Loading...
Note: File does not exist in v3.15.
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Maple Tree implementation
4 * Copyright (c) 2018-2022 Oracle Corporation
5 * Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
6 * Matthew Wilcox <willy@infradead.org>
7 * Copyright (c) 2023 ByteDance
8 * Author: Peng Zhang <zhangpeng.00@bytedance.com>
9 */
10
11/*
12 * DOC: Interesting implementation details of the Maple Tree
13 *
14 * Each node type has a number of slots for entries and a number of slots for
15 * pivots. In the case of dense nodes, the pivots are implied by the position
16 * and are simply the slot index + the minimum of the node.
17 *
18 * In regular B-Tree terms, pivots are called keys. The term pivot is used to
19 * indicate that the tree is specifying ranges. Pivots may appear in the
20 * subtree with an entry attached to the value whereas keys are unique to a
21 * specific position of a B-tree. Pivot values are inclusive of the slot with
22 * the same index.
23 *
24 *
25 * The following illustrates the layout of a range64 nodes slots and pivots.
26 *
27 *
28 * Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
29 * ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬
30 * │ │ │ │ │ │ │ │ └─ Implied maximum
31 * │ │ │ │ │ │ │ └─ Pivot 14
32 * │ │ │ │ │ │ └─ Pivot 13
33 * │ │ │ │ │ └─ Pivot 12
34 * │ │ │ │ └─ Pivot 11
35 * │ │ │ └─ Pivot 2
36 * │ │ └─ Pivot 1
37 * │ └─ Pivot 0
38 * └─ Implied minimum
39 *
40 * Slot contents:
41 * Internal (non-leaf) nodes contain pointers to other nodes.
42 * Leaf nodes contain entries.
43 *
44 * The location of interest is often referred to as an offset. All offsets have
45 * a slot, but the last offset has an implied pivot from the node above (or
46 * UINT_MAX for the root node.
47 *
48 * Ranges complicate certain write activities. When modifying any of
49 * the B-tree variants, it is known that one entry will either be added or
50 * deleted. When modifying the Maple Tree, one store operation may overwrite
51 * the entire data set, or one half of the tree, or the middle half of the tree.
52 *
53 */
54
55
56#include <linux/maple_tree.h>
57#include <linux/xarray.h>
58#include <linux/types.h>
59#include <linux/export.h>
60#include <linux/slab.h>
61#include <linux/limits.h>
62#include <asm/barrier.h>
63
64#define CREATE_TRACE_POINTS
65#include <trace/events/maple_tree.h>
66
67/*
68 * Kernel pointer hashing renders much of the maple tree dump useless as tagged
69 * pointers get hashed to arbitrary values.
70 *
71 * If CONFIG_DEBUG_VM_MAPLE_TREE is set we are in a debug mode where it is
72 * permissible to bypass this. Otherwise remain cautious and retain the hashing.
73 *
74 * Userland doesn't know about %px so also use %p there.
75 */
76#if defined(__KERNEL__) && defined(CONFIG_DEBUG_VM_MAPLE_TREE)
77#define PTR_FMT "%px"
78#else
79#define PTR_FMT "%p"
80#endif
81
82#define MA_ROOT_PARENT 1
83
84/*
85 * Maple state flags
86 * * MA_STATE_BULK - Bulk insert mode
87 * * MA_STATE_REBALANCE - Indicate a rebalance during bulk insert
88 * * MA_STATE_PREALLOC - Preallocated nodes, WARN_ON allocation
89 */
90#define MA_STATE_BULK 1
91#define MA_STATE_REBALANCE 2
92#define MA_STATE_PREALLOC 4
93
94#define ma_parent_ptr(x) ((struct maple_pnode *)(x))
95#define mas_tree_parent(x) ((unsigned long)(x->tree) | MA_ROOT_PARENT)
96#define ma_mnode_ptr(x) ((struct maple_node *)(x))
97#define ma_enode_ptr(x) ((struct maple_enode *)(x))
98static struct kmem_cache *maple_node_cache;
99
100#ifdef CONFIG_DEBUG_MAPLE_TREE
101static const unsigned long mt_max[] = {
102 [maple_dense] = MAPLE_NODE_SLOTS,
103 [maple_leaf_64] = ULONG_MAX,
104 [maple_range_64] = ULONG_MAX,
105 [maple_arange_64] = ULONG_MAX,
106};
107#define mt_node_max(x) mt_max[mte_node_type(x)]
108#endif
109
110static const unsigned char mt_slots[] = {
111 [maple_dense] = MAPLE_NODE_SLOTS,
112 [maple_leaf_64] = MAPLE_RANGE64_SLOTS,
113 [maple_range_64] = MAPLE_RANGE64_SLOTS,
114 [maple_arange_64] = MAPLE_ARANGE64_SLOTS,
115};
116#define mt_slot_count(x) mt_slots[mte_node_type(x)]
117
118static const unsigned char mt_pivots[] = {
119 [maple_dense] = 0,
120 [maple_leaf_64] = MAPLE_RANGE64_SLOTS - 1,
121 [maple_range_64] = MAPLE_RANGE64_SLOTS - 1,
122 [maple_arange_64] = MAPLE_ARANGE64_SLOTS - 1,
123};
124#define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
125
126static const unsigned char mt_min_slots[] = {
127 [maple_dense] = MAPLE_NODE_SLOTS / 2,
128 [maple_leaf_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
129 [maple_range_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
130 [maple_arange_64] = (MAPLE_ARANGE64_SLOTS / 2) - 1,
131};
132#define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
133
134#define MAPLE_BIG_NODE_SLOTS (MAPLE_RANGE64_SLOTS * 2 + 2)
135#define MAPLE_BIG_NODE_GAPS (MAPLE_ARANGE64_SLOTS * 2 + 1)
136
137struct maple_big_node {
138 unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
139 union {
140 struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
141 struct {
142 unsigned long padding[MAPLE_BIG_NODE_GAPS];
143 unsigned long gap[MAPLE_BIG_NODE_GAPS];
144 };
145 };
146 unsigned char b_end;
147 enum maple_type type;
148};
149
150/*
151 * The maple_subtree_state is used to build a tree to replace a segment of an
152 * existing tree in a more atomic way. Any walkers of the older tree will hit a
153 * dead node and restart on updates.
154 */
155struct maple_subtree_state {
156 struct ma_state *orig_l; /* Original left side of subtree */
157 struct ma_state *orig_r; /* Original right side of subtree */
158 struct ma_state *l; /* New left side of subtree */
159 struct ma_state *m; /* New middle of subtree (rare) */
160 struct ma_state *r; /* New right side of subtree */
161 struct ma_topiary *free; /* nodes to be freed */
162 struct ma_topiary *destroy; /* Nodes to be destroyed (walked and freed) */
163 struct maple_big_node *bn;
164};
165
166#ifdef CONFIG_KASAN_STACK
167/* Prevent mas_wr_bnode() from exceeding the stack frame limit */
168#define noinline_for_kasan noinline_for_stack
169#else
170#define noinline_for_kasan inline
171#endif
172
173/* Functions */
174static inline struct maple_node *mt_alloc_one(gfp_t gfp)
175{
176 return kmem_cache_alloc(maple_node_cache, gfp);
177}
178
179static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
180{
181 return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes);
182}
183
184static inline void mt_free_one(struct maple_node *node)
185{
186 kmem_cache_free(maple_node_cache, node);
187}
188
189static inline void mt_free_bulk(size_t size, void __rcu **nodes)
190{
191 kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
192}
193
194static void mt_free_rcu(struct rcu_head *head)
195{
196 struct maple_node *node = container_of(head, struct maple_node, rcu);
197
198 kmem_cache_free(maple_node_cache, node);
199}
200
201/*
202 * ma_free_rcu() - Use rcu callback to free a maple node
203 * @node: The node to free
204 *
205 * The maple tree uses the parent pointer to indicate this node is no longer in
206 * use and will be freed.
207 */
208static void ma_free_rcu(struct maple_node *node)
209{
210 WARN_ON(node->parent != ma_parent_ptr(node));
211 call_rcu(&node->rcu, mt_free_rcu);
212}
213
214static void mas_set_height(struct ma_state *mas)
215{
216 unsigned int new_flags = mas->tree->ma_flags;
217
218 new_flags &= ~MT_FLAGS_HEIGHT_MASK;
219 MAS_BUG_ON(mas, mas->depth > MAPLE_HEIGHT_MAX);
220 new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET;
221 mas->tree->ma_flags = new_flags;
222}
223
224static unsigned int mas_mt_height(struct ma_state *mas)
225{
226 return mt_height(mas->tree);
227}
228
229static inline unsigned int mt_attr(struct maple_tree *mt)
230{
231 return mt->ma_flags & ~MT_FLAGS_HEIGHT_MASK;
232}
233
234static __always_inline enum maple_type mte_node_type(
235 const struct maple_enode *entry)
236{
237 return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
238 MAPLE_NODE_TYPE_MASK;
239}
240
241static __always_inline bool ma_is_dense(const enum maple_type type)
242{
243 return type < maple_leaf_64;
244}
245
246static __always_inline bool ma_is_leaf(const enum maple_type type)
247{
248 return type < maple_range_64;
249}
250
251static __always_inline bool mte_is_leaf(const struct maple_enode *entry)
252{
253 return ma_is_leaf(mte_node_type(entry));
254}
255
256/*
257 * We also reserve values with the bottom two bits set to '10' which are
258 * below 4096
259 */
260static __always_inline bool mt_is_reserved(const void *entry)
261{
262 return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
263 xa_is_internal(entry);
264}
265
266static __always_inline void mas_set_err(struct ma_state *mas, long err)
267{
268 mas->node = MA_ERROR(err);
269 mas->status = ma_error;
270}
271
272static __always_inline bool mas_is_ptr(const struct ma_state *mas)
273{
274 return mas->status == ma_root;
275}
276
277static __always_inline bool mas_is_start(const struct ma_state *mas)
278{
279 return mas->status == ma_start;
280}
281
282static __always_inline bool mas_is_none(const struct ma_state *mas)
283{
284 return mas->status == ma_none;
285}
286
287static __always_inline bool mas_is_paused(const struct ma_state *mas)
288{
289 return mas->status == ma_pause;
290}
291
292static __always_inline bool mas_is_overflow(struct ma_state *mas)
293{
294 return mas->status == ma_overflow;
295}
296
297static inline bool mas_is_underflow(struct ma_state *mas)
298{
299 return mas->status == ma_underflow;
300}
301
302static __always_inline struct maple_node *mte_to_node(
303 const struct maple_enode *entry)
304{
305 return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
306}
307
308/*
309 * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
310 * @entry: The maple encoded node
311 *
312 * Return: a maple topiary pointer
313 */
314static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
315{
316 return (struct maple_topiary *)
317 ((unsigned long)entry & ~MAPLE_NODE_MASK);
318}
319
320/*
321 * mas_mn() - Get the maple state node.
322 * @mas: The maple state
323 *
324 * Return: the maple node (not encoded - bare pointer).
325 */
326static inline struct maple_node *mas_mn(const struct ma_state *mas)
327{
328 return mte_to_node(mas->node);
329}
330
331/*
332 * mte_set_node_dead() - Set a maple encoded node as dead.
333 * @mn: The maple encoded node.
334 */
335static inline void mte_set_node_dead(struct maple_enode *mn)
336{
337 mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
338 smp_wmb(); /* Needed for RCU */
339}
340
341/* Bit 1 indicates the root is a node */
342#define MAPLE_ROOT_NODE 0x02
343/* maple_type stored bit 3-6 */
344#define MAPLE_ENODE_TYPE_SHIFT 0x03
345/* Bit 2 means a NULL somewhere below */
346#define MAPLE_ENODE_NULL 0x04
347
348static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
349 enum maple_type type)
350{
351 return (void *)((unsigned long)node |
352 (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
353}
354
355static inline void *mte_mk_root(const struct maple_enode *node)
356{
357 return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
358}
359
360static inline void *mte_safe_root(const struct maple_enode *node)
361{
362 return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
363}
364
365static inline void __maybe_unused *mte_set_full(const struct maple_enode *node)
366{
367 return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
368}
369
370static inline void __maybe_unused *mte_clear_full(const struct maple_enode *node)
371{
372 return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
373}
374
375static inline bool __maybe_unused mte_has_null(const struct maple_enode *node)
376{
377 return (unsigned long)node & MAPLE_ENODE_NULL;
378}
379
380static __always_inline bool ma_is_root(struct maple_node *node)
381{
382 return ((unsigned long)node->parent & MA_ROOT_PARENT);
383}
384
385static __always_inline bool mte_is_root(const struct maple_enode *node)
386{
387 return ma_is_root(mte_to_node(node));
388}
389
390static inline bool mas_is_root_limits(const struct ma_state *mas)
391{
392 return !mas->min && mas->max == ULONG_MAX;
393}
394
395static __always_inline bool mt_is_alloc(struct maple_tree *mt)
396{
397 return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
398}
399
400/*
401 * The Parent Pointer
402 * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
403 * When storing a 32 or 64 bit values, the offset can fit into 5 bits. The 16
404 * bit values need an extra bit to store the offset. This extra bit comes from
405 * a reuse of the last bit in the node type. This is possible by using bit 1 to
406 * indicate if bit 2 is part of the type or the slot.
407 *
408 * Note types:
409 * 0x??1 = Root
410 * 0x?00 = 16 bit nodes
411 * 0x010 = 32 bit nodes
412 * 0x110 = 64 bit nodes
413 *
414 * Slot size and alignment
415 * 0b??1 : Root
416 * 0b?00 : 16 bit values, type in 0-1, slot in 2-7
417 * 0b010 : 32 bit values, type in 0-2, slot in 3-7
418 * 0b110 : 64 bit values, type in 0-2, slot in 3-7
419 */
420
421#define MAPLE_PARENT_ROOT 0x01
422
423#define MAPLE_PARENT_SLOT_SHIFT 0x03
424#define MAPLE_PARENT_SLOT_MASK 0xF8
425
426#define MAPLE_PARENT_16B_SLOT_SHIFT 0x02
427#define MAPLE_PARENT_16B_SLOT_MASK 0xFC
428
429#define MAPLE_PARENT_RANGE64 0x06
430#define MAPLE_PARENT_RANGE32 0x04
431#define MAPLE_PARENT_NOT_RANGE16 0x02
432
433/*
434 * mte_parent_shift() - Get the parent shift for the slot storage.
435 * @parent: The parent pointer cast as an unsigned long
436 * Return: The shift into that pointer to the star to of the slot
437 */
438static inline unsigned long mte_parent_shift(unsigned long parent)
439{
440 /* Note bit 1 == 0 means 16B */
441 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
442 return MAPLE_PARENT_SLOT_SHIFT;
443
444 return MAPLE_PARENT_16B_SLOT_SHIFT;
445}
446
447/*
448 * mte_parent_slot_mask() - Get the slot mask for the parent.
449 * @parent: The parent pointer cast as an unsigned long.
450 * Return: The slot mask for that parent.
451 */
452static inline unsigned long mte_parent_slot_mask(unsigned long parent)
453{
454 /* Note bit 1 == 0 means 16B */
455 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
456 return MAPLE_PARENT_SLOT_MASK;
457
458 return MAPLE_PARENT_16B_SLOT_MASK;
459}
460
461/*
462 * mas_parent_type() - Return the maple_type of the parent from the stored
463 * parent type.
464 * @mas: The maple state
465 * @enode: The maple_enode to extract the parent's enum
466 * Return: The node->parent maple_type
467 */
468static inline
469enum maple_type mas_parent_type(struct ma_state *mas, struct maple_enode *enode)
470{
471 unsigned long p_type;
472
473 p_type = (unsigned long)mte_to_node(enode)->parent;
474 if (WARN_ON(p_type & MAPLE_PARENT_ROOT))
475 return 0;
476
477 p_type &= MAPLE_NODE_MASK;
478 p_type &= ~mte_parent_slot_mask(p_type);
479 switch (p_type) {
480 case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
481 if (mt_is_alloc(mas->tree))
482 return maple_arange_64;
483 return maple_range_64;
484 }
485
486 return 0;
487}
488
489/*
490 * mas_set_parent() - Set the parent node and encode the slot
491 * @mas: The maple state
492 * @enode: The encoded maple node.
493 * @parent: The encoded maple node that is the parent of @enode.
494 * @slot: The slot that @enode resides in @parent.
495 *
496 * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
497 * parent type.
498 */
499static inline
500void mas_set_parent(struct ma_state *mas, struct maple_enode *enode,
501 const struct maple_enode *parent, unsigned char slot)
502{
503 unsigned long val = (unsigned long)parent;
504 unsigned long shift;
505 unsigned long type;
506 enum maple_type p_type = mte_node_type(parent);
507
508 MAS_BUG_ON(mas, p_type == maple_dense);
509 MAS_BUG_ON(mas, p_type == maple_leaf_64);
510
511 switch (p_type) {
512 case maple_range_64:
513 case maple_arange_64:
514 shift = MAPLE_PARENT_SLOT_SHIFT;
515 type = MAPLE_PARENT_RANGE64;
516 break;
517 default:
518 case maple_dense:
519 case maple_leaf_64:
520 shift = type = 0;
521 break;
522 }
523
524 val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
525 val |= (slot << shift) | type;
526 mte_to_node(enode)->parent = ma_parent_ptr(val);
527}
528
529/*
530 * mte_parent_slot() - get the parent slot of @enode.
531 * @enode: The encoded maple node.
532 *
533 * Return: The slot in the parent node where @enode resides.
534 */
535static __always_inline
536unsigned int mte_parent_slot(const struct maple_enode *enode)
537{
538 unsigned long val = (unsigned long)mte_to_node(enode)->parent;
539
540 if (unlikely(val & MA_ROOT_PARENT))
541 return 0;
542
543 /*
544 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
545 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
546 */
547 return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
548}
549
550/*
551 * mte_parent() - Get the parent of @node.
552 * @enode: The encoded maple node.
553 *
554 * Return: The parent maple node.
555 */
556static __always_inline
557struct maple_node *mte_parent(const struct maple_enode *enode)
558{
559 return (void *)((unsigned long)
560 (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
561}
562
563/*
564 * ma_dead_node() - check if the @enode is dead.
565 * @enode: The encoded maple node
566 *
567 * Return: true if dead, false otherwise.
568 */
569static __always_inline bool ma_dead_node(const struct maple_node *node)
570{
571 struct maple_node *parent;
572
573 /* Do not reorder reads from the node prior to the parent check */
574 smp_rmb();
575 parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK);
576 return (parent == node);
577}
578
579/*
580 * mte_dead_node() - check if the @enode is dead.
581 * @enode: The encoded maple node
582 *
583 * Return: true if dead, false otherwise.
584 */
585static __always_inline bool mte_dead_node(const struct maple_enode *enode)
586{
587 struct maple_node *parent, *node;
588
589 node = mte_to_node(enode);
590 /* Do not reorder reads from the node prior to the parent check */
591 smp_rmb();
592 parent = mte_parent(enode);
593 return (parent == node);
594}
595
596/*
597 * mas_allocated() - Get the number of nodes allocated in a maple state.
598 * @mas: The maple state
599 *
600 * The ma_state alloc member is overloaded to hold a pointer to the first
601 * allocated node or to the number of requested nodes to allocate. If bit 0 is
602 * set, then the alloc contains the number of requested nodes. If there is an
603 * allocated node, then the total allocated nodes is in that node.
604 *
605 * Return: The total number of nodes allocated
606 */
607static inline unsigned long mas_allocated(const struct ma_state *mas)
608{
609 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
610 return 0;
611
612 return mas->alloc->total;
613}
614
615/*
616 * mas_set_alloc_req() - Set the requested number of allocations.
617 * @mas: the maple state
618 * @count: the number of allocations.
619 *
620 * The requested number of allocations is either in the first allocated node,
621 * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
622 * no allocated node. Set the request either in the node or do the necessary
623 * encoding to store in @mas->alloc directly.
624 */
625static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
626{
627 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
628 if (!count)
629 mas->alloc = NULL;
630 else
631 mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
632 return;
633 }
634
635 mas->alloc->request_count = count;
636}
637
638/*
639 * mas_alloc_req() - get the requested number of allocations.
640 * @mas: The maple state
641 *
642 * The alloc count is either stored directly in @mas, or in
643 * @mas->alloc->request_count if there is at least one node allocated. Decode
644 * the request count if it's stored directly in @mas->alloc.
645 *
646 * Return: The allocation request count.
647 */
648static inline unsigned int mas_alloc_req(const struct ma_state *mas)
649{
650 if ((unsigned long)mas->alloc & 0x1)
651 return (unsigned long)(mas->alloc) >> 1;
652 else if (mas->alloc)
653 return mas->alloc->request_count;
654 return 0;
655}
656
657/*
658 * ma_pivots() - Get a pointer to the maple node pivots.
659 * @node: the maple node
660 * @type: the node type
661 *
662 * In the event of a dead node, this array may be %NULL
663 *
664 * Return: A pointer to the maple node pivots
665 */
666static inline unsigned long *ma_pivots(struct maple_node *node,
667 enum maple_type type)
668{
669 switch (type) {
670 case maple_arange_64:
671 return node->ma64.pivot;
672 case maple_range_64:
673 case maple_leaf_64:
674 return node->mr64.pivot;
675 case maple_dense:
676 return NULL;
677 }
678 return NULL;
679}
680
681/*
682 * ma_gaps() - Get a pointer to the maple node gaps.
683 * @node: the maple node
684 * @type: the node type
685 *
686 * Return: A pointer to the maple node gaps
687 */
688static inline unsigned long *ma_gaps(struct maple_node *node,
689 enum maple_type type)
690{
691 switch (type) {
692 case maple_arange_64:
693 return node->ma64.gap;
694 case maple_range_64:
695 case maple_leaf_64:
696 case maple_dense:
697 return NULL;
698 }
699 return NULL;
700}
701
702/*
703 * mas_safe_pivot() - get the pivot at @piv or mas->max.
704 * @mas: The maple state
705 * @pivots: The pointer to the maple node pivots
706 * @piv: The pivot to fetch
707 * @type: The maple node type
708 *
709 * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
710 * otherwise.
711 */
712static __always_inline unsigned long
713mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
714 unsigned char piv, enum maple_type type)
715{
716 if (piv >= mt_pivots[type])
717 return mas->max;
718
719 return pivots[piv];
720}
721
722/*
723 * mas_safe_min() - Return the minimum for a given offset.
724 * @mas: The maple state
725 * @pivots: The pointer to the maple node pivots
726 * @offset: The offset into the pivot array
727 *
728 * Return: The minimum range value that is contained in @offset.
729 */
730static inline unsigned long
731mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
732{
733 if (likely(offset))
734 return pivots[offset - 1] + 1;
735
736 return mas->min;
737}
738
739/*
740 * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
741 * @mn: The encoded maple node
742 * @piv: The pivot offset
743 * @val: The value of the pivot
744 */
745static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
746 unsigned long val)
747{
748 struct maple_node *node = mte_to_node(mn);
749 enum maple_type type = mte_node_type(mn);
750
751 BUG_ON(piv >= mt_pivots[type]);
752 switch (type) {
753 case maple_range_64:
754 case maple_leaf_64:
755 node->mr64.pivot[piv] = val;
756 break;
757 case maple_arange_64:
758 node->ma64.pivot[piv] = val;
759 break;
760 case maple_dense:
761 break;
762 }
763
764}
765
766/*
767 * ma_slots() - Get a pointer to the maple node slots.
768 * @mn: The maple node
769 * @mt: The maple node type
770 *
771 * Return: A pointer to the maple node slots
772 */
773static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
774{
775 switch (mt) {
776 case maple_arange_64:
777 return mn->ma64.slot;
778 case maple_range_64:
779 case maple_leaf_64:
780 return mn->mr64.slot;
781 case maple_dense:
782 return mn->slot;
783 }
784
785 return NULL;
786}
787
788static inline bool mt_write_locked(const struct maple_tree *mt)
789{
790 return mt_external_lock(mt) ? mt_write_lock_is_held(mt) :
791 lockdep_is_held(&mt->ma_lock);
792}
793
794static __always_inline bool mt_locked(const struct maple_tree *mt)
795{
796 return mt_external_lock(mt) ? mt_lock_is_held(mt) :
797 lockdep_is_held(&mt->ma_lock);
798}
799
800static __always_inline void *mt_slot(const struct maple_tree *mt,
801 void __rcu **slots, unsigned char offset)
802{
803 return rcu_dereference_check(slots[offset], mt_locked(mt));
804}
805
806static __always_inline void *mt_slot_locked(struct maple_tree *mt,
807 void __rcu **slots, unsigned char offset)
808{
809 return rcu_dereference_protected(slots[offset], mt_write_locked(mt));
810}
811/*
812 * mas_slot_locked() - Get the slot value when holding the maple tree lock.
813 * @mas: The maple state
814 * @slots: The pointer to the slots
815 * @offset: The offset into the slots array to fetch
816 *
817 * Return: The entry stored in @slots at the @offset.
818 */
819static __always_inline void *mas_slot_locked(struct ma_state *mas,
820 void __rcu **slots, unsigned char offset)
821{
822 return mt_slot_locked(mas->tree, slots, offset);
823}
824
825/*
826 * mas_slot() - Get the slot value when not holding the maple tree lock.
827 * @mas: The maple state
828 * @slots: The pointer to the slots
829 * @offset: The offset into the slots array to fetch
830 *
831 * Return: The entry stored in @slots at the @offset
832 */
833static __always_inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
834 unsigned char offset)
835{
836 return mt_slot(mas->tree, slots, offset);
837}
838
839/*
840 * mas_root() - Get the maple tree root.
841 * @mas: The maple state.
842 *
843 * Return: The pointer to the root of the tree
844 */
845static __always_inline void *mas_root(struct ma_state *mas)
846{
847 return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
848}
849
850static inline void *mt_root_locked(struct maple_tree *mt)
851{
852 return rcu_dereference_protected(mt->ma_root, mt_write_locked(mt));
853}
854
855/*
856 * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
857 * @mas: The maple state.
858 *
859 * Return: The pointer to the root of the tree
860 */
861static inline void *mas_root_locked(struct ma_state *mas)
862{
863 return mt_root_locked(mas->tree);
864}
865
866static inline struct maple_metadata *ma_meta(struct maple_node *mn,
867 enum maple_type mt)
868{
869 switch (mt) {
870 case maple_arange_64:
871 return &mn->ma64.meta;
872 default:
873 return &mn->mr64.meta;
874 }
875}
876
877/*
878 * ma_set_meta() - Set the metadata information of a node.
879 * @mn: The maple node
880 * @mt: The maple node type
881 * @offset: The offset of the highest sub-gap in this node.
882 * @end: The end of the data in this node.
883 */
884static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
885 unsigned char offset, unsigned char end)
886{
887 struct maple_metadata *meta = ma_meta(mn, mt);
888
889 meta->gap = offset;
890 meta->end = end;
891}
892
893/*
894 * mt_clear_meta() - clear the metadata information of a node, if it exists
895 * @mt: The maple tree
896 * @mn: The maple node
897 * @type: The maple node type
898 */
899static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn,
900 enum maple_type type)
901{
902 struct maple_metadata *meta;
903 unsigned long *pivots;
904 void __rcu **slots;
905 void *next;
906
907 switch (type) {
908 case maple_range_64:
909 pivots = mn->mr64.pivot;
910 if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) {
911 slots = mn->mr64.slot;
912 next = mt_slot_locked(mt, slots,
913 MAPLE_RANGE64_SLOTS - 1);
914 if (unlikely((mte_to_node(next) &&
915 mte_node_type(next))))
916 return; /* no metadata, could be node */
917 }
918 fallthrough;
919 case maple_arange_64:
920 meta = ma_meta(mn, type);
921 break;
922 default:
923 return;
924 }
925
926 meta->gap = 0;
927 meta->end = 0;
928}
929
930/*
931 * ma_meta_end() - Get the data end of a node from the metadata
932 * @mn: The maple node
933 * @mt: The maple node type
934 */
935static inline unsigned char ma_meta_end(struct maple_node *mn,
936 enum maple_type mt)
937{
938 struct maple_metadata *meta = ma_meta(mn, mt);
939
940 return meta->end;
941}
942
943/*
944 * ma_meta_gap() - Get the largest gap location of a node from the metadata
945 * @mn: The maple node
946 */
947static inline unsigned char ma_meta_gap(struct maple_node *mn)
948{
949 return mn->ma64.meta.gap;
950}
951
952/*
953 * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
954 * @mn: The maple node
955 * @mt: The maple node type
956 * @offset: The location of the largest gap.
957 */
958static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
959 unsigned char offset)
960{
961
962 struct maple_metadata *meta = ma_meta(mn, mt);
963
964 meta->gap = offset;
965}
966
967/*
968 * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
969 * @mat: the ma_topiary, a linked list of dead nodes.
970 * @dead_enode: the node to be marked as dead and added to the tail of the list
971 *
972 * Add the @dead_enode to the linked list in @mat.
973 */
974static inline void mat_add(struct ma_topiary *mat,
975 struct maple_enode *dead_enode)
976{
977 mte_set_node_dead(dead_enode);
978 mte_to_mat(dead_enode)->next = NULL;
979 if (!mat->tail) {
980 mat->tail = mat->head = dead_enode;
981 return;
982 }
983
984 mte_to_mat(mat->tail)->next = dead_enode;
985 mat->tail = dead_enode;
986}
987
988static void mt_free_walk(struct rcu_head *head);
989static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
990 bool free);
991/*
992 * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
993 * @mas: the maple state
994 * @mat: the ma_topiary linked list of dead nodes to free.
995 *
996 * Destroy walk a dead list.
997 */
998static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
999{
1000 struct maple_enode *next;
1001 struct maple_node *node;
1002 bool in_rcu = mt_in_rcu(mas->tree);
1003
1004 while (mat->head) {
1005 next = mte_to_mat(mat->head)->next;
1006 node = mte_to_node(mat->head);
1007 mt_destroy_walk(mat->head, mas->tree, !in_rcu);
1008 if (in_rcu)
1009 call_rcu(&node->rcu, mt_free_walk);
1010 mat->head = next;
1011 }
1012}
1013/*
1014 * mas_descend() - Descend into the slot stored in the ma_state.
1015 * @mas: the maple state.
1016 *
1017 * Note: Not RCU safe, only use in write side or debug code.
1018 */
1019static inline void mas_descend(struct ma_state *mas)
1020{
1021 enum maple_type type;
1022 unsigned long *pivots;
1023 struct maple_node *node;
1024 void __rcu **slots;
1025
1026 node = mas_mn(mas);
1027 type = mte_node_type(mas->node);
1028 pivots = ma_pivots(node, type);
1029 slots = ma_slots(node, type);
1030
1031 if (mas->offset)
1032 mas->min = pivots[mas->offset - 1] + 1;
1033 mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
1034 mas->node = mas_slot(mas, slots, mas->offset);
1035}
1036
1037/*
1038 * mte_set_gap() - Set a maple node gap.
