Linux Audio

Check our new training course

Loading...
v3.15
 
  1/*
  2 * A fast, small, non-recursive O(nlog n) sort for the Linux kernel
  3 *
  4 * Jan 23 2005  Matt Mackall <mpm@selenic.com>
 
 
 
 
 
  5 */
  6
  7#include <linux/kernel.h>
  8#include <linux/module.h>
  9#include <linux/sort.h>
 10#include <linux/slab.h>
 11
 12static void u32_swap(void *a, void *b, int size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 13{
 14	u32 t = *(u32 *)a;
 15	*(u32 *)a = *(u32 *)b;
 16	*(u32 *)b = t;
 
 
 
 
 17}
 18
 19static void generic_swap(void *a, void *b, int size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 20{
 21	char t;
 22
 23	do {
 24		t = *(char *)a;
 25		*(char *)a++ = *(char *)b;
 26		*(char *)b++ = t;
 27	} while (--size > 0);
 28}
 29
 30/**
 31 * sort - sort an array of elements
 32 * @base: pointer to data to sort
 33 * @num: number of elements
 34 * @size: size of each element
 35 * @cmp_func: pointer to comparison function
 36 * @swap_func: pointer to swap function or NULL
 37 *
 38 * This function does a heapsort on the given array. You may provide a
 39 * swap_func function optimized to your element type.
 
 40 *
 41 * Sorting time is O(n log n) both on average and worst-case. While
 42 * qsort is about 20% faster on average, it suffers from exploitable
 43 * O(n*n) worst-case behavior and extra memory requirements that make
 44 * it less suitable for kernel use.
 
 45 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 46
 47void sort(void *base, size_t num, size_t size,
 48	  int (*cmp_func)(const void *, const void *),
 49	  void (*swap_func)(void *, void *, int size))
 
 
 
 
 
 
 50{
 51	/* pre-scale counters for performance */
 52	int i = (num/2 - 1) * size, n = num * size, c, r;
 
 
 
 
 53
 54	if (!swap_func)
 55		swap_func = (size == 4 ? u32_swap : generic_swap);
 
 
 
 
 
 
 
 
 
 
 
 
 56
 57	/* heapify */
 58	for ( ; i >= 0; i -= size) {
 59		for (r = i; r * 2 + size < n; r  = c) {
 60			c = r * 2 + size;
 61			if (c < n - size &&
 62					cmp_func(base + c, base + c + size) < 0)
 63				c += size;
 64			if (cmp_func(base + r, base + c) >= 0)
 65				break;
 66			swap_func(base + r, base + c, size);
 67		}
 68	}
 69
 70	/* sort */
 71	for (i = n - size; i > 0; i -= size) {
 72		swap_func(base, base + i, size);
 73		for (r = 0; r * 2 + size < i; r = c) {
 74			c = r * 2 + size;
 75			if (c < i - size &&
 76					cmp_func(base + c, base + c + size) < 0)
 77				c += size;
 78			if (cmp_func(base + r, base + c) >= 0)
 79				break;
 80			swap_func(base + r, base + c, size);
 81		}
 82	}
 83}
 84
 85EXPORT_SYMBOL(sort);
 86
 87#if 0
 88/* a simple boot-time regression test */
 89
 90int cmpint(const void *a, const void *b)
 91{
 92	return *(int *)a - *(int *)b;
 
 
 93}
 94
 95static int sort_test(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 96{
 97	int *a, i, r = 1;
 98
 99	a = kmalloc(1000 * sizeof(int), GFP_KERNEL);
100	BUG_ON(!a);
101
102	printk("testing sort()\n");
103
104	for (i = 0; i < 1000; i++) {
105		r = (r * 725861) % 6599;
106		a[i] = r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
107	}
108
109	sort(a, 1000, sizeof(int), cmpint, NULL);
110
111	for (i = 0; i < 999; i++)
112		if (a[i] > a[i+1]) {
113			printk("sort() failed!\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114			break;
115		}
116
117	kfree(a);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118
119	return 0;
 
 
 
