Linux Audio

Check our new training course

Loading...
v3.15
 
  1/*
  2 * Alarmtimer interface
  3 *
  4 * This interface provides a timer which is similarto hrtimers,
  5 * but triggers a RTC alarm if the box is suspend.
  6 *
  7 * This interface is influenced by the Android RTC Alarm timer
  8 * interface.
  9 *
 10 * Copyright (C) 2010 IBM Corperation
 11 *
 12 * Author: John Stultz <john.stultz@linaro.org>
 13 *
 14 * This program is free software; you can redistribute it and/or modify
 15 * it under the terms of the GNU General Public License version 2 as
 16 * published by the Free Software Foundation.
 17 */
 18#include <linux/time.h>
 19#include <linux/hrtimer.h>
 20#include <linux/timerqueue.h>
 21#include <linux/rtc.h>
 
 
 22#include <linux/alarmtimer.h>
 23#include <linux/mutex.h>
 24#include <linux/platform_device.h>
 25#include <linux/posix-timers.h>
 26#include <linux/workqueue.h>
 27#include <linux/freezer.h>
 
 
 
 
 
 
 
 
 28
 29/**
 30 * struct alarm_base - Alarm timer bases
 31 * @lock:		Lock for syncrhonized access to the base
 32 * @timerqueue:		Timerqueue head managing the list of events
 33 * @timer: 		hrtimer used to schedule events while running
 34 * @gettime:		Function to read the time correlating to the base
 35 * @base_clockid:	clockid for the base
 36 */
 37static struct alarm_base {
 38	spinlock_t		lock;
 39	struct timerqueue_head	timerqueue;
 40	ktime_t			(*gettime)(void);
 
 41	clockid_t		base_clockid;
 42} alarm_bases[ALARM_NUMTYPE];
 43
 44/* freezer delta & lock used to handle clock_nanosleep triggered wakeups */
 
 
 
 45static ktime_t freezer_delta;
 46static DEFINE_SPINLOCK(freezer_delta_lock);
 47
 48static struct wakeup_source *ws;
 49
 50#ifdef CONFIG_RTC_CLASS
 51/* rtc timer and device for setting alarm wakeups at suspend */
 52static struct rtc_timer		rtctimer;
 53static struct rtc_device	*rtcdev;
 54static DEFINE_SPINLOCK(rtcdev_lock);
 55
 56/**
 57 * alarmtimer_get_rtcdev - Return selected rtcdevice
 58 *
 59 * This function returns the rtc device to use for wakealarms.
 60 * If one has not already been chosen, it checks to see if a
 61 * functional rtc device is available.
 62 */
 63struct rtc_device *alarmtimer_get_rtcdev(void)
 64{
 65	unsigned long flags;
 66	struct rtc_device *ret;
 67
 68	spin_lock_irqsave(&rtcdev_lock, flags);
 69	ret = rtcdev;
 70	spin_unlock_irqrestore(&rtcdev_lock, flags);
 71
 72	return ret;
 73}
 
 74
 75
 76static int alarmtimer_rtc_add_device(struct device *dev,
 77				struct class_interface *class_intf)
 78{
 79	unsigned long flags;
 80	struct rtc_device *rtc = to_rtc_device(dev);
 
 
 81
 82	if (rtcdev)
 83		return -EBUSY;
 84
 85	if (!rtc->ops->set_alarm)
 86		return -1;
 87	if (!device_may_wakeup(rtc->dev.parent))
 88		return -1;
 89
 
 
 
 
 
 90	spin_lock_irqsave(&rtcdev_lock, flags);
 91	if (!rtcdev) {
 
 
 
 
 
 92		rtcdev = rtc;
 93		/* hold a reference so it doesn't go away */
 94		get_device(dev);
 
 
 
 95	}
 
 96	spin_unlock_irqrestore(&rtcdev_lock, flags);
 97	return 0;
 
 
 
 98}
 99
100static inline void alarmtimer_rtc_timer_init(void)
101{
102	rtc_timer_init(&rtctimer, NULL, NULL);
103}
104
105static struct class_interface alarmtimer_rtc_interface = {
106	.add_dev = &alarmtimer_rtc_add_device,
107};
108
109static int alarmtimer_rtc_interface_setup(void)
110{
111	alarmtimer_rtc_interface.class = rtc_class;
112	return class_interface_register(&alarmtimer_rtc_interface);
113}
114static void alarmtimer_rtc_interface_remove(void)
115{
116	class_interface_unregister(&alarmtimer_rtc_interface);
117}
118#else
119struct rtc_device *alarmtimer_get_rtcdev(void)
120{
121	return NULL;
122}
123#define rtcdev (NULL)
124static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
125static inline void alarmtimer_rtc_interface_remove(void) { }
126static inline void alarmtimer_rtc_timer_init(void) { }
127#endif
128
129/**
130 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
131 * @base: pointer to the base where the timer is being run
132 * @alarm: pointer to alarm being enqueued.
133 *
134 * Adds alarm to a alarm_base timerqueue
135 *
136 * Must hold base->lock when calling.
137 */
138static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
139{
140	if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
141		timerqueue_del(&base->timerqueue, &alarm->node);
142
143	timerqueue_add(&base->timerqueue, &alarm->node);
144	alarm->state |= ALARMTIMER_STATE_ENQUEUED;
145}
146
147/**
148 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
149 * @base: pointer to the base where the timer is running
150 * @alarm: pointer to alarm being removed
151 *
152 * Removes alarm to a alarm_base timerqueue
153 *
154 * Must hold base->lock when calling.
155 */
156static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
157{
158	if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
159		return;
160
161	timerqueue_del(&base->timerqueue, &alarm->node);
162	alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
163}
164
165
166/**
167 * alarmtimer_fired - Handles alarm hrtimer being fired.
168 * @timer: pointer to hrtimer being run
169 *
170 * When a alarm timer fires, this runs through the timerqueue to
171 * see which alarms expired, and runs those. If there are more alarm
172 * timers queued for the future, we set the hrtimer to fire when
173 * when the next future alarm timer expires.
174 */
175static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
176{
177	struct alarm *alarm = container_of(timer, struct alarm, timer);
178	struct alarm_base *base = &alarm_bases[alarm->type];
179	unsigned long flags;
180	int ret = HRTIMER_NORESTART;
181	int restart = ALARMTIMER_NORESTART;
182
183	spin_lock_irqsave(&base->lock, flags);
184	alarmtimer_dequeue(base, alarm);
185	spin_unlock_irqrestore(&base->lock, flags);
186
187	if (alarm->function)
188		restart = alarm->function(alarm, base->gettime());
189
190	spin_lock_irqsave(&base->lock, flags);
191	if (restart != ALARMTIMER_NORESTART) {
192		hrtimer_set_expires(&alarm->timer, alarm->node.expires);
193		alarmtimer_enqueue(base, alarm);
194		ret = HRTIMER_RESTART;
195	}
196	spin_unlock_irqrestore(&base->lock, flags);
197
198	return ret;
199
 
