Loading...
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
15#include <linux/string.h>
16#include <linux/kernel.h>
17#include <linux/kmsg_dump.h>
18#include <linux/reboot.h>
19#include <linux/sched.h>
20#include <linux/sysrq.h>
21#include <linux/smp.h>
22#include <linux/utsname.h>
23#include <linux/vmalloc.h>
24#include <linux/atomic.h>
25#include <linux/module.h>
26#include <linux/mm.h>
27#include <linux/init.h>
28#include <linux/kallsyms.h>
29#include <linux/kgdb.h>
30#include <linux/kdb.h>
31#include <linux/notifier.h>
32#include <linux/interrupt.h>
33#include <linux/delay.h>
34#include <linux/nmi.h>
35#include <linux/time.h>
36#include <linux/ptrace.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/kdebug.h>
40#include <linux/proc_fs.h>
41#include <linux/uaccess.h>
42#include <linux/slab.h>
43#include "kdb_private.h"
44
45#define GREP_LEN 256
46char kdb_grep_string[GREP_LEN];
47int kdb_grepping_flag;
48EXPORT_SYMBOL(kdb_grepping_flag);
49int kdb_grep_leading;
50int kdb_grep_trailing;
51
52/*
53 * Kernel debugger state flags
54 */
55int kdb_flags;
56atomic_t kdb_event;
57
58/*
59 * kdb_lock protects updates to kdb_initial_cpu. Used to
60 * single thread processors through the kernel debugger.
61 */
62int kdb_initial_cpu = -1; /* cpu number that owns kdb */
63int kdb_nextline = 1;
64int kdb_state; /* General KDB state */
65
66struct task_struct *kdb_current_task;
67EXPORT_SYMBOL(kdb_current_task);
68struct pt_regs *kdb_current_regs;
69
70const char *kdb_diemsg;
71static int kdb_go_count;
72#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
73static unsigned int kdb_continue_catastrophic =
74 CONFIG_KDB_CONTINUE_CATASTROPHIC;
75#else
76static unsigned int kdb_continue_catastrophic;
77#endif
78
79/* kdb_commands describes the available commands. */
80static kdbtab_t *kdb_commands;
81#define KDB_BASE_CMD_MAX 50
82static int kdb_max_commands = KDB_BASE_CMD_MAX;
83static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
84#define for_each_kdbcmd(cmd, num) \
85 for ((cmd) = kdb_base_commands, (num) = 0; \
86 num < kdb_max_commands; \
87 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
88
89typedef struct _kdbmsg {
90 int km_diag; /* kdb diagnostic */
91 char *km_msg; /* Corresponding message text */
92} kdbmsg_t;
93
94#define KDBMSG(msgnum, text) \
95 { KDB_##msgnum, text }
96
97static kdbmsg_t kdbmsgs[] = {
98 KDBMSG(NOTFOUND, "Command Not Found"),
99 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
100 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
101 "8 is only allowed on 64 bit systems"),
102 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
103 KDBMSG(NOTENV, "Cannot find environment variable"),
104 KDBMSG(NOENVVALUE, "Environment variable should have value"),
105 KDBMSG(NOTIMP, "Command not implemented"),
106 KDBMSG(ENVFULL, "Environment full"),
107 KDBMSG(ENVBUFFULL, "Environment buffer full"),
108 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
109#ifdef CONFIG_CPU_XSCALE
110 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
111#else
112 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
113#endif
114 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
115 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
116 KDBMSG(BADMODE, "Invalid IDMODE"),
117 KDBMSG(BADINT, "Illegal numeric value"),
118 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
119 KDBMSG(BADREG, "Invalid register name"),
120 KDBMSG(BADCPUNUM, "Invalid cpu number"),
121 KDBMSG(BADLENGTH, "Invalid length field"),
122 KDBMSG(NOBP, "No Breakpoint exists"),
123 KDBMSG(BADADDR, "Invalid address"),
124};
125#undef KDBMSG
126
127static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
128
129
130/*
131 * Initial environment. This is all kept static and local to
132 * this file. We don't want to rely on the memory allocation
133 * mechanisms in the kernel, so we use a very limited allocate-only
134 * heap for new and altered environment variables. The entire
135 * environment is limited to a fixed number of entries (add more
136 * to __env[] if required) and a fixed amount of heap (add more to
137 * KDB_ENVBUFSIZE if required).
138 */
139
140static char *__env[] = {
141#if defined(CONFIG_SMP)
142 "PROMPT=[%d]kdb> ",
143#else
144 "PROMPT=kdb> ",
145#endif
146 "MOREPROMPT=more> ",
147 "RADIX=16",
148 "MDCOUNT=8", /* lines of md output */
149 KDB_PLATFORM_ENV,
150 "DTABCOUNT=30",
151 "NOSECT=1",
152 (char *)0,
153 (char *)0,
154 (char *)0,
155 (char *)0,
156 (char *)0,
157 (char *)0,
158 (char *)0,
159 (char *)0,
160 (char *)0,
161 (char *)0,
162 (char *)0,
163 (char *)0,
164 (char *)0,
165 (char *)0,
166 (char *)0,
167 (char *)0,
168 (char *)0,
169 (char *)0,
170 (char *)0,
171 (char *)0,
172 (char *)0,
173 (char *)0,
174 (char *)0,
175 (char *)0,
176};
177
178static const int __nenv = ARRAY_SIZE(__env);
179
180struct task_struct *kdb_curr_task(int cpu)
181{
182 struct task_struct *p = curr_task(cpu);
183#ifdef _TIF_MCA_INIT
184 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
185 p = krp->p;
186#endif
187 return p;
188}
189
190/*
191 * kdbgetenv - This function will return the character string value of
192 * an environment variable.
193 * Parameters:
194 * match A character string representing an environment variable.
195 * Returns:
196 * NULL No environment variable matches 'match'
197 * char* Pointer to string value of environment variable.
198 */
199char *kdbgetenv(const char *match)
200{
201 char **ep = __env;
202 int matchlen = strlen(match);
203 int i;
204
205 for (i = 0; i < __nenv; i++) {
206 char *e = *ep++;
207
208 if (!e)
209 continue;
210
211 if ((strncmp(match, e, matchlen) == 0)
212 && ((e[matchlen] == '\0')
213 || (e[matchlen] == '='))) {
214 char *cp = strchr(e, '=');
215 return cp ? ++cp : "";
216 }
217 }
218 return NULL;
219}
220
221/*
222 * kdballocenv - This function is used to allocate bytes for
223 * environment entries.
224 * Parameters:
225 * match A character string representing a numeric value
226 * Outputs:
227 * *value the unsigned long representation of the env variable 'match'
228 * Returns:
229 * Zero on success, a kdb diagnostic on failure.
230 * Remarks:
231 * We use a static environment buffer (envbuffer) to hold the values
232 * of dynamically generated environment variables (see kdb_set). Buffer
233 * space once allocated is never free'd, so over time, the amount of space
234 * (currently 512 bytes) will be exhausted if env variables are changed
235 * frequently.
236 */
237static char *kdballocenv(size_t bytes)
238{
239#define KDB_ENVBUFSIZE 512
240 static char envbuffer[KDB_ENVBUFSIZE];
241 static int envbufsize;
242 char *ep = NULL;
243
244 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
245 ep = &envbuffer[envbufsize];
246 envbufsize += bytes;
247 }
248 return ep;
249}
250
251/*
252 * kdbgetulenv - This function will return the value of an unsigned
253 * long-valued environment variable.
254 * Parameters:
255 * match A character string representing a numeric value
256 * Outputs:
257 * *value the unsigned long represntation of the env variable 'match'
258 * Returns:
259 * Zero on success, a kdb diagnostic on failure.
260 */
261static int kdbgetulenv(const char *match, unsigned long *value)
262{
263 char *ep;
264
265 ep = kdbgetenv(match);
266 if (!ep)
267 return KDB_NOTENV;
268 if (strlen(ep) == 0)
269 return KDB_NOENVVALUE;
270
271 *value = simple_strtoul(ep, NULL, 0);
272
273 return 0;
274}
275
276/*
277 * kdbgetintenv - This function will return the value of an
278 * integer-valued environment variable.
279 * Parameters:
280 * match A character string representing an integer-valued env variable
281 * Outputs:
282 * *value the integer representation of the environment variable 'match'
283 * Returns:
284 * Zero on success, a kdb diagnostic on failure.
285 */
286int kdbgetintenv(const char *match, int *value)
287{
288 unsigned long val;
289 int diag;
290
291 diag = kdbgetulenv(match, &val);
292 if (!diag)
293 *value = (int) val;
294 return diag;
295}
296
297/*
298 * kdbgetularg - This function will convert a numeric string into an
299 * unsigned long value.
300 * Parameters:
301 * arg A character string representing a numeric value
302 * Outputs:
303 * *value the unsigned long represntation of arg.
304 * Returns:
305 * Zero on success, a kdb diagnostic on failure.
306 */
307int kdbgetularg(const char *arg, unsigned long *value)
308{
309 char *endp;
310 unsigned long val;
311
312 val = simple_strtoul(arg, &endp, 0);
313
314 if (endp == arg) {
315 /*
316 * Also try base 16, for us folks too lazy to type the
317 * leading 0x...
318 */
319 val = simple_strtoul(arg, &endp, 16);
320 if (endp == arg)
321 return KDB_BADINT;
322 }
323
324 *value = val;
325
326 return 0;
327}
328
329int kdbgetu64arg(const char *arg, u64 *value)
330{
331 char *endp;
332 u64 val;
333
334 val = simple_strtoull(arg, &endp, 0);
335
336 if (endp == arg) {
337
338 val = simple_strtoull(arg, &endp, 16);
339 if (endp == arg)
340 return KDB_BADINT;
341 }
342
343 *value = val;
344
345 return 0;
346}
347
348/*
349 * kdb_set - This function implements the 'set' command. Alter an
350 * existing environment variable or create a new one.
351 */
352int kdb_set(int argc, const char **argv)
353{
354 int i;
355 char *ep;
356 size_t varlen, vallen;
357
358 /*
359 * we can be invoked two ways:
360 * set var=value argv[1]="var", argv[2]="value"
361 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
362 * - if the latter, shift 'em down.
363 */
364 if (argc == 3) {
365 argv[2] = argv[3];
366 argc--;
367 }
368
369 if (argc != 2)
370 return KDB_ARGCOUNT;
371
372 /*
373 * Check for internal variables
374 */
375 if (strcmp(argv[1], "KDBDEBUG") == 0) {
376 unsigned int debugflags;
377 char *cp;
378
379 debugflags = simple_strtoul(argv[2], &cp, 0);
380 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
381 kdb_printf("kdb: illegal debug flags '%s'\n",
382 argv[2]);
383 return 0;
384 }
385 kdb_flags = (kdb_flags &
386 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
387 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
388
389 return 0;
390 }
391
392 /*
393 * Tokenizer squashed the '=' sign. argv[1] is variable
394 * name, argv[2] = value.
395 */
396 varlen = strlen(argv[1]);
397 vallen = strlen(argv[2]);
398 ep = kdballocenv(varlen + vallen + 2);
399 if (ep == (char *)0)
400 return KDB_ENVBUFFULL;
401
402 sprintf(ep, "%s=%s", argv[1], argv[2]);
403
404 ep[varlen+vallen+1] = '\0';
405
406 for (i = 0; i < __nenv; i++) {
407 if (__env[i]
408 && ((strncmp(__env[i], argv[1], varlen) == 0)
409 && ((__env[i][varlen] == '\0')
410 || (__env[i][varlen] == '=')))) {
411 __env[i] = ep;
412 return 0;
413 }
414 }
415
416 /*
417 * Wasn't existing variable. Fit into slot.
418 */
419 for (i = 0; i < __nenv-1; i++) {
420 if (__env[i] == (char *)0) {
421 __env[i] = ep;
422 return 0;
423 }
424 }
425
426 return KDB_ENVFULL;
427}
428
429static int kdb_check_regs(void)
430{
431 if (!kdb_current_regs) {
432 kdb_printf("No current kdb registers."
433 " You may need to select another task\n");
434 return KDB_BADREG;
435 }
436 return 0;
437}
438
439/*
440 * kdbgetaddrarg - This function is responsible for parsing an
441 * address-expression and returning the value of the expression,
442 * symbol name, and offset to the caller.
443 *
444 * The argument may consist of a numeric value (decimal or
445 * hexidecimal), a symbol name, a register name (preceded by the
446 * percent sign), an environment variable with a numeric value
447 * (preceded by a dollar sign) or a simple arithmetic expression
448 * consisting of a symbol name, +/-, and a numeric constant value
449 * (offset).
450 * Parameters:
451 * argc - count of arguments in argv
452 * argv - argument vector
453 * *nextarg - index to next unparsed argument in argv[]
454 * regs - Register state at time of KDB entry
455 * Outputs:
456 * *value - receives the value of the address-expression
457 * *offset - receives the offset specified, if any
458 * *name - receives the symbol name, if any
459 * *nextarg - index to next unparsed argument in argv[]
460 * Returns:
461 * zero is returned on success, a kdb diagnostic code is
462 * returned on error.
463 */
464int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
465 unsigned long *value, long *offset,
466 char **name)
467{
468 unsigned long addr;
469 unsigned long off = 0;
470 int positive;
471 int diag;
472 int found = 0;
473 char *symname;
474 char symbol = '\0';
475 char *cp;
476 kdb_symtab_t symtab;
477
478 /*
479 * Process arguments which follow the following syntax:
480 *
481 * symbol | numeric-address [+/- numeric-offset]
482 * %register
483 * $environment-variable
484 */
485
486 if (*nextarg > argc)
487 return KDB_ARGCOUNT;
488
489 symname = (char *)argv[*nextarg];
490
491 /*
492 * If there is no whitespace between the symbol
493 * or address and the '+' or '-' symbols, we
494 * remember the character and replace it with a
495 * null so the symbol/value can be properly parsed
496 */
497 cp = strpbrk(symname, "+-");
498 if (cp != NULL) {
499 symbol = *cp;
500 *cp++ = '\0';
501 }
502
503 if (symname[0] == '$') {
504 diag = kdbgetulenv(&symname[1], &addr);
505 if (diag)
506 return diag;
507 } else if (symname[0] == '%') {
508 diag = kdb_check_regs();
509 if (diag)
510 return diag;
511 /* Implement register values with % at a later time as it is
512 * arch optional.
513 */
514 return KDB_NOTIMP;
515 } else {
516 found = kdbgetsymval(symname, &symtab);
517 if (found) {
518 addr = symtab.sym_start;
519 } else {
520 diag = kdbgetularg(argv[*nextarg], &addr);
521 if (diag)
522 return diag;
523 }
524 }
525
526 if (!found)
527 found = kdbnearsym(addr, &symtab);
528
529 (*nextarg)++;
530
531 if (name)
532 *name = symname;
533 if (value)
534 *value = addr;
535 if (offset && name && *name)
536 *offset = addr - symtab.sym_start;
537
538 if ((*nextarg > argc)
539 && (symbol == '\0'))
540 return 0;
541
542 /*
543 * check for +/- and offset
544 */
545
546 if (symbol == '\0') {
547 if ((argv[*nextarg][0] != '+')
548 && (argv[*nextarg][0] != '-')) {
549 /*
550 * Not our argument. Return.
551 */
552 return 0;
553 } else {
554 positive = (argv[*nextarg][0] == '+');
555 (*nextarg)++;
556 }
557 } else
558 positive = (symbol == '+');
559
560 /*
561 * Now there must be an offset!
562 */
563 if ((*nextarg > argc)
564 && (symbol == '\0')) {
565 return KDB_INVADDRFMT;
566 }
567
568 if (!symbol) {
569 cp = (char *)argv[*nextarg];
570 (*nextarg)++;
571 }
572
573 diag = kdbgetularg(cp, &off);
574 if (diag)
575 return diag;
576
577 if (!positive)
578 off = -off;
579
580 if (offset)
581 *offset += off;
582
583 if (value)
584 *value += off;
585
586 return 0;
587}
588
589static void kdb_cmderror(int diag)
590{
591 int i;
592
593 if (diag >= 0) {
594 kdb_printf("no error detected (diagnostic is %d)\n", diag);
595 return;
596 }
597
598 for (i = 0; i < __nkdb_err; i++) {
599 if (kdbmsgs[i].km_diag == diag) {
600 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
601 return;
602 }
603 }
604
605 kdb_printf("Unknown diag %d\n", -diag);
606}
607
608/*
609 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
610 * command which defines one command as a set of other commands,
611 * terminated by endefcmd. kdb_defcmd processes the initial
612 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
613 * the following commands until 'endefcmd'.
614 * Inputs:
615 * argc argument count
616 * argv argument vector
617 * Returns:
618 * zero for success, a kdb diagnostic if error
619 */
620struct defcmd_set {
621 int count;
622 int usable;
623 char *name;
624 char *usage;
625 char *help;
626 char **command;
627};
628static struct defcmd_set *defcmd_set;
629static int defcmd_set_count;
630static int defcmd_in_progress;
631
632/* Forward references */
633static int kdb_exec_defcmd(int argc, const char **argv);
634
635static int kdb_defcmd2(const char *cmdstr, const char *argv0)
636{
637 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
638 char **save_command = s->command;
639 if (strcmp(argv0, "endefcmd") == 0) {
640 defcmd_in_progress = 0;
641 if (!s->count)
642 s->usable = 0;
643 if (s->usable)
644 kdb_register(s->name, kdb_exec_defcmd,
645 s->usage, s->help, 0);
646 return 0;
647 }
648 if (!s->usable)
649 return KDB_NOTIMP;
650 s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
651 if (!s->command) {
652 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
653 cmdstr);
654 s->usable = 0;
655 return KDB_NOTIMP;
656 }
657 memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
658 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
659 kfree(save_command);
660 return 0;
661}
662
663static int kdb_defcmd(int argc, const char **argv)
664{
665 struct defcmd_set *save_defcmd_set = defcmd_set, *s;
666 if (defcmd_in_progress) {
667 kdb_printf("kdb: nested defcmd detected, assuming missing "
668 "endefcmd\n");
669 kdb_defcmd2("endefcmd", "endefcmd");
670 }
671 if (argc == 0) {
672 int i;
673 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
674 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
675 s->usage, s->help);
676 for (i = 0; i < s->count; ++i)
677 kdb_printf("%s", s->command[i]);
678 kdb_printf("endefcmd\n");
679 }
680 return 0;
681 }
682 if (argc != 3)
683 return KDB_ARGCOUNT;
684 if (in_dbg_master()) {
685 kdb_printf("Command only available during kdb_init()\n");
686 return KDB_NOTIMP;
687 }
688 defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
689 GFP_KDB);
690 if (!defcmd_set)
691 goto fail_defcmd;
692 memcpy(defcmd_set, save_defcmd_set,
693 defcmd_set_count * sizeof(*defcmd_set));
694 s = defcmd_set + defcmd_set_count;
695 memset(s, 0, sizeof(*s));
696 s->usable = 1;
697 s->name = kdb_strdup(argv[1], GFP_KDB);
698 if (!s->name)
699 goto fail_name;
700 s->usage = kdb_strdup(argv[2], GFP_KDB);
701 if (!s->usage)
702 goto fail_usage;
703 s->help = kdb_strdup(argv[3], GFP_KDB);
704 if (!s->help)
705 goto fail_help;
706 if (s->usage[0] == '"') {
707 strcpy(s->usage, argv[2]+1);
708 s->usage[strlen(s->usage)-1] = '\0';
709 }
710 if (s->help[0] == '"') {
711 strcpy(s->help, argv[3]+1);
712 s->help[strlen(s->help)-1] = '\0';
713 }
714 ++defcmd_set_count;
715 defcmd_in_progress = 1;
716 kfree(save_defcmd_set);
717 return 0;
718fail_help:
719 kfree(s->usage);
720fail_usage:
721 kfree(s->name);
722fail_name:
723 kfree(defcmd_set);
724fail_defcmd:
725 kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
726 defcmd_set = save_defcmd_set;
727 return KDB_NOTIMP;
728}
729
730/*
731 * kdb_exec_defcmd - Execute the set of commands associated with this
732 * defcmd name.
733 * Inputs:
734 * argc argument count
735 * argv argument vector
736 * Returns:
737 * zero for success, a kdb diagnostic if error
738 */
739static int kdb_exec_defcmd(int argc, const char **argv)
740{
741 int i, ret;
742 struct defcmd_set *s;
743 if (argc != 0)
744 return KDB_ARGCOUNT;
745 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
746 if (strcmp(s->name, argv[0]) == 0)
747 break;
748 }
749 if (i == defcmd_set_count) {
750 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
751 argv[0]);
752 return KDB_NOTIMP;
753 }
754 for (i = 0; i < s->count; ++i) {
755 /* Recursive use of kdb_parse, do not use argv after
756 * this point */
757 argv = NULL;
758 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
759 ret = kdb_parse(s->command[i]);
760 if (ret)
761 return ret;
762 }
763 return 0;
764}
765
766/* Command history */
767#define KDB_CMD_HISTORY_COUNT 32
768#define CMD_BUFLEN 200 /* kdb_printf: max printline
769 * size == 256 */
770static unsigned int cmd_head, cmd_tail;
771static unsigned int cmdptr;
772static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
773static char cmd_cur[CMD_BUFLEN];
774
775/*
776 * The "str" argument may point to something like | grep xyz
777 */
778static void parse_grep(const char *str)
779{
780 int len;
781 char *cp = (char *)str, *cp2;
782
783 /* sanity check: we should have been called with the \ first */
784 if (*cp != '|')
785 return;
786 cp++;
787 while (isspace(*cp))
788 cp++;
789 if (strncmp(cp, "grep ", 5)) {
790 kdb_printf("invalid 'pipe', see grephelp\n");
791 return;
792 }
793 cp += 5;
794 while (isspace(*cp))
795 cp++;
796 cp2 = strchr(cp, '\n');
797 if (cp2)
798 *cp2 = '\0'; /* remove the trailing newline */
799 len = strlen(cp);
800 if (len == 0) {
801 kdb_printf("invalid 'pipe', see grephelp\n");
802 return;
803 }
804 /* now cp points to a nonzero length search string */
805 if (*cp == '"') {
806 /* allow it be "x y z" by removing the "'s - there must
807 be two of them */
808 cp++;
809 cp2 = strchr(cp, '"');
810 if (!cp2) {
811 kdb_printf("invalid quoted string, see grephelp\n");
812 return;
813 }
814 *cp2 = '\0'; /* end the string where the 2nd " was */
815 }
816 kdb_grep_leading = 0;
817 if (*cp == '^') {
818 kdb_grep_leading = 1;
819 cp++;
820 }
821 len = strlen(cp);
822 kdb_grep_trailing = 0;
823 if (*(cp+len-1) == '$') {
824 kdb_grep_trailing = 1;
825 *(cp+len-1) = '\0';
826 }
827 len = strlen(cp);
828 if (!len)
829 return;
830 if (len >= GREP_LEN) {
831 kdb_printf("search string too long\n");
832 return;
833 }
834 strcpy(kdb_grep_string, cp);
835 kdb_grepping_flag++;
836 return;
837}
838
839/*
840 * kdb_parse - Parse the command line, search the command table for a
841 * matching command and invoke the command function. This
842 * function may be called recursively, if it is, the second call
843 * will overwrite argv and cbuf. It is the caller's
844 * responsibility to save their argv if they recursively call
845 * kdb_parse().
