Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kexec.c - kexec system call core code.
   4 * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
   5 */
   6
   7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   8
   9#include <linux/btf.h>
  10#include <linux/capability.h>
  11#include <linux/mm.h>
  12#include <linux/file.h>
  13#include <linux/slab.h>
  14#include <linux/fs.h>
  15#include <linux/kexec.h>
  16#include <linux/mutex.h>
  17#include <linux/list.h>
  18#include <linux/highmem.h>
  19#include <linux/syscalls.h>
  20#include <linux/reboot.h>
  21#include <linux/ioport.h>
  22#include <linux/hardirq.h>
  23#include <linux/elf.h>
  24#include <linux/elfcore.h>
  25#include <linux/utsname.h>
  26#include <linux/numa.h>
  27#include <linux/suspend.h>
  28#include <linux/device.h>
  29#include <linux/freezer.h>
  30#include <linux/panic_notifier.h>
  31#include <linux/pm.h>
  32#include <linux/cpu.h>
  33#include <linux/uaccess.h>
  34#include <linux/io.h>
  35#include <linux/console.h>
  36#include <linux/vmalloc.h>
  37#include <linux/swap.h>
  38#include <linux/syscore_ops.h>
  39#include <linux/compiler.h>
  40#include <linux/hugetlb.h>
  41#include <linux/objtool.h>
  42#include <linux/kmsg_dump.h>
  43
  44#include <asm/page.h>
  45#include <asm/sections.h>
  46
  47#include <crypto/hash.h>
  48#include "kexec_internal.h"
  49
  50atomic_t __kexec_lock = ATOMIC_INIT(0);
  51
  52/* Flag to indicate we are going to kexec a new kernel */
  53bool kexec_in_progress = false;
  54
  55bool kexec_file_dbg_print;
  56
  57/*
  58 * When kexec transitions to the new kernel there is a one-to-one
  59 * mapping between physical and virtual addresses.  On processors
  60 * where you can disable the MMU this is trivial, and easy.  For
  61 * others it is still a simple predictable page table to setup.
  62 *
  63 * In that environment kexec copies the new kernel to its final
  64 * resting place.  This means I can only support memory whose
  65 * physical address can fit in an unsigned long.  In particular
  66 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
  67 * If the assembly stub has more restrictive requirements
  68 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
  69 * defined more restrictively in <asm/kexec.h>.
  70 *
  71 * The code for the transition from the current kernel to the
  72 * new kernel is placed in the control_code_buffer, whose size
  73 * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
  74 * page of memory is necessary, but some architectures require more.
  75 * Because this memory must be identity mapped in the transition from
  76 * virtual to physical addresses it must live in the range
  77 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
  78 * modifiable.
  79 *
  80 * The assembly stub in the control code buffer is passed a linked list
  81 * of descriptor pages detailing the source pages of the new kernel,
  82 * and the destination addresses of those source pages.  As this data
  83 * structure is not used in the context of the current OS, it must
  84 * be self-contained.
  85 *
  86 * The code has been made to work with highmem pages and will use a
  87 * destination page in its final resting place (if it happens
  88 * to allocate it).  The end product of this is that most of the
  89 * physical address space, and most of RAM can be used.
  90 *
  91 * Future directions include:
  92 *  - allocating a page table with the control code buffer identity
  93 *    mapped, to simplify machine_kexec and make kexec_on_panic more
  94 *    reliable.
  95 */
  96
  97/*
  98 * KIMAGE_NO_DEST is an impossible destination address..., for
  99 * allocating pages whose destination address we do not care about.
 100 */
 101#define KIMAGE_NO_DEST (-1UL)
 102#define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
 103
 104static struct page *kimage_alloc_page(struct kimage *image,
 105				       gfp_t gfp_mask,
 106				       unsigned long dest);
 107
 108int sanity_check_segment_list(struct kimage *image)
 109{
 110	int i;
 111	unsigned long nr_segments = image->nr_segments;
 112	unsigned long total_pages = 0;
 113	unsigned long nr_pages = totalram_pages();
 114
 115	/*
 116	 * Verify we have good destination addresses.  The caller is
 117	 * responsible for making certain we don't attempt to load
 118	 * the new image into invalid or reserved areas of RAM.  This
 119	 * just verifies it is an address we can use.
