Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		The User Datagram Protocol (UDP).
   7 *
   8 * Authors:	Ross Biro
   9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  11 *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
  12 *		Hirokazu Takahashi, <taka@valinux.co.jp>
  13 *
  14 * Fixes:
  15 *		Alan Cox	:	verify_area() calls
  16 *		Alan Cox	: 	stopped close while in use off icmp
  17 *					messages. Not a fix but a botch that
  18 *					for udp at least is 'valid'.
  19 *		Alan Cox	:	Fixed icmp handling properly
  20 *		Alan Cox	: 	Correct error for oversized datagrams
  21 *		Alan Cox	:	Tidied select() semantics.
  22 *		Alan Cox	:	udp_err() fixed properly, also now
  23 *					select and read wake correctly on errors
  24 *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
  25 *		Alan Cox	:	UDP can count its memory
  26 *		Alan Cox	:	send to an unknown connection causes
  27 *					an ECONNREFUSED off the icmp, but
  28 *					does NOT close.
  29 *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
  30 *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
  31 *					bug no longer crashes it.
  32 *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
  33 *		Alan Cox	:	Uses skb_free_datagram
  34 *		Alan Cox	:	Added get/set sockopt support.
  35 *		Alan Cox	:	Broadcasting without option set returns EACCES.
  36 *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
  37 *		Alan Cox	:	Use ip_tos and ip_ttl
  38 *		Alan Cox	:	SNMP Mibs
  39 *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
  40 *		Matt Dillon	:	UDP length checks.
  41 *		Alan Cox	:	Smarter af_inet used properly.
  42 *		Alan Cox	:	Use new kernel side addressing.
  43 *		Alan Cox	:	Incorrect return on truncated datagram receive.
  44 *	Arnt Gulbrandsen 	:	New udp_send and stuff
  45 *		Alan Cox	:	Cache last socket
  46 *		Alan Cox	:	Route cache
  47 *		Jon Peatfield	:	Minor efficiency fix to sendto().
  48 *		Mike Shaver	:	RFC1122 checks.
  49 *		Alan Cox	:	Nonblocking error fix.
  50 *	Willy Konynenberg	:	Transparent proxying support.
  51 *		Mike McLagan	:	Routing by source
  52 *		David S. Miller	:	New socket lookup architecture.
  53 *					Last socket cache retained as it
  54 *					does have a high hit rate.
  55 *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
  56 *		Andi Kleen	:	Some cleanups, cache destination entry
  57 *					for connect.
  58 *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
  59 *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
  60 *					return ENOTCONN for unconnected sockets (POSIX)
  61 *		Janos Farkas	:	don't deliver multi/broadcasts to a different
  62 *					bound-to-device socket
  63 *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
  64 *					datagrams.
  65 *	Hirokazu Takahashi	:	sendfile() on UDP works now.
  66 *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
  67 *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
  68 *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
  69 *					a single port at the same time.
  70 *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
  71 *	James Chapman		:	Add L2TP encapsulation type.
  72 *
  73 *
  74 *		This program is free software; you can redistribute it and/or
  75 *		modify it under the terms of the GNU General Public License
  76 *		as published by the Free Software Foundation; either version
  77 *		2 of the License, or (at your option) any later version.
  78 */
  79
  80#define pr_fmt(fmt) "UDP: " fmt
  81
  82#include <asm/uaccess.h>
 
  83#include <asm/ioctls.h>
  84#include <linux/bootmem.h>
  85#include <linux/highmem.h>
  86#include <linux/swap.h>
  87#include <linux/types.h>
  88#include <linux/fcntl.h>
  89#include <linux/module.h>
  90#include <linux/socket.h>
  91#include <linux/sockios.h>
  92#include <linux/igmp.h>
 
  93#include <linux/in.h>
  94#include <linux/errno.h>
  95#include <linux/timer.h>
  96#include <linux/mm.h>
  97#include <linux/inet.h>
  98#include <linux/netdevice.h>
  99#include <linux/slab.h>
 100#include <net/tcp_states.h>
 101#include <linux/skbuff.h>
 102#include <linux/proc_fs.h>
 103#include <linux/seq_file.h>
 104#include <net/net_namespace.h>
 105#include <net/icmp.h>
 106#include <net/inet_hashtables.h>
 
 
 107#include <net/route.h>
 108#include <net/checksum.h>
 
 109#include <net/xfrm.h>
 110#include <trace/events/udp.h>
 111#include <linux/static_key.h>
 
 112#include <trace/events/skb.h>
 113#include <net/busy_poll.h>
 114#include "udp_impl.h"
 
 
 
 
 
 
 
 115
 116struct udp_table udp_table __read_mostly;
 117EXPORT_SYMBOL(udp_table);
 118
 119long sysctl_udp_mem[3] __read_mostly;
 120EXPORT_SYMBOL(sysctl_udp_mem);
 121
 122int sysctl_udp_rmem_min __read_mostly;
 123EXPORT_SYMBOL(sysctl_udp_rmem_min);
 124
 125int sysctl_udp_wmem_min __read_mostly;
 126EXPORT_SYMBOL(sysctl_udp_wmem_min);
 127
 128atomic_long_t udp_memory_allocated;
 129EXPORT_SYMBOL(udp_memory_allocated);
 
 
 130
 131#define MAX_UDP_PORTS 65536
 132#define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
 
 
 
 
 
 133
 134static int udp_lib_lport_inuse(struct net *net, __u16 num,
 135			       const struct udp_hslot *hslot,
 136			       unsigned long *bitmap,
 137			       struct sock *sk,
 138			       int (*saddr_comp)(const struct sock *sk1,
 139						 const struct sock *sk2),
 140			       unsigned int log)
 141{
 142	struct sock *sk2;
 143	struct hlist_nulls_node *node;
 144	kuid_t uid = sock_i_uid(sk);
 145
 146	sk_nulls_for_each(sk2, node, &hslot->head)
 147		if (net_eq(sock_net(sk2), net) &&
 148		    sk2 != sk &&
 149		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
 150		    (!sk2->sk_reuse || !sk->sk_reuse) &&
 151		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
 152		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
 153		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
 154		      !uid_eq(uid, sock_i_uid(sk2))) &&
 155		    (*saddr_comp)(sk, sk2)) {
 156			if (bitmap)
 
 
 
 
 
 157				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
 158					  bitmap);
 159			else
 160				return 1;
 161		}
 
 162	return 0;
 163}
 164
 165/*
 166 * Note: we still hold spinlock of primary hash chain, so no other writer
 167 * can insert/delete a socket with local_port == num
 168 */
 169static int udp_lib_lport_inuse2(struct net *net, __u16 num,
 170			       struct udp_hslot *hslot2,
 171			       struct sock *sk,
 172			       int (*saddr_comp)(const struct sock *sk1,
 173						 const struct sock *sk2))
 174{
 175	struct sock *sk2;
 176	struct hlist_nulls_node *node;
 177	kuid_t uid = sock_i_uid(sk);
 178	int res = 0;
 179
 180	spin_lock(&hslot2->lock);
 181	udp_portaddr_for_each_entry(sk2, node, &hslot2->head)
 182		if (net_eq(sock_net(sk2), net) &&
 183		    sk2 != sk &&
 184		    (udp_sk(sk2)->udp_port_hash == num) &&
 185		    (!sk2->sk_reuse || !sk->sk_reuse) &&
 186		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
 187		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
 188		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
 189		      !uid_eq(uid, sock_i_uid(sk2))) &&
 190		    (*saddr_comp)(sk, sk2)) {
 191			res = 1;
 
 
 
 
 192			break;
 193		}
 
 194	spin_unlock(&hslot2->lock);
 195	return res;
 196}
 197
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 198/**
 199 *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
 200 *
 201 *  @sk:          socket struct in question
 202 *  @snum:        port number to look up
 203 *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
 204 *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
 205 *                   with NULL address
 206 */
 207int udp_lib_get_port(struct sock *sk, unsigned short snum,
 208		       int (*saddr_comp)(const struct sock *sk1,
 209					 const struct sock *sk2),
 210		     unsigned int hash2_nulladdr)
 211{
 
 212	struct udp_hslot *hslot, *hslot2;
 213	struct udp_table *udptable = sk->sk_prot->h.udp_table;
 214	int    error = 1;
 215	struct net *net = sock_net(sk);
 
 216
 217	if (!snum) {
 
 
 218		int low, high, remaining;
 219		unsigned int rand;
 220		unsigned short first, last;
 221		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
 222
 223		inet_get_local_port_range(net, &low, &high);
 224		remaining = (high - low) + 1;
 225
 226		rand = prandom_u32();
 227		first = (((u64)rand * remaining) >> 32) + low;
 228		/*
 229		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
 230		 */
 231		rand = (rand | 1) * (udptable->mask + 1);
 232		last = first + udptable->mask + 1;
 233		do {
 234			hslot = udp_hashslot(udptable, net, first);
 235			bitmap_zero(bitmap, PORTS_PER_CHAIN);
 236			spin_lock_bh(&hslot->lock);
 237			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
 238					    saddr_comp, udptable->log);
 239
 240			snum = first;
 241			/*
 242			 * Iterate on all possible values of snum for this hash.
 243			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
 244			 * give us randomization and full range coverage.
 245			 */
 246			do {
 247				if (low <= snum && snum <= high &&
 248				    !test_bit(snum >> udptable->log, bitmap) &&
 249				    !inet_is_reserved_local_port(snum))
 250					goto found;
 251				snum += rand;
 252			} while (snum != first);
 253			spin_unlock_bh(&hslot->lock);
 
 254		} while (++first != last);
 255		goto fail;
 256	} else {
 257		hslot = udp_hashslot(udptable, net, snum);
 258		spin_lock_bh(&hslot->lock);
 259		if (hslot->count > 10) {
 260			int exist;
 261			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
 262
 263			slot2          &= udptable->mask;
 264			hash2_nulladdr &= udptable->mask;
 265
 266			hslot2 = udp_hashslot2(udptable, slot2);
 267			if (hslot->count < hslot2->count)
 268				goto scan_primary_hash;
 269
 270			exist = udp_lib_lport_inuse2(net, snum, hslot2,
 271						     sk, saddr_comp);
 272			if (!exist && (hash2_nulladdr != slot2)) {
 273				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
 274				exist = udp_lib_lport_inuse2(net, snum, hslot2,
 275							     sk, saddr_comp);
 276			}
 277			if (exist)
 278				goto fail_unlock;
 279			else
 280				goto found;
 281		}
 282scan_primary_hash:
 283		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
 284					saddr_comp, 0))
 285			goto fail_unlock;
 286	}
 287found:
 288	inet_sk(sk)->inet_num = snum;
 289	udp_sk(sk)->udp_port_hash = snum;
 290	udp_sk(sk)->udp_portaddr_hash ^= snum;
 291	if (sk_unhashed(sk)) {
 292		sk_nulls_add_node_rcu(sk, &hslot->head);
 
 
 
 
 
 
 
 
 
 
 293		hslot->count++;
 294		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
 295
 296		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
 297		spin_lock(&hslot2->lock);
 298		hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
 299					 &hslot2->head);
 
 
 
 
 
 300		hslot2->count++;
 301		spin_unlock(&hslot2->lock);
 302	}
 
 303	error = 0;
 304fail_unlock:
 305	spin_unlock_bh(&hslot->lock);
 306fail:
 307	return error;
 308}
 309EXPORT_SYMBOL(udp_lib_get_port);
 310
 311static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
 312{
 313	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
 314
 315	return 	(!ipv6_only_sock(sk2)  &&
 316		 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
 317		   inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
 318}
 319
 320static unsigned int udp4_portaddr_hash(struct net *net, __be32 saddr,
 321				       unsigned int port)
 322{
 323	return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
 324}
 325
 326int udp_v4_get_port(struct sock *sk, unsigned short snum)
 327{
 328	unsigned int hash2_nulladdr =
 329		udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
 330	unsigned int hash2_partial =
 331		udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
 332
 333	/* precompute partial secondary hash */
 334	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
 335	return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
 336}
 337
 338static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr,
 339			 unsigned short hnum,
 340			 __be16 sport, __be32 daddr, __be16 dport, int dif)
 341{
 342	int score = -1;
 343
 344	if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum &&
 345			!ipv6_only_sock(sk)) {
 346		struct inet_sock *inet = inet_sk(sk);
 347
 348		score = (sk->sk_family == PF_INET ? 2 : 1);
 349		if (inet->inet_rcv_saddr) {
 350			if (inet->inet_rcv_saddr != daddr)
 351				return -1;
 352			score += 4;
 353		}
 354		if (inet->inet_daddr) {
 355			if (inet->inet_daddr != saddr)
 356				return -1;
 357			score += 4;
 358		}
 359		if (inet->inet_dport) {
 360			if (inet->inet_dport != sport)
 361				return -1;
 362			score += 4;
 363		}
 364		if (sk->sk_bound_dev_if) {
 365			if (sk->sk_bound_dev_if != dif)
 366				return -1;
 367			score += 4;
 368		}
 369	}
 370	return score;
 371}
 372
 373/*
 374 * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
 375 */
 376static inline int compute_score2(struct sock *sk, struct net *net,
 377				 __be32 saddr, __be16 sport,
 378				 __be32 daddr, unsigned int hnum, int dif)
 379{
 380	int score = -1;
 
 
 
 
 
 
 
 381
 382	if (net_eq(sock_net(sk), net) && !ipv6_only_sock(sk)) {
 383		struct inet_sock *inet = inet_sk(sk);
 384
 385		if (inet->inet_rcv_saddr != daddr)
 386			return -1;
 387		if (inet->inet_num != hnum)
 
 
 388			return -1;
 
 
 389
 390		score = (sk->sk_family == PF_INET ? 2 : 1);
 391		if (inet->inet_daddr) {
 392			if (inet->inet_daddr != saddr)
 393				return -1;
 394			score += 4;
 395		}
 396		if (inet->inet_dport) {
 397			if (inet->inet_dport != sport)
 398				return -1;
 399			score += 4;
 400		}
 401		if (sk->sk_bound_dev_if) {
 402			if (sk->sk_bound_dev_if != dif)
 403				return -1;
 404			score += 4;
 405		}
 406	}
 
 
 
 
 
 
 
 
 
 
 407	return score;
 408}
 409
 410static unsigned int udp_ehashfn(struct net *net, const __be32 laddr,
 411				 const __u16 lport, const __be32 faddr,
 412				 const __be16 fport)
 413{
 414	static u32 udp_ehash_secret __read_mostly;
 415
 416	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
 417
 418	return __inet_ehashfn(laddr, lport, faddr, fport,
 419			      udp_ehash_secret + net_hash_mix(net));
 420}
 
 421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 422
 423/* called with read_rcu_lock() */
 424static struct sock *udp4_lib_lookup2(struct net *net,
 425		__be32 saddr, __be16 sport,
 426		__be32 daddr, unsigned int hnum, int dif,
 427		struct udp_hslot *hslot2, unsigned int slot2)
 
 
 
 
 
 428{
 429	struct sock *sk, *result;
 430	struct hlist_nulls_node *node;
 431	int score, badness, matches = 0, reuseport = 0;
 432	u32 hash = 0;
 433
 434begin:
 435	result = NULL;
 436	badness = 0;
 437	udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
 438		score = compute_score2(sk, net, saddr, sport,
 439				      daddr, hnum, dif);
 
 
 440		if (score > badness) {
 441			result = sk;
 442			badness = score;
 443			reuseport = sk->sk_reuseport;
 444			if (reuseport) {
 445				hash = udp_ehashfn(net, daddr, hnum,
 446						   saddr, sport);
 447				matches = 1;
 
 
 448			}
 449		} else if (score == badness && reuseport) {
 450			matches++;
 451			if (((u64)hash * matches) >> 32 == 0)
 
 452				result = sk;
 453			hash = next_pseudo_random32(hash);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 454		}
 455	}
 456	/*
 457	 * if the nulls value we got at the end of this lookup is
 458	 * not the expected one, we must restart lookup.
 459	 * We probably met an item that was moved to another chain.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 460	 */
 461	if (get_nulls_value(node) != slot2)
 462		goto begin;
 463	if (result) {
 464		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
 465			result = NULL;
 466		else if (unlikely(compute_score2(result, net, saddr, sport,
 467				  daddr, hnum, dif) < badness)) {
 468			sock_put(result);
 469			goto begin;
 470		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 471	}
 472	return result;
 473}
 474
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 475/* UDP is nearly always wildcards out the wazoo, it makes no sense to try
 476 * harder than this. -DaveM
 477 */
 478struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
 479		__be16 sport, __be32 daddr, __be16 dport,
 480		int dif, struct udp_table *udptable)
 481{
 482	struct sock *sk, *result;
 483	struct hlist_nulls_node *node;
 484	unsigned short hnum = ntohs(dport);
 485	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
 486	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
 487	int score, badness, matches = 0, reuseport = 0;
 488	u32 hash = 0;
 489
 490	rcu_read_lock();
 491	if (hslot->count > 10) {
 492		hash2 = udp4_portaddr_hash(net, daddr, hnum);
 493		slot2 = hash2 & udptable->mask;
 494		hslot2 = &udptable->hash2[slot2];
 495		if (hslot->count < hslot2->count)
 496			goto begin;
 497
 498		result = udp4_lib_lookup2(net, saddr, sport,
 499					  daddr, hnum, dif,
 500					  hslot2, slot2);
 501		if (!result) {
 502			hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
 503			slot2 = hash2 & udptable->mask;
 504			hslot2 = &udptable->hash2[slot2];
 505			if (hslot->count < hslot2->count)
 506				goto begin;
 507
 508			result = udp4_lib_lookup2(net, saddr, sport,
 509						  htonl(INADDR_ANY), hnum, dif,
 510						  hslot2, slot2);
 511		}
 512		rcu_read_unlock();
 513		return result;
 514	}
 515begin:
 516	result = NULL;
 517	badness = 0;
 518	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
 519		score = compute_score(sk, net, saddr, hnum, sport,
 520				      daddr, dport, dif);
 521		if (score > badness) {
 522			result = sk;
 523			badness = score;
 524			reuseport = sk->sk_reuseport;
 525			if (reuseport) {
 526				hash = udp_ehashfn(net, daddr, hnum,
 527						   saddr, sport);
 528				matches = 1;
 529			}
 530		} else if (score == badness && reuseport) {
 531			matches++;
 532			if (((u64)hash * matches) >> 32 == 0)
 533				result = sk;
 534			hash = next_pseudo_random32(hash);
 535		}
 536	}
 537	/*
 538	 * if the nulls value we got at the end of this lookup is
 539	 * not the expected one, we must restart lookup.
 540	 * We probably met an item that was moved to another chain.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 541	 */
 542	if (get_nulls_value(node) != slot)
 543		goto begin;
 544
 545	if (result) {
 546		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
 547			result = NULL;
 548		else if (unlikely(compute_score(result, net, saddr, hnum, sport,
 549				  daddr, dport, dif) < badness)) {
 550			sock_put(result);
 551			goto begin;
 552		}
 553	}
 554	rcu_read_unlock();
 555	return result;
 556}
 557EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
 558
 559static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
 560						 __be16 sport, __be16 dport,
 561						 struct udp_table *udptable)
 562{
 563	const struct iphdr *iph = ip_hdr(skb);
 564
 565	return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
 566				 iph->daddr, dport, inet_iif(skb),
 567				 udptable);
 568}
 569
 570struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 571			     __be32 daddr, __be16 dport, int dif)
 572{
 573	return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
 
 
 
 
 
 
 574}
 575EXPORT_SYMBOL_GPL(udp4_lib_lookup);
 
 576
 577static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
 578				       __be16 loc_port, __be32 loc_addr,
 579				       __be16 rmt_port, __be32 rmt_addr,
 580				       int dif, unsigned short hnum)
 581{
 582	struct inet_sock *inet = inet_sk(sk);
 583
 584	if (!net_eq(sock_net(sk), net) ||
 585	    udp_sk(sk)->udp_port_hash != hnum ||
 586	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
 587	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
 588	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
 589	    ipv6_only_sock(sk) ||
 590	    (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
 591		return false;
 592	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
 593		return false;
 594	return true;
 595}
 596
 597static inline struct sock *udp_v4_mcast_next(struct net *net, struct sock *sk,
 598					     __be16 loc_port, __be32 loc_addr,
 599					     __be16 rmt_port, __be32 rmt_addr,
 600					     int dif)
 
 
 
 
 
 601{
 602	struct hlist_nulls_node *node;
 603	struct sock *s = sk;
 604	unsigned short hnum = ntohs(loc_port);
 
 
 
 
 
 
 
 
 
 
 
 
 
 605
 606	sk_nulls_for_each_from(s, node) {
 607		if (__udp_is_mcast_sock(net, s,
 608					loc_port, loc_addr,
 609					rmt_port, rmt_addr,
 610					dif, hnum))
 611			goto found;
 
 
 
 
 612	}
 613	s = NULL;
 614found:
 615	return s;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 616}
 617
 618/*
 619 * This routine is called by the ICMP module when it gets some
 620 * sort of error condition.  If err < 0 then the socket should
 621 * be closed and the error returned to the user.  If err > 0
 622 * it's just the icmp type << 8 | icmp code.
 623 * Header points to the ip header of the error packet. We move
 624 * on past this. Then (as it used to claim before adjustment)
 625 * header points to the first 8 bytes of the udp header.  We need
 626 * to find the appropriate port.
 627 */
 628
 629void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
 630{
 631	struct inet_sock *inet;
 632	const struct iphdr *iph = (const struct iphdr *)skb->data;
 633	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
 634	const int type = icmp_hdr(skb)->type;
 635	const int code = icmp_hdr(skb)->code;
 
 636	struct sock *sk;
 637	int harderr;
 638	int err;
 639	struct net *net = dev_net(skb->dev);
 640
 641	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
 642			iph->saddr, uh->source, skb->dev->ifindex, udptable);
 643	if (sk == NULL) {
 644		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
 645		return;	/* No socket for error */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 646	}
 647
 648	err = 0;
 649	harderr = 0;
 650	inet = inet_sk(sk);
 651
 652	switch (type) {
 653	default:
 654	case ICMP_TIME_EXCEEDED:
 655		err = EHOSTUNREACH;
 656		break;
 657	case ICMP_SOURCE_QUENCH:
 658		goto out;
 659	case ICMP_PARAMETERPROB:
 660		err = EPROTO;
 661		harderr = 1;
 662		break;
 663	case ICMP_DEST_UNREACH:
 664		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
 665			ipv4_sk_update_pmtu(skb, sk, info);
 666			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
 667				err = EMSGSIZE;
 668				harderr = 1;
 669				break;
 670			}
 671			goto out;
 672		}
 673		err = EHOSTUNREACH;
 674		if (code <= NR_ICMP_UNREACH) {
 675			harderr = icmp_err_convert[code].fatal;
 676			err = icmp_err_convert[code].errno;
 677		}
 678		break;
 679	case ICMP_REDIRECT:
 680		ipv4_sk_redirect(skb, sk);
 681		goto out;
 682	}
 683
 684	/*
 685	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
 686	 *	4.1.3.3.
 687	 */
 688	if (!inet->recverr) {
 
 
 
 
 
 
 
 689		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
 690			goto out;
 691	} else
 692		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
 693
 694	sk->sk_err = err;
 695	sk->sk_error_report(sk);
 696out:
 697	sock_put(sk);
 698}
 699
 700void udp_err(struct sk_buff *skb, u32 info)
 701{
 702	__udp4_lib_err(skb, info, &udp_table);
 703}
 704
 705/*
 706 * Throw away all pending data and cancel the corking. Socket is locked.
 707 */
 708void udp_flush_pending_frames(struct sock *sk)
 709{
 710	struct udp_sock *up = udp_sk(sk);
 711
 712	if (up->pending) {
 713		up->len = 0;
 714		up->pending = 0;
 715		ip_flush_pending_frames(sk);
 716	}
 717}
 718EXPORT_SYMBOL(udp_flush_pending_frames);
 719
 720/**
 721 * 	udp4_hwcsum  -  handle outgoing HW checksumming
 722 * 	@skb: 	sk_buff containing the filled-in UDP header
 723 * 	        (checksum field must be zeroed out)
 724 *	@src:	source IP address
 725 *	@dst:	destination IP address
 726 */
 727void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
 728{
 729	struct udphdr *uh = udp_hdr(skb);
 730	struct sk_buff *frags = skb_shinfo(skb)->frag_list;
 731	int offset = skb_transport_offset(skb);
 732	int len = skb->len - offset;
 733	int hlen = len;
 734	__wsum csum = 0;
 735
 736	if (!frags) {
 737		/*
 738		 * Only one fragment on the socket.
 739		 */
 740		skb->csum_start = skb_transport_header(skb) - skb->head;
 741		skb->csum_offset = offsetof(struct udphdr, check);
 742		uh->check = ~csum_tcpudp_magic(src, dst, len,
 743					       IPPROTO_UDP, 0);
 744	} else {
 
 
 745		/*
 746		 * HW-checksum won't work as there are two or more
 747		 * fragments on the socket so that all csums of sk_buffs
 748		 * should be together
 749		 */
 750		do {
 751			csum = csum_add(csum, frags->csum);
 752			hlen -= frags->len;
 753		} while ((frags = frags->next));
 754
 755		csum = skb_checksum(skb, offset, hlen, csum);
 756		skb->ip_summed = CHECKSUM_NONE;
 757
 758		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
 759		if (uh->check == 0)
 760			uh->check = CSUM_MANGLED_0;
 761	}
 762}
 763EXPORT_SYMBOL_GPL(udp4_hwcsum);
 764
 765static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 766{
 767	struct sock *sk = skb->sk;
 768	struct inet_sock *inet = inet_sk(sk);
 769	struct udphdr *uh;
 770	int err = 0;
 771	int is_udplite = IS_UDPLITE(sk);
 772	int offset = skb_transport_offset(skb);
 773	int len = skb->len - offset;
 