1039 * @mn: The encoded maple node
1040 * @gap: The offset of the gap to set
1041 * @val: The gap value
1042 */
1043static inline void mte_set_gap(const struct maple_enode *mn,
1044 unsigned char gap, unsigned long val)
1045{
1046 switch (mte_node_type(mn)) {
1047 default:
1048 break;
1049 case maple_arange_64:
1050 mte_to_node(mn)->ma64.gap[gap] = val;
1051 break;
1052 }
1053}
1054
1055/*
1056 * mas_ascend() - Walk up a level of the tree.
1057 * @mas: The maple state
1058 *
1059 * Sets the @mas->max and @mas->min to the correct values when walking up. This
1060 * may cause several levels of walking up to find the correct min and max.
1061 * May find a dead node which will cause a premature return.
1062 * Return: 1 on dead node, 0 otherwise
1063 */
1064static int mas_ascend(struct ma_state *mas)
1065{
1066 struct maple_enode *p_enode; /* parent enode. */
1067 struct maple_enode *a_enode; /* ancestor enode. */
1068 struct maple_node *a_node; /* ancestor node. */
1069 struct maple_node *p_node; /* parent node. */
1070 unsigned char a_slot;
1071 enum maple_type a_type;
1072 unsigned long min, max;
1073 unsigned long *pivots;
1074 bool set_max = false, set_min = false;
1075
1076 a_node = mas_mn(mas);
1077 if (ma_is_root(a_node)) {
1078 mas->offset = 0;
1079 return 0;
1080 }
1081
1082 p_node = mte_parent(mas->node);
1083 if (unlikely(a_node == p_node))
1084 return 1;
1085
1086 a_type = mas_parent_type(mas, mas->node);
1087 mas->offset = mte_parent_slot(mas->node);
1088 a_enode = mt_mk_node(p_node, a_type);
1089
1090 /* Check to make sure all parent information is still accurate */
1091 if (p_node != mte_parent(mas->node))
1092 return 1;
1093
1094 mas->node = a_enode;
1095
1096 if (mte_is_root(a_enode)) {
1097 mas->max = ULONG_MAX;
1098 mas->min = 0;
1099 return 0;
1100 }
1101
1102 min = 0;
1103 max = ULONG_MAX;
1104 if (!mas->offset) {
1105 min = mas->min;
1106 set_min = true;
1107 }
1108
1109 if (mas->max == ULONG_MAX)
1110 set_max = true;
1111
1112 do {
1113 p_enode = a_enode;
1114 a_type = mas_parent_type(mas, p_enode);
1115 a_node = mte_parent(p_enode);
1116 a_slot = mte_parent_slot(p_enode);
1117 a_enode = mt_mk_node(a_node, a_type);
1118 pivots = ma_pivots(a_node, a_type);
1119
1120 if (unlikely(ma_dead_node(a_node)))
1121 return 1;
1122
1123 if (!set_min && a_slot) {
1124 set_min = true;
1125 min = pivots[a_slot - 1] + 1;
1126 }
1127
1128 if (!set_max && a_slot < mt_pivots[a_type]) {
1129 set_max = true;
1130 max = pivots[a_slot];
1131 }
1132
1133 if (unlikely(ma_dead_node(a_node)))
1134 return 1;
1135
1136 if (unlikely(ma_is_root(a_node)))
1137 break;
1138
1139 } while (!set_min || !set_max);
1140
1141 mas->max = max;
1142 mas->min = min;
1143 return 0;
1144}
1145
1146/*
1147 * mas_pop_node() - Get a previously allocated maple node from the maple state.
1148 * @mas: The maple state
1149 *
1150 * Return: A pointer to a maple node.
1151 */
1152static inline struct maple_node *mas_pop_node(struct ma_state *mas)
1153{
1154 struct maple_alloc *ret, *node = mas->alloc;
1155 unsigned long total = mas_allocated(mas);
1156 unsigned int req = mas_alloc_req(mas);
1157
1158 /* nothing or a request pending. */
1159 if (WARN_ON(!total))
1160 return NULL;
1161
1162 if (total == 1) {
1163 /* single allocation in this ma_state */
1164 mas->alloc = NULL;
1165 ret = node;
1166 goto single_node;
1167 }
1168
1169 if (node->node_count == 1) {
1170 /* Single allocation in this node. */
1171 mas->alloc = node->slot[0];
1172 mas->alloc->total = node->total - 1;
1173 ret = node;
1174 goto new_head;
1175 }
1176 node->total--;
1177 ret = node->slot[--node->node_count];
1178 node->slot[node->node_count] = NULL;
1179
1180single_node:
1181new_head:
1182 if (req) {
1183 req++;
1184 mas_set_alloc_req(mas, req);
1185 }
1186
1187 memset(ret, 0, sizeof(*ret));
1188 return (struct maple_node *)ret;
1189}
1190
1191/*
1192 * mas_push_node() - Push a node back on the maple state allocation.
1193 * @mas: The maple state
1194 * @used: The used maple node
1195 *
1196 * Stores the maple node back into @mas->alloc for reuse. Updates allocated and
1197 * requested node count as necessary.
1198 */
1199static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
1200{
1201 struct maple_alloc *reuse = (struct maple_alloc *)used;
1202 struct maple_alloc *head = mas->alloc;
1203 unsigned long count;
1204 unsigned int requested = mas_alloc_req(mas);
1205
1206 count = mas_allocated(mas);
1207
1208 reuse->request_count = 0;
1209 reuse->node_count = 0;
1210 if (count) {
1211 if (head->node_count < MAPLE_ALLOC_SLOTS) {
1212 head->slot[head->node_count++] = reuse;
1213 head->total++;
1214 goto done;
1215 }
1216 reuse->slot[0] = head;
1217 reuse->node_count = 1;
1218 }
1219
1220 reuse->total = count + 1;
1221 mas->alloc = reuse;
1222done:
1223 if (requested > 1)
1224 mas_set_alloc_req(mas, requested - 1);
1225}
1226
1227/*
1228 * mas_alloc_nodes() - Allocate nodes into a maple state
1229 * @mas: The maple state
1230 * @gfp: The GFP Flags
1231 */
1232static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
1233{
1234 struct maple_alloc *node;
1235 unsigned long allocated = mas_allocated(mas);
1236 unsigned int requested = mas_alloc_req(mas);
1237 unsigned int count;
1238 void **slots = NULL;
1239 unsigned int max_req = 0;
1240
1241 if (!requested)
1242 return;
1243
1244 mas_set_alloc_req(mas, 0);
1245 if (mas->mas_flags & MA_STATE_PREALLOC) {
1246 if (allocated)
1247 return;
1248 BUG_ON(!allocated);
1249 WARN_ON(!allocated);
1250 }
1251
1252 if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) {
1253 node = (struct maple_alloc *)mt_alloc_one(gfp);
1254 if (!node)
1255 goto nomem_one;
1256
1257 if (allocated) {
1258 node->slot[0] = mas->alloc;
1259 node->node_count = 1;
1260 } else {
1261 node->node_count = 0;
1262 }
1263
1264 mas->alloc = node;
1265 node->total = ++allocated;
1266 node->request_count = 0;
1267 requested--;
1268 }
1269
1270 node = mas->alloc;
1271 while (requested) {
1272 max_req = MAPLE_ALLOC_SLOTS - node->node_count;
1273 slots = (void **)&node->slot[node->node_count];
1274 max_req = min(requested, max_req);
1275 count = mt_alloc_bulk(gfp, max_req, slots);
1276 if (!count)
1277 goto nomem_bulk;
1278
1279 if (node->node_count == 0) {
1280 node->slot[0]->node_count = 0;
1281 node->slot[0]->request_count = 0;
1282 }
1283
1284 node->node_count += count;
1285 allocated += count;
1286 /* find a non-full node*/
1287 do {
1288 node = node->slot[0];
1289 } while (unlikely(node->node_count == MAPLE_ALLOC_SLOTS));
1290 requested -= count;
1291 }
1292 mas->alloc->total = allocated;
1293 return;
1294
1295nomem_bulk:
1296 /* Clean up potential freed allocations on bulk failure */
1297 memset(slots, 0, max_req * sizeof(unsigned long));
1298 mas->alloc->total = allocated;
1299nomem_one:
1300 mas_set_alloc_req(mas, requested);
1301 mas_set_err(mas, -ENOMEM);
1302}
1303
1304/*
1305 * mas_free() - Free an encoded maple node
1306 * @mas: The maple state
1307 * @used: The encoded maple node to free.
1308 *
1309 * Uses rcu free if necessary, pushes @used back on the maple state allocations
1310 * otherwise.
1311 */
1312static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
1313{
1314 struct maple_node *tmp = mte_to_node(used);
1315
1316 if (mt_in_rcu(mas->tree))
1317 ma_free_rcu(tmp);
1318 else
1319 mas_push_node(mas, tmp);
1320}
1321
1322/*
1323 * mas_node_count_gfp() - Check if enough nodes are allocated and request more
1324 * if there is not enough nodes.
1325 * @mas: The maple state
1326 * @count: The number of nodes needed
1327 * @gfp: the gfp flags
1328 */
1329static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
1330{
1331 unsigned long allocated = mas_allocated(mas);
1332
1333 if (allocated < count) {
1334 mas_set_alloc_req(mas, count - allocated);
1335 mas_alloc_nodes(mas, gfp);
1336 }
1337}
1338
1339/*
1340 * mas_node_count() - Check if enough nodes are allocated and request more if
1341 * there is not enough nodes.
1342 * @mas: The maple state
1343 * @count: The number of nodes needed
1344 *
1345 * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
1346 */
1347static void mas_node_count(struct ma_state *mas, int count)
1348{
1349 return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
1350}
1351
1352/*
1353 * mas_start() - Sets up maple state for operations.
1354 * @mas: The maple state.
1355 *
1356 * If mas->status == mas_start, then set the min, max and depth to
1357 * defaults.
1358 *
1359 * Return:
1360 * - If mas->node is an error or not mas_start, return NULL.
1361 * - If it's an empty tree: NULL & mas->status == ma_none
1362 * - If it's a single entry: The entry & mas->status == ma_root
1363 * - If it's a tree: NULL & mas->status == ma_active
1364 */
1365static inline struct maple_enode *mas_start(struct ma_state *mas)
1366{
1367 if (likely(mas_is_start(mas))) {
1368 struct maple_enode *root;
1369
1370 mas->min = 0;
1371 mas->max = ULONG_MAX;
1372
1373retry:
1374 mas->depth = 0;
1375 root = mas_root(mas);
1376 /* Tree with nodes */
1377 if (likely(xa_is_node(root))) {
1378 mas->depth = 1;
1379 mas->status = ma_active;
1380 mas->node = mte_safe_root(root);
1381 mas->offset = 0;
1382 if (mte_dead_node(mas->node))
1383 goto retry;
1384
1385 return NULL;
1386 }
1387
1388 mas->node = NULL;
1389 /* empty tree */
1390 if (unlikely(!root)) {
1391 mas->status = ma_none;
1392 mas->offset = MAPLE_NODE_SLOTS;
1393 return NULL;
1394 }
1395
1396 /* Single entry tree */
1397 mas->status = ma_root;
1398 mas->offset = MAPLE_NODE_SLOTS;
1399
1400 /* Single entry tree. */
1401 if (mas->index > 0)
1402 return NULL;
1403
1404 return root;
1405 }
1406
1407 return NULL;
1408}
1409
1410/*
1411 * ma_data_end() - Find the end of the data in a node.
1412 * @node: The maple node
1413 * @type: The maple node type
1414 * @pivots: The array of pivots in the node
1415 * @max: The maximum value in the node
1416 *
1417 * Uses metadata to find the end of the data when possible.
1418 * Return: The zero indexed last slot with data (may be null).
1419 */
1420static __always_inline unsigned char ma_data_end(struct maple_node *node,
1421 enum maple_type type, unsigned long *pivots, unsigned long max)
1422{
1423 unsigned char offset;
1424
1425 if (!pivots)
1426 return 0;
1427
1428 if (type == maple_arange_64)
1429 return ma_meta_end(node, type);
1430
1431 offset = mt_pivots[type] - 1;
1432 if (likely(!pivots[offset]))
1433 return ma_meta_end(node, type);
1434
1435 if (likely(pivots[offset] == max))
1436 return offset;
1437
1438 return mt_pivots[type];
1439}
1440
1441/*
1442 * mas_data_end() - Find the end of the data (slot).
1443 * @mas: the maple state
1444 *
1445 * This method is optimized to check the metadata of a node if the node type
1446 * supports data end metadata.
1447 *
1448 * Return: The zero indexed last slot with data (may be null).
1449 */
1450static inline unsigned char mas_data_end(struct ma_state *mas)
1451{
1452 enum maple_type type;
1453 struct maple_node *node;
1454 unsigned char offset;
1455 unsigned long *pivots;
1456
1457 type = mte_node_type(mas->node);
1458 node = mas_mn(mas);
1459 if (type == maple_arange_64)
1460 return ma_meta_end(node, type);
1461
1462 pivots = ma_pivots(node, type);
1463 if (unlikely(ma_dead_node(node)))
1464 return 0;
1465
1466 offset = mt_pivots[type] - 1;
1467 if (likely(!pivots[offset]))
1468 return ma_meta_end(node, type);
1469
1470 if (likely(pivots[offset] == mas->max))
1471 return offset;
1472
1473 return mt_pivots[type];
1474}
1475
1476/*
1477 * mas_leaf_max_gap() - Returns the largest gap in a leaf node
1478 * @mas: the maple state
1479 *
1480 * Return: The maximum gap in the leaf.
1481 */
1482static unsigned long mas_leaf_max_gap(struct ma_state *mas)
1483{
1484 enum maple_type mt;
1485 unsigned long pstart, gap, max_gap;
1486 struct maple_node *mn;
1487 unsigned long *pivots;
1488 void __rcu **slots;
1489 unsigned char i;
1490 unsigned char max_piv;
1491
1492 mt = mte_node_type(mas->node);
1493 mn = mas_mn(mas);
1494 slots = ma_slots(mn, mt);
1495 max_gap = 0;
1496 if (unlikely(ma_is_dense(mt))) {
1497 gap = 0;
1498 for (i = 0; i < mt_slots[mt]; i++) {
1499 if (slots[i]) {
1500 if (gap > max_gap)
1501 max_gap = gap;
1502 gap = 0;
1503 } else {
1504 gap++;
1505 }
1506 }
1507 if (gap > max_gap)
1508 max_gap = gap;
1509 return max_gap;
1510 }
1511
1512 /*
1513 * Check the first implied pivot optimizes the loop below and slot 1 may
1514 * be skipped if there is a gap in slot 0.
1515 */
1516 pivots = ma_pivots(mn, mt);
1517 if (likely(!slots[0])) {
1518 max_gap = pivots[0] - mas->min + 1;
1519 i = 2;
1520 } else {
1521 i = 1;
1522 }
1523
1524 /* reduce max_piv as the special case is checked before the loop */
1525 max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
1526 /*
1527 * Check end implied pivot which can only be a gap on the right most
1528 * node.
1529 */
1530 if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
1531 gap = ULONG_MAX - pivots[max_piv];
1532 if (gap > max_gap)
1533 max_gap = gap;
1534
1535 if (max_gap > pivots[max_piv] - mas->min)
1536 return max_gap;
1537 }
1538
1539 for (; i <= max_piv; i++) {
1540 /* data == no gap. */
1541 if (likely(slots[i]))
1542 continue;
1543
1544 pstart = pivots[i - 1];
1545 gap = pivots[i] - pstart;
1546 if (gap > max_gap)
1547 max_gap = gap;
1548
1549 /* There cannot be two gaps in a row. */
1550 i++;
1551 }
1552 return max_gap;
1553}
1554
1555/*
1556 * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
1557 * @node: The maple node
1558 * @gaps: The pointer to the gaps
1559 * @mt: The maple node type
1560 * @off: Pointer to store the offset location of the gap.
1561 *
1562 * Uses the metadata data end to scan backwards across set gaps.
1563 *
1564 * Return: The maximum gap value
1565 */
1566static inline unsigned long
1567ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
1568 unsigned char *off)
1569{
1570 unsigned char offset, i;
1571 unsigned long max_gap = 0;
1572
1573 i = offset = ma_meta_end(node, mt);
1574 do {
1575 if (gaps[i] > max_gap) {
1576 max_gap = gaps[i];
1577 offset = i;
1578 }
1579 } while (i--);
1580
1581 *off = offset;
1582 return max_gap;
1583}
1584
1585/*
1586 * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
1587 * @mas: The maple state.
1588 *
1589 * Return: The gap value.
1590 */
1591static inline unsigned long mas_max_gap(struct ma_state *mas)
1592{
1593 unsigned long *gaps;
1594 unsigned char offset;
1595 enum maple_type mt;
1596 struct maple_node *node;
1597
1598 mt = mte_node_type(mas->node);
1599 if (ma_is_leaf(mt))
1600 return mas_leaf_max_gap(mas);
1601
1602 node = mas_mn(mas);
1603 MAS_BUG_ON(mas, mt != maple_arange_64);
1604 offset = ma_meta_gap(node);
1605 gaps = ma_gaps(node, mt);
1606 return gaps[offset];
1607}
1608
1609/*
1610 * mas_parent_gap() - Set the parent gap and any gaps above, as needed
1611 * @mas: The maple state
1612 * @offset: The gap offset in the parent to set
1613 * @new: The new gap value.
1614 *
1615 * Set the parent gap then continue to set the gap upwards, using the metadata
1616 * of the parent to see if it is necessary to check the node above.
1617 */
1618static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
1619 unsigned long new)
1620{
1621 unsigned long meta_gap = 0;
1622 struct maple_node *pnode;
1623 struct maple_enode *penode;
1624 unsigned long *pgaps;
1625 unsigned char meta_offset;
1626 enum maple_type pmt;
1627
1628 pnode = mte_parent(mas->node);
1629 pmt = mas_parent_type(mas, mas->node);
1630 penode = mt_mk_node(pnode, pmt);
1631 pgaps = ma_gaps(pnode, pmt);
1632
1633ascend:
1634 MAS_BUG_ON(mas, pmt != maple_arange_64);
1635 meta_offset = ma_meta_gap(pnode);
1636 meta_gap = pgaps[meta_offset];
1637
1638 pgaps[offset] = new;
1639
1640 if (meta_gap == new)
1641 return;
1642
1643 if (offset != meta_offset) {
1644 if (meta_gap > new)
1645 return;
1646
1647 ma_set_meta_gap(pnode, pmt, offset);
1648 } else if (new < meta_gap) {
1649 new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
1650 ma_set_meta_gap(pnode, pmt, meta_offset);
1651 }
1652
1653 if (ma_is_root(pnode))
1654 return;
1655
1656 /* Go to the parent node. */
1657 pnode = mte_parent(penode);
1658 pmt = mas_parent_type(mas, penode);
1659 pgaps = ma_gaps(pnode, pmt);
1660 offset = mte_parent_slot(penode);
1661 penode = mt_mk_node(pnode, pmt);
1662 goto ascend;
1663}
1664
1665/*
1666 * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
1667 * @mas: the maple state.
1668 */
1669static inline void mas_update_gap(struct ma_state *mas)
1670{
1671 unsigned char pslot;
1672 unsigned long p_gap;
1673 unsigned long max_gap;
1674
1675 if (!mt_is_alloc(mas->tree))
1676 return;
1677
1678 if (mte_is_root(mas->node))
1679 return;
1680
1681 max_gap = mas_max_gap(mas);
1682
1683 pslot = mte_parent_slot(mas->node);
1684 p_gap = ma_gaps(mte_parent(mas->node),
1685 mas_parent_type(mas, mas->node))[pslot];
1686
1687 if (p_gap != max_gap)
1688 mas_parent_gap(mas, pslot, max_gap);
1689}
1690
1691/*
1692 * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
1693 * @parent with the slot encoded.
1694 * @mas: the maple state (for the tree)
1695 * @parent: the maple encoded node containing the children.
1696 */
1697static inline void mas_adopt_children(struct ma_state *mas,
1698 struct maple_enode *parent)
1699{
1700 enum maple_type type = mte_node_type(parent);
1701 struct maple_node *node = mte_to_node(parent);
1702 void __rcu **slots = ma_slots(node, type);
1703 unsigned long *pivots = ma_pivots(node, type);
1704 struct maple_enode *child;
1705 unsigned char offset;
1706
1707 offset = ma_data_end(node, type, pivots, mas->max);
1708 do {
1709 child = mas_slot_locked(mas, slots, offset);
1710 mas_set_parent(mas, child, parent, offset);
1711 } while (offset--);
1712}
1713
1714/*
1715 * mas_put_in_tree() - Put a new node in the tree, smp_wmb(), and mark the old
1716 * node as dead.
1717 * @mas: the maple state with the new node
1718 * @old_enode: The old maple encoded node to replace.
1719 */
1720static inline void mas_put_in_tree(struct ma_state *mas,
1721 struct maple_enode *old_enode)
1722 __must_hold(mas->tree->ma_lock)
1723{
1724 unsigned char offset;
1725 void __rcu **slots;
1726
1727 if (mte_is_root(mas->node)) {
1728 mas_mn(mas)->parent = ma_parent_ptr(mas_tree_parent(mas));
1729 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
1730 mas_set_height(mas);
1731 } else {
1732
1733 offset = mte_parent_slot(mas->node);
1734 slots = ma_slots(mte_parent(mas->node),
1735 mas_parent_type(mas, mas->node));
1736 rcu_assign_pointer(slots[offset], mas->node);
1737 }
1738
1739 mte_set_node_dead(old_enode);
1740}
1741
1742/*
1743 * mas_replace_node() - Replace a node by putting it in the tree, marking it
1744 * dead, and freeing it.
1745 * the parent encoding to locate the maple node in the tree.
1746 * @mas: the ma_state with @mas->node pointing to the new node.
1747 * @old_enode: The old maple encoded node.
1748 */
1749static inline void mas_replace_node(struct ma_state *mas,
1750 struct maple_enode *old_enode)
1751 __must_hold(mas->tree->ma_lock)
1752{
1753 mas_put_in_tree(mas, old_enode);
1754 mas_free(mas, old_enode);
1755}
1756
1757/*
1758 * mas_find_child() - Find a child who has the parent @mas->node.
1759 * @mas: the maple state with the parent.
1760 * @child: the maple state to store the child.
1761 */
1762static inline bool mas_find_child(struct ma_state *mas, struct ma_state *child)
1763 __must_hold(mas->tree->ma_lock)
1764{
1765 enum maple_type mt;
1766 unsigned char offset;
1767 unsigned char end;
1768 unsigned long *pivots;
1769 struct maple_enode *entry;
1770 struct maple_node *node;
1771 void __rcu **slots;
1772
1773 mt = mte_node_type(mas->node);
1774 node = mas_mn(mas);
1775 slots = ma_slots(node, mt);
1776 pivots = ma_pivots(node, mt);
1777 end = ma_data_end(node, mt, pivots, mas->max);
1778 for (offset = mas->offset; offset <= end; offset++) {
1779 entry = mas_slot_locked(mas, slots, offset);
1780 if (mte_parent(entry) == node) {
1781 *child = *mas;
1782 mas->offset = offset + 1;
1783 child->offset = offset;
1784 mas_descend(child);
1785 child->offset = 0;
1786 return true;
1787 }
1788 }
1789 return false;
1790}
1791
1792/*
1793 * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
1794 * old data or set b_node->b_end.
1795 * @b_node: the maple_big_node
1796 * @shift: the shift count
1797 */
1798static inline void mab_shift_right(struct maple_big_node *b_node,
1799 unsigned char shift)
1800{
1801 unsigned long size = b_node->b_end * sizeof(unsigned long);
1802
1803 memmove(b_node->pivot + shift, b_node->pivot, size);
1804 memmove(b_node->slot + shift, b_node->slot, size);
1805 if (b_node->type == maple_arange_64)
1806 memmove(b_node->gap + shift, b_node->gap, size);
1807}
1808
1809/*
1810 * mab_middle_node() - Check if a middle node is needed (unlikely)
1811 * @b_node: the maple_big_node that contains the data.
1812 * @split: the potential split location
1813 * @slot_count: the size that can be stored in a single node being considered.
1814 *
1815 * Return: true if a middle node is required.
1816 */
1817static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
1818 unsigned char slot_count)
1819{
1820 unsigned char size = b_node->b_end;
1821
1822 if (size >= 2 * slot_count)
1823 return true;
1824
1825 if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
1826 return true;
1827
1828 return false;
1829}
1830
1831/*
1832 * mab_no_null_split() - ensure the split doesn't fall on a NULL
1833 * @b_node: the maple_big_node with the data
1834 * @split: the suggested split location
1835 * @slot_count: the number of slots in the node being considered.
1836 *
1837 * Return: the split location.
1838 */
1839static inline int mab_no_null_split(struct maple_big_node *b_node,
1840 unsigned char split, unsigned char slot_count)
1841{
1842 if (!b_node->slot[split]) {
1843 /*
1844 * If the split is less than the max slot && the right side will
1845 * still be sufficient, then increment the split on NULL.
1846 */
1847 if ((split < slot_count - 1) &&
1848 (b_node->b_end - split) > (mt_min_slots[b_node->type]))
1849 split++;
1850 else
1851 split--;
1852 }
1853 return split;
1854}
1855
1856/*
1857 * mab_calc_split() - Calculate the split location and if there needs to be two
1858 * splits.
1859 * @mas: The maple state
1860 * @bn: The maple_big_node with the data
1861 * @mid_split: The second split, if required. 0 otherwise.
1862 *
1863 * Return: The first split location. The middle split is set in @mid_split.
1864 */
1865static inline int mab_calc_split(struct ma_state *mas,
1866 struct maple_big_node *bn, unsigned char *mid_split)
1867{
1868 unsigned char b_end = bn->b_end;
1869 int split = b_end / 2; /* Assume equal split. */
1870 unsigned char slot_count = mt_slots[bn->type];
1871
1872 /*
1873 * To support gap tracking, all NULL entries are kept together and a node cannot
1874 * end on a NULL entry, with the exception of the left-most leaf. The
1875 * limitation means that the split of a node must be checked for this condition
1876 * and be able to put more data in one direction or the other.
1877 */
1878 if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
1879 *mid_split = 0;
1880 split = b_end - mt_min_slots[bn->type];
1881
1882 if (!ma_is_leaf(bn->type))
1883 return split;
1884
1885 mas->mas_flags |= MA_STATE_REBALANCE;
1886 if (!bn->slot[split])
1887 split--;
1888 return split;
1889 }
1890
1891 /*
1892 * Although extremely rare, it is possible to enter what is known as the 3-way
1893 * split scenario. The 3-way split comes about by means of a store of a range
1894 * that overwrites the end and beginning of two full nodes. The result is a set
1895 * of entries that cannot be stored in 2 nodes. Sometimes, these two nodes can
1896 * also be located in different parent nodes which are also full. This can
1897 * carry upwards all the way to the root in the worst case.
1898 */
1899 if (unlikely(mab_middle_node(bn, split, slot_count))) {
1900 split = b_end / 3;
1901 *mid_split = split * 2;
1902 } else {
1903 *mid_split = 0;
1904 }
1905
1906 /* Avoid ending a node on a NULL entry */
1907 split = mab_no_null_split(bn, split, slot_count);
1908
1909 if (unlikely(*mid_split))
1910 *mid_split = mab_no_null_split(bn, *mid_split, slot_count);
1911
1912 return split;
1913}
1914
1915/*
1916 * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
1917 * and set @b_node->b_end to the next free slot.
1918 * @mas: The maple state
1919 * @mas_start: The starting slot to copy
1920 * @mas_end: The end slot to copy (inclusively)
1921 * @b_node: The maple_big_node to place the data
1922 * @mab_start: The starting location in maple_big_node to store the data.
1923 */
1924static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
1925 unsigned char mas_end, struct maple_big_node *b_node,
1926 unsigned char mab_start)
1927{
1928 enum maple_type mt;
1929 struct maple_node *node;
1930 void __rcu **slots;
1931 unsigned long *pivots, *gaps;
1932 int i = mas_start, j = mab_start;
1933 unsigned char piv_end;
1934
1935 node = mas_mn(mas);
1936 mt = mte_node_type(mas->node);
1937 pivots = ma_pivots(node, mt);
1938 if (!i) {
1939 b_node->pivot[j] = pivots[i++];
1940 if (unlikely(i > mas_end))
1941 goto complete;
1942 j++;
1943 }
1944
1945 piv_end = min(mas_end, mt_pivots[mt]);
1946 for (; i < piv_end; i++, j++) {
1947 b_node->pivot[j] = pivots[i];
1948 if (unlikely(!b_node->pivot[j]))
1949 goto complete;
1950
1951 if (unlikely(mas->max == b_node->pivot[j]))
1952 goto complete;
1953 }
1954
1955 b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
1956
1957complete:
1958 b_node->b_end = ++j;
1959 j -= mab_start;
1960 slots = ma_slots(node, mt);
1961 memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
1962 if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
1963 gaps = ma_gaps(node, mt);
1964 memcpy(b_node->gap + mab_start, gaps + mas_start,
1965 sizeof(unsigned long) * j);
1966 }
1967}
1968
1969/*
1970 * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
1971 * @node: The maple node
1972 * @mt: The maple type
1973 * @end: The node end
1974 */
1975static inline void mas_leaf_set_meta(struct maple_node *node,
1976 enum maple_type mt, unsigned char end)
1977{
1978 if (end < mt_slots[mt] - 1)
1979 ma_set_meta(node, mt, 0, end);
1980}
1981
1982/*
1983 * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
1984 * @b_node: the maple_big_node that has the data
1985 * @mab_start: the start location in @b_node.
1986 * @mab_end: The end location in @b_node (inclusively)
1987 * @mas: The maple state with the maple encoded node.
1988 */
1989static inline void mab_mas_cp(struct maple_big_node *b_node,
1990 unsigned char mab_start, unsigned char mab_end,
1991 struct ma_state *mas, bool new_max)
1992{
1993 int i, j = 0;
1994 enum maple_type mt = mte_node_type(mas->node);
1995 struct maple_node *node = mte_to_node(mas->node);
1996 void __rcu **slots = ma_slots(node, mt);
1997 unsigned long *pivots = ma_pivots(node, mt);
1998 unsigned long *gaps = NULL;
1999 unsigned char end;
2000
2001 if (mab_end - mab_start > mt_pivots[mt])
2002 mab_end--;
2003
2004 if (!pivots[mt_pivots[mt] - 1])
2005 slots[mt_pivots[mt]] = NULL;
2006
2007 i = mab_start;
2008 do {
2009 pivots[j++] = b_node->pivot[i++];
2010 } while (i <= mab_end && likely(b_node->pivot[i]));
2011
2012 memcpy(slots, b_node->slot + mab_start,
2013 sizeof(void *) * (i - mab_start));
2014
2015 if (new_max)
2016 mas->max = b_node->pivot[i - 1];
2017
2018 end = j - 1;
2019 if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
2020 unsigned long max_gap = 0;
2021 unsigned char offset = 0;
2022
2023 gaps = ma_gaps(node, mt);
2024 do {
2025 gaps[--j] = b_node->gap[--i];
2026 if (gaps[j] > max_gap) {
2027 offset = j;
2028 max_gap = gaps[j];
2029 }
2030 } while (j);
2031
2032 ma_set_meta(node, mt, offset, end);
2033 } else {
2034 mas_leaf_set_meta(node, mt, end);
2035 }
2036}
2037
2038/*
2039 * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
2040 * @mas: The maple state
2041 * @end: The maple node end
2042 * @mt: The maple node type
2043 */
2044static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
2045 enum maple_type mt)
2046{
2047 if (!(mas->mas_flags & MA_STATE_BULK))
2048 return;
2049
2050 if (mte_is_root(mas->node))
2051 return;
2052
2053 if (end > mt_min_slots[mt]) {
2054 mas->mas_flags &= ~MA_STATE_REBALANCE;
2055 return;
2056 }
2057}
2058
2059/*
2060 * mas_store_b_node() - Store an @entry into the b_node while also copying the
2061 * data from a maple encoded node.