 120	 *
 121	 * Since the kernel does everything in page size chunks ensure
 122	 * the destination addresses are page aligned.  Too many
 123	 * special cases crop of when we don't do this.  The most
 124	 * insidious is getting overlapping destination addresses
 125	 * simply because addresses are changed to page size
 126	 * granularity.
 127	 */
 128	for (i = 0; i < nr_segments; i++) {
 129		unsigned long mstart, mend;
 130
 131		mstart = image->segment[i].mem;
 132		mend   = mstart + image->segment[i].memsz;
 133		if (mstart > mend)
 134			return -EADDRNOTAVAIL;
 135		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
 136			return -EADDRNOTAVAIL;
 137		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
 138			return -EADDRNOTAVAIL;
 139	}
 140
 141	/* Verify our destination addresses do not overlap.
 142	 * If we alloed overlapping destination addresses
 143	 * through very weird things can happen with no
 144	 * easy explanation as one segment stops on another.
 145	 */
 146	for (i = 0; i < nr_segments; i++) {
 147		unsigned long mstart, mend;
 148		unsigned long j;
 149
 150		mstart = image->segment[i].mem;
 151		mend   = mstart + image->segment[i].memsz;
 152		for (j = 0; j < i; j++) {
 153			unsigned long pstart, pend;
 154
 155			pstart = image->segment[j].mem;
 156			pend   = pstart + image->segment[j].memsz;
 157			/* Do the segments overlap ? */
 158			if ((mend > pstart) && (mstart < pend))
 159				return -EINVAL;
 160		}
 161	}
 162
 163	/* Ensure our buffer sizes are strictly less than
 164	 * our memory sizes.  This should always be the case,
 165	 * and it is easier to check up front than to be surprised
 166	 * later on.
 167	 */
 168	for (i = 0; i < nr_segments; i++) {
 169		if (image->segment[i].bufsz > image->segment[i].memsz)
 170			return -EINVAL;
 171	}
 172
 173	/*
 174	 * Verify that no more than half of memory will be consumed. If the
 175	 * request from userspace is too large, a large amount of time will be
 176	 * wasted allocating pages, which can cause a soft lockup.
 177	 */
 178	for (i = 0; i < nr_segments; i++) {
 179		if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2)
 180			return -EINVAL;
 181
 182		total_pages += PAGE_COUNT(image->segment[i].memsz);
 183	}
 184
 185	if (total_pages > nr_pages / 2)
 186		return -EINVAL;
 187
 188#ifdef CONFIG_CRASH_DUMP
 189	/*
 190	 * Verify we have good destination addresses.  Normally
 191	 * the caller is responsible for making certain we don't
 192	 * attempt to load the new image into invalid or reserved
 193	 * areas of RAM.  But crash kernels are preloaded into a
 194	 * reserved area of ram.  We must ensure the addresses
 195	 * are in the reserved area otherwise preloading the
 196	 * kernel could corrupt things.
 197	 */
 198
 199	if (image->type == KEXEC_TYPE_CRASH) {
 200		for (i = 0; i < nr_segments; i++) {
 201			unsigned long mstart, mend;
 202
 203			mstart = image->segment[i].mem;
 204			mend = mstart + image->segment[i].memsz - 1;
 205			/* Ensure we are within the crash kernel limits */
 206			if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
 207			    (mend > phys_to_boot_phys(crashk_res.end)))
 208				return -EADDRNOTAVAIL;
 209		}
 210	}
 211#endif
 212
 213	return 0;
 214}
 215
 216struct kimage *do_kimage_alloc_init(void)
 217{
 218	struct kimage *image;
 219
 220	/* Allocate a controlling structure */
 221	image = kzalloc(sizeof(*image), GFP_KERNEL);
 222	if (!image)
 223		return NULL;
 224
 225	image->head = 0;
 226	image->entry = &image->head;
 227	image->last_entry = &image->head;
 228	image->control_page = ~0; /* By default this does not apply */
 229	image->type = KEXEC_TYPE_DEFAULT;
 230
 231	/* Initialize the list of control pages */
 232	INIT_LIST_HEAD(&image->control_pages);
 233
 234	/* Initialize the list of destination pages */
 235	INIT_LIST_HEAD(&image->dest_pages);
 236
 237	/* Initialize the list of unusable pages */
 238	INIT_LIST_HEAD(&image->unusable_pages);
 239
 240#ifdef CONFIG_CRASH_HOTPLUG
 241	image->hp_action = KEXEC_CRASH_HP_NONE;
 242	image->elfcorehdr_index = -1;
 243	image->elfcorehdr_updated = false;
 244#endif
 245
 246	return image;
 247}
 248
 249int kimage_is_destination_range(struct kimage *image,
 250					unsigned long start,
