOPROTOOPT;
379}
380
381static int rds_enable_recvtstamp(struct sock *sk, sockptr_t optval,
382				 int optlen, int optname)
383{
384	int val, valbool;
385
386	if (optlen != sizeof(int))
387		return -EFAULT;
388
389	if (copy_from_sockptr(&val, optval, sizeof(int)))
390		return -EFAULT;
391
392	valbool = val ? 1 : 0;
393
394	if (optname == SO_TIMESTAMP_NEW)
395		sock_set_flag(sk, SOCK_TSTAMP_NEW);
396
397	if (valbool)
398		sock_set_flag(sk, SOCK_RCVTSTAMP);
399	else
400		sock_reset_flag(sk, SOCK_RCVTSTAMP);
401
402	return 0;
403}
404
405static int rds_recv_track_latency(struct rds_sock *rs, sockptr_t optval,
406				  int optlen)
407{
408	struct rds_rx_trace_so trace;
409	int i;
410
411	if (optlen != sizeof(struct rds_rx_trace_so))
412		return -EFAULT;
413
414	if (copy_from_sockptr(&trace, optval, sizeof(trace)))
415		return -EFAULT;
416
417	if (trace.rx_traces > RDS_MSG_RX_DGRAM_TRACE_MAX)
418		return -EFAULT;
419
420	rs->rs_rx_traces = trace.rx_traces;
421	for (i = 0; i < rs->rs_rx_traces; i++) {
422		if (trace.rx_trace_pos[i] >= RDS_MSG_RX_DGRAM_TRACE_MAX) {
423			rs->rs_rx_traces = 0;
424			return -EFAULT;
425		}
426		rs->rs_rx_trace[i] = trace.rx_trace_pos[i];
427	}
428
429	return 0;
430}
431
432static int rds_setsockopt(struct socket *sock, int level, int optname,
433			  sockptr_t optval, unsigned int optlen)
434{
435	struct rds_sock *rs = rds_sk_to_rs(sock->sk);
436	int ret;
437
438	if (level != SOL_RDS) {
439		ret = -ENOPROTOOPT;
440		goto out;
441	}
442
443	switch (optname) {
444	case RDS_CANCEL_SENT_TO:
445		ret = rds_cancel_sent_to(rs, optval, optlen);
446		break;
447	case RDS_GET_MR:
448		ret = rds_get_mr(rs, optval, optlen);
449		break;
450	case RDS_GET_MR_FOR_DEST:
451		ret = rds_get_mr_for_dest(rs, optval, optlen);
452		break;
453	case RDS_FREE_MR:
454		ret = rds_free_mr(rs, optval, optlen);
455		break;
456	case RDS_RECVERR:
457		ret = rds_set_bool_option(&rs->rs_recverr, optval, optlen);
458		break;
459	case RDS_CONG_MONITOR:
460		ret = rds_cong_monitor(rs, optval, optlen);
461		break;
462	case SO_RDS_TRANSPORT:
463		lock_sock(sock->sk);
464		ret = rds_set_transport(rs, optval, optlen);
465		release_sock(sock->sk);
466		break;
467	case SO_TIMESTAMP_OLD:
468	case SO_TIMESTAMP_NEW:
469		lock_sock(sock->sk);
470		ret = rds_enable_recvtstamp(sock->sk, optval, optlen, optname);
471		release_sock(sock->sk);
472		break;
473	case SO_RDS_MSG_RXPATH_LATENCY:
474		ret = rds_recv_track_latency(rs, optval, optlen);
475		break;
476	default:
477		ret = -ENOPROTOOPT;
478	}
479out:
480	return ret;
481}
482
483static int rds_getsockopt(struct socket *sock, int level, int optname,
484			  char __user *optval, int __user *optlen)
485{
486	struct rds_sock *rs = rds_sk_to_rs(sock->sk);
487	int ret = -ENOPROTOOPT, len;
488	int trans;
489
490	if (level != SOL_RDS)
491		goto out;
492
493	if (get_user(len, optlen)) {
494		ret = -EFAULT;
495		goto out;
496	}
497
498	switch (optname) {
499	case RDS_INFO_FIRST ... RDS_INFO_LAST:
500		ret = rds_info_getsockopt(sock, optname, optval,
501					  optlen);
502		break;
503
504	case RDS_RECVERR:
505		if (len < sizeof(int))
506			ret = -EINVAL;
507		else
508		if (put_user(rs->rs_recverr, (int __user *) optval) ||
509		    put_user(sizeof(int), optlen))
510			ret = -EFAULT;
511		else
512			ret = 0;
513		break;
514	case SO_RDS_TRANSPORT:
515		if (len < sizeof(int)) {
516			ret = -EINVAL;
517			break;
518		}
519		trans = (rs->rs_transport ? rs->rs_transport->t_type :
520			 RDS_TRANS_NONE); /* unbound */
521		if (put_user(trans, (int __user *)optval) ||
522		    put_user(sizeof(int), optlen))
523			ret = -EFAULT;
524		else
525			ret = 0;
526		break;
527	default:
528		break;
529	}
530
531out:
532	return ret;
533
534}
535
536static int rds_connect(struct socket *sock, struct sockaddr *uaddr,
537		       int addr_len, int flags)
538{
539	struct sock *sk = sock->sk;
540	struct sockaddr_in *sin;
541	struct rds_sock *rs = rds_sk_to_rs(sk);
542	int ret = 0;
543
544	if (addr_len < offsetofend(struct sockaddr, sa_family))
545		return -EINVAL;
546
547	lock_sock(sk);
548
549	switch (uaddr->sa_family) {
550	case AF_INET:
551		sin = (struct sockaddr_in *)uaddr;
552		if (addr_len < sizeof(struct sockaddr_in)) {
553			ret = -EINVAL;
554			break;
555		}
556		if (sin->sin_addr.s_addr == htonl(INADDR_ANY)) {
557			ret = -EDESTADDRREQ;
558			break;
559		}
560		if (ipv4_is_multicast(sin->sin_addr.s_addr) ||
561		    sin->sin_addr.s_addr == htonl(INADDR_BROADCAST)) {
562			ret = -EINVAL;
563			break;
564		}
565		ipv6_addr_set_v4mapped(sin->sin_addr.s_addr, &rs->rs_conn_addr);
566		rs->rs_conn_port = sin->sin_port;
567		break;
568
569#if IS_ENABLED(CONFIG_IPV6)
570	case AF_INET6: {
571		struct sockaddr_in6 *sin6;
572		int addr_type;
573
574		sin6 = (struct sockaddr_in6 *)uaddr;
575		if (addr_len < sizeof(struct sockaddr_in6)) {
576			ret = -EINVAL;
577			break;
578		}
579		addr_type = ipv6_addr_type(&sin6->sin6_addr);
580		if (!(addr_type & IPV6_ADDR_UNICAST)) {
581			__be32 addr4;
582
583			if (!(addr_type & IPV6_ADDR_MAPPED)) {
584				ret = -EPROTOTYPE;
585				break;
586			}
587
588			/* It is a mapped address.  Need to do some sanity
589			 * checks.
590			 */
591			addr4 = sin6->sin6_addr.s6_addr32[3];
592			if (addr4 == htonl(INADDR_ANY) ||
593			    addr4 == htonl(INADDR_BROADCAST) ||
594			    ipv4_is_multicast(addr4)) {
595				ret = -EPROTOTYPE;
596				break;
597			}
598		}
599
600		if (addr_type & IPV6_ADDR_LINKLOCAL) {
601			/* If socket is arleady bound to a link local address,
602			 * the peer address must be on the same link.
603			 */
604			if (sin6->sin6_scope_id == 0 ||
605			    (!ipv6_addr_any(&rs->rs_bound_addr) &&
606			     rs->rs_bound_scope_id &&
607			     sin6->sin6_scope_id != rs->rs_bound_scope_id)) {
608				ret = -EINVAL;
609				break;
610			}
611			/* Remember the connected address scope ID.  It will
612			 * be checked against the binding local address when
613			 * the socket is bound.