2062 * @wr_mas: the maple write state
2063 * @b_node: the maple_big_node to fill with data
2064 * @offset_end: the offset to end copying
2065 *
2066 * Return: The actual end of the data stored in @b_node
2067 */
2068static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas,
2069 struct maple_big_node *b_node, unsigned char offset_end)
2070{
2071 unsigned char slot;
2072 unsigned char b_end;
2073 /* Possible underflow of piv will wrap back to 0 before use. */
2074 unsigned long piv;
2075 struct ma_state *mas = wr_mas->mas;
2076
2077 b_node->type = wr_mas->type;
2078 b_end = 0;
2079 slot = mas->offset;
2080 if (slot) {
2081 /* Copy start data up to insert. */
2082 mas_mab_cp(mas, 0, slot - 1, b_node, 0);
2083 b_end = b_node->b_end;
2084 piv = b_node->pivot[b_end - 1];
2085 } else
2086 piv = mas->min - 1;
2087
2088 if (piv + 1 < mas->index) {
2089 /* Handle range starting after old range */
2090 b_node->slot[b_end] = wr_mas->content;
2091 if (!wr_mas->content)
2092 b_node->gap[b_end] = mas->index - 1 - piv;
2093 b_node->pivot[b_end++] = mas->index - 1;
2094 }
2095
2096 /* Store the new entry. */
2097 mas->offset = b_end;
2098 b_node->slot[b_end] = wr_mas->entry;
2099 b_node->pivot[b_end] = mas->last;
2100
2101 /* Appended. */
2102 if (mas->last >= mas->max)
2103 goto b_end;
2104
2105 /* Handle new range ending before old range ends */
2106 piv = mas_safe_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
2107 if (piv > mas->last) {
2108 if (piv == ULONG_MAX)
2109 mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
2110
2111 if (offset_end != slot)
2112 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
2113 offset_end);
2114
2115 b_node->slot[++b_end] = wr_mas->content;
2116 if (!wr_mas->content)
2117 b_node->gap[b_end] = piv - mas->last + 1;
2118 b_node->pivot[b_end] = piv;
2119 }
2120
2121 slot = offset_end + 1;
2122 if (slot > mas->end)
2123 goto b_end;
2124
2125 /* Copy end data to the end of the node. */
2126 mas_mab_cp(mas, slot, mas->end + 1, b_node, ++b_end);
2127 b_node->b_end--;
2128 return;
2129
2130b_end:
2131 b_node->b_end = b_end;
2132}
2133
2134/*
2135 * mas_prev_sibling() - Find the previous node with the same parent.
2136 * @mas: the maple state
2137 *
2138 * Return: True if there is a previous sibling, false otherwise.
2139 */
2140static inline bool mas_prev_sibling(struct ma_state *mas)
2141{
2142 unsigned int p_slot = mte_parent_slot(mas->node);
2143
2144 /* For root node, p_slot is set to 0 by mte_parent_slot(). */
2145 if (!p_slot)
2146 return false;
2147
2148 mas_ascend(mas);
2149 mas->offset = p_slot - 1;
2150 mas_descend(mas);
2151 return true;
2152}
2153
2154/*
2155 * mas_next_sibling() - Find the next node with the same parent.
2156 * @mas: the maple state
2157 *
2158 * Return: true if there is a next sibling, false otherwise.
2159 */
2160static inline bool mas_next_sibling(struct ma_state *mas)
2161{
2162 MA_STATE(parent, mas->tree, mas->index, mas->last);
2163
2164 if (mte_is_root(mas->node))
2165 return false;
2166
2167 parent = *mas;
2168 mas_ascend(&parent);
2169 parent.offset = mte_parent_slot(mas->node) + 1;
2170 if (parent.offset > mas_data_end(&parent))
2171 return false;
2172
2173 *mas = parent;
2174 mas_descend(mas);
2175 return true;
2176}
2177
2178/*
2179 * mas_node_or_none() - Set the enode and state.
2180 * @mas: the maple state
2181 * @enode: The encoded maple node.
2182 *
2183 * Set the node to the enode and the status.
2184 */
2185static inline void mas_node_or_none(struct ma_state *mas,
2186 struct maple_enode *enode)
2187{
2188 if (enode) {
2189 mas->node = enode;
2190 mas->status = ma_active;
2191 } else {
2192 mas->node = NULL;
2193 mas->status = ma_none;
2194 }
2195}
2196
2197/*
2198 * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
2199 * If @mas->index cannot be found within the containing
2200 * node, we traverse to the last entry in the node.
2201 * @wr_mas: The maple write state
2202 *
2203 * Uses mas_slot_locked() and does not need to worry about dead nodes.
2204 */
2205static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
2206{
2207 struct ma_state *mas = wr_mas->mas;
2208 unsigned char count, offset;
2209
2210 if (unlikely(ma_is_dense(wr_mas->type))) {
2211 wr_mas->r_max = wr_mas->r_min = mas->index;
2212 mas->offset = mas->index = mas->min;
2213 return;
2214 }
2215
2216 wr_mas->node = mas_mn(wr_mas->mas);
2217 wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
2218 count = mas->end = ma_data_end(wr_mas->node, wr_mas->type,
2219 wr_mas->pivots, mas->max);
2220 offset = mas->offset;
2221
2222 while (offset < count && mas->index > wr_mas->pivots[offset])
2223 offset++;
2224
2225 wr_mas->r_max = offset < count ? wr_mas->pivots[offset] : mas->max;
2226 wr_mas->r_min = mas_safe_min(mas, wr_mas->pivots, offset);
2227 wr_mas->offset_end = mas->offset = offset;
2228}
2229
2230/*
2231 * mast_rebalance_next() - Rebalance against the next node
2232 * @mast: The maple subtree state
2233 */
2234static inline void mast_rebalance_next(struct maple_subtree_state *mast)
2235{
2236 unsigned char b_end = mast->bn->b_end;
2237
2238 mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
2239 mast->bn, b_end);
2240 mast->orig_r->last = mast->orig_r->max;
2241}
2242
2243/*
2244 * mast_rebalance_prev() - Rebalance against the previous node
2245 * @mast: The maple subtree state
2246 */
2247static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
2248{
2249 unsigned char end = mas_data_end(mast->orig_l) + 1;
2250 unsigned char b_end = mast->bn->b_end;
2251
2252 mab_shift_right(mast->bn, end);
2253 mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
2254 mast->l->min = mast->orig_l->min;
2255 mast->orig_l->index = mast->orig_l->min;
2256 mast->bn->b_end = end + b_end;
2257 mast->l->offset += end;
2258}
2259
2260/*
2261 * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
2262 * the node to the right. Checking the nodes to the right then the left at each
2263 * level upwards until root is reached.
2264 * Data is copied into the @mast->bn.
2265 * @mast: The maple_subtree_state.
2266 */
2267static inline
2268bool mast_spanning_rebalance(struct maple_subtree_state *mast)
2269{
2270 struct ma_state r_tmp = *mast->orig_r;
2271 struct ma_state l_tmp = *mast->orig_l;
2272 unsigned char depth = 0;
2273
2274 do {
2275 mas_ascend(mast->orig_r);
2276 mas_ascend(mast->orig_l);
2277 depth++;
2278 if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
2279 mast->orig_r->offset++;
2280 do {
2281 mas_descend(mast->orig_r);
2282 mast->orig_r->offset = 0;
2283 } while (--depth);
2284
2285 mast_rebalance_next(mast);
2286 *mast->orig_l = l_tmp;
2287 return true;
2288 } else if (mast->orig_l->offset != 0) {
2289 mast->orig_l->offset--;
2290 do {
2291 mas_descend(mast->orig_l);
2292 mast->orig_l->offset =
2293 mas_data_end(mast->orig_l);
2294 } while (--depth);
2295
2296 mast_rebalance_prev(mast);
2297 *mast->orig_r = r_tmp;
2298 return true;
2299 }
2300 } while (!mte_is_root(mast->orig_r->node));
2301
2302 *mast->orig_r = r_tmp;
2303 *mast->orig_l = l_tmp;
2304 return false;
2305}
2306
2307/*
2308 * mast_ascend() - Ascend the original left and right maple states.
2309 * @mast: the maple subtree state.
2310 *
2311 * Ascend the original left and right sides. Set the offsets to point to the
2312 * data already in the new tree (@mast->l and @mast->r).
2313 */
2314static inline void mast_ascend(struct maple_subtree_state *mast)
2315{
2316 MA_WR_STATE(wr_mas, mast->orig_r, NULL);
2317 mas_ascend(mast->orig_l);
2318 mas_ascend(mast->orig_r);
2319
2320 mast->orig_r->offset = 0;
2321 mast->orig_r->index = mast->r->max;
2322 /* last should be larger than or equal to index */
2323 if (mast->orig_r->last < mast->orig_r->index)
2324 mast->orig_r->last = mast->orig_r->index;
2325
2326 wr_mas.type = mte_node_type(mast->orig_r->node);
2327 mas_wr_node_walk(&wr_mas);
2328 /* Set up the left side of things */
2329 mast->orig_l->offset = 0;
2330 mast->orig_l->index = mast->l->min;
2331 wr_mas.mas = mast->orig_l;
2332 wr_mas.type = mte_node_type(mast->orig_l->node);
2333 mas_wr_node_walk(&wr_mas);
2334
2335 mast->bn->type = wr_mas.type;
2336}
2337
2338/*
2339 * mas_new_ma_node() - Create and return a new maple node. Helper function.
2340 * @mas: the maple state with the allocations.
2341 * @b_node: the maple_big_node with the type encoding.
2342 *
2343 * Use the node type from the maple_big_node to allocate a new node from the
2344 * ma_state. This function exists mainly for code readability.
2345 *
2346 * Return: A new maple encoded node
2347 */
2348static inline struct maple_enode
2349*mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
2350{
2351 return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
2352}
2353
2354/*
2355 * mas_mab_to_node() - Set up right and middle nodes
2356 *
2357 * @mas: the maple state that contains the allocations.
2358 * @b_node: the node which contains the data.
2359 * @left: The pointer which will have the left node
2360 * @right: The pointer which may have the right node
2361 * @middle: the pointer which may have the middle node (rare)
2362 * @mid_split: the split location for the middle node
2363 *
2364 * Return: the split of left.
2365 */
2366static inline unsigned char mas_mab_to_node(struct ma_state *mas,
2367 struct maple_big_node *b_node, struct maple_enode **left,
2368 struct maple_enode **right, struct maple_enode **middle,
2369 unsigned char *mid_split)
2370{
2371 unsigned char split = 0;
2372 unsigned char slot_count = mt_slots[b_node->type];
2373
2374 *left = mas_new_ma_node(mas, b_node);
2375 *right = NULL;
2376 *middle = NULL;
2377 *mid_split = 0;
2378
2379 if (b_node->b_end < slot_count) {
2380 split = b_node->b_end;
2381 } else {
2382 split = mab_calc_split(mas, b_node, mid_split);
2383 *right = mas_new_ma_node(mas, b_node);
2384 }
2385
2386 if (*mid_split)
2387 *middle = mas_new_ma_node(mas, b_node);
2388
2389 return split;
2390
2391}
2392
2393/*
2394 * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
2395 * pointer.
2396 * @b_node: the big node to add the entry
2397 * @mas: the maple state to get the pivot (mas->max)
2398 * @entry: the entry to add, if NULL nothing happens.
2399 */
2400static inline void mab_set_b_end(struct maple_big_node *b_node,
2401 struct ma_state *mas,
2402 void *entry)
2403{
2404 if (!entry)
2405 return;
2406
2407 b_node->slot[b_node->b_end] = entry;
2408 if (mt_is_alloc(mas->tree))
2409 b_node->gap[b_node->b_end] = mas_max_gap(mas);
2410 b_node->pivot[b_node->b_end++] = mas->max;
2411}
2412
2413/*
2414 * mas_set_split_parent() - combine_then_separate helper function. Sets the parent
2415 * of @mas->node to either @left or @right, depending on @slot and @split
2416 *
2417 * @mas: the maple state with the node that needs a parent
2418 * @left: possible parent 1
2419 * @right: possible parent 2
2420 * @slot: the slot the mas->node was placed
2421 * @split: the split location between @left and @right
2422 */
2423static inline void mas_set_split_parent(struct ma_state *mas,
2424 struct maple_enode *left,
2425 struct maple_enode *right,
2426 unsigned char *slot, unsigned char split)
2427{
2428 if (mas_is_none(mas))
2429 return;
2430
2431 if ((*slot) <= split)
2432 mas_set_parent(mas, mas->node, left, *slot);
2433 else if (right)
2434 mas_set_parent(mas, mas->node, right, (*slot) - split - 1);
2435
2436 (*slot)++;
2437}
2438
2439/*
2440 * mte_mid_split_check() - Check if the next node passes the mid-split
2441 * @l: Pointer to left encoded maple node.
2442 * @m: Pointer to middle encoded maple node.
2443 * @r: Pointer to right encoded maple node.
2444 * @slot: The offset
2445 * @split: The split location.
2446 * @mid_split: The middle split.
2447 */
2448static inline void mte_mid_split_check(struct maple_enode **l,
2449 struct maple_enode **r,
2450 struct maple_enode *right,
2451 unsigned char slot,
2452 unsigned char *split,
2453 unsigned char mid_split)
2454{
2455 if (*r == right)
2456 return;
2457
2458 if (slot < mid_split)
2459 return;
2460
2461 *l = *r;
2462 *r = right;
2463 *split = mid_split;
2464}
2465
2466/*
2467 * mast_set_split_parents() - Helper function to set three nodes parents. Slot
2468 * is taken from @mast->l.
2469 * @mast: the maple subtree state
2470 * @left: the left node
2471 * @right: the right node
2472 * @split: the split location.
2473 */
2474static inline void mast_set_split_parents(struct maple_subtree_state *mast,
2475 struct maple_enode *left,
2476 struct maple_enode *middle,
2477 struct maple_enode *right,
2478 unsigned char split,
2479 unsigned char mid_split)
2480{
2481 unsigned char slot;
2482 struct maple_enode *l = left;
2483 struct maple_enode *r = right;
2484
2485 if (mas_is_none(mast->l))
2486 return;
2487
2488 if (middle)
2489 r = middle;
2490
2491 slot = mast->l->offset;
2492
2493 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2494 mas_set_split_parent(mast->l, l, r, &slot, split);
2495
2496 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2497 mas_set_split_parent(mast->m, l, r, &slot, split);
2498
2499 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2500 mas_set_split_parent(mast->r, l, r, &slot, split);
2501}
2502
2503/*
2504 * mas_topiary_node() - Dispose of a single node
2505 * @mas: The maple state for pushing nodes
2506 * @in_rcu: If the tree is in rcu mode
2507 *
2508 * The node will either be RCU freed or pushed back on the maple state.
2509 */
2510static inline void mas_topiary_node(struct ma_state *mas,
2511 struct ma_state *tmp_mas, bool in_rcu)
2512{
2513 struct maple_node *tmp;
2514 struct maple_enode *enode;
2515
2516 if (mas_is_none(tmp_mas))
2517 return;
2518
2519 enode = tmp_mas->node;
2520 tmp = mte_to_node(enode);
2521 mte_set_node_dead(enode);
2522 if (in_rcu)
2523 ma_free_rcu(tmp);
2524 else
2525 mas_push_node(mas, tmp);
2526}
2527
2528/*
2529 * mas_topiary_replace() - Replace the data with new data, then repair the
2530 * parent links within the new tree. Iterate over the dead sub-tree and collect
2531 * the dead subtrees and topiary the nodes that are no longer of use.
2532 *
2533 * The new tree will have up to three children with the correct parent. Keep
2534 * track of the new entries as they need to be followed to find the next level
2535 * of new entries.
2536 *
2537 * The old tree will have up to three children with the old parent. Keep track
2538 * of the old entries as they may have more nodes below replaced. Nodes within
2539 * [index, last] are dead subtrees, others need to be freed and followed.
2540 *
2541 * @mas: The maple state pointing at the new data
2542 * @old_enode: The maple encoded node being replaced
2543 *
2544 */
2545static inline void mas_topiary_replace(struct ma_state *mas,
2546 struct maple_enode *old_enode)
2547{
2548 struct ma_state tmp[3], tmp_next[3];
2549 MA_TOPIARY(subtrees, mas->tree);
2550 bool in_rcu;
2551 int i, n;
2552
2553 /* Place data in tree & then mark node as old */
2554 mas_put_in_tree(mas, old_enode);
2555
2556 /* Update the parent pointers in the tree */
2557 tmp[0] = *mas;
2558 tmp[0].offset = 0;
2559 tmp[1].status = ma_none;
2560 tmp[2].status = ma_none;
2561 while (!mte_is_leaf(tmp[0].node)) {
2562 n = 0;
2563 for (i = 0; i < 3; i++) {
2564 if (mas_is_none(&tmp[i]))
2565 continue;
2566
2567 while (n < 3) {
2568 if (!mas_find_child(&tmp[i], &tmp_next[n]))
2569 break;
2570 n++;
2571 }
2572
2573 mas_adopt_children(&tmp[i], tmp[i].node);
2574 }
2575
2576 if (MAS_WARN_ON(mas, n == 0))
2577 break;
2578
2579 while (n < 3)
2580 tmp_next[n++].status = ma_none;
2581
2582 for (i = 0; i < 3; i++)
2583 tmp[i] = tmp_next[i];
2584 }
2585
2586 /* Collect the old nodes that need to be discarded */
2587 if (mte_is_leaf(old_enode))
2588 return mas_free(mas, old_enode);
2589
2590 tmp[0] = *mas;
2591 tmp[0].offset = 0;
2592 tmp[0].node = old_enode;
2593 tmp[1].status = ma_none;
2594 tmp[2].status = ma_none;
2595 in_rcu = mt_in_rcu(mas->tree);
2596 do {
2597 n = 0;
2598 for (i = 0; i < 3; i++) {
2599 if (mas_is_none(&tmp[i]))
2600 continue;
2601
2602 while (n < 3) {
2603 if (!mas_find_child(&tmp[i], &tmp_next[n]))
2604 break;
2605
2606 if ((tmp_next[n].min >= tmp_next->index) &&
2607 (tmp_next[n].max <= tmp_next->last)) {
2608 mat_add(&subtrees, tmp_next[n].node);
2609 tmp_next[n].status = ma_none;
2610 } else {
2611 n++;
2612 }
2613 }
2614 }
2615
2616 if (MAS_WARN_ON(mas, n == 0))
2617 break;
2618
2619 while (n < 3)
2620 tmp_next[n++].status = ma_none;
2621
2622 for (i = 0; i < 3; i++) {
2623 mas_topiary_node(mas, &tmp[i], in_rcu);
2624 tmp[i] = tmp_next[i];
2625 }
2626 } while (!mte_is_leaf(tmp[0].node));
2627
2628 for (i = 0; i < 3; i++)
2629 mas_topiary_node(mas, &tmp[i], in_rcu);
2630
2631 mas_mat_destroy(mas, &subtrees);
2632}
2633
2634/*
2635 * mas_wmb_replace() - Write memory barrier and replace
2636 * @mas: The maple state
2637 * @old_enode: The old maple encoded node that is being replaced.
2638 *
2639 * Updates gap as necessary.
2640 */
2641static inline void mas_wmb_replace(struct ma_state *mas,
2642 struct maple_enode *old_enode)
2643{
2644 /* Insert the new data in the tree */
2645 mas_topiary_replace(mas, old_enode);
2646
2647 if (mte_is_leaf(mas->node))
2648 return;
2649
2650 mas_update_gap(mas);
2651}
2652
2653/*
2654 * mast_cp_to_nodes() - Copy data out to nodes.
2655 * @mast: The maple subtree state
2656 * @left: The left encoded maple node
2657 * @middle: The middle encoded maple node
2658 * @right: The right encoded maple node
2659 * @split: The location to split between left and (middle ? middle : right)
2660 * @mid_split: The location to split between middle and right.
2661 */
2662static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
2663 struct maple_enode *left, struct maple_enode *middle,
2664 struct maple_enode *right, unsigned char split, unsigned char mid_split)
2665{
2666 bool new_lmax = true;
2667
2668 mas_node_or_none(mast->l, left);
2669 mas_node_or_none(mast->m, middle);
2670 mas_node_or_none(mast->r, right);
2671
2672 mast->l->min = mast->orig_l->min;
2673 if (split == mast->bn->b_end) {
2674 mast->l->max = mast->orig_r->max;
2675 new_lmax = false;
2676 }
2677
2678 mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
2679
2680 if (middle) {
2681 mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
2682 mast->m->min = mast->bn->pivot[split] + 1;
2683 split = mid_split;
2684 }
2685
2686 mast->r->max = mast->orig_r->max;
2687 if (right) {
2688 mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
2689 mast->r->min = mast->bn->pivot[split] + 1;
2690 }
2691}
2692
2693/*
2694 * mast_combine_cp_left - Copy in the original left side of the tree into the
2695 * combined data set in the maple subtree state big node.
2696 * @mast: The maple subtree state
2697 */
2698static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
2699{
2700 unsigned char l_slot = mast->orig_l->offset;
2701
2702 if (!l_slot)
2703 return;
2704
2705 mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
2706}
2707
2708/*
2709 * mast_combine_cp_right: Copy in the original right side of the tree into the
2710 * combined data set in the maple subtree state big node.
2711 * @mast: The maple subtree state
2712 */
2713static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
2714{
2715 if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
2716 return;
2717
2718 mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
2719 mt_slot_count(mast->orig_r->node), mast->bn,
2720 mast->bn->b_end);
2721 mast->orig_r->last = mast->orig_r->max;
2722}
2723
2724/*
2725 * mast_sufficient: Check if the maple subtree state has enough data in the big
2726 * node to create at least one sufficient node
2727 * @mast: the maple subtree state
2728 */
2729static inline bool mast_sufficient(struct maple_subtree_state *mast)
2730{
2731 if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
2732 return true;
2733
2734 return false;
2735}
2736
2737/*
2738 * mast_overflow: Check if there is too much data in the subtree state for a
2739 * single node.
2740 * @mast: The maple subtree state
2741 */
2742static inline bool mast_overflow(struct maple_subtree_state *mast)
2743{
2744 if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node))
2745 return true;
2746
2747 return false;
2748}
2749
2750static inline void *mtree_range_walk(struct ma_state *mas)
2751{
2752 unsigned long *pivots;
2753 unsigned char offset;
2754 struct maple_node *node;
2755 struct maple_enode *next, *last;
2756 enum maple_type type;
2757 void __rcu **slots;
2758 unsigned char end;
2759 unsigned long max, min;
2760 unsigned long prev_max, prev_min;
2761
2762 next = mas->node;
2763 min = mas->min;
2764 max = mas->max;
2765 do {
2766 last = next;
2767 node = mte_to_node(next);
2768 type = mte_node_type(next);
2769 pivots = ma_pivots(node, type);
2770 end = ma_data_end(node, type, pivots, max);
2771 prev_min = min;
2772 prev_max = max;
2773 if (pivots[0] >= mas->index) {
2774 offset = 0;
2775 max = pivots[0];
2776 goto next;
2777 }
2778
2779 offset = 1;
2780 while (offset < end) {
2781 if (pivots[offset] >= mas->index) {
2782 max = pivots[offset];
2783 break;
2784 }
2785 offset++;
2786 }
2787
2788 min = pivots[offset - 1] + 1;
2789next:
2790 slots = ma_slots(node, type);
2791 next = mt_slot(mas->tree, slots, offset);
2792 if (unlikely(ma_dead_node(node)))
2793 goto dead_node;
2794 } while (!ma_is_leaf(type));
2795
2796 mas->end = end;
2797 mas->offset = offset;
2798 mas->index = min;
2799 mas->last = max;
2800 mas->min = prev_min;
2801 mas->max = prev_max;
2802 mas->node = last;
2803 return (void *)next;
2804
2805dead_node:
2806 mas_reset(mas);
2807 return NULL;
2808}
2809
2810/*
2811 * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
2812 * @mas: The starting maple state
2813 * @mast: The maple_subtree_state, keeps track of 4 maple states.
2814 * @count: The estimated count of iterations needed.
2815 *
2816 * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
2817 * is hit. First @b_node is split into two entries which are inserted into the
2818 * next iteration of the loop. @b_node is returned populated with the final
2819 * iteration. @mas is used to obtain allocations. orig_l_mas keeps track of the
2820 * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
2821 * to account of what has been copied into the new sub-tree. The update of
2822 * orig_l_mas->last is used in mas_consume to find the slots that will need to
2823 * be either freed or destroyed. orig_l_mas->depth keeps track of the height of
2824 * the new sub-tree in case the sub-tree becomes the full tree.
2825 */
2826static void mas_spanning_rebalance(struct ma_state *mas,
2827 struct maple_subtree_state *mast, unsigned char count)
2828{
2829 unsigned char split, mid_split;
2830 unsigned char slot = 0;
2831 struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
2832 struct maple_enode *old_enode;
2833
2834 MA_STATE(l_mas, mas->tree, mas->index, mas->index);
2835 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2836 MA_STATE(m_mas, mas->tree, mas->index, mas->index);
2837
2838 /*
2839 * The tree needs to be rebalanced and leaves need to be kept at the same level.
2840 * Rebalancing is done by use of the ``struct maple_topiary``.
2841 */
2842 mast->l = &l_mas;
2843 mast->m = &m_mas;
2844 mast->r = &r_mas;
2845 l_mas.status = r_mas.status = m_mas.status = ma_none;
2846
2847 /* Check if this is not root and has sufficient data. */
2848 if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
2849 unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
2850 mast_spanning_rebalance(mast);
2851
2852 l_mas.depth = 0;
2853
2854 /*
2855 * Each level of the tree is examined and balanced, pushing data to the left or
2856 * right, or rebalancing against left or right nodes is employed to avoid
2857 * rippling up the tree to limit the amount of churn. Once a new sub-section of
2858 * the tree is created, there may be a mix of new and old nodes. The old nodes
2859 * will have the incorrect parent pointers and currently be in two trees: the
2860 * original tree and the partially new tree. To remedy the parent pointers in
2861 * the old tree, the new data is swapped into the active tree and a walk down
2862 * the tree is performed and the parent pointers are updated.
2863 * See mas_topiary_replace() for more information.
2864 */
2865 while (count--) {
2866 mast->bn->b_end--;
2867 mast->bn->type = mte_node_type(mast->orig_l->node);
2868 split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
2869 &mid_split);
2870 mast_set_split_parents(mast, left, middle, right, split,
2871 mid_split);
2872 mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
2873
2874 /*
2875 * Copy data from next level in the tree to mast->bn from next
2876 * iteration
2877 */
2878 memset(mast->bn, 0, sizeof(struct maple_big_node));
2879 mast->bn->type = mte_node_type(left);
2880 l_mas.depth++;
2881
2882 /* Root already stored in l->node. */
2883 if (mas_is_root_limits(mast->l))
2884 goto new_root;
2885
2886 mast_ascend(mast);
2887 mast_combine_cp_left(mast);
2888 l_mas.offset = mast->bn->b_end;
2889 mab_set_b_end(mast->bn, &l_mas, left);
2890 mab_set_b_end(mast->bn, &m_mas, middle);
2891 mab_set_b_end(mast->bn, &r_mas, right);
2892
2893 /* Copy anything necessary out of the right node. */
2894 mast_combine_cp_right(mast);
2895 mast->orig_l->last = mast->orig_l->max;
2896
2897 if (mast_sufficient(mast))
2898 continue;
2899
2900 if (mast_overflow(mast))
2901 continue;
2902
2903 /* May be a new root stored in mast->bn */
2904 if (mas_is_root_limits(mast->orig_l))
2905 break;
2906
2907 mast_spanning_rebalance(mast);
2908
2909 /* rebalancing from other nodes may require another loop. */
2910 if (!count)
2911 count++;
2912 }
2913
2914 l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
2915 mte_node_type(mast->orig_l->node));
2916 l_mas.depth++;
2917 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
2918 mas_set_parent(mas, left, l_mas.node, slot);
2919 if (middle)
2920 mas_set_parent(mas, middle, l_mas.node, ++slot);
2921
2922 if (right)
2923 mas_set_parent(mas, right, l_mas.node, ++slot);
2924
2925 if (mas_is_root_limits(mast->l)) {
2926new_root:
2927 mas_mn(mast->l)->parent = ma_parent_ptr(mas_tree_parent(mas));
2928 while (!mte_is_root(mast->orig_l->node))
2929 mast_ascend(mast);
2930 } else {
2931 mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
2932 }
2933
2934 old_enode = mast->orig_l->node;
2935 mas->depth = l_mas.depth;
2936 mas->node = l_mas.node;
2937 mas->min = l_mas.min;
2938 mas->max = l_mas.max;
2939 mas->offset = l_mas.offset;
2940 mas_wmb_replace(mas, old_enode);
2941 mtree_range_walk(mas);
2942 return;
2943}
2944
2945/*
2946 * mas_rebalance() - Rebalance a given node.
2947 * @mas: The maple state
2948 * @b_node: The big maple node.
2949 *
2950 * Rebalance two nodes into a single node or two new nodes that are sufficient.
2951 * Continue upwards until tree is sufficient.
2952 */
2953static inline void mas_rebalance(struct ma_state *mas,
2954 struct maple_big_node *b_node)
2955{
2956 char empty_count = mas_mt_height(mas);
2957 struct maple_subtree_state mast;
2958 unsigned char shift, b_end = ++b_node->b_end;
2959
2960 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
2961 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2962
2963 trace_ma_op(__func__, mas);
2964
2965 /*
2966 * Rebalancing occurs if a node is insufficient. Data is rebalanced
2967 * against the node to the right if it exists, otherwise the node to the
2968 * left of this node is rebalanced against this node. If rebalancing
2969 * causes just one node to be produced instead of two, then the parent
2970 * is also examined and rebalanced if it is insufficient. Every level
2971 * tries to combine the data in the same way. If one node contains the
2972 * entire range of the tree, then that node is used as a new root node.
2973 */
2974
2975 mast.orig_l = &l_mas;
2976 mast.orig_r = &r_mas;
2977 mast.bn = b_node;
2978 mast.bn->type = mte_node_type(mas->node);
2979
2980 l_mas = r_mas = *mas;
2981
2982 if (mas_next_sibling(&r_mas)) {
2983 mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
2984 r_mas.last = r_mas.index = r_mas.max;
2985 } else {
2986 mas_prev_sibling(&l_mas);
2987 shift = mas_data_end(&l_mas) + 1;
2988 mab_shift_right(b_node, shift);
2989 mas->offset += shift;
2990 mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
2991 b_node->b_end = shift + b_end;
2992 l_mas.index = l_mas.last = l_mas.min;
2993 }
2994
2995 return mas_spanning_rebalance(mas, &mast, empty_count);
2996}
2997
2998/*
2999 * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
3000 * state.