 251					unsigned long end)
 252{
 253	unsigned long i;
 254
 255	for (i = 0; i < image->nr_segments; i++) {
 256		unsigned long mstart, mend;
 257
 258		mstart = image->segment[i].mem;
 259		mend = mstart + image->segment[i].memsz - 1;
 260		if ((end >= mstart) && (start <= mend))
 261			return 1;
 262	}
 263
 264	return 0;
 265}
 266
 267static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
 268{
 269	struct page *pages;
 270
 271	if (fatal_signal_pending(current))
 272		return NULL;
 273	pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order);
 274	if (pages) {
 275		unsigned int count, i;
 276
 277		pages->mapping = NULL;
 278		set_page_private(pages, order);
 279		count = 1 << order;
 280		for (i = 0; i < count; i++)
 281			SetPageReserved(pages + i);
 282
 283		arch_kexec_post_alloc_pages(page_address(pages), count,
 284					    gfp_mask);
 285
 286		if (gfp_mask & __GFP_ZERO)
 287			for (i = 0; i < count; i++)
 288				clear_highpage(pages + i);
 289	}
 290
 291	return pages;
 292}
 293
 294static void kimage_free_pages(struct page *page)
 295{
 296	unsigned int order, count, i;
 297
 298	order = page_private(page);
 299	count = 1 << order;
 300
 301	arch_kexec_pre_free_pages(page_address(page), count);
 302
 303	for (i = 0; i < count; i++)
 304		ClearPageReserved(page + i);
 305	__free_pages(page, order);
 306}
 307
 308void kimage_free_page_list(struct list_head *list)
 309{
 310	struct page *page, *next;
 311
 312	list_for_each_entry_safe(page, next, list, lru) {
 313		list_del(&page->lru);
 314		kimage_free_pages(page);
 315	}
 316}
 317
 318static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
 319							unsigned int order)
 320{
 321	/* Control pages are special, they are the intermediaries
 322	 * that are needed while we copy the rest of the pages
 323	 * to their final resting place.  As such they must
 324	 * not conflict with either the destination addresses
 325	 * or memory the kernel is already using.
 326	 *
 327	 * The only case where we really need more than one of
 328	 * these are for architectures where we cannot disable
 329	 * the MMU and must instead generate an identity mapped
 330	 * page table for all of the memory.
 331	 *
 332	 * At worst this runs in O(N) of the image size.
 333	 */
 334	struct list_head extra_pages;
 335	struct page *pages;
 336	unsigned int count;
 337
 338	count = 1 << order;
 339	INIT_LIST_HEAD(&extra_pages);
 340
 341	/* Loop while I can allocate a page and the page allocated
 342	 * is a destination page.
 343	 */
 344	do {
 345		unsigned long pfn, epfn, addr, eaddr;
 346
 347		pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
 348		if (!pages)
 349			break;
 350		pfn   = page_to_boot_pfn(pages);
 351		epfn  = pfn + count;
 352		addr  = pfn << PAGE_SHIFT;
 353		eaddr = (epfn << PAGE_SHIFT) - 1;
 354		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
 355			      kimage_is_destination_range(image, addr, eaddr)) {
 356			list_add(&pages->lru, &extra_pages);
 357			pages = NULL;
 358		}
 359	} while (!pages);
 360
 361	if (pages) {
 362		/* Remember the allocated page... */
 363		list_add(&pages->lru, &image->control_pages);
 364
 365		/* Because the page is already in it's destination
 366		 * location we will never allocate another page at
 367		 * that address.  Therefore kimage_alloc_pages
 368		 * will not return it (again) and we don't need
 369		 * to give it an entry in image->segment[].
 370		 */
 371	}
 372	/* Deal with the destination pages I have inadvertently allocated.
 373	 *
 374	 * Ideally I would convert multi-page allocations into single
 375	 * page allocations, and add everything to image->dest_pages.
 376	 *
 377	 * For now it is simpler to just free the pages.
 378	 */
 379	kimage_free_page_list(&extra_pages);
 380
 381	return pages;
 382}
 383
 384#ifdef CONFIG_CRASH_DUMP
 385static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
 386						      unsigned int order)
 387{
 388	/* Control pages are special, they are the intermediaries
 389	 * that are needed while we copy the rest of the pages
 390	 * to their final resting place.  As such they must
 391	 * not conflict with either the destination addresses
 392	 * or memory the kernel is already using.