 774	__wsum csum = 0;
 775
 776	/*
 777	 * Create a UDP header
 778	 */
 779	uh = udp_hdr(skb);
 780	uh->source = inet->inet_sport;
 781	uh->dest = fl4->fl4_dport;
 782	uh->len = htons(len);
 783	uh->check = 0;
 784
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 785	if (is_udplite)  				 /*     UDP-Lite      */
 786		csum = udplite_csum(skb);
 787
 788	else if (sk->sk_no_check == UDP_CSUM_NOXMIT) {   /* UDP csum disabled */
 789
 790		skb->ip_summed = CHECKSUM_NONE;
 791		goto send;
 792
 793	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
 
 794
 795		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
 796		goto send;
 797
 798	} else
 799		csum = udp_csum(skb);
 800
 801	/* add protocol-dependent pseudo-header */
 802	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
 803				      sk->sk_protocol, csum);
 804	if (uh->check == 0)
 805		uh->check = CSUM_MANGLED_0;
 806
 807send:
 808	err = ip_send_skb(sock_net(sk), skb);
 809	if (err) {
 810		if (err == -ENOBUFS && !inet->recverr) {
 811			UDP_INC_STATS_USER(sock_net(sk),
 812					   UDP_MIB_SNDBUFERRORS, is_udplite);
 
 813			err = 0;
 814		}
 815	} else
 816		UDP_INC_STATS_USER(sock_net(sk),
 817				   UDP_MIB_OUTDATAGRAMS, is_udplite);
 818	return err;
 819}
 820
 821/*
 822 * Push out all pending data as one UDP datagram. Socket is locked.
 823 */
 824int udp_push_pending_frames(struct sock *sk)
 825{
 826	struct udp_sock  *up = udp_sk(sk);
 827	struct inet_sock *inet = inet_sk(sk);
 828	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
 829	struct sk_buff *skb;
 830	int err = 0;
 831
 832	skb = ip_finish_skb(sk, fl4);
 833	if (!skb)
 834		goto out;
 835
 836	err = udp_send_skb(skb, fl4);
 837
 838out:
 839	up->len = 0;
 840	up->pending = 0;
 841	return err;
 842}
 843EXPORT_SYMBOL(udp_push_pending_frames);
 844
 845int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
 846		size_t len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 847{
 848	struct inet_sock *inet = inet_sk(sk);
 849	struct udp_sock *up = udp_sk(sk);
 
 850	struct flowi4 fl4_stack;
 851	struct flowi4 *fl4;
 852	int ulen = len;
 853	struct ipcm_cookie ipc;
 854	struct rtable *rt = NULL;
 855	int free = 0;
 856	int connected = 0;
 857	__be32 daddr, faddr, saddr;
 
 858	__be16 dport;
 859	u8  tos;
 860	int err, is_udplite = IS_UDPLITE(sk);
 861	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
 862	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
 863	struct sk_buff *skb;
 864	struct ip_options_data opt_copy;
 
 865
 866	if (len > 0xFFFF)
 867		return -EMSGSIZE;
 868
 869	/*
 870	 *	Check the flags.
 871	 */
 872
 873	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
 874		return -EOPNOTSUPP;
 875
 876	ipc.opt = NULL;
 877	ipc.tx_flags = 0;
 878	ipc.ttl = 0;
 879	ipc.tos = -1;
 880
 881	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
 882
 883	fl4 = &inet->cork.fl.u.ip4;
 884	if (up->pending) {
 885		/*
 886		 * There are pending frames.
 887		 * The socket lock must be held while it's corked.
 888		 */
 889		lock_sock(sk);
 890		if (likely(up->pending)) {
 891			if (unlikely(up->pending != AF_INET)) {
 892				release_sock(sk);
 893				return -EINVAL;
 894			}
 895			goto do_append_data;
 896		}
 897		release_sock(sk);
 898	}
 899	ulen += sizeof(struct udphdr);
 900
 901	/*
 902	 *	Get and verify the address.
 903	 */
 904	if (msg->msg_name) {
 905		DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
 906		if (msg->msg_namelen < sizeof(*usin))
 907			return -EINVAL;
 908		if (usin->sin_family != AF_INET) {
 909			if (usin->sin_family != AF_UNSPEC)
 910				return -EAFNOSUPPORT;
 911		}
 912
 913		daddr = usin->sin_addr.s_addr;
 914		dport = usin->sin_port;
 915		if (dport == 0)
 916			return -EINVAL;
 917	} else {
 918		if (sk->sk_state != TCP_ESTABLISHED)
 919			return -EDESTADDRREQ;
 920		daddr = inet->inet_daddr;
 921		dport = inet->inet_dport;
 922		/* Open fast path for connected socket.
 923		   Route will not be used, if at least one option is set.
 924		 */
 925		connected = 1;
 926	}
 927	ipc.addr = inet->inet_saddr;
 928
 929	ipc.oif = sk->sk_bound_dev_if;
 930
 931	sock_tx_timestamp(sk, &ipc.tx_flags);
 
 932
 933	if (msg->msg_controllen) {
 934		err = ip_cmsg_send(sock_net(sk), msg, &ipc,
 935				   sk->sk_family == AF_INET6);
 936		if (err)
 
 
 
 
 
 937			return err;
 
 938		if (ipc.opt)
 939			free = 1;
 940		connected = 0;
 941	}
 942	if (!ipc.opt) {
 943		struct ip_options_rcu *inet_opt;
 944
 945		rcu_read_lock();
 946		inet_opt = rcu_dereference(inet->inet_opt);
 947		if (inet_opt) {
 948			memcpy(&opt_copy, inet_opt,
 949			       sizeof(*inet_opt) + inet_opt->opt.optlen);
 950			ipc.opt = &opt_copy.opt;
 951		}
 952		rcu_read_unlock();
 953	}
 954
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 955	saddr = ipc.addr;
 956	ipc.addr = faddr = daddr;
 957
 958	if (ipc.opt && ipc.opt->opt.srr) {
 959		if (!daddr)
 960			return -EINVAL;
 
 
 961		faddr = ipc.opt->opt.faddr;
 962		connected = 0;
 963	}
 964	tos = get_rttos(&ipc, inet);
 965	if (sock_flag(sk, SOCK_LOCALROUTE) ||
 966	    (msg->msg_flags & MSG_DONTROUTE) ||
 967	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
 968		tos |= RTO_ONLINK;
 969		connected = 0;
 970	}
 971
 
 972	if (ipv4_is_multicast(daddr)) {
 973		if (!ipc.oif)
 974			ipc.oif = inet->mc_index;
 975		if (!saddr)
 976			saddr = inet->mc_addr;
 977		connected = 0;
 978	} else if (!ipc.oif)
 979		ipc.oif = inet->uc_index;
 
 
 
 
 
 
 
 
 
 
 
 
 
 980
 981	if (connected)
 982		rt = (struct rtable *)sk_dst_check(sk, 0);
 983
 984	if (rt == NULL) {
 985		struct net *net = sock_net(sk);
 
 986
 987		fl4 = &fl4_stack;
 988		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
 989				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
 990				   inet_sk_flowi_flags(sk),
 991				   faddr, saddr, dport, inet->inet_sport);
 992
 993		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
 
 
 
 
 994		rt = ip_route_output_flow(net, fl4, sk);
 995		if (IS_ERR(rt)) {
 996			err = PTR_ERR(rt);
 997			rt = NULL;
 998			if (err == -ENETUNREACH)
 999				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1000			goto out;
1001		}
1002
1003		err = -EACCES;
1004		if ((rt->rt_flags & RTCF_BROADCAST) &&
1005		    !sock_flag(sk, SOCK_BROADCAST))
1006			goto out;
1007		if (connected)
1008			sk_dst_set(sk, dst_clone(&rt->dst));
1009	}
1010
1011	if (msg->msg_flags&MSG_CONFIRM)
1012		goto do_confirm;
1013back_from_confirm:
1014
1015	saddr = fl4->saddr;
1016	if (!ipc.addr)
1017		daddr = ipc.addr = fl4->daddr;
1018
1019	/* Lockless fast path for the non-corking case. */
1020	if (!corkreq) {
1021		skb = ip_make_skb(sk, fl4, getfrag, msg->msg_iov, ulen,
 
 
1022				  sizeof(struct udphdr), &ipc, &rt,
1023				  msg->msg_flags);
1024		err = PTR_ERR(skb);
1025		if (!IS_ERR_OR_NULL(skb))
1026			err = udp_send_skb(skb, fl4);
1027		goto out;
1028	}
1029
1030	lock_sock(sk);
1031	if (unlikely(up->pending)) {
1032		/* The socket is already corked while preparing it. */
1033		/* ... which is an evident application bug. --ANK */
1034		release_sock(sk);
1035
1036		LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("cork app bug 2\n"));
1037		err = -EINVAL;
1038		goto out;
1039	}
1040	/*
1041	 *	Now cork the socket to pend data.
1042	 */
1043	fl4 = &inet->cork.fl.u.ip4;
1044	fl4->daddr = daddr;
1045	fl4->saddr = saddr;
1046	fl4->fl4_dport = dport;
1047	fl4->fl4_sport = inet->inet_sport;
1048	up->pending = AF_INET;
1049
1050do_append_data:
1051	up->len += ulen;
1052	err = ip_append_data(sk, fl4, getfrag, msg->msg_iov, ulen,
1053			     sizeof(struct udphdr), &ipc, &rt,
1054			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1055	if (err)
1056		udp_flush_pending_frames(sk);
1057	else if (!corkreq)
1058		err = udp_push_pending_frames(sk);
1059	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1060		up->pending = 0;
1061	release_sock(sk);
1062
1063out:
1064	ip_rt_put(rt);
 
1065	if (free)
1066		kfree(ipc.opt);
1067	if (!err)
1068		return len;
1069	/*
1070	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1071	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1072	 * we don't have a good statistic (IpOutDiscards but it can be too many
1073	 * things).  We could add another new stat but at least for now that
1074	 * seems like overkill.
1075	 */
1076	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1077		UDP_INC_STATS_USER(sock_net(sk),
1078				UDP_MIB_SNDBUFERRORS, is_udplite);
1079	}
1080	return err;
1081
1082do_confirm:
1083	dst_confirm(&rt->dst);
 
1084	if (!(msg->msg_flags&MSG_PROBE) || len)
1085		goto back_from_confirm;
1086	err = 0;
1087	goto out;
1088}
1089EXPORT_SYMBOL(udp_sendmsg);
1090
1091int udp_sendpage(struct sock *sk, struct page *page, int offset,
1092		 size_t size, int flags)
1093{
1094	struct inet_sock *inet = inet_sk(sk);
1095	struct udp_sock *up = udp_sk(sk);
1096	int ret;
1097
1098	if (flags & MSG_SENDPAGE_NOTLAST)
1099		flags |= MSG_MORE;
 
 
 
 
 
 
 
1100
1101	if (!up->pending) {
1102		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1103
1104		/* Call udp_sendmsg to specify destination address which
1105		 * sendpage interface can't pass.
1106		 * This will succeed only when the socket is connected.
1107		 */
1108		ret = udp_sendmsg(NULL, sk, &msg, 0);
1109		if (ret < 0)
1110			return ret;
 
 
 
 
 
 
 
 
 
1111	}
1112
1113	lock_sock(sk);
 
1114
1115	if (unlikely(!up->pending)) {
1116		release_sock(sk);
 
1117
1118		LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("udp cork app bug 3\n"));
1119		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1120	}
 
1121
1122	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1123			     page, offset, size, flags);
1124	if (ret == -EOPNOTSUPP) {
1125		release_sock(sk);
1126		return sock_no_sendpage(sk->sk_socket, page, offset,
1127					size, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1128	}
1129	if (ret < 0) {
1130		udp_flush_pending_frames(sk);
1131		goto out;
 
 
 
 
 
 
 
1132	}
1133
1134	up->len += size;
1135	if (!(up->corkflag || (flags&MSG_MORE)))
1136		ret = udp_push_pending_frames(sk);
1137	if (!ret)
1138		ret = size;
1139out:
1140	release_sock(sk);
1141	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1142}
 
1143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1144
1145/**
1146 *	first_packet_length	- return length of first packet in receive queue
1147 *	@sk: socket
1148 *
1149 *	Drops all bad checksum frames, until a valid one is found.
1150 *	Returns the length of found skb, or 0 if none is found.
1151 */
1152static unsigned int first_packet_length(struct sock *sk)
1153{
1154	struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
 
1155	struct sk_buff *skb;
1156	unsigned int res;
1157
1158	__skb_queue_head_init(&list_kill);
1159
1160	spin_lock_bh(&rcvq->lock);
1161	while ((skb = skb_peek(rcvq)) != NULL &&
1162		udp_lib_checksum_complete(skb)) {
1163		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS,
1164				 IS_UDPLITE(sk));
1165		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1166				 IS_UDPLITE(sk));
1167		atomic_inc(&sk->sk_drops);
1168		__skb_unlink(skb, rcvq);
1169		__skb_queue_tail(&list_kill, skb);
1170	}
1171	res = skb ? skb->len : 0;
1172	spin_unlock_bh(&rcvq->lock);
1173
1174	if (!skb_queue_empty(&list_kill)) {
1175		bool slow = lock_sock_fast(sk);
1176
1177		__skb_queue_purge(&list_kill);
1178		sk_mem_reclaim_partial(sk);
1179		unlock_sock_fast(sk, slow);
1180	}
1181	return res;
1182}
1183
1184/*
1185 *	IOCTL requests applicable to the UDP protocol
1186 */
1187
1188int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1189{
1190	switch (cmd) {
1191	case SIOCOUTQ:
1192	{
1193		int amount = sk_wmem_alloc_get(sk);
1194
1195		return put_user(amount, (int __user *)arg);
1196	}
1197
1198	case SIOCINQ:
1199	{
1200		unsigned int amount = first_packet_length(sk);
1201
1202		if (amount)
1203			/*
1204			 * We will only return the amount
1205			 * of this packet since that is all
1206			 * that will be read.
1207			 */
1208			amount -= sizeof(struct udphdr);
1209
1210		return put_user(amount, (int __user *)arg);
1211	}
1212
1213	default:
1214		return -ENOIOCTLCMD;
1215	}
1216
1217	return 0;
1218}
1219EXPORT_SYMBOL(udp_ioctl);
1220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1221/*
1222 * 	This should be easy, if there is something there we
1223 * 	return it, otherwise we block.
1224 */
1225
1226int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1227		size_t len, int noblock, int flags, int *addr_len)
1228{
1229	struct inet_sock *inet = inet_sk(sk);
1230	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1231	struct sk_buff *skb;
1232	unsigned int ulen, copied;
1233	int peeked, off = 0;
1234	int err;
1235	int is_udplite = IS_UDPLITE(sk);
1236	bool slow;
1237
1238	if (flags & MSG_ERRQUEUE)
1239		return ip_recv_error(sk, msg, len, addr_len);
1240
1241try_again:
1242	skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1243				  &peeked, &off, &err);
1244	if (!skb)
1245		goto out;
1246
1247	ulen = skb->len - sizeof(struct udphdr);
1248	copied = len;
1249	if (copied > ulen)
1250		copied = ulen;
1251	else if (copied < ulen)
1252		msg->msg_flags |= MSG_TRUNC;
1253
1254	/*
1255	 * If checksum is needed at all, try to do it while copying the
1256	 * data.  If the data is truncated, or if we only want a partial
1257	 * coverage checksum (UDP-Lite), do it before the copy.
1258	 */
1259
1260	if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1261		if (udp_lib_checksum_complete(skb))
 
 
 
1262			goto csum_copy_err;
1263	}
1264
1265	if (skb_csum_unnecessary(skb))
1266		err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
1267					      msg->msg_iov, copied);
1268	else {
1269		err = skb_copy_and_csum_datagram_iovec(skb,
1270						       sizeof(struct udphdr),
1271						       msg->msg_iov);
1272
1273		if (err == -EINVAL)
1274			goto csum_copy_err;
1275	}
1276
1277	if (unlikely(err)) {
1278		trace_kfree_skb(skb, udp_recvmsg);
1279		if (!peeked) {
1280			atomic_inc(&sk->sk_drops);
1281			UDP_INC_STATS_USER(sock_net(sk),
1282					   UDP_MIB_INERRORS, is_udplite);
1283		}
1284		goto out_free;
 
1285	}
1286
1287	if (!peeked)
1288		UDP_INC_STATS_USER(sock_net(sk),
1289				UDP_MIB_INDATAGRAMS, is_udplite);
1290
1291	sock_recv_ts_and_drops(msg, sk, skb);
1292
1293	/* Copy the address. */
1294	if (sin) {
1295		sin->sin_family = AF_INET;
1296		sin->sin_port = udp_hdr(skb)->source;
1297		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1298		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1299		*addr_len = sizeof(*sin);
 
 
 
 
1300	}
1301	if (inet->cmsg_flags)
1302		ip_cmsg_recv(msg, skb);
 
 
 
 
1303
1304	err = copied;
1305	if (flags & MSG_TRUNC)
1306		err = ulen;
1307
1308out_free:
1309	skb_free_datagram_locked(sk, skb);
1310out:
1311	return err;
1312
1313csum_copy_err:
1314	slow = lock_sock_fast(sk);
1315	if (!skb_kill_datagram(sk, skb, flags)) {
1316		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1317		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1318	}
1319	unlock_sock_fast(sk, slow);
1320
1321	if (noblock)
1322		return -EAGAIN;
1323
1324	/* starting over for a new packet */
 
1325	msg->msg_flags &= ~MSG_TRUNC;
1326	goto try_again;
1327}
1328
 
 
 
 
 
 
 
 
1329
1330int udp_disconnect(struct sock *sk, int flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1331{
1332	struct inet_sock *inet = inet_sk(sk);
1333	/*
1334	 *	1003.1g - break association.
1335	 */
1336
1337	sk->sk_state = TCP_CLOSE;
1338	inet->inet_daddr = 0;
1339	inet->inet_dport = 0;
1340	sock_rps_reset_rxhash(sk);
1341	sk->sk_bound_dev_if = 0;
1342	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1343		inet_reset_saddr(sk);
 
 
 
 
1344
1345	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1346		sk->sk_prot->unhash(sk);
1347		inet->inet_sport = 0;
1348	}
1349	sk_dst_reset(sk);
1350	return 0;
1351}
 
 
 
 
 
 
 
 
 
1352EXPORT_SYMBOL(udp_disconnect);
1353
1354void udp_lib_unhash(struct sock *sk)
1355{
1356	if (sk_hashed(sk)) {
1357		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1358		struct udp_hslot *hslot, *hslot2;
1359
1360		hslot  = udp_hashslot(udptable, sock_net(sk),
1361				      udp_sk(sk)->udp_port_hash);
1362		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1363
1364		spin_lock_bh(&hslot->lock);
1365		if (sk_nulls_del_node_init_rcu(sk)) {
 
 
1366			hslot->count--;
1367			inet_sk(sk)->inet_num = 0;
1368			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1369
1370			spin_lock(&hslot2->lock);
1371			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1372			hslot2->count--;
1373			spin_unlock(&hslot2->lock);
 
 
1374		}
1375		spin_unlock_bh(&hslot->lock);
1376	}
1377}
1378EXPORT_SYMBOL(udp_lib_unhash);
1379
1380/*
1381 * inet_rcv_saddr was changed, we must rehash secondary hash
1382 */
1383void udp_lib_rehash(struct sock *sk, u16 newhash)
1384{
1385	if (sk_hashed(sk)) {
1386		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1387		struct udp_hslot *hslot, *hslot2, *nhslot2;
1388
 
 
1389		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1390		nhslot2 = udp_hashslot2(udptable, newhash);
1391		udp_sk(sk)->udp_portaddr_hash = newhash;
1392		if (hslot2 != nhslot2) {
1393			hslot = udp_hashslot(udptable, sock_net(sk),
1394					     udp_sk(sk)->udp_port_hash);
1395			/* we must lock primary chain too */
1396			spin_lock_bh(&hslot->lock);
 
 
1397
1398			spin_lock(&hslot2->lock);
1399			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1400			hslot2->count--;
1401			spin_unlock(&hslot2->lock);
 
 
 
 
 
 
 
 
1402
1403			spin_lock(&nhslot2->lock);
1404			hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1405						 &nhslot2->head);
1406			nhslot2->count++;
1407			spin_unlock(&nhslot2->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1408
1409			spin_unlock_bh(&hslot->lock);
1410		}
1411	}
1412}
1413EXPORT_SYMBOL(udp_lib_rehash);
1414
1415static void udp_v4_rehash(struct sock *sk)
1416{
1417	u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1418					  inet_sk(sk)->inet_rcv_saddr,
1419					  inet_sk(sk)->inet_num);
1420	udp_lib_rehash(sk, new_hash);
 
 
 
 
1421}
1422
1423static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1424{
1425	int rc;
1426
1427	if (inet_sk(sk)->inet_daddr) {
1428		sock_rps_save_rxhash(sk, skb);
1429		sk_mark_napi_id(sk, skb);
 
 
 
1430	}
1431
1432	rc = sock_queue_rcv_skb(sk, skb);
1433	if (rc < 0) {
1434		int is_udplite = IS_UDPLITE(sk);
 
1435
1436		/* Note that an ENOMEM error is charged twice */
1437		if (rc == -ENOMEM)
1438			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1439					 is_udplite);
1440		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1441		kfree_skb(skb);
1442		trace_udp_fail_queue_rcv_skb(rc, sk);
 
 
 
 
 
 
1443		return -1;
1444	}
1445
1446	return 0;
1447
1448}
1449
1450static struct static_key udp_encap_needed __read_mostly;
1451void udp_encap_enable(void)
1452{
1453	if (!static_key_enabled(&udp_encap_needed))
1454		static_key_slow_inc(&udp_encap_needed);
1455}
1456EXPORT_SYMBOL(udp_encap_enable);
1457
1458/* returns:
1459 *  -1: error
1460 *   0: success
1461 *  >0: "udp encap" protocol resubmission
1462 *
1463 * Note that in the success and error cases, the skb is assumed to
1464 * have either been requeued or freed.
1465 */
1466int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1467{
 
1468	struct udp_sock *up = udp_sk(sk);
1469	int rc;
1470	int is_udplite = IS_UDPLITE(sk);
1471
1472	/*
1473	 *	Charge it to the socket, dropping if the queue is full.
1474	 */
1475	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
 
1476		goto drop;
1477	nf_reset(skb);
 
1478
1479	if (static_key_false(&udp_encap_needed) && up->encap_type) {
 
1480		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1481
1482		/*
1483		 * This is an encapsulation socket so pass the skb to
1484		 * the socket's udp_encap_rcv() hook. Otherwise, just
1485		 * fall through and pass this up the UDP socket.
1486		 * up->encap_rcv() returns the following value:
1487		 * =0 if skb was successfully passed to the encap
1488		 *    handler or was discarded by it.
1489		 * >0 if skb should be passed on to UDP.
1490		 * <0 if skb should be resubmitted as proto -N
1491		 */
1492
1493		/* if we're overly short, let UDP handle it */
1494		encap_rcv = ACCESS_ONCE(up->encap_rcv);
1495		if (skb->len > sizeof(struct udphdr) && encap_rcv != NULL) {
1496			int ret;
1497
 
 
 
 
1498			ret = encap_rcv(sk, skb);
1499			if (ret <= 0) {
1500				UDP_INC_STATS_BH(sock_net(sk),
1501						 UDP_MIB_INDATAGRAMS,
1502						 is_udplite);
1503				return -ret;
1504			}
1505		}
1506
1507		/* FALLTHROUGH -- it's a UDP Packet */
1508	}
1509
1510	/*
1511	 * 	UDP-Lite specific tests, ignored on UDP sockets
1512	 */
1513	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
 
1514
1515		/*
1516		 * MIB statistics other than incrementing the error count are
1517		 * disabled for the following two types of errors: these depend
1518		 * on the application settings, not on the functioning of the
1519		 * protocol stack as such.
1520		 *
1521		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1522		 * way ... to ... at least let the receiving application block
1523		 * delivery of packets with coverage values less than a value
1524		 * provided by the application."
1525		 */
1526		if (up->pcrlen == 0) {          /* full coverage was set  */
1527			LIMIT_NETDEBUG(KERN_WARNING "UDPLite: partial coverage %d while full coverage %d requested\n",
1528				       UDP_SKB_CB(skb)->cscov, skb->len);
1529			goto drop;
1530		}
1531		/* The next case involves violating the min. coverage requested
1532		 * by the receiver. This is subtle: if receiver wants x and x is
1533		 * greater than the buffersize/MTU then receiver will complain
1534		 * that it wants x while sender emits packets of smaller size y.
1535		 * Therefore the above ...()->partial_cov statement is essential.
1536		 */
1537		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1538			LIMIT_NETDEBUG(KERN_WARNING "UDPLite: coverage %d too small, need min %d\n",
1539				       UDP_SKB_CB(skb)->cscov, up->pcrlen);
1540			goto drop;
1541		}
1542	}
1543
 
1544	if (rcu_access_pointer(sk->sk_filter) &&
1545	    udp_lib_checksum_complete(skb))
1546		goto csum_error;
1547
1548
1549	if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf))
1550		goto drop;
1551
1552	rc = 0;
1553
1554	ipv4_pktinfo_prepare(sk, skb);
1555	bh_lock_sock(sk);
1556	if (!sock_owned_by_user(sk))
1557		rc = __udp_queue_rcv_skb(sk, skb);
1558	else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
1559		bh_unlock_sock(sk);
1560		goto drop;
1561	}
1562	bh_unlock_sock(sk);
1563
1564	return rc;
 
 
 
1565
1566csum_error:
1567	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
 
1568drop:
1569	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1570	atomic_inc(&sk->sk_drops);
1571	kfree_skb(skb);
1572	return -1;
1573}
1574
1575
1576static void flush_stack(struct sock **stack, unsigned int count,
1577			struct sk_buff *skb, unsigned int final)
1578{
1579	unsigned int i;
1580	struct sk_buff *skb1 = NULL;
1581	struct sock *sk;
1582
1583	for (i = 0; i < count; i++) {
1584		sk = stack[i];
1585		if (likely(skb1 == NULL))
1586			skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1587
1588		if (!skb1) {
1589			atomic_inc(&sk->sk_drops);
1590			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1591					 IS_UDPLITE(sk));
1592			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1593					 IS_UDPLITE(sk));
1594		}
1595
1596		if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1597			skb1 = NULL;
 