614			 */
615			rs->rs_bound_scope_id = sin6->sin6_scope_id;
616		}
617		rs->rs_conn_addr = sin6->sin6_addr;
618		rs->rs_conn_port = sin6->sin6_port;
619		break;
620	}
621#endif
622
623	default:
624		ret = -EAFNOSUPPORT;
625		break;
626	}
627
 
628	release_sock(sk);
629	return ret;
630}
631
632static struct proto rds_proto = {
633	.name	  = "RDS",
634	.owner	  = THIS_MODULE,
635	.obj_size = sizeof(struct rds_sock),
636};
637
638static const struct proto_ops rds_proto_ops = {
639	.family =	AF_RDS,
640	.owner =	THIS_MODULE,
641	.release =	rds_release,
642	.bind =		rds_bind,
643	.connect =	rds_connect,
644	.socketpair =	sock_no_socketpair,
645	.accept =	sock_no_accept,
646	.getname =	rds_getname,
647	.poll =		rds_poll,
648	.ioctl =	rds_ioctl,
649	.listen =	sock_no_listen,
650	.shutdown =	sock_no_shutdown,
651	.setsockopt =	rds_setsockopt,
652	.getsockopt =	rds_getsockopt,
653	.sendmsg =	rds_sendmsg,
654	.recvmsg =	rds_recvmsg,
655	.mmap =		sock_no_mmap,
 
656};
657
658static void rds_sock_destruct(struct sock *sk)
659{
660	struct rds_sock *rs = rds_sk_to_rs(sk);
661
662	WARN_ON((&rs->rs_item != rs->rs_item.next ||
663		 &rs->rs_item != rs->rs_item.prev));
664}
665
666static int __rds_create(struct socket *sock, struct sock *sk, int protocol)
667{
668	struct rds_sock *rs;
669
670	sock_init_data(sock, sk);
671	sock->ops		= &rds_proto_ops;
672	sk->sk_protocol		= protocol;
673	sk->sk_destruct		= rds_sock_destruct;
674
675	rs = rds_sk_to_rs(sk);
676	spin_lock_init(&rs->rs_lock);
677	rwlock_init(&rs->rs_recv_lock);
678	INIT_LIST_HEAD(&rs->rs_send_queue);
679	INIT_LIST_HEAD(&rs->rs_recv_queue);
680	INIT_LIST_HEAD(&rs->rs_notify_queue);
681	INIT_LIST_HEAD(&rs->rs_cong_list);
682	rds_message_zcopy_queue_init(&rs->rs_zcookie_queue);
683	spin_lock_init(&rs->rs_rdma_lock);
684	rs->rs_rdma_keys = RB_ROOT;
685	rs->rs_rx_traces = 0;
686	rs->rs_tos = 0;
687	rs->rs_conn = NULL;
688
689	spin_lock_bh(&rds_sock_lock);
690	list_add_tail(&rs->rs_item, &rds_sock_list);
691	rds_sock_count++;
692	spin_unlock_bh(&rds_sock_lock);
693
694	return 0;
695}
696
697static int rds_create(struct net *net, struct socket *sock, int protocol,
698		      int kern)
699{
700	struct sock *sk;
701
702	if (sock->type != SOCK_SEQPACKET || protocol)
703		return -ESOCKTNOSUPPORT;
704
705	sk = sk_alloc(net, AF_RDS, GFP_KERNEL, &rds_proto, kern);
706	if (!sk)
707		return -ENOMEM;
708
709	return __rds_create(sock, sk, protocol);
710}
711
712void rds_sock_addref(struct rds_sock *rs)
713{
714	sock_hold(rds_rs_to_sk(rs));
715}
716
717void rds_sock_put(struct rds_sock *rs)
718{
719	sock_put(rds_rs_to_sk(rs));
720}
721
722static const struct net_proto_family rds_family_ops = {
723	.family =	AF_RDS,
724	.create =	rds_create,
725	.owner	=	THIS_MODULE,
726};
727
728static void rds_sock_inc_info(struct socket *sock, unsigned int len,
729			      struct rds_info_iterator *iter,
730			      struct rds_info_lengths *lens)
731{
732	struct rds_sock *rs;
733	struct rds_incoming *inc;