 393	 *
 394	 * Control pages are also the only pags we must allocate
 395	 * when loading a crash kernel.  All of the other pages
 396	 * are specified by the segments and we just memcpy
 397	 * into them directly.
 398	 *
 399	 * The only case where we really need more than one of
 400	 * these are for architectures where we cannot disable
 401	 * the MMU and must instead generate an identity mapped
 402	 * page table for all of the memory.
 403	 *
 404	 * Given the low demand this implements a very simple
 405	 * allocator that finds the first hole of the appropriate
 406	 * size in the reserved memory region, and allocates all
 407	 * of the memory up to and including the hole.
 408	 */
 409	unsigned long hole_start, hole_end, size;
 410	struct page *pages;
 411
 412	pages = NULL;
 413	size = (1 << order) << PAGE_SHIFT;
 414	hole_start = ALIGN(image->control_page, size);
 415	hole_end   = hole_start + size - 1;
 416	while (hole_end <= crashk_res.end) {
 417		unsigned long i;
 418
 419		cond_resched();
 420
 421		if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
 422			break;
 423		/* See if I overlap any of the segments */
 424		for (i = 0; i < image->nr_segments; i++) {
 425			unsigned long mstart, mend;
 426
 427			mstart = image->segment[i].mem;
 428			mend   = mstart + image->segment[i].memsz - 1;
 429			if ((hole_end >= mstart) && (hole_start <= mend)) {
 430				/* Advance the hole to the end of the segment */
 431				hole_start = ALIGN(mend, size);
 432				hole_end   = hole_start + size - 1;
 433				break;
 434			}
 435		}
 436		/* If I don't overlap any segments I have found my hole! */
 437		if (i == image->nr_segments) {
 438			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
 439			image->control_page = hole_end + 1;
 440			break;
 441		}
 442	}
 443
 444	/* Ensure that these pages are decrypted if SME is enabled. */
 445	if (pages)
 446		arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0);
 447
 448	return pages;
 449}
 450#endif
 451
 452
 453struct page *kimage_alloc_control_pages(struct kimage *image,
 454					 unsigned int order)
 455{
 456	struct page *pages = NULL;
 457
 458	switch (image->type) {
 459	case KEXEC_TYPE_DEFAULT:
 460		pages = kimage_alloc_normal_control_pages(image, order);
 461		break;
 462#ifdef CONFIG_CRASH_DUMP
 463	case KEXEC_TYPE_CRASH:
 464		pages = kimage_alloc_crash_control_pages(image, order);
 465		break;
 466#endif
 467	}
 468
 469	return pages;
 470}
 471
 472static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
 473{
 474	if (*image->entry != 0)
 475		image->entry++;
 476
 477	if (image->entry == image->last_entry) {
 478		kimage_entry_t *ind_page;
 479		struct page *page;
 480
 481		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
 482		if (!page)
 483			return -ENOMEM;
 484
 485		ind_page = page_address(page);
 486		*image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
 487		image->entry = ind_page;
 488		image->last_entry = ind_page +
 489				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
 490	}
 491	*image->entry = entry;
 492	image->entry++;
 493	*image->entry = 0;
 494
 495	return 0;
 496}
 497
 498static int kimage_set_destination(struct kimage *image,
 499				   unsigned long destination)
 500{
 501	destination &= PAGE_MASK;
 502
 503	return kimage_add_entry(image, destination | IND_DESTINATION);
 504}
 505
 506
 507static int kimage_add_page(struct kimage *image, unsigned long page)
 508{
 509	page &= PAGE_MASK;
 510
 511	return kimage_add_entry(image, page | IND_SOURCE);
 512}
 513
 514
 515static void kimage_free_extra_pages(struct kimage *image)
 516{
 517	/* Walk through and free any extra destination pages I may have */
 518	kimage_free_page_list(&image->dest_pages);
 519
 520	/* Walk through and free any unusable pages I have cached */
 521	kimage_free_page_list(&image->unusable_pages);
 522
 523}
 524
 525void kimage_terminate(struct kimage *image)
 526{
 527	if (*image->entry != 0)
 528		image->entry++;
 529
 530	*image->entry = IND_DONE;
 531}
 532
 533#define for_each_kimage_entry(image, ptr, entry) \
 534	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
 535		ptr = (entry & IND_INDIRECTION) ? \
 536			boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
 537
 538static void kimage_free_entry(kimage_entry_t entry)
 539{
 540	struct page *page;
 541
 542	page = boot_pfn_to_page(entry >> PAGE_SHIFT);
 543	kimage_free_pages(page);
 544}
 545
 546void kimage_free(struct kimage *image)
 547{
 548	kimage_entry_t *ptr, entry;
 549	kimage_entry_t ind = 0;
 550
 551	if (!image)
 552		return;
 553
 554#ifdef CONFIG_CRASH_DUMP
 555	if (image->vmcoreinfo_data_copy) {
 556		crash_update_vmcoreinfo_safecopy(NULL);
 557		vunmap(image->vmcoreinfo_data_copy);
 558	}
 559#endif
 560
 561	kimage_free_extra_pages(image);
 562	for_each_kimage_entry(image, ptr, entry) {
 563		if (entry & IND_INDIRECTION) {
 564			/* Free the previous indirection page */
 565			if (ind & IND_INDIRECTION)
 566				kimage_free_entry(ind);
 567			/* Save this indirection page until we are
 568			 * done with it.