 
1598	}
1599	if (unlikely(skb1))
1600		kfree_skb(skb1);
1601}
1602
1603/* For TCP sockets, sk_rx_dst is protected by socket lock
1604 * For UDP, we use xchg() to guard against concurrent changes.
1605 */
1606static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1607{
1608	struct dst_entry *old;
1609
1610	dst_hold(dst);
1611	old = xchg(&sk->sk_rx_dst, dst);
1612	dst_release(old);
 
 
 
1613}
 
1614
1615/*
1616 *	Multicasts and broadcasts go to each listener.
1617 *
1618 *	Note: called only from the BH handler context.
1619 */
1620static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1621				    struct udphdr  *uh,
1622				    __be32 saddr, __be32 daddr,
1623				    struct udp_table *udptable)
 
1624{
1625	struct sock *sk, *stack[256 / sizeof(struct sock *)];
1626	struct udp_hslot *hslot = udp_hashslot(udptable, net, ntohs(uh->dest));
1627	int dif;
1628	unsigned int i, count = 0;
1629
1630	spin_lock(&hslot->lock);
1631	sk = sk_nulls_head(&hslot->head);
1632	dif = skb->dev->ifindex;
1633	sk = udp_v4_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif);
1634	while (sk) {
1635		stack[count++] = sk;
1636		sk = udp_v4_mcast_next(net, sk_nulls_next(sk), uh->dest,
1637				       daddr, uh->source, saddr, dif);
1638		if (unlikely(count == ARRAY_SIZE(stack))) {
1639			if (!sk)
1640				break;
1641			flush_stack(stack, count, skb, ~0);
1642			count = 0;
 
 
 
 
 
 
 
 
 
1643		}
1644	}
1645	/*
1646	 * before releasing chain lock, we must take a reference on sockets
1647	 */
1648	for (i = 0; i < count; i++)
1649		sock_hold(stack[i]);
1650
1651	spin_unlock(&hslot->lock);
 
 
 
 
 
 
 
 
 
 
1652
1653	/*
1654	 * do the slow work with no lock held
1655	 */
1656	if (count) {
1657		flush_stack(stack, count, skb, count - 1);
1658
1659		for (i = 0; i < count; i++)
1660			sock_put(stack[i]);
 
1661	} else {
1662		kfree_skb(skb);
 
 
1663	}
1664	return 0;
1665}
1666
1667/* Initialize UDP checksum. If exited with zero value (success),
1668 * CHECKSUM_UNNECESSARY means, that no more checks are required.
1669 * Otherwise, csum completion requires chacksumming packet body,
1670 * including udp header and folding it to skb->csum.
1671 */
1672static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1673				 int proto)
1674{
1675	const struct iphdr *iph;
1676	int err;
1677
1678	UDP_SKB_CB(skb)->partial_cov = 0;
1679	UDP_SKB_CB(skb)->cscov = skb->len;
1680
1681	if (proto == IPPROTO_UDPLITE) {
1682		err = udplite_checksum_init(skb, uh);
1683		if (err)
1684			return err;
 
 
 
 
 
1685	}
1686
1687	iph = ip_hdr(skb);
1688	if (uh->check == 0) {
1689		skb->ip_summed = CHECKSUM_UNNECESSARY;
1690	} else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1691		if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1692				      proto, skb->csum))
1693			skb->ip_summed = CHECKSUM_UNNECESSARY;
1694	}
1695	if (!skb_csum_unnecessary(skb))
1696		skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1697					       skb->len, proto, 0);
1698	/* Probably, we should checksum udp header (it should be in cache
1699	 * in any case) and data in tiny packets (< rx copybreak).
1700	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1701
1702	return 0;
1703}
1704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1705/*
1706 *	All we need to do is get the socket, and then do a checksum.
1707 */
1708
1709int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1710		   int proto)
1711{
1712	struct sock *sk;
1713	struct udphdr *uh;
1714	unsigned short ulen;
1715	struct rtable *rt = skb_rtable(skb);
1716	__be32 saddr, daddr;
1717	struct net *net = dev_net(skb->dev);
 
 
 
 
1718
1719	/*
1720	 *  Validate the packet.
1721	 */
1722	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1723		goto drop;		/* No space for header. */
1724
1725	uh   = udp_hdr(skb);
1726	ulen = ntohs(uh->len);
1727	saddr = ip_hdr(skb)->saddr;
1728	daddr = ip_hdr(skb)->daddr;
1729
1730	if (ulen > skb->len)
1731		goto short_packet;
1732
1733	if (proto == IPPROTO_UDP) {
1734		/* UDP validates ulen. */
1735		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1736			goto short_packet;
1737		uh = udp_hdr(skb);
1738	}
1739
1740	if (udp4_csum_init(skb, uh, proto))
1741		goto csum_error;
1742
1743	sk = skb_steal_sock(skb);
 
 
 
 
1744	if (sk) {
1745		struct dst_entry *dst = skb_dst(skb);
1746		int ret;
1747
1748		if (unlikely(sk->sk_rx_dst != dst))
1749			udp_sk_rx_dst_set(sk, dst);
1750
1751		ret = udp_queue_rcv_skb(sk, skb);
1752		sock_put(sk);
1753		/* a return value > 0 means to resubmit the input, but
1754		 * it wants the return to be -protocol, or 0
1755		 */
1756		if (ret > 0)
1757			return -ret;
1758		return 0;
1759	} else {
1760		if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1761			return __udp4_lib_mcast_deliver(net, skb, uh,
1762					saddr, daddr, udptable);
1763
1764		sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1765	}
1766
1767	if (sk != NULL) {
1768		int ret;
1769
1770		ret = udp_queue_rcv_skb(sk, skb);
1771		sock_put(sk);
1772
1773		/* a return value > 0 means to resubmit the input, but
1774		 * it wants the return to be -protocol, or 0
1775		 */
1776		if (ret > 0)
1777			return -ret;
1778		return 0;
1779	}
1780
 
 
 
 
1781	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1782		goto drop;
1783	nf_reset(skb);
1784
1785	/* No socket. Drop packet silently, if checksum is wrong */
1786	if (udp_lib_checksum_complete(skb))
1787		goto csum_error;
1788
1789	UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
 
1790	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1791
1792	/*
1793	 * Hmm.  We got an UDP packet to a port to which we
1794	 * don't wanna listen.  Ignore it.
1795	 */
1796	kfree_skb(skb);
1797	return 0;
1798
1799short_packet:
1800	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1801		       proto == IPPROTO_UDPLITE ? "Lite" : "",
1802		       &saddr, ntohs(uh->source),
1803		       ulen, skb->len,
1804		       &daddr, ntohs(uh->dest));
 
1805	goto drop;
1806
1807csum_error:
1808	/*
1809	 * RFC1122: OK.  Discards the bad packet silently (as far as
1810	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1811	 */
1812	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1813		       proto == IPPROTO_UDPLITE ? "Lite" : "",
1814		       &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1815		       ulen);
1816	UDP_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
 
1817drop:
1818	UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1819	kfree_skb(skb);
1820	return 0;
1821}
1822
1823/* We can only early demux multicast if there is a single matching socket.
1824 * If more than one socket found returns NULL
1825 */
1826static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
1827						  __be16 loc_port, __be32 loc_addr,
1828						  __be16 rmt_port, __be32 rmt_addr,
1829						  int dif)
1830{
1831	struct sock *sk, *result;
1832	struct hlist_nulls_node *node;
1833	unsigned short hnum = ntohs(loc_port);
1834	unsigned int count, slot = udp_hashfn(net, hnum, udp_table.mask);
1835	struct udp_hslot *hslot = &udp_table.hash[slot];
 
 
 
 
 
 
 
 
1836
1837	rcu_read_lock();
1838begin:
1839	count = 0;
1840	result = NULL;
1841	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
1842		if (__udp_is_mcast_sock(net, sk,
1843					loc_port, loc_addr,
1844					rmt_port, rmt_addr,
1845					dif, hnum)) {
1846			result = sk;
1847			++count;
1848		}
1849	}
1850	/*
1851	 * if the nulls value we got at the end of this lookup is
1852	 * not the expected one, we must restart lookup.
1853	 * We probably met an item that was moved to another chain.
1854	 */
1855	if (get_nulls_value(node) != slot)
1856		goto begin;
1857
1858	if (result) {
1859		if (count != 1 ||
1860		    unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1861			result = NULL;
1862		else if (unlikely(!__udp_is_mcast_sock(net, result,
1863						       loc_port, loc_addr,
1864						       rmt_port, rmt_addr,
1865						       dif, hnum))) {
1866			sock_put(result);
1867			result = NULL;
1868		}
1869	}
1870	rcu_read_unlock();
1871	return result;
1872}
1873
1874/* For unicast we should only early demux connected sockets or we can
1875 * break forwarding setups.  The chains here can be long so only check
1876 * if the first socket is an exact match and if not move on.
1877 */
1878static struct sock *__udp4_lib_demux_lookup(struct net *net,
1879					    __be16 loc_port, __be32 loc_addr,
1880					    __be16 rmt_port, __be32 rmt_addr,
1881					    int dif)
1882{
1883	struct sock *sk, *result;
1884	struct hlist_nulls_node *node;
1885	unsigned short hnum = ntohs(loc_port);
1886	unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
1887	unsigned int slot2 = hash2 & udp_table.mask;
1888	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
1889	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr)
1890	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
1891
1892	rcu_read_lock();
1893	result = NULL;
1894	udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
1895		if (INET_MATCH(sk, net, acookie,
1896			       rmt_addr, loc_addr, ports, dif))
1897			result = sk;
 
1898		/* Only check first socket in chain */
1899		break;
1900	}
1901
1902	if (result) {
1903		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1904			result = NULL;
1905		else if (unlikely(!INET_MATCH(sk, net, acookie,
1906					      rmt_addr, loc_addr,
1907					      ports, dif))) {
1908			sock_put(result);
1909			result = NULL;
1910		}
1911	}
1912	rcu_read_unlock();
1913	return result;
1914}
1915
1916void udp_v4_early_demux(struct sk_buff *skb)
1917{
1918	struct net *net = dev_net(skb->dev);
 
1919	const struct iphdr *iph;
1920	const struct udphdr *uh;
1921	struct sock *sk;
1922	struct dst_entry *dst;
1923	int dif = skb->dev->ifindex;
 
 
1924
1925	/* validate the packet */
1926	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
1927		return;
1928
1929	iph = ip_hdr(skb);
1930	uh = udp_hdr(skb);
1931
1932	if (skb->pkt_type == PACKET_BROADCAST ||
1933	    skb->pkt_type == PACKET_MULTICAST)
 
 
 
 
 
 
 
 
 
1934		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
1935						   uh->source, iph->saddr, dif);
1936	else if (skb->pkt_type == PACKET_HOST)
 
1937		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
1938					     uh->source, iph->saddr, dif);
1939	else
1940		return;
1941
1942	if (!sk)
1943		return;
1944
1945	skb->sk = sk;
1946	skb->destructor = sock_edemux;
1947	dst = sk->sk_rx_dst;
 
1948
1949	if (dst)
1950		dst = dst_check(dst, 0);
1951	if (dst)
 
 
 
 
 
 
1952		skb_dst_set_noref(skb, dst);
 
 
 
 
 
 
 
 
 
 
 
1953}
1954
1955int udp_rcv(struct sk_buff *skb)
1956{
1957	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
1958}
1959
1960void udp_destroy_sock(struct sock *sk)
1961{
1962	struct udp_sock *up = udp_sk(sk);
1963	bool slow = lock_sock_fast(sk);
 
 
 
1964	udp_flush_pending_frames(sk);
1965	unlock_sock_fast(sk, slow);
1966	if (static_key_false(&udp_encap_needed) && up->encap_type) {
1967		void (*encap_destroy)(struct sock *sk);
1968		encap_destroy = ACCESS_ONCE(up->encap_destroy);
1969		if (encap_destroy)
1970			encap_destroy(sk);
 
 
 
 
1971	}
1972}
1973
 
 
 
 
 
 
 
 
 
 
 
 
 
1974/*
1975 *	Socket option code for UDP
1976 */
1977int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1978		       char __user *optval, unsigned int optlen,
1979		       int (*push_pending_frames)(struct sock *))
1980{
1981	struct udp_sock *up = udp_sk(sk);
1982	int val;
1983	int err = 0;
1984	int is_udplite = IS_UDPLITE(sk);
1985
 
 
 
 
 
 
 
 
 
 
 
 
1986	if (optlen < sizeof(int))
1987		return -EINVAL;
1988
1989	if (get_user(val, (int __user *)optval))
1990		return -EFAULT;
1991
 
 
1992	switch (optname) {
1993	case UDP_CORK:
1994		if (val != 0) {
1995			up->corkflag = 1;
1996		} else {
1997			up->corkflag = 0;
1998			lock_sock(sk);
1999			(*push_pending_frames)(sk);
2000			release_sock(sk);
2001		}
2002		break;
2003
2004	case UDP_ENCAP:
2005		switch (val) {
2006		case 0:
 
2007		case UDP_ENCAP_ESPINUDP:
2008		case UDP_ENCAP_ESPINUDP_NON_IKE:
2009			up->encap_rcv = xfrm4_udp_encap_rcv;
2010			/* FALLTHROUGH */
 
 
 
 
 
 
 
 
2011		case UDP_ENCAP_L2TPINUDP:
2012			up->encap_type = val;
2013			udp_encap_enable();
2014			break;
2015		default:
2016			err = -ENOPROTOOPT;
2017			break;
2018		}
2019		break;
2020
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2021	/*
2022	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2023	 */
2024	/* The sender sets actual checksum coverage length via this option.
2025	 * The case coverage > packet length is handled by send module. */
2026	case UDPLITE_SEND_CSCOV:
2027		if (!is_udplite)         /* Disable the option on UDP sockets */
2028			return -ENOPROTOOPT;
2029		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2030			val = 8;
2031		else if (val > USHRT_MAX)
2032			val = USHRT_MAX;
2033		up->pcslen = val;
2034		up->pcflag |= UDPLITE_SEND_CC;
2035		break;
2036
2037	/* The receiver specifies a minimum checksum coverage value. To make
2038	 * sense, this should be set to at least 8 (as done below). If zero is
2039	 * used, this again means full checksum coverage.                     */
2040	case UDPLITE_RECV_CSCOV:
2041		if (!is_udplite)         /* Disable the option on UDP sockets */
2042			return -ENOPROTOOPT;
2043		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2044			val = 8;
2045		else if (val > USHRT_MAX)
2046			val = USHRT_MAX;
2047		up->pcrlen = val;
2048		up->pcflag |= UDPLITE_RECV_CC;
2049		break;
2050
2051	default:
2052		err = -ENOPROTOOPT;
2053		break;
2054	}
2055
2056	return err;
2057}
2058EXPORT_SYMBOL(udp_lib_setsockopt);
2059
2060int udp_setsockopt(struct sock *sk, int level, int optname,
2061		   char __user *optval, unsigned int optlen)
2062{
2063	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2064		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
 
2065					  udp_push_pending_frames);
2066	return ip_setsockopt(sk, level, optname, optval, optlen);
2067}
2068
2069#ifdef CONFIG_COMPAT
2070int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2071			  char __user *optval, unsigned int optlen)
2072{
2073	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2074		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2075					  udp_push_pending_frames);
2076	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2077}
2078#endif
2079
2080int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2081		       char __user *optval, int __user *optlen)
2082{
2083	struct udp_sock *up = udp_sk(sk);
2084	int val, len;
2085
2086	if (get_user(len, optlen))
2087		return -EFAULT;
2088
2089	len = min_t(unsigned int, len, sizeof(int));
2090
2091	if (len < 0)
2092		return -EINVAL;
2093
 
 
2094	switch (optname) {
2095	case UDP_CORK:
2096		val = up->corkflag;
2097		break;
2098
2099	case UDP_ENCAP:
2100		val = up->encap_type;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2101		break;
2102
2103	/* The following two cannot be changed on UDP sockets, the return is
2104	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2105	case UDPLITE_SEND_CSCOV:
2106		val = up->pcslen;
2107		break;
2108
2109	case UDPLITE_RECV_CSCOV:
2110		val = up->pcrlen;
2111		break;
2112
2113	default:
2114		return -ENOPROTOOPT;
2115	}
2116
2117	if (put_user(len, optlen))
2118		return -EFAULT;
2119	if (copy_to_user(optval, &val, len))
2120		return -EFAULT;
2121	return 0;
2122}
2123EXPORT_SYMBOL(udp_lib_getsockopt);
2124
2125int udp_getsockopt(struct sock *sk, int level, int optname,
2126		   char __user *optval, int __user *optlen)
2127{
2128	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2129		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2130	return ip_getsockopt(sk, level, optname, optval, optlen);
2131}
2132
2133#ifdef CONFIG_COMPAT
2134int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2135				 char __user *optval, int __user *optlen)
2136{
2137	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2138		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2139	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2140}
2141#endif
2142/**
2143 * 	udp_poll - wait for a UDP event.
2144 *	@file - file struct
2145 *	@sock - socket
2146 *	@wait - poll table
2147 *
2148 *	This is same as datagram poll, except for the special case of
2149 *	blocking sockets. If application is using a blocking fd
2150 *	and a packet with checksum error is in the queue;
2151 *	then it could get return from select indicating data available
2152 *	but then block when reading it. Add special case code
2153 *	to work around these arguably broken applications.
2154 */
2155unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2156{
2157	unsigned int mask = datagram_poll(file, sock, wait);
2158	struct sock *sk = sock->sk;
2159
2160	sock_rps_record_flow(sk);
 
2161
2162	/* Check for false positives due to checksum errors */
2163	if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2164	    !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
2165		mask &= ~(POLLIN | POLLRDNORM);
2166
 
 
 
2167	return mask;
2168
2169}
2170EXPORT_SYMBOL(udp_poll);
2171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2172struct proto udp_prot = {
2173	.name		   = "UDP",
2174	.owner		   = THIS_MODULE,
2175	.close		   = udp_lib_close,
2176	.connect	   = ip4_datagram_connect,
2177	.disconnect	   = udp_disconnect,
2178	.ioctl		   = udp_ioctl,
2179	.destroy	   = udp_destroy_sock,
2180	.setsockopt	   = udp_setsockopt,
2181	.getsockopt	   = udp_getsockopt,
2182	.sendmsg	   = udp_sendmsg,
2183	.recvmsg	   = udp_recvmsg,
2184	.sendpage	   = udp_sendpage,
2185	.backlog_rcv	   = __udp_queue_rcv_skb,
2186	.release_cb	   = ip4_datagram_release_cb,
2187	.hash		   = udp_lib_hash,
2188	.unhash		   = udp_lib_unhash,
2189	.rehash		   = udp_v4_rehash,
2190	.get_port	   = udp_v4_get_port,
2191	.memory_allocated  = &udp_memory_allocated,
2192	.sysctl_mem	   = sysctl_udp_mem,
2193	.sysctl_wmem	   = &sysctl_udp_wmem_min,
2194	.sysctl_rmem	   = &sysctl_udp_rmem_min,
2195	.obj_size	   = sizeof(struct udp_sock),
2196	.slab_flags	   = SLAB_DESTROY_BY_RCU,
2197	.h.udp_table	   = &udp_table,
2198#ifdef CONFIG_COMPAT
2199	.compat_setsockopt = compat_udp_setsockopt,
2200	.compat_getsockopt = compat_udp_getsockopt,
2201#endif
2202	.clear_sk	   = sk_prot_clear_portaddr_nulls,
 
 
 
 
 
 
 
 
2203};
2204EXPORT_SYMBOL(udp_prot);
2205
2206/* ------------------------------------------------------------------------ */
2207#ifdef CONFIG_PROC_FS
2208
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2209static struct sock *udp_get_first(struct seq_file *seq, int start)
2210{
2211	struct sock *sk;
2212	struct udp_iter_state *state = seq->private;
2213	struct net *net = seq_file_net(seq);
 
 
 
 
2214
2215	for (state->bucket = start; state->bucket <= state->udp_table->mask;
2216	     ++state->bucket) {
2217		struct hlist_nulls_node *node;
2218		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2219
2220		if (hlist_nulls_empty(&hslot->head))
2221			continue;
2222
2223		spin_lock_bh(&hslot->lock);
2224		sk_nulls_for_each(sk, node, &hslot->head) {
2225			if (!net_eq(sock_net(sk), net))
2226				continue;
2227			if (sk->sk_family == state->family)
2228				goto found;
2229		}
2230		spin_unlock_bh(&hslot->lock);
2231	}
2232	sk = NULL;
2233found:
2234	return sk;
2235}
2236
2237static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2238{
2239	struct udp_iter_state *state = seq->private;
2240	struct net *net = seq_file_net(seq);
 
2241
2242	do {
2243		sk = sk_nulls_next(sk);
2244	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2245
2246	if (!sk) {
2247		if (state->bucket <= state->udp_table->mask)
2248			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
 
 
 
2249		return udp_get_first(seq, state->bucket + 1);
2250	}
2251	return sk;
2252}
2253
2254static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2255{
2256	struct sock *sk = udp_get_first(seq, 0);
2257
2258	if (sk)
2259		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2260			--pos;
2261	return pos ? NULL : sk;
2262}
2263
2264static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2265{
2266	struct udp_iter_state *state = seq->private;
2267	state->bucket = MAX_UDP_PORTS;
2268
2269	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2270}
 
2271
2272static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2273{
2274	struct sock *sk;
2275
2276	if (v == SEQ_START_TOKEN)
2277		sk = udp_get_idx(seq, 0);
2278	else
2279		sk = udp_get_next(seq, v);
2280
2281	++*pos;
2282	return sk;
2283}
 
2284
2285static void udp_seq_stop(struct seq_file *seq, void *v)
2286{
2287	struct udp_iter_state *state = seq->private;
 
2288
2289	if (state->bucket <= state->udp_table->mask)
2290		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2291}
2292
2293int udp_seq_open(struct inode *inode, struct file *file)
2294{
2295	struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2296	struct udp_iter_state *s;
2297	int err;
2298
2299	err = seq_open_net(inode, file, &afinfo->seq_ops,
2300			   sizeof(struct udp_iter_state));
2301	if (err < 0)
2302		return err;
2303
2304	s = ((struct seq_file *)file->private_data)->private;
2305	s->family		= afinfo->family;
2306	s->udp_table		= afinfo->udp_table;
2307	return err;
2308}
2309EXPORT_SYMBOL(udp_seq_open);
2310
2311/* ------------------------------------------------------------------------ */
2312int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2313{
2314	struct proc_dir_entry *p;
2315	int rc = 0;
2316
2317	afinfo->seq_ops.start		= udp_seq_start;
2318	afinfo->seq_ops.next		= udp_seq_next;
2319	afinfo->seq_ops.stop		= udp_seq_stop;
2320
2321	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2322			     afinfo->seq_fops, afinfo);
2323	if (!p)
2324		rc = -ENOMEM;
2325	return rc;
2326}
2327EXPORT_SYMBOL(udp_proc_register);
2328
2329void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2330{
2331	remove_proc_entry(afinfo->name, net->proc_net);
2332}
2333EXPORT_SYMBOL(udp_proc_unregister);
2334
2335/* ------------------------------------------------------------------------ */
2336static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2337		int bucket)
2338{
2339	struct inet_sock *inet = inet_sk(sp);
2340	__be32 dest = inet->inet_daddr;
2341	__be32 src  = inet->inet_rcv_saddr;
2342	__u16 destp	  = ntohs(inet->inet_dport);
2343	__u16 srcp	  = ntohs(inet->inet_sport);
2344
2345	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2346		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2347		bucket, src, srcp, dest, destp, sp->sk_state,
2348		sk_wmem_alloc_get(sp),
2349		sk_rmem_alloc_get(sp),
2350		0, 0L, 0,
2351		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2352		0, sock_i_ino(sp),
2353		atomic_read(&sp->sk_refcnt), sp,
2354		atomic_read(&sp->sk_drops));
2355}
2356
2357int udp4_seq_show(struct seq_file *seq, void *v)
2358{
2359	seq_setwidth(seq, 127);
2360	if (v == SEQ_START_TOKEN)
2361		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2362			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2363			   "inode ref pointer drops");
2364	else {
2365		struct udp_iter_state *state = seq->private;
2366
2367		udp4_format_sock(v, seq, state->bucket);
2368	}
2369	seq_pad(seq, '\n');
2370	return 0;
2371}
2372
2373static const struct file_operations udp_afinfo_seq_fops = {
2374	.owner    = THIS_MODULE,
2375	.open     = udp_seq_open,
2376	.read     = seq_read,
2377	.llseek   = seq_lseek,
2378	.release  = seq_release_net
2379};
2380
2381/* ------------------------------------------------------------------------ */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2382static struct udp_seq_afinfo udp4_seq_afinfo = {
2383	.name		= "udp",
2384	.family		= AF_INET,
2385	.udp_table	= &udp_table,
2386	.seq_fops	= &udp_afinfo_seq_fops,
2387	.seq_ops	= {
2388		.show		= udp4_seq_show,
2389	},
2390};
2391
2392static int __net_init udp4_proc_init_net(struct net *net)
2393{
2394	return udp_proc_register(net, &udp4_seq_afinfo);
 
 
 
2395}
2396
2397static void __net_exit udp4_proc_exit_net(struct net *net)
2398{
2399	udp_proc_unregister(net, &udp4_seq_afinfo);
2400}
2401
2402static struct pernet_operations udp4_net_ops = {
2403	.init = udp4_proc_init_net,
2404	.exit = udp4_proc_exit_net,
2405};
2406
2407int __init udp4_proc_init(void)
2408{
2409	return register_pernet_subsys(&udp4_net_ops);
2410}
2411
2412void udp4_proc_exit(void)
2413{
2414	unregister_pernet_subsys(&udp4_net_ops);
2415}
2416#endif /* CONFIG_PROC_FS */
2417
2418static __initdata unsigned long uhash_entries;
2419static int __init set_uhash_entries(char *str)
2420{
2421	ssize_t ret;
2422
2423	if (!str)
2424		return 0;
2425
2426	ret = kstrtoul(str, 0, &uhash_entries);
2427	if (ret)
2428		return 0;
2429
2430	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2431		uhash_entries = UDP_HTABLE_SIZE_MIN;
2432	return 1;
2433}
2434__setup("uhash_entries=", set_uhash_entries);
2435
2436void __init udp_table_init(struct udp_table *table, const char *name)
2437{
2438	unsigned int i;
2439
 