734	unsigned int total = 0;
735
736	len /= sizeof(struct rds_info_message);
737
738	spin_lock_bh(&rds_sock_lock);
739
740	list_for_each_entry(rs, &rds_sock_list, rs_item) {
741		/* This option only supports IPv4 sockets. */
742		if (!ipv6_addr_v4mapped(&rs->rs_bound_addr))
743			continue;
744
745		read_lock(&rs->rs_recv_lock);
746
747		/* XXX too lazy to maintain counts.. */
748		list_for_each_entry(inc, &rs->rs_recv_queue, i_item) {
749			total++;
750			if (total <= len)
751				rds_inc_info_copy(inc, iter,
752						  inc->i_saddr.s6_addr32[3],
753						  rs->rs_bound_addr_v4,
754						  1);
755		}
756
757		read_unlock(&rs->rs_recv_lock);
758	}
759
760	spin_unlock_bh(&rds_sock_lock);
761
762	lens->nr = total;
763	lens->each = sizeof(struct rds_info_message);
764}
765
766#if IS_ENABLED(CONFIG_IPV6)
767static void rds6_sock_inc_info(struct socket *sock, unsigned int len,
768			       struct rds_info_iterator *iter,
769			       struct rds_info_lengths *lens)
770{
771	struct rds_incoming *inc;
772	unsigned int total = 0;
773	struct rds_sock *rs;
774
775	len /= sizeof(struct rds6_info_message);
776
777	spin_lock_bh(&rds_sock_lock);
778
779	list_for_each_entry(rs, &rds_sock_list, rs_item) {
780		read_lock(&rs->rs_recv_lock);
781
782		list_for_each_entry(inc, &rs->rs_recv_queue, i_item) {
783			total++;
784			if (total <= len)
785				rds6_inc_info_copy(inc, iter, &inc->i_saddr,
786						   &rs->rs_bound_addr, 1);
787		}
788
789		read_unlock(&rs->rs_recv_lock);
790	}
791
792	spin_unlock_bh(&rds_sock_lock);
793
794	lens->nr = total;
795	lens->each = sizeof(struct rds6_info_message);
796}
797#endif
798
799static void rds_sock_info(struct socket *sock, unsigned int len,
800			  struct rds_info_iterator *iter,
801			  struct rds_info_lengths *lens)
802{
803	struct rds_info_socket sinfo;
804	unsigned int cnt = 0;
805	struct rds_sock *rs;
806
807	len /= sizeof(struct rds_info_socket);
808
809	spin_lock_bh(&rds_sock_lock);
810
811	if (len < rds_sock_count) {
812		cnt = rds_sock_count;
813		goto out;
814	}
815
816	list_for_each_entry(rs, &rds_sock_list, rs_item) {
817		/* This option only supports IPv4 sockets. */
818		if (!ipv6_addr_v4mapped(&rs->rs_bound_addr))
819			continue;
820		sinfo.sndbuf = rds_sk_sndbuf(rs);
821		sinfo.rcvbuf = rds_sk_rcvbuf(rs);
822		sinfo.bound_addr = rs->rs_bound_addr_v4;
823		sinfo.connected_addr = rs->rs_conn_addr_v4;
824		sinfo.bound_port = rs->rs_bound_port;
825		sinfo.connected_port = rs->rs_conn_port;
826		sinfo.inum = sock_i_ino(rds_rs_to_sk(rs));
827
828		rds_info_copy(iter, &sinfo, sizeof(sinfo));
829		cnt++;
830	}
831
832out:
833	lens->nr = cnt;
834	lens->each = sizeof(struct rds_info_socket);
835
836	spin_unlock_bh(&rds_sock_lock);
837}
838
839#if IS_ENABLED(CONFIG_IPV6)
840static void rds6_sock_info(struct socket *sock, unsigned int len,
841			   struct rds_info_iterator *iter,
842			   struct rds_info_lengths *lens)
843{
844	struct rds6_info_socket sinfo6;
845	struct rds_sock *rs;
846
847	len /= sizeof(struct rds6_info_socket);