3001 * @mas: The maple state
3002 * @end: The end of the left-most node.
3003 *
3004 * During a mass-insert event (such as forking), it may be necessary to
3005 * rebalance the left-most node when it is not sufficient.
3006 */
3007static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
3008{
3009 enum maple_type mt = mte_node_type(mas->node);
3010 struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
3011 struct maple_enode *eparent, *old_eparent;
3012 unsigned char offset, tmp, split = mt_slots[mt] / 2;
3013 void __rcu **l_slots, **slots;
3014 unsigned long *l_pivs, *pivs, gap;
3015 bool in_rcu = mt_in_rcu(mas->tree);
3016
3017 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3018
3019 l_mas = *mas;
3020 mas_prev_sibling(&l_mas);
3021
3022 /* set up node. */
3023 if (in_rcu) {
3024 newnode = mas_pop_node(mas);
3025 } else {
3026 newnode = &reuse;
3027 }
3028
3029 node = mas_mn(mas);
3030 newnode->parent = node->parent;
3031 slots = ma_slots(newnode, mt);
3032 pivs = ma_pivots(newnode, mt);
3033 left = mas_mn(&l_mas);
3034 l_slots = ma_slots(left, mt);
3035 l_pivs = ma_pivots(left, mt);
3036 if (!l_slots[split])
3037 split++;
3038 tmp = mas_data_end(&l_mas) - split;
3039
3040 memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
3041 memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
3042 pivs[tmp] = l_mas.max;
3043 memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
3044 memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
3045
3046 l_mas.max = l_pivs[split];
3047 mas->min = l_mas.max + 1;
3048 old_eparent = mt_mk_node(mte_parent(l_mas.node),
3049 mas_parent_type(&l_mas, l_mas.node));
3050 tmp += end;
3051 if (!in_rcu) {
3052 unsigned char max_p = mt_pivots[mt];
3053 unsigned char max_s = mt_slots[mt];
3054
3055 if (tmp < max_p)
3056 memset(pivs + tmp, 0,
3057 sizeof(unsigned long) * (max_p - tmp));
3058
3059 if (tmp < mt_slots[mt])
3060 memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3061
3062 memcpy(node, newnode, sizeof(struct maple_node));
3063 ma_set_meta(node, mt, 0, tmp - 1);
3064 mte_set_pivot(old_eparent, mte_parent_slot(l_mas.node),
3065 l_pivs[split]);
3066
3067 /* Remove data from l_pivs. */
3068 tmp = split + 1;
3069 memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
3070 memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3071 ma_set_meta(left, mt, 0, split);
3072 eparent = old_eparent;
3073
3074 goto done;
3075 }
3076
3077 /* RCU requires replacing both l_mas, mas, and parent. */
3078 mas->node = mt_mk_node(newnode, mt);
3079 ma_set_meta(newnode, mt, 0, tmp);
3080
3081 new_left = mas_pop_node(mas);
3082 new_left->parent = left->parent;
3083 mt = mte_node_type(l_mas.node);
3084 slots = ma_slots(new_left, mt);
3085 pivs = ma_pivots(new_left, mt);
3086 memcpy(slots, l_slots, sizeof(void *) * split);
3087 memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
3088 ma_set_meta(new_left, mt, 0, split);
3089 l_mas.node = mt_mk_node(new_left, mt);
3090
3091 /* replace parent. */
3092 offset = mte_parent_slot(mas->node);
3093 mt = mas_parent_type(&l_mas, l_mas.node);
3094 parent = mas_pop_node(mas);
3095 slots = ma_slots(parent, mt);
3096 pivs = ma_pivots(parent, mt);
3097 memcpy(parent, mte_to_node(old_eparent), sizeof(struct maple_node));
3098 rcu_assign_pointer(slots[offset], mas->node);
3099 rcu_assign_pointer(slots[offset - 1], l_mas.node);
3100 pivs[offset - 1] = l_mas.max;
3101 eparent = mt_mk_node(parent, mt);
3102done:
3103 gap = mas_leaf_max_gap(mas);
3104 mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
3105 gap = mas_leaf_max_gap(&l_mas);
3106 mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
3107 mas_ascend(mas);
3108
3109 if (in_rcu) {
3110 mas_replace_node(mas, old_eparent);
3111 mas_adopt_children(mas, mas->node);
3112 }
3113
3114 mas_update_gap(mas);
3115}
3116
3117/*
3118 * mas_split_final_node() - Split the final node in a subtree operation.
3119 * @mast: the maple subtree state
3120 * @mas: The maple state
3121 * @height: The height of the tree in case it's a new root.
3122 */
3123static inline void mas_split_final_node(struct maple_subtree_state *mast,
3124 struct ma_state *mas, int height)
3125{
3126 struct maple_enode *ancestor;
3127
3128 if (mte_is_root(mas->node)) {
3129 if (mt_is_alloc(mas->tree))
3130 mast->bn->type = maple_arange_64;
3131 else
3132 mast->bn->type = maple_range_64;
3133 mas->depth = height;
3134 }
3135 /*
3136 * Only a single node is used here, could be root.
3137 * The Big_node data should just fit in a single node.
3138 */
3139 ancestor = mas_new_ma_node(mas, mast->bn);
3140 mas_set_parent(mas, mast->l->node, ancestor, mast->l->offset);
3141 mas_set_parent(mas, mast->r->node, ancestor, mast->r->offset);
3142 mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
3143
3144 mast->l->node = ancestor;
3145 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
3146 mas->offset = mast->bn->b_end - 1;
3147}
3148
3149/*
3150 * mast_fill_bnode() - Copy data into the big node in the subtree state
3151 * @mast: The maple subtree state
3152 * @mas: the maple state
3153 * @skip: The number of entries to skip for new nodes insertion.
3154 */
3155static inline void mast_fill_bnode(struct maple_subtree_state *mast,
3156 struct ma_state *mas,
3157 unsigned char skip)
3158{
3159 bool cp = true;
3160 unsigned char split;
3161
3162 memset(mast->bn, 0, sizeof(struct maple_big_node));
3163
3164 if (mte_is_root(mas->node)) {
3165 cp = false;
3166 } else {
3167 mas_ascend(mas);
3168 mas->offset = mte_parent_slot(mas->node);
3169 }
3170
3171 if (cp && mast->l->offset)
3172 mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
3173
3174 split = mast->bn->b_end;
3175 mab_set_b_end(mast->bn, mast->l, mast->l->node);
3176 mast->r->offset = mast->bn->b_end;
3177 mab_set_b_end(mast->bn, mast->r, mast->r->node);
3178 if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
3179 cp = false;
3180
3181 if (cp)
3182 mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
3183 mast->bn, mast->bn->b_end);
3184
3185 mast->bn->b_end--;
3186 mast->bn->type = mte_node_type(mas->node);
3187}
3188
3189/*
3190 * mast_split_data() - Split the data in the subtree state big node into regular
3191 * nodes.
3192 * @mast: The maple subtree state
3193 * @mas: The maple state
3194 * @split: The location to split the big node
3195 */
3196static inline void mast_split_data(struct maple_subtree_state *mast,
3197 struct ma_state *mas, unsigned char split)
3198{
3199 unsigned char p_slot;
3200
3201 mab_mas_cp(mast->bn, 0, split, mast->l, true);
3202 mte_set_pivot(mast->r->node, 0, mast->r->max);
3203 mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
3204 mast->l->offset = mte_parent_slot(mas->node);
3205 mast->l->max = mast->bn->pivot[split];
3206 mast->r->min = mast->l->max + 1;
3207 if (mte_is_leaf(mas->node))
3208 return;
3209
3210 p_slot = mast->orig_l->offset;
3211 mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
3212 &p_slot, split);
3213 mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
3214 &p_slot, split);
3215}
3216
3217/*
3218 * mas_push_data() - Instead of splitting a node, it is beneficial to push the
3219 * data to the right or left node if there is room.
3220 * @mas: The maple state
3221 * @height: The current height of the maple state
3222 * @mast: The maple subtree state
3223 * @left: Push left or not.
3224 *
3225 * Keeping the height of the tree low means faster lookups.
3226 *
3227 * Return: True if pushed, false otherwise.
3228 */
3229static inline bool mas_push_data(struct ma_state *mas, int height,
3230 struct maple_subtree_state *mast, bool left)
3231{
3232 unsigned char slot_total = mast->bn->b_end;
3233 unsigned char end, space, split;
3234
3235 MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
3236 tmp_mas = *mas;
3237 tmp_mas.depth = mast->l->depth;
3238
3239 if (left && !mas_prev_sibling(&tmp_mas))
3240 return false;
3241 else if (!left && !mas_next_sibling(&tmp_mas))
3242 return false;
3243
3244 end = mas_data_end(&tmp_mas);
3245 slot_total += end;
3246 space = 2 * mt_slot_count(mas->node) - 2;
3247 /* -2 instead of -1 to ensure there isn't a triple split */
3248 if (ma_is_leaf(mast->bn->type))
3249 space--;
3250
3251 if (mas->max == ULONG_MAX)
3252 space--;
3253
3254 if (slot_total >= space)
3255 return false;
3256
3257 /* Get the data; Fill mast->bn */
3258 mast->bn->b_end++;
3259 if (left) {
3260 mab_shift_right(mast->bn, end + 1);
3261 mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
3262 mast->bn->b_end = slot_total + 1;
3263 } else {
3264 mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
3265 }
3266
3267 /* Configure mast for splitting of mast->bn */
3268 split = mt_slots[mast->bn->type] - 2;
3269 if (left) {
3270 /* Switch mas to prev node */
3271 *mas = tmp_mas;
3272 /* Start using mast->l for the left side. */
3273 tmp_mas.node = mast->l->node;
3274 *mast->l = tmp_mas;
3275 } else {
3276 tmp_mas.node = mast->r->node;
3277 *mast->r = tmp_mas;
3278 split = slot_total - split;
3279 }
3280 split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
3281 /* Update parent slot for split calculation. */
3282 if (left)
3283 mast->orig_l->offset += end + 1;
3284
3285 mast_split_data(mast, mas, split);
3286 mast_fill_bnode(mast, mas, 2);
3287 mas_split_final_node(mast, mas, height + 1);
3288 return true;
3289}
3290
3291/*
3292 * mas_split() - Split data that is too big for one node into two.
3293 * @mas: The maple state
3294 * @b_node: The maple big node
3295 */
3296static void mas_split(struct ma_state *mas, struct maple_big_node *b_node)
3297{
3298 struct maple_subtree_state mast;
3299 int height = 0;
3300 unsigned char mid_split, split = 0;
3301 struct maple_enode *old;
3302
3303 /*
3304 * Splitting is handled differently from any other B-tree; the Maple
3305 * Tree splits upwards. Splitting up means that the split operation
3306 * occurs when the walk of the tree hits the leaves and not on the way
3307 * down. The reason for splitting up is that it is impossible to know
3308 * how much space will be needed until the leaf is (or leaves are)
3309 * reached. Since overwriting data is allowed and a range could
3310 * overwrite more than one range or result in changing one entry into 3
3311 * entries, it is impossible to know if a split is required until the
3312 * data is examined.
3313 *
3314 * Splitting is a balancing act between keeping allocations to a minimum
3315 * and avoiding a 'jitter' event where a tree is expanded to make room
3316 * for an entry followed by a contraction when the entry is removed. To
3317 * accomplish the balance, there are empty slots remaining in both left
3318 * and right nodes after a split.
3319 */
3320 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3321 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3322 MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
3323 MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
3324
3325 trace_ma_op(__func__, mas);
3326 mas->depth = mas_mt_height(mas);
3327
3328 mast.l = &l_mas;
3329 mast.r = &r_mas;
3330 mast.orig_l = &prev_l_mas;
3331 mast.orig_r = &prev_r_mas;
3332 mast.bn = b_node;
3333
3334 while (height++ <= mas->depth) {
3335 if (mt_slots[b_node->type] > b_node->b_end) {
3336 mas_split_final_node(&mast, mas, height);
3337 break;
3338 }
3339
3340 l_mas = r_mas = *mas;
3341 l_mas.node = mas_new_ma_node(mas, b_node);
3342 r_mas.node = mas_new_ma_node(mas, b_node);
3343 /*
3344 * Another way that 'jitter' is avoided is to terminate a split up early if the
3345 * left or right node has space to spare. This is referred to as "pushing left"
3346 * or "pushing right" and is similar to the B* tree, except the nodes left or
3347 * right can rarely be reused due to RCU, but the ripple upwards is halted which
3348 * is a significant savings.
3349 */
3350 /* Try to push left. */
3351 if (mas_push_data(mas, height, &mast, true))
3352 break;
3353 /* Try to push right. */
3354 if (mas_push_data(mas, height, &mast, false))
3355 break;
3356
3357 split = mab_calc_split(mas, b_node, &mid_split);
3358 mast_split_data(&mast, mas, split);
3359 /*
3360 * Usually correct, mab_mas_cp in the above call overwrites
3361 * r->max.
3362 */
3363 mast.r->max = mas->max;
3364 mast_fill_bnode(&mast, mas, 1);
3365 prev_l_mas = *mast.l;
3366 prev_r_mas = *mast.r;
3367 }
3368
3369 /* Set the original node as dead */
3370 old = mas->node;
3371 mas->node = l_mas.node;
3372 mas_wmb_replace(mas, old);
3373 mtree_range_walk(mas);
3374 return;
3375}
3376
3377/*
3378 * mas_commit_b_node() - Commit the big node into the tree.
3379 * @wr_mas: The maple write state
3380 * @b_node: The maple big node
3381 */
3382static noinline_for_kasan void mas_commit_b_node(struct ma_wr_state *wr_mas,
3383 struct maple_big_node *b_node)
3384{
3385 enum store_type type = wr_mas->mas->store_type;
3386
3387 WARN_ON_ONCE(type != wr_rebalance && type != wr_split_store);
3388
3389 if (type == wr_rebalance)
3390 return mas_rebalance(wr_mas->mas, b_node);
3391
3392 return mas_split(wr_mas->mas, b_node);
3393}
3394
3395/*
3396 * mas_root_expand() - Expand a root to a node
3397 * @mas: The maple state
3398 * @entry: The entry to store into the tree
3399 */
3400static inline void mas_root_expand(struct ma_state *mas, void *entry)
3401{
3402 void *contents = mas_root_locked(mas);
3403 enum maple_type type = maple_leaf_64;
3404 struct maple_node *node;
3405 void __rcu **slots;
3406 unsigned long *pivots;
3407 int slot = 0;
3408
3409 node = mas_pop_node(mas);
3410 pivots = ma_pivots(node, type);
3411 slots = ma_slots(node, type);
3412 node->parent = ma_parent_ptr(mas_tree_parent(mas));
3413 mas->node = mt_mk_node(node, type);
3414 mas->status = ma_active;
3415
3416 if (mas->index) {
3417 if (contents) {
3418 rcu_assign_pointer(slots[slot], contents);
3419 if (likely(mas->index > 1))
3420 slot++;
3421 }
3422 pivots[slot++] = mas->index - 1;
3423 }
3424
3425 rcu_assign_pointer(slots[slot], entry);
3426 mas->offset = slot;
3427 pivots[slot] = mas->last;
3428 if (mas->last != ULONG_MAX)
3429 pivots[++slot] = ULONG_MAX;
3430
3431 mas->depth = 1;
3432 mas_set_height(mas);
3433 ma_set_meta(node, maple_leaf_64, 0, slot);
3434 /* swap the new root into the tree */
3435 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3436 return;
3437}
3438
3439/*
3440 * mas_store_root() - Storing value into root.
3441 * @mas: The maple state
3442 * @entry: The entry to store.
3443 *
3444 * There is no root node now and we are storing a value into the root - this
3445 * function either assigns the pointer or expands into a node.
3446 */
3447static inline void mas_store_root(struct ma_state *mas, void *entry)
3448{
3449 if (!entry) {
3450 if (!mas->index)
3451 rcu_assign_pointer(mas->tree->ma_root, NULL);
3452 } else if (likely((mas->last != 0) || (mas->index != 0)))
3453 mas_root_expand(mas, entry);
3454 else if (((unsigned long) (entry) & 3) == 2)
3455 mas_root_expand(mas, entry);
3456 else {
3457 rcu_assign_pointer(mas->tree->ma_root, entry);
3458 mas->status = ma_start;
3459 }
3460}
3461
3462/*
3463 * mas_is_span_wr() - Check if the write needs to be treated as a write that
3464 * spans the node.
3465 * @wr_mas: The maple write state
3466 *
3467 * Spanning writes are writes that start in one node and end in another OR if
3468 * the write of a %NULL will cause the node to end with a %NULL.
3469 *
3470 * Return: True if this is a spanning write, false otherwise.
3471 */
3472static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
3473{
3474 unsigned long max = wr_mas->r_max;
3475 unsigned long last = wr_mas->mas->last;
3476 enum maple_type type = wr_mas->type;
3477 void *entry = wr_mas->entry;
3478
3479 /* Contained in this pivot, fast path */
3480 if (last < max)
3481 return false;
3482
3483 if (ma_is_leaf(type)) {
3484 max = wr_mas->mas->max;
3485 if (last < max)
3486 return false;
3487 }
3488
3489 if (last == max) {
3490 /*
3491 * The last entry of leaf node cannot be NULL unless it is the
3492 * rightmost node (writing ULONG_MAX), otherwise it spans slots.
3493 */
3494 if (entry || last == ULONG_MAX)
3495 return false;
3496 }
3497
3498 trace_ma_write(__func__, wr_mas->mas, wr_mas->r_max, entry);
3499 return true;
3500}
3501
3502static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
3503{
3504 wr_mas->type = mte_node_type(wr_mas->mas->node);
3505 mas_wr_node_walk(wr_mas);
3506 wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
3507}
3508
3509static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
3510{
3511 wr_mas->mas->max = wr_mas->r_max;
3512 wr_mas->mas->min = wr_mas->r_min;
3513 wr_mas->mas->node = wr_mas->content;
3514 wr_mas->mas->offset = 0;
3515 wr_mas->mas->depth++;
3516}
3517/*
3518 * mas_wr_walk() - Walk the tree for a write.
3519 * @wr_mas: The maple write state
3520 *
3521 * Uses mas_slot_locked() and does not need to worry about dead nodes.
3522 *
3523 * Return: True if it's contained in a node, false on spanning write.
3524 */
3525static bool mas_wr_walk(struct ma_wr_state *wr_mas)
3526{
3527 struct ma_state *mas = wr_mas->mas;
3528
3529 while (true) {
3530 mas_wr_walk_descend(wr_mas);
3531 if (unlikely(mas_is_span_wr(wr_mas)))
3532 return false;
3533
3534 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3535 mas->offset);
3536 if (ma_is_leaf(wr_mas->type))
3537 return true;
3538
3539 mas_wr_walk_traverse(wr_mas);
3540 }
3541
3542 return true;
3543}
3544
3545static void mas_wr_walk_index(struct ma_wr_state *wr_mas)
3546{
3547 struct ma_state *mas = wr_mas->mas;
3548
3549 while (true) {
3550 mas_wr_walk_descend(wr_mas);
3551 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3552 mas->offset);
3553 if (ma_is_leaf(wr_mas->type))
3554 return;
3555 mas_wr_walk_traverse(wr_mas);
3556 }
3557}
3558/*
3559 * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
3560 * @l_wr_mas: The left maple write state
3561 * @r_wr_mas: The right maple write state
3562 */
3563static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
3564 struct ma_wr_state *r_wr_mas)
3565{
3566 struct ma_state *r_mas = r_wr_mas->mas;
3567 struct ma_state *l_mas = l_wr_mas->mas;
3568 unsigned char l_slot;
3569
3570 l_slot = l_mas->offset;
3571 if (!l_wr_mas->content)
3572 l_mas->index = l_wr_mas->r_min;
3573
3574 if ((l_mas->index == l_wr_mas->r_min) &&
3575 (l_slot &&
3576 !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
3577 if (l_slot > 1)
3578 l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
3579 else
3580 l_mas->index = l_mas->min;
3581
3582 l_mas->offset = l_slot - 1;
3583 }
3584
3585 if (!r_wr_mas->content) {
3586 if (r_mas->last < r_wr_mas->r_max)
3587 r_mas->last = r_wr_mas->r_max;
3588 r_mas->offset++;
3589 } else if ((r_mas->last == r_wr_mas->r_max) &&
3590 (r_mas->last < r_mas->max) &&
3591 !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
3592 r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
3593 r_wr_mas->type, r_mas->offset + 1);
3594 r_mas->offset++;
3595 }
3596}
3597
3598static inline void *mas_state_walk(struct ma_state *mas)
3599{
3600 void *entry;
3601
3602 entry = mas_start(mas);
3603 if (mas_is_none(mas))
3604 return NULL;
3605
3606 if (mas_is_ptr(mas))
3607 return entry;
3608
3609 return mtree_range_walk(mas);
3610}
3611
3612/*
3613 * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
3614 * to date.
3615 *
3616 * @mas: The maple state.
3617 *
3618 * Note: Leaves mas in undesirable state.
3619 * Return: The entry for @mas->index or %NULL on dead node.
3620 */
3621static inline void *mtree_lookup_walk(struct ma_state *mas)
3622{
3623 unsigned long *pivots;
3624 unsigned char offset;
3625 struct maple_node *node;
3626 struct maple_enode *next;
3627 enum maple_type type;
3628 void __rcu **slots;
3629 unsigned char end;
3630
3631 next = mas->node;
3632 do {
3633 node = mte_to_node(next);
3634 type = mte_node_type(next);
3635 pivots = ma_pivots(node, type);
3636 end = mt_pivots[type];
3637 offset = 0;
3638 do {
3639 if (pivots[offset] >= mas->index)
3640 break;
3641 } while (++offset < end);
3642
3643 slots = ma_slots(node, type);
3644 next = mt_slot(mas->tree, slots, offset);
3645 if (unlikely(ma_dead_node(node)))
3646 goto dead_node;
3647 } while (!ma_is_leaf(type));
3648
3649 return (void *)next;
3650
3651dead_node:
3652 mas_reset(mas);
3653 return NULL;
3654}
3655
3656static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
3657/*
3658 * mas_new_root() - Create a new root node that only contains the entry passed
3659 * in.
3660 * @mas: The maple state
3661 * @entry: The entry to store.
3662 *
3663 * Only valid when the index == 0 and the last == ULONG_MAX
3664 */
3665static inline void mas_new_root(struct ma_state *mas, void *entry)
3666{
3667 struct maple_enode *root = mas_root_locked(mas);
3668 enum maple_type type = maple_leaf_64;
3669 struct maple_node *node;
3670 void __rcu **slots;
3671 unsigned long *pivots;
3672
3673 WARN_ON_ONCE(mas->index || mas->last != ULONG_MAX);
3674
3675 if (!entry) {
3676 mas->depth = 0;
3677 mas_set_height(mas);
3678 rcu_assign_pointer(mas->tree->ma_root, entry);
3679 mas->status = ma_start;
3680 goto done;
3681 }
3682
3683 node = mas_pop_node(mas);
3684 pivots = ma_pivots(node, type);
3685 slots = ma_slots(node, type);
3686 node->parent = ma_parent_ptr(mas_tree_parent(mas));
3687 mas->node = mt_mk_node(node, type);
3688 mas->status = ma_active;
3689 rcu_assign_pointer(slots[0], entry);
3690 pivots[0] = mas->last;
3691 mas->depth = 1;
3692 mas_set_height(mas);
3693 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3694
3695done:
3696 if (xa_is_node(root))
3697 mte_destroy_walk(root, mas->tree);
3698
3699 return;
3700}
3701/*
3702 * mas_wr_spanning_store() - Create a subtree with the store operation completed
3703 * and new nodes where necessary, then place the sub-tree in the actual tree.
3704 * Note that mas is expected to point to the node which caused the store to
3705 * span.
3706 * @wr_mas: The maple write state
3707 */
3708static noinline void mas_wr_spanning_store(struct ma_wr_state *wr_mas)
3709{
3710 struct maple_subtree_state mast;
3711 struct maple_big_node b_node;
3712 struct ma_state *mas;
3713 unsigned char height;
3714
3715 /* Left and Right side of spanning store */
3716 MA_STATE(l_mas, NULL, 0, 0);
3717 MA_STATE(r_mas, NULL, 0, 0);
3718 MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
3719 MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
3720
3721 /*
3722 * A store operation that spans multiple nodes is called a spanning
3723 * store and is handled early in the store call stack by the function
3724 * mas_is_span_wr(). When a spanning store is identified, the maple
3725 * state is duplicated. The first maple state walks the left tree path
3726 * to ``index``, the duplicate walks the right tree path to ``last``.
3727 * The data in the two nodes are combined into a single node, two nodes,
3728 * or possibly three nodes (see the 3-way split above). A ``NULL``
3729 * written to the last entry of a node is considered a spanning store as
3730 * a rebalance is required for the operation to complete and an overflow
3731 * of data may happen.
3732 */
3733 mas = wr_mas->mas;
3734 trace_ma_op(__func__, mas);
3735
3736 if (unlikely(!mas->index && mas->last == ULONG_MAX))
3737 return mas_new_root(mas, wr_mas->entry);
3738 /*
3739 * Node rebalancing may occur due to this store, so there may be three new
3740 * entries per level plus a new root.
3741 */
3742 height = mas_mt_height(mas);
3743
3744 /*
3745 * Set up right side. Need to get to the next offset after the spanning
3746 * store to ensure it's not NULL and to combine both the next node and
3747 * the node with the start together.
3748 */
3749 r_mas = *mas;
3750 /* Avoid overflow, walk to next slot in the tree. */
3751 if (r_mas.last + 1)
3752 r_mas.last++;
3753
3754 r_mas.index = r_mas.last;
3755 mas_wr_walk_index(&r_wr_mas);
3756 r_mas.last = r_mas.index = mas->last;
3757
3758 /* Set up left side. */
3759 l_mas = *mas;
3760 mas_wr_walk_index(&l_wr_mas);
3761
3762 if (!wr_mas->entry) {
3763 mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
3764 mas->offset = l_mas.offset;
3765 mas->index = l_mas.index;
3766 mas->last = l_mas.last = r_mas.last;
3767 }
3768
3769 /* expanding NULLs may make this cover the entire range */
3770 if (!l_mas.index && r_mas.last == ULONG_MAX) {
3771 mas_set_range(mas, 0, ULONG_MAX);
3772 return mas_new_root(mas, wr_mas->entry);
3773 }
3774
3775 memset(&b_node, 0, sizeof(struct maple_big_node));
3776 /* Copy l_mas and store the value in b_node. */
3777 mas_store_b_node(&l_wr_mas, &b_node, l_mas.end);
3778 /* Copy r_mas into b_node if there is anything to copy. */
3779 if (r_mas.max > r_mas.last)
3780 mas_mab_cp(&r_mas, r_mas.offset, r_mas.end,
3781 &b_node, b_node.b_end + 1);
3782 else
3783 b_node.b_end++;
3784
3785 /* Stop spanning searches by searching for just index. */
3786 l_mas.index = l_mas.last = mas->index;
3787
3788 mast.bn = &b_node;
3789 mast.orig_l = &l_mas;
3790 mast.orig_r = &r_mas;
3791 /* Combine l_mas and r_mas and split them up evenly again. */
3792 return mas_spanning_rebalance(mas, &mast, height + 1);
3793}
3794
3795/*
3796 * mas_wr_node_store() - Attempt to store the value in a node
3797 * @wr_mas: The maple write state
3798 *
3799 * Attempts to reuse the node, but may allocate.
3800 */
3801static inline void mas_wr_node_store(struct ma_wr_state *wr_mas,
3802 unsigned char new_end)
3803{
3804 struct ma_state *mas = wr_mas->mas;
3805 void __rcu **dst_slots;
3806 unsigned long *dst_pivots;
3807 unsigned char dst_offset, offset_end = wr_mas->offset_end;
3808 struct maple_node reuse, *newnode;
3809 unsigned char copy_size, node_pivots = mt_pivots[wr_mas->type];
3810 bool in_rcu = mt_in_rcu(mas->tree);
3811
3812 if (mas->last == wr_mas->end_piv)
3813 offset_end++; /* don't copy this offset */
3814 else if (unlikely(wr_mas->r_max == ULONG_MAX))
3815 mas_bulk_rebalance(mas, mas->end, wr_mas->type);
3816
3817 /* set up node. */
3818 if (in_rcu) {
3819 newnode = mas_pop_node(mas);
3820 } else {
3821 memset(&reuse, 0, sizeof(struct maple_node));
3822 newnode = &reuse;
3823 }
3824
3825 newnode->parent = mas_mn(mas)->parent;
3826 dst_pivots = ma_pivots(newnode, wr_mas->type);
3827 dst_slots = ma_slots(newnode, wr_mas->type);
3828 /* Copy from start to insert point */
3829 memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * mas->offset);
3830 memcpy(dst_slots, wr_mas->slots, sizeof(void *) * mas->offset);
3831
3832 /* Handle insert of new range starting after old range */
3833 if (wr_mas->r_min < mas->index) {
3834 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->content);
3835 dst_pivots[mas->offset++] = mas->index - 1;
3836 }
3837
3838 /* Store the new entry and range end. */
3839 if (mas->offset < node_pivots)
3840 dst_pivots[mas->offset] = mas->last;
3841 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->entry);
3842
3843 /*
3844 * this range wrote to the end of the node or it overwrote the rest of
3845 * the data
3846 */
3847 if (offset_end > mas->end)
3848 goto done;
3849
3850 dst_offset = mas->offset + 1;
3851 /* Copy to the end of node if necessary. */
3852 copy_size = mas->end - offset_end + 1;
3853 memcpy(dst_slots + dst_offset, wr_mas->slots + offset_end,
3854 sizeof(void *) * copy_size);
3855 memcpy(dst_pivots + dst_offset, wr_mas->pivots + offset_end,
3856 sizeof(unsigned long) * (copy_size - 1));
3857
3858 if (new_end < node_pivots)
3859 dst_pivots[new_end] = mas->max;
3860
3861done:
3862 mas_leaf_set_meta(newnode, maple_leaf_64, new_end);
3863 if (in_rcu) {
3864 struct maple_enode *old_enode = mas->node;
3865
3866 mas->node = mt_mk_node(newnode, wr_mas->type);
3867 mas_replace_node(mas, old_enode);
3868 } else {
3869 memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
3870 }
3871 trace_ma_write(__func__, mas, 0, wr_mas->entry);
3872 mas_update_gap(mas);
3873 mas->end = new_end;
3874 return;
3875}
3876
3877/*
3878 * mas_wr_slot_store: Attempt to store a value in a slot.