 
2440	table->hash = alloc_large_system_hash(name,
2441					      2 * sizeof(struct udp_hslot),
2442					      uhash_entries,
2443					      21, /* one slot per 2 MB */
2444					      0,
2445					      &table->log,
2446					      &table->mask,
2447					      UDP_HTABLE_SIZE_MIN,
2448					      64 * 1024);
2449
2450	table->hash2 = table->hash + (table->mask + 1);
2451	for (i = 0; i <= table->mask; i++) {
2452		INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2453		table->hash[i].count = 0;
2454		spin_lock_init(&table->hash[i].lock);
2455	}
2456	for (i = 0; i <= table->mask; i++) {
2457		INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2458		table->hash2[i].count = 0;
2459		spin_lock_init(&table->hash2[i].lock);
2460	}
 
2461}
2462
2463void __init udp_init(void)
2464{
2465	unsigned long limit;
2466
2467	udp_table_init(&udp_table, "UDP");
2468	limit = nr_free_buffer_pages() / 8;
2469	limit = max(limit, 128UL);
2470	sysctl_udp_mem[0] = limit / 4 * 3;
2471	sysctl_udp_mem[1] = limit;
2472	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2473
2474	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2475	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2476}
 
2477
2478struct sk_buff *skb_udp_tunnel_segment(struct sk_buff *skb,
2479				       netdev_features_t features)
2480{
2481	struct sk_buff *segs = ERR_PTR(-EINVAL);
2482	u16 mac_offset = skb->mac_header;
2483	int mac_len = skb->mac_len;
2484	int tnl_hlen = skb_inner_mac_header(skb) - skb_transport_header(skb);
2485	__be16 protocol = skb->protocol;
2486	netdev_features_t enc_features;
2487	int outer_hlen;
2488
2489	if (unlikely(!pskb_may_pull(skb, tnl_hlen)))
2490		goto out;
 
 
2491
2492	skb->encapsulation = 0;
2493	__skb_pull(skb, tnl_hlen);
2494	skb_reset_mac_header(skb);
2495	skb_set_network_header(skb, skb_inner_network_offset(skb));
2496	skb->mac_len = skb_inner_network_offset(skb);
2497	skb->protocol = htons(ETH_P_TEB);
2498
2499	/* segment inner packet. */
2500	enc_features = skb->dev->hw_enc_features & netif_skb_features(skb);
2501	segs = skb_mac_gso_segment(skb, enc_features);
2502	if (!segs || IS_ERR(segs)) {
2503		skb_gso_error_unwind(skb, protocol, tnl_hlen, mac_offset,
2504				     mac_len);
2505		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2506	}
 
2507
2508	outer_hlen = skb_tnl_header_len(skb);
2509	skb = segs;
2510	do {
2511		struct udphdr *uh;
2512		int udp_offset = outer_hlen - tnl_hlen;
2513
2514		skb_reset_inner_headers(skb);
2515		skb->encapsulation = 1;
 
 
 
2516
2517		skb->mac_len = mac_len;
 
 
2518
2519		skb_push(skb, outer_hlen);
2520		skb_reset_mac_header(skb);
2521		skb_set_network_header(skb, mac_len);
2522		skb_set_transport_header(skb, udp_offset);
2523		uh = udp_hdr(skb);
2524		uh->len = htons(skb->len - udp_offset);
2525
2526		/* csum segment if tunnel sets skb with csum. */
2527		if (protocol == htons(ETH_P_IP) && unlikely(uh->check)) {
2528			struct iphdr *iph = ip_hdr(skb);
2529
2530			uh->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
2531						       skb->len - udp_offset,
2532						       IPPROTO_UDP, 0);
2533			uh->check = csum_fold(skb_checksum(skb, udp_offset,
2534							   skb->len - udp_offset, 0));
2535			if (uh->check == 0)
2536				uh->check = CSUM_MANGLED_0;
2537
2538		} else if (protocol == htons(ETH_P_IPV6)) {
2539			struct ipv6hdr *ipv6h = ipv6_hdr(skb);
2540			u32 len = skb->len - udp_offset;
2541
2542			uh->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
2543						     len, IPPROTO_UDP, 0);
2544			uh->check = csum_fold(skb_checksum(skb, udp_offset, len, 0));
2545			if (uh->check == 0)
2546				uh->check = CSUM_MANGLED_0;
2547			skb->ip_summed = CHECKSUM_NONE;
2548		}
2549
2550		skb->protocol = protocol;
2551	} while ((skb = skb->next));
2552out:
2553	return segs;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2554}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		The User Datagram Protocol (UDP).
   8 *
   9 * Authors:	Ross Biro
  10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  12 *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
  13 *		Hirokazu Takahashi, <taka@valinux.co.jp>
  14 *
  15 * Fixes:
  16 *		Alan Cox	:	verify_area() calls
  17 *		Alan Cox	: 	stopped close while in use off icmp
  18 *					messages. Not a fix but a botch that
  19 *					for udp at least is 'valid'.
  20 *		Alan Cox	:	Fixed icmp handling properly
  21 *		Alan Cox	: 	Correct error for oversized datagrams
  22 *		Alan Cox	:	Tidied select() semantics.
  23 *		Alan Cox	:	udp_err() fixed properly, also now
  24 *					select and read wake correctly on errors
  25 *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
  26 *		Alan Cox	:	UDP can count its memory
  27 *		Alan Cox	:	send to an unknown connection causes
  28 *					an ECONNREFUSED off the icmp, but
  29 *					does NOT close.
  30 *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
  31 *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
  32 *					bug no longer crashes it.
  33 *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
  34 *		Alan Cox	:	Uses skb_free_datagram
  35 *		Alan Cox	:	Added get/set sockopt support.
  36 *		Alan Cox	:	Broadcasting without option set returns EACCES.
  37 *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
  38 *		Alan Cox	:	Use ip_tos and ip_ttl
  39 *		Alan Cox	:	SNMP Mibs
  40 *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
  41 *		Matt Dillon	:	UDP length checks.
  42 *		Alan Cox	:	Smarter af_inet used properly.
  43 *		Alan Cox	:	Use new kernel side addressing.
  44 *		Alan Cox	:	Incorrect return on truncated datagram receive.
  45 *	Arnt Gulbrandsen 	:	New udp_send and stuff
  46 *		Alan Cox	:	Cache last socket
  47 *		Alan Cox	:	Route cache
  48 *		Jon Peatfield	:	Minor efficiency fix to sendto().
  49 *		Mike Shaver	:	RFC1122 checks.
  50 *		Alan Cox	:	Nonblocking error fix.
  51 *	Willy Konynenberg	:	Transparent proxying support.
  52 *		Mike McLagan	:	Routing by source
  53 *		David S. Miller	:	New socket lookup architecture.
  54 *					Last socket cache retained as it
  55 *					does have a high hit rate.
  56 *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
  57 *		Andi Kleen	:	Some cleanups, cache destination entry
  58 *					for connect.
  59 *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
  60 *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
  61 *					return ENOTCONN for unconnected sockets (POSIX)
  62 *		Janos Farkas	:	don't deliver multi/broadcasts to a different
  63 *					bound-to-device socket
  64 *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
  65 *					datagrams.
  66 *	Hirokazu Takahashi	:	sendfile() on UDP works now.
  67 *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
  68 *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
  69 *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
  70 *					a single port at the same time.
  71 *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
  72 *	James Chapman		:	Add L2TP encapsulation type.
 
 
 
 
 
 
  73 */
  74
  75#define pr_fmt(fmt) "UDP: " fmt
  76
  77#include <linux/bpf-cgroup.h>
  78#include <linux/uaccess.h>
  79#include <asm/ioctls.h>
  80#include <linux/memblock.h>
  81#include <linux/highmem.h>
 
  82#include <linux/types.h>
  83#include <linux/fcntl.h>
  84#include <linux/module.h>
  85#include <linux/socket.h>
  86#include <linux/sockios.h>
  87#include <linux/igmp.h>
  88#include <linux/inetdevice.h>
  89#include <linux/in.h>
  90#include <linux/errno.h>
  91#include <linux/timer.h>
  92#include <linux/mm.h>
  93#include <linux/inet.h>
  94#include <linux/netdevice.h>
  95#include <linux/slab.h>
  96#include <net/tcp_states.h>
  97#include <linux/skbuff.h>
  98#include <linux/proc_fs.h>
  99#include <linux/seq_file.h>
 100#include <net/net_namespace.h>
 101#include <net/icmp.h>
 102#include <net/inet_hashtables.h>
 103#include <net/ip.h>
 104#include <net/ip_tunnels.h>
 105#include <net/route.h>
 106#include <net/checksum.h>
 107#include <net/gso.h>
 108#include <net/xfrm.h>
 109#include <trace/events/udp.h>
 110#include <linux/static_key.h>
 111#include <linux/btf_ids.h>
 112#include <trace/events/skb.h>
 113#include <net/busy_poll.h>
 114#include "udp_impl.h"
 115#include <net/sock_reuseport.h>
 116#include <net/addrconf.h>
 117#include <net/udp_tunnel.h>
 118#include <net/gro.h>
 119#if IS_ENABLED(CONFIG_IPV6)
 120#include <net/ipv6_stubs.h>
 121#endif
 122
 123struct udp_table udp_table __read_mostly;
 124EXPORT_SYMBOL(udp_table);
 125
 126long sysctl_udp_mem[3] __read_mostly;
 127EXPORT_SYMBOL(sysctl_udp_mem);
 128
 129atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
 
 
 
 
 
 
 130EXPORT_SYMBOL(udp_memory_allocated);
 131DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
 132EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
 133
 134#define MAX_UDP_PORTS 65536
 135#define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET)
 136
 137static struct udp_table *udp_get_table_prot(struct sock *sk)
 138{
 139	return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table;
 140}
 141
 142static int udp_lib_lport_inuse(struct net *net, __u16 num,
 143			       const struct udp_hslot *hslot,
 144			       unsigned long *bitmap,
 145			       struct sock *sk, unsigned int log)
 
 
 
 146{
 147	struct sock *sk2;
 
 148	kuid_t uid = sock_i_uid(sk);
 149
 150	sk_for_each(sk2, &hslot->head) {
 151		if (net_eq(sock_net(sk2), net) &&
 152		    sk2 != sk &&
 153		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
 154		    (!sk2->sk_reuse || !sk->sk_reuse) &&
 155		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
 156		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
 157		    inet_rcv_saddr_equal(sk, sk2, true)) {
 158			if (sk2->sk_reuseport && sk->sk_reuseport &&
 159			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
 160			    uid_eq(uid, sock_i_uid(sk2))) {
 161				if (!bitmap)
 162					return 0;
 163			} else {
 164				if (!bitmap)
 165					return 1;
 166				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
 167					  bitmap);
 168			}
 
 169		}
 170	}
 171	return 0;
 172}
 173
 174/*
 175 * Note: we still hold spinlock of primary hash chain, so no other writer
 176 * can insert/delete a socket with local_port == num
 177 */
 178static int udp_lib_lport_inuse2(struct net *net, __u16 num,
 179				struct udp_hslot *hslot2,
 180				struct sock *sk)
 
 
 181{
 182	struct sock *sk2;
 
 183	kuid_t uid = sock_i_uid(sk);
 184	int res = 0;
 185
 186	spin_lock(&hslot2->lock);
 187	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
 188		if (net_eq(sock_net(sk2), net) &&
 189		    sk2 != sk &&
 190		    (udp_sk(sk2)->udp_port_hash == num) &&
 191		    (!sk2->sk_reuse || !sk->sk_reuse) &&
 192		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
 193		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
 194		    inet_rcv_saddr_equal(sk, sk2, true)) {
 195			if (sk2->sk_reuseport && sk->sk_reuseport &&
 196			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
 197			    uid_eq(uid, sock_i_uid(sk2))) {
 198				res = 0;
 199			} else {
 200				res = 1;
 201			}
 202			break;
 203		}
 204	}
 205	spin_unlock(&hslot2->lock);
 206	return res;
 207}
 208
 209static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
 210{
 211	struct net *net = sock_net(sk);
 212	kuid_t uid = sock_i_uid(sk);
 213	struct sock *sk2;
 214
 215	sk_for_each(sk2, &hslot->head) {
 216		if (net_eq(sock_net(sk2), net) &&
 217		    sk2 != sk &&
 218		    sk2->sk_family == sk->sk_family &&
 219		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
 220		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
 221		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
 222		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
 223		    inet_rcv_saddr_equal(sk, sk2, false)) {
 224			return reuseport_add_sock(sk, sk2,
 225						  inet_rcv_saddr_any(sk));
 226		}
 227	}
 228
 229	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
 230}
 231
 232/**
 233 *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
 234 *
 235 *  @sk:          socket struct in question
 236 *  @snum:        port number to look up
 
 237 *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
 238 *                   with NULL address
 239 */
 240int udp_lib_get_port(struct sock *sk, unsigned short snum,
 
 
 241		     unsigned int hash2_nulladdr)
 242{
 243	struct udp_table *udptable = udp_get_table_prot(sk);
 244	struct udp_hslot *hslot, *hslot2;
 
 
 245	struct net *net = sock_net(sk);
 246	int error = -EADDRINUSE;
 247
 248	if (!snum) {
 249		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
 250		unsigned short first, last;
 251		int low, high, remaining;
 252		unsigned int rand;
 
 
 253
 254		inet_sk_get_local_port_range(sk, &low, &high);
 255		remaining = (high - low) + 1;
 256
 257		rand = get_random_u32();
 258		first = reciprocal_scale(rand, remaining) + low;
 259		/*
 260		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
 261		 */
 262		rand = (rand | 1) * (udptable->mask + 1);
 263		last = first + udptable->mask + 1;
 264		do {
 265			hslot = udp_hashslot(udptable, net, first);
 266			bitmap_zero(bitmap, PORTS_PER_CHAIN);
 267			spin_lock_bh(&hslot->lock);
 268			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
 269					    udptable->log);
 270
 271			snum = first;
 272			/*
 273			 * Iterate on all possible values of snum for this hash.
 274			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
 275			 * give us randomization and full range coverage.
 276			 */
 277			do {
 278				if (low <= snum && snum <= high &&
 279				    !test_bit(snum >> udptable->log, bitmap) &&
 280				    !inet_is_local_reserved_port(net, snum))
 281					goto found;
 282				snum += rand;
 283			} while (snum != first);
 284			spin_unlock_bh(&hslot->lock);
 285			cond_resched();
 286		} while (++first != last);
 287		goto fail;
 288	} else {
 289		hslot = udp_hashslot(udptable, net, snum);
 290		spin_lock_bh(&hslot->lock);
 291		if (hslot->count > 10) {
 292			int exist;
 293			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
 294
 295			slot2          &= udptable->mask;
 296			hash2_nulladdr &= udptable->mask;
 297
 298			hslot2 = udp_hashslot2(udptable, slot2);
 299			if (hslot->count < hslot2->count)
 300				goto scan_primary_hash;
 301
 302			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
 
 303			if (!exist && (hash2_nulladdr != slot2)) {
 304				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
 305				exist = udp_lib_lport_inuse2(net, snum, hslot2,
 306							     sk);
 307			}
 308			if (exist)
 309				goto fail_unlock;
 310			else
 311				goto found;
 312		}
 313scan_primary_hash:
 314		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
 
 315			goto fail_unlock;
 316	}
 317found:
 318	inet_sk(sk)->inet_num = snum;
 319	udp_sk(sk)->udp_port_hash = snum;
 320	udp_sk(sk)->udp_portaddr_hash ^= snum;
 321	if (sk_unhashed(sk)) {
 322		if (sk->sk_reuseport &&
 323		    udp_reuseport_add_sock(sk, hslot)) {
 324			inet_sk(sk)->inet_num = 0;
 325			udp_sk(sk)->udp_port_hash = 0;
 326			udp_sk(sk)->udp_portaddr_hash ^= snum;
 327			goto fail_unlock;
 328		}
 329
 330		sock_set_flag(sk, SOCK_RCU_FREE);
 331
 332		sk_add_node_rcu(sk, &hslot->head);
 333		hslot->count++;
 334		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
 335
 336		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
 337		spin_lock(&hslot2->lock);
 338		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
 339		    sk->sk_family == AF_INET6)
 340			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
 341					   &hslot2->head);
 342		else
 343			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
 344					   &hslot2->head);
 345		hslot2->count++;
 346		spin_unlock(&hslot2->lock);
 347	}
 348
 349	error = 0;
 350fail_unlock:
 351	spin_unlock_bh(&hslot->lock);
 352fail:
 353	return error;
 354}
 355EXPORT_SYMBOL(udp_lib_get_port);
 356
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 357int udp_v4_get_port(struct sock *sk, unsigned short snum)
 358{
 359	unsigned int hash2_nulladdr =
 360		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
 361	unsigned int hash2_partial =
 362		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
 363
 364	/* precompute partial secondary hash */
 365	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
 366	return udp_lib_get_port(sk, snum, hash2_nulladdr);
 367}
 368
 369static int compute_score(struct sock *sk, const struct net *net,
 370			 __be32 saddr, __be16 sport,
 371			 __be32 daddr, unsigned short hnum,
 372			 int dif, int sdif)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 373{
 374	int score;
 375	struct inet_sock *inet;
 376	bool dev_match;
 377
 378	if (!net_eq(sock_net(sk), net) ||
 379	    udp_sk(sk)->udp_port_hash != hnum ||
 380	    ipv6_only_sock(sk))
 381		return -1;
 382
 383	if (sk->sk_rcv_saddr != daddr)
 384		return -1;
 385
 386	score = (sk->sk_family == PF_INET) ? 2 : 1;
 387
 388	inet = inet_sk(sk);
 389	if (inet->inet_daddr) {
 390		if (inet->inet_daddr != saddr)
 391			return -1;
 392		score += 4;
 393	}
 394
 395	if (inet->inet_dport) {
 396		if (inet->inet_dport != sport)
 397			return -1;
 398		score += 4;
 
 
 
 
 
 
 
 
 
 
 
 
 399	}
 400
 401	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
 402					dif, sdif);
 403	if (!dev_match)
 404		return -1;
 405	if (sk->sk_bound_dev_if)
 406		score += 4;
 407
 408	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
 409		score++;
 410	return score;
 411}
 412
 413u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport,
 414		const __be32 faddr, const __be16 fport)
 
 415{
 
 
 416	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
 417
 418	return __inet_ehashfn(laddr, lport, faddr, fport,
 419			      udp_ehash_secret + net_hash_mix(net));
 420}
 421EXPORT_SYMBOL(udp_ehashfn);
 422
 423/**
 424 * udp4_lib_lookup1() - Simplified lookup using primary hash (destination port)
 425 * @net:	Network namespace
 426 * @saddr:	Source address, network order
 427 * @sport:	Source port, network order
 428 * @daddr:	Destination address, network order
 429 * @hnum:	Destination port, host order
 430 * @dif:	Destination interface index
 431 * @sdif:	Destination bridge port index, if relevant
 432 * @udptable:	Set of UDP hash tables
 433 *
 434 * Simplified lookup to be used as fallback if no sockets are found due to a
 435 * potential race between (receive) address change, and lookup happening before
 436 * the rehash operation. This function ignores SO_REUSEPORT groups while scoring
 437 * result sockets, because if we have one, we don't need the fallback at all.
 438 *
 439 * Called under rcu_read_lock().
 440 *
 441 * Return: socket with highest matching score if any, NULL if none
 442 */
 443static struct sock *udp4_lib_lookup1(const struct net *net,
 444				     __be32 saddr, __be16 sport,
 445				     __be32 daddr, unsigned int hnum,
 446				     int dif, int sdif,
 447				     const struct udp_table *udptable)
 448{
 449	unsigned int slot = udp_hashfn(net, hnum, udptable->mask);
 450	struct udp_hslot *hslot = &udptable->hash[slot];
 451	struct sock *sk, *result = NULL;
 452	int score, badness = 0;
 453
 454	sk_for_each_rcu(sk, &hslot->head) {
 455		score = compute_score(sk, net,
 456				      saddr, sport, daddr, hnum, dif, sdif);
 457		if (score > badness) {
 458			result = sk;
 459			badness = score;
 460		}
 461	}
 462
 463	return result;
 464}
 465
 466/* called with rcu_read_lock() */
 467static struct sock *udp4_lib_lookup2(const struct net *net,
 468				     __be32 saddr, __be16 sport,
 469				     __be32 daddr, unsigned int hnum,
 470				     int dif, int sdif,
 471				     struct udp_hslot *hslot2,
 472				     struct sk_buff *skb)
 473{
 474	struct sock *sk, *result;
 475	int score, badness;
 476	bool need_rescore;
 
 477
 
 478	result = NULL;
 479	badness = 0;
 480	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
 481		need_rescore = false;
 482rescore:
 483		score = compute_score(need_rescore ? result : sk, net, saddr,
 484				      sport, daddr, hnum, dif, sdif);
 485		if (score > badness) {
 
 486			badness = score;
 487
 488			if (need_rescore)
 489				continue;
 490
 491			if (sk->sk_state == TCP_ESTABLISHED) {
 492				result = sk;
 493				continue;
 494			}
 495
 496			result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr),
 497						       saddr, sport, daddr, hnum, udp_ehashfn);
 498			if (!result) {
 499				result = sk;
 500				continue;
 501			}
 502
 503			/* Fall back to scoring if group has connections */
 504			if (!reuseport_has_conns(sk))
 505				return result;
 506
 507			/* Reuseport logic returned an error, keep original score. */
 508			if (IS_ERR(result))
 509				continue;
 510
 511			/* compute_score is too long of a function to be
 512			 * inlined, and calling it again here yields
 513			 * measureable overhead for some
 514			 * workloads. Work around it by jumping
 515			 * backwards to rescore 'result'.
 516			 */
 517			need_rescore = true;
 518			goto rescore;
 519		}
 520	}
 521	return result;
 522}
 523
 524#if IS_ENABLED(CONFIG_BASE_SMALL)
 525static struct sock *udp4_lib_lookup4(const struct net *net,
 526				     __be32 saddr, __be16 sport,
 527				     __be32 daddr, unsigned int hnum,
 528				     int dif, int sdif,
 529				     struct udp_table *udptable)
 530{
 531	return NULL;
 532}
 533
 534static void udp_rehash4(struct udp_table *udptable, struct sock *sk,
 535			u16 newhash4)
 536{
 537}
 538
 539static void udp_unhash4(struct udp_table *udptable, struct sock *sk)
 540{
 541}
 542#else /* !CONFIG_BASE_SMALL */
 543static struct sock *udp4_lib_lookup4(const struct net *net,
 544				     __be32 saddr, __be16 sport,
 545				     __be32 daddr, unsigned int hnum,
 546				     int dif, int sdif,
 547				     struct udp_table *udptable)
 548{
 549	const __portpair ports = INET_COMBINED_PORTS(sport, hnum);
 550	const struct hlist_nulls_node *node;
 551	struct udp_hslot *hslot4;
 552	unsigned int hash4, slot;
 553	struct udp_sock *up;
 554	struct sock *sk;
 555
 556	hash4 = udp_ehashfn(net, daddr, hnum, saddr, sport);
 557	slot = hash4 & udptable->mask;
 558	hslot4 = &udptable->hash4[slot];
 559	INET_ADDR_COOKIE(acookie, saddr, daddr);
 560
 561begin:
 562	/* SLAB_TYPESAFE_BY_RCU not used, so we don't need to touch sk_refcnt */
 563	udp_lrpa_for_each_entry_rcu(up, node, &hslot4->nulls_head) {
 564		sk = (struct sock *)up;
 565		if (inet_match(net, sk, acookie, ports, dif, sdif))
 566			return sk;
 567	}
 568
 569	/* if the nulls value we got at the end of this lookup is not the
 570	 * expected one, we must restart lookup. We probably met an item that
 571	 * was moved to another chain due to rehash.
 572	 */
 573	if (get_nulls_value(node) != slot)
 574		goto begin;
 575
 576	return NULL;
 577}
 578
 579/* udp_rehash4() only checks hslot4, and hash4_cnt is not processed. */
 580static void udp_rehash4(struct udp_table *udptable, struct sock *sk,
 581			u16 newhash4)
 582{
 583	struct udp_hslot *hslot4, *nhslot4;
 584
 585	hslot4 = udp_hashslot4(udptable, udp_sk(sk)->udp_lrpa_hash);
 586	nhslot4 = udp_hashslot4(udptable, newhash4);
 587	udp_sk(sk)->udp_lrpa_hash = newhash4;
 588
 589	if (hslot4 != nhslot4) {
 590		spin_lock_bh(&hslot4->lock);
 591		hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_lrpa_node);
 592		hslot4->count--;
 593		spin_unlock_bh(&hslot4->lock);
 594
 595		spin_lock_bh(&nhslot4->lock);
 596		hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_lrpa_node,
 597					 &nhslot4->nulls_head);
 598		nhslot4->count++;
 599		spin_unlock_bh(&nhslot4->lock);
 600	}
 