 
200}
201
202ktime_t alarm_expires_remaining(const struct alarm *alarm)
203{
204	struct alarm_base *base = &alarm_bases[alarm->type];
205	return ktime_sub(alarm->node.expires, base->gettime());
206}
207EXPORT_SYMBOL_GPL(alarm_expires_remaining);
208
209#ifdef CONFIG_RTC_CLASS
210/**
211 * alarmtimer_suspend - Suspend time callback
212 * @dev: unused
213 * @state: unused
214 *
215 * When we are going into suspend, we look through the bases
216 * to see which is the soonest timer to expire. We then
217 * set an rtc timer to fire that far into the future, which
218 * will wake us from suspend.
219 */
220static int alarmtimer_suspend(struct device *dev)
221{
222	struct rtc_time tm;
223	ktime_t min, now;
224	unsigned long flags;
225	struct rtc_device *rtc;
226	int i;
227	int ret;
228
229	spin_lock_irqsave(&freezer_delta_lock, flags);
230	min = freezer_delta;
231	freezer_delta = ktime_set(0, 0);
 
 
232	spin_unlock_irqrestore(&freezer_delta_lock, flags);
233
234	rtc = alarmtimer_get_rtcdev();
235	/* If we have no rtcdev, just return */
236	if (!rtc)
237		return 0;
238
239	/* Find the soonest timer to expire*/
240	for (i = 0; i < ALARM_NUMTYPE; i++) {
241		struct alarm_base *base = &alarm_bases[i];
242		struct timerqueue_node *next;
243		ktime_t delta;
244
245		spin_lock_irqsave(&base->lock, flags);
246		next = timerqueue_getnext(&base->timerqueue);
247		spin_unlock_irqrestore(&base->lock, flags);
248		if (!next)
249			continue;
250		delta = ktime_sub(next->expires, base->gettime());
251		if (!min.tv64 || (delta.tv64 < min.tv64))
 
252			min = delta;
 
 
253	}
254	if (min.tv64 == 0)
255		return 0;
256
257	if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
258		__pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
259		return -EBUSY;
260	}
261
 
 
262	/* Setup an rtc timer to fire that far in the future */
263	rtc_timer_cancel(rtc, &rtctimer);
264	rtc_read_time(rtc, &tm);
265	now = rtc_tm_to_ktime(tm);
 
 
 
 
 
 
 
 
 
 
 
266	now = ktime_add(now, min);
267
268	/* Set alarm, if in the past reject suspend briefly to handle */
269	ret = rtc_timer_start(rtc, &rtctimer, now, ktime_set(0, 0));
270	if (ret < 0)
271		__pm_wakeup_event(ws, MSEC_PER_SEC);
272	return ret;
273}
 
 
 
 
 
 
 
 
 
 
 
274#else
275static int alarmtimer_suspend(struct device *dev)
276{
277	return 0;
278}
279#endif
280
281static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
282{
283	ktime_t delta;
284	unsigned long flags;
285	struct alarm_base *base = &alarm_bases[type];
286
287	delta = ktime_sub(absexp, base->gettime());
288
289	spin_lock_irqsave(&freezer_delta_lock, flags);
290	if (!freezer_delta.tv64 || (delta.tv64 < freezer_delta.tv64))
291		freezer_delta = delta;
292	spin_unlock_irqrestore(&freezer_delta_lock, flags);
293}
 
294
 
 
 
 
 
 
 
 
 
295
296/**
297 * alarm_init - Initialize an alarm structure
298 * @alarm: ptr to alarm to be initialized
299 * @type: the type of the alarm
300 * @function: callback that is run when the alarm fires
301 */
302void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
303		enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
304{
305	timerqueue_init(&alarm->node);
306	hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
307			HRTIMER_MODE_ABS);
308	alarm->timer.function = alarmtimer_fired;
309	alarm->function = function;
310	alarm->type = type;
311	alarm->state = ALARMTIMER_STATE_INACTIVE;
312}
313EXPORT_SYMBOL_GPL(alarm_init);
314
315/**
316 * alarm_start - Sets an absolute alarm to fire
317 * @alarm: ptr to alarm to set
318 * @start: time to run the alarm
319 */
320int alarm_start(struct alarm *alarm, ktime_t start)
321{
322	struct alarm_base *base = &alarm_bases[alarm->type];
323	unsigned long flags;
324	int ret;
325
326	spin_lock_irqsave(&base->lock, flags);
327	alarm->node.expires = start;
328	alarmtimer_enqueue(base, alarm);
329	ret = hrtimer_start(&alarm->timer, alarm->node.expires,
330				HRTIMER_MODE_ABS);
331	spin_unlock_irqrestore(&base->lock, flags);
332	return ret;
 
333}
334EXPORT_SYMBOL_GPL(alarm_start);
335
336/**
337 * alarm_start_relative - Sets a relative alarm to fire
338 * @alarm: ptr to alarm to set
339 * @start: time relative to now to run the alarm
340 */
341int alarm_start_relative(struct alarm *alarm, ktime_t start)
342{
343	struct alarm_base *base = &alarm_bases[alarm->type];
344
345	start = ktime_add(start, base->gettime());
346	return alarm_start(alarm, start);
347}
348EXPORT_SYMBOL_GPL(alarm_start_relative);
349
350void alarm_restart(struct alarm *alarm)
351{
352	struct alarm_base *base = &alarm_bases[alarm->type];
353	unsigned long flags;
354
355	spin_lock_irqsave(&base->lock, flags);
356	hrtimer_set_expires(&alarm->timer, alarm->node.expires);
357	hrtimer_restart(&alarm->timer);
358	alarmtimer_enqueue(base, alarm);
359	spin_unlock_irqrestore(&base->lock, flags);
360}
361EXPORT_SYMBOL_GPL(alarm_restart);
362
363/**
364 * alarm_try_to_cancel - Tries to cancel an alarm timer
365 * @alarm: ptr to alarm to be canceled
366 *
367 * Returns 1 if the timer was canceled, 0 if it was not running,
368 * and -1 if the callback was running
369 */
370int alarm_try_to_cancel(struct alarm *alarm)
371{
372	struct alarm_base *base = &alarm_bases[alarm->type];
373	unsigned long flags;
374	int ret;
375
376	spin_lock_irqsave(&base->lock, flags);
377	ret = hrtimer_try_to_cancel(&alarm->timer);
378	if (ret >= 0)
379		alarmtimer_dequeue(base, alarm);
380	spin_unlock_irqrestore(&base->lock, flags);
 