846 * Parameters:
847 * cmdstr The input command line to be parsed.
848 * regs The registers at the time kdb was entered.
849 * Returns:
850 * Zero for success, a kdb diagnostic if failure.
851 * Remarks:
852 * Limited to 20 tokens.
853 *
854 * Real rudimentary tokenization. Basically only whitespace
855 * is considered a token delimeter (but special consideration
856 * is taken of the '=' sign as used by the 'set' command).
857 *
858 * The algorithm used to tokenize the input string relies on
859 * there being at least one whitespace (or otherwise useless)
860 * character between tokens as the character immediately following
861 * the token is altered in-place to a null-byte to terminate the
862 * token string.
863 */
864
865#define MAXARGC 20
866
867int kdb_parse(const char *cmdstr)
868{
869 static char *argv[MAXARGC];
870 static int argc;
871 static char cbuf[CMD_BUFLEN+2];
872 char *cp;
873 char *cpp, quoted;
874 kdbtab_t *tp;
875 int i, escaped, ignore_errors = 0, check_grep;
876
877 /*
878 * First tokenize the command string.
879 */
880 cp = (char *)cmdstr;
881 kdb_grepping_flag = check_grep = 0;
882
883 if (KDB_FLAG(CMD_INTERRUPT)) {
884 /* Previous command was interrupted, newline must not
885 * repeat the command */
886 KDB_FLAG_CLEAR(CMD_INTERRUPT);
887 KDB_STATE_SET(PAGER);
888 argc = 0; /* no repeat */
889 }
890
891 if (*cp != '\n' && *cp != '\0') {
892 argc = 0;
893 cpp = cbuf;
894 while (*cp) {
895 /* skip whitespace */
896 while (isspace(*cp))
897 cp++;
898 if ((*cp == '\0') || (*cp == '\n') ||
899 (*cp == '#' && !defcmd_in_progress))
900 break;
901 /* special case: check for | grep pattern */
902 if (*cp == '|') {
903 check_grep++;
904 break;
905 }
906 if (cpp >= cbuf + CMD_BUFLEN) {
907 kdb_printf("kdb_parse: command buffer "
908 "overflow, command ignored\n%s\n",
909 cmdstr);
910 return KDB_NOTFOUND;
911 }
912 if (argc >= MAXARGC - 1) {
913 kdb_printf("kdb_parse: too many arguments, "
914 "command ignored\n%s\n", cmdstr);
915 return KDB_NOTFOUND;
916 }
917 argv[argc++] = cpp;
918 escaped = 0;
919 quoted = '\0';
920 /* Copy to next unquoted and unescaped
921 * whitespace or '=' */
922 while (*cp && *cp != '\n' &&
923 (escaped || quoted || !isspace(*cp))) {
924 if (cpp >= cbuf + CMD_BUFLEN)
925 break;
926 if (escaped) {
927 escaped = 0;
928 *cpp++ = *cp++;
929 continue;
930 }
931 if (*cp == '\\') {
932 escaped = 1;
933 ++cp;
934 continue;
935 }
936 if (*cp == quoted)
937 quoted = '\0';
938 else if (*cp == '\'' || *cp == '"')
939 quoted = *cp;
940 *cpp = *cp++;
941 if (*cpp == '=' && !quoted)
942 break;
943 ++cpp;
944 }
945 *cpp++ = '\0'; /* Squash a ws or '=' character */
946 }
947 }
948 if (!argc)
949 return 0;
950 if (check_grep)
951 parse_grep(cp);
952 if (defcmd_in_progress) {
953 int result = kdb_defcmd2(cmdstr, argv[0]);
954 if (!defcmd_in_progress) {
955 argc = 0; /* avoid repeat on endefcmd */
956 *(argv[0]) = '\0';
957 }
958 return result;
959 }
960 if (argv[0][0] == '-' && argv[0][1] &&
961 (argv[0][1] < '0' || argv[0][1] > '9')) {
962 ignore_errors = 1;
963 ++argv[0];
964 }
965
966 for_each_kdbcmd(tp, i) {
967 if (tp->cmd_name) {
968 /*
969 * If this command is allowed to be abbreviated,
970 * check to see if this is it.
971 */
972
973 if (tp->cmd_minlen
974 && (strlen(argv[0]) <= tp->cmd_minlen)) {
975 if (strncmp(argv[0],
976 tp->cmd_name,
977 tp->cmd_minlen) == 0) {
978 break;
979 }
980 }
981
982 if (strcmp(argv[0], tp->cmd_name) == 0)
983 break;
984 }
985 }
986
987 /*
988 * If we don't find a command by this name, see if the first
989 * few characters of this match any of the known commands.
990 * e.g., md1c20 should match md.
991 */
992 if (i == kdb_max_commands) {
993 for_each_kdbcmd(tp, i) {
994 if (tp->cmd_name) {
995 if (strncmp(argv[0],
996 tp->cmd_name,
997 strlen(tp->cmd_name)) == 0) {
998 break;
999 }
1000 }
1001 }
1002 }
1003
1004 if (i < kdb_max_commands) {
1005 int result;
1006 KDB_STATE_SET(CMD);
1007 result = (*tp->cmd_func)(argc-1, (const char **)argv);
1008 if (result && ignore_errors && result > KDB_CMD_GO)
1009 result = 0;
1010 KDB_STATE_CLEAR(CMD);
1011 switch (tp->cmd_repeat) {
1012 case KDB_REPEAT_NONE:
1013 argc = 0;
1014 if (argv[0])
1015 *(argv[0]) = '\0';
1016 break;
1017 case KDB_REPEAT_NO_ARGS:
1018 argc = 1;
1019 if (argv[1])
1020 *(argv[1]) = '\0';
1021 break;
1022 case KDB_REPEAT_WITH_ARGS:
1023 break;
1024 }
1025 return result;
1026 }
1027
1028 /*
1029 * If the input with which we were presented does not
1030 * map to an existing command, attempt to parse it as an
1031 * address argument and display the result. Useful for
1032 * obtaining the address of a variable, or the nearest symbol
1033 * to an address contained in a register.
1034 */
1035 {
1036 unsigned long value;
1037 char *name = NULL;
1038 long offset;
1039 int nextarg = 0;
1040
1041 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1042 &value, &offset, &name)) {
1043 return KDB_NOTFOUND;
1044 }
1045
1046 kdb_printf("%s = ", argv[0]);
1047 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1048 kdb_printf("\n");
1049 return 0;
1050 }
1051}
1052
1053
1054static int handle_ctrl_cmd(char *cmd)
1055{
1056#define CTRL_P 16
1057#define CTRL_N 14
1058
1059 /* initial situation */
1060 if (cmd_head == cmd_tail)
1061 return 0;
1062 switch (*cmd) {
1063 case CTRL_P:
1064 if (cmdptr != cmd_tail)
1065 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1066 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1067 return 1;
1068 case CTRL_N:
1069 if (cmdptr != cmd_head)
1070 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1071 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1072 return 1;
1073 }
1074 return 0;
1075}
1076
1077/*
1078 * kdb_reboot - This function implements the 'reboot' command. Reboot
1079 * the system immediately, or loop for ever on failure.
1080 */
1081static int kdb_reboot(int argc, const char **argv)
1082{
1083 emergency_restart();
1084 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1085 while (1)
1086 cpu_relax();
1087 /* NOTREACHED */
1088 return 0;
1089}
1090
1091static void kdb_dumpregs(struct pt_regs *regs)
1092{
1093 int old_lvl = console_loglevel;
1094 console_loglevel = 15;
1095 kdb_trap_printk++;
1096 show_regs(regs);
1097 kdb_trap_printk--;
1098 kdb_printf("\n");
1099 console_loglevel = old_lvl;
1100}
1101
1102void kdb_set_current_task(struct task_struct *p)
1103{
1104 kdb_current_task = p;
1105
1106 if (kdb_task_has_cpu(p)) {
1107 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1108 return;
1109 }
1110 kdb_current_regs = NULL;
1111}
1112
1113/*
1114 * kdb_local - The main code for kdb. This routine is invoked on a
1115 * specific processor, it is not global. The main kdb() routine
1116 * ensures that only one processor at a time is in this routine.
1117 * This code is called with the real reason code on the first
1118 * entry to a kdb session, thereafter it is called with reason
1119 * SWITCH, even if the user goes back to the original cpu.
1120 * Inputs:
1121 * reason The reason KDB was invoked
1122 * error The hardware-defined error code
1123 * regs The exception frame at time of fault/breakpoint.
1124 * db_result Result code from the break or debug point.
1125 * Returns:
1126 * 0 KDB was invoked for an event which it wasn't responsible
1127 * 1 KDB handled the event for which it was invoked.
1128 * KDB_CMD_GO User typed 'go'.
1129 * KDB_CMD_CPU User switched to another cpu.
1130 * KDB_CMD_SS Single step.
1131 */
1132static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1133 kdb_dbtrap_t db_result)
1134{
1135 char *cmdbuf;
1136 int diag;
1137 struct task_struct *kdb_current =
1138 kdb_curr_task(raw_smp_processor_id());
1139
1140 KDB_DEBUG_STATE("kdb_local 1", reason);
1141 kdb_go_count = 0;
1142 if (reason == KDB_REASON_DEBUG) {
1143 /* special case below */
1144 } else {
1145 kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1146 kdb_current, kdb_current ? kdb_current->pid : 0);
1147#if defined(CONFIG_SMP)
1148 kdb_printf("on processor %d ", raw_smp_processor_id());
1149#endif
1150 }
1151
1152 switch (reason) {
1153 case KDB_REASON_DEBUG:
1154 {
1155 /*
1156 * If re-entering kdb after a single step
1157 * command, don't print the message.
1158 */
1159 switch (db_result) {
1160 case KDB_DB_BPT:
1161 kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1162 kdb_current, kdb_current->pid);
1163#if defined(CONFIG_SMP)
1164 kdb_printf("on processor %d ", raw_smp_processor_id());
1165#endif
1166 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1167 instruction_pointer(regs));
1168 break;
1169 case KDB_DB_SS:
1170 break;
1171 case KDB_DB_SSBPT:
1172 KDB_DEBUG_STATE("kdb_local 4", reason);
1173 return 1; /* kdba_db_trap did the work */
1174 default:
1175 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1176 db_result);
1177 break;
1178 }
1179
1180 }
1181 break;
1182 case KDB_REASON_ENTER:
1183 if (KDB_STATE(KEYBOARD))
1184 kdb_printf("due to Keyboard Entry\n");
1185 else
1186 kdb_printf("due to KDB_ENTER()\n");
1187 break;
1188 case KDB_REASON_KEYBOARD:
1189 KDB_STATE_SET(KEYBOARD);
1190 kdb_printf("due to Keyboard Entry\n");
1191 break;
1192 case KDB_REASON_ENTER_SLAVE:
1193 /* drop through, slaves only get released via cpu switch */
1194 case KDB_REASON_SWITCH:
1195 kdb_printf("due to cpu switch\n");
1196 break;
1197 case KDB_REASON_OOPS:
1198 kdb_printf("Oops: %s\n", kdb_diemsg);
1199 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1200 instruction_pointer(regs));
1201 kdb_dumpregs(regs);
1202 break;
1203 case KDB_REASON_SYSTEM_NMI:
1204 kdb_printf("due to System NonMaskable Interrupt\n");
1205 break;
1206 case KDB_REASON_NMI:
1207 kdb_printf("due to NonMaskable Interrupt @ "
1208 kdb_machreg_fmt "\n",
1209 instruction_pointer(regs));
1210 kdb_dumpregs(regs);
1211 break;
1212 case KDB_REASON_SSTEP:
1213 case KDB_REASON_BREAK:
1214 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1215 reason == KDB_REASON_BREAK ?
1216 "Breakpoint" : "SS trap", instruction_pointer(regs));
1217 /*
1218 * Determine if this breakpoint is one that we
1219 * are interested in.
1220 */
1221 if (db_result != KDB_DB_BPT) {
1222 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1223 db_result);
1224 KDB_DEBUG_STATE("kdb_local 6", reason);
1225 return 0; /* Not for us, dismiss it */
1226 }
1227 break;
1228 case KDB_REASON_RECURSE:
1229 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1230 instruction_pointer(regs));
1231 break;
1232 default:
1233 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1234 KDB_DEBUG_STATE("kdb_local 8", reason);
1235 return 0; /* Not for us, dismiss it */
1236 }
1237
1238 while (1) {
1239 /*
1240 * Initialize pager context.
1241 */
1242 kdb_nextline = 1;
1243 KDB_STATE_CLEAR(SUPPRESS);
1244
1245 cmdbuf = cmd_cur;
1246 *cmdbuf = '\0';
1247 *(cmd_hist[cmd_head]) = '\0';
1248
1249do_full_getstr:
1250#if defined(CONFIG_SMP)
1251 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1252 raw_smp_processor_id());
1253#else
1254 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1255#endif
1256 if (defcmd_in_progress)
1257 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1258
1259 /*
1260 * Fetch command from keyboard
1261 */
1262 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1263 if (*cmdbuf != '\n') {
1264 if (*cmdbuf < 32) {
1265 if (cmdptr == cmd_head) {
1266 strncpy(cmd_hist[cmd_head], cmd_cur,
1267 CMD_BUFLEN);
1268 *(cmd_hist[cmd_head] +
1269 strlen(cmd_hist[cmd_head])-1) = '\0';
1270 }
1271 if (!handle_ctrl_cmd(cmdbuf))
1272 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1273 cmdbuf = cmd_cur;
1274 goto do_full_getstr;
1275 } else {
1276 strncpy(cmd_hist[cmd_head], cmd_cur,
1277 CMD_BUFLEN);
1278 }
1279
1280 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1281 if (cmd_head == cmd_tail)
1282 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1283 }
1284
1285 cmdptr = cmd_head;
1286 diag = kdb_parse(cmdbuf);
1287 if (diag == KDB_NOTFOUND) {
1288 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1289 diag = 0;
1290 }
1291 if (diag == KDB_CMD_GO
1292 || diag == KDB_CMD_CPU
1293 || diag == KDB_CMD_SS
1294 || diag == KDB_CMD_KGDB)
1295 break;
1296
1297 if (diag)
1298 kdb_cmderror(diag);
1299 }
1300 KDB_DEBUG_STATE("kdb_local 9", diag);
1301 return diag;
1302}
1303
1304
1305/*
1306 * kdb_print_state - Print the state data for the current processor
1307 * for debugging.
1308 * Inputs:
1309 * text Identifies the debug point
1310 * value Any integer value to be printed, e.g. reason code.
1311 */
1312void kdb_print_state(const char *text, int value)
1313{
1314 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1315 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1316 kdb_state);
1317}
1318
1319/*
1320 * kdb_main_loop - After initial setup and assignment of the
1321 * controlling cpu, all cpus are in this loop. One cpu is in
1322 * control and will issue the kdb prompt, the others will spin
1323 * until 'go' or cpu switch.
1324 *
1325 * To get a consistent view of the kernel stacks for all
1326 * processes, this routine is invoked from the main kdb code via
1327 * an architecture specific routine. kdba_main_loop is
1328 * responsible for making the kernel stacks consistent for all
1329 * processes, there should be no difference between a blocked
1330 * process and a running process as far as kdb is concerned.
1331 * Inputs:
1332 * reason The reason KDB was invoked
1333 * error The hardware-defined error code
1334 * reason2 kdb's current reason code.
1335 * Initially error but can change
1336 * according to kdb state.
1337 * db_result Result code from break or debug point.
1338 * regs The exception frame at time of fault/breakpoint.
1339 * should always be valid.
1340 * Returns:
1341 * 0 KDB was invoked for an event which it wasn't responsible
1342 * 1 KDB handled the event for which it was invoked.
1343 */
1344int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1345 kdb_dbtrap_t db_result, struct pt_regs *regs)
1346{
1347 int result = 1;
1348 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1349 while (1) {
1350 /*
1351 * All processors except the one that is in control
1352 * will spin here.
1353 */
1354 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1355 while (KDB_STATE(HOLD_CPU)) {
1356 /* state KDB is turned off by kdb_cpu to see if the
1357 * other cpus are still live, each cpu in this loop
1358 * turns it back on.
1359 */
1360 if (!KDB_STATE(KDB))
1361 KDB_STATE_SET(KDB);
1362 }
1363
1364 KDB_STATE_CLEAR(SUPPRESS);
1365 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1366 if (KDB_STATE(LEAVING))
1367 break; /* Another cpu said 'go' */
1368 /* Still using kdb, this processor is in control */
1369 result = kdb_local(reason2, error, regs, db_result);
1370 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1371
1372 if (result == KDB_CMD_CPU)
1373 break;
1374
1375 if (result == KDB_CMD_SS) {
1376 KDB_STATE_SET(DOING_SS);
1377 break;
1378 }
1379
1380 if (result == KDB_CMD_KGDB) {
1381 if (!KDB_STATE(DOING_KGDB))
1382 kdb_printf("Entering please attach debugger "
1383 "or use $D#44+ or $3#33\n");
1384 break;
1385 }
1386 if (result && result != 1 && result != KDB_CMD_GO)
1387 kdb_printf("\nUnexpected kdb_local return code %d\n",
1388 result);
1389 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1390 break;
1391 }
1392 if (KDB_STATE(DOING_SS))
1393 KDB_STATE_CLEAR(SSBPT);
1394
1395 /* Clean up any keyboard devices before leaving */
1396 kdb_kbd_cleanup_state();
1397
1398 return result;
1399}
1400
1401/*
1402 * kdb_mdr - This function implements the guts of the 'mdr', memory
1403 * read command.
1404 * mdr <addr arg>,<byte count>
1405 * Inputs:
1406 * addr Start address
1407 * count Number of bytes
1408 * Returns:
1409 * Always 0. Any errors are detected and printed by kdb_getarea.
1410 */
1411static int kdb_mdr(unsigned long addr, unsigned int count)
1412{
1413 unsigned char c;
1414 while (count--) {
1415 if (kdb_getarea(c, addr))
1416 return 0;
1417 kdb_printf("%02x", c);
1418 addr++;
1419 }
1420 kdb_printf("\n");
1421 return 0;
1422}
1423
1424/*
1425 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1426 * 'md8' 'mdr' and 'mds' commands.
1427 *
1428 * md|mds [<addr arg> [<line count> [<radix>]]]
1429 * mdWcN [<addr arg> [<line count> [<radix>]]]
1430 * where W = is the width (1, 2, 4 or 8) and N is the count.
1431 * for eg., md1c20 reads 20 bytes, 1 at a time.