 569			 */
 570			ind = entry;
 571		} else if (entry & IND_SOURCE)
 572			kimage_free_entry(entry);
 573	}
 574	/* Free the final indirection page */
 575	if (ind & IND_INDIRECTION)
 576		kimage_free_entry(ind);
 577
 578	/* Handle any machine specific cleanup */
 579	machine_kexec_cleanup(image);
 580
 581	/* Free the kexec control pages... */
 582	kimage_free_page_list(&image->control_pages);
 583
 584	/*
 585	 * Free up any temporary buffers allocated. This might hit if
 586	 * error occurred much later after buffer allocation.
 587	 */
 588	if (image->file_mode)
 589		kimage_file_post_load_cleanup(image);
 590
 591	kfree(image);
 592}
 593
 594static kimage_entry_t *kimage_dst_used(struct kimage *image,
 595					unsigned long page)
 596{
 597	kimage_entry_t *ptr, entry;
 598	unsigned long destination = 0;
 599
 600	for_each_kimage_entry(image, ptr, entry) {
 601		if (entry & IND_DESTINATION)
 602			destination = entry & PAGE_MASK;
 603		else if (entry & IND_SOURCE) {
 604			if (page == destination)
 605				return ptr;
 606			destination += PAGE_SIZE;
 607		}
 608	}
 609
 610	return NULL;
 611}
 612
 613static struct page *kimage_alloc_page(struct kimage *image,
 614					gfp_t gfp_mask,
 615					unsigned long destination)
 616{
 617	/*
 618	 * Here we implement safeguards to ensure that a source page
 619	 * is not copied to its destination page before the data on
 620	 * the destination page is no longer useful.
 621	 *
 622	 * To do this we maintain the invariant that a source page is
 623	 * either its own destination page, or it is not a
 624	 * destination page at all.
 625	 *
 626	 * That is slightly stronger than required, but the proof
 627	 * that no problems will not occur is trivial, and the
 628	 * implementation is simply to verify.
 629	 *
 630	 * When allocating all pages normally this algorithm will run
 631	 * in O(N) time, but in the worst case it will run in O(N^2)
 632	 * time.   If the runtime is a problem the data structures can
 633	 * be fixed.
 634	 */
 635	struct page *page;
 636	unsigned long addr;
 637
 638	/*
 639	 * Walk through the list of destination pages, and see if I
 640	 * have a match.
 641	 */
 642	list_for_each_entry(page, &image->dest_pages, lru) {
 643		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
 644		if (addr == destination) {
 645			list_del(&page->lru);
 646			return page;
 647		}
 648	}
 649	page = NULL;
 650	while (1) {
 651		kimage_entry_t *old;
 652
 653		/* Allocate a page, if we run out of memory give up */
 654		page = kimage_alloc_pages(gfp_mask, 0);
 655		if (!page)
 656			return NULL;
 657		/* If the page cannot be used file it away */
 658		if (page_to_boot_pfn(page) >
 659				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
 660			list_add(&page->lru, &image->unusable_pages);
 661			continue;
 662		}
 663		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
 664
 665		/* If it is the destination page we want use it */
 666		if (addr == destination)
 667			break;
 668
 669		/* If the page is not a destination page use it */
 670		if (!kimage_is_destination_range(image, addr,
 671						  addr + PAGE_SIZE - 1))
 672			break;
 673
 674		/*
 675		 * I know that the page is someones destination page.