3879 * @wr_mas: the maple write state
3880 */
3881static inline void mas_wr_slot_store(struct ma_wr_state *wr_mas)
3882{
3883 struct ma_state *mas = wr_mas->mas;
3884 unsigned char offset = mas->offset;
3885 void __rcu **slots = wr_mas->slots;
3886 bool gap = false;
3887
3888 gap |= !mt_slot_locked(mas->tree, slots, offset);
3889 gap |= !mt_slot_locked(mas->tree, slots, offset + 1);
3890
3891 if (wr_mas->offset_end - offset == 1) {
3892 if (mas->index == wr_mas->r_min) {
3893 /* Overwriting the range and a part of the next one */
3894 rcu_assign_pointer(slots[offset], wr_mas->entry);
3895 wr_mas->pivots[offset] = mas->last;
3896 } else {
3897 /* Overwriting a part of the range and the next one */
3898 rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
3899 wr_mas->pivots[offset] = mas->index - 1;
3900 mas->offset++; /* Keep mas accurate. */
3901 }
3902 } else {
3903 WARN_ON_ONCE(mt_in_rcu(mas->tree));
3904 /*
3905 * Expand the range, only partially overwriting the previous and
3906 * next ranges
3907 */
3908 gap |= !mt_slot_locked(mas->tree, slots, offset + 2);
3909 rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
3910 wr_mas->pivots[offset] = mas->index - 1;
3911 wr_mas->pivots[offset + 1] = mas->last;
3912 mas->offset++; /* Keep mas accurate. */
3913 }
3914
3915 trace_ma_write(__func__, mas, 0, wr_mas->entry);
3916 /*
3917 * Only update gap when the new entry is empty or there is an empty
3918 * entry in the original two ranges.
3919 */
3920 if (!wr_mas->entry || gap)
3921 mas_update_gap(mas);
3922
3923 return;
3924}
3925
3926static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
3927{
3928 struct ma_state *mas = wr_mas->mas;
3929
3930 if (!wr_mas->slots[wr_mas->offset_end]) {
3931 /* If this one is null, the next and prev are not */
3932 mas->last = wr_mas->end_piv;
3933 } else {
3934 /* Check next slot(s) if we are overwriting the end */
3935 if ((mas->last == wr_mas->end_piv) &&
3936 (mas->end != wr_mas->offset_end) &&
3937 !wr_mas->slots[wr_mas->offset_end + 1]) {
3938 wr_mas->offset_end++;
3939 if (wr_mas->offset_end == mas->end)
3940 mas->last = mas->max;
3941 else
3942 mas->last = wr_mas->pivots[wr_mas->offset_end];
3943 wr_mas->end_piv = mas->last;
3944 }
3945 }
3946
3947 if (!wr_mas->content) {
3948 /* If this one is null, the next and prev are not */
3949 mas->index = wr_mas->r_min;
3950 } else {
3951 /* Check prev slot if we are overwriting the start */
3952 if (mas->index == wr_mas->r_min && mas->offset &&
3953 !wr_mas->slots[mas->offset - 1]) {
3954 mas->offset--;
3955 wr_mas->r_min = mas->index =
3956 mas_safe_min(mas, wr_mas->pivots, mas->offset);
3957 wr_mas->r_max = wr_mas->pivots[mas->offset];
3958 }
3959 }
3960}
3961
3962static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
3963{
3964 while ((wr_mas->offset_end < wr_mas->mas->end) &&
3965 (wr_mas->mas->last > wr_mas->pivots[wr_mas->offset_end]))
3966 wr_mas->offset_end++;
3967
3968 if (wr_mas->offset_end < wr_mas->mas->end)
3969 wr_mas->end_piv = wr_mas->pivots[wr_mas->offset_end];
3970 else
3971 wr_mas->end_piv = wr_mas->mas->max;
3972}
3973
3974static inline unsigned char mas_wr_new_end(struct ma_wr_state *wr_mas)
3975{
3976 struct ma_state *mas = wr_mas->mas;
3977 unsigned char new_end = mas->end + 2;
3978
3979 new_end -= wr_mas->offset_end - mas->offset;
3980 if (wr_mas->r_min == mas->index)
3981 new_end--;
3982
3983 if (wr_mas->end_piv == mas->last)
3984 new_end--;
3985
3986 return new_end;
3987}
3988
3989/*
3990 * mas_wr_append: Attempt to append
3991 * @wr_mas: the maple write state
3992 * @new_end: The end of the node after the modification
3993 *
3994 * This is currently unsafe in rcu mode since the end of the node may be cached
3995 * by readers while the node contents may be updated which could result in
3996 * inaccurate information.
3997 */
3998static inline void mas_wr_append(struct ma_wr_state *wr_mas,
3999 unsigned char new_end)
4000{
4001 struct ma_state *mas = wr_mas->mas;
4002 void __rcu **slots;
4003 unsigned char end = mas->end;
4004
4005 if (new_end < mt_pivots[wr_mas->type]) {
4006 wr_mas->pivots[new_end] = wr_mas->pivots[end];
4007 ma_set_meta(wr_mas->node, wr_mas->type, 0, new_end);
4008 }
4009
4010 slots = wr_mas->slots;
4011 if (new_end == end + 1) {
4012 if (mas->last == wr_mas->r_max) {
4013 /* Append to end of range */
4014 rcu_assign_pointer(slots[new_end], wr_mas->entry);
4015 wr_mas->pivots[end] = mas->index - 1;
4016 mas->offset = new_end;
4017 } else {
4018 /* Append to start of range */
4019 rcu_assign_pointer(slots[new_end], wr_mas->content);
4020 wr_mas->pivots[end] = mas->last;
4021 rcu_assign_pointer(slots[end], wr_mas->entry);
4022 }
4023 } else {
4024 /* Append to the range without touching any boundaries. */
4025 rcu_assign_pointer(slots[new_end], wr_mas->content);
4026 wr_mas->pivots[end + 1] = mas->last;
4027 rcu_assign_pointer(slots[end + 1], wr_mas->entry);
4028 wr_mas->pivots[end] = mas->index - 1;
4029 mas->offset = end + 1;
4030 }
4031
4032 if (!wr_mas->content || !wr_mas->entry)
4033 mas_update_gap(mas);
4034
4035 mas->end = new_end;
4036 trace_ma_write(__func__, mas, new_end, wr_mas->entry);
4037 return;
4038}
4039
4040/*
4041 * mas_wr_bnode() - Slow path for a modification.
4042 * @wr_mas: The write maple state
4043 *
4044 * This is where split, rebalance end up.
4045 */
4046static void mas_wr_bnode(struct ma_wr_state *wr_mas)
4047{
4048 struct maple_big_node b_node;
4049
4050 trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry);
4051 memset(&b_node, 0, sizeof(struct maple_big_node));
4052 mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
4053 mas_commit_b_node(wr_mas, &b_node);
4054}
4055
4056/*
4057 * mas_wr_store_entry() - Internal call to store a value
4058 * @wr_mas: The maple write state
4059 */
4060static inline void mas_wr_store_entry(struct ma_wr_state *wr_mas)
4061{
4062 struct ma_state *mas = wr_mas->mas;
4063 unsigned char new_end = mas_wr_new_end(wr_mas);
4064
4065 switch (mas->store_type) {
4066 case wr_invalid:
4067 MT_BUG_ON(mas->tree, 1);
4068 return;
4069 case wr_new_root:
4070 mas_new_root(mas, wr_mas->entry);
4071 break;
4072 case wr_store_root:
4073 mas_store_root(mas, wr_mas->entry);
4074 break;
4075 case wr_exact_fit:
4076 rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
4077 if (!!wr_mas->entry ^ !!wr_mas->content)
4078 mas_update_gap(mas);
4079 break;
4080 case wr_append:
4081 mas_wr_append(wr_mas, new_end);
4082 break;
4083 case wr_slot_store:
4084 mas_wr_slot_store(wr_mas);
4085 break;
4086 case wr_node_store:
4087 mas_wr_node_store(wr_mas, new_end);
4088 break;
4089 case wr_spanning_store:
4090 mas_wr_spanning_store(wr_mas);
4091 break;
4092 case wr_split_store:
4093 case wr_rebalance:
4094 mas_wr_bnode(wr_mas);
4095 break;
4096 }
4097
4098 return;
4099}
4100
4101static inline void mas_wr_prealloc_setup(struct ma_wr_state *wr_mas)
4102{
4103 struct ma_state *mas = wr_mas->mas;
4104
4105 if (!mas_is_active(mas)) {
4106 if (mas_is_start(mas))
4107 goto set_content;
4108
4109 if (unlikely(mas_is_paused(mas)))
4110 goto reset;
4111
4112 if (unlikely(mas_is_none(mas)))
4113 goto reset;
4114
4115 if (unlikely(mas_is_overflow(mas)))
4116 goto reset;
4117
4118 if (unlikely(mas_is_underflow(mas)))
4119 goto reset;
4120 }
4121
4122 /*
4123 * A less strict version of mas_is_span_wr() where we allow spanning
4124 * writes within this node. This is to stop partial walks in
4125 * mas_prealloc() from being reset.
4126 */
4127 if (mas->last > mas->max)
4128 goto reset;
4129
4130 if (wr_mas->entry)
4131 goto set_content;
4132
4133 if (mte_is_leaf(mas->node) && mas->last == mas->max)
4134 goto reset;
4135
4136 goto set_content;
4137
4138reset:
4139 mas_reset(mas);
4140set_content:
4141 wr_mas->content = mas_start(mas);
4142}
4143
4144/**
4145 * mas_prealloc_calc() - Calculate number of nodes needed for a
4146 * given store oepration
4147 * @mas: The maple state
4148 * @entry: The entry to store into the tree
4149 *
4150 * Return: Number of nodes required for preallocation.
4151 */
4152static inline int mas_prealloc_calc(struct ma_state *mas, void *entry)
4153{
4154 int ret = mas_mt_height(mas) * 3 + 1;
4155
4156 switch (mas->store_type) {
4157 case wr_invalid:
4158 WARN_ON_ONCE(1);
4159 break;
4160 case wr_new_root:
4161 ret = 1;
4162 break;
4163 case wr_store_root:
4164 if (likely((mas->last != 0) || (mas->index != 0)))
4165 ret = 1;
4166 else if (((unsigned long) (entry) & 3) == 2)
4167 ret = 1;
4168 else
4169 ret = 0;
4170 break;
4171 case wr_spanning_store:
4172 ret = mas_mt_height(mas) * 3 + 1;
4173 break;
4174 case wr_split_store:
4175 ret = mas_mt_height(mas) * 2 + 1;
4176 break;
4177 case wr_rebalance:
4178 ret = mas_mt_height(mas) * 2 - 1;
4179 break;
4180 case wr_node_store:
4181 ret = mt_in_rcu(mas->tree) ? 1 : 0;
4182 break;
4183 case wr_append:
4184 case wr_exact_fit:
4185 case wr_slot_store:
4186 ret = 0;
4187 }
4188
4189 return ret;
4190}
4191
4192/*
4193 * mas_wr_store_type() - Determine the store type for a given
4194 * store operation.
4195 * @wr_mas: The maple write state
4196 *
4197 * Return: the type of store needed for the operation
4198 */
4199static inline enum store_type mas_wr_store_type(struct ma_wr_state *wr_mas)
4200{
4201 struct ma_state *mas = wr_mas->mas;
4202 unsigned char new_end;
4203
4204 if (unlikely(mas_is_none(mas) || mas_is_ptr(mas)))
4205 return wr_store_root;
4206
4207 if (unlikely(!mas_wr_walk(wr_mas)))
4208 return wr_spanning_store;
4209
4210 /* At this point, we are at the leaf node that needs to be altered. */
4211 mas_wr_end_piv(wr_mas);
4212 if (!wr_mas->entry)
4213 mas_wr_extend_null(wr_mas);
4214
4215 if ((wr_mas->r_min == mas->index) && (wr_mas->r_max == mas->last))
4216 return wr_exact_fit;
4217
4218 if (unlikely(!mas->index && mas->last == ULONG_MAX))
4219 return wr_new_root;
4220
4221 new_end = mas_wr_new_end(wr_mas);
4222 /* Potential spanning rebalance collapsing a node */
4223 if (new_end < mt_min_slots[wr_mas->type]) {
4224 if (!mte_is_root(mas->node) && !(mas->mas_flags & MA_STATE_BULK))
4225 return wr_rebalance;
4226 return wr_node_store;
4227 }
4228
4229 if (new_end >= mt_slots[wr_mas->type])
4230 return wr_split_store;
4231
4232 if (!mt_in_rcu(mas->tree) && (mas->offset == mas->end))
4233 return wr_append;
4234
4235 if ((new_end == mas->end) && (!mt_in_rcu(mas->tree) ||
4236 (wr_mas->offset_end - mas->offset == 1)))
4237 return wr_slot_store;
4238
4239 return wr_node_store;
4240}
4241
4242/**
4243 * mas_wr_preallocate() - Preallocate enough nodes for a store operation
4244 * @wr_mas: The maple write state
4245 * @entry: The entry that will be stored
4246 *
4247 */
4248static inline void mas_wr_preallocate(struct ma_wr_state *wr_mas, void *entry)
4249{
4250 struct ma_state *mas = wr_mas->mas;
4251 int request;
4252
4253 mas_wr_prealloc_setup(wr_mas);
4254 mas->store_type = mas_wr_store_type(wr_mas);
4255 request = mas_prealloc_calc(mas, entry);
4256 if (!request)
4257 return;
4258
4259 mas_node_count(mas, request);
4260}
4261
4262/**
4263 * mas_insert() - Internal call to insert a value
4264 * @mas: The maple state
4265 * @entry: The entry to store
4266 *
4267 * Return: %NULL or the contents that already exists at the requested index
4268 * otherwise. The maple state needs to be checked for error conditions.
4269 */
4270static inline void *mas_insert(struct ma_state *mas, void *entry)
4271{
4272 MA_WR_STATE(wr_mas, mas, entry);
4273
4274 /*
4275 * Inserting a new range inserts either 0, 1, or 2 pivots within the
4276 * tree. If the insert fits exactly into an existing gap with a value
4277 * of NULL, then the slot only needs to be written with the new value.
4278 * If the range being inserted is adjacent to another range, then only a
4279 * single pivot needs to be inserted (as well as writing the entry). If
4280 * the new range is within a gap but does not touch any other ranges,
4281 * then two pivots need to be inserted: the start - 1, and the end. As
4282 * usual, the entry must be written. Most operations require a new node
4283 * to be allocated and replace an existing node to ensure RCU safety,
4284 * when in RCU mode. The exception to requiring a newly allocated node
4285 * is when inserting at the end of a node (appending). When done
4286 * carefully, appending can reuse the node in place.
4287 */
4288 wr_mas.content = mas_start(mas);
4289 if (wr_mas.content)
4290 goto exists;
4291
4292 mas_wr_preallocate(&wr_mas, entry);
4293 if (mas_is_err(mas))
4294 return NULL;
4295
4296 /* spanning writes always overwrite something */
4297 if (mas->store_type == wr_spanning_store)
4298 goto exists;
4299
4300 /* At this point, we are at the leaf node that needs to be altered. */
4301 if (mas->store_type != wr_new_root && mas->store_type != wr_store_root) {
4302 wr_mas.offset_end = mas->offset;
4303 wr_mas.end_piv = wr_mas.r_max;
4304
4305 if (wr_mas.content || (mas->last > wr_mas.r_max))
4306 goto exists;
4307 }
4308
4309 mas_wr_store_entry(&wr_mas);
4310 return wr_mas.content;
4311
4312exists:
4313 mas_set_err(mas, -EEXIST);
4314 return wr_mas.content;
4315
4316}
4317
4318/**
4319 * mas_alloc_cyclic() - Internal call to find somewhere to store an entry
4320 * @mas: The maple state.
4321 * @startp: Pointer to ID.
4322 * @range_lo: Lower bound of range to search.
4323 * @range_hi: Upper bound of range to search.
4324 * @entry: The entry to store.
4325 * @next: Pointer to next ID to allocate.
4326 * @gfp: The GFP_FLAGS to use for allocations.
4327 *
4328 * Return: 0 if the allocation succeeded without wrapping, 1 if the
4329 * allocation succeeded after wrapping, or -EBUSY if there are no
4330 * free entries.
4331 */
4332int mas_alloc_cyclic(struct ma_state *mas, unsigned long *startp,
4333 void *entry, unsigned long range_lo, unsigned long range_hi,
4334 unsigned long *next, gfp_t gfp)
4335{
4336 unsigned long min = range_lo;
4337 int ret = 0;
4338
4339 range_lo = max(min, *next);
4340 ret = mas_empty_area(mas, range_lo, range_hi, 1);
4341 if ((mas->tree->ma_flags & MT_FLAGS_ALLOC_WRAPPED) && ret == 0) {
4342 mas->tree->ma_flags &= ~MT_FLAGS_ALLOC_WRAPPED;
4343 ret = 1;
4344 }
4345 if (ret < 0 && range_lo > min) {
4346 mas_reset(mas);
4347 ret = mas_empty_area(mas, min, range_hi, 1);
4348 if (ret == 0)
4349 ret = 1;
4350 }
4351 if (ret < 0)
4352 return ret;
4353
4354 do {
4355 mas_insert(mas, entry);
4356 } while (mas_nomem(mas, gfp));
4357 if (mas_is_err(mas))
4358 return xa_err(mas->node);
4359
4360 *startp = mas->index;
4361 *next = *startp + 1;
4362 if (*next == 0)
4363 mas->tree->ma_flags |= MT_FLAGS_ALLOC_WRAPPED;
4364
4365 mas_destroy(mas);
4366 return ret;
4367}
4368EXPORT_SYMBOL(mas_alloc_cyclic);
4369
4370static __always_inline void mas_rewalk(struct ma_state *mas, unsigned long index)
4371{
4372retry:
4373 mas_set(mas, index);
4374 mas_state_walk(mas);
4375 if (mas_is_start(mas))
4376 goto retry;
4377}
4378
4379static __always_inline bool mas_rewalk_if_dead(struct ma_state *mas,
4380 struct maple_node *node, const unsigned long index)
4381{
4382 if (unlikely(ma_dead_node(node))) {
4383 mas_rewalk(mas, index);
4384 return true;
4385 }
4386 return false;
4387}
4388
4389/*
4390 * mas_prev_node() - Find the prev non-null entry at the same level in the
4391 * tree. The prev value will be mas->node[mas->offset] or the status will be
4392 * ma_none.
4393 * @mas: The maple state
4394 * @min: The lower limit to search
4395 *
4396 * The prev node value will be mas->node[mas->offset] or the status will be
4397 * ma_none.
4398 * Return: 1 if the node is dead, 0 otherwise.
4399 */
4400static int mas_prev_node(struct ma_state *mas, unsigned long min)
4401{
4402 enum maple_type mt;
4403 int offset, level;
4404 void __rcu **slots;
4405 struct maple_node *node;
4406 unsigned long *pivots;
4407 unsigned long max;
4408
4409 node = mas_mn(mas);
4410 if (!mas->min)
4411 goto no_entry;
4412
4413 max = mas->min - 1;
4414 if (max < min)
4415 goto no_entry;
4416
4417 level = 0;
4418 do {
4419 if (ma_is_root(node))
4420 goto no_entry;
4421
4422 /* Walk up. */
4423 if (unlikely(mas_ascend(mas)))
4424 return 1;
4425 offset = mas->offset;
4426 level++;
4427 node = mas_mn(mas);
4428 } while (!offset);
4429
4430 offset--;
4431 mt = mte_node_type(mas->node);
4432 while (level > 1) {
4433 level--;
4434 slots = ma_slots(node, mt);
4435 mas->node = mas_slot(mas, slots, offset);
4436 if (unlikely(ma_dead_node(node)))
4437 return 1;
4438
4439 mt = mte_node_type(mas->node);
4440 node = mas_mn(mas);
4441 pivots = ma_pivots(node, mt);
4442 offset = ma_data_end(node, mt, pivots, max);
4443 if (unlikely(ma_dead_node(node)))
4444 return 1;
4445 }
4446
4447 slots = ma_slots(node, mt);
4448 mas->node = mas_slot(mas, slots, offset);
4449 pivots = ma_pivots(node, mt);
4450 if (unlikely(ma_dead_node(node)))
4451 return 1;
4452
4453 if (likely(offset))
4454 mas->min = pivots[offset - 1] + 1;
4455 mas->max = max;
4456 mas->offset = mas_data_end(mas);
4457 if (unlikely(mte_dead_node(mas->node)))
4458 return 1;
4459
4460 mas->end = mas->offset;
4461 return 0;
4462
4463no_entry:
4464 if (unlikely(ma_dead_node(node)))
4465 return 1;
4466
4467 mas->status = ma_underflow;
4468 return 0;
4469}
4470
4471/*
4472 * mas_prev_slot() - Get the entry in the previous slot
4473 *
4474 * @mas: The maple state
4475 * @min: The minimum starting range
4476 * @empty: Can be empty
4477 *
4478 * Return: The entry in the previous slot which is possibly NULL
4479 */
4480static void *mas_prev_slot(struct ma_state *mas, unsigned long min, bool empty)
4481{
4482 void *entry;
4483 void __rcu **slots;
4484 unsigned long pivot;
4485 enum maple_type type;
4486 unsigned long *pivots;
4487 struct maple_node *node;
4488 unsigned long save_point = mas->index;
4489
4490retry:
4491 node = mas_mn(mas);
4492 type = mte_node_type(mas->node);
4493 pivots = ma_pivots(node, type);
4494 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4495 goto retry;
4496
4497 if (mas->min <= min) {
4498 pivot = mas_safe_min(mas, pivots, mas->offset);
4499
4500 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4501 goto retry;
4502
4503 if (pivot <= min)
4504 goto underflow;
4505 }
4506
4507again:
4508 if (likely(mas->offset)) {
4509 mas->offset--;
4510 mas->last = mas->index - 1;
4511 mas->index = mas_safe_min(mas, pivots, mas->offset);
4512 } else {
4513 if (mas->index <= min)
4514 goto underflow;
4515
4516 if (mas_prev_node(mas, min)) {
4517 mas_rewalk(mas, save_point);
4518 goto retry;
4519 }
4520
4521 if (WARN_ON_ONCE(mas_is_underflow(mas)))
4522 return NULL;
4523
4524 mas->last = mas->max;
4525 node = mas_mn(mas);
4526 type = mte_node_type(mas->node);
4527 pivots = ma_pivots(node, type);
4528 mas->index = pivots[mas->offset - 1] + 1;
4529 }
4530
4531 slots = ma_slots(node, type);
4532 entry = mas_slot(mas, slots, mas->offset);
4533 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4534 goto retry;
4535
4536
4537 if (likely(entry))
4538 return entry;
4539
4540 if (!empty) {
4541 if (mas->index <= min) {
4542 mas->status = ma_underflow;
4543 return NULL;
4544 }
4545
4546 goto again;
4547 }
4548
4549 return entry;
4550
4551underflow:
4552 mas->status = ma_underflow;
4553 return NULL;
4554}
4555
4556/*
4557 * mas_next_node() - Get the next node at the same level in the tree.
4558 * @mas: The maple state
4559 * @node: The maple node
4560 * @max: The maximum pivot value to check.
4561 *
4562 * The next value will be mas->node[mas->offset] or the status will have
4563 * overflowed.
4564 * Return: 1 on dead node, 0 otherwise.
4565 */
4566static int mas_next_node(struct ma_state *mas, struct maple_node *node,
4567 unsigned long max)
4568{
4569 unsigned long min;
4570 unsigned long *pivots;
4571 struct maple_enode *enode;
4572 struct maple_node *tmp;
4573 int level = 0;
4574 unsigned char node_end;
4575 enum maple_type mt;
4576 void __rcu **slots;
4577
4578 if (mas->max >= max)
4579 goto overflow;
4580
4581 min = mas->max + 1;
4582 level = 0;
4583 do {
4584 if (ma_is_root(node))
4585 goto overflow;
4586
4587 /* Walk up. */
4588 if (unlikely(mas_ascend(mas)))
4589 return 1;
4590
4591 level++;
4592 node = mas_mn(mas);
4593 mt = mte_node_type(mas->node);
4594 pivots = ma_pivots(node, mt);
4595 node_end = ma_data_end(node, mt, pivots, mas->max);
4596 if (unlikely(ma_dead_node(node)))
4597 return 1;
4598
4599 } while (unlikely(mas->offset == node_end));
4600
4601 slots = ma_slots(node, mt);
4602 mas->offset++;
4603 enode = mas_slot(mas, slots, mas->offset);
4604 if (unlikely(ma_dead_node(node)))
4605 return 1;
4606
4607 if (level > 1)
4608 mas->offset = 0;
4609
4610 while (unlikely(level > 1)) {
4611 level--;
4612 mas->node = enode;
4613 node = mas_mn(mas);
4614 mt = mte_node_type(mas->node);
4615 slots = ma_slots(node, mt);
4616 enode = mas_slot(mas, slots, 0);
4617 if (unlikely(ma_dead_node(node)))
4618 return 1;
4619 }
4620
4621 if (!mas->offset)
4622 pivots = ma_pivots(node, mt);
4623
4624 mas->max = mas_safe_pivot(mas, pivots, mas->offset, mt);
4625 tmp = mte_to_node(enode);
4626 mt = mte_node_type(enode);
4627 pivots = ma_pivots(tmp, mt);
4628 mas->end = ma_data_end(tmp, mt, pivots, mas->max);
4629 if (unlikely(ma_dead_node(node)))
4630 return 1;
4631
4632 mas->node = enode;
4633 mas->min = min;
4634 return 0;
4635
4636overflow:
4637 if (unlikely(ma_dead_node(node)))
4638 return 1;
4639
4640 mas->status = ma_overflow;
4641 return 0;
4642}
4643
4644/*
4645 * mas_next_slot() - Get the entry in the next slot
4646 *
4647 * @mas: The maple state
4648 * @max: The maximum starting range
4649 * @empty: Can be empty
4650 *
4651 * Return: The entry in the next slot which is possibly NULL
4652 */
4653static void *mas_next_slot(struct ma_state *mas, unsigned long max, bool empty)
4654{
4655 void __rcu **slots;
4656 unsigned long *pivots;
4657 unsigned long pivot;
4658 enum maple_type type;
4659 struct maple_node *node;
4660 unsigned long save_point = mas->last;
4661 void *entry;
4662
4663retry:
4664 node = mas_mn(mas);
4665 type = mte_node_type(mas->node);
4666 pivots = ma_pivots(node, type);
4667 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4668 goto retry;
4669
4670 if (mas->max >= max) {
4671 if (likely(mas->offset < mas->end))
4672 pivot = pivots[mas->offset];
4673 else
4674 pivot = mas->max;
4675
4676 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4677 goto retry;
4678
4679 if (pivot >= max) { /* Was at the limit, next will extend beyond */
4680 mas->status = ma_overflow;
4681 return NULL;
4682 }
4683 }
4684
4685 if (likely(mas->offset < mas->end)) {
4686 mas->index = pivots[mas->offset] + 1;
4687again:
4688 mas->offset++;
4689 if (likely(mas->offset < mas->end))
4690 mas->last = pivots[mas->offset];
4691 else
4692 mas->last = mas->max;
4693 } else {
4694 if (mas->last >= max) {
4695 mas->status = ma_overflow;
4696 return NULL;
4697 }
4698
4699 if (mas_next_node(mas, node, max)) {
4700 mas_rewalk(mas, save_point);
4701 goto retry;
4702 }
4703
4704 if (WARN_ON_ONCE(mas_is_overflow(mas)))
4705 return NULL;
4706
4707 mas->offset = 0;
4708 mas->index = mas->min;
4709 node = mas_mn(mas);
4710 type = mte_node_type(mas->node);
4711 pivots = ma_pivots(node, type);
4712 mas->last = pivots[0];
4713 }
4714
4715 slots = ma_slots(node, type);
4716 entry = mt_slot(mas->tree, slots, mas->offset);
4717 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4718 goto retry;
4719
4720 if (entry)
4721 return entry;
4722
4723
4724 if (!empty) {
4725 if (mas->last >= max) {
4726 mas->status = ma_overflow;
4727 return NULL;
4728 }
4729
4730 mas->index = mas->last + 1;
4731 goto again;
4732 }
4733
4734 return entry;
4735}
4736
4737/*
4738 * mas_next_entry() - Internal function to get the next entry.
4739 * @mas: The maple state
4740 * @limit: The maximum range start.
4741 *
4742 * Set the @mas->node to the next entry and the range_start to
4743 * the beginning value for the entry. Does not check beyond @limit.
4744 * Sets @mas->index and @mas->last to the range, Does not update @mas->index and
4745 * @mas->last on overflow.
4746 * Restarts on dead nodes.
4747 *
4748 * Return: the next entry or %NULL.
4749 */
4750static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit)
4751{
4752 if (mas->last >= limit) {
4753 mas->status = ma_overflow;
4754 return NULL;
4755 }
4756
4757 return mas_next_slot(mas, limit, false);
4758}
4759
4760/*
4761 * mas_rev_awalk() - Internal function. Reverse allocation walk. Find the
4762 * highest gap address of a given size in a given node and descend.
4763 * @mas: The maple state
4764 * @size: The needed size.
4765 *
4766 * Return: True if found in a leaf, false otherwise.