1432 * mdr <addr arg>,<byte count>
1433 */
1434static void kdb_md_line(const char *fmtstr, unsigned long addr,
1435 int symbolic, int nosect, int bytesperword,
1436 int num, int repeat, int phys)
1437{
1438 /* print just one line of data */
1439 kdb_symtab_t symtab;
1440 char cbuf[32];
1441 char *c = cbuf;
1442 int i;
1443 unsigned long word;
1444
1445 memset(cbuf, '\0', sizeof(cbuf));
1446 if (phys)
1447 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1448 else
1449 kdb_printf(kdb_machreg_fmt0 " ", addr);
1450
1451 for (i = 0; i < num && repeat--; i++) {
1452 if (phys) {
1453 if (kdb_getphysword(&word, addr, bytesperword))
1454 break;
1455 } else if (kdb_getword(&word, addr, bytesperword))
1456 break;
1457 kdb_printf(fmtstr, word);
1458 if (symbolic)
1459 kdbnearsym(word, &symtab);
1460 else
1461 memset(&symtab, 0, sizeof(symtab));
1462 if (symtab.sym_name) {
1463 kdb_symbol_print(word, &symtab, 0);
1464 if (!nosect) {
1465 kdb_printf("\n");
1466 kdb_printf(" %s %s "
1467 kdb_machreg_fmt " "
1468 kdb_machreg_fmt " "
1469 kdb_machreg_fmt, symtab.mod_name,
1470 symtab.sec_name, symtab.sec_start,
1471 symtab.sym_start, symtab.sym_end);
1472 }
1473 addr += bytesperword;
1474 } else {
1475 union {
1476 u64 word;
1477 unsigned char c[8];
1478 } wc;
1479 unsigned char *cp;
1480#ifdef __BIG_ENDIAN
1481 cp = wc.c + 8 - bytesperword;
1482#else
1483 cp = wc.c;
1484#endif
1485 wc.word = word;
1486#define printable_char(c) \
1487 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1488 switch (bytesperword) {
1489 case 8:
1490 *c++ = printable_char(*cp++);
1491 *c++ = printable_char(*cp++);
1492 *c++ = printable_char(*cp++);
1493 *c++ = printable_char(*cp++);
1494 addr += 4;
1495 case 4:
1496 *c++ = printable_char(*cp++);
1497 *c++ = printable_char(*cp++);
1498 addr += 2;
1499 case 2:
1500 *c++ = printable_char(*cp++);
1501 addr++;
1502 case 1:
1503 *c++ = printable_char(*cp++);
1504 addr++;
1505 break;
1506 }
1507#undef printable_char
1508 }
1509 }
1510 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1511 " ", cbuf);
1512}
1513
1514static int kdb_md(int argc, const char **argv)
1515{
1516 static unsigned long last_addr;
1517 static int last_radix, last_bytesperword, last_repeat;
1518 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1519 int nosect = 0;
1520 char fmtchar, fmtstr[64];
1521 unsigned long addr;
1522 unsigned long word;
1523 long offset = 0;
1524 int symbolic = 0;
1525 int valid = 0;
1526 int phys = 0;
1527
1528 kdbgetintenv("MDCOUNT", &mdcount);
1529 kdbgetintenv("RADIX", &radix);
1530 kdbgetintenv("BYTESPERWORD", &bytesperword);
1531
1532 /* Assume 'md <addr>' and start with environment values */
1533 repeat = mdcount * 16 / bytesperword;
1534
1535 if (strcmp(argv[0], "mdr") == 0) {
1536 if (argc != 2)
1537 return KDB_ARGCOUNT;
1538 valid = 1;
1539 } else if (isdigit(argv[0][2])) {
1540 bytesperword = (int)(argv[0][2] - '0');
1541 if (bytesperword == 0) {
1542 bytesperword = last_bytesperword;
1543 if (bytesperword == 0)
1544 bytesperword = 4;
1545 }
1546 last_bytesperword = bytesperword;
1547 repeat = mdcount * 16 / bytesperword;
1548 if (!argv[0][3])
1549 valid = 1;
1550 else if (argv[0][3] == 'c' && argv[0][4]) {
1551 char *p;
1552 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1553 mdcount = ((repeat * bytesperword) + 15) / 16;
1554 valid = !*p;
1555 }
1556 last_repeat = repeat;
1557 } else if (strcmp(argv[0], "md") == 0)
1558 valid = 1;
1559 else if (strcmp(argv[0], "mds") == 0)
1560 valid = 1;
1561 else if (strcmp(argv[0], "mdp") == 0) {
1562 phys = valid = 1;
1563 }
1564 if (!valid)
1565 return KDB_NOTFOUND;
1566
1567 if (argc == 0) {
1568 if (last_addr == 0)
1569 return KDB_ARGCOUNT;
1570 addr = last_addr;
1571 radix = last_radix;
1572 bytesperword = last_bytesperword;
1573 repeat = last_repeat;
1574 mdcount = ((repeat * bytesperword) + 15) / 16;
1575 }
1576
1577 if (argc) {
1578 unsigned long val;
1579 int diag, nextarg = 1;
1580 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1581 &offset, NULL);
1582 if (diag)
1583 return diag;
1584 if (argc > nextarg+2)
1585 return KDB_ARGCOUNT;
1586
1587 if (argc >= nextarg) {
1588 diag = kdbgetularg(argv[nextarg], &val);
1589 if (!diag) {
1590 mdcount = (int) val;
1591 repeat = mdcount * 16 / bytesperword;
1592 }
1593 }
1594 if (argc >= nextarg+1) {
1595 diag = kdbgetularg(argv[nextarg+1], &val);
1596 if (!diag)
1597 radix = (int) val;
1598 }
1599 }
1600
1601 if (strcmp(argv[0], "mdr") == 0)
1602 return kdb_mdr(addr, mdcount);
1603
1604 switch (radix) {
1605 case 10:
1606 fmtchar = 'd';
1607 break;
1608 case 16:
1609 fmtchar = 'x';
1610 break;
1611 case 8:
1612 fmtchar = 'o';
1613 break;
1614 default:
1615 return KDB_BADRADIX;
1616 }
1617
1618 last_radix = radix;
1619
1620 if (bytesperword > KDB_WORD_SIZE)
1621 return KDB_BADWIDTH;
1622
1623 switch (bytesperword) {
1624 case 8:
1625 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1626 break;
1627 case 4:
1628 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1629 break;
1630 case 2:
1631 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1632 break;
1633 case 1:
1634 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1635 break;
1636 default:
1637 return KDB_BADWIDTH;
1638 }
1639
1640 last_repeat = repeat;
1641 last_bytesperword = bytesperword;
1642
1643 if (strcmp(argv[0], "mds") == 0) {
1644 symbolic = 1;
1645 /* Do not save these changes as last_*, they are temporary mds
1646 * overrides.
1647 */
1648 bytesperword = KDB_WORD_SIZE;
1649 repeat = mdcount;
1650 kdbgetintenv("NOSECT", &nosect);
1651 }
1652
1653 /* Round address down modulo BYTESPERWORD */
1654
1655 addr &= ~(bytesperword-1);
1656
1657 while (repeat > 0) {
1658 unsigned long a;
1659 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1660
1661 if (KDB_FLAG(CMD_INTERRUPT))
1662 return 0;
1663 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1664 if (phys) {
1665 if (kdb_getphysword(&word, a, bytesperword)
1666 || word)
1667 break;
1668 } else if (kdb_getword(&word, a, bytesperword) || word)
1669 break;
1670 }
1671 n = min(num, repeat);
1672 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1673 num, repeat, phys);
1674 addr += bytesperword * n;
1675 repeat -= n;
1676 z = (z + num - 1) / num;
1677 if (z > 2) {
1678 int s = num * (z-2);
1679 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1680 " zero suppressed\n",
1681 addr, addr + bytesperword * s - 1);
1682 addr += bytesperword * s;
1683 repeat -= s;
1684 }
1685 }
1686 last_addr = addr;
1687
1688 return 0;
1689}
1690
1691/*
1692 * kdb_mm - This function implements the 'mm' command.
1693 * mm address-expression new-value
1694 * Remarks:
1695 * mm works on machine words, mmW works on bytes.
1696 */
1697static int kdb_mm(int argc, const char **argv)
1698{
1699 int diag;
1700 unsigned long addr;
1701 long offset = 0;
1702 unsigned long contents;
1703 int nextarg;
1704 int width;
1705
1706 if (argv[0][2] && !isdigit(argv[0][2]))
1707 return KDB_NOTFOUND;
1708
1709 if (argc < 2)
1710 return KDB_ARGCOUNT;
1711
1712 nextarg = 1;
1713 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1714 if (diag)
1715 return diag;
1716
1717 if (nextarg > argc)
1718 return KDB_ARGCOUNT;
1719 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1720 if (diag)
1721 return diag;
1722
1723 if (nextarg != argc + 1)
1724 return KDB_ARGCOUNT;
1725
1726 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1727 diag = kdb_putword(addr, contents, width);
1728 if (diag)
1729 return diag;
1730
1731 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1732
1733 return 0;
1734}
1735
1736/*
1737 * kdb_go - This function implements the 'go' command.
1738 * go [address-expression]
1739 */
1740static int kdb_go(int argc, const char **argv)
1741{
1742 unsigned long addr;
1743 int diag;
1744 int nextarg;
1745 long offset;
1746
1747 if (raw_smp_processor_id() != kdb_initial_cpu) {
1748 kdb_printf("go must execute on the entry cpu, "
1749 "please use \"cpu %d\" and then execute go\n",
1750 kdb_initial_cpu);
1751 return KDB_BADCPUNUM;
1752 }
1753 if (argc == 1) {
1754 nextarg = 1;
1755 diag = kdbgetaddrarg(argc, argv, &nextarg,
1756 &addr, &offset, NULL);
1757 if (diag)
1758 return diag;
1759 } else if (argc) {
1760 return KDB_ARGCOUNT;
1761 }
1762
1763 diag = KDB_CMD_GO;
1764 if (KDB_FLAG(CATASTROPHIC)) {
1765 kdb_printf("Catastrophic error detected\n");
1766 kdb_printf("kdb_continue_catastrophic=%d, ",
1767 kdb_continue_catastrophic);
1768 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1769 kdb_printf("type go a second time if you really want "
1770 "to continue\n");
1771 return 0;
1772 }
1773 if (kdb_continue_catastrophic == 2) {
1774 kdb_printf("forcing reboot\n");
1775 kdb_reboot(0, NULL);
1776 }
1777 kdb_printf("attempting to continue\n");
1778 }
1779 return diag;
1780}
1781
1782/*
1783 * kdb_rd - This function implements the 'rd' command.
1784 */
1785static int kdb_rd(int argc, const char **argv)
1786{
1787 int len = kdb_check_regs();
1788#if DBG_MAX_REG_NUM > 0
1789 int i;
1790 char *rname;
1791 int rsize;
1792 u64 reg64;
1793 u32 reg32;
1794 u16 reg16;
1795 u8 reg8;
1796
1797 if (len)
1798 return len;
1799
1800 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1801 rsize = dbg_reg_def[i].size * 2;
1802 if (rsize > 16)
1803 rsize = 2;
1804 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1805 len = 0;
1806 kdb_printf("\n");
1807 }
1808 if (len)
1809 len += kdb_printf(" ");
1810 switch(dbg_reg_def[i].size * 8) {
1811 case 8:
1812 rname = dbg_get_reg(i, ®8, kdb_current_regs);
1813 if (!rname)
1814 break;
1815 len += kdb_printf("%s: %02x", rname, reg8);
1816 break;
1817 case 16:
1818 rname = dbg_get_reg(i, ®16, kdb_current_regs);
1819 if (!rname)
1820 break;
1821 len += kdb_printf("%s: %04x", rname, reg16);
1822 break;
1823 case 32:
1824 rname = dbg_get_reg(i, ®32, kdb_current_regs);
1825 if (!rname)
1826 break;
1827 len += kdb_printf("%s: %08x", rname, reg32);
1828 break;
1829 case 64:
1830 rname = dbg_get_reg(i, ®64, kdb_current_regs);
1831 if (!rname)
1832 break;
1833 len += kdb_printf("%s: %016llx", rname, reg64);
1834 break;
1835 default:
1836 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1837 }
1838 }
1839 kdb_printf("\n");
1840#else
1841 if (len)
1842 return len;
1843
1844 kdb_dumpregs(kdb_current_regs);
1845#endif
1846 return 0;
1847}
1848
1849/*
1850 * kdb_rm - This function implements the 'rm' (register modify) command.
1851 * rm register-name new-contents
1852 * Remarks:
1853 * Allows register modification with the same restrictions as gdb
1854 */
1855static int kdb_rm(int argc, const char **argv)
1856{
1857#if DBG_MAX_REG_NUM > 0
1858 int diag;
1859 const char *rname;
1860 int i;
1861 u64 reg64;
1862 u32 reg32;
1863 u16 reg16;
1864 u8 reg8;
1865
1866 if (argc != 2)
1867 return KDB_ARGCOUNT;
1868 /*
1869 * Allow presence or absence of leading '%' symbol.
1870 */
1871 rname = argv[1];
1872 if (*rname == '%')
1873 rname++;
1874
1875 diag = kdbgetu64arg(argv[2], ®64);
1876 if (diag)
1877 return diag;
1878
1879 diag = kdb_check_regs();
1880 if (diag)
1881 return diag;
1882
1883 diag = KDB_BADREG;
1884 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1885 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1886 diag = 0;
1887 break;
1888 }
1889 }
1890 if (!diag) {
1891 switch(dbg_reg_def[i].size * 8) {
1892 case 8:
1893 reg8 = reg64;
1894 dbg_set_reg(i, ®8, kdb_current_regs);
1895 break;
1896 case 16:
1897 reg16 = reg64;
1898 dbg_set_reg(i, ®16, kdb_current_regs);
1899 break;
1900 case 32:
1901 reg32 = reg64;
1902 dbg_set_reg(i, ®32, kdb_current_regs);
1903 break;
1904 case 64:
1905 dbg_set_reg(i, ®64, kdb_current_regs);
1906 break;
1907 }
1908 }
1909 return diag;
1910#else
1911 kdb_printf("ERROR: Register set currently not implemented\n");
1912 return 0;
1913#endif
1914}
1915
1916#if defined(CONFIG_MAGIC_SYSRQ)
1917/*
1918 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1919 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1920 * sr <magic-sysrq-code>
1921 */
1922static int kdb_sr(int argc, const char **argv)
1923{
1924 if (argc != 1)
1925 return KDB_ARGCOUNT;
1926 kdb_trap_printk++;
1927 __handle_sysrq(*argv[1], false);
1928 kdb_trap_printk--;
1929
1930 return 0;
1931}
1932#endif /* CONFIG_MAGIC_SYSRQ */
1933
1934/*
1935 * kdb_ef - This function implements the 'regs' (display exception
1936 * frame) command. This command takes an address and expects to
1937 * find an exception frame at that address, formats and prints
1938 * it.
1939 * regs address-expression
1940 * Remarks:
1941 * Not done yet.
1942 */
1943static int kdb_ef(int argc, const char **argv)
1944{
1945 int diag;
1946 unsigned long addr;
1947 long offset;
1948 int nextarg;
1949
1950 if (argc != 1)
1951 return KDB_ARGCOUNT;
1952
1953 nextarg = 1;
1954 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1955 if (diag)
1956 return diag;
1957 show_regs((struct pt_regs *)addr);
1958 return 0;
1959}
1960
1961#if defined(CONFIG_MODULES)
1962/*
1963 * kdb_lsmod - This function implements the 'lsmod' command. Lists
1964 * currently loaded kernel modules.
1965 * Mostly taken from userland lsmod.
1966 */
1967static int kdb_lsmod(int argc, const char **argv)
1968{
1969 struct module *mod;
1970
1971 if (argc != 0)
1972 return KDB_ARGCOUNT;
1973
1974 kdb_printf("Module Size modstruct Used by\n");
1975 list_for_each_entry(mod, kdb_modules, list) {
1976 if (mod->state == MODULE_STATE_UNFORMED)
1977 continue;
1978
1979 kdb_printf("%-20s%8u 0x%p ", mod->name,
1980 mod->core_size, (void *)mod);
1981#ifdef CONFIG_MODULE_UNLOAD
1982 kdb_printf("%4ld ", module_refcount(mod));
1983#endif
1984 if (mod->state == MODULE_STATE_GOING)
1985 kdb_printf(" (Unloading)");
1986 else if (mod->state == MODULE_STATE_COMING)
1987 kdb_printf(" (Loading)");
1988 else
1989 kdb_printf(" (Live)");
1990 kdb_printf(" 0x%p", mod->module_core);
1991
1992#ifdef CONFIG_MODULE_UNLOAD
1993 {
1994 struct module_use *use;
1995 kdb_printf(" [ ");
1996 list_for_each_entry(use, &mod->source_list,
1997 source_list)
1998 kdb_printf("%s ", use->target->name);
1999 kdb_printf("]\n");
2000 }
2001#endif
2002 }
2003
2004 return 0;
2005}
2006
2007#endif /* CONFIG_MODULES */
2008
2009/*
2010 * kdb_env - This function implements the 'env' command. Display the
2011 * current environment variables.
2012 */
2013
2014static int kdb_env(int argc, const char **argv)
2015{
2016 int i;
2017
2018 for (i = 0; i < __nenv; i++) {
2019 if (__env[i])
2020 kdb_printf("%s\n", __env[i]);
2021 }
2022
2023 if (KDB_DEBUG(MASK))
2024 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2025
2026 return 0;
2027}
2028
2029#ifdef CONFIG_PRINTK
2030/*
2031 * kdb_dmesg - This function implements the 'dmesg' command to display
2032 * the contents of the syslog buffer.
2033 * dmesg [lines] [adjust]
2034 */
2035static int kdb_dmesg(int argc, const char **argv)
2036{
2037 int diag;
2038 int logging;
2039 int lines = 0;
2040 int adjust = 0;
2041 int n = 0;
2042 int skip = 0;
2043 struct kmsg_dumper dumper = { .active = 1 };
2044 size_t len;
2045 char buf[201];
2046
2047 if (argc > 2)
2048 return KDB_ARGCOUNT;
2049 if (argc) {
2050 char *cp;
2051 lines = simple_strtol(argv[1], &cp, 0);
2052 if (*cp)
2053 lines = 0;
2054 if (argc > 1) {
2055 adjust = simple_strtoul(argv[2], &cp, 0);
2056 if (*cp || adjust < 0)
2057 adjust = 0;
2058 }
2059 }
2060
2061 /* disable LOGGING if set */
2062 diag = kdbgetintenv("LOGGING", &logging);
2063 if (!diag && logging) {
2064 const char *setargs[] = { "set", "LOGGING", "0" };
2065 kdb_set(2, setargs);
2066 }
2067
2068 kmsg_dump_rewind_nolock(&dumper);
2069 while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2070 n++;
2071
2072 if (lines < 0) {
2073 if (adjust >= n)
2074 kdb_printf("buffer only contains %d lines, nothing "
2075 "printed\n", n);
2076 else if (adjust - lines >= n)
2077 kdb_printf("buffer only contains %d lines, last %d "
2078 "lines printed\n", n, n - adjust);
2079 skip = adjust;
2080 lines = abs(lines);
2081 } else if (lines > 0) {
2082 skip = n - lines - adjust;
2083 lines = abs(lines);
2084 if (adjust >= n) {
2085 kdb_printf("buffer only contains %d lines, "
2086 "nothing printed\n", n);
2087 skip = n;
2088 } else if (skip < 0) {
2089 lines += skip;
2090 skip = 0;
2091 kdb_printf("buffer only contains %d lines, first "
2092 "%d lines printed\n", n, lines);
2093 }
2094 } else {
2095 lines = n;
2096 }
2097
2098 if (skip >= n || skip < 0)
2099 return 0;
2100
2101 kmsg_dump_rewind_nolock(&dumper);
2102 while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2103 if (skip) {
2104 skip--;
2105 continue;
2106 }
2107 if (!lines--)
2108 break;
2109 if (KDB_FLAG(CMD_INTERRUPT))
2110 return 0;
2111
2112 kdb_printf("%.*s\n", (int)len - 1, buf);
2113 }
2114
2115 return 0;
2116}
2117#endif /* CONFIG_PRINTK */
2118
2119/* Make sure we balance enable/disable calls, must disable first. */
2120static atomic_t kdb_nmi_disabled;
2121
2122static int kdb_disable_nmi(int argc, const char *argv[])
2123{
2124 if (atomic_read(&kdb_nmi_disabled))
2125 return 0;
2126 atomic_set(&kdb_nmi_disabled, 1);
2127 arch_kgdb_ops.enable_nmi(0);
2128 return 0;
2129}
2130
2131static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2132{
2133 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2134 return -EINVAL;
2135 arch_kgdb_ops.enable_nmi(1);
2136 return 0;
2137}
2138
2139static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2140 .set = kdb_param_enable_nmi,
2141};
2142module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2143
2144/*
2145 * kdb_cpu - This function implements the 'cpu' command.
2146 * cpu [<cpunum>]
2147 * Returns:
2148 * KDB_CMD_CPU for success, a kdb diagnostic if error
2149 */
2150static void kdb_cpu_status(void)
2151{
2152 int i, start_cpu, first_print = 1;
2153 char state, prev_state = '?';
2154
2155 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2156 kdb_printf("Available cpus: ");
2157 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2158 if (!cpu_online(i)) {
2159 state = 'F'; /* cpu is offline */
2160 } else {
2161 state = ' '; /* cpu is responding to kdb */
2162 if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2163 state = 'I'; /* idle task */
2164 }
2165 if (state != prev_state) {
2166 if (prev_state != '?') {
2167 if (!first_print)
2168 kdb_printf(", ");
2169 first_print = 0;
2170 kdb_printf("%d", start_cpu);
2171 if (start_cpu < i-1)
2172 kdb_printf("-%d", i-1);
2173 if (prev_state != ' ')
2174 kdb_printf("(%c)", prev_state);
2175 }
2176 prev_state = state;
2177 start_cpu = i;
2178 }
2179 }
2180 /* print the trailing cpus, ignoring them if they are all offline */
2181 if (prev_state != 'F') {
2182 if (!first_print)
2183 kdb_printf(", ");
2184 kdb_printf("%d", start_cpu);
2185 if (start_cpu < i-1)
2186 kdb_printf("-%d", i-1);
2187 if (prev_state != ' ')
2188 kdb_printf("(%c)", prev_state);
2189 }
2190 kdb_printf("\n");
2191}
2192
2193static int kdb_cpu(int argc, const char **argv)
2194{
2195 unsigned long cpunum;
2196 int diag;
2197
2198 if (argc == 0) {
2199 kdb_cpu_status();
2200 return 0;
2201 }
2202
2203 if (argc != 1)
2204 return KDB_ARGCOUNT;
2205
2206 diag = kdbgetularg(argv[1], &cpunum);
2207 if (diag)
2208 return diag;
2209
2210 /*
2211 * Validate cpunum
2212 */
2213 if ((cpunum > NR_CPUS) || !cpu_online(cpunum))
2214 return KDB_BADCPUNUM;
2215
2216 dbg_switch_cpu = cpunum;
2217
2218 /*
2219 * Switch to other cpu
2220 */
2221 return KDB_CMD_CPU;
2222}
2223
2224/* The user may not realize that ps/bta with no parameters does not print idle
2225 * or sleeping system daemon processes, so tell them how many were suppressed.
2226 */
2227void kdb_ps_suppressed(void)
2228{
2229 int idle = 0, daemon = 0;
2230 unsigned long mask_I = kdb_task_state_string("I"),
2231 mask_M = kdb_task_state_string("M");
2232 unsigned long cpu;
2233 const struct task_struct *p, *g;
2234 for_each_online_cpu(cpu) {
2235 p = kdb_curr_task(cpu);
2236 if (kdb_task_state(p, mask_I))
2237 ++idle;
2238 }
2239 kdb_do_each_thread(g, p) {
2240 if (kdb_task_state(p, mask_M))
2241 ++daemon;
2242 } kdb_while_each_thread(g, p);
2243 if (idle || daemon) {
2244 if (idle)
2245 kdb_printf("%d idle process%s (state I)%s\n",
2246 idle, idle == 1 ? "" : "es",
2247 daemon ? " and " : "");
2248 if (daemon)
2249 kdb_printf("%d sleeping system daemon (state M) "
2250 "process%s", daemon,
2251 daemon == 1 ? "" : "es");
2252 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2253 }
2254}
2255
2256/*
2257 * kdb_ps - This function implements the 'ps' command which shows a
2258 * list of the active processes.