848
849	spin_lock_bh(&rds_sock_lock);
850
851	if (len < rds_sock_count)
852		goto out;
853
854	list_for_each_entry(rs, &rds_sock_list, rs_item) {
855		sinfo6.sndbuf = rds_sk_sndbuf(rs);
856		sinfo6.rcvbuf = rds_sk_rcvbuf(rs);
857		sinfo6.bound_addr = rs->rs_bound_addr;
858		sinfo6.connected_addr = rs->rs_conn_addr;
859		sinfo6.bound_port = rs->rs_bound_port;
860		sinfo6.connected_port = rs->rs_conn_port;
861		sinfo6.inum = sock_i_ino(rds_rs_to_sk(rs));
862
863		rds_info_copy(iter, &sinfo6, sizeof(sinfo6));
864	}
865
866 out:
867	lens->nr = rds_sock_count;
868	lens->each = sizeof(struct rds6_info_socket);
869
870	spin_unlock_bh(&rds_sock_lock);
871}
872#endif
873
874static void rds_exit(void)
875{
876	sock_unregister(rds_family_ops.family);
877	proto_unregister(&rds_proto);
878	rds_conn_exit();
879	rds_cong_exit();
880	rds_sysctl_exit();
881	rds_threads_exit();
882	rds_stats_exit();
883	rds_page_exit();
884	rds_bind_lock_destroy();
885	rds_info_deregister_func(RDS_INFO_SOCKETS, rds_sock_info);
886	rds_info_deregister_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info);
887#if IS_ENABLED(CONFIG_IPV6)
888	rds_info_deregister_func(RDS6_INFO_SOCKETS, rds6_sock_info);
889	rds_info_deregister_func(RDS6_INFO_RECV_MESSAGES, rds6_sock_inc_info);
890#endif
891}
892module_exit(rds_exit);
893
894u32 rds_gen_num;
895
896static int __init rds_init(void)
897{
898	int ret;
899
900	net_get_random_once(&rds_gen_num, sizeof(rds_gen_num));
901
902	ret = rds_bind_lock_init();
903	if (ret)
904		goto out;
905
906	ret = rds_conn_init();
907	if (ret)
908		goto out_bind;
909
910	ret = rds_threads_init();
911	if (ret)
912		goto out_conn;
913	ret = rds_sysctl_init();
914	if (ret)
915		goto out_threads;
916	ret = rds_stats_init();
917	if (ret)
918		goto out_sysctl;
919	ret = proto_register(&rds_proto, 1);
920	if (ret)
921		goto out_stats;
922	ret = sock_register(&rds_family_ops);
923	if (ret)
924		goto out_proto;
925
926	rds_info_register_func(RDS_INFO_SOCKETS, rds_sock_info);
927	rds_info_register_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info);
928#if IS_ENABLED(CONFIG_IPV6)
929	rds_info_register_func(RDS6_INFO_SOCKETS, rds6_sock_info);
930	rds_info_register_func(RDS6_INFO_RECV_MESSAGES, rds6_sock_inc_info);
931#endif
932
933	goto out;
934
935out_proto:
936	proto_unregister(&rds_proto);
937out_stats:
938	rds_stats_exit();
939out_sysctl:
940	rds_sysctl_exit();
941out_threads:
942	rds_threads_exit();
943out_conn:
944	rds_conn_exit();
945	rds_cong_exit();
946	rds_page_exit();
947out_bind:
948	rds_bind_lock_destroy();
949out:
950	return ret;
951}
952module_init(rds_init);
953
954#define DRV_VERSION     "4.0"
955#define DRV_RELDATE     "Feb 12, 2009"
956
957MODULE_AUTHOR("Oracle Corporation <rds-devel@oss.oracle.com>");
958MODULE_DESCRIPTION("RDS: Reliable Datagram Sockets"
959		   " v" DRV_VERSION " (" DRV_RELDATE ")");
960MODULE_VERSION(DRV_VERSION);
961MODULE_LICENSE("Dual BSD/GPL");
962MODULE_ALIAS_NETPROTO(PF_RDS);