 
381	return ret;
382}
383EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
384
385
386/**
387 * alarm_cancel - Spins trying to cancel an alarm timer until it is done
388 * @alarm: ptr to alarm to be canceled
389 *
390 * Returns 1 if the timer was canceled, 0 if it was not active.
391 */
392int alarm_cancel(struct alarm *alarm)
393{
394	for (;;) {
395		int ret = alarm_try_to_cancel(alarm);
396		if (ret >= 0)
397			return ret;
398		cpu_relax();
399	}
400}
401EXPORT_SYMBOL_GPL(alarm_cancel);
402
403
404u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
405{
406	u64 overrun = 1;
407	ktime_t delta;
408
409	delta = ktime_sub(now, alarm->node.expires);
410
411	if (delta.tv64 < 0)
412		return 0;
413
414	if (unlikely(delta.tv64 >= interval.tv64)) {
415		s64 incr = ktime_to_ns(interval);
416
417		overrun = ktime_divns(delta, incr);
418
419		alarm->node.expires = ktime_add_ns(alarm->node.expires,
420							incr*overrun);
421
422		if (alarm->node.expires.tv64 > now.tv64)
423			return overrun;
424		/*
425		 * This (and the ktime_add() below) is the
426		 * correction for exact:
427		 */
428		overrun++;
429	}
430
431	alarm->node.expires = ktime_add(alarm->node.expires, interval);
432	return overrun;
433}
434EXPORT_SYMBOL_GPL(alarm_forward);
435
436u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
437{
438	struct alarm_base *base = &alarm_bases[alarm->type];
439
440	return alarm_forward(alarm, base->gettime(), interval);
441}
442EXPORT_SYMBOL_GPL(alarm_forward_now);
443
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
444
445/**
446 * clock2alarm - helper that converts from clockid to alarmtypes
447 * @clockid: clockid.
448 */
449static enum alarmtimer_type clock2alarm(clockid_t clockid)
450{
451	if (clockid == CLOCK_REALTIME_ALARM)
452		return ALARM_REALTIME;
453	if (clockid == CLOCK_BOOTTIME_ALARM)
454		return ALARM_BOOTTIME;
455	return -1;
456}
457
458/**
459 * alarm_handle_timer - Callback for posix timers
460 * @alarm: alarm that fired
 
461 *
462 * Posix timer callback for expired alarm timers.
 
 
463 */
464static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
465							ktime_t now)
466{
467	struct k_itimer *ptr = container_of(alarm, struct k_itimer,
468						it.alarm.alarmtimer);
469	if (posix_timer_event(ptr, 0) != 0)
470		ptr->it_overrun++;
471
472	/* Re-add periodic timers */
473	if (ptr->it.alarm.interval.tv64) {
474		ptr->it_overrun += alarm_forward(alarm, now,
475						ptr->it.alarm.interval);
476		return ALARMTIMER_RESTART;
477	}
478	return ALARMTIMER_NORESTART;
479}
480
481/**
482 * alarm_clock_getres - posix getres interface
483 * @which_clock: clockid
484 * @tp: timespec to fill
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
485 *
486 * Returns the granularity of underlying alarm base clock
 
 
487 */
488static int alarm_clock_getres(const clockid_t which_clock, struct timespec *tp)
489{
490	clockid_t baseid = alarm_bases[clock2alarm(which_clock)].base_clockid;
 
491
492	if (!alarmtimer_get_rtcdev())
493		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
494
495	return hrtimer_get_res(baseid, tp);
 
 
 
 
 
496}
497
498/**
499 * alarm_clock_get - posix clock_get interface
500 * @which_clock: clockid
501 * @tp: timespec to fill.
502 *
503 * Provides the underlying alarm base time.
504 */
505static int alarm_clock_get(clockid_t which_clock, struct timespec *tp)
506{
507	struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
508
509	if (!alarmtimer_get_rtcdev())
510		return -EINVAL;
511
512	*tp = ktime_to_timespec(base->gettime());
 
513	return 0;
514}
515
516/**
517 * alarm_timer_create - posix timer_create interface
518 * @new_timer: k_itimer pointer to manage
 
519 *
520 * Initializes the k_itimer structure.
521 */
522static int alarm_timer_create(struct k_itimer *new_timer)
523{
524	enum  alarmtimer_type type;
525	struct alarm_base *base;
526
527	if (!alarmtimer_get_rtcdev())
528		return -ENOTSUPP;
529
530	if (!capable(CAP_WAKE_ALARM))
531		return -EPERM;
532
533	type = clock2alarm(new_timer->it_clock);
534	base = &alarm_bases[type];
535	alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
536	return 0;
537}
538
539/**
540 * alarm_timer_get - posix timer_get interface
541 * @new_timer: k_itimer pointer
542 * @cur_setting: itimerspec data to fill
543 *
544 * Copies the itimerspec data out from the k_itimer
545 */
546static void alarm_timer_get(struct k_itimer *timr,
547				struct itimerspec *cur_setting)
548{
549	memset(cur_setting, 0, sizeof(struct itimerspec));
 
 
 
550
551	cur_setting->it_interval =
552			ktime_to_timespec(timr->it.alarm.interval);
553	cur_setting->it_value =
554		ktime_to_timespec(timr->it.alarm.alarmtimer.node.expires);
555	return;
556}
557
558/**
559 * alarm_timer_del - posix timer_del interface
560 * @timr: k_itimer pointer to be deleted
561 *
562 * Cancels any programmed alarms for the given timer.
563 */
564static int alarm_timer_del(struct k_itimer *timr)
565{
566	if (!rtcdev)
567		return -ENOTSUPP;
568
569	if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
570		return TIMER_RETRY;
571
572	return 0;
573}
574
575/**
576 * alarm_timer_set - posix timer_set interface
577 * @timr: k_itimer pointer to be deleted
578 * @flags: timer flags
579 * @new_setting: itimerspec to be used
580 * @old_setting: itimerspec being replaced
581 *
582 * Sets the timer to new_setting, and starts the timer.
583 */
584static int alarm_timer_set(struct k_itimer *timr, int flags,
585				struct itimerspec *new_setting,
586				struct itimerspec *old_setting)
587{
588	if (!rtcdev)
589		return -ENOTSUPP;
590
591	if (old_setting)
592		alarm_timer_get(timr, old_setting);
593
594	/* If the timer was already set, cancel it */
595	if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
596		return TIMER_RETRY;
597
598	/* start the timer */
599	timr->it.alarm.interval = timespec_to_ktime(new_setting->it_interval);
600	alarm_start(&timr->it.alarm.alarmtimer,
601			timespec_to_ktime(new_setting->it_value));
602	return 0;
603}
604
605/**
606 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
607 * @alarm: ptr to alarm that fired
 
608 *
609 * Wakes up the task that set the alarmtimer
610 */
611static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
612								ktime_t now)
613{
614	struct task_struct *task = (struct task_struct *)alarm->data;
615
616	alarm->data = NULL;
617	if (task)
618		wake_up_process(task);
619	return ALARMTIMER_NORESTART;
620}
621
622/**
623 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
624 * @alarm: ptr to alarmtimer
625 * @absexp: absolute expiration time
 
626 *
627 * Sets the alarm timer and sleeps until it is fired or interrupted.
628 */
629static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp)
 
630{
 
631	alarm->data = (void *)current;
632	do {
633		set_current_state(TASK_INTERRUPTIBLE);
634		alarm_start(alarm, absexp);
635		if (likely(alarm->data))
636			schedule();
637
638		alarm_cancel(alarm);
639	} while (alarm->data && !signal_pending(current));
640
641	__set_current_state(TASK_RUNNING);
642
643	return (alarm->data == NULL);
644}
645
646
647/**
648 * update_rmtp - Update remaining timespec value
649 * @exp: expiration time
650 * @type: timer type
651 * @rmtp: user pointer to remaining timepsec value
652 *
653 * Helper function that fills in rmtp value with time between
654 * now and the exp value
655 */
656static int update_rmtp(ktime_t exp, enum  alarmtimer_type type,
657			struct timespec __user *rmtp)
658{
659	struct timespec rmt;
660	ktime_t rem;
661
662	rem = ktime_sub(exp, alarm_bases[type].gettime());
 