 676		 * See if there is already a source page for this
 677		 * destination page.  And if so swap the source pages.
 678		 */
 679		old = kimage_dst_used(image, addr);
 680		if (old) {
 681			/* If so move it */
 682			unsigned long old_addr;
 683			struct page *old_page;
 684
 685			old_addr = *old & PAGE_MASK;
 686			old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
 687			copy_highpage(page, old_page);
 688			*old = addr | (*old & ~PAGE_MASK);
 689
 690			/* The old page I have found cannot be a
 691			 * destination page, so return it if it's
 692			 * gfp_flags honor the ones passed in.
 693			 */
 694			if (!(gfp_mask & __GFP_HIGHMEM) &&
 695			    PageHighMem(old_page)) {
 696				kimage_free_pages(old_page);
 697				continue;
 698			}
 699			page = old_page;
 700			break;
 701		}
 702		/* Place the page on the destination list, to be used later */
 703		list_add(&page->lru, &image->dest_pages);
 704	}
 705
 706	return page;
 707}
 708
 709static int kimage_load_normal_segment(struct kimage *image,
 710					 struct kexec_segment *segment)
 711{
 712	unsigned long maddr;
 713	size_t ubytes, mbytes;
 714	int result;
 715	unsigned char __user *buf = NULL;
 716	unsigned char *kbuf = NULL;
 717
 718	if (image->file_mode)
 719		kbuf = segment->kbuf;
 720	else
 721		buf = segment->buf;
 722	ubytes = segment->bufsz;
 723	mbytes = segment->memsz;
 724	maddr = segment->mem;
 725
 726	result = kimage_set_destination(image, maddr);
 727	if (result < 0)
 728		goto out;
 729
 730	while (mbytes) {
 731		struct page *page;
 732		char *ptr;
 733		size_t uchunk, mchunk;
 734
 735		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
 736		if (!page) {
 737			result  = -ENOMEM;
 738			goto out;
 739		}
 740		result = kimage_add_page(image, page_to_boot_pfn(page)
 741								<< PAGE_SHIFT);
 742		if (result < 0)
 743			goto out;
 744
 745		ptr = kmap_local_page(page);
 746		/* Start with a clear page */
 747		clear_page(ptr);
 748		ptr += maddr & ~PAGE_MASK;
 749		mchunk = min_t(size_t, mbytes,
 750				PAGE_SIZE - (maddr & ~PAGE_MASK));
 751		uchunk = min(ubytes, mchunk);
 752
 753		if (uchunk) {
 754			/* For file based kexec, source pages are in kernel memory */
 755			if (image->file_mode)
 756				memcpy(ptr, kbuf, uchunk);
 757			else
 758				result = copy_from_user(ptr, buf, uchunk);
 759			ubytes -= uchunk;
 760			if (image->file_mode)
 761				kbuf += uchunk;
 762			else
 763				buf += uchunk;
 764		}
 765		kunmap_local(ptr);
 766		if (result) {
 767			result = -EFAULT;
 768			goto out;
 769		}
 770		maddr  += mchunk;
 771		mbytes -= mchunk;
 772
 773		cond_resched();
 774	}
 775out:
 776	return result;
 777}
 778
 779#ifdef CONFIG_CRASH_DUMP
 780static int kimage_load_crash_segment(struct kimage *image,
 781					struct kexec_segment *segment)
 782{
 783	/* For crash dumps kernels we simply copy the data from
 784	 * user space to it's destination.
 785	 * We do things a page at a time for the sake of kmap.