 601}
 602
 603static void udp_unhash4(struct udp_table *udptable, struct sock *sk)
 604{
 605	struct udp_hslot *hslot2, *hslot4;
 606
 607	if (udp_hashed4(sk)) {
 608		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
 609		hslot4 = udp_hashslot4(udptable, udp_sk(sk)->udp_lrpa_hash);
 610
 611		spin_lock(&hslot4->lock);
 612		hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_lrpa_node);
 613		hslot4->count--;
 614		spin_unlock(&hslot4->lock);
 615
 616		spin_lock(&hslot2->lock);
 617		udp_hash4_dec(hslot2);
 618		spin_unlock(&hslot2->lock);
 619	}
 620}
 621
 622void udp_lib_hash4(struct sock *sk, u16 hash)
 623{
 624	struct udp_hslot *hslot, *hslot2, *hslot4;
 625	struct net *net = sock_net(sk);
 626	struct udp_table *udptable;
 627
 628	/* Connected udp socket can re-connect to another remote address, which
 629	 * will be handled by rehash. Thus no need to redo hash4 here.
 630	 */
 631	if (udp_hashed4(sk))
 632		return;
 633
 634	udptable = net->ipv4.udp_table;
 635	hslot = udp_hashslot(udptable, net, udp_sk(sk)->udp_port_hash);
 636	hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
 637	hslot4 = udp_hashslot4(udptable, hash);
 638	udp_sk(sk)->udp_lrpa_hash = hash;
 639
 640	spin_lock_bh(&hslot->lock);
 641	if (rcu_access_pointer(sk->sk_reuseport_cb))
 642		reuseport_detach_sock(sk);
 643
 644	spin_lock(&hslot4->lock);
 645	hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_lrpa_node,
 646				 &hslot4->nulls_head);
 647	hslot4->count++;
 648	spin_unlock(&hslot4->lock);
 649
 650	spin_lock(&hslot2->lock);
 651	udp_hash4_inc(hslot2);
 652	spin_unlock(&hslot2->lock);
 653
 654	spin_unlock_bh(&hslot->lock);
 655}
 656EXPORT_SYMBOL(udp_lib_hash4);
 657
 658/* call with sock lock */
 659void udp4_hash4(struct sock *sk)
 660{
 661	struct net *net = sock_net(sk);
 662	unsigned int hash;
 663
 664	if (sk_unhashed(sk) || sk->sk_rcv_saddr == htonl(INADDR_ANY))
 665		return;
 666
 667	hash = udp_ehashfn(net, sk->sk_rcv_saddr, sk->sk_num,
 668			   sk->sk_daddr, sk->sk_dport);
 669
 670	udp_lib_hash4(sk, hash);
 671}
 672EXPORT_SYMBOL(udp4_hash4);
 673#endif /* CONFIG_BASE_SMALL */
 674
 675/* UDP is nearly always wildcards out the wazoo, it makes no sense to try
 676 * harder than this. -DaveM
 677 */
 678struct sock *__udp4_lib_lookup(const struct net *net, __be32 saddr,
 679		__be16 sport, __be32 daddr, __be16 dport, int dif,
 680		int sdif, struct udp_table *udptable, struct sk_buff *skb)
 681{
 
 
 682	unsigned short hnum = ntohs(dport);
 683	struct udp_hslot *hslot2;
 684	struct sock *result, *sk;
 685	unsigned int hash2;
 686
 687	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
 688	hslot2 = udp_hashslot2(udptable, hash2);
 689
 690	if (udp_has_hash4(hslot2)) {
 691		result = udp4_lib_lookup4(net, saddr, sport, daddr, hnum,
 692					  dif, sdif, udptable);
 693		if (result) /* udp4_lib_lookup4 return sk or NULL */
 694			return result;
 695	}
 696
 697	/* Lookup connected or non-wildcard socket */
 698	result = udp4_lib_lookup2(net, saddr, sport,
 699				  daddr, hnum, dif, sdif,
 700				  hslot2, skb);
 701	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
 702		goto done;
 703
 704	/* Lookup redirect from BPF */
 705	if (static_branch_unlikely(&bpf_sk_lookup_enabled) &&
 706	    udptable == net->ipv4.udp_table) {
 707		sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr),
 708					       saddr, sport, daddr, hnum, dif,
 709					       udp_ehashfn);
 710		if (sk) {
 
 
 
 
 
 
 
 
 
 711			result = sk;
 712			goto done;
 
 
 
 
 
 
 
 
 
 
 
 713		}
 714	}
 715
 716	/* Got non-wildcard socket or error on first lookup */
 717	if (result)
 718		goto done;
 719
 720	/* Lookup wildcard sockets */
 721	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
 722	hslot2 = udp_hashslot2(udptable, hash2);
 723
 724	result = udp4_lib_lookup2(net, saddr, sport,
 725				  htonl(INADDR_ANY), hnum, dif, sdif,
 726				  hslot2, skb);
 727	if (!IS_ERR_OR_NULL(result))
 728		goto done;
 729
 730	/* Primary hash (destination port) lookup as fallback for this race:
 731	 *   1. __ip4_datagram_connect() sets sk_rcv_saddr
 732	 *   2. lookup (this function): new sk_rcv_saddr, hashes not updated yet
 733	 *   3. rehash operation updating _secondary and four-tuple_ hashes
 734	 * The primary hash doesn't need an update after 1., so, thanks to this
 735	 * further step, 1. and 3. don't need to be atomic against the lookup.
 736	 */
 737	result = udp4_lib_lookup1(net, saddr, sport, daddr, hnum, dif, sdif,
 738				  udptable);
 739
 740done:
 741	if (IS_ERR(result))
 742		return NULL;
 
 
 
 
 
 
 
 743	return result;
 744}
 745EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
 746
 747static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
 748						 __be16 sport, __be16 dport,
 749						 struct udp_table *udptable)
 750{
 751	const struct iphdr *iph = ip_hdr(skb);
 752
 753	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
 754				 iph->daddr, dport, inet_iif(skb),
 755				 inet_sdif(skb), udptable, skb);
 756}
 757
 758struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
 759				 __be16 sport, __be16 dport)
 760{
 761	const u16 offset = NAPI_GRO_CB(skb)->network_offsets[skb->encapsulation];
 762	const struct iphdr *iph = (struct iphdr *)(skb->data + offset);
 763	struct net *net = dev_net(skb->dev);
 764	int iif, sdif;
 765
 766	inet_get_iif_sdif(skb, &iif, &sdif);
 767
 768	return __udp4_lib_lookup(net, iph->saddr, sport,
 769				 iph->daddr, dport, iif,
 770				 sdif, net->ipv4.udp_table, NULL);
 771}
 772
 773/* Must be called under rcu_read_lock().
 774 * Does increment socket refcount.
 775 */
 776#if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
 777struct sock *udp4_lib_lookup(const struct net *net, __be32 saddr, __be16 sport,
 778			     __be32 daddr, __be16 dport, int dif)
 779{
 780	struct sock *sk;
 781
 782	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
 783			       dif, 0, net->ipv4.udp_table, NULL);
 784	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
 785		sk = NULL;
 786	return sk;
 787}
 788EXPORT_SYMBOL_GPL(udp4_lib_lookup);
 789#endif
 790
 791static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk,
 792				       __be16 loc_port, __be32 loc_addr,
 793				       __be16 rmt_port, __be32 rmt_addr,
 794				       int dif, int sdif, unsigned short hnum)
 795{
 796	const struct inet_sock *inet = inet_sk(sk);
 797
 798	if (!net_eq(sock_net(sk), net) ||
 799	    udp_sk(sk)->udp_port_hash != hnum ||
 800	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
 801	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
 802	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
 803	    ipv6_only_sock(sk) ||
 804	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
 805		return false;
 806	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
 807		return false;
 808	return true;
 809}
 810
 811DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
 812EXPORT_SYMBOL(udp_encap_needed_key);
 813
 814#if IS_ENABLED(CONFIG_IPV6)
 815DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key);
 816EXPORT_SYMBOL(udpv6_encap_needed_key);
 817#endif
 818
 819void udp_encap_enable(void)
 820{
 821	static_branch_inc(&udp_encap_needed_key);
 822}
 823EXPORT_SYMBOL(udp_encap_enable);
 824
 825void udp_encap_disable(void)
 826{
 827	static_branch_dec(&udp_encap_needed_key);
 828}
 829EXPORT_SYMBOL(udp_encap_disable);
 830
 831/* Handler for tunnels with arbitrary destination ports: no socket lookup, go
 832 * through error handlers in encapsulations looking for a match.
 833 */
 834static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
 835{
 836	int i;
 837
 838	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
 839		int (*handler)(struct sk_buff *skb, u32 info);
 840		const struct ip_tunnel_encap_ops *encap;
 841
 842		encap = rcu_dereference(iptun_encaps[i]);
 843		if (!encap)
 844			continue;
 845		handler = encap->err_handler;
 846		if (handler && !handler(skb, info))
 847			return 0;
 848	}
 849
 850	return -ENOENT;
 851}
 852
 853/* Try to match ICMP errors to UDP tunnels by looking up a socket without
 854 * reversing source and destination port: this will match tunnels that force the
 855 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
 856 * lwtunnels might actually break this assumption by being configured with
 857 * different destination ports on endpoints, in this case we won't be able to
 858 * trace ICMP messages back to them.
 859 *
 860 * If this doesn't match any socket, probe tunnels with arbitrary destination
 861 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
 862 * we've sent packets to won't necessarily match the local destination port.
 863 *
 864 * Then ask the tunnel implementation to match the error against a valid
 865 * association.
 866 *
 867 * Return an error if we can't find a match, the socket if we need further
 868 * processing, zero otherwise.
 869 */
 870static struct sock *__udp4_lib_err_encap(struct net *net,
 871					 const struct iphdr *iph,
 872					 struct udphdr *uh,
 873					 struct udp_table *udptable,
 874					 struct sock *sk,
 875					 struct sk_buff *skb, u32 info)
 876{
 877	int (*lookup)(struct sock *sk, struct sk_buff *skb);
 878	int network_offset, transport_offset;
 879	struct udp_sock *up;
 880
 881	network_offset = skb_network_offset(skb);
 882	transport_offset = skb_transport_offset(skb);
 883
 884	/* Network header needs to point to the outer IPv4 header inside ICMP */
 885	skb_reset_network_header(skb);
 886
 887	/* Transport header needs to point to the UDP header */
 888	skb_set_transport_header(skb, iph->ihl << 2);
 889
 890	if (sk) {
 891		up = udp_sk(sk);
 892
 893		lookup = READ_ONCE(up->encap_err_lookup);
 894		if (lookup && lookup(sk, skb))
 895			sk = NULL;
 896
 897		goto out;
 898	}
 899
 900	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
 901			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
 902			       udptable, NULL);
 903	if (sk) {
 904		up = udp_sk(sk);
 905
 906		lookup = READ_ONCE(up->encap_err_lookup);
 907		if (!lookup || lookup(sk, skb))
 908			sk = NULL;
 909	}
 910
 911out:
 912	if (!sk)
 913		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
 914
 915	skb_set_transport_header(skb, transport_offset);
 916	skb_set_network_header(skb, network_offset);
 917
 918	return sk;
 919}
 920
 921/*
 922 * This routine is called by the ICMP module when it gets some
 923 * sort of error condition.  If err < 0 then the socket should
 924 * be closed and the error returned to the user.  If err > 0
 925 * it's just the icmp type << 8 | icmp code.
 926 * Header points to the ip header of the error packet. We move
 927 * on past this. Then (as it used to claim before adjustment)
 928 * header points to the first 8 bytes of the udp header.  We need
 929 * to find the appropriate port.
 930 */
 931
 932int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
 933{
 934	struct inet_sock *inet;
 935	const struct iphdr *iph = (const struct iphdr *)skb->data;
 936	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
 937	const int type = icmp_hdr(skb)->type;
 938	const int code = icmp_hdr(skb)->code;
 939	bool tunnel = false;
 940	struct sock *sk;
 941	int harderr;
 942	int err;
 943	struct net *net = dev_net(skb->dev);
 944
 945	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
 946			       iph->saddr, uh->source, skb->dev->ifindex,
 947			       inet_sdif(skb), udptable, NULL);
 948
 949	if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) {
 950		/* No socket for error: try tunnels before discarding */
 951		if (static_branch_unlikely(&udp_encap_needed_key)) {
 952			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
 953						  info);
 954			if (!sk)
 955				return 0;
 956		} else
 957			sk = ERR_PTR(-ENOENT);
 958
 959		if (IS_ERR(sk)) {
 960			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
 961			return PTR_ERR(sk);
 962		}
 963
 964		tunnel = true;
 965	}
 966
 967	err = 0;
 968	harderr = 0;
 969	inet = inet_sk(sk);
 970
 971	switch (type) {
 972	default:
 973	case ICMP_TIME_EXCEEDED:
 974		err = EHOSTUNREACH;
 975		break;
 976	case ICMP_SOURCE_QUENCH:
 977		goto out;
 978	case ICMP_PARAMETERPROB:
 979		err = EPROTO;
 980		harderr = 1;
 981		break;
 982	case ICMP_DEST_UNREACH:
 983		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
 984			ipv4_sk_update_pmtu(skb, sk, info);
 985			if (READ_ONCE(inet->pmtudisc) != IP_PMTUDISC_DONT) {
 986				err = EMSGSIZE;
 987				harderr = 1;
 988				break;
 989			}
 990			goto out;
 991		}
 992		err = EHOSTUNREACH;
 993		if (code <= NR_ICMP_UNREACH) {
 994			harderr = icmp_err_convert[code].fatal;
 995			err = icmp_err_convert[code].errno;
 996		}
 997		break;
 998	case ICMP_REDIRECT:
 999		ipv4_sk_redirect(skb, sk);
1000		goto out;
1001	}
1002
1003	/*
1004	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
1005	 *	4.1.3.3.
1006	 */
1007	if (tunnel) {
1008		/* ...not for tunnels though: we don't have a sending socket */
1009		if (udp_sk(sk)->encap_err_rcv)
1010			udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info,
1011						  (u8 *)(uh+1));
1012		goto out;
1013	}
1014	if (!inet_test_bit(RECVERR, sk)) {
1015		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
1016			goto out;
1017	} else
1018		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
1019
1020	sk->sk_err = err;
1021	sk_error_report(sk);
1022out:
1023	return 0;
1024}
1025
1026int udp_err(struct sk_buff *skb, u32 info)
1027{
1028	return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table);
1029}
1030
1031/*
1032 * Throw away all pending data and cancel the corking. Socket is locked.
1033 */
1034void udp_flush_pending_frames(struct sock *sk)
1035{
1036	struct udp_sock *up = udp_sk(sk);
1037
1038	if (up->pending) {
1039		up->len = 0;
1040		WRITE_ONCE(up->pending, 0);
1041		ip_flush_pending_frames(sk);
1042	}
1043}
1044EXPORT_SYMBOL(udp_flush_pending_frames);
1045
1046/**
1047 * 	udp4_hwcsum  -  handle outgoing HW checksumming
1048 * 	@skb: 	sk_buff containing the filled-in UDP header
1049 * 	        (checksum field must be zeroed out)
1050 *	@src:	source IP address
1051 *	@dst:	destination IP address
1052 */
1053void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
1054{
1055	struct udphdr *uh = udp_hdr(skb);
 
1056	int offset = skb_transport_offset(skb);
1057	int len = skb->len - offset;
1058	int hlen = len;
1059	__wsum csum = 0;
1060
1061	if (!skb_has_frag_list(skb)) {
1062		/*
1063		 * Only one fragment on the socket.
1064		 */
1065		skb->csum_start = skb_transport_header(skb) - skb->head;
1066		skb->csum_offset = offsetof(struct udphdr, check);
1067		uh->check = ~csum_tcpudp_magic(src, dst, len,
1068					       IPPROTO_UDP, 0);
1069	} else {
1070		struct sk_buff *frags;
1071
1072		/*
1073		 * HW-checksum won't work as there are two or more
1074		 * fragments on the socket so that all csums of sk_buffs
1075		 * should be together
1076		 */
1077		skb_walk_frags(skb, frags) {
1078			csum = csum_add(csum, frags->csum);
1079			hlen -= frags->len;
1080		}
1081
1082		csum = skb_checksum(skb, offset, hlen, csum);
1083		skb->ip_summed = CHECKSUM_NONE;
1084
1085		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
1086		if (uh->check == 0)
1087			uh->check = CSUM_MANGLED_0;
1088	}
1089}
1090EXPORT_SYMBOL_GPL(udp4_hwcsum);
1091
1092/* Function to set UDP checksum for an IPv4 UDP packet. This is intended
1093 * for the simple case like when setting the checksum for a UDP tunnel.
1094 */
1095void udp_set_csum(bool nocheck, struct sk_buff *skb,
1096		  __be32 saddr, __be32 daddr, int len)
1097{
1098	struct udphdr *uh = udp_hdr(skb);
1099
1100	if (nocheck) {
1101		uh->check = 0;
1102	} else if (skb_is_gso(skb)) {
1103		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
1104	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
1105		uh->check = 0;
1106		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
1107		if (uh->check == 0)
1108			uh->check = CSUM_MANGLED_0;
1109	} else {
1110		skb->ip_summed = CHECKSUM_PARTIAL;
1111		skb->csum_start = skb_transport_header(skb) - skb->head;
1112		skb->csum_offset = offsetof(struct udphdr, check);
1113		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
1114	}
1115}
1116EXPORT_SYMBOL(udp_set_csum);
1117
1118static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
1119			struct inet_cork *cork)
1120{
1121	struct sock *sk = skb->sk;
1122	struct inet_sock *inet = inet_sk(sk);
1123	struct udphdr *uh;
1124	int err;
1125	int is_udplite = IS_UDPLITE(sk);
1126	int offset = skb_transport_offset(skb);
1127	int len = skb->len - offset;
1128	int datalen = len - sizeof(*uh);
1129	__wsum csum = 0;
1130
1131	/*
1132	 * Create a UDP header
1133	 */
1134	uh = udp_hdr(skb);
1135	uh->source = inet->inet_sport;
1136	uh->dest = fl4->fl4_dport;
1137	uh->len = htons(len);
1138	uh->check = 0;
1139
1140	if (cork->gso_size) {
1141		const int hlen = skb_network_header_len(skb) +
1142				 sizeof(struct udphdr);
1143
1144		if (hlen + min(datalen, cork->gso_size) > cork->fragsize) {
1145			kfree_skb(skb);
1146			return -EMSGSIZE;
1147		}
1148		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
1149			kfree_skb(skb);
1150			return -EINVAL;
1151		}
1152		if (sk->sk_no_check_tx) {
1153			kfree_skb(skb);
1154			return -EINVAL;
1155		}
1156		if (is_udplite || dst_xfrm(skb_dst(skb))) {
1157			kfree_skb(skb);
1158			return -EIO;
1159		}
1160
1161		if (datalen > cork->gso_size) {
1162			skb_shinfo(skb)->gso_size = cork->gso_size;
1163			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
1164			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
1165								 cork->gso_size);
1166
1167			/* Don't checksum the payload, skb will get segmented */
1168			goto csum_partial;
1169		}
1170	}
1171
1172	if (is_udplite)  				 /*     UDP-Lite      */
1173		csum = udplite_csum(skb);
1174
1175	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
1176
1177		skb->ip_summed = CHECKSUM_NONE;
1178		goto send;
1179
1180	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
1181csum_partial:
1182
1183		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
1184		goto send;
1185
1186	} else
1187		csum = udp_csum(skb);
1188
1189	/* add protocol-dependent pseudo-header */
1190	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
1191				      sk->sk_protocol, csum);
1192	if (uh->check == 0)
1193		uh->check = CSUM_MANGLED_0;
1194
1195send:
1196	err = ip_send_skb(sock_net(sk), skb);
1197	if (err) {
1198		if (err == -ENOBUFS &&
1199		    !inet_test_bit(RECVERR, sk)) {
1200			UDP_INC_STATS(sock_net(sk),
1201				      UDP_MIB_SNDBUFERRORS, is_udplite);
1202			err = 0;
1203		}
1204	} else
1205		UDP_INC_STATS(sock_net(sk),
1206			      UDP_MIB_OUTDATAGRAMS, is_udplite);
1207	return err;
1208}
1209
1210/*
1211 * Push out all pending data as one UDP datagram. Socket is locked.
1212 */
1213int udp_push_pending_frames(struct sock *sk)
1214{
1215	struct udp_sock  *up = udp_sk(sk);
1216	struct inet_sock *inet = inet_sk(sk);
1217	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
1218	struct sk_buff *skb;
1219	int err = 0;
1220
1221	skb = ip_finish_skb(sk, fl4);
1222	if (!skb)
1223		goto out;
1224
1225	err = udp_send_skb(skb, fl4, &inet->cork.base);
1226
1227out:
1228	up->len = 0;
1229	WRITE_ONCE(up->pending, 0);
1230	return err;
1231}
1232EXPORT_SYMBOL(udp_push_pending_frames);
1233
1234static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1235{
1236	switch (cmsg->cmsg_type) {
1237	case UDP_SEGMENT:
1238		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1239			return -EINVAL;
1240		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1241		return 0;
1242	default:
1243		return -EINVAL;
1244	}
1245}
1246
1247int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1248{
1249	struct cmsghdr *cmsg;
1250	bool need_ip = false;
1251	int err;
1252
1253	for_each_cmsghdr(cmsg, msg) {
1254		if (!CMSG_OK(msg, cmsg))
1255			return -EINVAL;
1256
1257		if (cmsg->cmsg_level != SOL_UDP) {
1258			need_ip = true;
1259			continue;
1260		}
1261
1262		err = __udp_cmsg_send(cmsg, gso_size);
1263		if (err)
1264			return err;
1265	}
1266
1267	return need_ip;
1268}
1269EXPORT_SYMBOL_GPL(udp_cmsg_send);
1270
1271int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1272{
1273	struct inet_sock *inet = inet_sk(sk);
1274	struct udp_sock *up = udp_sk(sk);
1275	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1276	struct flowi4 fl4_stack;
1277	struct flowi4 *fl4;
1278	int ulen = len;
1279	struct ipcm_cookie ipc;
1280	struct rtable *rt = NULL;
1281	int free = 0;
1282	int connected = 0;
1283	__be32 daddr, faddr, saddr;
1284	u8 tos, scope;
1285	__be16 dport;
 
1286	int err, is_udplite = IS_UDPLITE(sk);
1287	int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE;
1288	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1289	struct sk_buff *skb;
1290	struct ip_options_data opt_copy;
1291	int uc_index;
1292
1293	if (len > 0xFFFF)
1294		return -EMSGSIZE;
1295
1296	/*
1297	 *	Check the flags.
1298	 */
1299
1300	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1301		return -EOPNOTSUPP;
1302
 
 
 
 
 
1303	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1304
1305	fl4 = &inet->cork.fl.u.ip4;
1306	if (READ_ONCE(up->pending)) {
1307		/*
1308		 * There are pending frames.
1309		 * The socket lock must be held while it's corked.
1310		 */
1311		lock_sock(sk);
1312		if (likely(up->pending)) {
1313			if (unlikely(up->pending != AF_INET)) {
1314				release_sock(sk);
1315				return -EINVAL;
1316			}
1317			goto do_append_data;
1318		}
1319		release_sock(sk);
1320	}
1321	ulen += sizeof(struct udphdr);
1322
1323	/*
1324	 *	Get and verify the address.
1325	 */
1326	if (usin) {
 
1327		if (msg->msg_namelen < sizeof(*usin))
1328			return -EINVAL;
1329		if (usin->sin_family != AF_INET) {
1330			if (usin->sin_family != AF_UNSPEC)
1331				return -EAFNOSUPPORT;
1332		}
1333
1334		daddr = usin->sin_addr.s_addr;
1335		dport = usin->sin_port;
1336		if (dport == 0)
1337			return -EINVAL;
1338	} else {
1339		if (sk->sk_state != TCP_ESTABLISHED)
1340			return -EDESTADDRREQ;
1341		daddr = inet->inet_daddr;
1342		dport = inet->inet_dport;
1343		/* Open fast path for connected socket.
1344		   Route will not be used, if at least one option is set.
1345		 */
1346		connected = 1;
1347	}
 
 
 
1348
1349	ipcm_init_sk(&ipc, inet);
1350	ipc.gso_size = READ_ONCE(up->gso_size);
1351
1352	if (msg->msg_controllen) {
1353		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1354		if (err > 0) {
1355			err = ip_cmsg_send(sk, msg, &ipc,
1356					   sk->sk_family == AF_INET6);
1357			connected = 0;
1358		}
1359		if (unlikely(err < 0)) {
1360			kfree(ipc.opt);
1361			return err;
1362		}
1363		if (ipc.opt)
1364			free = 1;
 
1365	}
1366	if (!ipc.opt) {
1367		struct ip_options_rcu *inet_opt;
1368
1369		rcu_read_lock();
1370		inet_opt = rcu_dereference(inet->inet_opt);
1371		if (inet_opt) {
1372			memcpy(&opt_copy, inet_opt,
1373			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1374			ipc.opt = &opt_copy.opt;
1375		}
1376		rcu_read_unlock();
1377	}
1378
1379	if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1380		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1381					    (struct sockaddr *)usin,
1382					    &msg->msg_namelen,
1383					    &ipc.addr);
1384		if (err)
1385			goto out_free;
1386		if (usin) {
1387			if (usin->sin_port == 0) {
1388				/* BPF program set invalid port. Reject it. */
1389				err = -EINVAL;
1390				goto out_free;
1391			}
1392			daddr = usin->sin_addr.s_addr;
1393			dport = usin->sin_port;
1394		}
1395	}
1396
1397	saddr = ipc.addr;
1398	ipc.addr = faddr = daddr;
1399
1400	if (ipc.opt && ipc.opt->opt.srr) {
1401		if (!daddr) {
1402			err = -EINVAL;
1403			goto out_free;
1404		}
1405		faddr = ipc.opt->opt.faddr;
1406		connected = 0;
1407	}
1408	tos = get_rttos(&ipc, inet);
1409	scope = ip_sendmsg_scope(inet, &ipc, msg);
1410	if (scope == RT_SCOPE_LINK)
 
 
1411		connected = 0;
 
1412
1413	uc_index = READ_ONCE(inet->uc_index);
1414	if (ipv4_is_multicast(daddr)) {
1415		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1416			ipc.oif = READ_ONCE(inet->mc_index);
1417		if (!saddr)
1418			saddr = READ_ONCE(inet->mc_addr);
1419		connected = 0;
1420	} else if (!ipc.oif) {
1421		ipc.oif = uc_index;
1422	} else if (ipv4_is_lbcast(daddr) && uc_index) {
1423		/* oif is set, packet is to local broadcast and
1424		 * uc_index is set. oif is most likely set
1425		 * by sk_bound_dev_if. If uc_index != oif check if the
1426		 * oif is an L3 master and uc_index is an L3 slave.
1427		 * If so, we want to allow the send using the uc_index.
1428		 */
1429		if (ipc.oif != uc_index &&
1430		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1431							      uc_index)) {
1432			ipc.oif = uc_index;
1433		}
1434	}
1435
1436	if (connected)
1437		rt = dst_rtable(sk_dst_check(sk, 0));
1438
1439	if (!rt) {
1440		struct net *net = sock_net(sk);
1441		__u8 flow_flags = inet_sk_flowi_flags(sk);
1442
1443		fl4 = &fl4_stack;
 
