Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 * Kernel Debugger Architecture Independent Main Code
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
   9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
  10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
  11 * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
  12 */
  13
  14#include <linux/ctype.h>
 
  15#include <linux/string.h>
  16#include <linux/kernel.h>
  17#include <linux/kmsg_dump.h>
  18#include <linux/reboot.h>
  19#include <linux/sched.h>
 
 
 
  20#include <linux/sysrq.h>
  21#include <linux/smp.h>
  22#include <linux/utsname.h>
  23#include <linux/vmalloc.h>
  24#include <linux/atomic.h>
  25#include <linux/module.h>
  26#include <linux/mm.h>
  27#include <linux/init.h>
  28#include <linux/kallsyms.h>
  29#include <linux/kgdb.h>
  30#include <linux/kdb.h>
  31#include <linux/notifier.h>
  32#include <linux/interrupt.h>
  33#include <linux/delay.h>
  34#include <linux/nmi.h>
  35#include <linux/time.h>
  36#include <linux/ptrace.h>
  37#include <linux/sysctl.h>
  38#include <linux/cpu.h>
  39#include <linux/kdebug.h>
  40#include <linux/proc_fs.h>
  41#include <linux/uaccess.h>
  42#include <linux/slab.h>
 
  43#include "kdb_private.h"
  44
  45#define GREP_LEN 256
  46char kdb_grep_string[GREP_LEN];
 
 
 
 
 
  47int kdb_grepping_flag;
  48EXPORT_SYMBOL(kdb_grepping_flag);
  49int kdb_grep_leading;
  50int kdb_grep_trailing;
  51
  52/*
  53 * Kernel debugger state flags
  54 */
  55int kdb_flags;
  56atomic_t kdb_event;
  57
  58/*
  59 * kdb_lock protects updates to kdb_initial_cpu.  Used to
  60 * single thread processors through the kernel debugger.
  61 */
  62int kdb_initial_cpu = -1;	/* cpu number that owns kdb */
  63int kdb_nextline = 1;
  64int kdb_state;			/* General KDB state */
  65
  66struct task_struct *kdb_current_task;
  67EXPORT_SYMBOL(kdb_current_task);
  68struct pt_regs *kdb_current_regs;
  69
  70const char *kdb_diemsg;
  71static int kdb_go_count;
  72#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
  73static unsigned int kdb_continue_catastrophic =
  74	CONFIG_KDB_CONTINUE_CATASTROPHIC;
  75#else
  76static unsigned int kdb_continue_catastrophic;
  77#endif
  78
  79/* kdb_commands describes the available commands. */
  80static kdbtab_t *kdb_commands;
  81#define KDB_BASE_CMD_MAX 50
  82static int kdb_max_commands = KDB_BASE_CMD_MAX;
  83static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
  84#define for_each_kdbcmd(cmd, num)					\
  85	for ((cmd) = kdb_base_commands, (num) = 0;			\
  86	     num < kdb_max_commands;					\
  87	     num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
  88
  89typedef struct _kdbmsg {
  90	int	km_diag;	/* kdb diagnostic */
  91	char	*km_msg;	/* Corresponding message text */
  92} kdbmsg_t;
  93
  94#define KDBMSG(msgnum, text) \
  95	{ KDB_##msgnum, text }
  96
  97static kdbmsg_t kdbmsgs[] = {
  98	KDBMSG(NOTFOUND, "Command Not Found"),
  99	KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
 100	KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
 101	       "8 is only allowed on 64 bit systems"),
 102	KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
 103	KDBMSG(NOTENV, "Cannot find environment variable"),
 104	KDBMSG(NOENVVALUE, "Environment variable should have value"),
 105	KDBMSG(NOTIMP, "Command not implemented"),
 106	KDBMSG(ENVFULL, "Environment full"),
 107	KDBMSG(ENVBUFFULL, "Environment buffer full"),
 108	KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
 109#ifdef CONFIG_CPU_XSCALE
 110	KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
 111#else
 112	KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
 113#endif
 114	KDBMSG(DUPBPT, "Duplicate breakpoint address"),
 115	KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
 116	KDBMSG(BADMODE, "Invalid IDMODE"),
 117	KDBMSG(BADINT, "Illegal numeric value"),
 118	KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
 119	KDBMSG(BADREG, "Invalid register name"),
 120	KDBMSG(BADCPUNUM, "Invalid cpu number"),
 121	KDBMSG(BADLENGTH, "Invalid length field"),
 122	KDBMSG(NOBP, "No Breakpoint exists"),
 123	KDBMSG(BADADDR, "Invalid address"),
 