120}
 
121
122module_init(sort_test);
123#endif
 
 
 
 
 
 
 
 
 
 
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * A fast, small, non-recursive O(n log n) sort for the Linux kernel
  4 *
  5 * This performs n*log2(n) + 0.37*n + o(n) comparisons on average,
  6 * and 1.5*n*log2(n) + O(n) in the (very contrived) worst case.
  7 *
  8 * Quicksort manages n*log2(n) - 1.26*n for random inputs (1.63*n
  9 * better) at the expense of stack usage and much larger code to avoid
 10 * quicksort's O(n^2) worst case.
 11 */
 12
 13#include <linux/types.h>
 14#include <linux/export.h>
 15#include <linux/sort.h>
 
 16
 17/**
 18 * is_aligned - is this pointer & size okay for word-wide copying?
 19 * @base: pointer to data
 20 * @size: size of each element
 21 * @align: required alignment (typically 4 or 8)
 22 *
 23 * Returns true if elements can be copied using word loads and stores.
 24 * The size must be a multiple of the alignment, and the base address must
 25 * be if we do not have CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS.
 26 *
 27 * For some reason, gcc doesn't know to optimize "if (a & mask || b & mask)"
 28 * to "if ((a | b) & mask)", so we do that by hand.
 29 */
 30__attribute_const__ __always_inline
 31static bool is_aligned(const void *base, size_t size, unsigned char align)
 32{
 33	unsigned char lsbits = (unsigned char)size;
 34
 35	(void)base;
 36#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
 37	lsbits |= (unsigned char)(uintptr_t)base;
 38#endif
 39	return (lsbits & (align - 1)) == 0;
 40}
 41
 42/**
 43 * swap_words_32 - swap two elements in 32-bit chunks
 44 * @a: pointer to the first element to swap
 45 * @b: pointer to the second element to swap
 46 * @n: element size (must be a multiple of 4)
 47 *
 48 * Exchange the two objects in memory.  This exploits base+index addressing,
 49 * which basically all CPUs have, to minimize loop overhead computations.
 50 *
 51 * For some reason, on x86 gcc 7.3.0 adds a redundant test of n at the
 52 * bottom of the loop, even though the zero flag is still valid from the
 53 * subtract (since the intervening mov instructions don't alter the flags).
 54 * Gcc 8.1.0 doesn't have that problem.
 55 */
 56static void swap_words_32(void *a, void *b, size_t n)
 57{
 
 
 58	do {
 59		u32 t = *(u32 *)(a + (n -= 4));
 60		*(u32 *)(a + n) = *(u32 *)(b + n);
 61		*(u32 *)(b + n) = t;
 62	} while (n);
 63}
 64
 65/**
 66 * swap_words_64 - swap two elements in 64-bit chunks
 67 * @a: pointer to the first element to swap
 68 * @b: pointer to the second element to swap
 69 * @n: element size (must be a multiple of 8)
 