 786	 */
 787	unsigned long maddr;
 788	size_t ubytes, mbytes;
 789	int result;
 790	unsigned char __user *buf = NULL;
 791	unsigned char *kbuf = NULL;
 792
 793	result = 0;
 794	if (image->file_mode)
 795		kbuf = segment->kbuf;
 796	else
 797		buf = segment->buf;
 798	ubytes = segment->bufsz;
 799	mbytes = segment->memsz;
 800	maddr = segment->mem;
 801	while (mbytes) {
 802		struct page *page;
 803		char *ptr;
 804		size_t uchunk, mchunk;
 805
 806		page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
 807		if (!page) {
 808			result  = -ENOMEM;
 809			goto out;
 810		}
 811		arch_kexec_post_alloc_pages(page_address(page), 1, 0);
 812		ptr = kmap_local_page(page);
 813		ptr += maddr & ~PAGE_MASK;
 814		mchunk = min_t(size_t, mbytes,
 815				PAGE_SIZE - (maddr & ~PAGE_MASK));
 816		uchunk = min(ubytes, mchunk);
 817		if (mchunk > uchunk) {
 818			/* Zero the trailing part of the page */
 819			memset(ptr + uchunk, 0, mchunk - uchunk);
 820		}
 821
 822		if (uchunk) {
 823			/* For file based kexec, source pages are in kernel memory */
 824			if (image->file_mode)
 825				memcpy(ptr, kbuf, uchunk);
 826			else
 827				result = copy_from_user(ptr, buf, uchunk);
 828			ubytes -= uchunk;
 829			if (image->file_mode)
 830				kbuf += uchunk;
 831			else
 832				buf += uchunk;
 833		}
 834		kexec_flush_icache_page(page);
 835		kunmap_local(ptr);
 836		arch_kexec_pre_free_pages(page_address(page), 1);
 837		if (result) {
 838			result = -EFAULT;
 839			goto out;
 840		}
 841		maddr  += mchunk;
 842		mbytes -= mchunk;
 843
 844		cond_resched();
 845	}
 846out:
 847	return result;
 848}
 849#endif
 850
 851int kimage_load_segment(struct kimage *image,
 852				struct kexec_segment *segment)
 853{
 854	int result = -ENOMEM;
 855
 856	switch (image->type) {
 857	case KEXEC_TYPE_DEFAULT:
 858		result = kimage_load_normal_segment(image, segment);
 859		break;
 860#ifdef CONFIG_CRASH_DUMP
 861	case KEXEC_TYPE_CRASH:
 862		result = kimage_load_crash_segment(image, segment);
 863		break;
 864#endif
 865	}
 866
 867	return result;
 868}
 869
 870struct kexec_load_limit {
 871	/* Mutex protects the limit count. */
 872	struct mutex mutex;
 873	int limit;
 874};
 875
 876static struct kexec_load_limit load_limit_reboot = {
 877	.mutex = __MUTEX_INITIALIZER(load_limit_reboot.mutex),
 878	.limit = -1,
 879};
 880
 881static struct kexec_load_limit load_limit_panic = {
 882	.mutex = __MUTEX_INITIALIZER(load_limit_panic.mutex),
 883	.limit = -1,
 884};
 885
 886struct kimage *kexec_image;
 887struct kimage *kexec_crash_image;
 888static int kexec_load_disabled;
 889
 890#ifdef CONFIG_SYSCTL
 891static int kexec_limit_handler(const struct ctl_table *table, int write,
 892			       void *buffer, size_t *lenp, loff_t *ppos)
 893{
 894	struct kexec_load_limit *limit = table->data;
 895	int val;
 896	struct ctl_table tmp = {
 897		.data = &val,
 898		.maxlen = sizeof(val),
 899		.mode = table->mode,
 900	};
 901	int ret;
 902
 903	if (write) {
 904		ret = proc_dointvec(&tmp, write, buffer, lenp, ppos);
 905		if (ret)
 906			return ret;
 907
 908		if (val < 0)
 909			return -EINVAL;
 910
 911		mutex_lock(&limit->mutex);
 912		if (limit->limit != -1 && val >= limit->limit)
 913			ret = -EINVAL;
 914		else
 915			limit->limit = val;
 916		mutex_unlock(&limit->mutex);
 917
 918		return ret;
 919	}
 920
 921	mutex_lock(&limit->mutex);
 922	val = limit->limit;
 923	mutex_unlock(&limit->mutex);
 924
 925	return proc_dointvec(&tmp, write, buffer, lenp, ppos);
 926}
 927
 928static struct ctl_table kexec_core_sysctls[] = {
 929	{
 930		.procname	= "kexec_load_disabled",
 931		.data		= &kexec_load_disabled,
 932		.maxlen		= sizeof(int),
 933		.mode		= 0644,
 934		/* only handle a transition from default "0" to "1" */
 935		.proc_handler	= proc_dointvec_minmax,
 936		.extra1		= SYSCTL_ONE,
 937		.extra2		= SYSCTL_ONE,
 938	},
 939	{
 940		.procname	= "kexec_load_limit_panic",
 941		.data		= &load_limit_panic,
 942		.mode		= 0644,
 943		.proc_handler	= kexec_limit_handler,
 944	},
 945	{
 946		.procname	= "kexec_load_limit_reboot",
 947		.data		= &load_limit_reboot,
 948		.mode		= 0644,
 949		.proc_handler	= kexec_limit_handler,
 950	},
 951};
 952
 953static int __init kexec_core_sysctl_init(void)
 954{
 955	register_sysctl_init("kernel", kexec_core_sysctls);
 956	return 0;
 957}
 958late_initcall(kexec_core_sysctl_init);
 959#endif
 960
 961bool kexec_load_permitted(int kexec_image_type)
 962{
 963	struct kexec_load_limit *limit;
 964
 965	/*
 966	 * Only the superuser can use the kexec syscall and if it has not
 967	 * been disabled.