 124};
 125#undef KDBMSG
 126
 127static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
 128
 129
 130/*
 131 * Initial environment.   This is all kept static and local to
 132 * this file.   We don't want to rely on the memory allocation
 133 * mechanisms in the kernel, so we use a very limited allocate-only
 134 * heap for new and altered environment variables.  The entire
 135 * environment is limited to a fixed number of entries (add more
 136 * to __env[] if required) and a fixed amount of heap (add more to
 137 * KDB_ENVBUFSIZE if required).
 138 */
 139
 140static char *__env[] = {
 141#if defined(CONFIG_SMP)
 142 "PROMPT=[%d]kdb> ",
 143#else
 144 "PROMPT=kdb> ",
 145#endif
 146 "MOREPROMPT=more> ",
 147 "RADIX=16",
 148 "MDCOUNT=8",			/* lines of md output */
 149 KDB_PLATFORM_ENV,
 150 "DTABCOUNT=30",
 151 "NOSECT=1",
 152 (char *)0,
 153 (char *)0,
 154 (char *)0,
 155 (char *)0,
 156 (char *)0,
 157 (char *)0,
 158 (char *)0,
 159 (char *)0,
 160 (char *)0,
 161 (char *)0,
 162 (char *)0,
 163 (char *)0,
 164 (char *)0,
 165 (char *)0,
 166 (char *)0,
 167 (char *)0,
 168 (char *)0,
 169 (char *)0,
 170 (char *)0,
 171 (char *)0,
 172 (char *)0,
 173 (char *)0,
 174 (char *)0,
 175 (char *)0,
 176};
 177
 178static const int __nenv = ARRAY_SIZE(__env);
 179
 180struct task_struct *kdb_curr_task(int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 181{
 182	struct task_struct *p = curr_task(cpu);
 183#ifdef	_TIF_MCA_INIT
 184	if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
 185		p = krp->p;
 186#endif
 187	return p;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 188}
 189
 190/*
 191 * kdbgetenv - This function will return the character string value of
 192 *	an environment variable.
 193 * Parameters:
 194 *	match	A character string representing an environment variable.
 195 * Returns:
 196 *	NULL	No environment variable matches 'match'
 197 *	char*	Pointer to string value of environment variable.
 198 */
 199char *kdbgetenv(const char *match)
 200{
 201	char **ep = __env;
 202	int matchlen = strlen(match);
 203	int i;
 204
 205	for (i = 0; i < __nenv; i++) {
 206		char *e = *ep++;
 207
 208		if (!e)
 209			continue;
 210
 211		if ((strncmp(match, e, matchlen) == 0)
 212		 && ((e[matchlen] == '\0')
 213		   || (e[matchlen] == '='))) {
 214			char *cp = strchr(e, '=');
 215			return cp ? ++cp : "";
 216		}
 217	}
 218	return NULL;
 219}
 220
 221/*
 222 * kdballocenv - This function is used to allocate bytes for
 223 *	environment entries.
 224 * Parameters:
 225 *	match	A character string representing a numeric value
 226 * Outputs:
 227 *	*value  the unsigned long representation of the env variable 'match'
 228 * Returns:
 229 *	Zero on success, a kdb diagnostic on failure.
 