 
 
 
 
663
664	if (rem.tv64 <= 0)
665		return 0;
666	rmt = ktime_to_timespec(rem);
667
668	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
669		return -EFAULT;
 
670
671	return 1;
 
 
 
672
 
 
 
 
 
 
 
673}
674
675/**
676 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
677 * @restart: ptr to restart block
678 *
679 * Handles restarted clock_nanosleep calls
680 */
681static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
682{
683	enum  alarmtimer_type type = restart->nanosleep.clockid;
684	ktime_t exp;
685	struct timespec __user  *rmtp;
686	struct alarm alarm;
687	int ret = 0;
688
689	exp.tv64 = restart->nanosleep.expires;
690	alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
691
692	if (alarmtimer_do_nsleep(&alarm, exp))
693		goto out;
694
695	if (freezing(current))
696		alarmtimer_freezerset(exp, type);
697
698	rmtp = restart->nanosleep.rmtp;
699	if (rmtp) {
700		ret = update_rmtp(exp, type, rmtp);
701		if (ret <= 0)
702			goto out;
703	}
704
 
705
706	/* The other values in restart are already filled in */
707	ret = -ERESTART_RESTARTBLOCK;
708out:
709	return ret;
710}
711
712/**
713 * alarm_timer_nsleep - alarmtimer nanosleep
714 * @which_clock: clockid
715 * @flags: determins abstime or relative
716 * @tsreq: requested sleep time (abs or rel)
717 * @rmtp: remaining sleep time saved
718 *
719 * Handles clock_nanosleep calls against _ALARM clockids
720 */
721static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
722		     struct timespec *tsreq, struct timespec __user *rmtp)
723{
724	enum  alarmtimer_type type = clock2alarm(which_clock);
 
725	struct alarm alarm;
726	ktime_t exp;
727	int ret = 0;
728	struct restart_block *restart;
729
730	if (!alarmtimer_get_rtcdev())
731		return -ENOTSUPP;
 
 
 
732
733	if (!capable(CAP_WAKE_ALARM))
734		return -EPERM;
735
736	alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
737
738	exp = timespec_to_ktime(*tsreq);
739	/* Convert (if necessary) to absolute time */
740	if (flags != TIMER_ABSTIME) {
741		ktime_t now = alarm_bases[type].gettime();
742		exp = ktime_add(now, exp);
743	}
744
745	if (alarmtimer_do_nsleep(&alarm, exp))
746		goto out;
 
 
747
748	if (freezing(current))
749		alarmtimer_freezerset(exp, type);
 
750
751	/* abs timers don't set remaining time or restart */
752	if (flags == TIMER_ABSTIME) {
753		ret = -ERESTARTNOHAND;
754		goto out;
755	}
756
757	if (rmtp) {
758		ret = update_rmtp(exp, type, rmtp);
759		if (ret <= 0)
760			goto out;
761	}
762
763	restart = &current_thread_info()->restart_block;
764	restart->fn = alarm_timer_nsleep_restart;
765	restart->nanosleep.clockid = type;
766	restart->nanosleep.expires = exp.tv64;
767	restart->nanosleep.rmtp = rmtp;
768	ret = -ERESTART_RESTARTBLOCK;
769
770out:
771	return ret;
772}
773
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
774
775/* Suspend hook structures */
776static const struct dev_pm_ops alarmtimer_pm_ops = {
777	.suspend = alarmtimer_suspend,
 
778};
779
780static struct platform_driver alarmtimer_driver = {
781	.driver = {
782		.name = "alarmtimer",
783		.pm = &alarmtimer_pm_ops,
784	}
785};
786
 
 
 
 
 
 
787/**
788 * alarmtimer_init - Initialize alarm timer code
789 *
790 * This function initializes the alarm bases and registers
791 * the posix clock ids.
792 */
793static int __init alarmtimer_init(void)
794{
795	struct platform_device *pdev;
796	int error = 0;
797	int i;
798	struct k_clock alarm_clock = {
799		.clock_getres	= alarm_clock_getres,
800		.clock_get	= alarm_clock_get,
801		.timer_create	= alarm_timer_create,
802		.timer_set	= alarm_timer_set,
803		.timer_del	= alarm_timer_del,
804		.timer_get	= alarm_timer_get,
805		.nsleep		= alarm_timer_nsleep,
806	};
807
808	alarmtimer_rtc_timer_init();
809
810	posix_timers_register_clock(CLOCK_REALTIME_ALARM, &alarm_clock);
811	posix_timers_register_clock(CLOCK_BOOTTIME_ALARM, &alarm_clock);
812
813	/* Initialize alarm bases */
814	alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
815	alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
 
816	alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
817	alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
 
818	for (i = 0; i < ALARM_NUMTYPE; i++) {
819		timerqueue_init_head(&alarm_bases[i].timerqueue);
820		spin_lock_init(&alarm_bases[i].lock);
821	}
822
823	error = alarmtimer_rtc_interface_setup();
824	if (error)
825		return error;
826
827	error = platform_driver_register(&alarmtimer_driver);
828	if (error)
829		goto out_if;
830
831	pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
832	if (IS_ERR(pdev)) {
833		error = PTR_ERR(pdev);
834		goto out_drv;
835	}
836	ws = wakeup_source_register("alarmtimer");
837	return 0;
838
839out_drv:
840	platform_driver_unregister(&alarmtimer_driver);
841out_if:
842	alarmtimer_rtc_interface_remove();
843	return error;
844}
845device_initcall(alarmtimer_init);
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Alarmtimer interface
  4 *
  5 * This interface provides a timer which is similar to hrtimers,
  6 * but triggers a RTC alarm if the box is suspend.
  7 *
  8 * This interface is influenced by the Android RTC Alarm timer
  9 * interface.
 10 *
 11 * Copyright (C) 2010 IBM Corporation
 12 *
 13 * Author: John Stultz <john.stultz@linaro.org>
 
 
 
 
 14 */
 15#include <linux/time.h>
 16#include <linux/hrtimer.h>
 17#include <linux/timerqueue.h>
 18#include <linux/rtc.h>
 19#include <linux/sched/signal.h>
 20#include <linux/sched/debug.h>
 21#include <linux/alarmtimer.h>
 22#include <linux/mutex.h>
 23#include <linux/platform_device.h>
 24#include <linux/posix-timers.h>
 25#include <linux/workqueue.h>
 26#include <linux/freezer.h>
 27#include <linux/compat.h>
 28#include <linux/module.h>
 29#include <linux/time_namespace.h>
 30
 31#include "posix-timers.h"
 32
 33#define CREATE_TRACE_POINTS
 34#include <trace/events/alarmtimer.h>
 35
 36/**
 37 * struct alarm_base - Alarm timer bases
 38 * @lock:		Lock for syncrhonized access to the base
 39 * @timerqueue:		Timerqueue head managing the list of events
 40 * @get_ktime:		Function to read the time correlating to the base
 41 * @get_timespec:	Function to read the namespace time correlating to the base
 42 * @base_clockid:	clockid for the base
 43 */
 44static struct alarm_base {
 45	spinlock_t		lock;
 46	struct timerqueue_head	timerqueue;
 47	ktime_t			(*get_ktime)(void);
 48	void			(*get_timespec)(struct timespec64 *tp);
 49	clockid_t		base_clockid;
 50} alarm_bases[ALARM_NUMTYPE];
 51
 52#if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS)
 53/* freezer information to handle clock_nanosleep triggered wakeups */
 54static enum alarmtimer_type freezer_alarmtype;
 55static ktime_t freezer_expires;
 56static ktime_t freezer_delta;
 57static DEFINE_SPINLOCK(freezer_delta_lock);
 58#endif
 