2259 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2260 */
2261void kdb_ps1(const struct task_struct *p)
2262{
2263 int cpu;
2264 unsigned long tmp;
2265
2266 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2267 return;
2268
2269 cpu = kdb_process_cpu(p);
2270 kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n",
2271 (void *)p, p->pid, p->parent->pid,
2272 kdb_task_has_cpu(p), kdb_process_cpu(p),
2273 kdb_task_state_char(p),
2274 (void *)(&p->thread),
2275 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2276 p->comm);
2277 if (kdb_task_has_cpu(p)) {
2278 if (!KDB_TSK(cpu)) {
2279 kdb_printf(" Error: no saved data for this cpu\n");
2280 } else {
2281 if (KDB_TSK(cpu) != p)
2282 kdb_printf(" Error: does not match running "
2283 "process table (0x%p)\n", KDB_TSK(cpu));
2284 }
2285 }
2286}
2287
2288static int kdb_ps(int argc, const char **argv)
2289{
2290 struct task_struct *g, *p;
2291 unsigned long mask, cpu;
2292
2293 if (argc == 0)
2294 kdb_ps_suppressed();
2295 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2296 (int)(2*sizeof(void *))+2, "Task Addr",
2297 (int)(2*sizeof(void *))+2, "Thread");
2298 mask = kdb_task_state_string(argc ? argv[1] : NULL);
2299 /* Run the active tasks first */
2300 for_each_online_cpu(cpu) {
2301 if (KDB_FLAG(CMD_INTERRUPT))
2302 return 0;
2303 p = kdb_curr_task(cpu);
2304 if (kdb_task_state(p, mask))
2305 kdb_ps1(p);
2306 }
2307 kdb_printf("\n");
2308 /* Now the real tasks */
2309 kdb_do_each_thread(g, p) {
2310 if (KDB_FLAG(CMD_INTERRUPT))
2311 return 0;
2312 if (kdb_task_state(p, mask))
2313 kdb_ps1(p);
2314 } kdb_while_each_thread(g, p);
2315
2316 return 0;
2317}
2318
2319/*
2320 * kdb_pid - This function implements the 'pid' command which switches
2321 * the currently active process.
2322 * pid [<pid> | R]
2323 */
2324static int kdb_pid(int argc, const char **argv)
2325{
2326 struct task_struct *p;
2327 unsigned long val;
2328 int diag;
2329
2330 if (argc > 1)
2331 return KDB_ARGCOUNT;
2332
2333 if (argc) {
2334 if (strcmp(argv[1], "R") == 0) {
2335 p = KDB_TSK(kdb_initial_cpu);
2336 } else {
2337 diag = kdbgetularg(argv[1], &val);
2338 if (diag)
2339 return KDB_BADINT;
2340
2341 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2342 if (!p) {
2343 kdb_printf("No task with pid=%d\n", (pid_t)val);
2344 return 0;
2345 }
2346 }
2347 kdb_set_current_task(p);
2348 }
2349 kdb_printf("KDB current process is %s(pid=%d)\n",
2350 kdb_current_task->comm,
2351 kdb_current_task->pid);
2352
2353 return 0;
2354}
2355
2356static int kdb_kgdb(int argc, const char **argv)
2357{
2358 return KDB_CMD_KGDB;
2359}
2360
2361/*
2362 * kdb_help - This function implements the 'help' and '?' commands.
2363 */
2364static int kdb_help(int argc, const char **argv)
2365{
2366 kdbtab_t *kt;
2367 int i;
2368
2369 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2370 kdb_printf("-----------------------------"
2371 "-----------------------------\n");
2372 for_each_kdbcmd(kt, i) {
2373 char *space = "";
2374 if (KDB_FLAG(CMD_INTERRUPT))
2375 return 0;
2376 if (!kt->cmd_name)
2377 continue;
2378 if (strlen(kt->cmd_usage) > 20)
2379 space = "\n ";
2380 kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2381 kt->cmd_usage, space, kt->cmd_help);
2382 }
2383 return 0;
2384}
2385
2386/*
2387 * kdb_kill - This function implements the 'kill' commands.
2388 */
2389static int kdb_kill(int argc, const char **argv)
2390{
2391 long sig, pid;
2392 char *endp;
2393 struct task_struct *p;
2394 struct siginfo info;
2395
2396 if (argc != 2)
2397 return KDB_ARGCOUNT;
2398
2399 sig = simple_strtol(argv[1], &endp, 0);
2400 if (*endp)
2401 return KDB_BADINT;
2402 if (sig >= 0) {
2403 kdb_printf("Invalid signal parameter.<-signal>\n");
2404 return 0;
2405 }
2406 sig = -sig;
2407
2408 pid = simple_strtol(argv[2], &endp, 0);
2409 if (*endp)
2410 return KDB_BADINT;
2411 if (pid <= 0) {
2412 kdb_printf("Process ID must be large than 0.\n");
2413 return 0;
2414 }
2415
2416 /* Find the process. */
2417 p = find_task_by_pid_ns(pid, &init_pid_ns);
2418 if (!p) {
2419 kdb_printf("The specified process isn't found.\n");
2420 return 0;
2421 }
2422 p = p->group_leader;
2423 info.si_signo = sig;
2424 info.si_errno = 0;
2425 info.si_code = SI_USER;
2426 info.si_pid = pid; /* same capabilities as process being signalled */
2427 info.si_uid = 0; /* kdb has root authority */
2428 kdb_send_sig_info(p, &info);
2429 return 0;
2430}
2431
2432struct kdb_tm {
2433 int tm_sec; /* seconds */
2434 int tm_min; /* minutes */
2435 int tm_hour; /* hours */
2436 int tm_mday; /* day of the month */
2437 int tm_mon; /* month */
2438 int tm_year; /* year */
2439};
2440
2441static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2442{
2443 /* This will work from 1970-2099, 2100 is not a leap year */
2444 static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2445 31, 30, 31, 30, 31 };
2446 memset(tm, 0, sizeof(*tm));
2447 tm->tm_sec = tv->tv_sec % (24 * 60 * 60);
2448 tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2449 (2 * 365 + 1); /* shift base from 1970 to 1968 */
2450 tm->tm_min = tm->tm_sec / 60 % 60;
2451 tm->tm_hour = tm->tm_sec / 60 / 60;
2452 tm->tm_sec = tm->tm_sec % 60;
2453 tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2454 tm->tm_mday %= (4*365+1);
2455 mon_day[1] = 29;
2456 while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2457 tm->tm_mday -= mon_day[tm->tm_mon];
2458 if (++tm->tm_mon == 12) {
2459 tm->tm_mon = 0;
2460 ++tm->tm_year;
2461 mon_day[1] = 28;
2462 }
2463 }
2464 ++tm->tm_mday;
2465}
2466
2467/*
2468 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2469 * I cannot call that code directly from kdb, it has an unconditional
2470 * cli()/sti() and calls routines that take locks which can stop the debugger.
2471 */
2472static void kdb_sysinfo(struct sysinfo *val)
2473{
2474 struct timespec uptime;
2475 do_posix_clock_monotonic_gettime(&uptime);
2476 memset(val, 0, sizeof(*val));
2477 val->uptime = uptime.tv_sec;
2478 val->loads[0] = avenrun[0];
2479 val->loads[1] = avenrun[1];
2480 val->loads[2] = avenrun[2];
2481 val->procs = nr_threads-1;
2482 si_meminfo(val);
2483
2484 return;
2485}
2486
2487/*
2488 * kdb_summary - This function implements the 'summary' command.
2489 */
2490static int kdb_summary(int argc, const char **argv)
2491{
2492 struct timespec now;
2493 struct kdb_tm tm;
2494 struct sysinfo val;
2495
2496 if (argc)
2497 return KDB_ARGCOUNT;
2498
2499 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2500 kdb_printf("release %s\n", init_uts_ns.name.release);
2501 kdb_printf("version %s\n", init_uts_ns.name.version);
2502 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2503 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2504 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2505 kdb_printf("ccversion %s\n", __stringify(CCVERSION));
2506
2507 now = __current_kernel_time();
2508 kdb_gmtime(&now, &tm);
2509 kdb_printf("date %04d-%02d-%02d %02d:%02d:%02d "
2510 "tz_minuteswest %d\n",
2511 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2512 tm.tm_hour, tm.tm_min, tm.tm_sec,
2513 sys_tz.tz_minuteswest);
2514
2515 kdb_sysinfo(&val);
2516 kdb_printf("uptime ");
2517 if (val.uptime > (24*60*60)) {
2518 int days = val.uptime / (24*60*60);
2519 val.uptime %= (24*60*60);
2520 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2521 }
2522 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2523
2524 /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2525
2526#define LOAD_INT(x) ((x) >> FSHIFT)
2527#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2528 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2529 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2530 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2531 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2532#undef LOAD_INT
2533#undef LOAD_FRAC
2534 /* Display in kilobytes */
2535#define K(x) ((x) << (PAGE_SHIFT - 10))
2536 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2537 "Buffers: %8lu kB\n",
2538 val.totalram, val.freeram, val.bufferram);
2539 return 0;
2540}
2541
2542/*
2543 * kdb_per_cpu - This function implements the 'per_cpu' command.
2544 */
2545static int kdb_per_cpu(int argc, const char **argv)
2546{
2547 char fmtstr[64];
2548 int cpu, diag, nextarg = 1;
2549 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2550
2551 if (argc < 1 || argc > 3)
2552 return KDB_ARGCOUNT;
2553
2554 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2555 if (diag)
2556 return diag;
2557
2558 if (argc >= 2) {
2559 diag = kdbgetularg(argv[2], &bytesperword);
2560 if (diag)
2561 return diag;
2562 }
2563 if (!bytesperword)
2564 bytesperword = KDB_WORD_SIZE;
2565 else if (bytesperword > KDB_WORD_SIZE)
2566 return KDB_BADWIDTH;
2567 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2568 if (argc >= 3) {
2569 diag = kdbgetularg(argv[3], &whichcpu);
2570 if (diag)
2571 return diag;
2572 if (!cpu_online(whichcpu)) {
2573 kdb_printf("cpu %ld is not online\n", whichcpu);
2574 return KDB_BADCPUNUM;
2575 }
2576 }
2577
2578 /* Most architectures use __per_cpu_offset[cpu], some use
2579 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2580 */
2581#ifdef __per_cpu_offset
2582#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2583#else
2584#ifdef CONFIG_SMP
2585#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2586#else
2587#define KDB_PCU(cpu) 0
2588#endif
2589#endif
2590 for_each_online_cpu(cpu) {
2591 if (KDB_FLAG(CMD_INTERRUPT))
2592 return 0;
2593
2594 if (whichcpu != ~0UL && whichcpu != cpu)
2595 continue;
2596 addr = symaddr + KDB_PCU(cpu);
2597 diag = kdb_getword(&val, addr, bytesperword);
2598 if (diag) {
2599 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2600 "read, diag=%d\n", cpu, addr, diag);
2601 continue;
2602 }
2603 kdb_printf("%5d ", cpu);
2604 kdb_md_line(fmtstr, addr,
2605 bytesperword == KDB_WORD_SIZE,
2606 1, bytesperword, 1, 1, 0);
2607 }
2608#undef KDB_PCU
2609 return 0;
2610}
2611
2612/*
2613 * display help for the use of cmd | grep pattern
2614 */
2615static int kdb_grep_help(int argc, const char **argv)
2616{
2617 kdb_printf("Usage of cmd args | grep pattern:\n");
2618 kdb_printf(" Any command's output may be filtered through an ");
2619 kdb_printf("emulated 'pipe'.\n");
2620 kdb_printf(" 'grep' is just a key word.\n");
2621 kdb_printf(" The pattern may include a very limited set of "
2622 "metacharacters:\n");
2623 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2624 kdb_printf(" And if there are spaces in the pattern, you may "
2625 "quote it:\n");
2626 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2627 " or \"^pat tern$\"\n");
2628 return 0;
2629}
2630
2631/*
2632 * kdb_register_repeat - This function is used to register a kernel
2633 * debugger command.
2634 * Inputs:
2635 * cmd Command name
2636 * func Function to execute the command
2637 * usage A simple usage string showing arguments
2638 * help A simple help string describing command
2639 * repeat Does the command auto repeat on enter?
2640 * Returns:
2641 * zero for success, one if a duplicate command.
2642 */
2643#define kdb_command_extend 50 /* arbitrary */
2644int kdb_register_repeat(char *cmd,
2645 kdb_func_t func,
2646 char *usage,
2647 char *help,
2648 short minlen,
2649 kdb_repeat_t repeat)
2650{
2651 int i;
2652 kdbtab_t *kp;
2653
2654 /*
2655 * Brute force method to determine duplicates
2656 */
2657 for_each_kdbcmd(kp, i) {
2658 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2659 kdb_printf("Duplicate kdb command registered: "
2660 "%s, func %p help %s\n", cmd, func, help);
2661 return 1;
2662 }
2663 }
2664
2665 /*
2666 * Insert command into first available location in table
2667 */
2668 for_each_kdbcmd(kp, i) {
2669 if (kp->cmd_name == NULL)
2670 break;
2671 }
2672
2673 if (i >= kdb_max_commands) {
2674 kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2675 kdb_command_extend) * sizeof(*new), GFP_KDB);
2676 if (!new) {
2677 kdb_printf("Could not allocate new kdb_command "
2678 "table\n");
2679 return 1;
2680 }
2681 if (kdb_commands) {
2682 memcpy(new, kdb_commands,
2683 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2684 kfree(kdb_commands);
2685 }
2686 memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2687 kdb_command_extend * sizeof(*new));
2688 kdb_commands = new;
2689 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2690 kdb_max_commands += kdb_command_extend;
2691 }
2692
2693 kp->cmd_name = cmd;
2694 kp->cmd_func = func;
2695 kp->cmd_usage = usage;
2696 kp->cmd_help = help;
2697 kp->cmd_flags = 0;
2698 kp->cmd_minlen = minlen;
2699 kp->cmd_repeat = repeat;
2700
2701 return 0;
2702}
2703EXPORT_SYMBOL_GPL(kdb_register_repeat);
2704
2705
2706/*
2707 * kdb_register - Compatibility register function for commands that do
2708 * not need to specify a repeat state. Equivalent to
2709 * kdb_register_repeat with KDB_REPEAT_NONE.
2710 * Inputs:
2711 * cmd Command name
2712 * func Function to execute the command
2713 * usage A simple usage string showing arguments
2714 * help A simple help string describing command
2715 * Returns:
2716 * zero for success, one if a duplicate command.
2717 */
2718int kdb_register(char *cmd,
2719 kdb_func_t func,
2720 char *usage,
2721 char *help,
2722 short minlen)
2723{
2724 return kdb_register_repeat(cmd, func, usage, help, minlen,
2725 KDB_REPEAT_NONE);
2726}
2727EXPORT_SYMBOL_GPL(kdb_register);
2728
2729/*
2730 * kdb_unregister - This function is used to unregister a kernel
2731 * debugger command. It is generally called when a module which
2732 * implements kdb commands is unloaded.
2733 * Inputs:
2734 * cmd Command name
2735 * Returns:
2736 * zero for success, one command not registered.
2737 */
2738int kdb_unregister(char *cmd)
2739{
2740 int i;
2741 kdbtab_t *kp;
2742
2743 /*
2744 * find the command.
2745 */
2746 for_each_kdbcmd(kp, i) {
2747 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2748 kp->cmd_name = NULL;
2749 return 0;
2750 }
2751 }
2752
2753 /* Couldn't find it. */
2754 return 1;
2755}
2756EXPORT_SYMBOL_GPL(kdb_unregister);
2757
2758/* Initialize the kdb command table. */
2759static void __init kdb_inittab(void)
2760{
2761 int i;
2762 kdbtab_t *kp;
2763
2764 for_each_kdbcmd(kp, i)
2765 kp->cmd_name = NULL;
2766
2767 kdb_register_repeat("md", kdb_md, "<vaddr>",
2768 "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2769 KDB_REPEAT_NO_ARGS);
2770 kdb_register_repeat("mdr", kdb_md, "<vaddr> <bytes>",
2771 "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS);
2772 kdb_register_repeat("mdp", kdb_md, "<paddr> <bytes>",
2773 "Display Physical Memory", 0, KDB_REPEAT_NO_ARGS);
2774 kdb_register_repeat("mds", kdb_md, "<vaddr>",
2775 "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS);
2776 kdb_register_repeat("mm", kdb_mm, "<vaddr> <contents>",
2777 "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS);
2778 kdb_register_repeat("go", kdb_go, "[<vaddr>]",
2779 "Continue Execution", 1, KDB_REPEAT_NONE);
2780 kdb_register_repeat("rd", kdb_rd, "",
2781 "Display Registers", 0, KDB_REPEAT_NONE);
2782 kdb_register_repeat("rm", kdb_rm, "<reg> <contents>",
2783 "Modify Registers", 0, KDB_REPEAT_NONE);
2784 kdb_register_repeat("ef", kdb_ef, "<vaddr>",
2785 "Display exception frame", 0, KDB_REPEAT_NONE);
2786 kdb_register_repeat("bt", kdb_bt, "[<vaddr>]",
2787 "Stack traceback", 1, KDB_REPEAT_NONE);
2788 kdb_register_repeat("btp", kdb_bt, "<pid>",
2789 "Display stack for process <pid>", 0, KDB_REPEAT_NONE);
2790 kdb_register_repeat("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2791 "Backtrace all processes matching state flag", 0, KDB_REPEAT_NONE);
2792 kdb_register_repeat("btc", kdb_bt, "",
2793 "Backtrace current process on each cpu", 0, KDB_REPEAT_NONE);
2794 kdb_register_repeat("btt", kdb_bt, "<vaddr>",
2795 "Backtrace process given its struct task address", 0,
2796 KDB_REPEAT_NONE);
2797 kdb_register_repeat("env", kdb_env, "",
2798 "Show environment variables", 0, KDB_REPEAT_NONE);
2799 kdb_register_repeat("set", kdb_set, "",
2800 "Set environment variables", 0, KDB_REPEAT_NONE);
2801 kdb_register_repeat("help", kdb_help, "",
2802 "Display Help Message", 1, KDB_REPEAT_NONE);
2803 kdb_register_repeat("?", kdb_help, "",
2804 "Display Help Message", 0, KDB_REPEAT_NONE);
2805 kdb_register_repeat("cpu", kdb_cpu, "<cpunum>",
2806 "Switch to new cpu", 0, KDB_REPEAT_NONE);
2807 kdb_register_repeat("kgdb", kdb_kgdb, "",
2808 "Enter kgdb mode", 0, KDB_REPEAT_NONE);
2809 kdb_register_repeat("ps", kdb_ps, "[<flags>|A]",
2810 "Display active task list", 0, KDB_REPEAT_NONE);
2811 kdb_register_repeat("pid", kdb_pid, "<pidnum>",
2812 "Switch to another task", 0, KDB_REPEAT_NONE);
2813 kdb_register_repeat("reboot", kdb_reboot, "",
2814 "Reboot the machine immediately", 0, KDB_REPEAT_NONE);
2815#if defined(CONFIG_MODULES)
2816 kdb_register_repeat("lsmod", kdb_lsmod, "",
2817 "List loaded kernel modules", 0, KDB_REPEAT_NONE);
2818#endif
2819#if defined(CONFIG_MAGIC_SYSRQ)
2820 kdb_register_repeat("sr", kdb_sr, "<key>",
2821 "Magic SysRq key", 0, KDB_REPEAT_NONE);
2822#endif
2823#if defined(CONFIG_PRINTK)
2824 kdb_register_repeat("dmesg", kdb_dmesg, "[lines]",
2825 "Display syslog buffer", 0, KDB_REPEAT_NONE);
2826#endif
2827 if (arch_kgdb_ops.enable_nmi) {
2828 kdb_register_repeat("disable_nmi", kdb_disable_nmi, "",
2829 "Disable NMI entry to KDB", 0, KDB_REPEAT_NONE);
2830 }
2831 kdb_register_repeat("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2832 "Define a set of commands, down to endefcmd", 0, KDB_REPEAT_NONE);
2833 kdb_register_repeat("kill", kdb_kill, "<-signal> <pid>",
2834 "Send a signal to a process", 0, KDB_REPEAT_NONE);
2835 kdb_register_repeat("summary", kdb_summary, "",
2836 "Summarize the system", 4, KDB_REPEAT_NONE);
2837 kdb_register_repeat("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2838 "Display per_cpu variables", 3, KDB_REPEAT_NONE);
2839 kdb_register_repeat("grephelp", kdb_grep_help, "",
2840 "Display help on | grep", 0, KDB_REPEAT_NONE);
2841}
2842
2843/* Execute any commands defined in kdb_cmds. */
2844static void __init kdb_cmd_init(void)
2845{
2846 int i, diag;
2847 for (i = 0; kdb_cmds[i]; ++i) {
2848 diag = kdb_parse(kdb_cmds[i]);
2849 if (diag)
2850 kdb_printf("kdb command %s failed, kdb diag %d\n",
2851 kdb_cmds[i], diag);
2852 }
2853 if (defcmd_in_progress) {
2854 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2855 kdb_parse("endefcmd");
2856 }
2857}
2858
2859/* Initialize kdb_printf, breakpoint tables and kdb state */
2860void __init kdb_init(int lvl)
2861{
2862 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2863 int i;
2864
2865 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2866 return;
2867 for (i = kdb_init_lvl; i < lvl; i++) {
2868 switch (i) {
2869 case KDB_NOT_INITIALIZED:
2870 kdb_inittab(); /* Initialize Command Table */
2871 kdb_initbptab(); /* Initialize Breakpoints */
2872 break;
2873 case KDB_INIT_EARLY:
2874 kdb_cmd_init(); /* Build kdb_cmds tables */
2875 break;
2876 }
2877 }
2878 kdb_init_lvl = lvl;
2879}
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
15#include <linux/types.h>
16#include <linux/string.h>
17#include <linux/kernel.h>
18#include <linux/kmsg_dump.h>
19#include <linux/reboot.h>
20#include <linux/sched.h>
21#include <linux/sched/loadavg.h>
22#include <linux/sched/stat.h>
23#include <linux/sched/debug.h>
24#include <linux/sysrq.h>
25#include <linux/smp.h>
26#include <linux/utsname.h>
27#include <linux/vmalloc.h>
28#include <linux/atomic.h>
29#include <linux/moduleparam.h>
30#include <linux/mm.h>
31#include <linux/init.h>
32#include <linux/kallsyms.h>
33#include <linux/kgdb.h>
34#include <linux/kdb.h>
35#include <linux/notifier.h>
36#include <linux/interrupt.h>
37#include <linux/delay.h>
38#include <linux/nmi.h>
39#include <linux/time.h>
40#include <linux/ptrace.h>
41#include <linux/sysctl.h>
42#include <linux/cpu.h>
43#include <linux/kdebug.h>
44#include <linux/proc_fs.h>
45#include <linux/uaccess.h>
46#include <linux/slab.h>
47#include <linux/security.h>
48#include "kdb_private.h"
49
50#undef MODULE_PARAM_PREFIX
51#define MODULE_PARAM_PREFIX "kdb."