 230 * Remarks:
 231 *	We use a static environment buffer (envbuffer) to hold the values
 232 *	of dynamically generated environment variables (see kdb_set).  Buffer
 233 *	space once allocated is never free'd, so over time, the amount of space
 234 *	(currently 512 bytes) will be exhausted if env variables are changed
 235 *	frequently.
 236 */
 237static char *kdballocenv(size_t bytes)
 238{
 239#define	KDB_ENVBUFSIZE	512
 240	static char envbuffer[KDB_ENVBUFSIZE];
 241	static int envbufsize;
 242	char *ep = NULL;
 243
 244	if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
 245		ep = &envbuffer[envbufsize];
 246		envbufsize += bytes;
 247	}
 248	return ep;
 249}
 250
 251/*
 252 * kdbgetulenv - This function will return the value of an unsigned
 253 *	long-valued environment variable.
 254 * Parameters:
 255 *	match	A character string representing a numeric value
 256 * Outputs:
 257 *	*value  the unsigned long represntation of the env variable 'match'
 258 * Returns:
 259 *	Zero on success, a kdb diagnostic on failure.
 260 */
 261static int kdbgetulenv(const char *match, unsigned long *value)
 262{
 263	char *ep;
 264
 265	ep = kdbgetenv(match);
 266	if (!ep)
 267		return KDB_NOTENV;
 268	if (strlen(ep) == 0)
 269		return KDB_NOENVVALUE;
 270
 271	*value = simple_strtoul(ep, NULL, 0);
 272
 273	return 0;
 274}
 275
 276/*
 277 * kdbgetintenv - This function will return the value of an
 278 *	integer-valued environment variable.
 279 * Parameters:
 280 *	match	A character string representing an integer-valued env variable
 281 * Outputs:
 282 *	*value  the integer representation of the environment variable 'match'
 283 * Returns:
 284 *	Zero on success, a kdb diagnostic on failure.
 285 */
 286int kdbgetintenv(const char *match, int *value)
 287{
 288	unsigned long val;
 289	int diag;
 290
 291	diag = kdbgetulenv(match, &val);
 292	if (!diag)
 293		*value = (int) val;
 294	return diag;
 295}
 296
 297/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 298 * kdbgetularg - This function will convert a numeric string into an
 299 *	unsigned long value.
 300 * Parameters:
 301 *	arg	A character string representing a numeric value
 302 * Outputs:
 303 *	*value  the unsigned long represntation of arg.
 304 * Returns:
 305 *	Zero on success, a kdb diagnostic on failure.
 306 */
 307int kdbgetularg(const char *arg, unsigned long *value)
 308{
 309	char *endp;
 310	unsigned long val;
 311
 312	val = simple_strtoul(arg, &endp, 0);
 313
 314	if (endp == arg) {
 315		/*
 316		 * Also try base 16, for us folks too lazy to type the
 317		 * leading 0x...
 318		 */
 319		val = simple_strtoul(arg, &endp, 16);
 320		if (endp == arg)
 321			return KDB_BADINT;
 322	}
 323
 324	*value = val;
 325
 326	return 0;
 327}
 328
 329int kdbgetu64arg(const char *arg, u64 *value)
 330{
 331	char *endp;
 332	u64 val;
 333
 334	val = simple_strtoull(arg, &endp, 0);
 335
 336	if (endp == arg) {
 337
 338		val = simple_strtoull(arg, &endp, 16);
 339		if (endp == arg)
 340			return KDB_BADINT;
 341	}
 342
 343	*value = val;
 344
 345	return 0;
 346}
 347
 348/*
 349 * kdb_set - This function implements the 'set' command.  Alter an
 350 *	existing environment variable or create a new one.
 351 */
 352int kdb_set(int argc, const char **argv)
 353{
 354	int i;
 355	char *ep;
 356	size_t varlen, vallen;
 357
 358	/*
 359	 * we can be invoked two ways:
 360	 *   set var=value    argv[1]="var", argv[2]="value"
 361	 *   set var = value  argv[1]="var", argv[2]="=", argv[3]="value"
 362	 * - if the latter, shift 'em down.
 363	 */
 364	if (argc == 3) {
 365		argv[2] = argv[3];
 366		argc--;
 367	}
 368
 369	if (argc != 2)
 370		return KDB_ARGCOUNT;
 371
 372	/*
 
 
 
 
 
 
 