 
 
 
1444
1445		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope,
1446				   sk->sk_protocol, flow_flags, faddr, saddr,
1447				   dport, inet->inet_sport, sk->sk_uid);
1448
1449		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1450		rt = ip_route_output_flow(net, fl4, sk);
1451		if (IS_ERR(rt)) {
1452			err = PTR_ERR(rt);
1453			rt = NULL;
1454			if (err == -ENETUNREACH)
1455				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1456			goto out;
1457		}
1458
1459		err = -EACCES;
1460		if ((rt->rt_flags & RTCF_BROADCAST) &&
1461		    !sock_flag(sk, SOCK_BROADCAST))
1462			goto out;
1463		if (connected)
1464			sk_dst_set(sk, dst_clone(&rt->dst));
1465	}
1466
1467	if (msg->msg_flags&MSG_CONFIRM)
1468		goto do_confirm;
1469back_from_confirm:
1470
1471	saddr = fl4->saddr;
1472	if (!ipc.addr)
1473		daddr = ipc.addr = fl4->daddr;
1474
1475	/* Lockless fast path for the non-corking case. */
1476	if (!corkreq) {
1477		struct inet_cork cork;
1478
1479		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1480				  sizeof(struct udphdr), &ipc, &rt,
1481				  &cork, msg->msg_flags);
1482		err = PTR_ERR(skb);
1483		if (!IS_ERR_OR_NULL(skb))
1484			err = udp_send_skb(skb, fl4, &cork);
1485		goto out;
1486	}
1487
1488	lock_sock(sk);
1489	if (unlikely(up->pending)) {
1490		/* The socket is already corked while preparing it. */
1491		/* ... which is an evident application bug. --ANK */
1492		release_sock(sk);
1493
1494		net_dbg_ratelimited("socket already corked\n");
1495		err = -EINVAL;
1496		goto out;
1497	}
1498	/*
1499	 *	Now cork the socket to pend data.
1500	 */
1501	fl4 = &inet->cork.fl.u.ip4;
1502	fl4->daddr = daddr;
1503	fl4->saddr = saddr;
1504	fl4->fl4_dport = dport;
1505	fl4->fl4_sport = inet->inet_sport;
1506	WRITE_ONCE(up->pending, AF_INET);
1507
1508do_append_data:
1509	up->len += ulen;
1510	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1511			     sizeof(struct udphdr), &ipc, &rt,
1512			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1513	if (err)
1514		udp_flush_pending_frames(sk);
1515	else if (!corkreq)
1516		err = udp_push_pending_frames(sk);
1517	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1518		WRITE_ONCE(up->pending, 0);
1519	release_sock(sk);
1520
1521out:
1522	ip_rt_put(rt);
1523out_free:
1524	if (free)
1525		kfree(ipc.opt);
1526	if (!err)
1527		return len;
1528	/*
1529	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1530	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1531	 * we don't have a good statistic (IpOutDiscards but it can be too many
1532	 * things).  We could add another new stat but at least for now that
1533	 * seems like overkill.
1534	 */
1535	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1536		UDP_INC_STATS(sock_net(sk),
1537			      UDP_MIB_SNDBUFERRORS, is_udplite);
1538	}
1539	return err;
1540
1541do_confirm:
1542	if (msg->msg_flags & MSG_PROBE)
1543		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1544	if (!(msg->msg_flags&MSG_PROBE) || len)
1545		goto back_from_confirm;
1546	err = 0;
1547	goto out;
1548}
1549EXPORT_SYMBOL(udp_sendmsg);
1550
1551void udp_splice_eof(struct socket *sock)
 
1552{
1553	struct sock *sk = sock->sk;
1554	struct udp_sock *up = udp_sk(sk);
 
1555
1556	if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk))
1557		return;
1558
1559	lock_sock(sk);
1560	if (up->pending && !udp_test_bit(CORK, sk))
1561		udp_push_pending_frames(sk);
1562	release_sock(sk);
1563}
1564EXPORT_SYMBOL_GPL(udp_splice_eof);
1565
1566#define UDP_SKB_IS_STATELESS 0x80000000
 
1567
1568/* all head states (dst, sk, nf conntrack) except skb extensions are
1569 * cleared by udp_rcv().
1570 *
1571 * We need to preserve secpath, if present, to eventually process
1572 * IP_CMSG_PASSSEC at recvmsg() time.
1573 *
1574 * Other extensions can be cleared.
1575 */
1576static bool udp_try_make_stateless(struct sk_buff *skb)
1577{
1578	if (!skb_has_extensions(skb))
1579		return true;
1580
1581	if (!secpath_exists(skb)) {
1582		skb_ext_reset(skb);
1583		return true;
1584	}
1585
1586	return false;
1587}
1588
1589static void udp_set_dev_scratch(struct sk_buff *skb)
1590{
1591	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1592
1593	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1594	scratch->_tsize_state = skb->truesize;
1595#if BITS_PER_LONG == 64
1596	scratch->len = skb->len;
1597	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1598	scratch->is_linear = !skb_is_nonlinear(skb);
1599#endif
1600	if (udp_try_make_stateless(skb))
1601		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1602}
1603
1604static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1605{
1606	/* We come here after udp_lib_checksum_complete() returned 0.
1607	 * This means that __skb_checksum_complete() might have
1608	 * set skb->csum_valid to 1.
1609	 * On 64bit platforms, we can set csum_unnecessary
1610	 * to true, but only if the skb is not shared.
1611	 */
1612#if BITS_PER_LONG == 64
1613	if (!skb_shared(skb))
1614		udp_skb_scratch(skb)->csum_unnecessary = true;
1615#endif
1616}
1617
1618static int udp_skb_truesize(struct sk_buff *skb)
1619{
1620	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1621}
1622
1623static bool udp_skb_has_head_state(struct sk_buff *skb)
1624{
1625	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1626}
1627
1628/* fully reclaim rmem/fwd memory allocated for skb */
1629static void udp_rmem_release(struct sock *sk, int size, int partial,
1630			     bool rx_queue_lock_held)
1631{
1632	struct udp_sock *up = udp_sk(sk);
1633	struct sk_buff_head *sk_queue;
1634	int amt;
1635
1636	if (likely(partial)) {
1637		up->forward_deficit += size;
1638		size = up->forward_deficit;
1639		if (size < READ_ONCE(up->forward_threshold) &&
1640		    !skb_queue_empty(&up->reader_queue))
1641			return;
1642	} else {
1643		size += up->forward_deficit;
1644	}
1645	up->forward_deficit = 0;
1646
1647	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1648	 * if the called don't held it already
1649	 */
1650	sk_queue = &sk->sk_receive_queue;
1651	if (!rx_queue_lock_held)
1652		spin_lock(&sk_queue->lock);
1653
1654
1655	sk_forward_alloc_add(sk, size);
1656	amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1657	sk_forward_alloc_add(sk, -amt);
1658
1659	if (amt)
1660		__sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1661
1662	atomic_sub(size, &sk->sk_rmem_alloc);
1663
1664	/* this can save us from acquiring the rx queue lock on next receive */
1665	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1666
1667	if (!rx_queue_lock_held)
1668		spin_unlock(&sk_queue->lock);
1669}
1670
1671/* Note: called with reader_queue.lock held.
1672 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1673 * This avoids a cache line miss while receive_queue lock is held.
1674 * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1675 */
1676void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1677{
1678	prefetch(&skb->data);
1679	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1680}
1681EXPORT_SYMBOL(udp_skb_destructor);
1682
1683/* as above, but the caller held the rx queue lock, too */
1684static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1685{
1686	prefetch(&skb->data);
1687	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1688}
1689
1690/* Idea of busylocks is to let producers grab an extra spinlock
1691 * to relieve pressure on the receive_queue spinlock shared by consumer.
1692 * Under flood, this means that only one producer can be in line
1693 * trying to acquire the receive_queue spinlock.
1694 * These busylock can be allocated on a per cpu manner, instead of a
1695 * per socket one (that would consume a cache line per socket)
1696 */
1697static int udp_busylocks_log __read_mostly;
1698static spinlock_t *udp_busylocks __read_mostly;
1699
1700static spinlock_t *busylock_acquire(void *ptr)
1701{
1702	spinlock_t *busy;
1703
1704	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1705	spin_lock(busy);
1706	return busy;
1707}
1708
1709static void busylock_release(spinlock_t *busy)
1710{
1711	if (busy)
1712		spin_unlock(busy);
1713}
1714
1715static int udp_rmem_schedule(struct sock *sk, int size)
1716{
1717	int delta;
1718
1719	delta = size - sk->sk_forward_alloc;
1720	if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV))
1721		return -ENOBUFS;
1722
1723	return 0;
1724}
1725
1726int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1727{
1728	struct sk_buff_head *list = &sk->sk_receive_queue;
1729	int rmem, err = -ENOMEM;
1730	spinlock_t *busy = NULL;
1731	int size, rcvbuf;
1732
1733	/* Immediately drop when the receive queue is full.
1734	 * Always allow at least one packet.
1735	 */
1736	rmem = atomic_read(&sk->sk_rmem_alloc);
1737	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1738	if (rmem > rcvbuf)
1739		goto drop;
1740
1741	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1742	 * having linear skbs :
1743	 * - Reduce memory overhead and thus increase receive queue capacity
1744	 * - Less cache line misses at copyout() time
1745	 * - Less work at consume_skb() (less alien page frag freeing)
1746	 */
1747	if (rmem > (rcvbuf >> 1)) {
1748		skb_condense(skb);
1749
1750		busy = busylock_acquire(sk);
1751	}
1752	size = skb->truesize;
1753	udp_set_dev_scratch(skb);
1754
1755	atomic_add(size, &sk->sk_rmem_alloc);
1756
1757	spin_lock(&list->lock);
1758	err = udp_rmem_schedule(sk, size);
1759	if (err) {
1760		spin_unlock(&list->lock);
1761		goto uncharge_drop;
1762	}
1763
1764	sk_forward_alloc_add(sk, -size);
1765
1766	/* no need to setup a destructor, we will explicitly release the
1767	 * forward allocated memory on dequeue
1768	 */
1769	sock_skb_set_dropcount(sk, skb);
1770
1771	__skb_queue_tail(list, skb);
1772	spin_unlock(&list->lock);
1773
1774	if (!sock_flag(sk, SOCK_DEAD))
1775		INDIRECT_CALL_1(sk->sk_data_ready, sock_def_readable, sk);
1776
1777	busylock_release(busy);
1778	return 0;
1779
1780uncharge_drop:
1781	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1782
1783drop:
1784	atomic_inc(&sk->sk_drops);
1785	busylock_release(busy);
1786	return err;
1787}
1788EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1789
1790void udp_destruct_common(struct sock *sk)
1791{
1792	/* reclaim completely the forward allocated memory */
1793	struct udp_sock *up = udp_sk(sk);
1794	unsigned int total = 0;
1795	struct sk_buff *skb;
1796
1797	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1798	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1799		total += skb->truesize;
1800		kfree_skb(skb);
1801	}
1802	udp_rmem_release(sk, total, 0, true);
1803}
1804EXPORT_SYMBOL_GPL(udp_destruct_common);
1805
1806static void udp_destruct_sock(struct sock *sk)
1807{
1808	udp_destruct_common(sk);
1809	inet_sock_destruct(sk);
1810}
1811
1812int udp_init_sock(struct sock *sk)
1813{
1814	udp_lib_init_sock(sk);
1815	sk->sk_destruct = udp_destruct_sock;
1816	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1817	return 0;
1818}
1819
1820void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1821{
1822	if (unlikely(READ_ONCE(udp_sk(sk)->peeking_with_offset)))
1823		sk_peek_offset_bwd(sk, len);
1824
1825	if (!skb_unref(skb))
1826		return;
1827
1828	/* In the more common cases we cleared the head states previously,
1829	 * see __udp_queue_rcv_skb().
1830	 */
1831	if (unlikely(udp_skb_has_head_state(skb)))
1832		skb_release_head_state(skb);
1833	__consume_stateless_skb(skb);
1834}
1835EXPORT_SYMBOL_GPL(skb_consume_udp);
1836
1837static struct sk_buff *__first_packet_length(struct sock *sk,
1838					     struct sk_buff_head *rcvq,
1839					     int *total)
1840{
1841	struct sk_buff *skb;
1842
1843	while ((skb = skb_peek(rcvq)) != NULL) {
1844		if (udp_lib_checksum_complete(skb)) {
1845			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1846					IS_UDPLITE(sk));
1847			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1848					IS_UDPLITE(sk));
1849			atomic_inc(&sk->sk_drops);
1850			__skb_unlink(skb, rcvq);
1851			*total += skb->truesize;
1852			kfree_skb(skb);
1853		} else {
1854			udp_skb_csum_unnecessary_set(skb);
1855			break;
1856		}
1857	}
1858	return skb;
1859}
1860
1861/**
1862 *	first_packet_length	- return length of first packet in receive queue
1863 *	@sk: socket
1864 *
1865 *	Drops all bad checksum frames, until a valid one is found.
1866 *	Returns the length of found skb, or -1 if none is found.
1867 */
1868static int first_packet_length(struct sock *sk)
1869{
1870	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1871	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1872	struct sk_buff *skb;
1873	int total = 0;
1874	int res;
 
1875
1876	spin_lock_bh(&rcvq->lock);
1877	skb = __first_packet_length(sk, rcvq, &total);
1878	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1879		spin_lock(&sk_queue->lock);
1880		skb_queue_splice_tail_init(sk_queue, rcvq);
1881		spin_unlock(&sk_queue->lock);
1882
1883		skb = __first_packet_length(sk, rcvq, &total);
1884	}
1885	res = skb ? skb->len : -1;
1886	if (total)
1887		udp_rmem_release(sk, total, 1, false);
1888	spin_unlock_bh(&rcvq->lock);
 
 
 
 
 
 
 
 
1889	return res;
1890}
1891
1892/*
1893 *	IOCTL requests applicable to the UDP protocol
1894 */
1895
1896int udp_ioctl(struct sock *sk, int cmd, int *karg)
1897{
1898	switch (cmd) {
1899	case SIOCOUTQ:
1900	{
1901		*karg = sk_wmem_alloc_get(sk);
1902		return 0;
 
1903	}
1904
1905	case SIOCINQ:
1906	{
1907		*karg = max_t(int, 0, first_packet_length(sk));
1908		return 0;
 
 
 
 
 
 
 
 
 
1909	}
1910
1911	default:
1912		return -ENOIOCTLCMD;
1913	}
1914
1915	return 0;
1916}
1917EXPORT_SYMBOL(udp_ioctl);
1918
1919struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1920			       int *off, int *err)
1921{
1922	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1923	struct sk_buff_head *queue;
1924	struct sk_buff *last;
1925	long timeo;
1926	int error;
1927
1928	queue = &udp_sk(sk)->reader_queue;
1929	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1930	do {
1931		struct sk_buff *skb;
1932
1933		error = sock_error(sk);
1934		if (error)
1935			break;
1936
1937		error = -EAGAIN;
1938		do {
1939			spin_lock_bh(&queue->lock);
1940			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1941							err, &last);
1942			if (skb) {
1943				if (!(flags & MSG_PEEK))
1944					udp_skb_destructor(sk, skb);
1945				spin_unlock_bh(&queue->lock);
1946				return skb;
1947			}
1948
1949			if (skb_queue_empty_lockless(sk_queue)) {
1950				spin_unlock_bh(&queue->lock);
1951				goto busy_check;
1952			}
1953
1954			/* refill the reader queue and walk it again
1955			 * keep both queues locked to avoid re-acquiring
1956			 * the sk_receive_queue lock if fwd memory scheduling
1957			 * is needed.
1958			 */
1959			spin_lock(&sk_queue->lock);
1960			skb_queue_splice_tail_init(sk_queue, queue);
1961
1962			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1963							err, &last);
1964			if (skb && !(flags & MSG_PEEK))
1965				udp_skb_dtor_locked(sk, skb);
1966			spin_unlock(&sk_queue->lock);
1967			spin_unlock_bh(&queue->lock);
1968			if (skb)
1969				return skb;
1970
1971busy_check:
1972			if (!sk_can_busy_loop(sk))
1973				break;
1974
1975			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1976		} while (!skb_queue_empty_lockless(sk_queue));
1977
1978		/* sk_queue is empty, reader_queue may contain peeked packets */
1979	} while (timeo &&
1980		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1981					      &error, &timeo,
1982					      (struct sk_buff *)sk_queue));
1983
1984	*err = error;
1985	return NULL;
1986}
1987EXPORT_SYMBOL(__skb_recv_udp);
1988
1989int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1990{
1991	struct sk_buff *skb;
1992	int err;
1993
1994try_again:
1995	skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
1996	if (!skb)
1997		return err;
1998
1999	if (udp_lib_checksum_complete(skb)) {
2000		int is_udplite = IS_UDPLITE(sk);
2001		struct net *net = sock_net(sk);
2002
2003		__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
2004		__UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
2005		atomic_inc(&sk->sk_drops);
2006		kfree_skb(skb);
2007		goto try_again;
2008	}
2009
2010	WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
2011	return recv_actor(sk, skb);
2012}
2013EXPORT_SYMBOL(udp_read_skb);
2014
2015/*
2016 * 	This should be easy, if there is something there we
2017 * 	return it, otherwise we block.
2018 */
2019
2020int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2021		int *addr_len)
2022{
2023	struct inet_sock *inet = inet_sk(sk);
2024	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
2025	struct sk_buff *skb;
2026	unsigned int ulen, copied;
2027	int off, err, peeking = flags & MSG_PEEK;
 
2028	int is_udplite = IS_UDPLITE(sk);
2029	bool checksum_valid = false;
2030
2031	if (flags & MSG_ERRQUEUE)
2032		return ip_recv_error(sk, msg, len, addr_len);
2033
2034try_again:
2035	off = sk_peek_offset(sk, flags);
2036	skb = __skb_recv_udp(sk, flags, &off, &err);
2037	if (!skb)
2038		return err;
2039
2040	ulen = udp_skb_len(skb);
2041	copied = len;
2042	if (copied > ulen - off)
2043		copied = ulen - off;
2044	else if (copied < ulen)
2045		msg->msg_flags |= MSG_TRUNC;
2046
2047	/*
2048	 * If checksum is needed at all, try to do it while copying the
2049	 * data.  If the data is truncated, or if we only want a partial
2050	 * coverage checksum (UDP-Lite), do it before the copy.
2051	 */
2052
2053	if (copied < ulen || peeking ||
2054	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
2055		checksum_valid = udp_skb_csum_unnecessary(skb) ||
2056				!__udp_lib_checksum_complete(skb);
2057		if (!checksum_valid)
2058			goto csum_copy_err;
2059	}
2060
2061	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
2062		if (udp_skb_is_linear(skb))
2063			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
2064		else
2065			err = skb_copy_datagram_msg(skb, off, msg, copied);
2066	} else {
2067		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
2068
2069		if (err == -EINVAL)
2070			goto csum_copy_err;
2071	}
2072
2073	if (unlikely(err)) {
2074		if (!peeking) {
 
2075			atomic_inc(&sk->sk_drops);
2076			UDP_INC_STATS(sock_net(sk),
2077				      UDP_MIB_INERRORS, is_udplite);
2078		}
2079		kfree_skb(skb);
2080		return err;
2081	}
2082
2083	if (!peeking)
2084		UDP_INC_STATS(sock_net(sk),
2085			      UDP_MIB_INDATAGRAMS, is_udplite);
2086
2087	sock_recv_cmsgs(msg, sk, skb);
2088
2089	/* Copy the address. */
2090	if (sin) {
2091		sin->sin_family = AF_INET;
2092		sin->sin_port = udp_hdr(skb)->source;
2093		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
2094		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
2095		*addr_len = sizeof(*sin);
2096
2097		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
2098						      (struct sockaddr *)sin,
2099						      addr_len);
2100	}
2101
2102	if (udp_test_bit(GRO_ENABLED, sk))
2103		udp_cmsg_recv(msg, sk, skb);
2104
2105	if (inet_cmsg_flags(inet))
2106		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
2107
2108	err = copied;
2109	if (flags & MSG_TRUNC)
2110		err = ulen;
2111
2112	skb_consume_udp(sk, skb, peeking ? -err : err);
 
 
2113	return err;
2114
2115csum_copy_err:
2116	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
2117				 udp_skb_destructor)) {
2118		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2119		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2120	}
2121	kfree_skb(skb);
 
 
 
2122
2123	/* starting over for a new packet, but check if we need to yield */
2124	cond_resched();
2125	msg->msg_flags &= ~MSG_TRUNC;
2126	goto try_again;
2127}
2128
2129int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
2130{
2131	/* This check is replicated from __ip4_datagram_connect() and
2132	 * intended to prevent BPF program called below from accessing bytes
2133	 * that are out of the bound specified by user in addr_len.
2134	 */
2135	if (addr_len < sizeof(struct sockaddr_in))
2136		return -EINVAL;
2137
2138	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len);
2139}
2140EXPORT_SYMBOL(udp_pre_connect);
2141
2142static int udp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
2143{
2144	int res;
2145
2146	lock_sock(sk);
2147	res = __ip4_datagram_connect(sk, uaddr, addr_len);
2148	if (!res)
2149		udp4_hash4(sk);
2150	release_sock(sk);
2151	return res;
2152}
2153
2154int __udp_disconnect(struct sock *sk, int flags)
2155{
2156	struct inet_sock *inet = inet_sk(sk);
2157	/*
2158	 *	1003.1g - break association.
2159	 */
2160
2161	sk->sk_state = TCP_CLOSE;
2162	inet->inet_daddr = 0;
2163	inet->inet_dport = 0;
2164	sock_rps_reset_rxhash(sk);
2165	sk->sk_bound_dev_if = 0;
2166	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
2167		inet_reset_saddr(sk);
2168		if (sk->sk_prot->rehash &&
2169		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2170			sk->sk_prot->rehash(sk);
2171	}
2172
2173	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
2174		sk->sk_prot->unhash(sk);
2175		inet->inet_sport = 0;
2176	}
2177	sk_dst_reset(sk);
2178	return 0;
2179}
2180EXPORT_SYMBOL(__udp_disconnect);
2181
2182int udp_disconnect(struct sock *sk, int flags)
2183{
2184	lock_sock(sk);
2185	__udp_disconnect(sk, flags);
2186	release_sock(sk);
2187	return 0;
2188}
2189EXPORT_SYMBOL(udp_disconnect);
2190
2191void udp_lib_unhash(struct sock *sk)
2192{
2193	if (sk_hashed(sk)) {
2194		struct udp_table *udptable = udp_get_table_prot(sk);
2195		struct udp_hslot *hslot, *hslot2;
2196
2197		hslot  = udp_hashslot(udptable, sock_net(sk),
2198				      udp_sk(sk)->udp_port_hash);
2199		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2200
2201		spin_lock_bh(&hslot->lock);
2202		if (rcu_access_pointer(sk->sk_reuseport_cb))
2203			reuseport_detach_sock(sk);
2204		if (sk_del_node_init_rcu(sk)) {
2205			hslot->count--;
2206			inet_sk(sk)->inet_num = 0;
2207			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
2208
2209			spin_lock(&hslot2->lock);
2210			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2211			hslot2->count--;
2212			spin_unlock(&hslot2->lock);
2213
2214			udp_unhash4(udptable, sk);
2215		}
2216		spin_unlock_bh(&hslot->lock);
2217	}
2218}
2219EXPORT_SYMBOL(udp_lib_unhash);
2220
2221/*
2222 * inet_rcv_saddr was changed, we must rehash secondary hash
2223 */
2224void udp_lib_rehash(struct sock *sk, u16 newhash, u16 newhash4)
2225{
2226	if (sk_hashed(sk)) {
2227		struct udp_table *udptable = udp_get_table_prot(sk);
2228		struct udp_hslot *hslot, *hslot2, *nhslot2;
2229
2230		hslot = udp_hashslot(udptable, sock_net(sk),
2231				     udp_sk(sk)->udp_port_hash);
2232		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2233		nhslot2 = udp_hashslot2(udptable, newhash);
2234		udp_sk(sk)->udp_portaddr_hash = newhash;
2235
2236		if (hslot2 != nhslot2 ||
2237		    rcu_access_pointer(sk->sk_reuseport_cb)) {
2238			/* we must lock primary chain too */
2239			spin_lock_bh(&hslot->lock);
2240			if (rcu_access_pointer(sk->sk_reuseport_cb))
2241				reuseport_detach_sock(sk);
2242
2243			if (hslot2 != nhslot2) {
2244				spin_lock(&hslot2->lock);
2245				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2246				hslot2->count--;
2247				spin_unlock(&hslot2->lock);
2248
2249				spin_lock(&nhslot2->lock);
2250				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2251							 &nhslot2->head);
2252				nhslot2->count++;
2253				spin_unlock(&nhslot2->lock);
2254			}
2255
2256			spin_unlock_bh(&hslot->lock);
2257		}
2258
2259		/* Now process hash4 if necessary:
2260		 * (1) update hslot4;
2261		 * (2) update hslot2->hash4_cnt.
2262		 * Note that hslot2/hslot4 should be checked separately, as
2263		 * either of them may change with the other unchanged.
2264		 */
2265		if (udp_hashed4(sk)) {
2266			spin_lock_bh(&hslot->lock);
2267
2268			udp_rehash4(udptable, sk, newhash4);
2269			if (hslot2 != nhslot2) {
2270				spin_lock(&hslot2->lock);
2271				udp_hash4_dec(hslot2);
2272				spin_unlock(&hslot2->lock);
2273
2274				spin_lock(&nhslot2->lock);
2275				udp_hash4_inc(nhslot2);
2276				spin_unlock(&nhslot2->lock);
2277			}
2278
2279			spin_unlock_bh(&hslot->lock);
2280		}
2281	}
2282}
2283EXPORT_SYMBOL(udp_lib_rehash);
2284
2285void udp_v4_rehash(struct sock *sk)
2286{
2287	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2288					  inet_sk(sk)->inet_rcv_saddr,
2289					  inet_sk(sk)->inet_num);
2290	u16 new_hash4 = udp_ehashfn(sock_net(sk),
2291				    sk->sk_rcv_saddr, sk->sk_num,
2292				    sk->sk_daddr, sk->sk_dport);
2293
2294	udp_lib_rehash(sk, new_hash, new_hash4);
2295}
2296
2297static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2298{
2299	int rc;
2300
2301	if (inet_sk(sk)->inet_daddr) {
2302		sock_rps_save_rxhash(sk, skb);
2303		sk_mark_napi_id(sk, skb);
2304		sk_incoming_cpu_update(sk);
2305	} else {
2306		sk_mark_napi_id_once(sk, skb);
2307	}
2308
2309	rc = __udp_enqueue_schedule_skb(sk, skb);
2310	if (rc < 0) {
2311		int is_udplite = IS_UDPLITE(sk);
2312		int drop_reason;
2313
2314		/* Note that an ENOMEM error is charged twice */
2315		if (rc == -ENOMEM) {
2316			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2317					is_udplite);
2318			drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2319		} else {
2320			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2321				      is_udplite);
2322			drop_reason = SKB_DROP_REASON_PROTO_MEM;
2323		}
2324		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2325		trace_udp_fail_queue_rcv_skb(rc, sk, skb);
2326		sk_skb_reason_drop(sk, skb, drop_reason);
2327		return -1;
2328	}
2329
2330	return 0;
 