52
53static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
54module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
55
56char kdb_grep_string[KDB_GREP_STRLEN];
57int kdb_grepping_flag;
58EXPORT_SYMBOL(kdb_grepping_flag);
59int kdb_grep_leading;
60int kdb_grep_trailing;
61
62/*
63 * Kernel debugger state flags
64 */
65unsigned int kdb_flags;
66
67/*
68 * kdb_lock protects updates to kdb_initial_cpu. Used to
69 * single thread processors through the kernel debugger.
70 */
71int kdb_initial_cpu = -1; /* cpu number that owns kdb */
72int kdb_nextline = 1;
73int kdb_state; /* General KDB state */
74
75struct task_struct *kdb_current_task;
76struct pt_regs *kdb_current_regs;
77
78const char *kdb_diemsg;
79static int kdb_go_count;
80#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
81static unsigned int kdb_continue_catastrophic =
82 CONFIG_KDB_CONTINUE_CATASTROPHIC;
83#else
84static unsigned int kdb_continue_catastrophic;
85#endif
86
87/* kdb_cmds_head describes the available commands. */
88static LIST_HEAD(kdb_cmds_head);
89
90typedef struct _kdbmsg {
91 int km_diag; /* kdb diagnostic */
92 char *km_msg; /* Corresponding message text */
93} kdbmsg_t;
94
95#define KDBMSG(msgnum, text) \
96 { KDB_##msgnum, text }
97
98static kdbmsg_t kdbmsgs[] = {
99 KDBMSG(NOTFOUND, "Command Not Found"),
100 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
101 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
102 "8 is only allowed on 64 bit systems"),
103 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
104 KDBMSG(NOTENV, "Cannot find environment variable"),
105 KDBMSG(NOENVVALUE, "Environment variable should have value"),
106 KDBMSG(NOTIMP, "Command not implemented"),
107 KDBMSG(ENVFULL, "Environment full"),
108 KDBMSG(ENVBUFFULL, "Environment buffer full"),
109 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
110#ifdef CONFIG_CPU_XSCALE
111 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
112#else
113 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
114#endif
115 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
116 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
117 KDBMSG(BADMODE, "Invalid IDMODE"),
118 KDBMSG(BADINT, "Illegal numeric value"),
119 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
120 KDBMSG(BADREG, "Invalid register name"),
121 KDBMSG(BADCPUNUM, "Invalid cpu number"),
122 KDBMSG(BADLENGTH, "Invalid length field"),
123 KDBMSG(NOBP, "No Breakpoint exists"),
124 KDBMSG(BADADDR, "Invalid address"),
125 KDBMSG(NOPERM, "Permission denied"),
126};
127#undef KDBMSG
128
129static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
130
131
132/*
133 * Initial environment. This is all kept static and local to
134 * this file. We don't want to rely on the memory allocation
135 * mechanisms in the kernel, so we use a very limited allocate-only
136 * heap for new and altered environment variables. The entire
137 * environment is limited to a fixed number of entries (add more
138 * to __env[] if required) and a fixed amount of heap (add more to
139 * KDB_ENVBUFSIZE if required).
140 */
141
142static char *__env[31] = {
143#if defined(CONFIG_SMP)
144 "PROMPT=[%d]kdb> ",
145#else
146 "PROMPT=kdb> ",
147#endif
148 "MOREPROMPT=more> ",
149 "RADIX=16",
150 "MDCOUNT=8", /* lines of md output */
151 KDB_PLATFORM_ENV,
152 "DTABCOUNT=30",
153 "NOSECT=1",
154};
155
156static const int __nenv = ARRAY_SIZE(__env);
157
158/*
159 * Update the permissions flags (kdb_cmd_enabled) to match the
160 * current lockdown state.
161 *
162 * Within this function the calls to security_locked_down() are "lazy". We
163 * avoid calling them if the current value of kdb_cmd_enabled already excludes
164 * flags that might be subject to lockdown. Additionally we deliberately check
165 * the lockdown flags independently (even though read lockdown implies write
166 * lockdown) since that results in both simpler code and clearer messages to
167 * the user on first-time debugger entry.
168 *
169 * The permission masks during a read+write lockdown permits the following
170 * flags: INSPECT, SIGNAL, REBOOT (and ALWAYS_SAFE).
171 *
172 * The INSPECT commands are not blocked during lockdown because they are
173 * not arbitrary memory reads. INSPECT covers the backtrace family (sometimes
174 * forcing them to have no arguments) and lsmod. These commands do expose
175 * some kernel state but do not allow the developer seated at the console to
176 * choose what state is reported. SIGNAL and REBOOT should not be controversial,
177 * given these are allowed for root during lockdown already.
178 */
179static void kdb_check_for_lockdown(void)
180{
181 const int write_flags = KDB_ENABLE_MEM_WRITE |
182 KDB_ENABLE_REG_WRITE |
183 KDB_ENABLE_FLOW_CTRL;
184 const int read_flags = KDB_ENABLE_MEM_READ |
185 KDB_ENABLE_REG_READ;
186
187 bool need_to_lockdown_write = false;
188 bool need_to_lockdown_read = false;
189
190 if (kdb_cmd_enabled & (KDB_ENABLE_ALL | write_flags))
191 need_to_lockdown_write =
192 security_locked_down(LOCKDOWN_DBG_WRITE_KERNEL);
193
194 if (kdb_cmd_enabled & (KDB_ENABLE_ALL | read_flags))
195 need_to_lockdown_read =
196 security_locked_down(LOCKDOWN_DBG_READ_KERNEL);
197
198 /* De-compose KDB_ENABLE_ALL if required */
199 if (need_to_lockdown_write || need_to_lockdown_read)
200 if (kdb_cmd_enabled & KDB_ENABLE_ALL)
201 kdb_cmd_enabled = KDB_ENABLE_MASK & ~KDB_ENABLE_ALL;
202
203 if (need_to_lockdown_write)
204 kdb_cmd_enabled &= ~write_flags;
205
206 if (need_to_lockdown_read)
207 kdb_cmd_enabled &= ~read_flags;
208}
209
210/*
211 * Check whether the flags of the current command, the permissions of the kdb
212 * console and the lockdown state allow a command to be run.
213 */
214static bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
215 bool no_args)
216{
217 /* permissions comes from userspace so needs massaging slightly */
218 permissions &= KDB_ENABLE_MASK;
219 permissions |= KDB_ENABLE_ALWAYS_SAFE;
220
221 /* some commands change group when launched with no arguments */
222 if (no_args)
223 permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
224
225 flags |= KDB_ENABLE_ALL;
226
227 return permissions & flags;
228}
229
230/*
231 * kdbgetenv - This function will return the character string value of
232 * an environment variable.
233 * Parameters:
234 * match A character string representing an environment variable.
235 * Returns:
236 * NULL No environment variable matches 'match'
237 * char* Pointer to string value of environment variable.
238 */
239char *kdbgetenv(const char *match)
240{
241 char **ep = __env;
242 int matchlen = strlen(match);
243 int i;
244
245 for (i = 0; i < __nenv; i++) {
246 char *e = *ep++;
247
248 if (!e)
249 continue;
250
251 if ((strncmp(match, e, matchlen) == 0)
252 && ((e[matchlen] == '\0')
253 || (e[matchlen] == '='))) {
254 char *cp = strchr(e, '=');
255 return cp ? ++cp : "";
256 }
257 }
258 return NULL;
259}
260
261/*
262 * kdballocenv - This function is used to allocate bytes for
263 * environment entries.
264 * Parameters:
265 * bytes The number of bytes to allocate in the static buffer.
266 * Returns:
267 * A pointer to the allocated space in the buffer on success.
268 * NULL if bytes > size available in the envbuffer.
269 * Remarks:
270 * We use a static environment buffer (envbuffer) to hold the values
271 * of dynamically generated environment variables (see kdb_set). Buffer
272 * space once allocated is never free'd, so over time, the amount of space
273 * (currently 512 bytes) will be exhausted if env variables are changed
274 * frequently.
275 */
276static char *kdballocenv(size_t bytes)
277{
278#define KDB_ENVBUFSIZE 512
279 static char envbuffer[KDB_ENVBUFSIZE];
280 static int envbufsize;
281 char *ep = NULL;
282
283 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
284 ep = &envbuffer[envbufsize];
285 envbufsize += bytes;
286 }
287 return ep;
288}
289
290/*
291 * kdbgetulenv - This function will return the value of an unsigned
292 * long-valued environment variable.
293 * Parameters:
294 * match A character string representing a numeric value
295 * Outputs:
296 * *value the unsigned long representation of the env variable 'match'
297 * Returns:
298 * Zero on success, a kdb diagnostic on failure.
299 */
300static int kdbgetulenv(const char *match, unsigned long *value)
301{
302 char *ep;
303
304 ep = kdbgetenv(match);
305 if (!ep)
306 return KDB_NOTENV;
307 if (strlen(ep) == 0)
308 return KDB_NOENVVALUE;
309 if (kstrtoul(ep, 0, value))
310 return KDB_BADINT;
311
312 return 0;
313}
314
315/*
316 * kdbgetintenv - This function will return the value of an
317 * integer-valued environment variable.
318 * Parameters:
319 * match A character string representing an integer-valued env variable
320 * Outputs:
321 * *value the integer representation of the environment variable 'match'
322 * Returns:
323 * Zero on success, a kdb diagnostic on failure.
324 */
325int kdbgetintenv(const char *match, int *value)
326{
327 unsigned long val;
328 int diag;
329
330 diag = kdbgetulenv(match, &val);
331 if (!diag)
332 *value = (int) val;
333 return diag;
334}
335
336/*
337 * kdb_setenv() - Alter an existing environment variable or create a new one.
338 * @var: Name of the variable
339 * @val: Value of the variable
340 *
341 * Return: Zero on success, a kdb diagnostic on failure.
342 */
343static int kdb_setenv(const char *var, const char *val)
344{
345 int i;
346 char *ep;
347 size_t varlen, vallen;
348
349 varlen = strlen(var);
350 vallen = strlen(val);
351 ep = kdballocenv(varlen + vallen + 2);
352 if (ep == (char *)0)
353 return KDB_ENVBUFFULL;
354
355 sprintf(ep, "%s=%s", var, val);
356
357 for (i = 0; i < __nenv; i++) {
358 if (__env[i]
359 && ((strncmp(__env[i], var, varlen) == 0)
360 && ((__env[i][varlen] == '\0')
361 || (__env[i][varlen] == '=')))) {
362 __env[i] = ep;
363 return 0;
364 }
365 }
366
367 /*
368 * Wasn't existing variable. Fit into slot.
369 */
370 for (i = 0; i < __nenv-1; i++) {
371 if (__env[i] == (char *)0) {
372 __env[i] = ep;
373 return 0;
374 }
375 }
376
377 return KDB_ENVFULL;
378}
379
380/*
381 * kdb_printenv() - Display the current environment variables.
382 */
383static void kdb_printenv(void)
384{
385 int i;
386
387 for (i = 0; i < __nenv; i++) {
388 if (__env[i])
389 kdb_printf("%s\n", __env[i]);
390 }
391}
392
393/*
394 * kdbgetularg - This function will convert a numeric string into an
395 * unsigned long value.
396 * Parameters:
397 * arg A character string representing a numeric value
398 * Outputs:
399 * *value the unsigned long representation of arg.
400 * Returns:
401 * Zero on success, a kdb diagnostic on failure.
402 */
403int kdbgetularg(const char *arg, unsigned long *value)
404{
405 if (kstrtoul(arg, 0, value))
406 return KDB_BADINT;
407 return 0;
408}
409
410int kdbgetu64arg(const char *arg, u64 *value)
411{
412 if (kstrtou64(arg, 0, value))
413 return KDB_BADINT;
414 return 0;
415}
416
417/*
418 * kdb_set - This function implements the 'set' command. Alter an
419 * existing environment variable or create a new one.
420 */
421int kdb_set(int argc, const char **argv)
422{
423 /*
424 * we can be invoked two ways:
425 * set var=value argv[1]="var", argv[2]="value"
426 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
427 * - if the latter, shift 'em down.
428 */
429 if (argc == 3) {
430 argv[2] = argv[3];
431 argc--;
432 }
433
434 if (argc != 2)
435 return KDB_ARGCOUNT;
436
437 /*
438 * Censor sensitive variables
439 */
440 if (strcmp(argv[1], "PROMPT") == 0 &&
441 !kdb_check_flags(KDB_ENABLE_MEM_READ, kdb_cmd_enabled, false))
442 return KDB_NOPERM;
443
444 /*
445 * Check for internal variables
446 */
447 if (strcmp(argv[1], "KDBDEBUG") == 0) {
448 unsigned int debugflags;
449 int ret;
450
451 ret = kstrtouint(argv[2], 0, &debugflags);
452 if (ret || debugflags & ~KDB_DEBUG_FLAG_MASK) {
453 kdb_printf("kdb: illegal debug flags '%s'\n",
454 argv[2]);
455 return 0;
456 }
457 kdb_flags = (kdb_flags & ~KDB_DEBUG(MASK))
458 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
459
460 return 0;
461 }
462
463 /*
464 * Tokenizer squashed the '=' sign. argv[1] is variable
465 * name, argv[2] = value.
466 */
467 return kdb_setenv(argv[1], argv[2]);
468}
469
470static int kdb_check_regs(void)
471{
472 if (!kdb_current_regs) {
473 kdb_printf("No current kdb registers."
474 " You may need to select another task\n");
475 return KDB_BADREG;
476 }
477 return 0;
478}
479
480/*
481 * kdbgetaddrarg - This function is responsible for parsing an
482 * address-expression and returning the value of the expression,
483 * symbol name, and offset to the caller.
484 *
485 * The argument may consist of a numeric value (decimal or
486 * hexadecimal), a symbol name, a register name (preceded by the
487 * percent sign), an environment variable with a numeric value
488 * (preceded by a dollar sign) or a simple arithmetic expression
489 * consisting of a symbol name, +/-, and a numeric constant value
490 * (offset).
491 * Parameters:
492 * argc - count of arguments in argv
493 * argv - argument vector
494 * *nextarg - index to next unparsed argument in argv[]
495 * regs - Register state at time of KDB entry
496 * Outputs:
497 * *value - receives the value of the address-expression
498 * *offset - receives the offset specified, if any
499 * *name - receives the symbol name, if any
500 * *nextarg - index to next unparsed argument in argv[]
501 * Returns:
502 * zero is returned on success, a kdb diagnostic code is
503 * returned on error.
504 */
505int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
506 unsigned long *value, long *offset,
507 char **name)
508{
509 unsigned long addr;
510 unsigned long off = 0;
511 int positive;
512 int diag;
513 int found = 0;
514 char *symname;
515 char symbol = '\0';
516 char *cp;
517 kdb_symtab_t symtab;
518
519 /*
520 * If the enable flags prohibit both arbitrary memory access
521 * and flow control then there are no reasonable grounds to
522 * provide symbol lookup.
523 */
524 if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
525 kdb_cmd_enabled, false))
526 return KDB_NOPERM;
527
528 /*
529 * Process arguments which follow the following syntax:
530 *
531 * symbol | numeric-address [+/- numeric-offset]
532 * %register
533 * $environment-variable
534 */
535
536 if (*nextarg > argc)
537 return KDB_ARGCOUNT;
538
539 symname = (char *)argv[*nextarg];
540
541 /*
542 * If there is no whitespace between the symbol
543 * or address and the '+' or '-' symbols, we
544 * remember the character and replace it with a
545 * null so the symbol/value can be properly parsed
546 */
547 cp = strpbrk(symname, "+-");
548 if (cp != NULL) {
549 symbol = *cp;
550 *cp++ = '\0';
551 }
552
553 if (symname[0] == '$') {
554 diag = kdbgetulenv(&symname[1], &addr);
555 if (diag)
556 return diag;
557 } else if (symname[0] == '%') {
558 diag = kdb_check_regs();
559 if (diag)
560 return diag;
561 /* Implement register values with % at a later time as it is
562 * arch optional.
563 */
564 return KDB_NOTIMP;
565 } else {
566 found = kdbgetsymval(symname, &symtab);
567 if (found) {
568 addr = symtab.sym_start;
569 } else {
570 diag = kdbgetularg(argv[*nextarg], &addr);
571 if (diag)
572 return diag;
573 }
574 }
575
576 if (!found)
577 found = kdbnearsym(addr, &symtab);
578
579 (*nextarg)++;
580
581 if (name)
582 *name = symname;
583 if (value)
584 *value = addr;
585 if (offset && name && *name)
586 *offset = addr - symtab.sym_start;
587
588 if ((*nextarg > argc)
589 && (symbol == '\0'))
590 return 0;
591
592 /*
593 * check for +/- and offset
594 */
595
596 if (symbol == '\0') {
597 if ((argv[*nextarg][0] != '+')
598 && (argv[*nextarg][0] != '-')) {
599 /*
600 * Not our argument. Return.
601 */
602 return 0;
603 } else {
604 positive = (argv[*nextarg][0] == '+');
605 (*nextarg)++;
606 }
607 } else
608 positive = (symbol == '+');
609
610 /*
611 * Now there must be an offset!
612 */
613 if ((*nextarg > argc)
614 && (symbol == '\0')) {
615 return KDB_INVADDRFMT;
616 }
617
618 if (!symbol) {
619 cp = (char *)argv[*nextarg];
620 (*nextarg)++;
621 }
622
623 diag = kdbgetularg(cp, &off);
624 if (diag)
625 return diag;
626
627 if (!positive)
628 off = -off;
629
630 if (offset)
631 *offset += off;
632
633 if (value)
634 *value += off;
635
636 return 0;
637}
638
639static void kdb_cmderror(int diag)
640{
641 int i;
642
643 if (diag >= 0) {
644 kdb_printf("no error detected (diagnostic is %d)\n", diag);
645 return;
646 }
647
648 for (i = 0; i < __nkdb_err; i++) {
649 if (kdbmsgs[i].km_diag == diag) {
650 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
651 return;
652 }
653 }
654
655 kdb_printf("Unknown diag %d\n", -diag);
656}
657
658/*
659 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
660 * command which defines one command as a set of other commands,
661 * terminated by endefcmd. kdb_defcmd processes the initial
662 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
663 * the following commands until 'endefcmd'.
664 * Inputs:
665 * argc argument count
666 * argv argument vector
667 * Returns:
668 * zero for success, a kdb diagnostic if error
669 */
670struct kdb_macro {
671 kdbtab_t cmd; /* Macro command */
672 struct list_head statements; /* Associated statement list */
673};
674
675struct kdb_macro_statement {
676 char *statement; /* Statement text */
677 struct list_head list_node; /* Statement list node */
678};
679
680static struct kdb_macro *kdb_macro;
681static bool defcmd_in_progress;
682
683/* Forward references */
684static int kdb_exec_defcmd(int argc, const char **argv);
685
686static int kdb_defcmd2(const char *cmdstr, const char *argv0)
687{
688 struct kdb_macro_statement *kms;
689
690 if (!kdb_macro)
691 return KDB_NOTIMP;
692
693 if (strcmp(argv0, "endefcmd") == 0) {
694 defcmd_in_progress = false;
695 if (!list_empty(&kdb_macro->statements))
696 kdb_register(&kdb_macro->cmd);
697 return 0;
698 }
699
700 kms = kmalloc(sizeof(*kms), GFP_KDB);
701 if (!kms) {
702 kdb_printf("Could not allocate new kdb macro command: %s\n",
703 cmdstr);
704 return KDB_NOTIMP;
705 }
706
707 kms->statement = kdb_strdup(cmdstr, GFP_KDB);
708 list_add_tail(&kms->list_node, &kdb_macro->statements);
709
710 return 0;
711}
712
713static int kdb_defcmd(int argc, const char **argv)
714{
715 kdbtab_t *mp;
716
717 if (defcmd_in_progress) {
718 kdb_printf("kdb: nested defcmd detected, assuming missing "
719 "endefcmd\n");
720 kdb_defcmd2("endefcmd", "endefcmd");
721 }
722 if (argc == 0) {
723 kdbtab_t *kp;
724 struct kdb_macro *kmp;
725 struct kdb_macro_statement *kms;
726
727 list_for_each_entry(kp, &kdb_cmds_head, list_node) {
728 if (kp->func == kdb_exec_defcmd) {
729 kdb_printf("defcmd %s \"%s\" \"%s\"\n",
730 kp->name, kp->usage, kp->help);
731 kmp = container_of(kp, struct kdb_macro, cmd);
732 list_for_each_entry(kms, &kmp->statements,
733 list_node)
734 kdb_printf("%s", kms->statement);
735 kdb_printf("endefcmd\n");
736 }
737 }
738 return 0;
739 }
740 if (argc != 3)
741 return KDB_ARGCOUNT;
742 if (in_dbg_master()) {
743 kdb_printf("Command only available during kdb_init()\n");
744 return KDB_NOTIMP;
745 }
746 kdb_macro = kzalloc(sizeof(*kdb_macro), GFP_KDB);
747 if (!kdb_macro)
748 goto fail_defcmd;
749
750 mp = &kdb_macro->cmd;
751 mp->func = kdb_exec_defcmd;
752 mp->minlen = 0;
753 mp->flags = KDB_ENABLE_ALWAYS_SAFE;
754 mp->name = kdb_strdup(argv[1], GFP_KDB);
755 if (!mp->name)
756 goto fail_name;
757 mp->usage = kdb_strdup(argv[2], GFP_KDB);
758 if (!mp->usage)
759 goto fail_usage;
760 mp->help = kdb_strdup(argv[3], GFP_KDB);
761 if (!mp->help)
762 goto fail_help;
763 if (mp->usage[0] == '"') {
764 strcpy(mp->usage, argv[2]+1);
765 mp->usage[strlen(mp->usage)-1] = '\0';
766 }
767 if (mp->help[0] == '"') {
768 strcpy(mp->help, argv[3]+1);
769 mp->help[strlen(mp->help)-1] = '\0';
770 }
771
772 INIT_LIST_HEAD(&kdb_macro->statements);
773 defcmd_in_progress = true;
774 return 0;
775fail_help:
776 kfree(mp->usage);
777fail_usage:
778 kfree(mp->name);
779fail_name:
780 kfree(kdb_macro);
781fail_defcmd:
782 kdb_printf("Could not allocate new kdb_macro entry for %s\n", argv[1]);
783 return KDB_NOTIMP;
784}
785
786/*
787 * kdb_exec_defcmd - Execute the set of commands associated with this
788 * defcmd name.