 373	 * Check for internal variables
 374	 */
 375	if (strcmp(argv[1], "KDBDEBUG") == 0) {
 376		unsigned int debugflags;
 377		char *cp;
 378
 379		debugflags = simple_strtoul(argv[2], &cp, 0);
 380		if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
 381			kdb_printf("kdb: illegal debug flags '%s'\n",
 382				    argv[2]);
 383			return 0;
 384		}
 385		kdb_flags = (kdb_flags &
 386			     ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
 387			| (debugflags << KDB_DEBUG_FLAG_SHIFT);
 388
 389		return 0;
 390	}
 391
 392	/*
 393	 * Tokenizer squashed the '=' sign.  argv[1] is variable
 394	 * name, argv[2] = value.
 395	 */
 396	varlen = strlen(argv[1]);
 397	vallen = strlen(argv[2]);
 398	ep = kdballocenv(varlen + vallen + 2);
 399	if (ep == (char *)0)
 400		return KDB_ENVBUFFULL;
 401
 402	sprintf(ep, "%s=%s", argv[1], argv[2]);
 403
 404	ep[varlen+vallen+1] = '\0';
 405
 406	for (i = 0; i < __nenv; i++) {
 407		if (__env[i]
 408		 && ((strncmp(__env[i], argv[1], varlen) == 0)
 409		   && ((__env[i][varlen] == '\0')
 410		    || (__env[i][varlen] == '=')))) {
 411			__env[i] = ep;
 412			return 0;
 413		}
 414	}
 415
 416	/*
 417	 * Wasn't existing variable.  Fit into slot.
 418	 */
 419	for (i = 0; i < __nenv-1; i++) {
 420		if (__env[i] == (char *)0) {
 421			__env[i] = ep;
 422			return 0;
 423		}
 424	}
 425
 426	return KDB_ENVFULL;
 427}
 428
 429static int kdb_check_regs(void)
 430{
 431	if (!kdb_current_regs) {
 432		kdb_printf("No current kdb registers."
 433			   "  You may need to select another task\n");
 434		return KDB_BADREG;
 435	}
 436	return 0;
 437}
 438
 439/*
 440 * kdbgetaddrarg - This function is responsible for parsing an
 441 *	address-expression and returning the value of the expression,
 442 *	symbol name, and offset to the caller.
 443 *
 444 *	The argument may consist of a numeric value (decimal or
 445 *	hexidecimal), a symbol name, a register name (preceded by the
 446 *	percent sign), an environment variable with a numeric value
 447 *	(preceded by a dollar sign) or a simple arithmetic expression
 448 *	consisting of a symbol name, +/-, and a numeric constant value
 449 *	(offset).
 450 * Parameters:
 451 *	argc	- count of arguments in argv
 452 *	argv	- argument vector
 453 *	*nextarg - index to next unparsed argument in argv[]
 454 *	regs	- Register state at time of KDB entry
 455 * Outputs:
 456 *	*value	- receives the value of the address-expression
 457 *	*offset - receives the offset specified, if any
 458 *	*name   - receives the symbol name, if any
 459 *	*nextarg - index to next unparsed argument in argv[]
 460 * Returns:
 461 *	zero is returned on success, a kdb diagnostic code is
 462 *      returned on error.
 463 */
 464int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
 465		  unsigned long *value,  long *offset,
 466		  char **name)
 467{
 468	unsigned long addr;
 469	unsigned long off = 0;
 470	int positive;
 471	int diag;
 472	int found = 0;
 473	char *symname;
 474	char symbol = '\0';
 475	char *cp;
 476	kdb_symtab_t symtab;
 477
 478	/*
 
 
 
 
 
 
 
 
 