4767 *
4768 */
4769static bool mas_rev_awalk(struct ma_state *mas, unsigned long size,
4770 unsigned long *gap_min, unsigned long *gap_max)
4771{
4772 enum maple_type type = mte_node_type(mas->node);
4773 struct maple_node *node = mas_mn(mas);
4774 unsigned long *pivots, *gaps;
4775 void __rcu **slots;
4776 unsigned long gap = 0;
4777 unsigned long max, min;
4778 unsigned char offset;
4779
4780 if (unlikely(mas_is_err(mas)))
4781 return true;
4782
4783 if (ma_is_dense(type)) {
4784 /* dense nodes. */
4785 mas->offset = (unsigned char)(mas->index - mas->min);
4786 return true;
4787 }
4788
4789 pivots = ma_pivots(node, type);
4790 slots = ma_slots(node, type);
4791 gaps = ma_gaps(node, type);
4792 offset = mas->offset;
4793 min = mas_safe_min(mas, pivots, offset);
4794 /* Skip out of bounds. */
4795 while (mas->last < min)
4796 min = mas_safe_min(mas, pivots, --offset);
4797
4798 max = mas_safe_pivot(mas, pivots, offset, type);
4799 while (mas->index <= max) {
4800 gap = 0;
4801 if (gaps)
4802 gap = gaps[offset];
4803 else if (!mas_slot(mas, slots, offset))
4804 gap = max - min + 1;
4805
4806 if (gap) {
4807 if ((size <= gap) && (size <= mas->last - min + 1))
4808 break;
4809
4810 if (!gaps) {
4811 /* Skip the next slot, it cannot be a gap. */
4812 if (offset < 2)
4813 goto ascend;
4814
4815 offset -= 2;
4816 max = pivots[offset];
4817 min = mas_safe_min(mas, pivots, offset);
4818 continue;
4819 }
4820 }
4821
4822 if (!offset)
4823 goto ascend;
4824
4825 offset--;
4826 max = min - 1;
4827 min = mas_safe_min(mas, pivots, offset);
4828 }
4829
4830 if (unlikely((mas->index > max) || (size - 1 > max - mas->index)))
4831 goto no_space;
4832
4833 if (unlikely(ma_is_leaf(type))) {
4834 mas->offset = offset;
4835 *gap_min = min;
4836 *gap_max = min + gap - 1;
4837 return true;
4838 }
4839
4840 /* descend, only happens under lock. */
4841 mas->node = mas_slot(mas, slots, offset);
4842 mas->min = min;
4843 mas->max = max;
4844 mas->offset = mas_data_end(mas);
4845 return false;
4846
4847ascend:
4848 if (!mte_is_root(mas->node))
4849 return false;
4850
4851no_space:
4852 mas_set_err(mas, -EBUSY);
4853 return false;
4854}
4855
4856static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
4857{
4858 enum maple_type type = mte_node_type(mas->node);
4859 unsigned long pivot, min, gap = 0;
4860 unsigned char offset, data_end;
4861 unsigned long *gaps, *pivots;
4862 void __rcu **slots;
4863 struct maple_node *node;
4864 bool found = false;
4865
4866 if (ma_is_dense(type)) {
4867 mas->offset = (unsigned char)(mas->index - mas->min);
4868 return true;
4869 }
4870
4871 node = mas_mn(mas);
4872 pivots = ma_pivots(node, type);
4873 slots = ma_slots(node, type);
4874 gaps = ma_gaps(node, type);
4875 offset = mas->offset;
4876 min = mas_safe_min(mas, pivots, offset);
4877 data_end = ma_data_end(node, type, pivots, mas->max);
4878 for (; offset <= data_end; offset++) {
4879 pivot = mas_safe_pivot(mas, pivots, offset, type);
4880
4881 /* Not within lower bounds */
4882 if (mas->index > pivot)
4883 goto next_slot;
4884
4885 if (gaps)
4886 gap = gaps[offset];
4887 else if (!mas_slot(mas, slots, offset))
4888 gap = min(pivot, mas->last) - max(mas->index, min) + 1;
4889 else
4890 goto next_slot;
4891
4892 if (gap >= size) {
4893 if (ma_is_leaf(type)) {
4894 found = true;
4895 goto done;
4896 }
4897 if (mas->index <= pivot) {
4898 mas->node = mas_slot(mas, slots, offset);
4899 mas->min = min;
4900 mas->max = pivot;
4901 offset = 0;
4902 break;
4903 }
4904 }
4905next_slot:
4906 min = pivot + 1;
4907 if (mas->last <= pivot) {
4908 mas_set_err(mas, -EBUSY);
4909 return true;
4910 }
4911 }
4912
4913 if (mte_is_root(mas->node))
4914 found = true;
4915done:
4916 mas->offset = offset;
4917 return found;
4918}
4919
4920/**
4921 * mas_walk() - Search for @mas->index in the tree.
4922 * @mas: The maple state.
4923 *
4924 * mas->index and mas->last will be set to the range if there is a value. If
4925 * mas->status is ma_none, reset to ma_start
4926 *
4927 * Return: the entry at the location or %NULL.
4928 */
4929void *mas_walk(struct ma_state *mas)
4930{
4931 void *entry;
4932
4933 if (!mas_is_active(mas) || !mas_is_start(mas))
4934 mas->status = ma_start;
4935retry:
4936 entry = mas_state_walk(mas);
4937 if (mas_is_start(mas)) {
4938 goto retry;
4939 } else if (mas_is_none(mas)) {
4940 mas->index = 0;
4941 mas->last = ULONG_MAX;
4942 } else if (mas_is_ptr(mas)) {
4943 if (!mas->index) {
4944 mas->last = 0;
4945 return entry;
4946 }
4947
4948 mas->index = 1;
4949 mas->last = ULONG_MAX;
4950 mas->status = ma_none;
4951 return NULL;
4952 }
4953
4954 return entry;
4955}
4956EXPORT_SYMBOL_GPL(mas_walk);
4957
4958static inline bool mas_rewind_node(struct ma_state *mas)
4959{
4960 unsigned char slot;
4961
4962 do {
4963 if (mte_is_root(mas->node)) {
4964 slot = mas->offset;
4965 if (!slot)
4966 return false;
4967 } else {
4968 mas_ascend(mas);
4969 slot = mas->offset;
4970 }
4971 } while (!slot);
4972
4973 mas->offset = --slot;
4974 return true;
4975}
4976
4977/*
4978 * mas_skip_node() - Internal function. Skip over a node.
4979 * @mas: The maple state.
4980 *
4981 * Return: true if there is another node, false otherwise.
4982 */
4983static inline bool mas_skip_node(struct ma_state *mas)
4984{
4985 if (mas_is_err(mas))
4986 return false;
4987
4988 do {
4989 if (mte_is_root(mas->node)) {
4990 if (mas->offset >= mas_data_end(mas)) {
4991 mas_set_err(mas, -EBUSY);
4992 return false;
4993 }
4994 } else {
4995 mas_ascend(mas);
4996 }
4997 } while (mas->offset >= mas_data_end(mas));
4998
4999 mas->offset++;
5000 return true;
5001}
5002
5003/*
5004 * mas_awalk() - Allocation walk. Search from low address to high, for a gap of
5005 * @size
5006 * @mas: The maple state
5007 * @size: The size of the gap required
5008 *
5009 * Search between @mas->index and @mas->last for a gap of @size.
5010 */
5011static inline void mas_awalk(struct ma_state *mas, unsigned long size)
5012{
5013 struct maple_enode *last = NULL;
5014
5015 /*
5016 * There are 4 options:
5017 * go to child (descend)
5018 * go back to parent (ascend)
5019 * no gap found. (return, slot == MAPLE_NODE_SLOTS)
5020 * found the gap. (return, slot != MAPLE_NODE_SLOTS)
5021 */
5022 while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
5023 if (last == mas->node)
5024 mas_skip_node(mas);
5025 else
5026 last = mas->node;
5027 }
5028}
5029
5030/*
5031 * mas_sparse_area() - Internal function. Return upper or lower limit when
5032 * searching for a gap in an empty tree.
5033 * @mas: The maple state
5034 * @min: the minimum range
5035 * @max: The maximum range
5036 * @size: The size of the gap
5037 * @fwd: Searching forward or back
5038 */
5039static inline int mas_sparse_area(struct ma_state *mas, unsigned long min,
5040 unsigned long max, unsigned long size, bool fwd)
5041{
5042 if (!unlikely(mas_is_none(mas)) && min == 0) {
5043 min++;
5044 /*
5045 * At this time, min is increased, we need to recheck whether
5046 * the size is satisfied.
5047 */
5048 if (min > max || max - min + 1 < size)
5049 return -EBUSY;
5050 }
5051 /* mas_is_ptr */
5052
5053 if (fwd) {
5054 mas->index = min;
5055 mas->last = min + size - 1;
5056 } else {
5057 mas->last = max;
5058 mas->index = max - size + 1;
5059 }
5060 return 0;
5061}
5062
5063/*
5064 * mas_empty_area() - Get the lowest address within the range that is
5065 * sufficient for the size requested.
5066 * @mas: The maple state
5067 * @min: The lowest value of the range
5068 * @max: The highest value of the range
5069 * @size: The size needed
5070 */
5071int mas_empty_area(struct ma_state *mas, unsigned long min,
5072 unsigned long max, unsigned long size)
5073{
5074 unsigned char offset;
5075 unsigned long *pivots;
5076 enum maple_type mt;
5077 struct maple_node *node;
5078
5079 if (min > max)
5080 return -EINVAL;
5081
5082 if (size == 0 || max - min < size - 1)
5083 return -EINVAL;
5084
5085 if (mas_is_start(mas))
5086 mas_start(mas);
5087 else if (mas->offset >= 2)
5088 mas->offset -= 2;
5089 else if (!mas_skip_node(mas))
5090 return -EBUSY;
5091
5092 /* Empty set */
5093 if (mas_is_none(mas) || mas_is_ptr(mas))
5094 return mas_sparse_area(mas, min, max, size, true);
5095
5096 /* The start of the window can only be within these values */
5097 mas->index = min;
5098 mas->last = max;
5099 mas_awalk(mas, size);
5100
5101 if (unlikely(mas_is_err(mas)))
5102 return xa_err(mas->node);
5103
5104 offset = mas->offset;
5105 if (unlikely(offset == MAPLE_NODE_SLOTS))
5106 return -EBUSY;
5107
5108 node = mas_mn(mas);
5109 mt = mte_node_type(mas->node);
5110 pivots = ma_pivots(node, mt);
5111 min = mas_safe_min(mas, pivots, offset);
5112 if (mas->index < min)
5113 mas->index = min;
5114 mas->last = mas->index + size - 1;
5115 mas->end = ma_data_end(node, mt, pivots, mas->max);
5116 return 0;
5117}
5118EXPORT_SYMBOL_GPL(mas_empty_area);
5119
5120/*
5121 * mas_empty_area_rev() - Get the highest address within the range that is
5122 * sufficient for the size requested.
5123 * @mas: The maple state
5124 * @min: The lowest value of the range
5125 * @max: The highest value of the range
5126 * @size: The size needed
5127 */
5128int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
5129 unsigned long max, unsigned long size)
5130{
5131 struct maple_enode *last = mas->node;
5132
5133 if (min > max)
5134 return -EINVAL;
5135
5136 if (size == 0 || max - min < size - 1)
5137 return -EINVAL;
5138
5139 if (mas_is_start(mas))
5140 mas_start(mas);
5141 else if ((mas->offset < 2) && (!mas_rewind_node(mas)))
5142 return -EBUSY;
5143
5144 if (unlikely(mas_is_none(mas) || mas_is_ptr(mas)))
5145 return mas_sparse_area(mas, min, max, size, false);
5146 else if (mas->offset >= 2)
5147 mas->offset -= 2;
5148 else
5149 mas->offset = mas_data_end(mas);
5150
5151
5152 /* The start of the window can only be within these values. */
5153 mas->index = min;
5154 mas->last = max;
5155
5156 while (!mas_rev_awalk(mas, size, &min, &max)) {
5157 if (last == mas->node) {
5158 if (!mas_rewind_node(mas))
5159 return -EBUSY;
5160 } else {
5161 last = mas->node;
5162 }
5163 }
5164
5165 if (mas_is_err(mas))
5166 return xa_err(mas->node);
5167
5168 if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
5169 return -EBUSY;
5170
5171 /* Trim the upper limit to the max. */
5172 if (max < mas->last)
5173 mas->last = max;
5174
5175 mas->index = mas->last - size + 1;
5176 mas->end = mas_data_end(mas);
5177 return 0;
5178}
5179EXPORT_SYMBOL_GPL(mas_empty_area_rev);
5180
5181/*
5182 * mte_dead_leaves() - Mark all leaves of a node as dead.
5183 * @enode: the encoded node
5184 * @mt: the maple tree
5185 * @slots: Pointer to the slot array
5186 *
5187 * Must hold the write lock.
5188 *
5189 * Return: The number of leaves marked as dead.
5190 */
5191static inline
5192unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt,
5193 void __rcu **slots)
5194{
5195 struct maple_node *node;
5196 enum maple_type type;
5197 void *entry;
5198 int offset;
5199
5200 for (offset = 0; offset < mt_slot_count(enode); offset++) {
5201 entry = mt_slot(mt, slots, offset);
5202 type = mte_node_type(entry);
5203 node = mte_to_node(entry);
5204 /* Use both node and type to catch LE & BE metadata */
5205 if (!node || !type)
5206 break;
5207
5208 mte_set_node_dead(entry);
5209 node->type = type;
5210 rcu_assign_pointer(slots[offset], node);
5211 }
5212
5213 return offset;
5214}
5215
5216/**
5217 * mte_dead_walk() - Walk down a dead tree to just before the leaves
5218 * @enode: The maple encoded node
5219 * @offset: The starting offset
5220 *
5221 * Note: This can only be used from the RCU callback context.
5222 */
5223static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset)
5224{
5225 struct maple_node *node, *next;
5226 void __rcu **slots = NULL;
5227
5228 next = mte_to_node(*enode);
5229 do {
5230 *enode = ma_enode_ptr(next);
5231 node = mte_to_node(*enode);
5232 slots = ma_slots(node, node->type);
5233 next = rcu_dereference_protected(slots[offset],
5234 lock_is_held(&rcu_callback_map));
5235 offset = 0;
5236 } while (!ma_is_leaf(next->type));
5237
5238 return slots;
5239}
5240
5241/**
5242 * mt_free_walk() - Walk & free a tree in the RCU callback context
5243 * @head: The RCU head that's within the node.
5244 *
5245 * Note: This can only be used from the RCU callback context.
5246 */
5247static void mt_free_walk(struct rcu_head *head)
5248{
5249 void __rcu **slots;
5250 struct maple_node *node, *start;
5251 struct maple_enode *enode;
5252 unsigned char offset;
5253 enum maple_type type;
5254
5255 node = container_of(head, struct maple_node, rcu);
5256
5257 if (ma_is_leaf(node->type))
5258 goto free_leaf;
5259
5260 start = node;
5261 enode = mt_mk_node(node, node->type);
5262 slots = mte_dead_walk(&enode, 0);
5263 node = mte_to_node(enode);
5264 do {
5265 mt_free_bulk(node->slot_len, slots);
5266 offset = node->parent_slot + 1;
5267 enode = node->piv_parent;
5268 if (mte_to_node(enode) == node)
5269 goto free_leaf;
5270
5271 type = mte_node_type(enode);
5272 slots = ma_slots(mte_to_node(enode), type);
5273 if ((offset < mt_slots[type]) &&
5274 rcu_dereference_protected(slots[offset],
5275 lock_is_held(&rcu_callback_map)))
5276 slots = mte_dead_walk(&enode, offset);
5277 node = mte_to_node(enode);
5278 } while ((node != start) || (node->slot_len < offset));
5279
5280 slots = ma_slots(node, node->type);
5281 mt_free_bulk(node->slot_len, slots);
5282
5283free_leaf:
5284 mt_free_rcu(&node->rcu);
5285}
5286
5287static inline void __rcu **mte_destroy_descend(struct maple_enode **enode,
5288 struct maple_tree *mt, struct maple_enode *prev, unsigned char offset)
5289{
5290 struct maple_node *node;
5291 struct maple_enode *next = *enode;
5292 void __rcu **slots = NULL;
5293 enum maple_type type;
5294 unsigned char next_offset = 0;
5295
5296 do {
5297 *enode = next;
5298 node = mte_to_node(*enode);
5299 type = mte_node_type(*enode);
5300 slots = ma_slots(node, type);
5301 next = mt_slot_locked(mt, slots, next_offset);
5302 if ((mte_dead_node(next)))
5303 next = mt_slot_locked(mt, slots, ++next_offset);
5304
5305 mte_set_node_dead(*enode);
5306 node->type = type;
5307 node->piv_parent = prev;
5308 node->parent_slot = offset;
5309 offset = next_offset;
5310 next_offset = 0;
5311 prev = *enode;
5312 } while (!mte_is_leaf(next));
5313
5314 return slots;
5315}
5316
5317static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
5318 bool free)
5319{
5320 void __rcu **slots;
5321 struct maple_node *node = mte_to_node(enode);
5322 struct maple_enode *start;
5323
5324 if (mte_is_leaf(enode)) {
5325 node->type = mte_node_type(enode);
5326 goto free_leaf;
5327 }
5328
5329 start = enode;
5330 slots = mte_destroy_descend(&enode, mt, start, 0);
5331 node = mte_to_node(enode); // Updated in the above call.
5332 do {
5333 enum maple_type type;
5334 unsigned char offset;
5335 struct maple_enode *parent, *tmp;
5336
5337 node->slot_len = mte_dead_leaves(enode, mt, slots);
5338 if (free)
5339 mt_free_bulk(node->slot_len, slots);
5340 offset = node->parent_slot + 1;
5341 enode = node->piv_parent;
5342 if (mte_to_node(enode) == node)
5343 goto free_leaf;
5344
5345 type = mte_node_type(enode);
5346 slots = ma_slots(mte_to_node(enode), type);
5347 if (offset >= mt_slots[type])
5348 goto next;
5349
5350 tmp = mt_slot_locked(mt, slots, offset);
5351 if (mte_node_type(tmp) && mte_to_node(tmp)) {
5352 parent = enode;
5353 enode = tmp;
5354 slots = mte_destroy_descend(&enode, mt, parent, offset);
5355 }
5356next:
5357 node = mte_to_node(enode);
5358 } while (start != enode);
5359
5360 node = mte_to_node(enode);
5361 node->slot_len = mte_dead_leaves(enode, mt, slots);
5362 if (free)
5363 mt_free_bulk(node->slot_len, slots);
5364
5365free_leaf:
5366 if (free)
5367 mt_free_rcu(&node->rcu);
5368 else
5369 mt_clear_meta(mt, node, node->type);
5370}
5371
5372/*
5373 * mte_destroy_walk() - Free a tree or sub-tree.
5374 * @enode: the encoded maple node (maple_enode) to start
5375 * @mt: the tree to free - needed for node types.
5376 *
5377 * Must hold the write lock.
5378 */
5379static inline void mte_destroy_walk(struct maple_enode *enode,
5380 struct maple_tree *mt)
5381{
5382 struct maple_node *node = mte_to_node(enode);
5383
5384 if (mt_in_rcu(mt)) {
5385 mt_destroy_walk(enode, mt, false);
5386 call_rcu(&node->rcu, mt_free_walk);
5387 } else {
5388 mt_destroy_walk(enode, mt, true);
5389 }
5390}
5391/* Interface */
5392
5393/**
5394 * mas_store() - Store an @entry.
5395 * @mas: The maple state.
5396 * @entry: The entry to store.
5397 *
5398 * The @mas->index and @mas->last is used to set the range for the @entry.
5399 *
5400 * Return: the first entry between mas->index and mas->last or %NULL.
5401 */
5402void *mas_store(struct ma_state *mas, void *entry)
5403{
5404 int request;
5405 MA_WR_STATE(wr_mas, mas, entry);
5406
5407 trace_ma_write(__func__, mas, 0, entry);
5408#ifdef CONFIG_DEBUG_MAPLE_TREE
5409 if (MAS_WARN_ON(mas, mas->index > mas->last))
5410 pr_err("Error %lX > %lX " PTR_FMT "\n", mas->index, mas->last,
5411 entry);
5412
5413 if (mas->index > mas->last) {
5414 mas_set_err(mas, -EINVAL);
5415 return NULL;
5416 }
5417
5418#endif
5419
5420 /*
5421 * Storing is the same operation as insert with the added caveat that it
5422 * can overwrite entries. Although this seems simple enough, one may
5423 * want to examine what happens if a single store operation was to
5424 * overwrite multiple entries within a self-balancing B-Tree.
5425 */
5426 mas_wr_prealloc_setup(&wr_mas);
5427 mas->store_type = mas_wr_store_type(&wr_mas);
5428 if (mas->mas_flags & MA_STATE_PREALLOC) {
5429 mas_wr_store_entry(&wr_mas);
5430 MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas));
5431 return wr_mas.content;
5432 }
5433
5434 request = mas_prealloc_calc(mas, entry);
5435 if (!request)
5436 goto store;
5437
5438 mas_node_count(mas, request);
5439 if (mas_is_err(mas))
5440 return NULL;
5441
5442store:
5443 mas_wr_store_entry(&wr_mas);
5444 mas_destroy(mas);
5445 return wr_mas.content;
5446}
5447EXPORT_SYMBOL_GPL(mas_store);
5448
5449/**
5450 * mas_store_gfp() - Store a value into the tree.
5451 * @mas: The maple state
5452 * @entry: The entry to store
5453 * @gfp: The GFP_FLAGS to use for allocations if necessary.
5454 *
5455 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5456 * be allocated.
5457 */
5458int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
5459{
5460 unsigned long index = mas->index;
5461 unsigned long last = mas->last;
5462 MA_WR_STATE(wr_mas, mas, entry);
5463 int ret = 0;
5464
5465retry:
5466 mas_wr_preallocate(&wr_mas, entry);
5467 if (unlikely(mas_nomem(mas, gfp))) {
5468 if (!entry)
5469 __mas_set_range(mas, index, last);
5470 goto retry;
5471 }
5472
5473 if (mas_is_err(mas)) {
5474 ret = xa_err(mas->node);
5475 goto out;
5476 }
5477
5478 mas_wr_store_entry(&wr_mas);
5479out:
5480 mas_destroy(mas);
5481 return ret;
5482}
5483EXPORT_SYMBOL_GPL(mas_store_gfp);
5484
5485/**
5486 * mas_store_prealloc() - Store a value into the tree using memory
5487 * preallocated in the maple state.
5488 * @mas: The maple state
5489 * @entry: The entry to store.
5490 */
5491void mas_store_prealloc(struct ma_state *mas, void *entry)
5492{
5493 MA_WR_STATE(wr_mas, mas, entry);
5494
5495 if (mas->store_type == wr_store_root) {
5496 mas_wr_prealloc_setup(&wr_mas);
5497 goto store;
5498 }
5499
5500 mas_wr_walk_descend(&wr_mas);
5501 if (mas->store_type != wr_spanning_store) {
5502 /* set wr_mas->content to current slot */
5503 wr_mas.content = mas_slot_locked(mas, wr_mas.slots, mas->offset);
5504 mas_wr_end_piv(&wr_mas);
5505 }
5506
5507store:
5508 trace_ma_write(__func__, mas, 0, entry);
5509 mas_wr_store_entry(&wr_mas);
5510 MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas));
5511 mas_destroy(mas);
5512}
5513EXPORT_SYMBOL_GPL(mas_store_prealloc);
5514
5515/**
5516 * mas_preallocate() - Preallocate enough nodes for a store operation
5517 * @mas: The maple state
5518 * @entry: The entry that will be stored
5519 * @gfp: The GFP_FLAGS to use for allocations.
5520 *
5521 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5522 */
5523int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp)
5524{
5525 MA_WR_STATE(wr_mas, mas, entry);
5526 int ret = 0;
5527 int request;
5528
5529 mas_wr_prealloc_setup(&wr_mas);
5530 mas->store_type = mas_wr_store_type(&wr_mas);
5531 request = mas_prealloc_calc(mas, entry);
5532 if (!request)
5533 return ret;
5534
5535 mas_node_count_gfp(mas, request, gfp);
5536 if (mas_is_err(mas)) {
5537 mas_set_alloc_req(mas, 0);
5538 ret = xa_err(mas->node);
5539 mas_destroy(mas);
5540 mas_reset(mas);
5541 return ret;
5542 }
5543
5544 mas->mas_flags |= MA_STATE_PREALLOC;
5545 return ret;
5546}
5547EXPORT_SYMBOL_GPL(mas_preallocate);
5548
5549/*
5550 * mas_destroy() - destroy a maple state.
5551 * @mas: The maple state
5552 *
5553 * Upon completion, check the left-most node and rebalance against the node to
5554 * the right if necessary. Frees any allocated nodes associated with this maple
5555 * state.
5556 */
5557void mas_destroy(struct ma_state *mas)
5558{
5559 struct maple_alloc *node;
5560 unsigned long total;
5561
5562 /*
5563 * When using mas_for_each() to insert an expected number of elements,
5564 * it is possible that the number inserted is less than the expected
5565 * number. To fix an invalid final node, a check is performed here to
5566 * rebalance the previous node with the final node.
5567 */
5568 if (mas->mas_flags & MA_STATE_REBALANCE) {
5569 unsigned char end;
5570 if (mas_is_err(mas))
5571 mas_reset(mas);
5572 mas_start(mas);
5573 mtree_range_walk(mas);
5574 end = mas->end + 1;
5575 if (end < mt_min_slot_count(mas->node) - 1)
5576 mas_destroy_rebalance(mas, end);
5577
5578 mas->mas_flags &= ~MA_STATE_REBALANCE;
5579 }
5580 mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
5581
5582 total = mas_allocated(mas);
5583 while (total) {
5584 node = mas->alloc;
5585 mas->alloc = node->slot[0];
5586 if (node->node_count > 1) {
5587 size_t count = node->node_count - 1;
5588
5589 mt_free_bulk(count, (void __rcu **)&node->slot[1]);
5590 total -= count;
5591 }
5592 mt_free_one(ma_mnode_ptr(node));
5593 total--;
5594 }
5595
5596 mas->alloc = NULL;
5597}
5598EXPORT_SYMBOL_GPL(mas_destroy);
5599
5600/*
5601 * mas_expected_entries() - Set the expected number of entries that will be inserted.
5602 * @mas: The maple state
5603 * @nr_entries: The number of expected entries.
5604 *
5605 * This will attempt to pre-allocate enough nodes to store the expected number
5606 * of entries. The allocations will occur using the bulk allocator interface
5607 * for speed. Please call mas_destroy() on the @mas after inserting the entries
5608 * to ensure any unused nodes are freed.
5609 *
5610 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5611 */
5612int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
5613{
5614 int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
5615 struct maple_enode *enode = mas->node;
5616 int nr_nodes;
5617 int ret;
5618
5619 /*
5620 * Sometimes it is necessary to duplicate a tree to a new tree, such as
5621 * forking a process and duplicating the VMAs from one tree to a new
5622 * tree. When such a situation arises, it is known that the new tree is
5623 * not going to be used until the entire tree is populated. For
5624 * performance reasons, it is best to use a bulk load with RCU disabled.
5625 * This allows for optimistic splitting that favours the left and reuse
5626 * of nodes during the operation.
5627 */
5628
5629 /* Optimize splitting for bulk insert in-order */
5630 mas->mas_flags |= MA_STATE_BULK;
5631
5632 /*
5633 * Avoid overflow, assume a gap between each entry and a trailing null.
5634 * If this is wrong, it just means allocation can happen during
5635 * insertion of entries.
5636 */
5637 nr_nodes = max(nr_entries, nr_entries * 2 + 1);
5638 if (!mt_is_alloc(mas->tree))
5639 nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
5640
5641 /* Leaves; reduce slots to keep space for expansion */
5642 nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
5643 /* Internal nodes */
5644 nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
5645 /* Add working room for split (2 nodes) + new parents */
5646 mas_node_count_gfp(mas, nr_nodes + 3, GFP_KERNEL);
5647
5648 /* Detect if allocations run out */
5649 mas->mas_flags |= MA_STATE_PREALLOC;
5650
5651 if (!mas_is_err(mas))
5652 return 0;
5653
5654 ret = xa_err(mas->node);
5655 mas->node = enode;
5656 mas_destroy(mas);
5657 return ret;
5658
5659}
5660EXPORT_SYMBOL_GPL(mas_expected_entries);
5661
5662static bool mas_next_setup(struct ma_state *mas, unsigned long max,
5663 void **entry)
5664{
5665 bool was_none = mas_is_none(mas);
5666
5667 if (unlikely(mas->last >= max)) {
5668 mas->status = ma_overflow;
5669 return true;
5670 }
5671
5672 switch (mas->status) {
5673 case ma_active:
5674 return false;
5675 case ma_none:
5676 fallthrough;
5677 case ma_pause:
5678 mas->status = ma_start;
5679 fallthrough;
5680 case ma_start:
5681 mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
5682 break;
5683 case ma_overflow:
5684 /* Overflowed before, but the max changed */
5685 mas->status = ma_active;
5686 break;
5687 case ma_underflow:
5688 /* The user expects the mas to be one before where it is */
5689 mas->status = ma_active;
5690 *entry = mas_walk(mas);
5691 if (*entry)
5692 return true;
5693 break;
5694 case ma_root:
5695 break;
5696 case ma_error:
5697 return true;
5698 }
5699
5700 if (likely(mas_is_active(mas))) /* Fast path */
5701 return false;
5702
5703 if (mas_is_ptr(mas)) {
5704 *entry = NULL;
5705 if (was_none && mas->index == 0) {
5706 mas->index = mas->last = 0;
5707 return true;
5708 }
5709 mas->index = 1;
5710 mas->last = ULONG_MAX;
5711 mas->status = ma_none;
5712 return true;
5713 }
5714
5715 if (mas_is_none(mas))
5716 return true;
5717
5718 return false;
5719}
5720
5721/**
5722 * mas_next() - Get the next entry.
5723 * @mas: The maple state
5724 * @max: The maximum index to check.
5725 *
5726 * Returns the next entry after @mas->index.
5727 * Must hold rcu_read_lock or the write lock.
5728 * Can return the zero entry.
5729 *
5730 * Return: The next entry or %NULL
5731 */
5732void *mas_next(struct ma_state *mas, unsigned long max)
5733{
5734 void *entry = NULL;
5735
5736 if (mas_next_setup(mas, max, &entry))
5737 return entry;
5738
5739 /* Retries on dead nodes handled by mas_next_slot */
5740 return mas_next_slot(mas, max, false);
5741}
5742EXPORT_SYMBOL_GPL(mas_next);
5743
5744/**
5745 * mas_next_range() - Advance the maple state to the next range
5746 * @mas: The maple state
5747 * @max: The maximum index to check.
5748 *
5749 * Sets @mas->index and @mas->last to the range.
5750 * Must hold rcu_read_lock or the write lock.
5751 * Can return the zero entry.
5752 *
5753 * Return: The next entry or %NULL
5754 */
5755void *mas_next_range(struct ma_state *mas, unsigned long max)
5756{
5757 void *entry = NULL;
5758
5759 if (mas_next_setup(mas, max, &entry))
5760 return entry;
5761
5762 /* Retries on dead nodes handled by mas_next_slot */
5763 return mas_next_slot(mas, max, true);
5764}
5765EXPORT_SYMBOL_GPL(mas_next_range);
5766
5767/**
5768 * mt_next() - get the next value in the maple tree
5769 * @mt: The maple tree
5770 * @index: The start index
5771 * @max: The maximum index to check
5772 *
5773 * Takes RCU read lock internally to protect the search, which does not
5774 * protect the returned pointer after dropping RCU read lock.
5775 * See also: Documentation/core-api/maple_tree.rst
5776 *
5777 * Return: The entry higher than @index or %NULL if nothing is found.
5778 */
5779void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
5780{
5781 void *entry = NULL;
5782 MA_STATE(mas, mt, index, index);
5783
5784 rcu_read_lock();
5785 entry = mas_next(&mas, max);
5786 rcu_read_unlock();
5787 return entry;
5788}
5789EXPORT_SYMBOL_GPL(mt_next);
5790
5791static bool mas_prev_setup(struct ma_state *mas, unsigned long min, void **entry)
5792{
5793 if (unlikely(mas->index <= min)) {
5794 mas->status = ma_underflow;
5795 return true;
5796 }
5797
5798 switch (mas->status) {
5799 case ma_active:
5800 return false;
5801 case ma_start:
5802 break;
5803 case ma_none:
5804 fallthrough;
5805 case ma_pause:
5806 mas->status = ma_start;
5807 break;
5808 case ma_underflow:
5809 /* underflowed before but the min changed */
5810 mas->status = ma_active;
5811 break;
5812 case ma_overflow:
5813 /* User expects mas to be one after where it is */
5814 mas->status = ma_active;
5815 *entry = mas_walk(mas);
5816 if (*entry)
5817 return true;
5818 break;
5819 case ma_root:
5820 break;
5821 case ma_error:
5822 return true;
5823 }
5824
5825 if (mas_is_start(mas))
5826 mas_walk(mas);
5827
5828 if (unlikely(mas_is_ptr(mas))) {
5829 if (!mas->index) {
5830 mas->status = ma_none;
5831 return true;
5832 }
5833 mas->index = mas->last = 0;
5834 *entry = mas_root(mas);
5835 return true;
5836 }
5837
5838 if (mas_is_none(mas)) {
5839 if (mas->index) {
5840 /* Walked to out-of-range pointer? */
5841 mas->index = mas->last = 0;
5842 mas->status = ma_root;
5843 *entry = mas_root(mas);
5844 return true;
5845 }
5846 return true;
5847 }
5848
5849 return false;
5850}
5851
5852/**
5853 * mas_prev() - Get the previous entry
5854 * @mas: The maple state
5855 * @min: The minimum value to check.