 59
 60#ifdef CONFIG_RTC_CLASS
 61/* rtc timer and device for setting alarm wakeups at suspend */
 62static struct rtc_timer		rtctimer;
 63static struct rtc_device	*rtcdev;
 64static DEFINE_SPINLOCK(rtcdev_lock);
 65
 66/**
 67 * alarmtimer_get_rtcdev - Return selected rtcdevice
 68 *
 69 * This function returns the rtc device to use for wakealarms.
 
 
 70 */
 71struct rtc_device *alarmtimer_get_rtcdev(void)
 72{
 73	unsigned long flags;
 74	struct rtc_device *ret;
 75
 76	spin_lock_irqsave(&rtcdev_lock, flags);
 77	ret = rtcdev;
 78	spin_unlock_irqrestore(&rtcdev_lock, flags);
 79
 80	return ret;
 81}
 82EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
 83
 84static int alarmtimer_rtc_add_device(struct device *dev)
 
 
 85{
 86	unsigned long flags;
 87	struct rtc_device *rtc = to_rtc_device(dev);
 88	struct platform_device *pdev;
 89	int ret = 0;
 90
 91	if (rtcdev)
 92		return -EBUSY;
 93
 94	if (!test_bit(RTC_FEATURE_ALARM, rtc->features))
 95		return -1;
 96	if (!device_may_wakeup(rtc->dev.parent))
 97		return -1;
 98
 99	pdev = platform_device_register_data(dev, "alarmtimer",
100					     PLATFORM_DEVID_AUTO, NULL, 0);
101	if (!IS_ERR(pdev))
102		device_init_wakeup(&pdev->dev, true);
103
104	spin_lock_irqsave(&rtcdev_lock, flags);
105	if (!IS_ERR(pdev) && !rtcdev) {
106		if (!try_module_get(rtc->owner)) {
107			ret = -1;
108			goto unlock;
109		}
110
111		rtcdev = rtc;
112		/* hold a reference so it doesn't go away */
113		get_device(dev);
114		pdev = NULL;
115	} else {
116		ret = -1;
117	}
118unlock:
119	spin_unlock_irqrestore(&rtcdev_lock, flags);
120
121	platform_device_unregister(pdev);
122
123	return ret;
124}
125
126static inline void alarmtimer_rtc_timer_init(void)
127{
128	rtc_timer_init(&rtctimer, NULL, NULL);
129}
130
131static struct class_interface alarmtimer_rtc_interface = {
132	.add_dev = &alarmtimer_rtc_add_device,
133};
134
135static int alarmtimer_rtc_interface_setup(void)
136{
137	alarmtimer_rtc_interface.class = &rtc_class;
138	return class_interface_register(&alarmtimer_rtc_interface);
139}
140static void alarmtimer_rtc_interface_remove(void)
141{
142	class_interface_unregister(&alarmtimer_rtc_interface);
143}
144#else
 
 
 
 
 
145static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
146static inline void alarmtimer_rtc_interface_remove(void) { }
147static inline void alarmtimer_rtc_timer_init(void) { }
148#endif
149
150/**
151 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
152 * @base: pointer to the base where the timer is being run
153 * @alarm: pointer to alarm being enqueued.
154 *
155 * Adds alarm to a alarm_base timerqueue
156 *
157 * Must hold base->lock when calling.
158 */
159static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
160{
161	if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
162		timerqueue_del(&base->timerqueue, &alarm->node);
163
164	timerqueue_add(&base->timerqueue, &alarm->node);
165	alarm->state |= ALARMTIMER_STATE_ENQUEUED;
166}
167
168/**
169 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
170 * @base: pointer to the base where the timer is running
171 * @alarm: pointer to alarm being removed
172 *
173 * Removes alarm to a alarm_base timerqueue
174 *
175 * Must hold base->lock when calling.
176 */
177static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
178{
179	if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
180		return;
181
182	timerqueue_del(&base->timerqueue, &alarm->node);
183	alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
184}
185
186
187/**
188 * alarmtimer_fired - Handles alarm hrtimer being fired.
189 * @timer: pointer to hrtimer being run
190 *
191 * When a alarm timer fires, this runs through the timerqueue to
192 * see which alarms expired, and runs those. If there are more alarm
193 * timers queued for the future, we set the hrtimer to fire when
194 * the next future alarm timer expires.
195 */
196static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
197{
198	struct alarm *alarm = container_of(timer, struct alarm, timer);
199	struct alarm_base *base = &alarm_bases[alarm->type];
 
 
 
200
201	scoped_guard (spinlock_irqsave, &base->lock)
202		alarmtimer_dequeue(base, alarm);
 
203
204	if (alarm->function)
205		alarm->function(alarm, base->get_ktime());
 
 
 
 
 
 
 
 
 
 
206
207	trace_alarmtimer_fired(alarm, base->get_ktime());
208	return HRTIMER_NORESTART;
209}
210
211ktime_t alarm_expires_remaining(const struct alarm *alarm)
212{
213	struct alarm_base *base = &alarm_bases[alarm->type];
214	return ktime_sub(alarm->node.expires, base->get_ktime());
215}
216EXPORT_SYMBOL_GPL(alarm_expires_remaining);
217
218#ifdef CONFIG_RTC_CLASS
219/**
220 * alarmtimer_suspend - Suspend time callback
221 * @dev: unused
 
222 *
223 * When we are going into suspend, we look through the bases
224 * to see which is the soonest timer to expire. We then
225 * set an rtc timer to fire that far into the future, which
226 * will wake us from suspend.
227 */
228static int alarmtimer_suspend(struct device *dev)
229{
230	ktime_t min, now, expires;
231	int i, ret, type;
 