2331}
2332
 
 
 
 
 
 
 
 
2333/* returns:
2334 *  -1: error
2335 *   0: success
2336 *  >0: "udp encap" protocol resubmission
2337 *
2338 * Note that in the success and error cases, the skb is assumed to
2339 * have either been requeued or freed.
2340 */
2341static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2342{
2343	int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2344	struct udp_sock *up = udp_sk(sk);
 
2345	int is_udplite = IS_UDPLITE(sk);
2346
2347	/*
2348	 *	Charge it to the socket, dropping if the queue is full.
2349	 */
2350	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2351		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2352		goto drop;
2353	}
2354	nf_reset_ct(skb);
2355
2356	if (static_branch_unlikely(&udp_encap_needed_key) &&
2357	    READ_ONCE(up->encap_type)) {
2358		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2359
2360		/*
2361		 * This is an encapsulation socket so pass the skb to
2362		 * the socket's udp_encap_rcv() hook. Otherwise, just
2363		 * fall through and pass this up the UDP socket.
2364		 * up->encap_rcv() returns the following value:
2365		 * =0 if skb was successfully passed to the encap
2366		 *    handler or was discarded by it.
2367		 * >0 if skb should be passed on to UDP.
2368		 * <0 if skb should be resubmitted as proto -N
2369		 */
2370
2371		/* if we're overly short, let UDP handle it */
2372		encap_rcv = READ_ONCE(up->encap_rcv);
2373		if (encap_rcv) {
2374			int ret;
2375
2376			/* Verify checksum before giving to encap */
2377			if (udp_lib_checksum_complete(skb))
2378				goto csum_error;
2379
2380			ret = encap_rcv(sk, skb);
2381			if (ret <= 0) {
2382				__UDP_INC_STATS(sock_net(sk),
2383						UDP_MIB_INDATAGRAMS,
2384						is_udplite);
2385				return -ret;
2386			}
2387		}
2388
2389		/* FALLTHROUGH -- it's a UDP Packet */
2390	}
2391
2392	/*
2393	 * 	UDP-Lite specific tests, ignored on UDP sockets
2394	 */
2395	if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) {
2396		u16 pcrlen = READ_ONCE(up->pcrlen);
2397
2398		/*
2399		 * MIB statistics other than incrementing the error count are
2400		 * disabled for the following two types of errors: these depend
2401		 * on the application settings, not on the functioning of the
2402		 * protocol stack as such.
2403		 *
2404		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2405		 * way ... to ... at least let the receiving application block
2406		 * delivery of packets with coverage values less than a value
2407		 * provided by the application."
2408		 */
2409		if (pcrlen == 0) {          /* full coverage was set  */
2410			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2411					    UDP_SKB_CB(skb)->cscov, skb->len);
2412			goto drop;
2413		}
2414		/* The next case involves violating the min. coverage requested
2415		 * by the receiver. This is subtle: if receiver wants x and x is
2416		 * greater than the buffersize/MTU then receiver will complain
2417		 * that it wants x while sender emits packets of smaller size y.
2418		 * Therefore the above ...()->partial_cov statement is essential.
2419		 */
2420		if (UDP_SKB_CB(skb)->cscov < pcrlen) {
2421			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2422					    UDP_SKB_CB(skb)->cscov, pcrlen);
2423			goto drop;
2424		}
2425	}
2426
2427	prefetch(&sk->sk_rmem_alloc);
2428	if (rcu_access_pointer(sk->sk_filter) &&
2429	    udp_lib_checksum_complete(skb))
2430			goto csum_error;
 
 
 
 
 
 
2431
2432	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
2433		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
 
 
 
 
2434		goto drop;
2435	}
 
2436
2437	udp_csum_pull_header(skb);
2438
2439	ipv4_pktinfo_prepare(sk, skb, true);
2440	return __udp_queue_rcv_skb(sk, skb);
2441
2442csum_error:
2443	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2444	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2445drop:
2446	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2447	atomic_inc(&sk->sk_drops);
2448	sk_skb_reason_drop(sk, skb, drop_reason);
2449	return -1;
2450}
2451
2452static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 
 
2453{
2454	struct sk_buff *next, *segs;
2455	int ret;
 
2456
2457	if (likely(!udp_unexpected_gso(sk, skb)))
2458		return udp_queue_rcv_one_skb(sk, skb);
 
 
2459
2460	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2461	__skb_push(skb, -skb_mac_offset(skb));
2462	segs = udp_rcv_segment(sk, skb, true);
2463	skb_list_walk_safe(segs, skb, next) {
2464		__skb_pull(skb, skb_transport_offset(skb));
 
 
2465
2466		udp_post_segment_fix_csum(skb);
2467		ret = udp_queue_rcv_one_skb(sk, skb);
2468		if (ret > 0)
2469			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2470	}
2471	return 0;
 
2472}
2473
2474/* For TCP sockets, sk_rx_dst is protected by socket lock
2475 * For UDP, we use xchg() to guard against concurrent changes.
2476 */
2477bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2478{
2479	struct dst_entry *old;
2480
2481	if (dst_hold_safe(dst)) {
2482		old = unrcu_pointer(xchg(&sk->sk_rx_dst, RCU_INITIALIZER(dst)));
2483		dst_release(old);
2484		return old != dst;
2485	}
2486	return false;
2487}
2488EXPORT_SYMBOL(udp_sk_rx_dst_set);
2489
2490/*
2491 *	Multicasts and broadcasts go to each listener.
2492 *
2493 *	Note: called only from the BH handler context.
2494 */
2495static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2496				    struct udphdr  *uh,
2497				    __be32 saddr, __be32 daddr,
2498				    struct udp_table *udptable,
2499				    int proto)
2500{
2501	struct sock *sk, *first = NULL;
2502	unsigned short hnum = ntohs(uh->dest);
2503	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2504	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2505	unsigned int offset = offsetof(typeof(*sk), sk_node);
2506	int dif = skb->dev->ifindex;
2507	int sdif = inet_sdif(skb);
2508	struct hlist_node *node;
2509	struct sk_buff *nskb;
2510
2511	if (use_hash2) {
2512		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2513			    udptable->mask;
2514		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2515start_lookup:
2516		hslot = &udptable->hash2[hash2].hslot;
2517		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2518	}
2519
2520	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2521		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2522					 uh->source, saddr, dif, sdif, hnum))
2523			continue;
2524
2525		if (!first) {
2526			first = sk;
2527			continue;
2528		}
2529		nskb = skb_clone(skb, GFP_ATOMIC);
 
 
 
 
 
2530
2531		if (unlikely(!nskb)) {
2532			atomic_inc(&sk->sk_drops);
2533			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2534					IS_UDPLITE(sk));
2535			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2536					IS_UDPLITE(sk));
2537			continue;
2538		}
2539		if (udp_queue_rcv_skb(sk, nskb) > 0)
2540			consume_skb(nskb);
2541	}
2542
2543	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2544	if (use_hash2 && hash2 != hash2_any) {
2545		hash2 = hash2_any;
2546		goto start_lookup;
2547	}
2548
2549	if (first) {
2550		if (udp_queue_rcv_skb(first, skb) > 0)
2551			consume_skb(skb);
2552	} else {
2553		kfree_skb(skb);
2554		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2555				proto == IPPROTO_UDPLITE);
2556	}
2557	return 0;
2558}
2559
2560/* Initialize UDP checksum. If exited with zero value (success),
2561 * CHECKSUM_UNNECESSARY means, that no more checks are required.
2562 * Otherwise, csum completion requires checksumming packet body,
2563 * including udp header and folding it to skb->csum.
2564 */
2565static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2566				 int proto)
2567{
 
2568	int err;
2569
2570	UDP_SKB_CB(skb)->partial_cov = 0;
2571	UDP_SKB_CB(skb)->cscov = skb->len;
2572
2573	if (proto == IPPROTO_UDPLITE) {
2574		err = udplite_checksum_init(skb, uh);
2575		if (err)
2576			return err;
2577
2578		if (UDP_SKB_CB(skb)->partial_cov) {
2579			skb->csum = inet_compute_pseudo(skb, proto);
2580			return 0;
2581		}
2582	}
2583
2584	/* Note, we are only interested in != 0 or == 0, thus the
2585	 * force to int.
 
 
 
 
 
 
 
 
 
 
 
2586	 */
2587	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2588							inet_compute_pseudo);
2589	if (err)
2590		return err;
2591
2592	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2593		/* If SW calculated the value, we know it's bad */
2594		if (skb->csum_complete_sw)
2595			return 1;
2596
2597		/* HW says the value is bad. Let's validate that.
2598		 * skb->csum is no longer the full packet checksum,
2599		 * so don't treat it as such.
2600		 */
2601		skb_checksum_complete_unset(skb);
2602	}
2603
2604	return 0;
2605}
2606
2607/* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2608 * return code conversion for ip layer consumption
2609 */
2610static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2611			       struct udphdr *uh)
2612{
2613	int ret;
2614
2615	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2616		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2617
2618	ret = udp_queue_rcv_skb(sk, skb);
2619
2620	/* a return value > 0 means to resubmit the input, but
2621	 * it wants the return to be -protocol, or 0
2622	 */
2623	if (ret > 0)
2624		return -ret;
2625	return 0;
2626}
2627
2628/*
2629 *	All we need to do is get the socket, and then do a checksum.
2630 */
2631
2632int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2633		   int proto)
2634{
2635	struct sock *sk = NULL;
2636	struct udphdr *uh;
2637	unsigned short ulen;
2638	struct rtable *rt = skb_rtable(skb);
2639	__be32 saddr, daddr;
2640	struct net *net = dev_net(skb->dev);
2641	bool refcounted;
2642	int drop_reason;
2643
2644	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2645
2646	/*
2647	 *  Validate the packet.
2648	 */
2649	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2650		goto drop;		/* No space for header. */
2651
2652	uh   = udp_hdr(skb);
2653	ulen = ntohs(uh->len);
2654	saddr = ip_hdr(skb)->saddr;
2655	daddr = ip_hdr(skb)->daddr;
2656
2657	if (ulen > skb->len)
2658		goto short_packet;
2659
2660	if (proto == IPPROTO_UDP) {
2661		/* UDP validates ulen. */
2662		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2663			goto short_packet;
2664		uh = udp_hdr(skb);
2665	}
2666
2667	if (udp4_csum_init(skb, uh, proto))
2668		goto csum_error;
2669
2670	sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest,
2671			     &refcounted, udp_ehashfn);
2672	if (IS_ERR(sk))
2673		goto no_sk;
2674
2675	if (sk) {
2676		struct dst_entry *dst = skb_dst(skb);
2677		int ret;
2678
2679		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2680			udp_sk_rx_dst_set(sk, dst);
2681
2682		ret = udp_unicast_rcv_skb(sk, skb, uh);
2683		if (refcounted)
2684			sock_put(sk);
2685		return ret;
 
 
 
 
 
 
 
 
 
 
2686	}
2687
2688	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2689		return __udp4_lib_mcast_deliver(net, skb, uh,
2690						saddr, daddr, udptable, proto);
 
 
 
 
 
 
 
 
 
 
2691
2692	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2693	if (sk)
2694		return udp_unicast_rcv_skb(sk, skb, uh);
2695no_sk:
2696	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2697		goto drop;
2698	nf_reset_ct(skb);
2699
2700	/* No socket. Drop packet silently, if checksum is wrong */
2701	if (udp_lib_checksum_complete(skb))
2702		goto csum_error;
2703
2704	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2705	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2706	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2707
2708	/*
2709	 * Hmm.  We got an UDP packet to a port to which we
2710	 * don't wanna listen.  Ignore it.
2711	 */
2712	sk_skb_reason_drop(sk, skb, drop_reason);
2713	return 0;
2714
2715short_packet:
2716	drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2717	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2718			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2719			    &saddr, ntohs(uh->source),
2720			    ulen, skb->len,
2721			    &daddr, ntohs(uh->dest));
2722	goto drop;
2723
2724csum_error:
2725	/*
2726	 * RFC1122: OK.  Discards the bad packet silently (as far as
2727	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2728	 */
2729	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2730	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2731			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2732			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2733			    ulen);
2734	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2735drop:
2736	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2737	sk_skb_reason_drop(sk, skb, drop_reason);
2738	return 0;
2739}
2740
2741/* We can only early demux multicast if there is a single matching socket.
2742 * If more than one socket found returns NULL
2743 */
2744static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2745						  __be16 loc_port, __be32 loc_addr,
2746						  __be16 rmt_port, __be32 rmt_addr,
2747						  int dif, int sdif)
2748{
2749	struct udp_table *udptable = net->ipv4.udp_table;
 
2750	unsigned short hnum = ntohs(loc_port);
2751	struct sock *sk, *result;
2752	struct udp_hslot *hslot;
2753	unsigned int slot;
2754
2755	slot = udp_hashfn(net, hnum, udptable->mask);
2756	hslot = &udptable->hash[slot];
2757
2758	/* Do not bother scanning a too big list */
2759	if (hslot->count > 10)
2760		return NULL;
2761
 
 
 
2762	result = NULL;
2763	sk_for_each_rcu(sk, &hslot->head) {
2764		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2765					rmt_port, rmt_addr, dif, sdif, hnum)) {
2766			if (result)
2767				return NULL;
2768			result = sk;
 
2769		}
2770	}
 
 
 
 
 
 
 
2771
 
 
 
 
 
 
 
 
 
 
 
 
 
2772	return result;
2773}
2774
2775/* For unicast we should only early demux connected sockets or we can
2776 * break forwarding setups.  The chains here can be long so only check
2777 * if the first socket is an exact match and if not move on.
2778 */
2779static struct sock *__udp4_lib_demux_lookup(struct net *net,
2780					    __be16 loc_port, __be32 loc_addr,
2781					    __be16 rmt_port, __be32 rmt_addr,
2782					    int dif, int sdif)
2783{
2784	struct udp_table *udptable = net->ipv4.udp_table;
2785	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2786	unsigned short hnum = ntohs(loc_port);
2787	struct udp_hslot *hslot2;
2788	unsigned int hash2;
2789	__portpair ports;
2790	struct sock *sk;
 
2791
2792	hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2793	hslot2 = udp_hashslot2(udptable, hash2);
2794	ports = INET_COMBINED_PORTS(rmt_port, hnum);
2795
2796	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2797		if (inet_match(net, sk, acookie, ports, dif, sdif))
2798			return sk;
2799		/* Only check first socket in chain */
2800		break;
2801	}
2802	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
2803}
2804
2805int udp_v4_early_demux(struct sk_buff *skb)
2806{
2807	struct net *net = dev_net(skb->dev);
2808	struct in_device *in_dev = NULL;
2809	const struct iphdr *iph;
2810	const struct udphdr *uh;
2811	struct sock *sk = NULL;
2812	struct dst_entry *dst;
2813	int dif = skb->dev->ifindex;
2814	int sdif = inet_sdif(skb);
2815	int ours;
2816
2817	/* validate the packet */
2818	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2819		return 0;
2820
2821	iph = ip_hdr(skb);
2822	uh = udp_hdr(skb);
2823
2824	if (skb->pkt_type == PACKET_MULTICAST) {
2825		in_dev = __in_dev_get_rcu(skb->dev);
2826
2827		if (!in_dev)
2828			return 0;
2829
2830		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2831				       iph->protocol);
2832		if (!ours)
2833			return 0;
2834
2835		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2836						   uh->source, iph->saddr,
2837						   dif, sdif);
2838	} else if (skb->pkt_type == PACKET_HOST) {
2839		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2840					     uh->source, iph->saddr, dif, sdif);
2841	}
 
2842
2843	if (!sk)
2844		return 0;
2845
2846	skb->sk = sk;
2847	DEBUG_NET_WARN_ON_ONCE(sk_is_refcounted(sk));
2848	skb->destructor = sock_pfree;
2849	dst = rcu_dereference(sk->sk_rx_dst);
2850
2851	if (dst)
2852		dst = dst_check(dst, 0);
2853	if (dst) {
2854		u32 itag = 0;
2855
2856		/* set noref for now.
2857		 * any place which wants to hold dst has to call
2858		 * dst_hold_safe()
2859		 */
2860		skb_dst_set_noref(skb, dst);
2861
2862		/* for unconnected multicast sockets we need to validate
2863		 * the source on each packet
2864		 */
2865		if (!inet_sk(sk)->inet_daddr && in_dev)
2866			return ip_mc_validate_source(skb, iph->daddr,
2867						     iph->saddr,
2868						     ip4h_dscp(iph),
2869						     skb->dev, in_dev, &itag);
2870	}
2871	return 0;
2872}
2873
2874int udp_rcv(struct sk_buff *skb)
2875{
2876	return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP);
2877}
2878
2879void udp_destroy_sock(struct sock *sk)
2880{
2881	struct udp_sock *up = udp_sk(sk);
2882	bool slow = lock_sock_fast(sk);
2883
2884	/* protects from races with udp_abort() */
2885	sock_set_flag(sk, SOCK_DEAD);
2886	udp_flush_pending_frames(sk);
2887	unlock_sock_fast(sk, slow);
2888	if (static_branch_unlikely(&udp_encap_needed_key)) {
2889		if (up->encap_type) {
2890			void (*encap_destroy)(struct sock *sk);
2891			encap_destroy = READ_ONCE(up->encap_destroy);
2892			if (encap_destroy)
2893				encap_destroy(sk);
2894		}
2895		if (udp_test_bit(ENCAP_ENABLED, sk))
2896			static_branch_dec(&udp_encap_needed_key);
2897	}
2898}
2899
2900static void set_xfrm_gro_udp_encap_rcv(__u16 encap_type, unsigned short family,
2901				       struct sock *sk)
2902{
2903#ifdef CONFIG_XFRM
2904	if (udp_test_bit(GRO_ENABLED, sk) && encap_type == UDP_ENCAP_ESPINUDP) {
2905		if (family == AF_INET)
2906			WRITE_ONCE(udp_sk(sk)->gro_receive, xfrm4_gro_udp_encap_rcv);
2907		else if (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6)
2908			WRITE_ONCE(udp_sk(sk)->gro_receive, ipv6_stub->xfrm6_gro_udp_encap_rcv);
2909	}
2910#endif
2911}
2912
2913/*
2914 *	Socket option code for UDP
2915 */
2916int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2917		       sockptr_t optval, unsigned int optlen,
2918		       int (*push_pending_frames)(struct sock *))
2919{
2920	struct udp_sock *up = udp_sk(sk);
2921	int val, valbool;
2922	int err = 0;
2923	int is_udplite = IS_UDPLITE(sk);
2924
2925	if (level == SOL_SOCKET) {
2926		err = sk_setsockopt(sk, level, optname, optval, optlen);
2927
2928		if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) {
2929			sockopt_lock_sock(sk);
2930			/* paired with READ_ONCE in udp_rmem_release() */
2931			WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2);
2932			sockopt_release_sock(sk);
2933		}
2934		return err;
2935	}
2936
2937	if (optlen < sizeof(int))
2938		return -EINVAL;
2939
2940	if (copy_from_sockptr(&val, optval, sizeof(val)))
2941		return -EFAULT;
2942
2943	valbool = val ? 1 : 0;
2944
2945	switch (optname) {
2946	case UDP_CORK:
2947		if (val != 0) {
2948			udp_set_bit(CORK, sk);
2949		} else {
2950			udp_clear_bit(CORK, sk);
2951			lock_sock(sk);
2952			push_pending_frames(sk);
2953			release_sock(sk);
2954		}
2955		break;
2956
2957	case UDP_ENCAP:
2958		switch (val) {
2959		case 0:
2960#ifdef CONFIG_XFRM
2961		case UDP_ENCAP_ESPINUDP:
2962			set_xfrm_gro_udp_encap_rcv(val, sk->sk_family, sk);
2963#if IS_ENABLED(CONFIG_IPV6)
2964			if (sk->sk_family == AF_INET6)
2965				WRITE_ONCE(up->encap_rcv,
2966					   ipv6_stub->xfrm6_udp_encap_rcv);
2967			else
2968#endif
2969				WRITE_ONCE(up->encap_rcv,
2970					   xfrm4_udp_encap_rcv);
2971#endif
2972			fallthrough;
2973		case UDP_ENCAP_L2TPINUDP:
2974			WRITE_ONCE(up->encap_type, val);
2975			udp_tunnel_encap_enable(sk);
2976			break;
2977		default:
2978			err = -ENOPROTOOPT;
2979			break;
2980		}
2981		break;
2982
2983	case UDP_NO_CHECK6_TX:
2984		udp_set_no_check6_tx(sk, valbool);
2985		break;
2986
2987	case UDP_NO_CHECK6_RX:
2988		udp_set_no_check6_rx(sk, valbool);
2989		break;
2990
2991	case UDP_SEGMENT:
2992		if (val < 0 || val > USHRT_MAX)
2993			return -EINVAL;
2994		WRITE_ONCE(up->gso_size, val);
2995		break;
2996
2997	case UDP_GRO:
2998
2999		/* when enabling GRO, accept the related GSO packet type */
3000		if (valbool)
3001			udp_tunnel_encap_enable(sk);
3002		udp_assign_bit(GRO_ENABLED, sk, valbool);
3003		udp_assign_bit(ACCEPT_L4, sk, valbool);
3004		set_xfrm_gro_udp_encap_rcv(up->encap_type, sk->sk_family, sk);
3005		break;
3006
3007	/*
3008	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
3009	 */
3010	/* The sender sets actual checksum coverage length via this option.
3011	 * The case coverage > packet length is handled by send module. */
3012	case UDPLITE_SEND_CSCOV:
3013		if (!is_udplite)         /* Disable the option on UDP sockets */
3014			return -ENOPROTOOPT;
3015		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
3016			val = 8;
3017		else if (val > USHRT_MAX)
3018			val = USHRT_MAX;
3019		WRITE_ONCE(up->pcslen, val);
3020		udp_set_bit(UDPLITE_SEND_CC, sk);
3021		break;
3022
3023	/* The receiver specifies a minimum checksum coverage value. To make
3024	 * sense, this should be set to at least 8 (as done below). If zero is
3025	 * used, this again means full checksum coverage.                     */
3026	case UDPLITE_RECV_CSCOV:
3027		if (!is_udplite)         /* Disable the option on UDP sockets */
3028			return -ENOPROTOOPT;
3029		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
3030			val = 8;
3031		else if (val > USHRT_MAX)
3032			val = USHRT_MAX;
3033		WRITE_ONCE(up->pcrlen, val);
3034		udp_set_bit(UDPLITE_RECV_CC, sk);
3035		break;
3036
3037	default:
3038		err = -ENOPROTOOPT;
3039		break;
3040	}
3041
3042	return err;
3043}
3044EXPORT_SYMBOL(udp_lib_setsockopt);
3045
3046int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3047		   unsigned int optlen)
3048{
3049	if (level == SOL_UDP  ||  level == SOL_UDPLITE || level == SOL_SOCKET)
3050		return udp_lib_setsockopt(sk, level, optname,
3051					  optval, optlen,
3052					  udp_push_pending_frames);
3053	return ip_setsockopt(sk, level, optname, optval, optlen);
3054}
3055
 
 
 
 
 
 
 
 
 
 
 
3056int udp_lib_getsockopt(struct sock *sk, int level, int optname,
3057		       char __user *optval, int __user *optlen)
3058{
3059	struct udp_sock *up = udp_sk(sk);
3060	int val, len;
3061
3062	if (get_user(len, optlen))
3063		return -EFAULT;
3064
 
 
3065	if (len < 0)
3066		return -EINVAL;
3067
3068	len = min_t(unsigned int, len, sizeof(int));
3069
3070	switch (optname) {
3071	case UDP_CORK:
3072		val = udp_test_bit(CORK, sk);
3073		break;
3074
3075	case UDP_ENCAP:
3076		val = READ_ONCE(up->encap_type);
3077		break;
3078
3079	case UDP_NO_CHECK6_TX:
3080		val = udp_get_no_check6_tx(sk);
3081		break;
3082
3083	case UDP_NO_CHECK6_RX:
3084		val = udp_get_no_check6_rx(sk);
3085		break;
3086
3087	case UDP_SEGMENT:
3088		val = READ_ONCE(up->gso_size);
3089		break;
3090
3091	case UDP_GRO:
3092		val = udp_test_bit(GRO_ENABLED, sk);
3093		break;
3094
3095	/* The following two cannot be changed on UDP sockets, the return is
3096	 * always 0 (which corresponds to the full checksum coverage of UDP). */
3097	case UDPLITE_SEND_CSCOV:
3098		val = READ_ONCE(up->pcslen);
3099		break;
3100
3101	case UDPLITE_RECV_CSCOV:
3102		val = READ_ONCE(up->pcrlen);
3103		break;
3104
3105	default:
3106		return -ENOPROTOOPT;
3107	}
3108
3109	if (put_user(len, optlen))
3110		return -EFAULT;
3111	if (copy_to_user(optval, &val, len))
3112		return -EFAULT;
3113	return 0;
3114}
3115EXPORT_SYMBOL(udp_lib_getsockopt);
3116
3117int udp_getsockopt(struct sock *sk, int level, int optname,
3118		   char __user *optval, int __user *optlen)
3119{
3120	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
3121		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
3122	return ip_getsockopt(sk, level, optname, optval, optlen);
3123}
3124
 