789 * Inputs:
790 * argc argument count
791 * argv argument vector
792 * Returns:
793 * zero for success, a kdb diagnostic if error
794 */
795static int kdb_exec_defcmd(int argc, const char **argv)
796{
797 int ret;
798 kdbtab_t *kp;
799 struct kdb_macro *kmp;
800 struct kdb_macro_statement *kms;
801
802 if (argc != 0)
803 return KDB_ARGCOUNT;
804
805 list_for_each_entry(kp, &kdb_cmds_head, list_node) {
806 if (strcmp(kp->name, argv[0]) == 0)
807 break;
808 }
809 if (list_entry_is_head(kp, &kdb_cmds_head, list_node)) {
810 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
811 argv[0]);
812 return KDB_NOTIMP;
813 }
814 kmp = container_of(kp, struct kdb_macro, cmd);
815 list_for_each_entry(kms, &kmp->statements, list_node) {
816 /*
817 * Recursive use of kdb_parse, do not use argv after this point.
818 */
819 argv = NULL;
820 kdb_printf("[%s]kdb> %s\n", kmp->cmd.name, kms->statement);
821 ret = kdb_parse(kms->statement);
822 if (ret)
823 return ret;
824 }
825 return 0;
826}
827
828/* Command history */
829#define KDB_CMD_HISTORY_COUNT 32
830#define CMD_BUFLEN 200 /* kdb_printf: max printline
831 * size == 256 */
832static unsigned int cmd_head, cmd_tail;
833static unsigned int cmdptr;
834static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
835static char cmd_cur[CMD_BUFLEN];
836
837/*
838 * The "str" argument may point to something like | grep xyz
839 */
840static void parse_grep(const char *str)
841{
842 int len;
843 char *cp = (char *)str, *cp2;
844
845 /* sanity check: we should have been called with the \ first */
846 if (*cp != '|')
847 return;
848 cp++;
849 while (isspace(*cp))
850 cp++;
851 if (!str_has_prefix(cp, "grep ")) {
852 kdb_printf("invalid 'pipe', see grephelp\n");
853 return;
854 }
855 cp += 5;
856 while (isspace(*cp))
857 cp++;
858 cp2 = strchr(cp, '\n');
859 if (cp2)
860 *cp2 = '\0'; /* remove the trailing newline */
861 len = strlen(cp);
862 if (len == 0) {
863 kdb_printf("invalid 'pipe', see grephelp\n");
864 return;
865 }
866 /* now cp points to a nonzero length search string */
867 if (*cp == '"') {
868 /* allow it be "x y z" by removing the "'s - there must
869 be two of them */
870 cp++;
871 cp2 = strchr(cp, '"');
872 if (!cp2) {
873 kdb_printf("invalid quoted string, see grephelp\n");
874 return;
875 }
876 *cp2 = '\0'; /* end the string where the 2nd " was */
877 }
878 kdb_grep_leading = 0;
879 if (*cp == '^') {
880 kdb_grep_leading = 1;
881 cp++;
882 }
883 len = strlen(cp);
884 kdb_grep_trailing = 0;
885 if (*(cp+len-1) == '$') {
886 kdb_grep_trailing = 1;
887 *(cp+len-1) = '\0';
888 }
889 len = strlen(cp);
890 if (!len)
891 return;
892 if (len >= KDB_GREP_STRLEN) {
893 kdb_printf("search string too long\n");
894 return;
895 }
896 strcpy(kdb_grep_string, cp);
897 kdb_grepping_flag++;
898 return;
899}
900
901/*
902 * kdb_parse - Parse the command line, search the command table for a
903 * matching command and invoke the command function. This
904 * function may be called recursively, if it is, the second call
905 * will overwrite argv and cbuf. It is the caller's
906 * responsibility to save their argv if they recursively call
907 * kdb_parse().
908 * Parameters:
909 * cmdstr The input command line to be parsed.
910 * regs The registers at the time kdb was entered.
911 * Returns:
912 * Zero for success, a kdb diagnostic if failure.
913 * Remarks:
914 * Limited to 20 tokens.
915 *
916 * Real rudimentary tokenization. Basically only whitespace
917 * is considered a token delimiter (but special consideration
918 * is taken of the '=' sign as used by the 'set' command).
919 *
920 * The algorithm used to tokenize the input string relies on
921 * there being at least one whitespace (or otherwise useless)
922 * character between tokens as the character immediately following
923 * the token is altered in-place to a null-byte to terminate the
924 * token string.
925 */
926
927#define MAXARGC 20
928
929int kdb_parse(const char *cmdstr)
930{
931 static char *argv[MAXARGC];
932 static int argc;
933 static char cbuf[CMD_BUFLEN+2];
934 char *cp;
935 char *cpp, quoted;
936 kdbtab_t *tp;
937 int escaped, ignore_errors = 0, check_grep = 0;
938
939 /*
940 * First tokenize the command string.
941 */
942 cp = (char *)cmdstr;
943
944 if (KDB_FLAG(CMD_INTERRUPT)) {
945 /* Previous command was interrupted, newline must not
946 * repeat the command */
947 KDB_FLAG_CLEAR(CMD_INTERRUPT);
948 KDB_STATE_SET(PAGER);
949 argc = 0; /* no repeat */
950 }
951
952 if (*cp != '\n' && *cp != '\0') {
953 argc = 0;
954 cpp = cbuf;
955 while (*cp) {
956 /* skip whitespace */
957 while (isspace(*cp))
958 cp++;
959 if ((*cp == '\0') || (*cp == '\n') ||
960 (*cp == '#' && !defcmd_in_progress))
961 break;
962 /* special case: check for | grep pattern */
963 if (*cp == '|') {
964 check_grep++;
965 break;
966 }
967 if (cpp >= cbuf + CMD_BUFLEN) {
968 kdb_printf("kdb_parse: command buffer "
969 "overflow, command ignored\n%s\n",
970 cmdstr);
971 return KDB_NOTFOUND;
972 }
973 if (argc >= MAXARGC - 1) {
974 kdb_printf("kdb_parse: too many arguments, "
975 "command ignored\n%s\n", cmdstr);
976 return KDB_NOTFOUND;
977 }
978 argv[argc++] = cpp;
979 escaped = 0;
980 quoted = '\0';
981 /* Copy to next unquoted and unescaped
982 * whitespace or '=' */
983 while (*cp && *cp != '\n' &&
984 (escaped || quoted || !isspace(*cp))) {
985 if (cpp >= cbuf + CMD_BUFLEN)
986 break;
987 if (escaped) {
988 escaped = 0;
989 *cpp++ = *cp++;
990 continue;
991 }
992 if (*cp == '\\') {
993 escaped = 1;
994 ++cp;
995 continue;
996 }
997 if (*cp == quoted)
998 quoted = '\0';
999 else if (*cp == '\'' || *cp == '"')
1000 quoted = *cp;
1001 *cpp = *cp++;
1002 if (*cpp == '=' && !quoted)
1003 break;
1004 ++cpp;
1005 }
1006 *cpp++ = '\0'; /* Squash a ws or '=' character */
1007 }
1008 }
1009 if (!argc)
1010 return 0;
1011 if (check_grep)
1012 parse_grep(cp);
1013 if (defcmd_in_progress) {
1014 int result = kdb_defcmd2(cmdstr, argv[0]);
1015 if (!defcmd_in_progress) {
1016 argc = 0; /* avoid repeat on endefcmd */
1017 *(argv[0]) = '\0';
1018 }
1019 return result;
1020 }
1021 if (argv[0][0] == '-' && argv[0][1] &&
1022 (argv[0][1] < '0' || argv[0][1] > '9')) {
1023 ignore_errors = 1;
1024 ++argv[0];
1025 }
1026
1027 list_for_each_entry(tp, &kdb_cmds_head, list_node) {
1028 /*
1029 * If this command is allowed to be abbreviated,
1030 * check to see if this is it.
1031 */
1032 if (tp->minlen && (strlen(argv[0]) <= tp->minlen) &&
1033 (strncmp(argv[0], tp->name, tp->minlen) == 0))
1034 break;
1035
1036 if (strcmp(argv[0], tp->name) == 0)
1037 break;
1038 }
1039
1040 /*
1041 * If we don't find a command by this name, see if the first
1042 * few characters of this match any of the known commands.
1043 * e.g., md1c20 should match md.
1044 */
1045 if (list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
1046 list_for_each_entry(tp, &kdb_cmds_head, list_node) {
1047 if (strncmp(argv[0], tp->name, strlen(tp->name)) == 0)
1048 break;
1049 }
1050 }
1051
1052 if (!list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
1053 int result;
1054
1055 if (!kdb_check_flags(tp->flags, kdb_cmd_enabled, argc <= 1))
1056 return KDB_NOPERM;
1057
1058 KDB_STATE_SET(CMD);
1059 result = (*tp->func)(argc-1, (const char **)argv);
1060 if (result && ignore_errors && result > KDB_CMD_GO)
1061 result = 0;
1062 KDB_STATE_CLEAR(CMD);
1063
1064 if (tp->flags & KDB_REPEAT_WITH_ARGS)
1065 return result;
1066
1067 argc = tp->flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1068 if (argv[argc])
1069 *(argv[argc]) = '\0';
1070 return result;
1071 }
1072
1073 /*
1074 * If the input with which we were presented does not
1075 * map to an existing command, attempt to parse it as an
1076 * address argument and display the result. Useful for
1077 * obtaining the address of a variable, or the nearest symbol
1078 * to an address contained in a register.
1079 */
1080 {
1081 unsigned long value;
1082 char *name = NULL;
1083 long offset;
1084 int nextarg = 0;
1085
1086 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1087 &value, &offset, &name)) {
1088 return KDB_NOTFOUND;
1089 }
1090
1091 kdb_printf("%s = ", argv[0]);
1092 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1093 kdb_printf("\n");
1094 return 0;
1095 }
1096}
1097
1098
1099static int handle_ctrl_cmd(char *cmd)
1100{
1101#define CTRL_P 16
1102#define CTRL_N 14
1103
1104 /* initial situation */
1105 if (cmd_head == cmd_tail)
1106 return 0;
1107 switch (*cmd) {
1108 case CTRL_P:
1109 if (cmdptr != cmd_tail)
1110 cmdptr = (cmdptr + KDB_CMD_HISTORY_COUNT - 1) %
1111 KDB_CMD_HISTORY_COUNT;
1112 strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1113 return 1;
1114 case CTRL_N:
1115 if (cmdptr != cmd_head)
1116 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1117 strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1118 return 1;
1119 }
1120 return 0;
1121}
1122
1123/*
1124 * kdb_reboot - This function implements the 'reboot' command. Reboot
1125 * the system immediately, or loop for ever on failure.
1126 */
1127static int kdb_reboot(int argc, const char **argv)
1128{
1129 emergency_restart();
1130 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1131 while (1)
1132 cpu_relax();
1133 /* NOTREACHED */
1134 return 0;
1135}
1136
1137static void kdb_dumpregs(struct pt_regs *regs)
1138{
1139 int old_lvl = console_loglevel;
1140 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1141 kdb_trap_printk++;
1142 show_regs(regs);
1143 kdb_trap_printk--;
1144 kdb_printf("\n");
1145 console_loglevel = old_lvl;
1146}
1147
1148static void kdb_set_current_task(struct task_struct *p)
1149{
1150 kdb_current_task = p;
1151
1152 if (kdb_task_has_cpu(p)) {
1153 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1154 return;
1155 }
1156 kdb_current_regs = NULL;
1157}
1158
1159static void drop_newline(char *buf)
1160{
1161 size_t len = strlen(buf);
1162
1163 if (len == 0)
1164 return;
1165 if (*(buf + len - 1) == '\n')
1166 *(buf + len - 1) = '\0';
1167}
1168
1169/*
1170 * kdb_local - The main code for kdb. This routine is invoked on a
1171 * specific processor, it is not global. The main kdb() routine
1172 * ensures that only one processor at a time is in this routine.
1173 * This code is called with the real reason code on the first
1174 * entry to a kdb session, thereafter it is called with reason
1175 * SWITCH, even if the user goes back to the original cpu.
1176 * Inputs:
1177 * reason The reason KDB was invoked
1178 * error The hardware-defined error code
1179 * regs The exception frame at time of fault/breakpoint.
1180 * db_result Result code from the break or debug point.
1181 * Returns:
1182 * 0 KDB was invoked for an event which it wasn't responsible
1183 * 1 KDB handled the event for which it was invoked.
1184 * KDB_CMD_GO User typed 'go'.
1185 * KDB_CMD_CPU User switched to another cpu.
1186 * KDB_CMD_SS Single step.
1187 */
1188static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1189 kdb_dbtrap_t db_result)
1190{
1191 char *cmdbuf;
1192 int diag;
1193 struct task_struct *kdb_current =
1194 curr_task(raw_smp_processor_id());
1195
1196 KDB_DEBUG_STATE("kdb_local 1", reason);
1197
1198 kdb_check_for_lockdown();
1199
1200 kdb_go_count = 0;
1201 if (reason == KDB_REASON_DEBUG) {
1202 /* special case below */
1203 } else {
1204 kdb_printf("\nEntering kdb (current=0x%px, pid %d) ",
1205 kdb_current, kdb_current ? kdb_current->pid : 0);
1206#if defined(CONFIG_SMP)
1207 kdb_printf("on processor %d ", raw_smp_processor_id());
1208#endif
1209 }
1210
1211 switch (reason) {
1212 case KDB_REASON_DEBUG:
1213 {
1214 /*
1215 * If re-entering kdb after a single step
1216 * command, don't print the message.
1217 */
1218 switch (db_result) {
1219 case KDB_DB_BPT:
1220 kdb_printf("\nEntering kdb (0x%px, pid %d) ",
1221 kdb_current, kdb_current->pid);
1222#if defined(CONFIG_SMP)
1223 kdb_printf("on processor %d ", raw_smp_processor_id());
1224#endif
1225 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1226 instruction_pointer(regs));
1227 break;
1228 case KDB_DB_SS:
1229 break;
1230 case KDB_DB_SSBPT:
1231 KDB_DEBUG_STATE("kdb_local 4", reason);
1232 return 1; /* kdba_db_trap did the work */
1233 default:
1234 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1235 db_result);
1236 break;
1237 }
1238
1239 }
1240 break;
1241 case KDB_REASON_ENTER:
1242 if (KDB_STATE(KEYBOARD))
1243 kdb_printf("due to Keyboard Entry\n");
1244 else
1245 kdb_printf("due to KDB_ENTER()\n");
1246 break;
1247 case KDB_REASON_KEYBOARD:
1248 KDB_STATE_SET(KEYBOARD);
1249 kdb_printf("due to Keyboard Entry\n");
1250 break;
1251 case KDB_REASON_ENTER_SLAVE:
1252 /* drop through, slaves only get released via cpu switch */
1253 case KDB_REASON_SWITCH:
1254 kdb_printf("due to cpu switch\n");
1255 break;
1256 case KDB_REASON_OOPS:
1257 kdb_printf("Oops: %s\n", kdb_diemsg);
1258 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1259 instruction_pointer(regs));
1260 kdb_dumpregs(regs);
1261 break;
1262 case KDB_REASON_SYSTEM_NMI:
1263 kdb_printf("due to System NonMaskable Interrupt\n");
1264 break;
1265 case KDB_REASON_NMI:
1266 kdb_printf("due to NonMaskable Interrupt @ "
1267 kdb_machreg_fmt "\n",
1268 instruction_pointer(regs));
1269 break;
1270 case KDB_REASON_SSTEP:
1271 case KDB_REASON_BREAK:
1272 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1273 reason == KDB_REASON_BREAK ?
1274 "Breakpoint" : "SS trap", instruction_pointer(regs));
1275 /*
1276 * Determine if this breakpoint is one that we
1277 * are interested in.
1278 */
1279 if (db_result != KDB_DB_BPT) {
1280 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1281 db_result);
1282 KDB_DEBUG_STATE("kdb_local 6", reason);
1283 return 0; /* Not for us, dismiss it */
1284 }
1285 break;
1286 case KDB_REASON_RECURSE:
1287 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1288 instruction_pointer(regs));
1289 break;
1290 default:
1291 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1292 KDB_DEBUG_STATE("kdb_local 8", reason);
1293 return 0; /* Not for us, dismiss it */
1294 }
1295
1296 while (1) {
1297 /*
1298 * Initialize pager context.
1299 */
1300 kdb_nextline = 1;
1301 KDB_STATE_CLEAR(SUPPRESS);
1302 kdb_grepping_flag = 0;
1303 /* ensure the old search does not leak into '/' commands */
1304 kdb_grep_string[0] = '\0';
1305
1306 cmdbuf = cmd_cur;
1307 *cmdbuf = '\0';
1308 *(cmd_hist[cmd_head]) = '\0';
1309
1310do_full_getstr:
1311 /* PROMPT can only be set if we have MEM_READ permission. */
1312 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1313 raw_smp_processor_id());
1314
1315 /*
1316 * Fetch command from keyboard
1317 */
1318 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1319 if (*cmdbuf != '\n') {
1320 if (*cmdbuf < 32) {
1321 if (cmdptr == cmd_head) {
1322 strscpy(cmd_hist[cmd_head], cmd_cur,
1323 CMD_BUFLEN);
1324 *(cmd_hist[cmd_head] +
1325 strlen(cmd_hist[cmd_head])-1) = '\0';
1326 }
1327 if (!handle_ctrl_cmd(cmdbuf))
1328 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1329 cmdbuf = cmd_cur;
1330 goto do_full_getstr;
1331 } else {
1332 strscpy(cmd_hist[cmd_head], cmd_cur,
1333 CMD_BUFLEN);
1334 }
1335
1336 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1337 if (cmd_head == cmd_tail)
1338 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1339 }
1340
1341 cmdptr = cmd_head;
1342 diag = kdb_parse(cmdbuf);
1343 if (diag == KDB_NOTFOUND) {
1344 drop_newline(cmdbuf);
1345 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1346 diag = 0;
1347 }
1348 if (diag == KDB_CMD_GO
1349 || diag == KDB_CMD_CPU
1350 || diag == KDB_CMD_SS
1351 || diag == KDB_CMD_KGDB)
1352 break;
1353
1354 if (diag)
1355 kdb_cmderror(diag);
1356 }
1357 KDB_DEBUG_STATE("kdb_local 9", diag);
1358 return diag;
1359}
1360
1361
1362/*
1363 * kdb_print_state - Print the state data for the current processor
1364 * for debugging.
1365 * Inputs:
1366 * text Identifies the debug point
1367 * value Any integer value to be printed, e.g. reason code.
1368 */
1369void kdb_print_state(const char *text, int value)
1370{
1371 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1372 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1373 kdb_state);
1374}
1375
1376/*
1377 * kdb_main_loop - After initial setup and assignment of the
1378 * controlling cpu, all cpus are in this loop. One cpu is in
1379 * control and will issue the kdb prompt, the others will spin
1380 * until 'go' or cpu switch.
1381 *
1382 * To get a consistent view of the kernel stacks for all
1383 * processes, this routine is invoked from the main kdb code via
1384 * an architecture specific routine. kdba_main_loop is
1385 * responsible for making the kernel stacks consistent for all
1386 * processes, there should be no difference between a blocked
1387 * process and a running process as far as kdb is concerned.
1388 * Inputs:
1389 * reason The reason KDB was invoked
1390 * error The hardware-defined error code
1391 * reason2 kdb's current reason code.
1392 * Initially error but can change
1393 * according to kdb state.
1394 * db_result Result code from break or debug point.
1395 * regs The exception frame at time of fault/breakpoint.
1396 * should always be valid.
1397 * Returns:
1398 * 0 KDB was invoked for an event which it wasn't responsible
1399 * 1 KDB handled the event for which it was invoked.
1400 */
1401int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1402 kdb_dbtrap_t db_result, struct pt_regs *regs)
1403{
1404 int result = 1;
1405 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1406 while (1) {
1407 /*
1408 * All processors except the one that is in control
1409 * will spin here.
1410 */
1411 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1412 while (KDB_STATE(HOLD_CPU)) {
1413 /* state KDB is turned off by kdb_cpu to see if the
1414 * other cpus are still live, each cpu in this loop
1415 * turns it back on.
1416 */
1417 if (!KDB_STATE(KDB))
1418 KDB_STATE_SET(KDB);
1419 }
1420
1421 KDB_STATE_CLEAR(SUPPRESS);
1422 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1423 if (KDB_STATE(LEAVING))
1424 break; /* Another cpu said 'go' */
1425 /* Still using kdb, this processor is in control */
1426 result = kdb_local(reason2, error, regs, db_result);
1427 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1428
1429 if (result == KDB_CMD_CPU)
1430 break;
1431
1432 if (result == KDB_CMD_SS) {
1433 KDB_STATE_SET(DOING_SS);
1434 break;
1435 }
1436
1437 if (result == KDB_CMD_KGDB) {
1438 if (!KDB_STATE(DOING_KGDB))
1439 kdb_printf("Entering please attach debugger "
1440 "or use $D#44+ or $3#33\n");
1441 break;
1442 }
1443 if (result && result != 1 && result != KDB_CMD_GO)
1444 kdb_printf("\nUnexpected kdb_local return code %d\n",
1445 result);
1446 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1447 break;
1448 }
1449 if (KDB_STATE(DOING_SS))
1450 KDB_STATE_CLEAR(SSBPT);
1451
1452 /* Clean up any keyboard devices before leaving */
1453 kdb_kbd_cleanup_state();
1454
1455 return result;
1456}
1457
1458/*
1459 * kdb_mdr - This function implements the guts of the 'mdr', memory
1460 * read command.
1461 * mdr <addr arg>,<byte count>
1462 * Inputs:
1463 * addr Start address
1464 * count Number of bytes
1465 * Returns:
1466 * Always 0. Any errors are detected and printed by kdb_getarea.