5856 *
5857 * Must hold rcu_read_lock or the write lock.
5858 * Will reset mas to ma_start if the status is ma_none. Will stop on not
5859 * searchable nodes.
5860 *
5861 * Return: the previous value or %NULL.
5862 */
5863void *mas_prev(struct ma_state *mas, unsigned long min)
5864{
5865 void *entry = NULL;
5866
5867 if (mas_prev_setup(mas, min, &entry))
5868 return entry;
5869
5870 return mas_prev_slot(mas, min, false);
5871}
5872EXPORT_SYMBOL_GPL(mas_prev);
5873
5874/**
5875 * mas_prev_range() - Advance to the previous range
5876 * @mas: The maple state
5877 * @min: The minimum value to check.
5878 *
5879 * Sets @mas->index and @mas->last to the range.
5880 * Must hold rcu_read_lock or the write lock.
5881 * Will reset mas to ma_start if the node is ma_none. Will stop on not
5882 * searchable nodes.
5883 *
5884 * Return: the previous value or %NULL.
5885 */
5886void *mas_prev_range(struct ma_state *mas, unsigned long min)
5887{
5888 void *entry = NULL;
5889
5890 if (mas_prev_setup(mas, min, &entry))
5891 return entry;
5892
5893 return mas_prev_slot(mas, min, true);
5894}
5895EXPORT_SYMBOL_GPL(mas_prev_range);
5896
5897/**
5898 * mt_prev() - get the previous value in the maple tree
5899 * @mt: The maple tree
5900 * @index: The start index
5901 * @min: The minimum index to check
5902 *
5903 * Takes RCU read lock internally to protect the search, which does not
5904 * protect the returned pointer after dropping RCU read lock.
5905 * See also: Documentation/core-api/maple_tree.rst
5906 *
5907 * Return: The entry before @index or %NULL if nothing is found.
5908 */
5909void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
5910{
5911 void *entry = NULL;
5912 MA_STATE(mas, mt, index, index);
5913
5914 rcu_read_lock();
5915 entry = mas_prev(&mas, min);
5916 rcu_read_unlock();
5917 return entry;
5918}
5919EXPORT_SYMBOL_GPL(mt_prev);
5920
5921/**
5922 * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
5923 * @mas: The maple state to pause
5924 *
5925 * Some users need to pause a walk and drop the lock they're holding in
5926 * order to yield to a higher priority thread or carry out an operation
5927 * on an entry. Those users should call this function before they drop
5928 * the lock. It resets the @mas to be suitable for the next iteration
5929 * of the loop after the user has reacquired the lock. If most entries
5930 * found during a walk require you to call mas_pause(), the mt_for_each()
5931 * iterator may be more appropriate.
5932 *
5933 */
5934void mas_pause(struct ma_state *mas)
5935{
5936 mas->status = ma_pause;
5937 mas->node = NULL;
5938}
5939EXPORT_SYMBOL_GPL(mas_pause);
5940
5941/**
5942 * mas_find_setup() - Internal function to set up mas_find*().
5943 * @mas: The maple state
5944 * @max: The maximum index
5945 * @entry: Pointer to the entry
5946 *
5947 * Returns: True if entry is the answer, false otherwise.
5948 */
5949static __always_inline bool mas_find_setup(struct ma_state *mas, unsigned long max, void **entry)
5950{
5951 switch (mas->status) {
5952 case ma_active:
5953 if (mas->last < max)
5954 return false;
5955 return true;
5956 case ma_start:
5957 break;
5958 case ma_pause:
5959 if (unlikely(mas->last >= max))
5960 return true;
5961
5962 mas->index = ++mas->last;
5963 mas->status = ma_start;
5964 break;
5965 case ma_none:
5966 if (unlikely(mas->last >= max))
5967 return true;
5968
5969 mas->index = mas->last;
5970 mas->status = ma_start;
5971 break;
5972 case ma_underflow:
5973 /* mas is pointing at entry before unable to go lower */
5974 if (unlikely(mas->index >= max)) {
5975 mas->status = ma_overflow;
5976 return true;
5977 }
5978
5979 mas->status = ma_active;
5980 *entry = mas_walk(mas);
5981 if (*entry)
5982 return true;
5983 break;
5984 case ma_overflow:
5985 if (unlikely(mas->last >= max))
5986 return true;
5987
5988 mas->status = ma_active;
5989 *entry = mas_walk(mas);
5990 if (*entry)
5991 return true;
5992 break;
5993 case ma_root:
5994 break;
5995 case ma_error:
5996 return true;
5997 }
5998
5999 if (mas_is_start(mas)) {
6000 /* First run or continue */
6001 if (mas->index > max)
6002 return true;
6003
6004 *entry = mas_walk(mas);
6005 if (*entry)
6006 return true;
6007
6008 }
6009
6010 if (unlikely(mas_is_ptr(mas)))
6011 goto ptr_out_of_range;
6012
6013 if (unlikely(mas_is_none(mas)))
6014 return true;
6015
6016 if (mas->index == max)
6017 return true;
6018
6019 return false;
6020
6021ptr_out_of_range:
6022 mas->status = ma_none;
6023 mas->index = 1;
6024 mas->last = ULONG_MAX;
6025 return true;
6026}
6027
6028/**
6029 * mas_find() - On the first call, find the entry at or after mas->index up to
6030 * %max. Otherwise, find the entry after mas->index.
6031 * @mas: The maple state
6032 * @max: The maximum value to check.
6033 *
6034 * Must hold rcu_read_lock or the write lock.
6035 * If an entry exists, last and index are updated accordingly.
6036 * May set @mas->status to ma_overflow.
6037 *
6038 * Return: The entry or %NULL.
6039 */
6040void *mas_find(struct ma_state *mas, unsigned long max)
6041{
6042 void *entry = NULL;
6043
6044 if (mas_find_setup(mas, max, &entry))
6045 return entry;
6046
6047 /* Retries on dead nodes handled by mas_next_slot */
6048 entry = mas_next_slot(mas, max, false);
6049 /* Ignore overflow */
6050 mas->status = ma_active;
6051 return entry;
6052}
6053EXPORT_SYMBOL_GPL(mas_find);
6054
6055/**
6056 * mas_find_range() - On the first call, find the entry at or after
6057 * mas->index up to %max. Otherwise, advance to the next slot mas->index.
6058 * @mas: The maple state
6059 * @max: The maximum value to check.
6060 *
6061 * Must hold rcu_read_lock or the write lock.
6062 * If an entry exists, last and index are updated accordingly.
6063 * May set @mas->status to ma_overflow.
6064 *
6065 * Return: The entry or %NULL.
6066 */
6067void *mas_find_range(struct ma_state *mas, unsigned long max)
6068{
6069 void *entry = NULL;
6070
6071 if (mas_find_setup(mas, max, &entry))
6072 return entry;
6073
6074 /* Retries on dead nodes handled by mas_next_slot */
6075 return mas_next_slot(mas, max, true);
6076}
6077EXPORT_SYMBOL_GPL(mas_find_range);
6078
6079/**
6080 * mas_find_rev_setup() - Internal function to set up mas_find_*_rev()
6081 * @mas: The maple state
6082 * @min: The minimum index
6083 * @entry: Pointer to the entry
6084 *
6085 * Returns: True if entry is the answer, false otherwise.
6086 */
6087static bool mas_find_rev_setup(struct ma_state *mas, unsigned long min,
6088 void **entry)
6089{
6090
6091 switch (mas->status) {
6092 case ma_active:
6093 goto active;
6094 case ma_start:
6095 break;
6096 case ma_pause:
6097 if (unlikely(mas->index <= min)) {
6098 mas->status = ma_underflow;
6099 return true;
6100 }
6101 mas->last = --mas->index;
6102 mas->status = ma_start;
6103 break;
6104 case ma_none:
6105 if (mas->index <= min)
6106 goto none;
6107
6108 mas->last = mas->index;
6109 mas->status = ma_start;
6110 break;
6111 case ma_overflow: /* user expects the mas to be one after where it is */
6112 if (unlikely(mas->index <= min)) {
6113 mas->status = ma_underflow;
6114 return true;
6115 }
6116
6117 mas->status = ma_active;
6118 break;
6119 case ma_underflow: /* user expects the mas to be one before where it is */
6120 if (unlikely(mas->index <= min))
6121 return true;
6122
6123 mas->status = ma_active;
6124 break;
6125 case ma_root:
6126 break;
6127 case ma_error:
6128 return true;
6129 }
6130
6131 if (mas_is_start(mas)) {
6132 /* First run or continue */
6133 if (mas->index < min)
6134 return true;
6135
6136 *entry = mas_walk(mas);
6137 if (*entry)
6138 return true;
6139 }
6140
6141 if (unlikely(mas_is_ptr(mas)))
6142 goto none;
6143
6144 if (unlikely(mas_is_none(mas))) {
6145 /*
6146 * Walked to the location, and there was nothing so the previous
6147 * location is 0.
6148 */
6149 mas->last = mas->index = 0;
6150 mas->status = ma_root;
6151 *entry = mas_root(mas);
6152 return true;
6153 }
6154
6155active:
6156 if (mas->index < min)
6157 return true;
6158
6159 return false;
6160
6161none:
6162 mas->status = ma_none;
6163 return true;
6164}
6165
6166/**
6167 * mas_find_rev: On the first call, find the first non-null entry at or below
6168 * mas->index down to %min. Otherwise find the first non-null entry below
6169 * mas->index down to %min.
6170 * @mas: The maple state
6171 * @min: The minimum value to check.
6172 *
6173 * Must hold rcu_read_lock or the write lock.
6174 * If an entry exists, last and index are updated accordingly.
6175 * May set @mas->status to ma_underflow.
6176 *
6177 * Return: The entry or %NULL.
6178 */
6179void *mas_find_rev(struct ma_state *mas, unsigned long min)
6180{
6181 void *entry = NULL;
6182
6183 if (mas_find_rev_setup(mas, min, &entry))
6184 return entry;
6185
6186 /* Retries on dead nodes handled by mas_prev_slot */
6187 return mas_prev_slot(mas, min, false);
6188
6189}
6190EXPORT_SYMBOL_GPL(mas_find_rev);
6191
6192/**
6193 * mas_find_range_rev: On the first call, find the first non-null entry at or
6194 * below mas->index down to %min. Otherwise advance to the previous slot after
6195 * mas->index down to %min.
6196 * @mas: The maple state
6197 * @min: The minimum value to check.
6198 *
6199 * Must hold rcu_read_lock or the write lock.
6200 * If an entry exists, last and index are updated accordingly.
6201 * May set @mas->status to ma_underflow.
6202 *
6203 * Return: The entry or %NULL.
6204 */
6205void *mas_find_range_rev(struct ma_state *mas, unsigned long min)
6206{
6207 void *entry = NULL;
6208
6209 if (mas_find_rev_setup(mas, min, &entry))
6210 return entry;
6211
6212 /* Retries on dead nodes handled by mas_prev_slot */
6213 return mas_prev_slot(mas, min, true);
6214}
6215EXPORT_SYMBOL_GPL(mas_find_range_rev);
6216
6217/**
6218 * mas_erase() - Find the range in which index resides and erase the entire
6219 * range.
6220 * @mas: The maple state
6221 *
6222 * Must hold the write lock.
6223 * Searches for @mas->index, sets @mas->index and @mas->last to the range and
6224 * erases that range.
6225 *
6226 * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
6227 */
6228void *mas_erase(struct ma_state *mas)
6229{
6230 void *entry;
6231 unsigned long index = mas->index;
6232 MA_WR_STATE(wr_mas, mas, NULL);
6233
6234 if (!mas_is_active(mas) || !mas_is_start(mas))
6235 mas->status = ma_start;
6236
6237write_retry:
6238 entry = mas_state_walk(mas);
6239 if (!entry)
6240 return NULL;
6241
6242 /* Must reset to ensure spanning writes of last slot are detected */
6243 mas_reset(mas);
6244 mas_wr_preallocate(&wr_mas, NULL);
6245 if (mas_nomem(mas, GFP_KERNEL)) {
6246 /* in case the range of entry changed when unlocked */
6247 mas->index = mas->last = index;
6248 goto write_retry;
6249 }
6250
6251 if (mas_is_err(mas))
6252 goto out;
6253
6254 mas_wr_store_entry(&wr_mas);
6255out:
6256 mas_destroy(mas);
6257 return entry;
6258}
6259EXPORT_SYMBOL_GPL(mas_erase);
6260
6261/**
6262 * mas_nomem() - Check if there was an error allocating and do the allocation
6263 * if necessary If there are allocations, then free them.
6264 * @mas: The maple state
6265 * @gfp: The GFP_FLAGS to use for allocations
6266 * Return: true on allocation, false otherwise.
6267 */
6268bool mas_nomem(struct ma_state *mas, gfp_t gfp)
6269 __must_hold(mas->tree->ma_lock)
6270{
6271 if (likely(mas->node != MA_ERROR(-ENOMEM)))
6272 return false;
6273
6274 if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
6275 mtree_unlock(mas->tree);
6276 mas_alloc_nodes(mas, gfp);
6277 mtree_lock(mas->tree);
6278 } else {
6279 mas_alloc_nodes(mas, gfp);
6280 }
6281
6282 if (!mas_allocated(mas))
6283 return false;
6284
6285 mas->status = ma_start;
6286 return true;
6287}
6288
6289void __init maple_tree_init(void)
6290{
6291 maple_node_cache = kmem_cache_create("maple_node",
6292 sizeof(struct maple_node), sizeof(struct maple_node),
6293 SLAB_PANIC, NULL);
6294}
6295
6296/**
6297 * mtree_load() - Load a value stored in a maple tree
6298 * @mt: The maple tree
6299 * @index: The index to load
6300 *
6301 * Return: the entry or %NULL
6302 */
6303void *mtree_load(struct maple_tree *mt, unsigned long index)
6304{
6305 MA_STATE(mas, mt, index, index);
6306 void *entry;
6307
6308 trace_ma_read(__func__, &mas);
6309 rcu_read_lock();
6310retry:
6311 entry = mas_start(&mas);
6312 if (unlikely(mas_is_none(&mas)))
6313 goto unlock;
6314
6315 if (unlikely(mas_is_ptr(&mas))) {
6316 if (index)
6317 entry = NULL;
6318
6319 goto unlock;
6320 }
6321
6322 entry = mtree_lookup_walk(&mas);
6323 if (!entry && unlikely(mas_is_start(&mas)))
6324 goto retry;
6325unlock:
6326 rcu_read_unlock();
6327 if (xa_is_zero(entry))
6328 return NULL;
6329
6330 return entry;
6331}
6332EXPORT_SYMBOL(mtree_load);
6333
6334/**
6335 * mtree_store_range() - Store an entry at a given range.
6336 * @mt: The maple tree
6337 * @index: The start of the range
6338 * @last: The end of the range
6339 * @entry: The entry to store
6340 * @gfp: The GFP_FLAGS to use for allocations
6341 *
6342 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6343 * be allocated.
6344 */
6345int mtree_store_range(struct maple_tree *mt, unsigned long index,
6346 unsigned long last, void *entry, gfp_t gfp)
6347{
6348 MA_STATE(mas, mt, index, last);
6349 int ret = 0;
6350
6351 trace_ma_write(__func__, &mas, 0, entry);
6352 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6353 return -EINVAL;
6354
6355 if (index > last)
6356 return -EINVAL;
6357
6358 mtree_lock(mt);
6359 ret = mas_store_gfp(&mas, entry, gfp);
6360 mtree_unlock(mt);
6361
6362 return ret;
6363}
6364EXPORT_SYMBOL(mtree_store_range);
6365
6366/**
6367 * mtree_store() - Store an entry at a given index.
6368 * @mt: The maple tree
6369 * @index: The index to store the value
6370 * @entry: The entry to store
6371 * @gfp: The GFP_FLAGS to use for allocations
6372 *
6373 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6374 * be allocated.
6375 */
6376int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
6377 gfp_t gfp)
6378{
6379 return mtree_store_range(mt, index, index, entry, gfp);
6380}
6381EXPORT_SYMBOL(mtree_store);
6382
6383/**
6384 * mtree_insert_range() - Insert an entry at a given range if there is no value.
6385 * @mt: The maple tree
6386 * @first: The start of the range
6387 * @last: The end of the range
6388 * @entry: The entry to store
6389 * @gfp: The GFP_FLAGS to use for allocations.
6390 *
6391 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6392 * request, -ENOMEM if memory could not be allocated.
6393 */
6394int mtree_insert_range(struct maple_tree *mt, unsigned long first,
6395 unsigned long last, void *entry, gfp_t gfp)
6396{
6397 MA_STATE(ms, mt, first, last);
6398 int ret = 0;
6399
6400 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6401 return -EINVAL;
6402
6403 if (first > last)
6404 return -EINVAL;
6405
6406 mtree_lock(mt);
6407retry:
6408 mas_insert(&ms, entry);
6409 if (mas_nomem(&ms, gfp))
6410 goto retry;
6411
6412 mtree_unlock(mt);
6413 if (mas_is_err(&ms))
6414 ret = xa_err(ms.node);
6415
6416 mas_destroy(&ms);
6417 return ret;
6418}
6419EXPORT_SYMBOL(mtree_insert_range);
6420
6421/**
6422 * mtree_insert() - Insert an entry at a given index if there is no value.
6423 * @mt: The maple tree
6424 * @index : The index to store the value
6425 * @entry: The entry to store
6426 * @gfp: The GFP_FLAGS to use for allocations.
6427 *
6428 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6429 * request, -ENOMEM if memory could not be allocated.
6430 */
6431int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
6432 gfp_t gfp)
6433{
6434 return mtree_insert_range(mt, index, index, entry, gfp);
6435}
6436EXPORT_SYMBOL(mtree_insert);
6437
6438int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
6439 void *entry, unsigned long size, unsigned long min,
6440 unsigned long max, gfp_t gfp)
6441{
6442 int ret = 0;
6443
6444 MA_STATE(mas, mt, 0, 0);
6445 if (!mt_is_alloc(mt))
6446 return -EINVAL;
6447
6448 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6449 return -EINVAL;
6450
6451 mtree_lock(mt);
6452retry:
6453 ret = mas_empty_area(&mas, min, max, size);
6454 if (ret)
6455 goto unlock;
6456
6457 mas_insert(&mas, entry);
6458 /*
6459 * mas_nomem() may release the lock, causing the allocated area
6460 * to be unavailable, so try to allocate a free area again.
6461 */
6462 if (mas_nomem(&mas, gfp))
6463 goto retry;
6464
6465 if (mas_is_err(&mas))
6466 ret = xa_err(mas.node);
6467 else
6468 *startp = mas.index;
6469
6470unlock:
6471 mtree_unlock(mt);
6472 mas_destroy(&mas);
6473 return ret;
6474}
6475EXPORT_SYMBOL(mtree_alloc_range);
6476
6477/**
6478 * mtree_alloc_cyclic() - Find somewhere to store this entry in the tree.
6479 * @mt: The maple tree.
6480 * @startp: Pointer to ID.
6481 * @range_lo: Lower bound of range to search.
6482 * @range_hi: Upper bound of range to search.
6483 * @entry: The entry to store.
6484 * @next: Pointer to next ID to allocate.
6485 * @gfp: The GFP_FLAGS to use for allocations.
6486 *
6487 * Finds an empty entry in @mt after @next, stores the new index into
6488 * the @id pointer, stores the entry at that index, then updates @next.
6489 *
6490 * @mt must be initialized with the MT_FLAGS_ALLOC_RANGE flag.
6491 *
6492 * Context: Any context. Takes and releases the mt.lock. May sleep if
6493 * the @gfp flags permit.
6494 *
6495 * Return: 0 if the allocation succeeded without wrapping, 1 if the
6496 * allocation succeeded after wrapping, -ENOMEM if memory could not be
6497 * allocated, -EINVAL if @mt cannot be used, or -EBUSY if there are no
6498 * free entries.
6499 */
6500int mtree_alloc_cyclic(struct maple_tree *mt, unsigned long *startp,
6501 void *entry, unsigned long range_lo, unsigned long range_hi,
6502 unsigned long *next, gfp_t gfp)
6503{
6504 int ret;
6505
6506 MA_STATE(mas, mt, 0, 0);
6507
6508 if (!mt_is_alloc(mt))
6509 return -EINVAL;
6510 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6511 return -EINVAL;
6512 mtree_lock(mt);
6513 ret = mas_alloc_cyclic(&mas, startp, entry, range_lo, range_hi,
6514 next, gfp);
6515 mtree_unlock(mt);
6516 return ret;
6517}
6518EXPORT_SYMBOL(mtree_alloc_cyclic);
6519
6520int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
6521 void *entry, unsigned long size, unsigned long min,
6522 unsigned long max, gfp_t gfp)
6523{
6524 int ret = 0;
6525
6526 MA_STATE(mas, mt, 0, 0);
6527 if (!mt_is_alloc(mt))
6528 return -EINVAL;
6529
6530 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6531 return -EINVAL;
6532
6533 mtree_lock(mt);
6534retry:
6535 ret = mas_empty_area_rev(&mas, min, max, size);
6536 if (ret)
6537 goto unlock;
6538
6539 mas_insert(&mas, entry);
6540 /*
6541 * mas_nomem() may release the lock, causing the allocated area
6542 * to be unavailable, so try to allocate a free area again.
6543 */
6544 if (mas_nomem(&mas, gfp))
6545 goto retry;
6546
6547 if (mas_is_err(&mas))
6548 ret = xa_err(mas.node);
6549 else
6550 *startp = mas.index;
6551
6552unlock:
6553 mtree_unlock(mt);
6554 mas_destroy(&mas);
6555 return ret;
6556}
6557EXPORT_SYMBOL(mtree_alloc_rrange);
6558
6559/**
6560 * mtree_erase() - Find an index and erase the entire range.
6561 * @mt: The maple tree
6562 * @index: The index to erase
6563 *
6564 * Erasing is the same as a walk to an entry then a store of a NULL to that
6565 * ENTIRE range. In fact, it is implemented as such using the advanced API.
6566 *
6567 * Return: The entry stored at the @index or %NULL
6568 */
6569void *mtree_erase(struct maple_tree *mt, unsigned long index)
6570{
6571 void *entry = NULL;
6572
6573 MA_STATE(mas, mt, index, index);
6574 trace_ma_op(__func__, &mas);
6575
6576 mtree_lock(mt);
6577 entry = mas_erase(&mas);
6578 mtree_unlock(mt);
6579
6580 return entry;
6581}
6582EXPORT_SYMBOL(mtree_erase);
6583
6584/*
6585 * mas_dup_free() - Free an incomplete duplication of a tree.
6586 * @mas: The maple state of a incomplete tree.
6587 *
6588 * The parameter @mas->node passed in indicates that the allocation failed on
6589 * this node. This function frees all nodes starting from @mas->node in the
6590 * reverse order of mas_dup_build(). There is no need to hold the source tree
6591 * lock at this time.
6592 */
6593static void mas_dup_free(struct ma_state *mas)
6594{
6595 struct maple_node *node;
6596 enum maple_type type;
6597 void __rcu **slots;
6598 unsigned char count, i;
6599
6600 /* Maybe the first node allocation failed. */
6601 if (mas_is_none(mas))
6602 return;
6603
6604 while (!mte_is_root(mas->node)) {
6605 mas_ascend(mas);
6606 if (mas->offset) {
6607 mas->offset--;
6608 do {
6609 mas_descend(mas);
6610 mas->offset = mas_data_end(mas);
6611 } while (!mte_is_leaf(mas->node));
6612
6613 mas_ascend(mas);
6614 }
6615
6616 node = mte_to_node(mas->node);
6617 type = mte_node_type(mas->node);
6618 slots = ma_slots(node, type);
6619 count = mas_data_end(mas) + 1;
6620 for (i = 0; i < count; i++)
6621 ((unsigned long *)slots)[i] &= ~MAPLE_NODE_MASK;
6622 mt_free_bulk(count, slots);
6623 }
6624
6625 node = mte_to_node(mas->node);
6626 mt_free_one(node);
6627}
6628
6629/*
6630 * mas_copy_node() - Copy a maple node and replace the parent.
6631 * @mas: The maple state of source tree.
6632 * @new_mas: The maple state of new tree.
6633 * @parent: The parent of the new node.
6634 *
6635 * Copy @mas->node to @new_mas->node, set @parent to be the parent of
6636 * @new_mas->node. If memory allocation fails, @mas is set to -ENOMEM.
6637 */
6638static inline void mas_copy_node(struct ma_state *mas, struct ma_state *new_mas,
6639 struct maple_pnode *parent)
6640{
6641 struct maple_node *node = mte_to_node(mas->node);
6642 struct maple_node *new_node = mte_to_node(new_mas->node);
6643 unsigned long val;
6644
6645 /* Copy the node completely. */
6646 memcpy(new_node, node, sizeof(struct maple_node));
6647 /* Update the parent node pointer. */
6648 val = (unsigned long)node->parent & MAPLE_NODE_MASK;
6649 new_node->parent = ma_parent_ptr(val | (unsigned long)parent);
6650}
6651
6652/*
6653 * mas_dup_alloc() - Allocate child nodes for a maple node.
6654 * @mas: The maple state of source tree.
6655 * @new_mas: The maple state of new tree.
6656 * @gfp: The GFP_FLAGS to use for allocations.
6657 *
6658 * This function allocates child nodes for @new_mas->node during the duplication
6659 * process. If memory allocation fails, @mas is set to -ENOMEM.
6660 */
6661static inline void mas_dup_alloc(struct ma_state *mas, struct ma_state *new_mas,
6662 gfp_t gfp)
6663{
6664 struct maple_node *node = mte_to_node(mas->node);
6665 struct maple_node *new_node = mte_to_node(new_mas->node);
6666 enum maple_type type;
6667 unsigned char request, count, i;
6668 void __rcu **slots;
6669 void __rcu **new_slots;
6670 unsigned long val;
6671
6672 /* Allocate memory for child nodes. */
6673 type = mte_node_type(mas->node);
6674 new_slots = ma_slots(new_node, type);
6675 request = mas_data_end(mas) + 1;
6676 count = mt_alloc_bulk(gfp, request, (void **)new_slots);
6677 if (unlikely(count < request)) {
6678 memset(new_slots, 0, request * sizeof(void *));
6679 mas_set_err(mas, -ENOMEM);
6680 return;
6681 }
6682
6683 /* Restore node type information in slots. */
6684 slots = ma_slots(node, type);
6685 for (i = 0; i < count; i++) {
6686 val = (unsigned long)mt_slot_locked(mas->tree, slots, i);
6687 val &= MAPLE_NODE_MASK;
6688 ((unsigned long *)new_slots)[i] |= val;
6689 }
6690}
6691
6692/*
6693 * mas_dup_build() - Build a new maple tree from a source tree
6694 * @mas: The maple state of source tree, need to be in MAS_START state.
6695 * @new_mas: The maple state of new tree, need to be in MAS_START state.
6696 * @gfp: The GFP_FLAGS to use for allocations.
6697 *
6698 * This function builds a new tree in DFS preorder. If the memory allocation
6699 * fails, the error code -ENOMEM will be set in @mas, and @new_mas points to the
6700 * last node. mas_dup_free() will free the incomplete duplication of a tree.
6701 *
6702 * Note that the attributes of the two trees need to be exactly the same, and the
6703 * new tree needs to be empty, otherwise -EINVAL will be set in @mas.
6704 */
6705static inline void mas_dup_build(struct ma_state *mas, struct ma_state *new_mas,
6706 gfp_t gfp)
6707{
6708 struct maple_node *node;
6709 struct maple_pnode *parent = NULL;
6710 struct maple_enode *root;
6711 enum maple_type type;
6712
6713 if (unlikely(mt_attr(mas->tree) != mt_attr(new_mas->tree)) ||
6714 unlikely(!mtree_empty(new_mas->tree))) {
6715 mas_set_err(mas, -EINVAL);
6716 return;
6717 }
6718
6719 root = mas_start(mas);
6720 if (mas_is_ptr(mas) || mas_is_none(mas))
6721 goto set_new_tree;
6722
6723 node = mt_alloc_one(gfp);
6724 if (!node) {
6725 new_mas->status = ma_none;
6726 mas_set_err(mas, -ENOMEM);
6727 return;
6728 }
6729
6730 type = mte_node_type(mas->node);
6731 root = mt_mk_node(node, type);
6732 new_mas->node = root;
6733 new_mas->min = 0;
6734 new_mas->max = ULONG_MAX;
6735 root = mte_mk_root(root);
6736 while (1) {
6737 mas_copy_node(mas, new_mas, parent);
6738 if (!mte_is_leaf(mas->node)) {
6739 /* Only allocate child nodes for non-leaf nodes. */
6740 mas_dup_alloc(mas, new_mas, gfp);
6741 if (unlikely(mas_is_err(mas)))
6742 return;
6743 } else {
6744 /*
6745 * This is the last leaf node and duplication is
6746 * completed.
6747 */
6748 if (mas->max == ULONG_MAX)
6749 goto done;
6750
6751 /* This is not the last leaf node and needs to go up. */
6752 do {
6753 mas_ascend(mas);
6754 mas_ascend(new_mas);
6755 } while (mas->offset == mas_data_end(mas));
6756
6757 /* Move to the next subtree. */
6758 mas->offset++;
6759 new_mas->offset++;
6760 }
6761
6762 mas_descend(mas);
6763 parent = ma_parent_ptr(mte_to_node(new_mas->node));
6764 mas_descend(new_mas);
6765 mas->offset = 0;
6766 new_mas->offset = 0;
6767 }
6768done:
6769 /* Specially handle the parent of the root node. */
6770 mte_to_node(root)->parent = ma_parent_ptr(mas_tree_parent(new_mas));
6771set_new_tree:
6772 /* Make them the same height */
6773 new_mas->tree->ma_flags = mas->tree->ma_flags;
6774 rcu_assign_pointer(new_mas->tree->ma_root, root);
6775}
6776
6777/**
6778 * __mt_dup(): Duplicate an entire maple tree
6779 * @mt: The source maple tree
6780 * @new: The new maple tree
6781 * @gfp: The GFP_FLAGS to use for allocations
6782 *
6783 * This function duplicates a maple tree in Depth-First Search (DFS) pre-order
6784 * traversal. It uses memcpy() to copy nodes in the source tree and allocate
6785 * new child nodes in non-leaf nodes. The new node is exactly the same as the
6786 * source node except for all the addresses stored in it. It will be faster than
6787 * traversing all elements in the source tree and inserting them one by one into
6788 * the new tree.
6789 * The user needs to ensure that the attributes of the source tree and the new
6790 * tree are the same, and the new tree needs to be an empty tree, otherwise
6791 * -EINVAL will be returned.
6792 * Note that the user needs to manually lock the source tree and the new tree.
6793 *
6794 * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If
6795 * the attributes of the two trees are different or the new tree is not an empty
6796 * tree.