232	struct rtc_device *rtc;
233	unsigned long flags;
234	struct rtc_time tm;
235
236	spin_lock_irqsave(&freezer_delta_lock, flags);
237	min = freezer_delta;
238	expires = freezer_expires;
239	type = freezer_alarmtype;
240	freezer_delta = 0;
241	spin_unlock_irqrestore(&freezer_delta_lock, flags);
242
243	rtc = alarmtimer_get_rtcdev();
244	/* If we have no rtcdev, just return */
245	if (!rtc)
246		return 0;
247
248	/* Find the soonest timer to expire*/
249	for (i = 0; i < ALARM_NUMTYPE; i++) {
250		struct alarm_base *base = &alarm_bases[i];
251		struct timerqueue_node *next;
252		ktime_t delta;
253
254		spin_lock_irqsave(&base->lock, flags);
255		next = timerqueue_getnext(&base->timerqueue);
256		spin_unlock_irqrestore(&base->lock, flags);
257		if (!next)
258			continue;
259		delta = ktime_sub(next->expires, base->get_ktime());
260		if (!min || (delta < min)) {
261			expires = next->expires;
262			min = delta;
263			type = i;
264		}
265	}
266	if (min == 0)
267		return 0;
268
269	if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
270		pm_wakeup_event(dev, 2 * MSEC_PER_SEC);
271		return -EBUSY;
272	}
273
274	trace_alarmtimer_suspend(expires, type);
275
276	/* Setup an rtc timer to fire that far in the future */
277	rtc_timer_cancel(rtc, &rtctimer);
278	rtc_read_time(rtc, &tm);
279	now = rtc_tm_to_ktime(tm);
280
281	/*
282	 * If the RTC alarm timer only supports a limited time offset, set the
283	 * alarm time to the maximum supported value.
284	 * The system may wake up earlier (possibly much earlier) than expected
285	 * when the alarmtimer runs. This is the best the kernel can do if
286	 * the alarmtimer exceeds the time that the rtc device can be programmed
287	 * for.
288	 */
289	min = rtc_bound_alarmtime(rtc, min);
290
291	now = ktime_add(now, min);
292
293	/* Set alarm, if in the past reject suspend briefly to handle */
294	ret = rtc_timer_start(rtc, &rtctimer, now, 0);
295	if (ret < 0)
296		pm_wakeup_event(dev, MSEC_PER_SEC);
297	return ret;
298}
299
300static int alarmtimer_resume(struct device *dev)
301{
302	struct rtc_device *rtc;
303
304	rtc = alarmtimer_get_rtcdev();
305	if (rtc)
306		rtc_timer_cancel(rtc, &rtctimer);
307	return 0;
308}
309
310#else
311static int alarmtimer_suspend(struct device *dev)
312{
313	return 0;
314}
 
315
316static int alarmtimer_resume(struct device *dev)
317{
318	return 0;
 
 
 
 
 
 
 
 
 
319}
320#endif
321
322static void
323__alarm_init(struct alarm *alarm, enum alarmtimer_type type,
324	     void (*function)(struct alarm *, ktime_t))
325{
326	timerqueue_init(&alarm->node);
327	alarm->function = function;
328	alarm->type = type;
329	alarm->state = ALARMTIMER_STATE_INACTIVE;
330}
331
332/**
333 * alarm_init - Initialize an alarm structure
334 * @alarm: ptr to alarm to be initialized
335 * @type: the type of the alarm
336 * @function: callback that is run when the alarm fires
337 */
338void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
339		void (*function)(struct alarm *, ktime_t))
340{
341	hrtimer_setup(&alarm->timer, alarmtimer_fired, alarm_bases[type].base_clockid,
342		      HRTIMER_MODE_ABS);
343	__alarm_init(alarm, type, function);
 
 
 
 
344}
345EXPORT_SYMBOL_GPL(alarm_init);
346
347/**
348 * alarm_start - Sets an absolute alarm to fire
349 * @alarm: ptr to alarm to set
350 * @start: time to run the alarm
351 */
352void alarm_start(struct alarm *alarm, ktime_t start)
353{
354	struct alarm_base *base = &alarm_bases[alarm->type];
355	unsigned long flags;
 
356
357	spin_lock_irqsave(&base->lock, flags);
358	alarm->node.expires = start;
359	alarmtimer_enqueue(base, alarm);
360	hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
 
361	spin_unlock_irqrestore(&base->lock, flags);
362
363	trace_alarmtimer_start(alarm, base->get_ktime());
364}
365EXPORT_SYMBOL_GPL(alarm_start);
366
367/**
368 * alarm_start_relative - Sets a relative alarm to fire
369 * @alarm: ptr to alarm to set
370 * @start: time relative to now to run the alarm
371 */
372void alarm_start_relative(struct alarm *alarm, ktime_t start)
373{
374	struct alarm_base *base = &alarm_bases[alarm->type];
375
376	start = ktime_add_safe(start, base->get_ktime());
377	alarm_start(alarm, start);
378}
379EXPORT_SYMBOL_GPL(alarm_start_relative);
380
381void alarm_restart(struct alarm *alarm)
382{
383	struct alarm_base *base = &alarm_bases[alarm->type];
384	unsigned long flags;
385
386	spin_lock_irqsave(&base->lock, flags);
387	hrtimer_set_expires(&alarm->timer, alarm->node.expires);
388	hrtimer_restart(&alarm->timer);
389	alarmtimer_enqueue(base, alarm);
390	spin_unlock_irqrestore(&base->lock, flags);
391}
392EXPORT_SYMBOL_GPL(alarm_restart);
393
394/**
395 * alarm_try_to_cancel - Tries to cancel an alarm timer
396 * @alarm: ptr to alarm to be canceled
397 *
398 * Returns 1 if the timer was canceled, 0 if it was not running,
399 * and -1 if the callback was running
400 */
401int alarm_try_to_cancel(struct alarm *alarm)
402{
403	struct alarm_base *base = &alarm_bases[alarm->type];
404	unsigned long flags;
405	int ret;
406
407	spin_lock_irqsave(&base->lock, flags);
408	ret = hrtimer_try_to_cancel(&alarm->timer);
409	if (ret >= 0)
410		alarmtimer_dequeue(base, alarm);
411	spin_unlock_irqrestore(&base->lock, flags);
412
413	trace_alarmtimer_cancel(alarm, base->get_ktime());
414	return ret;
415}
416EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
417
418
419/**
420 * alarm_cancel - Spins trying to cancel an alarm timer until it is done
421 * @alarm: ptr to alarm to be canceled
422 *
423 * Returns 1 if the timer was canceled, 0 if it was not active.
424 */
425int alarm_cancel(struct alarm *alarm)
426{
427	for (;;) {
428		int ret = alarm_try_to_cancel(alarm);
429		if (ret >= 0)
430			return ret;
431		hrtimer_cancel_wait_running(&alarm->timer);
432	}
433}
434EXPORT_SYMBOL_GPL(alarm_cancel);
435
436
437u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
438{
439	u64 overrun = 1;
440	ktime_t delta;
441
442	delta = ktime_sub(now, alarm->node.expires);
443
444	if (delta < 0)
445		return 0;
446
447	if (unlikely(delta >= interval)) {
448		s64 incr = ktime_to_ns(interval);
449
450		overrun = ktime_divns(delta, incr);
451
452		alarm->node.expires = ktime_add_ns(alarm->node.expires,
453							incr*overrun);
454
455		if (alarm->node.expires > now)
456			return overrun;
457		/*
458		 * This (and the ktime_add() below) is the
459		 * correction for exact:
460		 */
461		overrun++;
462	}
463
464	alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
465	return overrun;
466}
467EXPORT_SYMBOL_GPL(alarm_forward);
468
469u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
470{
471	struct alarm_base *base = &alarm_bases[alarm->type];
472
473	return alarm_forward(alarm, base->get_ktime(), interval);
474}
475EXPORT_SYMBOL_GPL(alarm_forward_now);
476
477#ifdef CONFIG_POSIX_TIMERS
478
479static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
480{
481	struct alarm_base *base;
482	unsigned long flags;
483	ktime_t delta;
484
485	switch(type) {
486	case ALARM_REALTIME:
487		base = &alarm_bases[ALARM_REALTIME];
488		type = ALARM_REALTIME_FREEZER;
489		break;
490	case ALARM_BOOTTIME:
491		base = &alarm_bases[ALARM_BOOTTIME];
492		type = ALARM_BOOTTIME_FREEZER;
493		break;
494	default:
495		WARN_ONCE(1, "Invalid alarm type: %d\n", type);
496		return;
497	}
498
499	delta = ktime_sub(absexp, base->get_ktime());
500
501	spin_lock_irqsave(&freezer_delta_lock, flags);
502	if (!freezer_delta || (delta < freezer_delta)) {
503		freezer_delta = delta;
504		freezer_expires = absexp;
505		freezer_alarmtype = type;
506	}
507	spin_unlock_irqrestore(&freezer_delta_lock, flags);
508}
509
510/**
511 * clock2alarm - helper that converts from clockid to alarmtypes
512 * @clockid: clockid.
513 */
514static enum alarmtimer_type clock2alarm(clockid_t clockid)
515{
516	if (clockid == CLOCK_REALTIME_ALARM)
517		return ALARM_REALTIME;
518	if (clockid == CLOCK_BOOTTIME_ALARM)
519		return ALARM_BOOTTIME;
520	return -1;
521}
522
523/**
524 * alarm_handle_timer - Callback for posix timers
525 * @alarm: alarm that fired
526 * @now: time at the timer expiration
527 *
528 * Posix timer callback for expired alarm timers.
529 *
530 * Return: whether the timer is to be restarted
531 */
532static void alarm_handle_timer(struct alarm *alarm, ktime_t now)
 