 
 
 
 
 
 
 
 
3125/**
3126 * 	udp_poll - wait for a UDP event.
3127 *	@file: - file struct
3128 *	@sock: - socket
3129 *	@wait: - poll table
3130 *
3131 *	This is same as datagram poll, except for the special case of
3132 *	blocking sockets. If application is using a blocking fd
3133 *	and a packet with checksum error is in the queue;
3134 *	then it could get return from select indicating data available
3135 *	but then block when reading it. Add special case code
3136 *	to work around these arguably broken applications.
3137 */
3138__poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
3139{
3140	__poll_t mask = datagram_poll(file, sock, wait);
3141	struct sock *sk = sock->sk;
3142
3143	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
3144		mask |= EPOLLIN | EPOLLRDNORM;
3145
3146	/* Check for false positives due to checksum errors */
3147	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
3148	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
3149		mask &= ~(EPOLLIN | EPOLLRDNORM);
3150
3151	/* psock ingress_msg queue should not contain any bad checksum frames */
3152	if (sk_is_readable(sk))
3153		mask |= EPOLLIN | EPOLLRDNORM;
3154	return mask;
3155
3156}
3157EXPORT_SYMBOL(udp_poll);
3158
3159int udp_abort(struct sock *sk, int err)
3160{
3161	if (!has_current_bpf_ctx())
3162		lock_sock(sk);
3163
3164	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
3165	 * with close()
3166	 */
3167	if (sock_flag(sk, SOCK_DEAD))
3168		goto out;
3169
3170	sk->sk_err = err;
3171	sk_error_report(sk);
3172	__udp_disconnect(sk, 0);
3173
3174out:
3175	if (!has_current_bpf_ctx())
3176		release_sock(sk);
3177
3178	return 0;
3179}
3180EXPORT_SYMBOL_GPL(udp_abort);
3181
3182struct proto udp_prot = {
3183	.name			= "UDP",
3184	.owner			= THIS_MODULE,
3185	.close			= udp_lib_close,
3186	.pre_connect		= udp_pre_connect,
3187	.connect		= udp_connect,
3188	.disconnect		= udp_disconnect,
3189	.ioctl			= udp_ioctl,
3190	.init			= udp_init_sock,
3191	.destroy		= udp_destroy_sock,
3192	.setsockopt		= udp_setsockopt,
3193	.getsockopt		= udp_getsockopt,
3194	.sendmsg		= udp_sendmsg,
3195	.recvmsg		= udp_recvmsg,
3196	.splice_eof		= udp_splice_eof,
3197	.release_cb		= ip4_datagram_release_cb,
3198	.hash			= udp_lib_hash,
3199	.unhash			= udp_lib_unhash,
3200	.rehash			= udp_v4_rehash,
3201	.get_port		= udp_v4_get_port,
3202	.put_port		= udp_lib_unhash,
3203#ifdef CONFIG_BPF_SYSCALL
3204	.psock_update_sk_prot	= udp_bpf_update_proto,
 
 
 
 
 
 
3205#endif
3206	.memory_allocated	= &udp_memory_allocated,
3207	.per_cpu_fw_alloc	= &udp_memory_per_cpu_fw_alloc,
3208
3209	.sysctl_mem		= sysctl_udp_mem,
3210	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
3211	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
3212	.obj_size		= sizeof(struct udp_sock),
3213	.h.udp_table		= NULL,
3214	.diag_destroy		= udp_abort,
3215};
3216EXPORT_SYMBOL(udp_prot);
3217
3218/* ------------------------------------------------------------------------ */
3219#ifdef CONFIG_PROC_FS
3220
3221static unsigned short seq_file_family(const struct seq_file *seq);
3222static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
3223{
3224	unsigned short family = seq_file_family(seq);
3225
3226	/* AF_UNSPEC is used as a match all */
3227	return ((family == AF_UNSPEC || family == sk->sk_family) &&
3228		net_eq(sock_net(sk), seq_file_net(seq)));
3229}
3230
3231#ifdef CONFIG_BPF_SYSCALL
3232static const struct seq_operations bpf_iter_udp_seq_ops;
3233#endif
3234static struct udp_table *udp_get_table_seq(struct seq_file *seq,
3235					   struct net *net)
3236{
3237	const struct udp_seq_afinfo *afinfo;
3238
3239#ifdef CONFIG_BPF_SYSCALL
3240	if (seq->op == &bpf_iter_udp_seq_ops)
3241		return net->ipv4.udp_table;
3242#endif
3243
3244	afinfo = pde_data(file_inode(seq->file));
3245	return afinfo->udp_table ? : net->ipv4.udp_table;
3246}
3247
3248static struct sock *udp_get_first(struct seq_file *seq, int start)
3249{
 
3250	struct udp_iter_state *state = seq->private;
3251	struct net *net = seq_file_net(seq);
3252	struct udp_table *udptable;
3253	struct sock *sk;
3254
3255	udptable = udp_get_table_seq(seq, net);
3256
3257	for (state->bucket = start; state->bucket <= udptable->mask;
3258	     ++state->bucket) {
3259		struct udp_hslot *hslot = &udptable->hash[state->bucket];
 
3260
3261		if (hlist_empty(&hslot->head))
3262			continue;
3263
3264		spin_lock_bh(&hslot->lock);
3265		sk_for_each(sk, &hslot->head) {
3266			if (seq_sk_match(seq, sk))
 
 
3267				goto found;
3268		}
3269		spin_unlock_bh(&hslot->lock);
3270	}
3271	sk = NULL;
3272found:
3273	return sk;
3274}
3275
3276static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
3277{
3278	struct udp_iter_state *state = seq->private;
3279	struct net *net = seq_file_net(seq);
3280	struct udp_table *udptable;
3281
3282	do {
3283		sk = sk_next(sk);
3284	} while (sk && !seq_sk_match(seq, sk));
3285
3286	if (!sk) {
3287		udptable = udp_get_table_seq(seq, net);
3288
3289		if (state->bucket <= udptable->mask)
3290			spin_unlock_bh(&udptable->hash[state->bucket].lock);
3291
3292		return udp_get_first(seq, state->bucket + 1);
3293	}
3294	return sk;
3295}
3296
3297static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3298{
3299	struct sock *sk = udp_get_first(seq, 0);
3300
3301	if (sk)
3302		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3303			--pos;
3304	return pos ? NULL : sk;
3305}
3306
3307void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3308{
3309	struct udp_iter_state *state = seq->private;
3310	state->bucket = MAX_UDP_PORTS;
3311
3312	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3313}
3314EXPORT_SYMBOL(udp_seq_start);
3315
3316void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3317{
3318	struct sock *sk;
3319
3320	if (v == SEQ_START_TOKEN)
3321		sk = udp_get_idx(seq, 0);
3322	else
3323		sk = udp_get_next(seq, v);
3324
3325	++*pos;
3326	return sk;
3327}
3328EXPORT_SYMBOL(udp_seq_next);
3329
3330void udp_seq_stop(struct seq_file *seq, void *v)
3331{
3332	struct udp_iter_state *state = seq->private;
3333	struct udp_table *udptable;
3334
3335	udptable = udp_get_table_seq(seq, seq_file_net(seq));
 
 
 
 
 
 
 
 
3336
3337	if (state->bucket <= udptable->mask)
3338		spin_unlock_bh(&udptable->hash[state->bucket].lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3339}
3340EXPORT_SYMBOL(udp_seq_stop);
 
 
 
 
 
 
3341
3342/* ------------------------------------------------------------------------ */
3343static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3344		int bucket)
3345{
3346	struct inet_sock *inet = inet_sk(sp);
3347	__be32 dest = inet->inet_daddr;
3348	__be32 src  = inet->inet_rcv_saddr;
3349	__u16 destp	  = ntohs(inet->inet_dport);
3350	__u16 srcp	  = ntohs(inet->inet_sport);
3351
3352	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3353		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3354		bucket, src, srcp, dest, destp, sp->sk_state,
3355		sk_wmem_alloc_get(sp),
3356		udp_rqueue_get(sp),
3357		0, 0L, 0,
3358		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3359		0, sock_i_ino(sp),
3360		refcount_read(&sp->sk_refcnt), sp,
3361		atomic_read(&sp->sk_drops));
3362}
3363
3364int udp4_seq_show(struct seq_file *seq, void *v)
3365{
3366	seq_setwidth(seq, 127);
3367	if (v == SEQ_START_TOKEN)
3368		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3369			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3370			   "inode ref pointer drops");
3371	else {
3372		struct udp_iter_state *state = seq->private;
3373
3374		udp4_format_sock(v, seq, state->bucket);
3375	}
3376	seq_pad(seq, '\n');
3377	return 0;
3378}
3379
3380#ifdef CONFIG_BPF_SYSCALL
3381struct bpf_iter__udp {
3382	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3383	__bpf_md_ptr(struct udp_sock *, udp_sk);
3384	uid_t uid __aligned(8);
3385	int bucket __aligned(8);
3386};
3387
3388struct bpf_udp_iter_state {
3389	struct udp_iter_state state;
3390	unsigned int cur_sk;
3391	unsigned int end_sk;
3392	unsigned int max_sk;
3393	int offset;
3394	struct sock **batch;
3395	bool st_bucket_done;
3396};
3397
3398static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3399				      unsigned int new_batch_sz);
3400static struct sock *bpf_iter_udp_batch(struct seq_file *seq)
3401{
3402	struct bpf_udp_iter_state *iter = seq->private;
3403	struct udp_iter_state *state = &iter->state;
3404	struct net *net = seq_file_net(seq);
3405	int resume_bucket, resume_offset;
3406	struct udp_table *udptable;
3407	unsigned int batch_sks = 0;
3408	bool resized = false;
3409	struct sock *sk;
3410
3411	resume_bucket = state->bucket;
3412	resume_offset = iter->offset;
3413
3414	/* The current batch is done, so advance the bucket. */
3415	if (iter->st_bucket_done)
3416		state->bucket++;
3417
3418	udptable = udp_get_table_seq(seq, net);
3419
3420again:
3421	/* New batch for the next bucket.
3422	 * Iterate over the hash table to find a bucket with sockets matching
3423	 * the iterator attributes, and return the first matching socket from
3424	 * the bucket. The remaining matched sockets from the bucket are batched
3425	 * before releasing the bucket lock. This allows BPF programs that are
3426	 * called in seq_show to acquire the bucket lock if needed.
3427	 */
3428	iter->cur_sk = 0;
3429	iter->end_sk = 0;
3430	iter->st_bucket_done = false;
3431	batch_sks = 0;
3432
3433	for (; state->bucket <= udptable->mask; state->bucket++) {
3434		struct udp_hslot *hslot2 = &udptable->hash2[state->bucket].hslot;
3435
3436		if (hlist_empty(&hslot2->head))
3437			continue;
3438
3439		iter->offset = 0;
3440		spin_lock_bh(&hslot2->lock);
3441		udp_portaddr_for_each_entry(sk, &hslot2->head) {
3442			if (seq_sk_match(seq, sk)) {
3443				/* Resume from the last iterated socket at the
3444				 * offset in the bucket before iterator was stopped.
3445				 */
3446				if (state->bucket == resume_bucket &&
3447				    iter->offset < resume_offset) {
3448					++iter->offset;
3449					continue;
3450				}
3451				if (iter->end_sk < iter->max_sk) {
3452					sock_hold(sk);
3453					iter->batch[iter->end_sk++] = sk;
3454				}
3455				batch_sks++;
3456			}
3457		}
3458		spin_unlock_bh(&hslot2->lock);
3459
3460		if (iter->end_sk)
3461			break;
3462	}
3463
3464	/* All done: no batch made. */
3465	if (!iter->end_sk)
3466		return NULL;
3467
3468	if (iter->end_sk == batch_sks) {
3469		/* Batching is done for the current bucket; return the first
3470		 * socket to be iterated from the batch.
3471		 */
3472		iter->st_bucket_done = true;
3473		goto done;
3474	}
3475	if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) {
3476		resized = true;
3477		/* After allocating a larger batch, retry one more time to grab
3478		 * the whole bucket.
3479		 */
3480		goto again;
3481	}
3482done:
3483	return iter->batch[0];
3484}
3485
3486static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3487{
3488	struct bpf_udp_iter_state *iter = seq->private;
3489	struct sock *sk;
3490
3491	/* Whenever seq_next() is called, the iter->cur_sk is
3492	 * done with seq_show(), so unref the iter->cur_sk.
3493	 */
3494	if (iter->cur_sk < iter->end_sk) {
3495		sock_put(iter->batch[iter->cur_sk++]);
3496		++iter->offset;
3497	}
3498
3499	/* After updating iter->cur_sk, check if there are more sockets
3500	 * available in the current bucket batch.
3501	 */
3502	if (iter->cur_sk < iter->end_sk)
3503		sk = iter->batch[iter->cur_sk];
3504	else
3505		/* Prepare a new batch. */
3506		sk = bpf_iter_udp_batch(seq);
3507
3508	++*pos;
3509	return sk;
3510}
3511
3512static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos)
3513{
3514	/* bpf iter does not support lseek, so it always
3515	 * continue from where it was stop()-ped.
3516	 */
3517	if (*pos)
3518		return bpf_iter_udp_batch(seq);
3519
3520	return SEQ_START_TOKEN;
3521}
3522
3523static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3524			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3525{
3526	struct bpf_iter__udp ctx;
3527
3528	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3529	ctx.meta = meta;
3530	ctx.udp_sk = udp_sk;
3531	ctx.uid = uid;
3532	ctx.bucket = bucket;
3533	return bpf_iter_run_prog(prog, &ctx);
3534}
3535
3536static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3537{
3538	struct udp_iter_state *state = seq->private;
3539	struct bpf_iter_meta meta;
3540	struct bpf_prog *prog;
3541	struct sock *sk = v;
3542	uid_t uid;
3543	int ret;
3544
3545	if (v == SEQ_START_TOKEN)
3546		return 0;
3547
3548	lock_sock(sk);
3549
3550	if (unlikely(sk_unhashed(sk))) {
3551		ret = SEQ_SKIP;
3552		goto unlock;
3553	}
3554
3555	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3556	meta.seq = seq;
3557	prog = bpf_iter_get_info(&meta, false);
3558	ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3559
3560unlock:
3561	release_sock(sk);
3562	return ret;
3563}
3564
3565static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter)
3566{
3567	while (iter->cur_sk < iter->end_sk)
3568		sock_put(iter->batch[iter->cur_sk++]);
3569}
3570
3571static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3572{
3573	struct bpf_udp_iter_state *iter = seq->private;
3574	struct bpf_iter_meta meta;
3575	struct bpf_prog *prog;
3576
3577	if (!v) {
3578		meta.seq = seq;
3579		prog = bpf_iter_get_info(&meta, true);
3580		if (prog)
3581			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3582	}
3583
3584	if (iter->cur_sk < iter->end_sk) {
3585		bpf_iter_udp_put_batch(iter);
3586		iter->st_bucket_done = false;
3587	}
3588}
3589
3590static const struct seq_operations bpf_iter_udp_seq_ops = {
3591	.start		= bpf_iter_udp_seq_start,
3592	.next		= bpf_iter_udp_seq_next,
3593	.stop		= bpf_iter_udp_seq_stop,
3594	.show		= bpf_iter_udp_seq_show,
3595};
3596#endif
3597
3598static unsigned short seq_file_family(const struct seq_file *seq)
3599{
3600	const struct udp_seq_afinfo *afinfo;
3601
3602#ifdef CONFIG_BPF_SYSCALL
3603	/* BPF iterator: bpf programs to filter sockets. */
3604	if (seq->op == &bpf_iter_udp_seq_ops)
3605		return AF_UNSPEC;
3606#endif
3607
3608	/* Proc fs iterator */
3609	afinfo = pde_data(file_inode(seq->file));
3610	return afinfo->family;
3611}
3612
3613const struct seq_operations udp_seq_ops = {
3614	.start		= udp_seq_start,
3615	.next		= udp_seq_next,
3616	.stop		= udp_seq_stop,
3617	.show		= udp4_seq_show,
3618};
3619EXPORT_SYMBOL(udp_seq_ops);
3620
3621static struct udp_seq_afinfo udp4_seq_afinfo = {
 
3622	.family		= AF_INET,
3623	.udp_table	= NULL,
 
 
 
 
3624};
3625
3626static int __net_init udp4_proc_init_net(struct net *net)
3627{
3628	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3629			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3630		return -ENOMEM;
3631	return 0;
3632}
3633
3634static void __net_exit udp4_proc_exit_net(struct net *net)
3635{
3636	remove_proc_entry("udp", net->proc_net);
3637}
3638
3639static struct pernet_operations udp4_net_ops = {
3640	.init = udp4_proc_init_net,
3641	.exit = udp4_proc_exit_net,
3642};
3643
3644int __init udp4_proc_init(void)
3645{
3646	return register_pernet_subsys(&udp4_net_ops);
3647}
3648
3649void udp4_proc_exit(void)
3650{
3651	unregister_pernet_subsys(&udp4_net_ops);
3652}
3653#endif /* CONFIG_PROC_FS */
3654
3655static __initdata unsigned long uhash_entries;
3656static int __init set_uhash_entries(char *str)
3657{
3658	ssize_t ret;
3659
3660	if (!str)
3661		return 0;
3662
3663	ret = kstrtoul(str, 0, &uhash_entries);
3664	if (ret)
3665		return 0;
3666
3667	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3668		uhash_entries = UDP_HTABLE_SIZE_MIN;
3669	return 1;
3670}
3671__setup("uhash_entries=", set_uhash_entries);
3672
3673void __init udp_table_init(struct udp_table *table, const char *name)
3674{
3675	unsigned int i, slot_size;
3676
3677	slot_size = sizeof(struct udp_hslot) + sizeof(struct udp_hslot_main) +
3678		    udp_hash4_slot_size();
3679	table->hash = alloc_large_system_hash(name,
3680					      slot_size,
3681					      uhash_entries,
3682					      21, /* one slot per 2 MB */
3683					      0,
3684					      &table->log,
3685					      &table->mask,
3686					      UDP_HTABLE_SIZE_MIN,
3687					      UDP_HTABLE_SIZE_MAX);
3688
3689	table->hash2 = (void *)(table->hash + (table->mask + 1));
3690	for (i = 0; i <= table->mask; i++) {
3691		INIT_HLIST_HEAD(&table->hash[i].head);
3692		table->hash[i].count = 0;
3693		spin_lock_init(&table->hash[i].lock);
3694	}
3695	for (i = 0; i <= table->mask; i++) {
3696		INIT_HLIST_HEAD(&table->hash2[i].hslot.head);
3697		table->hash2[i].hslot.count = 0;
3698		spin_lock_init(&table->hash2[i].hslot.lock);
3699	}
3700	udp_table_hash4_init(table);
3701}
3702
3703u32 udp_flow_hashrnd(void)
3704{
3705	static u32 hashrnd __read_mostly;
3706
3707	net_get_random_once(&hashrnd, sizeof(hashrnd));
 
 
 
 
 
3708
3709	return hashrnd;
 
3710}
3711EXPORT_SYMBOL(udp_flow_hashrnd);
3712
3713static void __net_init udp_sysctl_init(struct net *net)
 
3714{
3715	net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3716	net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
 
 
 
 
 
3717
3718#ifdef CONFIG_NET_L3_MASTER_DEV
3719	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3720#endif
3721}
3722
3723static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries)
3724{
3725	struct udp_table *udptable;
3726	unsigned int slot_size;
3727	int i;
3728
3729	udptable = kmalloc(sizeof(*udptable), GFP_KERNEL);
3730	if (!udptable)
 
 
 
 
 
3731		goto out;
3732
3733	slot_size = sizeof(struct udp_hslot) + sizeof(struct udp_hslot_main) +
3734		    udp_hash4_slot_size();
3735	udptable->hash = vmalloc_huge(hash_entries * slot_size,
3736				      GFP_KERNEL_ACCOUNT);
3737	if (!udptable->hash)
3738		goto free_table;
3739
3740	udptable->hash2 = (void *)(udptable->hash + hash_entries);
3741	udptable->mask = hash_entries - 1;
3742	udptable->log = ilog2(hash_entries);
3743
3744	for (i = 0; i < hash_entries; i++) {
3745		INIT_HLIST_HEAD(&udptable->hash[i].head);
3746		udptable->hash[i].count = 0;
3747		spin_lock_init(&udptable->hash[i].lock);
3748
3749		INIT_HLIST_HEAD(&udptable->hash2[i].hslot.head);
3750		udptable->hash2[i].hslot.count = 0;
3751		spin_lock_init(&udptable->hash2[i].hslot.lock);
3752	}
3753	udp_table_hash4_init(udptable);
3754
3755	return udptable;
 
 
 
 
3756
3757free_table:
3758	kfree(udptable);
3759out:
3760	return NULL;
3761}
3762
3763static void __net_exit udp_pernet_table_free(struct net *net)
3764{
3765	struct udp_table *udptable = net->ipv4.udp_table;
3766
3767	if (udptable == &udp_table)
3768		return;
 
 
 
 
3769
3770	kvfree(udptable->hash);
3771	kfree(udptable);
3772}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3773
3774static void __net_init udp_set_table(struct net *net)
3775{
3776	struct udp_table *udptable;
3777	unsigned int hash_entries;
3778	struct net *old_net;
3779
3780	if (net_eq(net, &init_net))
3781		goto fallback;
3782
3783	old_net = current->nsproxy->net_ns;
3784	hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries);
3785	if (!hash_entries)
3786		goto fallback;
3787
3788	/* Set min to keep the bitmap on stack in udp_lib_get_port() */
3789	if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET)
3790		hash_entries = UDP_HTABLE_SIZE_MIN_PERNET;
3791	else
3792		hash_entries = roundup_pow_of_two(hash_entries);
3793
3794	udptable = udp_pernet_table_alloc(hash_entries);
3795	if (udptable) {
3796		net->ipv4.udp_table = udptable;
3797	} else {
3798		pr_warn("Failed to allocate UDP hash table (entries: %u) "
3799			"for a netns, fallback to the global one\n",
3800			hash_entries);
3801fallback:
3802		net->ipv4.udp_table = &udp_table;
3803	}
3804}
3805
3806static int __net_init udp_pernet_init(struct net *net)
3807{
3808	udp_sysctl_init(net);
3809	udp_set_table(net);
3810
3811	return 0;
3812}
3813
3814static void __net_exit udp_pernet_exit(struct net *net)
3815{
3816	udp_pernet_table_free(net);
3817}
3818
3819static struct pernet_operations __net_initdata udp_sysctl_ops = {
3820	.init	= udp_pernet_init,
3821	.exit	= udp_pernet_exit,
3822};
3823
3824#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3825DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3826		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3827
3828static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3829				      unsigned int new_batch_sz)
3830{
3831	struct sock **new_batch;
3832
3833	new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch),
3834				   GFP_USER | __GFP_NOWARN);
3835	if (!new_batch)
3836		return -ENOMEM;
3837
3838	bpf_iter_udp_put_batch(iter);
3839	kvfree(iter->batch);
3840	iter->batch = new_batch;
3841	iter->max_sk = new_batch_sz;
3842
3843	return 0;
3844}
3845
3846#define INIT_BATCH_SZ 16
3847
3848static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3849{
3850	struct bpf_udp_iter_state *iter = priv_data;
3851	int ret;
3852
3853	ret = bpf_iter_init_seq_net(priv_data, aux);
3854	if (ret)
3855		return ret;
3856
3857	ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ);
3858	if (ret)
3859		bpf_iter_fini_seq_net(priv_data);
3860
3861	return ret;
3862}
3863
3864static void bpf_iter_fini_udp(void *priv_data)
3865{
3866	struct bpf_udp_iter_state *iter = priv_data;
3867
3868	bpf_iter_fini_seq_net(priv_data);
3869	kvfree(iter->batch);
3870}
3871
3872static const struct bpf_iter_seq_info udp_seq_info = {
3873	.seq_ops		= &bpf_iter_udp_seq_ops,
3874	.init_seq_private	= bpf_iter_init_udp,
3875	.fini_seq_private	= bpf_iter_fini_udp,
3876	.seq_priv_size		= sizeof(struct bpf_udp_iter_state),
3877};
3878
3879static struct bpf_iter_reg udp_reg_info = {
3880	.target			= "udp",
3881	.ctx_arg_info_size	= 1,
3882	.ctx_arg_info		= {
3883		{ offsetof(struct bpf_iter__udp, udp_sk),
3884		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3885	},
3886	.seq_info		= &udp_seq_info,
3887};
3888
3889static void __init bpf_iter_register(void)
3890{
3891	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3892	if (bpf_iter_reg_target(&udp_reg_info))
3893		pr_warn("Warning: could not register bpf iterator udp\n");
3894}
3895#endif
3896
3897void __init udp_init(void)
3898{
3899	unsigned long limit;
3900	unsigned int i;
3901
3902	udp_table_init(&udp_table, "UDP");
3903	limit = nr_free_buffer_pages() / 8;
3904	limit = max(limit, 128UL);
3905	sysctl_udp_mem[0] = limit / 4 * 3;
3906	sysctl_udp_mem[1] = limit;
3907	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3908
3909	/* 16 spinlocks per cpu */
3910	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3911	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3912				GFP_KERNEL);
3913	if (!udp_busylocks)
3914		panic("UDP: failed to alloc udp_busylocks\n");
3915	for (i = 0; i < (1U << udp_busylocks_log); i++)
3916		spin_lock_init(udp_busylocks + i);
3917
3918	if (register_pernet_subsys(&udp_sysctl_ops))
3919		panic("UDP: failed to init sysctl parameters.\n");
3920
3921#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3922	bpf_iter_register();
3923#endif
3924}