1467 */
1468static int kdb_mdr(unsigned long addr, unsigned int count)
1469{
1470 unsigned char c;
1471 while (count--) {
1472 if (kdb_getarea(c, addr))
1473 return 0;
1474 kdb_printf("%02x", c);
1475 addr++;
1476 }
1477 kdb_printf("\n");
1478 return 0;
1479}
1480
1481/*
1482 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1483 * 'md8' 'mdr' and 'mds' commands.
1484 *
1485 * md|mds [<addr arg> [<line count> [<radix>]]]
1486 * mdWcN [<addr arg> [<line count> [<radix>]]]
1487 * where W = is the width (1, 2, 4 or 8) and N is the count.
1488 * for eg., md1c20 reads 20 bytes, 1 at a time.
1489 * mdr <addr arg>,<byte count>
1490 */
1491static void kdb_md_line(const char *fmtstr, unsigned long addr,
1492 int symbolic, int nosect, int bytesperword,
1493 int num, int repeat, int phys)
1494{
1495 /* print just one line of data */
1496 kdb_symtab_t symtab;
1497 char cbuf[32];
1498 char *c = cbuf;
1499 int i;
1500 int j;
1501 unsigned long word;
1502
1503 memset(cbuf, '\0', sizeof(cbuf));
1504 if (phys)
1505 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1506 else
1507 kdb_printf(kdb_machreg_fmt0 " ", addr);
1508
1509 for (i = 0; i < num && repeat--; i++) {
1510 if (phys) {
1511 if (kdb_getphysword(&word, addr, bytesperword))
1512 break;
1513 } else if (kdb_getword(&word, addr, bytesperword))
1514 break;
1515 kdb_printf(fmtstr, word);
1516 if (symbolic)
1517 kdbnearsym(word, &symtab);
1518 else
1519 memset(&symtab, 0, sizeof(symtab));
1520 if (symtab.sym_name) {
1521 kdb_symbol_print(word, &symtab, 0);
1522 if (!nosect) {
1523 kdb_printf("\n");
1524 kdb_printf(" %s %s "
1525 kdb_machreg_fmt " "
1526 kdb_machreg_fmt " "
1527 kdb_machreg_fmt, symtab.mod_name,
1528 symtab.sec_name, symtab.sec_start,
1529 symtab.sym_start, symtab.sym_end);
1530 }
1531 addr += bytesperword;
1532 } else {
1533 union {
1534 u64 word;
1535 unsigned char c[8];
1536 } wc;
1537 unsigned char *cp;
1538#ifdef __BIG_ENDIAN
1539 cp = wc.c + 8 - bytesperword;
1540#else
1541 cp = wc.c;
1542#endif
1543 wc.word = word;
1544#define printable_char(c) \
1545 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1546 for (j = 0; j < bytesperword; j++)
1547 *c++ = printable_char(*cp++);
1548 addr += bytesperword;
1549#undef printable_char
1550 }
1551 }
1552 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1553 " ", cbuf);
1554}
1555
1556static int kdb_md(int argc, const char **argv)
1557{
1558 static unsigned long last_addr;
1559 static int last_radix, last_bytesperword, last_repeat;
1560 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1561 int nosect = 0;
1562 char fmtchar, fmtstr[64];
1563 unsigned long addr;
1564 unsigned long word;
1565 long offset = 0;
1566 int symbolic = 0;
1567 int valid = 0;
1568 int phys = 0;
1569 int raw = 0;
1570
1571 kdbgetintenv("MDCOUNT", &mdcount);
1572 kdbgetintenv("RADIX", &radix);
1573 kdbgetintenv("BYTESPERWORD", &bytesperword);
1574
1575 /* Assume 'md <addr>' and start with environment values */
1576 repeat = mdcount * 16 / bytesperword;
1577
1578 if (strcmp(argv[0], "mdr") == 0) {
1579 if (argc == 2 || (argc == 0 && last_addr != 0))
1580 valid = raw = 1;
1581 else
1582 return KDB_ARGCOUNT;
1583 } else if (isdigit(argv[0][2])) {
1584 bytesperword = (int)(argv[0][2] - '0');
1585 if (bytesperword == 0) {
1586 bytesperword = last_bytesperword;
1587 if (bytesperword == 0)
1588 bytesperword = 4;
1589 }
1590 last_bytesperword = bytesperword;
1591 repeat = mdcount * 16 / bytesperword;
1592 if (!argv[0][3])
1593 valid = 1;
1594 else if (argv[0][3] == 'c' && argv[0][4]) {
1595 if (kstrtouint(argv[0] + 4, 10, &repeat))
1596 return KDB_BADINT;
1597 mdcount = ((repeat * bytesperword) + 15) / 16;
1598 valid = 1;
1599 }
1600 last_repeat = repeat;
1601 } else if (strcmp(argv[0], "md") == 0)
1602 valid = 1;
1603 else if (strcmp(argv[0], "mds") == 0)
1604 valid = 1;
1605 else if (strcmp(argv[0], "mdp") == 0) {
1606 phys = valid = 1;
1607 }
1608 if (!valid)
1609 return KDB_NOTFOUND;
1610
1611 if (argc == 0) {
1612 if (last_addr == 0)
1613 return KDB_ARGCOUNT;
1614 addr = last_addr;
1615 radix = last_radix;
1616 bytesperword = last_bytesperword;
1617 repeat = last_repeat;
1618 if (raw)
1619 mdcount = repeat;
1620 else
1621 mdcount = ((repeat * bytesperword) + 15) / 16;
1622 }
1623
1624 if (argc) {
1625 unsigned long val;
1626 int diag, nextarg = 1;
1627 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1628 &offset, NULL);
1629 if (diag)
1630 return diag;
1631 if (argc > nextarg+2)
1632 return KDB_ARGCOUNT;
1633
1634 if (argc >= nextarg) {
1635 diag = kdbgetularg(argv[nextarg], &val);
1636 if (!diag) {
1637 mdcount = (int) val;
1638 if (raw)
1639 repeat = mdcount;
1640 else
1641 repeat = mdcount * 16 / bytesperword;
1642 }
1643 }
1644 if (argc >= nextarg+1) {
1645 diag = kdbgetularg(argv[nextarg+1], &val);
1646 if (!diag)
1647 radix = (int) val;
1648 }
1649 }
1650
1651 if (strcmp(argv[0], "mdr") == 0) {
1652 int ret;
1653 last_addr = addr;
1654 ret = kdb_mdr(addr, mdcount);
1655 last_addr += mdcount;
1656 last_repeat = mdcount;
1657 last_bytesperword = bytesperword; // to make REPEAT happy
1658 return ret;
1659 }
1660
1661 switch (radix) {
1662 case 10:
1663 fmtchar = 'd';
1664 break;
1665 case 16:
1666 fmtchar = 'x';
1667 break;
1668 case 8:
1669 fmtchar = 'o';
1670 break;
1671 default:
1672 return KDB_BADRADIX;
1673 }
1674
1675 last_radix = radix;
1676
1677 if (bytesperword > KDB_WORD_SIZE)
1678 return KDB_BADWIDTH;
1679
1680 switch (bytesperword) {
1681 case 8:
1682 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1683 break;
1684 case 4:
1685 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1686 break;
1687 case 2:
1688 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1689 break;
1690 case 1:
1691 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1692 break;
1693 default:
1694 return KDB_BADWIDTH;
1695 }
1696
1697 last_repeat = repeat;
1698 last_bytesperword = bytesperword;
1699
1700 if (strcmp(argv[0], "mds") == 0) {
1701 symbolic = 1;
1702 /* Do not save these changes as last_*, they are temporary mds
1703 * overrides.
1704 */
1705 bytesperword = KDB_WORD_SIZE;
1706 repeat = mdcount;
1707 kdbgetintenv("NOSECT", &nosect);
1708 }
1709
1710 /* Round address down modulo BYTESPERWORD */
1711
1712 addr &= ~(bytesperword-1);
1713
1714 while (repeat > 0) {
1715 unsigned long a;
1716 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1717
1718 if (KDB_FLAG(CMD_INTERRUPT))
1719 return 0;
1720 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1721 if (phys) {
1722 if (kdb_getphysword(&word, a, bytesperword)
1723 || word)
1724 break;
1725 } else if (kdb_getword(&word, a, bytesperword) || word)
1726 break;
1727 }
1728 n = min(num, repeat);
1729 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1730 num, repeat, phys);
1731 addr += bytesperword * n;
1732 repeat -= n;
1733 z = (z + num - 1) / num;
1734 if (z > 2) {
1735 int s = num * (z-2);
1736 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1737 " zero suppressed\n",
1738 addr, addr + bytesperword * s - 1);
1739 addr += bytesperword * s;
1740 repeat -= s;
1741 }
1742 }
1743 last_addr = addr;
1744
1745 return 0;
1746}
1747
1748/*
1749 * kdb_mm - This function implements the 'mm' command.
1750 * mm address-expression new-value
1751 * Remarks:
1752 * mm works on machine words, mmW works on bytes.
1753 */
1754static int kdb_mm(int argc, const char **argv)
1755{
1756 int diag;
1757 unsigned long addr;
1758 long offset = 0;
1759 unsigned long contents;
1760 int nextarg;
1761 int width;
1762
1763 if (argv[0][2] && !isdigit(argv[0][2]))
1764 return KDB_NOTFOUND;
1765
1766 if (argc < 2)
1767 return KDB_ARGCOUNT;
1768
1769 nextarg = 1;
1770 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1771 if (diag)
1772 return diag;
1773
1774 if (nextarg > argc)
1775 return KDB_ARGCOUNT;
1776 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1777 if (diag)
1778 return diag;
1779
1780 if (nextarg != argc + 1)
1781 return KDB_ARGCOUNT;
1782
1783 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1784 diag = kdb_putword(addr, contents, width);
1785 if (diag)
1786 return diag;
1787
1788 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1789
1790 return 0;
1791}
1792
1793/*
1794 * kdb_go - This function implements the 'go' command.
1795 * go [address-expression]
1796 */
1797static int kdb_go(int argc, const char **argv)
1798{
1799 unsigned long addr;
1800 int diag;
1801 int nextarg;
1802 long offset;
1803
1804 if (raw_smp_processor_id() != kdb_initial_cpu) {
1805 kdb_printf("go must execute on the entry cpu, "
1806 "please use \"cpu %d\" and then execute go\n",
1807 kdb_initial_cpu);
1808 return KDB_BADCPUNUM;
1809 }
1810 if (argc == 1) {
1811 nextarg = 1;
1812 diag = kdbgetaddrarg(argc, argv, &nextarg,
1813 &addr, &offset, NULL);
1814 if (diag)
1815 return diag;
1816 } else if (argc) {
1817 return KDB_ARGCOUNT;
1818 }
1819
1820 diag = KDB_CMD_GO;
1821 if (KDB_FLAG(CATASTROPHIC)) {
1822 kdb_printf("Catastrophic error detected\n");
1823 kdb_printf("kdb_continue_catastrophic=%d, ",
1824 kdb_continue_catastrophic);
1825 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1826 kdb_printf("type go a second time if you really want "
1827 "to continue\n");
1828 return 0;
1829 }
1830 if (kdb_continue_catastrophic == 2) {
1831 kdb_printf("forcing reboot\n");
1832 kdb_reboot(0, NULL);
1833 }
1834 kdb_printf("attempting to continue\n");
1835 }
1836 return diag;
1837}
1838
1839/*
1840 * kdb_rd - This function implements the 'rd' command.
1841 */
1842static int kdb_rd(int argc, const char **argv)
1843{
1844 int len = kdb_check_regs();
1845#if DBG_MAX_REG_NUM > 0
1846 int i;
1847 char *rname;
1848 int rsize;
1849 u64 reg64;
1850 u32 reg32;
1851 u16 reg16;
1852 u8 reg8;
1853
1854 if (len)
1855 return len;
1856
1857 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1858 rsize = dbg_reg_def[i].size * 2;
1859 if (rsize > 16)
1860 rsize = 2;
1861 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1862 len = 0;
1863 kdb_printf("\n");
1864 }
1865 if (len)
1866 len += kdb_printf(" ");
1867 switch(dbg_reg_def[i].size * 8) {
1868 case 8:
1869 rname = dbg_get_reg(i, ®8, kdb_current_regs);
1870 if (!rname)
1871 break;
1872 len += kdb_printf("%s: %02x", rname, reg8);
1873 break;
1874 case 16:
1875 rname = dbg_get_reg(i, ®16, kdb_current_regs);
1876 if (!rname)
1877 break;
1878 len += kdb_printf("%s: %04x", rname, reg16);
1879 break;
1880 case 32:
1881 rname = dbg_get_reg(i, ®32, kdb_current_regs);
1882 if (!rname)
1883 break;
1884 len += kdb_printf("%s: %08x", rname, reg32);
1885 break;
1886 case 64:
1887 rname = dbg_get_reg(i, ®64, kdb_current_regs);
1888 if (!rname)
1889 break;
1890 len += kdb_printf("%s: %016llx", rname, reg64);
1891 break;
1892 default:
1893 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1894 }
1895 }
1896 kdb_printf("\n");
1897#else
1898 if (len)
1899 return len;
1900
1901 kdb_dumpregs(kdb_current_regs);
1902#endif
1903 return 0;
1904}
1905
1906/*
1907 * kdb_rm - This function implements the 'rm' (register modify) command.
1908 * rm register-name new-contents
1909 * Remarks:
1910 * Allows register modification with the same restrictions as gdb
1911 */
1912static int kdb_rm(int argc, const char **argv)
1913{
1914#if DBG_MAX_REG_NUM > 0
1915 int diag;
1916 const char *rname;
1917 int i;
1918 u64 reg64;
1919 u32 reg32;
1920 u16 reg16;
1921 u8 reg8;
1922
1923 if (argc != 2)
1924 return KDB_ARGCOUNT;
1925 /*
1926 * Allow presence or absence of leading '%' symbol.
1927 */
1928 rname = argv[1];
1929 if (*rname == '%')
1930 rname++;
1931
1932 diag = kdbgetu64arg(argv[2], ®64);
1933 if (diag)
1934 return diag;
1935
1936 diag = kdb_check_regs();
1937 if (diag)
1938 return diag;
1939
1940 diag = KDB_BADREG;
1941 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1942 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1943 diag = 0;
1944 break;
1945 }
1946 }
1947 if (!diag) {
1948 switch(dbg_reg_def[i].size * 8) {
1949 case 8:
1950 reg8 = reg64;
1951 dbg_set_reg(i, ®8, kdb_current_regs);
1952 break;
1953 case 16:
1954 reg16 = reg64;
1955 dbg_set_reg(i, ®16, kdb_current_regs);
1956 break;
1957 case 32:
1958 reg32 = reg64;
1959 dbg_set_reg(i, ®32, kdb_current_regs);
1960 break;
1961 case 64:
1962 dbg_set_reg(i, ®64, kdb_current_regs);
1963 break;
1964 }
1965 }
1966 return diag;
1967#else
1968 kdb_printf("ERROR: Register set currently not implemented\n");
1969 return 0;
1970#endif
1971}
1972
1973#if defined(CONFIG_MAGIC_SYSRQ)
1974/*
1975 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1976 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1977 * sr <magic-sysrq-code>
1978 */
1979static int kdb_sr(int argc, const char **argv)
1980{
1981 bool check_mask =
1982 !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1983
1984 if (argc != 1)
1985 return KDB_ARGCOUNT;
1986
1987 kdb_trap_printk++;
1988 __handle_sysrq(*argv[1], check_mask);
1989 kdb_trap_printk--;
1990
1991 return 0;
1992}
1993#endif /* CONFIG_MAGIC_SYSRQ */
1994
1995/*
1996 * kdb_ef - This function implements the 'regs' (display exception
1997 * frame) command. This command takes an address and expects to
1998 * find an exception frame at that address, formats and prints
1999 * it.
2000 * regs address-expression
2001 * Remarks:
2002 * Not done yet.
2003 */
2004static int kdb_ef(int argc, const char **argv)
2005{
2006 int diag;
2007 unsigned long addr;
2008 long offset;
2009 int nextarg;
2010
2011 if (argc != 1)
2012 return KDB_ARGCOUNT;
2013
2014 nextarg = 1;
2015 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2016 if (diag)
2017 return diag;
2018 show_regs((struct pt_regs *)addr);
2019 return 0;
2020}
2021
2022/*
2023 * kdb_env - This function implements the 'env' command. Display the
2024 * current environment variables.
2025 */
2026
2027static int kdb_env(int argc, const char **argv)
2028{
2029 kdb_printenv();
2030
2031 if (KDB_DEBUG(MASK))
2032 kdb_printf("KDBDEBUG=0x%x\n",
2033 (kdb_flags & KDB_DEBUG(MASK)) >> KDB_DEBUG_FLAG_SHIFT);
2034
2035 return 0;
2036}
2037
2038#ifdef CONFIG_PRINTK
2039/*
2040 * kdb_dmesg - This function implements the 'dmesg' command to display
2041 * the contents of the syslog buffer.
2042 * dmesg [lines] [adjust]
2043 */
2044static int kdb_dmesg(int argc, const char **argv)
2045{
2046 int diag;
2047 int logging;
2048 int lines = 0;
2049 int adjust = 0;
2050 int n = 0;
2051 int skip = 0;
2052 struct kmsg_dump_iter iter;
2053 size_t len;
2054 char buf[201];
2055
2056 if (argc > 2)
2057 return KDB_ARGCOUNT;
2058 if (argc) {
2059 if (kstrtoint(argv[1], 0, &lines))
2060 lines = 0;
2061 if (argc > 1 && (kstrtoint(argv[2], 0, &adjust) || adjust < 0))
2062 adjust = 0;
2063 }
2064
2065 /* disable LOGGING if set */
2066 diag = kdbgetintenv("LOGGING", &logging);
2067 if (!diag && logging) {
2068 const char *setargs[] = { "set", "LOGGING", "0" };
2069 kdb_set(2, setargs);
2070 }
2071
2072 kmsg_dump_rewind(&iter);
2073 while (kmsg_dump_get_line(&iter, 1, NULL, 0, NULL))
2074 n++;
2075
2076 if (lines < 0) {
2077 if (adjust >= n)
2078 kdb_printf("buffer only contains %d lines, nothing "
2079 "printed\n", n);
2080 else if (adjust - lines >= n)
2081 kdb_printf("buffer only contains %d lines, last %d "
2082 "lines printed\n", n, n - adjust);
2083 skip = adjust;
2084 lines = abs(lines);
2085 } else if (lines > 0) {
2086 skip = n - lines - adjust;
2087 lines = abs(lines);
2088 if (adjust >= n) {
2089 kdb_printf("buffer only contains %d lines, "
2090 "nothing printed\n", n);
2091 skip = n;
2092 } else if (skip < 0) {
2093 lines += skip;
2094 skip = 0;
2095 kdb_printf("buffer only contains %d lines, first "
2096 "%d lines printed\n", n, lines);
2097 }
2098 } else {
2099 lines = n;
2100 }
2101
2102 if (skip >= n || skip < 0)
2103 return 0;
2104
2105 kmsg_dump_rewind(&iter);
2106 while (kmsg_dump_get_line(&iter, 1, buf, sizeof(buf), &len)) {
2107 if (skip) {
2108 skip--;
2109 continue;
2110 }
2111 if (!lines--)
2112 break;
2113 if (KDB_FLAG(CMD_INTERRUPT))
2114 return 0;
2115
2116 kdb_printf("%.*s\n", (int)len - 1, buf);
2117 }
2118
2119 return 0;
2120}
2121#endif /* CONFIG_PRINTK */
2122
2123/* Make sure we balance enable/disable calls, must disable first. */
2124static atomic_t kdb_nmi_disabled;
2125
2126static int kdb_disable_nmi(int argc, const char *argv[])
2127{
2128 if (atomic_read(&kdb_nmi_disabled))
2129 return 0;
2130 atomic_set(&kdb_nmi_disabled, 1);
2131 arch_kgdb_ops.enable_nmi(0);
2132 return 0;
2133}
2134
2135static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2136{
2137 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2138 return -EINVAL;
2139 arch_kgdb_ops.enable_nmi(1);
2140 return 0;
2141}
2142
2143static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2144 .set = kdb_param_enable_nmi,
2145};
2146module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2147
2148/*
2149 * kdb_cpu - This function implements the 'cpu' command.
2150 * cpu [<cpunum>]
2151 * Returns:
2152 * KDB_CMD_CPU for success, a kdb diagnostic if error
2153 */
2154static void kdb_cpu_status(void)
2155{
2156 int i, start_cpu, first_print = 1;
2157 char state, prev_state = '?';
2158
2159 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2160 kdb_printf("Available cpus: ");
2161 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2162 if (!cpu_online(i)) {
2163 state = 'F'; /* cpu is offline */
2164 } else if (!kgdb_info[i].enter_kgdb) {
2165 state = 'D'; /* cpu is online but unresponsive */
2166 } else {
2167 state = ' '; /* cpu is responding to kdb */
2168 if (kdb_task_state_char(KDB_TSK(i)) == '-')
2169 state = '-'; /* idle task */
2170 }
2171 if (state != prev_state) {
2172 if (prev_state != '?') {
2173 if (!first_print)
2174 kdb_printf(", ");
2175 first_print = 0;
2176 kdb_printf("%d", start_cpu);
2177 if (start_cpu < i-1)
2178 kdb_printf("-%d", i-1);
2179 if (prev_state != ' ')
2180 kdb_printf("(%c)", prev_state);
2181 }
2182 prev_state = state;
2183 start_cpu = i;
2184 }
2185 }
2186 /* print the trailing cpus, ignoring them if they are all offline */
2187 if (prev_state != 'F') {
2188 if (!first_print)
2189 kdb_printf(", ");
2190 kdb_printf("%d", start_cpu);
2191 if (start_cpu < i-1)
2192 kdb_printf("-%d", i-1);
2193 if (prev_state != ' ')
2194 kdb_printf("(%c)", prev_state);
2195 }
2196 kdb_printf("\n");
2197}
2198
2199static int kdb_cpu(int argc, const char **argv)
2200{
2201 unsigned long cpunum;
2202 int diag;
2203
2204 if (argc == 0) {
2205 kdb_cpu_status();
2206 return 0;
2207 }
2208
2209 if (argc != 1)
2210 return KDB_ARGCOUNT;
2211
2212 diag = kdbgetularg(argv[1], &cpunum);
2213 if (diag)
2214 return diag;
2215
2216 /*
2217 * Validate cpunum
2218 */
2219 if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2220 return KDB_BADCPUNUM;
2221
2222 dbg_switch_cpu = cpunum;
2223
2224 /*
2225 * Switch to other cpu
2226 */
2227 return KDB_CMD_CPU;
2228}
2229
2230/* The user may not realize that ps/bta with no parameters does not print idle
2231 * or sleeping system daemon processes, so tell them how many were suppressed.