533{
534	struct k_itimer *ptr = container_of(alarm, struct k_itimer, it.alarm.alarmtimer);
535
536	guard(spinlock_irqsave)(&ptr->it_lock);
537	posix_timer_queue_signal(ptr);
 
 
 
 
 
 
 
 
538}
539
540/**
541 * alarm_timer_rearm - Posix timer callback for rearming timer
542 * @timr:	Pointer to the posixtimer data struct
543 */
544static void alarm_timer_rearm(struct k_itimer *timr)
545{
546	struct alarm *alarm = &timr->it.alarm.alarmtimer;
547
548	timr->it_overrun += alarm_forward_now(alarm, timr->it_interval);
549	alarm_start(alarm, alarm->node.expires);
550}
551
552/**
553 * alarm_timer_forward - Posix timer callback for forwarding timer
554 * @timr:	Pointer to the posixtimer data struct
555 * @now:	Current time to forward the timer against
556 */
557static s64 alarm_timer_forward(struct k_itimer *timr, ktime_t now)
558{
559	struct alarm *alarm = &timr->it.alarm.alarmtimer;
560
561	return alarm_forward(alarm, timr->it_interval, now);
562}
563
564/**
565 * alarm_timer_remaining - Posix timer callback to retrieve remaining time
566 * @timr:	Pointer to the posixtimer data struct
567 * @now:	Current time to calculate against
568 */
569static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now)
570{
571	struct alarm *alarm = &timr->it.alarm.alarmtimer;
572
573	return ktime_sub(alarm->node.expires, now);
574}
575
576/**
577 * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer
578 * @timr:	Pointer to the posixtimer data struct
579 */
580static int alarm_timer_try_to_cancel(struct k_itimer *timr)
581{
582	return alarm_try_to_cancel(&timr->it.alarm.alarmtimer);
583}
584
585/**
586 * alarm_timer_wait_running - Posix timer callback to wait for a timer
587 * @timr:	Pointer to the posixtimer data struct
588 *
589 * Called from the core code when timer cancel detected that the callback
590 * is running. @timr is unlocked and rcu read lock is held to prevent it
591 * from being freed.
592 */
593static void alarm_timer_wait_running(struct k_itimer *timr)
594{
595	hrtimer_cancel_wait_running(&timr->it.alarm.alarmtimer.timer);
596}
597
598/**
599 * alarm_timer_arm - Posix timer callback to arm a timer
600 * @timr:	Pointer to the posixtimer data struct
601 * @expires:	The new expiry time
602 * @absolute:	Expiry value is absolute time
603 * @sigev_none:	Posix timer does not deliver signals
604 */
605static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires,
606			    bool absolute, bool sigev_none)
607{
608	struct alarm *alarm = &timr->it.alarm.alarmtimer;
609	struct alarm_base *base = &alarm_bases[alarm->type];
610
611	if (!absolute)
612		expires = ktime_add_safe(expires, base->get_ktime());
613	if (sigev_none)
614		alarm->node.expires = expires;
615	else
616		alarm_start(&timr->it.alarm.alarmtimer, expires);
617}
618
619/**
620 * alarm_clock_getres - posix getres interface
621 * @which_clock: clockid
622 * @tp: timespec to fill
623 *
624 * Returns the granularity of underlying alarm base clock
625 */
626static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
627{
 
 
628	if (!alarmtimer_get_rtcdev())
629		return -EINVAL;
630
631	tp->tv_sec = 0;
632	tp->tv_nsec = hrtimer_resolution;
633	return 0;
634}
635
636/**
637 * alarm_clock_get_timespec - posix clock_get_timespec interface
638 * @which_clock: clockid
639 * @tp: timespec to fill.
640 *
641 * Provides the underlying alarm base time in a tasks time namespace.
642 */
643static int alarm_clock_get_timespec(clockid_t which_clock, struct timespec64 *tp)
644{
645	struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
 
646
647	if (!alarmtimer_get_rtcdev())
648		return -EINVAL;
649
650	base->get_timespec(tp);
 
651
 
 
 
652	return 0;
653}
654
655/**
656 * alarm_clock_get_ktime - posix clock_get_ktime interface
657 * @which_clock: clockid
 
658 *
659 * Provides the underlying alarm base time in the root namespace.
660 */
661static ktime_t alarm_clock_get_ktime(clockid_t which_clock)
 
662{
663	struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
664
665	if (!alarmtimer_get_rtcdev())
666		return -EINVAL;
667
668	return base->get_ktime();
 
 
 
 
669}
670
671/**
672 * alarm_timer_create - posix timer_create interface
673 * @new_timer: k_itimer pointer to manage
674 *
675 * Initializes the k_itimer structure.
676 */
677static int alarm_timer_create(struct k_itimer *new_timer)
678{
679	enum  alarmtimer_type type;
 
680
681	if (!alarmtimer_get_rtcdev())
682		return -EOPNOTSUPP;
683
684	if (!capable(CAP_WAKE_ALARM))
685		return -EPERM;
686
687	type = clock2alarm(new_timer->it_clock);
688	alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
689	return 0;
690}
691
692/**
693 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
694 * @alarm: ptr to alarm that fired
695 * @now: time at the timer expiration
696 *
697 * Wakes up the task that set the alarmtimer
698 */
699static void alarmtimer_nsleep_wakeup(struct alarm *alarm, ktime_t now)
 