 968	 */
 969	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
 970		return false;
 971
 972	/* Check limit counter and decrease it.*/
 973	limit = (kexec_image_type == KEXEC_TYPE_CRASH) ?
 974		&load_limit_panic : &load_limit_reboot;
 975	mutex_lock(&limit->mutex);
 976	if (!limit->limit) {
 977		mutex_unlock(&limit->mutex);
 978		return false;
 979	}
 980	if (limit->limit != -1)
 981		limit->limit--;
 982	mutex_unlock(&limit->mutex);
 983
 984	return true;
 985}
 986
 987/*
 988 * Move into place and start executing a preloaded standalone
 989 * executable.  If nothing was preloaded return an error.
 990 */
 991int kernel_kexec(void)
 992{
 993	int error = 0;
 994
 995	if (!kexec_trylock())
 996		return -EBUSY;
 997	if (!kexec_image) {
 998		error = -EINVAL;
 999		goto Unlock;
1000	}
1001
1002#ifdef CONFIG_KEXEC_JUMP
1003	if (kexec_image->preserve_context) {
1004		pm_prepare_console();
1005		error = freeze_processes();
1006		if (error) {
1007			error = -EBUSY;
1008			goto Restore_console;
1009		}
1010		suspend_console();
1011		error = dpm_suspend_start(PMSG_FREEZE);
1012		if (error)
1013			goto Resume_console;
1014		/* At this point, dpm_suspend_start() has been called,
1015		 * but *not* dpm_suspend_end(). We *must* call
1016		 * dpm_suspend_end() now.  Otherwise, drivers for
1017		 * some devices (e.g. interrupt controllers) become
1018		 * desynchronized with the actual state of the
1019		 * hardware at resume time, and evil weirdness ensues.
1020		 */
1021		error = dpm_suspend_end(PMSG_FREEZE);
1022		if (error)
1023			goto Resume_devices;
1024		error = suspend_disable_secondary_cpus();
1025		if (error)
1026			goto Enable_cpus;
1027		local_irq_disable();
1028		error = syscore_suspend();
1029		if (error)
1030			goto Enable_irqs;
1031	} else
1032#endif
1033	{
1034		kexec_in_progress = true;
1035		kernel_restart_prepare("kexec reboot");
1036		migrate_to_reboot_cpu();
1037		syscore_shutdown();
1038
1039		/*
1040		 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1041		 * no further code needs to use CPU hotplug (which is true in
1042		 * the reboot case). However, the kexec path depends on using
1043		 * CPU hotplug again; so re-enable it here.
1044		 */
1045		cpu_hotplug_enable();
1046		pr_notice("Starting new kernel\n");
1047		machine_shutdown();
1048	}
1049
1050	kmsg_dump(KMSG_DUMP_SHUTDOWN);
1051	machine_kexec(kexec_image);
1052
1053#ifdef CONFIG_KEXEC_JUMP
1054	if (kexec_image->preserve_context) {
1055		syscore_resume();
1056 Enable_irqs:
1057		local_irq_enable();
1058 Enable_cpus:
1059		suspend_enable_secondary_cpus();
1060		dpm_resume_start(PMSG_RESTORE);
1061 Resume_devices:
1062		dpm_resume_end(PMSG_RESTORE);
1063 Resume_console:
1064		resume_console();
1065		thaw_processes();
1066 Restore_console:
1067		pm_restore_console();
1068	}
1069#endif
1070
1071 Unlock:
1072	kexec_unlock();
1073	return error;
1074}