 479	 * Process arguments which follow the following syntax:
 480	 *
 481	 *  symbol | numeric-address [+/- numeric-offset]
 482	 *  %register
 483	 *  $environment-variable
 484	 */
 485
 486	if (*nextarg > argc)
 487		return KDB_ARGCOUNT;
 488
 489	symname = (char *)argv[*nextarg];
 490
 491	/*
 492	 * If there is no whitespace between the symbol
 493	 * or address and the '+' or '-' symbols, we
 494	 * remember the character and replace it with a
 495	 * null so the symbol/value can be properly parsed
 496	 */
 497	cp = strpbrk(symname, "+-");
 498	if (cp != NULL) {
 499		symbol = *cp;
 500		*cp++ = '\0';
 501	}
 502
 503	if (symname[0] == '$') {
 504		diag = kdbgetulenv(&symname[1], &addr);
 505		if (diag)
 506			return diag;
 507	} else if (symname[0] == '%') {
 508		diag = kdb_check_regs();
 509		if (diag)
 510			return diag;
 511		/* Implement register values with % at a later time as it is
 512		 * arch optional.
 513		 */
 514		return KDB_NOTIMP;
 515	} else {
 516		found = kdbgetsymval(symname, &symtab);
 517		if (found) {
 518			addr = symtab.sym_start;
 519		} else {
 520			diag = kdbgetularg(argv[*nextarg], &addr);
 521			if (diag)
 522				return diag;
 523		}
 524	}
 525
 526	if (!found)
 527		found = kdbnearsym(addr, &symtab);
 528
 529	(*nextarg)++;
 530
 531	if (name)
 532		*name = symname;
 533	if (value)
 534		*value = addr;
 535	if (offset && name && *name)
 536		*offset = addr - symtab.sym_start;
 537
 538	if ((*nextarg > argc)
 539	 && (symbol == '\0'))
 540		return 0;
 541
 542	/*
 543	 * check for +/- and offset
 544	 */
 545
 546	if (symbol == '\0') {
 547		if ((argv[*nextarg][0] != '+')
 548		 && (argv[*nextarg][0] != '-')) {
 549			/*
 550			 * Not our argument.  Return.
 551			 */
 552			return 0;
 553		} else {
 554			positive = (argv[*nextarg][0] == '+');
 555			(*nextarg)++;
 556		}
 557	} else
 558		positive = (symbol == '+');
 559
 560	/*
 561	 * Now there must be an offset!
 562	 */
 563	if ((*nextarg > argc)
 564	 && (symbol == '\0')) {
 565		return KDB_INVADDRFMT;
 566	}
 567
 568	if (!symbol) {
 569		cp = (char *)argv[*nextarg];
 570		(*nextarg)++;
 571	}
 572
 573	diag = kdbgetularg(cp, &off);
 574	if (diag)
 575		return diag;
 576
 577	if (!positive)
 578		off = -off;
 579
 580	if (offset)
 581		*offset += off;
 582
 583	if (value)
 584		*value += off;
 585
 586	return 0;
 587}
 588
 589static void kdb_cmderror(int diag)
 590{
 591	int i;
 592
 593	if (diag >= 0) {
 594		kdb_printf("no error detected (diagnostic is %d)\n", diag);
 595		return;
 596	}
 597
 598	for (i = 0; i < __nkdb_err; i++) {
 599		if (kdbmsgs[i].km_diag == diag) {
 600			kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
 601			return;
 602		}
 603	}
 604
 605	kdb_printf("Unknown diag %d\n", -diag);
 606}
 607
 608/*
 609 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
 610 *	command which defines one command as a set of other commands,
 611 *	terminated by endefcmd.  kdb_defcmd processes the initial
 612 *	'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
 613 *	the following commands until 'endefcmd'.
 614 * Inputs:
 615 *	argc	argument count
 616 *	argv	argument vector
 617 * Returns:
 618 *	zero for success, a kdb diagnostic if error
 619 */
 620struct defcmd_set {
 621	int count;
 622	int usable;
 623	char *name;
 624	char *usage;
 625	char *help;
 626	char **command;
 627};
 628static struct defcmd_set *defcmd_set;
 629static int defcmd_set_count;
 630static int defcmd_in_progress;
 
 
 
 
 
 631
 632/* Forward references */
 633static int kdb_exec_defcmd(int argc, const char **argv);
 634
 635static int kdb_defcmd2(const char *cmdstr, const char *argv0)
 636{
 637	struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
 638	char **save_command = s->command;
 
 
 
 639	if (strcmp(argv0, "endefcmd") == 0) {
 640		defcmd_in_progress = 0;
 641		if (!s->count)
 642			s->usable = 0;
 643		if (s->usable)
 644			kdb_register(s->name, kdb_exec_defcmd,
 645				     s->usage, s->help, 0);
 646		return 0;
 647	}
 648	if (!s->usable)
 649		return KDB_NOTIMP;
 650	s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
 651	if (!s->command) {
 652		kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
 653			   cmdstr);
 654		s->usable = 0;
 655		return KDB_NOTIMP;
 656	}
 657	memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
 658	s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
 659	kfree(save_command);
 