700{
701	struct task_struct *task = alarm->data;
702
703	alarm->data = NULL;
704	if (task)
705		wake_up_process(task);
 
706}
707
708/**
709 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
710 * @alarm: ptr to alarmtimer
711 * @absexp: absolute expiration time
712 * @type: alarm type (BOOTTIME/REALTIME).
713 *
714 * Sets the alarm timer and sleeps until it is fired or interrupted.
715 */
716static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
717				enum alarmtimer_type type)
718{
719	struct restart_block *restart;
720	alarm->data = (void *)current;
721	do {
722		set_current_state(TASK_INTERRUPTIBLE);
723		alarm_start(alarm, absexp);
724		if (likely(alarm->data))
725			schedule();
726
727		alarm_cancel(alarm);
728	} while (alarm->data && !signal_pending(current));
729
730	__set_current_state(TASK_RUNNING);
731
732	destroy_hrtimer_on_stack(&alarm->timer);
 
 
733
734	if (!alarm->data)
735		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
736
737	if (freezing(current))
738		alarmtimer_freezerset(absexp, type);
739	restart = &current->restart_block;
740	if (restart->nanosleep.type != TT_NONE) {
741		struct timespec64 rmt;
742		ktime_t rem;
743
744		rem = ktime_sub(absexp, alarm_bases[type].get_ktime());
 
 
745
746		if (rem <= 0)
747			return 0;
748		rmt = ktime_to_timespec64(rem);
749
750		return nanosleep_copyout(restart, &rmt);
751	}
752	return -ERESTART_RESTARTBLOCK;
753}
754
755static void
756alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type,
757		    void (*function)(struct alarm *, ktime_t))
758{
759	hrtimer_setup_on_stack(&alarm->timer, alarmtimer_fired, alarm_bases[type].base_clockid,
760			       HRTIMER_MODE_ABS);
761	__alarm_init(alarm, type, function);
762}
763
764/**
765 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
766 * @restart: ptr to restart block
767 *
768 * Handles restarted clock_nanosleep calls
769 */
770static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
771{
772	enum  alarmtimer_type type = restart->nanosleep.clockid;
773	ktime_t exp = restart->nanosleep.expires;
 
774	struct alarm alarm;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
775
776	alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
777
778	return alarmtimer_do_nsleep(&alarm, exp, type);
 
 
 
779}
780
781/**
782 * alarm_timer_nsleep - alarmtimer nanosleep
783 * @which_clock: clockid
784 * @flags: determines abstime or relative
785 * @tsreq: requested sleep time (abs or rel)
 
786 *
787 * Handles clock_nanosleep calls against _ALARM clockids
788 */
789static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
790			      const struct timespec64 *tsreq)
791{
792	enum  alarmtimer_type type = clock2alarm(which_clock);
793	struct restart_block *restart = &current->restart_block;
794	struct alarm alarm;
795	ktime_t exp;
796	int ret;
 
797
798	if (!alarmtimer_get_rtcdev())
799		return -EOPNOTSUPP;
800
801	if (flags & ~TIMER_ABSTIME)
802		return -EINVAL;
803
804	if (!capable(CAP_WAKE_ALARM))
805		return -EPERM;
806
807	alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
808
809	exp = timespec64_to_ktime(*tsreq);
810	/* Convert (if necessary) to absolute time */
811	if (flags != TIMER_ABSTIME) {
812		ktime_t now = alarm_bases[type].get_ktime();
 
 
813
814		exp = ktime_add_safe(now, exp);
815	} else {
816		exp = timens_ktime_to_host(which_clock, exp);
817	}
818
819	ret = alarmtimer_do_nsleep(&alarm, exp, type);
820	if (ret != -ERESTART_RESTARTBLOCK)
821		return ret;
822
823	/* abs timers don't set remaining time or restart */
824	if (flags == TIMER_ABSTIME)
825		return -ERESTARTNOHAND;
 
 
826
 
 
 
 
 
 
 
 
827	restart->nanosleep.clockid = type;
828	restart->nanosleep.expires = exp;
829	set_restart_fn(restart, alarm_timer_nsleep_restart);
 
 
 
830	return ret;
831}
832
833const struct k_clock alarm_clock = {
834	.clock_getres		= alarm_clock_getres,
835	.clock_get_ktime	= alarm_clock_get_ktime,
836	.clock_get_timespec	= alarm_clock_get_timespec,
837	.timer_create		= alarm_timer_create,
838	.timer_set		= common_timer_set,
839	.timer_del		= common_timer_del,
840	.timer_get		= common_timer_get,
841	.timer_arm		= alarm_timer_arm,
842	.timer_rearm		= alarm_timer_rearm,
843	.timer_forward		= alarm_timer_forward,
844	.timer_remaining	= alarm_timer_remaining,
845	.timer_try_to_cancel	= alarm_timer_try_to_cancel,
846	.timer_wait_running	= alarm_timer_wait_running,
847	.nsleep			= alarm_timer_nsleep,
848};
849#endif /* CONFIG_POSIX_TIMERS */
850
851
852/* Suspend hook structures */
853static const struct dev_pm_ops alarmtimer_pm_ops = {
854	.suspend = alarmtimer_suspend,
855	.resume = alarmtimer_resume,
856};
857
858static struct platform_driver alarmtimer_driver = {
859	.driver = {
860		.name = "alarmtimer",
861		.pm = &alarmtimer_pm_ops,
862	}
863};
864
865static void get_boottime_timespec(struct timespec64 *tp)
866{
867	ktime_get_boottime_ts64(tp);
868	timens_add_boottime(tp);
869}
870
871/**
872 * alarmtimer_init - Initialize alarm timer code
873 *
874 * This function initializes the alarm bases and registers
875 * the posix clock ids.
876 */
877static int __init alarmtimer_init(void)
878{
879	int error;
 
880	int i;
 
 
 
 
 
 
 
 
 
881
882	alarmtimer_rtc_timer_init();
883
 
 
 
884	/* Initialize alarm bases */
885	alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
886	alarm_bases[ALARM_REALTIME].get_ktime = &ktime_get_real;
887	alarm_bases[ALARM_REALTIME].get_timespec = ktime_get_real_ts64;
888	alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
889	alarm_bases[ALARM_BOOTTIME].get_ktime = &ktime_get_boottime;
890	alarm_bases[ALARM_BOOTTIME].get_timespec = get_boottime_timespec;
891	for (i = 0; i < ALARM_NUMTYPE; i++) {
892		timerqueue_init_head(&alarm_bases[i].timerqueue);
893		spin_lock_init(&alarm_bases[i].lock);
894	}
895
896	error = alarmtimer_rtc_interface_setup();
897	if (error)
898		return error;
899
900	error = platform_driver_register(&alarmtimer_driver);
901	if (error)
902		goto out_if;
903
 
 
 
 
 
 
904	return 0;
 
 
 
905out_if:
906	alarmtimer_rtc_interface_remove();
907	return error;
908}
909device_initcall(alarmtimer_init);