 
 70 *
 71 * Exchange the two objects in memory.  This exploits base+index
 72 * addressing, which basically all CPUs have, to minimize loop overhead
 73 * computations.
 74 *
 75 * We'd like to use 64-bit loads if possible.  If they're not, emulating
 76 * one requires base+index+4 addressing which x86 has but most other
 77 * processors do not.  If CONFIG_64BIT, we definitely have 64-bit loads,
 78 * but it's possible to have 64-bit loads without 64-bit pointers (e.g.
 79 * x32 ABI).  Are there any cases the kernel needs to worry about?
 80 */
 81static void swap_words_64(void *a, void *b, size_t n)
 82{
 83	do {
 84#ifdef CONFIG_64BIT
 85		u64 t = *(u64 *)(a + (n -= 8));
 86		*(u64 *)(a + n) = *(u64 *)(b + n);
 87		*(u64 *)(b + n) = t;
 88#else
 89		/* Use two 32-bit transfers to avoid base+index+4 addressing */
 90		u32 t = *(u32 *)(a + (n -= 4));
 91		*(u32 *)(a + n) = *(u32 *)(b + n);
 92		*(u32 *)(b + n) = t;
 93
 94		t = *(u32 *)(a + (n -= 4));
 95		*(u32 *)(a + n) = *(u32 *)(b + n);
 96		*(u32 *)(b + n) = t;
 97#endif
 98	} while (n);
 99}
100
101/**
102 * swap_bytes - swap two elements a byte at a time
103 * @a: pointer to the first element to swap
104 * @b: pointer to the second element to swap
105 * @n: element size
106 *
107 * This is the fallback if alignment doesn't allow using larger chunks.
108 */
109static void swap_bytes(void *a, void *b, size_t n)
110{
111	do {
112		char t = ((char *)a)[--n];
113		((char *)a)[n] = ((char *)b)[n];
114		((char *)b)[n] = t;
115	} while (n);
116}
117
118/*
119 * The values are arbitrary as long as they can't be confused with
120 * a pointer, but small integers make for the smallest compare
121 * instructions.
122 */
123#define SWAP_WORDS_64 (swap_r_func_t)0
124#define SWAP_WORDS_32 (swap_r_func_t)1
125#define SWAP_BYTES    (swap_r_func_t)2
126#define SWAP_WRAPPER  (swap_r_func_t)3
127
128struct wrapper {
129	cmp_func_t cmp;
130	swap_func_t swap;
131};
132
133/*
134 * The function pointer is last to make tail calls most efficient if the
135 * compiler decides not to inline this function.
136 */
137static void do_swap(void *a, void *b, size_t size, swap_r_func_t swap_func, const void *priv)
138{
139	if (swap_func == SWAP_WRAPPER) {
140		((const struct wrapper *)priv)->swap(a, b, (int)size);
141		return;
 
 
142	}
143
144	if (swap_func == SWAP_WORDS_64)
145		swap_words_64(a, b, size);
146	else if (swap_func == SWAP_WORDS_32)
147		swap_words_32(a, b, size);
148	else if (swap_func == SWAP_BYTES)
149		swap_bytes(a, b, size);
150	else
151		swap_func(a, b, (int)size, priv);
 
 
 
 
 
152}
153
154#define _CMP_WRAPPER ((cmp_r_func_t)0L)
 
 
 
155
156static int do_cmp(const void *a, const void *b, cmp_r_func_t cmp, const void *priv)
157{
158	if (cmp == _CMP_WRAPPER)
159		return ((const struct wrapper *)priv)->cmp(a, b);
160	return cmp(a, b, priv);
161}
162
163/**
164 * parent - given the offset of the child, find the offset of the parent.
165 * @i: the offset of the heap element whose parent is sought.  Non-zero.
166 * @lsbit: a precomputed 1-bit mask, equal to "size & -size"
167 * @size: size of each element
168 *
169 * In terms of array indexes, the parent of element j = @i/@size is simply
170 * (j-1)/2.  But when working in byte offsets, we can't use implicit
171 * truncation of integer divides.
172 *
173 * Fortunately, we only need one bit of the quotient, not the full divide.
174 * @size has a least significant bit.  That bit will be clear if @i is
175 * an even multiple of @size, and set if it's an odd multiple.
176 *
177 * Logically, we're doing "if (i & lsbit) i -= size;", but since the
178 * branch is unpredictable, it's done with a bit of clever branch-free
179 * code instead.
180 */
181__attribute_const__ __always_inline
182static size_t parent(size_t i, unsigned int lsbit, size_t size)
183{
184	i -= size;
185	i -= size & -(i & lsbit);
186	return i / 2;
187}
 