 660	return 0;
 661}
 662
 663static int kdb_defcmd(int argc, const char **argv)
 664{
 665	struct defcmd_set *save_defcmd_set = defcmd_set, *s;
 
 666	if (defcmd_in_progress) {
 667		kdb_printf("kdb: nested defcmd detected, assuming missing "
 668			   "endefcmd\n");
 669		kdb_defcmd2("endefcmd", "endefcmd");
 670	}
 671	if (argc == 0) {
 672		int i;
 673		for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
 674			kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
 675				   s->usage, s->help);
 676			for (i = 0; i < s->count; ++i)
 677				kdb_printf("%s", s->command[i]);
 678			kdb_printf("endefcmd\n");
 
 
 
 
 
 
 
 679		}
 680		return 0;
 681	}
 682	if (argc != 3)
 683		return KDB_ARGCOUNT;
 684	if (in_dbg_master()) {
 685		kdb_printf("Command only available during kdb_init()\n");
 686		return KDB_NOTIMP;
 687	}
 688	defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
 689			     GFP_KDB);
 690	if (!defcmd_set)
 691		goto fail_defcmd;
 692	memcpy(defcmd_set, save_defcmd_set,
 693	       defcmd_set_count * sizeof(*defcmd_set));
 694	s = defcmd_set + defcmd_set_count;
 695	memset(s, 0, sizeof(*s));
 696	s->usable = 1;
 697	s->name = kdb_strdup(argv[1], GFP_KDB);
 698	if (!s->name)
 699		goto fail_name;
 700	s->usage = kdb_strdup(argv[2], GFP_KDB);
 701	if (!s->usage)
 702		goto fail_usage;
 703	s->help = kdb_strdup(argv[3], GFP_KDB);
 704	if (!s->help)
 705		goto fail_help;
 706	if (s->usage[0] == '"') {
 707		strcpy(s->usage, argv[2]+1);
 708		s->usage[strlen(s->usage)-1] = '\0';
 709	}
 710	if (s->help[0] == '"') {
 711		strcpy(s->help, argv[3]+1);
 712		s->help[strlen(s->help)-1] = '\0';
 713	}
 714	++defcmd_set_count;
 715	defcmd_in_progress = 1;
 716	kfree(save_defcmd_set);
 717	return 0;
 718fail_help:
 719	kfree(s->usage);
 720fail_usage:
 721	kfree(s->name);
 722fail_name:
 723	kfree(defcmd_set);
 724fail_defcmd:
 725	kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
 726	defcmd_set = save_defcmd_set;
 727	return KDB_NOTIMP;
 728}
 729
 730/*
 731 * kdb_exec_defcmd - Execute the set of commands associated with this
 732 *	defcmd name.
 733 * Inputs:
 734 *	argc	argument count
 735 *	argv	argument vector
 736 * Returns:
 737 *	zero for success, a kdb diagnostic if error
 738 */
 739static int kdb_exec_defcmd(int argc, const char **argv)
 740{
 741	int i, ret;
 742	struct defcmd_set *s;
 
 
 
 743	if (argc != 0)
 744		return KDB_ARGCOUNT;
 745	for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
 746		if (strcmp(s->name, argv[0]) == 0)
 
 747			break;
 748	}
 749	if (i == defcmd_set_count) {
 750		kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
 751			   argv[0]);
 752		return KDB_NOTIMP;
 753	}
 754	for (i = 0; i < s->count; ++i) {
 755		/* Recursive use of kdb_parse, do not use argv after
 756		 * this point */
 