6797 */
6798int __mt_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp)
6799{
6800 int ret = 0;
6801 MA_STATE(mas, mt, 0, 0);
6802 MA_STATE(new_mas, new, 0, 0);
6803
6804 mas_dup_build(&mas, &new_mas, gfp);
6805 if (unlikely(mas_is_err(&mas))) {
6806 ret = xa_err(mas.node);
6807 if (ret == -ENOMEM)
6808 mas_dup_free(&new_mas);
6809 }
6810
6811 return ret;
6812}
6813EXPORT_SYMBOL(__mt_dup);
6814
6815/**
6816 * mtree_dup(): Duplicate an entire maple tree
6817 * @mt: The source maple tree
6818 * @new: The new maple tree
6819 * @gfp: The GFP_FLAGS to use for allocations
6820 *
6821 * This function duplicates a maple tree in Depth-First Search (DFS) pre-order
6822 * traversal. It uses memcpy() to copy nodes in the source tree and allocate
6823 * new child nodes in non-leaf nodes. The new node is exactly the same as the
6824 * source node except for all the addresses stored in it. It will be faster than
6825 * traversing all elements in the source tree and inserting them one by one into
6826 * the new tree.
6827 * The user needs to ensure that the attributes of the source tree and the new
6828 * tree are the same, and the new tree needs to be an empty tree, otherwise
6829 * -EINVAL will be returned.
6830 *
6831 * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If
6832 * the attributes of the two trees are different or the new tree is not an empty
6833 * tree.
6834 */
6835int mtree_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp)
6836{
6837 int ret = 0;
6838 MA_STATE(mas, mt, 0, 0);
6839 MA_STATE(new_mas, new, 0, 0);
6840
6841 mas_lock(&new_mas);
6842 mas_lock_nested(&mas, SINGLE_DEPTH_NESTING);
6843 mas_dup_build(&mas, &new_mas, gfp);
6844 mas_unlock(&mas);
6845 if (unlikely(mas_is_err(&mas))) {
6846 ret = xa_err(mas.node);
6847 if (ret == -ENOMEM)
6848 mas_dup_free(&new_mas);
6849 }
6850
6851 mas_unlock(&new_mas);
6852 return ret;
6853}
6854EXPORT_SYMBOL(mtree_dup);
6855
6856/**
6857 * __mt_destroy() - Walk and free all nodes of a locked maple tree.
6858 * @mt: The maple tree
6859 *
6860 * Note: Does not handle locking.
6861 */
6862void __mt_destroy(struct maple_tree *mt)
6863{
6864 void *root = mt_root_locked(mt);
6865
6866 rcu_assign_pointer(mt->ma_root, NULL);
6867 if (xa_is_node(root))
6868 mte_destroy_walk(root, mt);
6869
6870 mt->ma_flags = mt_attr(mt);
6871}
6872EXPORT_SYMBOL_GPL(__mt_destroy);
6873
6874/**
6875 * mtree_destroy() - Destroy a maple tree
6876 * @mt: The maple tree
6877 *
6878 * Frees all resources used by the tree. Handles locking.
6879 */
6880void mtree_destroy(struct maple_tree *mt)
6881{
6882 mtree_lock(mt);
6883 __mt_destroy(mt);
6884 mtree_unlock(mt);
6885}
6886EXPORT_SYMBOL(mtree_destroy);
6887
6888/**
6889 * mt_find() - Search from the start up until an entry is found.
6890 * @mt: The maple tree
6891 * @index: Pointer which contains the start location of the search
6892 * @max: The maximum value of the search range
6893 *
6894 * Takes RCU read lock internally to protect the search, which does not
6895 * protect the returned pointer after dropping RCU read lock.
6896 * See also: Documentation/core-api/maple_tree.rst
6897 *
6898 * In case that an entry is found @index is updated to point to the next
6899 * possible entry independent whether the found entry is occupying a
6900 * single index or a range if indices.
6901 *
6902 * Return: The entry at or after the @index or %NULL
6903 */
6904void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
6905{
6906 MA_STATE(mas, mt, *index, *index);
6907 void *entry;
6908#ifdef CONFIG_DEBUG_MAPLE_TREE
6909 unsigned long copy = *index;
6910#endif
6911
6912 trace_ma_read(__func__, &mas);
6913
6914 if ((*index) > max)
6915 return NULL;
6916
6917 rcu_read_lock();
6918retry:
6919 entry = mas_state_walk(&mas);
6920 if (mas_is_start(&mas))
6921 goto retry;
6922
6923 if (unlikely(xa_is_zero(entry)))
6924 entry = NULL;
6925
6926 if (entry)
6927 goto unlock;
6928
6929 while (mas_is_active(&mas) && (mas.last < max)) {
6930 entry = mas_next_entry(&mas, max);
6931 if (likely(entry && !xa_is_zero(entry)))
6932 break;
6933 }
6934
6935 if (unlikely(xa_is_zero(entry)))
6936 entry = NULL;
6937unlock:
6938 rcu_read_unlock();
6939 if (likely(entry)) {
6940 *index = mas.last + 1;
6941#ifdef CONFIG_DEBUG_MAPLE_TREE
6942 if (MT_WARN_ON(mt, (*index) && ((*index) <= copy)))
6943 pr_err("index not increased! %lx <= %lx\n",
6944 *index, copy);
6945#endif
6946 }
6947
6948 return entry;
6949}
6950EXPORT_SYMBOL(mt_find);
6951
6952/**
6953 * mt_find_after() - Search from the start up until an entry is found.
6954 * @mt: The maple tree
6955 * @index: Pointer which contains the start location of the search
6956 * @max: The maximum value to check
6957 *
6958 * Same as mt_find() except that it checks @index for 0 before
6959 * searching. If @index == 0, the search is aborted. This covers a wrap
6960 * around of @index to 0 in an iterator loop.
6961 *
6962 * Return: The entry at or after the @index or %NULL
6963 */
6964void *mt_find_after(struct maple_tree *mt, unsigned long *index,
6965 unsigned long max)
6966{
6967 if (!(*index))
6968 return NULL;
6969
6970 return mt_find(mt, index, max);
6971}
6972EXPORT_SYMBOL(mt_find_after);
6973
6974#ifdef CONFIG_DEBUG_MAPLE_TREE
6975atomic_t maple_tree_tests_run;
6976EXPORT_SYMBOL_GPL(maple_tree_tests_run);
6977atomic_t maple_tree_tests_passed;
6978EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
6979
6980#ifndef __KERNEL__
6981extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
6982void mt_set_non_kernel(unsigned int val)
6983{
6984 kmem_cache_set_non_kernel(maple_node_cache, val);
6985}
6986
6987extern void kmem_cache_set_callback(struct kmem_cache *cachep,
6988 void (*callback)(void *));
6989void mt_set_callback(void (*callback)(void *))
6990{
6991 kmem_cache_set_callback(maple_node_cache, callback);
6992}
6993
6994extern void kmem_cache_set_private(struct kmem_cache *cachep, void *private);
6995void mt_set_private(void *private)
6996{
6997 kmem_cache_set_private(maple_node_cache, private);
6998}
6999
7000extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
7001unsigned long mt_get_alloc_size(void)
7002{
7003 return kmem_cache_get_alloc(maple_node_cache);
7004}
7005
7006extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
7007void mt_zero_nr_tallocated(void)
7008{
7009 kmem_cache_zero_nr_tallocated(maple_node_cache);
7010}
7011
7012extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
7013unsigned int mt_nr_tallocated(void)
7014{
7015 return kmem_cache_nr_tallocated(maple_node_cache);
7016}
7017
7018extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
7019unsigned int mt_nr_allocated(void)
7020{
7021 return kmem_cache_nr_allocated(maple_node_cache);
7022}
7023
7024void mt_cache_shrink(void)
7025{
7026}
7027#else
7028/*
7029 * mt_cache_shrink() - For testing, don't use this.
7030 *
7031 * Certain testcases can trigger an OOM when combined with other memory
7032 * debugging configuration options. This function is used to reduce the
7033 * possibility of an out of memory even due to kmem_cache objects remaining
7034 * around for longer than usual.
7035 */
7036void mt_cache_shrink(void)
7037{
7038 kmem_cache_shrink(maple_node_cache);
7039
7040}
7041EXPORT_SYMBOL_GPL(mt_cache_shrink);
7042
7043#endif /* not defined __KERNEL__ */
7044/*
7045 * mas_get_slot() - Get the entry in the maple state node stored at @offset.
7046 * @mas: The maple state
7047 * @offset: The offset into the slot array to fetch.
7048 *
7049 * Return: The entry stored at @offset.
7050 */
7051static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
7052 unsigned char offset)
7053{
7054 return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
7055 offset);
7056}
7057
7058/* Depth first search, post-order */
7059static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
7060{
7061
7062 struct maple_enode *p, *mn = mas->node;
7063 unsigned long p_min, p_max;
7064
7065 mas_next_node(mas, mas_mn(mas), max);
7066 if (!mas_is_overflow(mas))
7067 return;
7068
7069 if (mte_is_root(mn))
7070 return;
7071
7072 mas->node = mn;
7073 mas_ascend(mas);
7074 do {
7075 p = mas->node;
7076 p_min = mas->min;
7077 p_max = mas->max;
7078 mas_prev_node(mas, 0);
7079 } while (!mas_is_underflow(mas));
7080
7081 mas->node = p;
7082 mas->max = p_max;
7083 mas->min = p_min;
7084}
7085
7086/* Tree validations */
7087static void mt_dump_node(const struct maple_tree *mt, void *entry,
7088 unsigned long min, unsigned long max, unsigned int depth,
7089 enum mt_dump_format format);
7090static void mt_dump_range(unsigned long min, unsigned long max,
7091 unsigned int depth, enum mt_dump_format format)
7092{
7093 static const char spaces[] = " ";
7094
7095 switch(format) {
7096 case mt_dump_hex:
7097 if (min == max)
7098 pr_info("%.*s%lx: ", depth * 2, spaces, min);
7099 else
7100 pr_info("%.*s%lx-%lx: ", depth * 2, spaces, min, max);
7101 break;
7102 case mt_dump_dec:
7103 if (min == max)
7104 pr_info("%.*s%lu: ", depth * 2, spaces, min);
7105 else
7106 pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
7107 }
7108}
7109
7110static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
7111 unsigned int depth, enum mt_dump_format format)
7112{
7113 mt_dump_range(min, max, depth, format);
7114
7115 if (xa_is_value(entry))
7116 pr_cont("value %ld (0x%lx) [" PTR_FMT "]\n", xa_to_value(entry),
7117 xa_to_value(entry), entry);
7118 else if (xa_is_zero(entry))
7119 pr_cont("zero (%ld)\n", xa_to_internal(entry));
7120 else if (mt_is_reserved(entry))
7121 pr_cont("UNKNOWN ENTRY (" PTR_FMT ")\n", entry);
7122 else
7123 pr_cont(PTR_FMT "\n", entry);
7124}
7125
7126static void mt_dump_range64(const struct maple_tree *mt, void *entry,
7127 unsigned long min, unsigned long max, unsigned int depth,
7128 enum mt_dump_format format)
7129{
7130 struct maple_range_64 *node = &mte_to_node(entry)->mr64;
7131 bool leaf = mte_is_leaf(entry);
7132 unsigned long first = min;
7133 int i;
7134
7135 pr_cont(" contents: ");
7136 for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) {
7137 switch(format) {
7138 case mt_dump_hex:
7139 pr_cont(PTR_FMT " %lX ", node->slot[i], node->pivot[i]);
7140 break;
7141 case mt_dump_dec:
7142 pr_cont(PTR_FMT " %lu ", node->slot[i], node->pivot[i]);
7143 }
7144 }
7145 pr_cont(PTR_FMT "\n", node->slot[i]);
7146 for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
7147 unsigned long last = max;
7148
7149 if (i < (MAPLE_RANGE64_SLOTS - 1))
7150 last = node->pivot[i];
7151 else if (!node->slot[i] && max != mt_node_max(entry))
7152 break;
7153 if (last == 0 && i > 0)
7154 break;
7155 if (leaf)
7156 mt_dump_entry(mt_slot(mt, node->slot, i),
7157 first, last, depth + 1, format);
7158 else if (node->slot[i])
7159 mt_dump_node(mt, mt_slot(mt, node->slot, i),
7160 first, last, depth + 1, format);
7161
7162 if (last == max)
7163 break;
7164 if (last > max) {
7165 switch(format) {
7166 case mt_dump_hex:
7167 pr_err("node " PTR_FMT " last (%lx) > max (%lx) at pivot %d!\n",
7168 node, last, max, i);
7169 break;
7170 case mt_dump_dec:
7171 pr_err("node " PTR_FMT " last (%lu) > max (%lu) at pivot %d!\n",
7172 node, last, max, i);
7173 }
7174 }
7175 first = last + 1;
7176 }
7177}
7178
7179static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
7180 unsigned long min, unsigned long max, unsigned int depth,
7181 enum mt_dump_format format)
7182{
7183 struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
7184 unsigned long first = min;
7185 int i;
7186
7187 pr_cont(" contents: ");
7188 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
7189 switch (format) {
7190 case mt_dump_hex:
7191 pr_cont("%lx ", node->gap[i]);
7192 break;
7193 case mt_dump_dec:
7194 pr_cont("%lu ", node->gap[i]);
7195 }
7196 }
7197 pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
7198 for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++) {
7199 switch (format) {
7200 case mt_dump_hex:
7201 pr_cont(PTR_FMT " %lX ", node->slot[i], node->pivot[i]);
7202 break;
7203 case mt_dump_dec:
7204 pr_cont(PTR_FMT " %lu ", node->slot[i], node->pivot[i]);
7205 }
7206 }
7207 pr_cont(PTR_FMT "\n", node->slot[i]);
7208 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
7209 unsigned long last = max;
7210
7211 if (i < (MAPLE_ARANGE64_SLOTS - 1))
7212 last = node->pivot[i];
7213 else if (!node->slot[i])
7214 break;
7215 if (last == 0 && i > 0)
7216 break;
7217 if (node->slot[i])
7218 mt_dump_node(mt, mt_slot(mt, node->slot, i),
7219 first, last, depth + 1, format);
7220
7221 if (last == max)
7222 break;
7223 if (last > max) {
7224 switch(format) {
7225 case mt_dump_hex:
7226 pr_err("node " PTR_FMT " last (%lx) > max (%lx) at pivot %d!\n",
7227 node, last, max, i);
7228 break;
7229 case mt_dump_dec:
7230 pr_err("node " PTR_FMT " last (%lu) > max (%lu) at pivot %d!\n",
7231 node, last, max, i);
7232 }
7233 }
7234 first = last + 1;
7235 }
7236}
7237
7238static void mt_dump_node(const struct maple_tree *mt, void *entry,
7239 unsigned long min, unsigned long max, unsigned int depth,
7240 enum mt_dump_format format)
7241{
7242 struct maple_node *node = mte_to_node(entry);
7243 unsigned int type = mte_node_type(entry);
7244 unsigned int i;
7245
7246 mt_dump_range(min, max, depth, format);
7247
7248 pr_cont("node " PTR_FMT " depth %d type %d parent " PTR_FMT, node,
7249 depth, type, node ? node->parent : NULL);
7250 switch (type) {
7251 case maple_dense:
7252 pr_cont("\n");
7253 for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
7254 if (min + i > max)
7255 pr_cont("OUT OF RANGE: ");
7256 mt_dump_entry(mt_slot(mt, node->slot, i),
7257 min + i, min + i, depth, format);
7258 }
7259 break;
7260 case maple_leaf_64:
7261 case maple_range_64:
7262 mt_dump_range64(mt, entry, min, max, depth, format);
7263 break;
7264 case maple_arange_64:
7265 mt_dump_arange64(mt, entry, min, max, depth, format);
7266 break;
7267
7268 default:
7269 pr_cont(" UNKNOWN TYPE\n");
7270 }
7271}
7272
7273void mt_dump(const struct maple_tree *mt, enum mt_dump_format format)
7274{
7275 void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
7276
7277 pr_info("maple_tree(" PTR_FMT ") flags %X, height %u root " PTR_FMT "\n",
7278 mt, mt->ma_flags, mt_height(mt), entry);
7279 if (xa_is_node(entry))
7280 mt_dump_node(mt, entry, 0, mt_node_max(entry), 0, format);
7281 else if (entry)
7282 mt_dump_entry(entry, 0, 0, 0, format);
7283 else
7284 pr_info("(empty)\n");
7285}
7286EXPORT_SYMBOL_GPL(mt_dump);
7287
7288/*
7289 * Calculate the maximum gap in a node and check if that's what is reported in
7290 * the parent (unless root).
7291 */
7292static void mas_validate_gaps(struct ma_state *mas)
7293{
7294 struct maple_enode *mte = mas->node;
7295 struct maple_node *p_mn, *node = mte_to_node(mte);
7296 enum maple_type mt = mte_node_type(mas->node);
7297 unsigned long gap = 0, max_gap = 0;
7298 unsigned long p_end, p_start = mas->min;
7299 unsigned char p_slot, offset;
7300 unsigned long *gaps = NULL;
7301 unsigned long *pivots = ma_pivots(node, mt);
7302 unsigned int i;
7303
7304 if (ma_is_dense(mt)) {
7305 for (i = 0; i < mt_slot_count(mte); i++) {
7306 if (mas_get_slot(mas, i)) {
7307 if (gap > max_gap)
7308 max_gap = gap;
7309 gap = 0;
7310 continue;
7311 }
7312 gap++;
7313 }
7314 goto counted;
7315 }
7316
7317 gaps = ma_gaps(node, mt);
7318 for (i = 0; i < mt_slot_count(mte); i++) {
7319 p_end = mas_safe_pivot(mas, pivots, i, mt);
7320
7321 if (!gaps) {
7322 if (!mas_get_slot(mas, i))
7323 gap = p_end - p_start + 1;
7324 } else {
7325 void *entry = mas_get_slot(mas, i);
7326
7327 gap = gaps[i];
7328 MT_BUG_ON(mas->tree, !entry);
7329
7330 if (gap > p_end - p_start + 1) {
7331 pr_err(PTR_FMT "[%u] %lu >= %lu - %lu + 1 (%lu)\n",
7332 mas_mn(mas), i, gap, p_end, p_start,
7333 p_end - p_start + 1);
7334 MT_BUG_ON(mas->tree, gap > p_end - p_start + 1);
7335 }
7336 }
7337
7338 if (gap > max_gap)
7339 max_gap = gap;
7340
7341 p_start = p_end + 1;
7342 if (p_end >= mas->max)
7343 break;
7344 }
7345
7346counted:
7347 if (mt == maple_arange_64) {
7348 MT_BUG_ON(mas->tree, !gaps);
7349 offset = ma_meta_gap(node);
7350 if (offset > i) {
7351 pr_err("gap offset " PTR_FMT "[%u] is invalid\n", node, offset);
7352 MT_BUG_ON(mas->tree, 1);
7353 }
7354
7355 if (gaps[offset] != max_gap) {
7356 pr_err("gap " PTR_FMT "[%u] is not the largest gap %lu\n",
7357 node, offset, max_gap);
7358 MT_BUG_ON(mas->tree, 1);
7359 }
7360
7361 for (i++ ; i < mt_slot_count(mte); i++) {
7362 if (gaps[i] != 0) {
7363 pr_err("gap " PTR_FMT "[%u] beyond node limit != 0\n",
7364 node, i);
7365 MT_BUG_ON(mas->tree, 1);
7366 }
7367 }
7368 }
7369
7370 if (mte_is_root(mte))
7371 return;
7372
7373 p_slot = mte_parent_slot(mas->node);
7374 p_mn = mte_parent(mte);
7375 MT_BUG_ON(mas->tree, max_gap > mas->max);
7376 if (ma_gaps(p_mn, mas_parent_type(mas, mte))[p_slot] != max_gap) {
7377 pr_err("gap " PTR_FMT "[%u] != %lu\n", p_mn, p_slot, max_gap);
7378 mt_dump(mas->tree, mt_dump_hex);
7379 MT_BUG_ON(mas->tree, 1);
7380 }
7381}
7382
7383static void mas_validate_parent_slot(struct ma_state *mas)
7384{
7385 struct maple_node *parent;
7386 struct maple_enode *node;
7387 enum maple_type p_type;
7388 unsigned char p_slot;
7389 void __rcu **slots;
7390 int i;
7391
7392 if (mte_is_root(mas->node))
7393 return;
7394
7395 p_slot = mte_parent_slot(mas->node);
7396 p_type = mas_parent_type(mas, mas->node);
7397 parent = mte_parent(mas->node);
7398 slots = ma_slots(parent, p_type);
7399 MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
7400
7401 /* Check prev/next parent slot for duplicate node entry */
7402
7403 for (i = 0; i < mt_slots[p_type]; i++) {
7404 node = mas_slot(mas, slots, i);
7405 if (i == p_slot) {
7406 if (node != mas->node)
7407 pr_err("parent " PTR_FMT "[%u] does not have " PTR_FMT "\n",
7408 parent, i, mas_mn(mas));
7409 MT_BUG_ON(mas->tree, node != mas->node);
7410 } else if (node == mas->node) {
7411 pr_err("Invalid child " PTR_FMT " at parent " PTR_FMT "[%u] p_slot %u\n",
7412 mas_mn(mas), parent, i, p_slot);
7413 MT_BUG_ON(mas->tree, node == mas->node);
7414 }
7415 }
7416}
7417
7418static void mas_validate_child_slot(struct ma_state *mas)
7419{
7420 enum maple_type type = mte_node_type(mas->node);
7421 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7422 unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
7423 struct maple_enode *child;
7424 unsigned char i;
7425
7426 if (mte_is_leaf(mas->node))
7427 return;
7428
7429 for (i = 0; i < mt_slots[type]; i++) {
7430 child = mas_slot(mas, slots, i);
7431
7432 if (!child) {
7433 pr_err("Non-leaf node lacks child at " PTR_FMT "[%u]\n",
7434 mas_mn(mas), i);
7435 MT_BUG_ON(mas->tree, 1);
7436 }
7437
7438 if (mte_parent_slot(child) != i) {
7439 pr_err("Slot error at " PTR_FMT "[%u]: child " PTR_FMT " has pslot %u\n",
7440 mas_mn(mas), i, mte_to_node(child),
7441 mte_parent_slot(child));
7442 MT_BUG_ON(mas->tree, 1);
7443 }
7444
7445 if (mte_parent(child) != mte_to_node(mas->node)) {
7446 pr_err("child " PTR_FMT " has parent " PTR_FMT " not " PTR_FMT "\n",
7447 mte_to_node(child), mte_parent(child),
7448 mte_to_node(mas->node));
7449 MT_BUG_ON(mas->tree, 1);
7450 }
7451
7452 if (i < mt_pivots[type] && pivots[i] == mas->max)
7453 break;
7454 }
7455}
7456
7457/*
7458 * Validate all pivots are within mas->min and mas->max, check metadata ends
7459 * where the maximum ends and ensure there is no slots or pivots set outside of
7460 * the end of the data.
7461 */
7462static void mas_validate_limits(struct ma_state *mas)
7463{
7464 int i;
7465 unsigned long prev_piv = 0;
7466 enum maple_type type = mte_node_type(mas->node);
7467 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7468 unsigned long *pivots = ma_pivots(mas_mn(mas), type);
7469
7470 for (i = 0; i < mt_slots[type]; i++) {
7471 unsigned long piv;
7472
7473 piv = mas_safe_pivot(mas, pivots, i, type);
7474
7475 if (!piv && (i != 0)) {
7476 pr_err("Missing node limit pivot at " PTR_FMT "[%u]",
7477 mas_mn(mas), i);
7478 MAS_WARN_ON(mas, 1);
7479 }
7480
7481 if (prev_piv > piv) {
7482 pr_err(PTR_FMT "[%u] piv %lu < prev_piv %lu\n",
7483 mas_mn(mas), i, piv, prev_piv);
7484 MAS_WARN_ON(mas, piv < prev_piv);
7485 }
7486
7487 if (piv < mas->min) {
7488 pr_err(PTR_FMT "[%u] %lu < %lu\n", mas_mn(mas), i,
7489 piv, mas->min);
7490 MAS_WARN_ON(mas, piv < mas->min);
7491 }
7492 if (piv > mas->max) {
7493 pr_err(PTR_FMT "[%u] %lu > %lu\n", mas_mn(mas), i,
7494 piv, mas->max);
7495 MAS_WARN_ON(mas, piv > mas->max);
7496 }
7497 prev_piv = piv;
7498 if (piv == mas->max)
7499 break;
7500 }
7501
7502 if (mas_data_end(mas) != i) {
7503 pr_err("node" PTR_FMT ": data_end %u != the last slot offset %u\n",
7504 mas_mn(mas), mas_data_end(mas), i);
7505 MT_BUG_ON(mas->tree, 1);
7506 }
7507
7508 for (i += 1; i < mt_slots[type]; i++) {
7509 void *entry = mas_slot(mas, slots, i);
7510
7511 if (entry && (i != mt_slots[type] - 1)) {
7512 pr_err(PTR_FMT "[%u] should not have entry " PTR_FMT "\n",
7513 mas_mn(mas), i, entry);
7514 MT_BUG_ON(mas->tree, entry != NULL);
7515 }
7516
7517 if (i < mt_pivots[type]) {
7518 unsigned long piv = pivots[i];
7519
7520 if (!piv)
7521 continue;
7522
7523 pr_err(PTR_FMT "[%u] should not have piv %lu\n",
7524 mas_mn(mas), i, piv);
7525 MAS_WARN_ON(mas, i < mt_pivots[type] - 1);
7526 }
7527 }
7528}
7529
7530static void mt_validate_nulls(struct maple_tree *mt)
7531{
7532 void *entry, *last = (void *)1;
7533 unsigned char offset = 0;
7534 void __rcu **slots;
7535 MA_STATE(mas, mt, 0, 0);
7536
7537 mas_start(&mas);
7538 if (mas_is_none(&mas) || (mas_is_ptr(&mas)))
7539 return;
7540
7541 while (!mte_is_leaf(mas.node))
7542 mas_descend(&mas);
7543
7544 slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
7545 do {
7546 entry = mas_slot(&mas, slots, offset);
7547 if (!last && !entry) {
7548 pr_err("Sequential nulls end at " PTR_FMT "[%u]\n",
7549 mas_mn(&mas), offset);
7550 }
7551 MT_BUG_ON(mt, !last && !entry);
7552 last = entry;
7553 if (offset == mas_data_end(&mas)) {
7554 mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
7555 if (mas_is_overflow(&mas))
7556 return;
7557 offset = 0;
7558 slots = ma_slots(mte_to_node(mas.node),
7559 mte_node_type(mas.node));
7560 } else {
7561 offset++;
7562 }
7563
7564 } while (!mas_is_overflow(&mas));
7565}
7566
7567/*
7568 * validate a maple tree by checking:
7569 * 1. The limits (pivots are within mas->min to mas->max)
7570 * 2. The gap is correctly set in the parents
7571 */
7572void mt_validate(struct maple_tree *mt)
7573 __must_hold(mas->tree->ma_lock)
7574{
7575 unsigned char end;
7576
7577 MA_STATE(mas, mt, 0, 0);
7578 mas_start(&mas);
7579 if (!mas_is_active(&mas))
7580 return;
7581
7582 while (!mte_is_leaf(mas.node))
7583 mas_descend(&mas);
7584
7585 while (!mas_is_overflow(&mas)) {
7586 MAS_WARN_ON(&mas, mte_dead_node(mas.node));
7587 end = mas_data_end(&mas);
7588 if (MAS_WARN_ON(&mas, (end < mt_min_slot_count(mas.node)) &&
7589 (mas.max != ULONG_MAX))) {
7590 pr_err("Invalid size %u of " PTR_FMT "\n",
7591 end, mas_mn(&mas));
7592 }
7593
7594 mas_validate_parent_slot(&mas);
7595 mas_validate_limits(&mas);
7596 mas_validate_child_slot(&mas);
7597 if (mt_is_alloc(mt))
7598 mas_validate_gaps(&mas);
7599 mas_dfs_postorder(&mas, ULONG_MAX);
7600 }
7601 mt_validate_nulls(mt);
7602}
7603EXPORT_SYMBOL_GPL(mt_validate);
7604
7605void mas_dump(const struct ma_state *mas)
7606{
7607 pr_err("MAS: tree=" PTR_FMT " enode=" PTR_FMT " ",
7608 mas->tree, mas->node);
7609 switch (mas->status) {
7610 case ma_active:
7611 pr_err("(ma_active)");
7612 break;
7613 case ma_none:
7614 pr_err("(ma_none)");
7615 break;
7616 case ma_root:
7617 pr_err("(ma_root)");
7618 break;
7619 case ma_start:
7620 pr_err("(ma_start) ");
7621 break;
7622 case ma_pause:
7623 pr_err("(ma_pause) ");
7624 break;
7625 case ma_overflow:
7626 pr_err("(ma_overflow) ");
7627 break;
7628 case ma_underflow:
7629 pr_err("(ma_underflow) ");
7630 break;
7631 case ma_error:
7632 pr_err("(ma_error) ");
7633 break;
7634 }
7635
7636 pr_err("Store Type: ");
7637 switch (mas->store_type) {
7638 case wr_invalid:
7639 pr_err("invalid store type\n");
7640 break;
7641 case wr_new_root:
7642 pr_err("new_root\n");
7643 break;
7644 case wr_store_root:
7645 pr_err("store_root\n");
7646 break;
7647 case wr_exact_fit:
7648 pr_err("exact_fit\n");
7649 break;
7650 case wr_split_store:
7651 pr_err("split_store\n");
7652 break;
7653 case wr_slot_store:
7654 pr_err("slot_store\n");
7655 break;
7656 case wr_append:
7657 pr_err("append\n");
7658 break;
7659 case wr_node_store:
7660 pr_err("node_store\n");
7661 break;
7662 case wr_spanning_store:
7663 pr_err("spanning_store\n");
7664 break;
7665 case wr_rebalance:
7666 pr_err("rebalance\n");
7667 break;
7668 }
7669
7670 pr_err("[%u/%u] index=%lx last=%lx\n", mas->offset, mas->end,
7671 mas->index, mas->last);
7672 pr_err(" min=%lx max=%lx alloc=" PTR_FMT ", depth=%u, flags=%x\n",
7673 mas->min, mas->max, mas->alloc, mas->depth, mas->mas_flags);
7674 if (mas->index > mas->last)
7675 pr_err("Check index & last\n");
7676}
7677EXPORT_SYMBOL_GPL(mas_dump);
7678
7679void mas_wr_dump(const struct ma_wr_state *wr_mas)
7680{
7681 pr_err("WR_MAS: node=" PTR_FMT " r_min=%lx r_max=%lx\n",
7682 wr_mas->node, wr_mas->r_min, wr_mas->r_max);
7683 pr_err(" type=%u off_end=%u, node_end=%u, end_piv=%lx\n",
7684 wr_mas->type, wr_mas->offset_end, wr_mas->mas->end,
7685 wr_mas->end_piv);
7686}
7687EXPORT_SYMBOL_GPL(mas_wr_dump);
7688
7689#endif /* CONFIG_DEBUG_MAPLE_TREE */