 
188
189/**
190 * sort_r - sort an array of elements
191 * @base: pointer to data to sort
192 * @num: number of elements
193 * @size: size of each element
194 * @cmp_func: pointer to comparison function
195 * @swap_func: pointer to swap function or NULL
196 * @priv: third argument passed to comparison function
197 *
198 * This function does a heapsort on the given array.  You may provide
199 * a swap_func function if you need to do something more than a memory
200 * copy (e.g. fix up pointers or auxiliary data), but the built-in swap
201 * avoids a slow retpoline and so is significantly faster.
202 *
203 * Sorting time is O(n log n) both on average and worst-case. While
204 * quicksort is slightly faster on average, it suffers from exploitable
205 * O(n*n) worst-case behavior and extra memory requirements that make
206 * it less suitable for kernel use.
207 */
208void sort_r(void *base, size_t num, size_t size,
209	    cmp_r_func_t cmp_func,
210	    swap_r_func_t swap_func,
211	    const void *priv)
212{
213	/* pre-scale counters for performance */
214	size_t n = num * size, a = (num/2) * size;
215	const unsigned int lsbit = size & -size;  /* Used to find parent */
216	size_t shift = 0;
217
218	if (!a)		/* num < 2 || size == 0 */
219		return;
220
221	/* called from 'sort' without swap function, let's pick the default */
222	if (swap_func == SWAP_WRAPPER && !((struct wrapper *)priv)->swap)
223		swap_func = NULL;
224
225	if (!swap_func) {
226		if (is_aligned(base, size, 8))
227			swap_func = SWAP_WORDS_64;
228		else if (is_aligned(base, size, 4))
229			swap_func = SWAP_WORDS_32;
230		else
231			swap_func = SWAP_BYTES;
232	}
233
234	/*
235	 * Loop invariants:
236	 * 1. elements [a,n) satisfy the heap property (compare greater than
237	 *    all of their children),
238	 * 2. elements [n,num*size) are sorted, and
239	 * 3. a <= b <= c <= d <= n (whenever they are valid).
240	 */
241	for (;;) {
242		size_t b, c, d;
243
244		if (a)			/* Building heap: sift down a */
245			a -= size << shift;
246		else if (n > 3 * size) { /* Sorting: Extract two largest elements */
247			n -= size;
248			do_swap(base, base + n, size, swap_func, priv);
249			shift = do_cmp(base + size, base + 2 * size, cmp_func, priv) <= 0;
250			a = size << shift;
251			n -= size;
252			do_swap(base + a, base + n, size, swap_func, priv);
253		} else {		/* Sort complete */
254			break;
255		}
256
257		/*
258		 * Sift element at "a" down into heap.  This is the
259		 * "bottom-up" variant, which significantly reduces
260		 * calls to cmp_func(): we find the sift-down path all
261		 * the way to the leaves (one compare per level), then
262		 * backtrack to find where to insert the target element.
263		 *
264		 * Because elements tend to sift down close to the leaves,
265		 * this uses fewer compares than doing two per level
266		 * on the way down.  (A bit more than half as many on
267		 * average, 3/4 worst-case.)
268		 */
269		for (b = a; c = 2*b + size, (d = c + size) < n;)
270			b = do_cmp(base + c, base + d, cmp_func, priv) > 0 ? c : d;
271		if (d == n)	/* Special case last leaf with no sibling */
272			b = c;
273
274		/* Now backtrack from "b" to the correct location for "a" */
275		while (b != a && do_cmp(base + a, base + b, cmp_func, priv) >= 0)
276			b = parent(b, lsbit, size);
277		c = b;			/* Where "a" belongs */
278		while (b != a) {	/* Shift it into place */
279			b = parent(b, lsbit, size);
280			do_swap(base + b, base + c, size, swap_func, priv);
281		}
282	}
283
284	n -= size;
285	do_swap(base, base + n, size, swap_func, priv);
286	if (n == size * 2 && do_cmp(base, base + size, cmp_func, priv) > 0)
287		do_swap(base, base + size, size, swap_func, priv);
288}
289EXPORT_SYMBOL(sort_r);
290
291void sort(void *base, size_t num, size_t size,
292	  cmp_func_t cmp_func,
293	  swap_func_t swap_func)
294{
295	struct wrapper w = {
296		.cmp  = cmp_func,
297		.swap = swap_func,
298	};
299
300	return sort_r(base, num, size, _CMP_WRAPPER, SWAP_WRAPPER, &w);
301}
302EXPORT_SYMBOL(sort);