2232 */
2233void kdb_ps_suppressed(void)
2234{
2235 int idle = 0, daemon = 0;
2236 unsigned long cpu;
2237 const struct task_struct *p, *g;
2238 for_each_online_cpu(cpu) {
2239 p = curr_task(cpu);
2240 if (kdb_task_state(p, "-"))
2241 ++idle;
2242 }
2243 for_each_process_thread(g, p) {
2244 if (kdb_task_state(p, "ims"))
2245 ++daemon;
2246 }
2247 if (idle || daemon) {
2248 if (idle)
2249 kdb_printf("%d idle process%s (state -)%s\n",
2250 idle, idle == 1 ? "" : "es",
2251 daemon ? " and " : "");
2252 if (daemon)
2253 kdb_printf("%d sleeping system daemon (state [ims]) "
2254 "process%s", daemon,
2255 daemon == 1 ? "" : "es");
2256 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2257 }
2258}
2259
2260void kdb_ps1(const struct task_struct *p)
2261{
2262 int cpu;
2263 unsigned long tmp;
2264
2265 if (!p ||
2266 copy_from_kernel_nofault(&tmp, (char *)p, sizeof(unsigned long)))
2267 return;
2268
2269 cpu = kdb_process_cpu(p);
2270 kdb_printf("0x%px %8d %8d %d %4d %c 0x%px %c%s\n",
2271 (void *)p, p->pid, p->parent->pid,
2272 kdb_task_has_cpu(p), kdb_process_cpu(p),
2273 kdb_task_state_char(p),
2274 (void *)(&p->thread),
2275 p == curr_task(raw_smp_processor_id()) ? '*' : ' ',
2276 p->comm);
2277 if (kdb_task_has_cpu(p)) {
2278 if (!KDB_TSK(cpu)) {
2279 kdb_printf(" Error: no saved data for this cpu\n");
2280 } else {
2281 if (KDB_TSK(cpu) != p)
2282 kdb_printf(" Error: does not match running "
2283 "process table (0x%px)\n", KDB_TSK(cpu));
2284 }
2285 }
2286}
2287
2288/*
2289 * kdb_ps - This function implements the 'ps' command which shows a
2290 * list of the active processes.
2291 *
2292 * ps [<state_chars>] Show processes, optionally selecting only those whose
2293 * state character is found in <state_chars>.
2294 */
2295static int kdb_ps(int argc, const char **argv)
2296{
2297 struct task_struct *g, *p;
2298 const char *mask;
2299 unsigned long cpu;
2300
2301 if (argc == 0)
2302 kdb_ps_suppressed();
2303 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2304 (int)(2*sizeof(void *))+2, "Task Addr",
2305 (int)(2*sizeof(void *))+2, "Thread");
2306 mask = argc ? argv[1] : kdbgetenv("PS");
2307 /* Run the active tasks first */
2308 for_each_online_cpu(cpu) {
2309 if (KDB_FLAG(CMD_INTERRUPT))
2310 return 0;
2311 p = curr_task(cpu);
2312 if (kdb_task_state(p, mask))
2313 kdb_ps1(p);
2314 }
2315 kdb_printf("\n");
2316 /* Now the real tasks */
2317 for_each_process_thread(g, p) {
2318 if (KDB_FLAG(CMD_INTERRUPT))
2319 return 0;
2320 if (kdb_task_state(p, mask))
2321 kdb_ps1(p);
2322 }
2323
2324 return 0;
2325}
2326
2327/*
2328 * kdb_pid - This function implements the 'pid' command which switches
2329 * the currently active process.
2330 * pid [<pid> | R]
2331 */
2332static int kdb_pid(int argc, const char **argv)
2333{
2334 struct task_struct *p;
2335 unsigned long val;
2336 int diag;
2337
2338 if (argc > 1)
2339 return KDB_ARGCOUNT;
2340
2341 if (argc) {
2342 if (strcmp(argv[1], "R") == 0) {
2343 p = KDB_TSK(kdb_initial_cpu);
2344 } else {
2345 diag = kdbgetularg(argv[1], &val);
2346 if (diag)
2347 return KDB_BADINT;
2348
2349 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2350 if (!p) {
2351 kdb_printf("No task with pid=%d\n", (pid_t)val);
2352 return 0;
2353 }
2354 }
2355 kdb_set_current_task(p);
2356 }
2357 kdb_printf("KDB current process is %s(pid=%d)\n",
2358 kdb_current_task->comm,
2359 kdb_current_task->pid);
2360
2361 return 0;
2362}
2363
2364static int kdb_kgdb(int argc, const char **argv)
2365{
2366 return KDB_CMD_KGDB;
2367}
2368
2369/*
2370 * kdb_help - This function implements the 'help' and '?' commands.
2371 */
2372static int kdb_help(int argc, const char **argv)
2373{
2374 kdbtab_t *kt;
2375
2376 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2377 kdb_printf("-----------------------------"
2378 "-----------------------------\n");
2379 list_for_each_entry(kt, &kdb_cmds_head, list_node) {
2380 char *space = "";
2381 if (KDB_FLAG(CMD_INTERRUPT))
2382 return 0;
2383 if (!kdb_check_flags(kt->flags, kdb_cmd_enabled, true))
2384 continue;
2385 if (strlen(kt->usage) > 20)
2386 space = "\n ";
2387 kdb_printf("%-15.15s %-20s%s%s\n", kt->name,
2388 kt->usage, space, kt->help);
2389 }
2390 return 0;
2391}
2392
2393/*
2394 * kdb_kill - This function implements the 'kill' commands.
2395 */
2396static int kdb_kill(int argc, const char **argv)
2397{
2398 long sig, pid;
2399 struct task_struct *p;
2400
2401 if (argc != 2)
2402 return KDB_ARGCOUNT;
2403
2404 if (kstrtol(argv[1], 0, &sig))
2405 return KDB_BADINT;
2406 if ((sig >= 0) || !valid_signal(-sig)) {
2407 kdb_printf("Invalid signal parameter.<-signal>\n");
2408 return 0;
2409 }
2410 sig = -sig;
2411
2412 if (kstrtol(argv[2], 0, &pid))
2413 return KDB_BADINT;
2414 if (pid <= 0) {
2415 kdb_printf("Process ID must be large than 0.\n");
2416 return 0;
2417 }
2418
2419 /* Find the process. */
2420 p = find_task_by_pid_ns(pid, &init_pid_ns);
2421 if (!p) {
2422 kdb_printf("The specified process isn't found.\n");
2423 return 0;
2424 }
2425 p = p->group_leader;
2426 kdb_send_sig(p, sig);
2427 return 0;
2428}
2429
2430/*
2431 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2432 * I cannot call that code directly from kdb, it has an unconditional
2433 * cli()/sti() and calls routines that take locks which can stop the debugger.
2434 */
2435static void kdb_sysinfo(struct sysinfo *val)
2436{
2437 u64 uptime = ktime_get_mono_fast_ns();
2438
2439 memset(val, 0, sizeof(*val));
2440 val->uptime = div_u64(uptime, NSEC_PER_SEC);
2441 val->loads[0] = avenrun[0];
2442 val->loads[1] = avenrun[1];
2443 val->loads[2] = avenrun[2];
2444 val->procs = nr_threads-1;
2445 si_meminfo(val);
2446
2447 return;
2448}
2449
2450/*
2451 * kdb_summary - This function implements the 'summary' command.
2452 */
2453static int kdb_summary(int argc, const char **argv)
2454{
2455 time64_t now;
2456 struct sysinfo val;
2457
2458 if (argc)
2459 return KDB_ARGCOUNT;
2460
2461 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2462 kdb_printf("release %s\n", init_uts_ns.name.release);
2463 kdb_printf("version %s\n", init_uts_ns.name.version);
2464 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2465 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2466 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2467
2468 now = __ktime_get_real_seconds();
2469 kdb_printf("date %ptTs tz_minuteswest %d\n", &now, sys_tz.tz_minuteswest);
2470 kdb_sysinfo(&val);
2471 kdb_printf("uptime ");
2472 if (val.uptime > (24*60*60)) {
2473 int days = val.uptime / (24*60*60);
2474 val.uptime %= (24*60*60);
2475 kdb_printf("%d day%s ", days, str_plural(days));
2476 }
2477 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2478
2479 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2480 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2481 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2482 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2483
2484 /* Display in kilobytes */
2485#define K(x) ((x) << (PAGE_SHIFT - 10))
2486 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2487 "Buffers: %8lu kB\n",
2488 K(val.totalram), K(val.freeram), K(val.bufferram));
2489 return 0;
2490}
2491
2492/*
2493 * kdb_per_cpu - This function implements the 'per_cpu' command.
2494 */
2495static int kdb_per_cpu(int argc, const char **argv)
2496{
2497 char fmtstr[64];
2498 int cpu, diag, nextarg = 1;
2499 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2500
2501 if (argc < 1 || argc > 3)
2502 return KDB_ARGCOUNT;
2503
2504 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2505 if (diag)
2506 return diag;
2507
2508 if (argc >= 2) {
2509 diag = kdbgetularg(argv[2], &bytesperword);
2510 if (diag)
2511 return diag;
2512 }
2513 if (!bytesperword)
2514 bytesperword = KDB_WORD_SIZE;
2515 else if (bytesperword > KDB_WORD_SIZE)
2516 return KDB_BADWIDTH;
2517 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2518 if (argc >= 3) {
2519 diag = kdbgetularg(argv[3], &whichcpu);
2520 if (diag)
2521 return diag;
2522 if (whichcpu >= nr_cpu_ids || !cpu_online(whichcpu)) {
2523 kdb_printf("cpu %ld is not online\n", whichcpu);
2524 return KDB_BADCPUNUM;
2525 }
2526 }
2527
2528 /* Most architectures use __per_cpu_offset[cpu], some use
2529 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2530 */
2531#ifdef __per_cpu_offset
2532#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2533#else
2534#ifdef CONFIG_SMP
2535#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2536#else
2537#define KDB_PCU(cpu) 0
2538#endif
2539#endif
2540 for_each_online_cpu(cpu) {
2541 if (KDB_FLAG(CMD_INTERRUPT))
2542 return 0;
2543
2544 if (whichcpu != ~0UL && whichcpu != cpu)
2545 continue;
2546 addr = symaddr + KDB_PCU(cpu);
2547 diag = kdb_getword(&val, addr, bytesperword);
2548 if (diag) {
2549 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2550 "read, diag=%d\n", cpu, addr, diag);
2551 continue;
2552 }
2553 kdb_printf("%5d ", cpu);
2554 kdb_md_line(fmtstr, addr,
2555 bytesperword == KDB_WORD_SIZE,
2556 1, bytesperword, 1, 1, 0);
2557 }
2558#undef KDB_PCU
2559 return 0;
2560}
2561
2562/*
2563 * display help for the use of cmd | grep pattern
2564 */
2565static int kdb_grep_help(int argc, const char **argv)
2566{
2567 kdb_printf("Usage of cmd args | grep pattern:\n");
2568 kdb_printf(" Any command's output may be filtered through an ");
2569 kdb_printf("emulated 'pipe'.\n");
2570 kdb_printf(" 'grep' is just a key word.\n");
2571 kdb_printf(" The pattern may include a very limited set of "
2572 "metacharacters:\n");
2573 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2574 kdb_printf(" And if there are spaces in the pattern, you may "
2575 "quote it:\n");
2576 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2577 " or \"^pat tern$\"\n");
2578 return 0;
2579}
2580
2581/**
2582 * kdb_register() - This function is used to register a kernel debugger
2583 * command.
2584 * @cmd: pointer to kdb command
2585 *
2586 * Note that it's the job of the caller to keep the memory for the cmd
2587 * allocated until unregister is called.
2588 */
2589int kdb_register(kdbtab_t *cmd)
2590{
2591 kdbtab_t *kp;
2592
2593 list_for_each_entry(kp, &kdb_cmds_head, list_node) {
2594 if (strcmp(kp->name, cmd->name) == 0) {
2595 kdb_printf("Duplicate kdb cmd: %s, func %p help %s\n",
2596 cmd->name, cmd->func, cmd->help);
2597 return 1;
2598 }
2599 }
2600
2601 list_add_tail(&cmd->list_node, &kdb_cmds_head);
2602 return 0;
2603}
2604EXPORT_SYMBOL_GPL(kdb_register);
2605
2606/**
2607 * kdb_register_table() - This function is used to register a kdb command
2608 * table.
2609 * @kp: pointer to kdb command table
2610 * @len: length of kdb command table
2611 */
2612void kdb_register_table(kdbtab_t *kp, size_t len)
2613{
2614 while (len--) {
2615 list_add_tail(&kp->list_node, &kdb_cmds_head);
2616 kp++;
2617 }
2618}
2619
2620/**
2621 * kdb_unregister() - This function is used to unregister a kernel debugger
2622 * command. It is generally called when a module which
2623 * implements kdb command is unloaded.
2624 * @cmd: pointer to kdb command
2625 */
2626void kdb_unregister(kdbtab_t *cmd)
2627{
2628 list_del(&cmd->list_node);
2629}
2630EXPORT_SYMBOL_GPL(kdb_unregister);
2631
2632static kdbtab_t maintab[] = {
2633 { .name = "md",
2634 .func = kdb_md,
2635 .usage = "<vaddr>",
2636 .help = "Display Memory Contents, also mdWcN, e.g. md8c1",
2637 .minlen = 1,
2638 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2639 },
2640 { .name = "mdr",
2641 .func = kdb_md,
2642 .usage = "<vaddr> <bytes>",
2643 .help = "Display Raw Memory",
2644 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2645 },
2646 { .name = "mdp",
2647 .func = kdb_md,
2648 .usage = "<paddr> <bytes>",
2649 .help = "Display Physical Memory",
2650 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2651 },
2652 { .name = "mds",
2653 .func = kdb_md,
2654 .usage = "<vaddr>",
2655 .help = "Display Memory Symbolically",
2656 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2657 },
2658 { .name = "mm",
2659 .func = kdb_mm,
2660 .usage = "<vaddr> <contents>",
2661 .help = "Modify Memory Contents",
2662 .flags = KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS,
2663 },
2664 { .name = "go",
2665 .func = kdb_go,
2666 .usage = "[<vaddr>]",
2667 .help = "Continue Execution",
2668 .minlen = 1,
2669 .flags = KDB_ENABLE_REG_WRITE |
2670 KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
2671 },
2672 { .name = "rd",
2673 .func = kdb_rd,
2674 .usage = "",
2675 .help = "Display Registers",
2676 .flags = KDB_ENABLE_REG_READ,
2677 },
2678 { .name = "rm",
2679 .func = kdb_rm,
2680 .usage = "<reg> <contents>",
2681 .help = "Modify Registers",
2682 .flags = KDB_ENABLE_REG_WRITE,
2683 },
2684 { .name = "ef",
2685 .func = kdb_ef,
2686 .usage = "<vaddr>",
2687 .help = "Display exception frame",
2688 .flags = KDB_ENABLE_MEM_READ,
2689 },
2690 { .name = "bt",
2691 .func = kdb_bt,
2692 .usage = "[<vaddr>]",
2693 .help = "Stack traceback",
2694 .minlen = 1,
2695 .flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
2696 },
2697 { .name = "btp",
2698 .func = kdb_bt,
2699 .usage = "<pid>",
2700 .help = "Display stack for process <pid>",
2701 .flags = KDB_ENABLE_INSPECT,
2702 },
2703 { .name = "bta",
2704 .func = kdb_bt,
2705 .usage = "[<state_chars>|A]",
2706 .help = "Backtrace all processes whose state matches",
2707 .flags = KDB_ENABLE_INSPECT,
2708 },
2709 { .name = "btc",
2710 .func = kdb_bt,
2711 .usage = "",
2712 .help = "Backtrace current process on each cpu",
2713 .flags = KDB_ENABLE_INSPECT,
2714 },
2715 { .name = "btt",
2716 .func = kdb_bt,
2717 .usage = "<vaddr>",
2718 .help = "Backtrace process given its struct task address",
2719 .flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
2720 },
2721 { .name = "env",
2722 .func = kdb_env,
2723 .usage = "",
2724 .help = "Show environment variables",
2725 .flags = KDB_ENABLE_ALWAYS_SAFE,
2726 },
2727 { .name = "set",
2728 .func = kdb_set,
2729 .usage = "",
2730 .help = "Set environment variables",
2731 .flags = KDB_ENABLE_ALWAYS_SAFE,
2732 },
2733 { .name = "help",
2734 .func = kdb_help,
2735 .usage = "",
2736 .help = "Display Help Message",
2737 .minlen = 1,
2738 .flags = KDB_ENABLE_ALWAYS_SAFE,
2739 },
2740 { .name = "?",
2741 .func = kdb_help,
2742 .usage = "",
2743 .help = "Display Help Message",
2744 .flags = KDB_ENABLE_ALWAYS_SAFE,
2745 },
2746 { .name = "cpu",
2747 .func = kdb_cpu,
2748 .usage = "<cpunum>",
2749 .help = "Switch to new cpu",
2750 .flags = KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
2751 },
2752 { .name = "kgdb",
2753 .func = kdb_kgdb,
2754 .usage = "",
2755 .help = "Enter kgdb mode",
2756 .flags = 0,
2757 },
2758 { .name = "ps",
2759 .func = kdb_ps,
2760 .usage = "[<state_chars>|A]",
2761 .help = "Display active task list",
2762 .flags = KDB_ENABLE_INSPECT,
2763 },
2764 { .name = "pid",
2765 .func = kdb_pid,
2766 .usage = "<pidnum>",
2767 .help = "Switch to another task",
2768 .flags = KDB_ENABLE_INSPECT,
2769 },
2770 { .name = "reboot",
2771 .func = kdb_reboot,
2772 .usage = "",
2773 .help = "Reboot the machine immediately",
2774 .flags = KDB_ENABLE_REBOOT,
2775 },
2776#if defined(CONFIG_MODULES)
2777 { .name = "lsmod",
2778 .func = kdb_lsmod,
2779 .usage = "",
2780 .help = "List loaded kernel modules",
2781 .flags = KDB_ENABLE_INSPECT,
2782 },
2783#endif
2784#if defined(CONFIG_MAGIC_SYSRQ)
2785 { .name = "sr",
2786 .func = kdb_sr,
2787 .usage = "<key>",
2788 .help = "Magic SysRq key",
2789 .flags = KDB_ENABLE_ALWAYS_SAFE,
2790 },
2791#endif
2792#if defined(CONFIG_PRINTK)
2793 { .name = "dmesg",
2794 .func = kdb_dmesg,
2795 .usage = "[lines]",
2796 .help = "Display syslog buffer",
2797 .flags = KDB_ENABLE_ALWAYS_SAFE,
2798 },
2799#endif
2800 { .name = "defcmd",
2801 .func = kdb_defcmd,
2802 .usage = "name \"usage\" \"help\"",
2803 .help = "Define a set of commands, down to endefcmd",
2804 /*
2805 * Macros are always safe because when executed each
2806 * internal command re-enters kdb_parse() and is safety
2807 * checked individually.
2808 */
2809 .flags = KDB_ENABLE_ALWAYS_SAFE,
2810 },
2811 { .name = "kill",
2812 .func = kdb_kill,
2813 .usage = "<-signal> <pid>",
2814 .help = "Send a signal to a process",
2815 .flags = KDB_ENABLE_SIGNAL,
2816 },
2817 { .name = "summary",
2818 .func = kdb_summary,
2819 .usage = "",
2820 .help = "Summarize the system",
2821 .minlen = 4,
2822 .flags = KDB_ENABLE_ALWAYS_SAFE,
2823 },
2824 { .name = "per_cpu",
2825 .func = kdb_per_cpu,
2826 .usage = "<sym> [<bytes>] [<cpu>]",
2827 .help = "Display per_cpu variables",
2828 .minlen = 3,
2829 .flags = KDB_ENABLE_MEM_READ,
2830 },
2831 { .name = "grephelp",
2832 .func = kdb_grep_help,
2833 .usage = "",
2834 .help = "Display help on | grep",
2835 .flags = KDB_ENABLE_ALWAYS_SAFE,
2836 },
2837};
2838
2839static kdbtab_t nmicmd = {
2840 .name = "disable_nmi",
2841 .func = kdb_disable_nmi,
2842 .usage = "",
2843 .help = "Disable NMI entry to KDB",
2844 .flags = KDB_ENABLE_ALWAYS_SAFE,
2845};
2846
2847/* Initialize the kdb command table. */
2848static void __init kdb_inittab(void)
2849{
2850 kdb_register_table(maintab, ARRAY_SIZE(maintab));
2851 if (arch_kgdb_ops.enable_nmi)
2852 kdb_register_table(&nmicmd, 1);
2853}
2854
2855/* Execute any commands defined in kdb_cmds. */
2856static void __init kdb_cmd_init(void)
2857{
2858 int i, diag;
2859 for (i = 0; kdb_cmds[i]; ++i) {
2860 diag = kdb_parse(kdb_cmds[i]);
2861 if (diag)
2862 kdb_printf("kdb command %s failed, kdb diag %d\n",
2863 kdb_cmds[i], diag);
2864 }
2865 if (defcmd_in_progress) {
2866 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2867 kdb_parse("endefcmd");
2868 }
2869}
2870
2871/* Initialize kdb_printf, breakpoint tables and kdb state */
2872void __init kdb_init(int lvl)
2873{
2874 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2875 int i;
2876
2877 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2878 return;
2879 for (i = kdb_init_lvl; i < lvl; i++) {
2880 switch (i) {
2881 case KDB_NOT_INITIALIZED:
2882 kdb_inittab(); /* Initialize Command Table */
2883 kdb_initbptab(); /* Initialize Breakpoints */
2884 break;
2885 case KDB_INIT_EARLY:
2886 kdb_cmd_init(); /* Build kdb_cmds tables */
2887 break;
2888 }
2889 }
2890 kdb_init_lvl = lvl;
2891}