 
 757		argv = NULL;
 758		kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
 759		ret = kdb_parse(s->command[i]);
 760		if (ret)
 761			return ret;
 762	}
 763	return 0;
 764}
 765
 766/* Command history */
 767#define KDB_CMD_HISTORY_COUNT	32
 768#define CMD_BUFLEN		200	/* kdb_printf: max printline
 769					 * size == 256 */
 770static unsigned int cmd_head, cmd_tail;
 771static unsigned int cmdptr;
 772static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
 773static char cmd_cur[CMD_BUFLEN];
 774
 775/*
 776 * The "str" argument may point to something like  | grep xyz
 777 */
 778static void parse_grep(const char *str)
 779{
 780	int	len;
 781	char	*cp = (char *)str, *cp2;
 782
 783	/* sanity check: we should have been called with the \ first */
 784	if (*cp != '|')
 785		return;
 786	cp++;
 787	while (isspace(*cp))
 788		cp++;
 789	if (strncmp(cp, "grep ", 5)) {
 790		kdb_printf("invalid 'pipe', see grephelp\n");
 791		return;
 792	}
 793	cp += 5;
 794	while (isspace(*cp))
 795		cp++;
 796	cp2 = strchr(cp, '\n');
 797	if (cp2)
 798		*cp2 = '\0'; /* remove the trailing newline */
 799	len = strlen(cp);
 800	if (len == 0) {
 801		kdb_printf("invalid 'pipe', see grephelp\n");
 802		return;
 803	}
 804	/* now cp points to a nonzero length search string */
 805	if (*cp == '"') {
 806		/* allow it be "x y z" by removing the "'s - there must
 807		   be two of them */
 808		cp++;
 809		cp2 = strchr(cp, '"');
 810		if (!cp2) {
 811			kdb_printf("invalid quoted string, see grephelp\n");
 812			return;
 813		}
 814		*cp2 = '\0'; /* end the string where the 2nd " was */
 815	}
 816	kdb_grep_leading = 0;
 817	if (*cp == '^') {
 818		kdb_grep_leading = 1;
 819		cp++;
 820	}
 821	len = strlen(cp);
 822	kdb_grep_trailing = 0;
 823	if (*(cp+len-1) == '$') {
 824		kdb_grep_trailing = 1;
 825		*(cp+len-1) = '\0';
 826	}
 827	len = strlen(cp);
 828	if (!len)
 829		return;
 830	if (len >= GREP_LEN) {
 831		kdb_printf("search string too long\n");
 832		return;
 833	}
 834	strcpy(kdb_grep_string, cp);
 835	kdb_grepping_flag++;
 836	return;
 837}
 838
 839/*
 840 * kdb_parse - Parse the command line, search the command table for a
 841 *	matching command and invoke the command function.  This
 842 *	function may be called recursively, if it is, the second call
 843 *	will overwrite argv and cbuf.  It is the caller's
 844 *	responsibility to save their argv if they recursively call
 845 *	kdb_parse().
 846 * Parameters:
 847 *      cmdstr	The input command line to be parsed.
 848 *	regs	The registers at the time kdb was entered.
 849 * Returns:
 850 *	Zero for success, a kdb diagnostic if failure.
 851 * Remarks:
 852 *	Limited to 20 tokens.
 853 *
 854 *	Real rudimentary tokenization. Basically only whitespace
 855 *	is considered a token delimeter (but special consideration
 856 *	is taken of the '=' sign as used by the 'set' command).
 857 *
 858 *	The algorithm used to tokenize the input string relies on
 859 *	there being at least one whitespace (or otherwise useless)
 860 *	character between tokens as the character immediately following
 861 *	the token is altered in-place to a null-byte to terminate the
 862 *	token string.
 863 */
 864
 865#define MAXARGC	20
 866
 867int kdb_parse(const char *cmdstr)
 868{
 869	static char *argv[MAXARGC];
 870	static int argc;
 871	static char cbuf[CMD_BUFLEN+2];
 872	char *cp;
 873	char *cpp, quoted;
 874	kdbtab_t *tp;
 875	int i, escaped, ignore_errors = 0, check_grep;
 876
 877	/*
 878	 * First tokenize the command string.
 879	 */
 880	cp = (char *)cmdstr;
 881	kdb_grepping_flag = check_grep = 0;
 882
 883	if (KDB_FLAG(CMD_INTERRUPT)) {
 884		/* Previous command was interrupted, newline must not
 885		 * repeat the command */
 886		KDB_FLAG_CLEAR(CMD_INTERRUPT);
 887		KDB_STATE_SET(PAGER);
 888		argc = 0;	/* no repeat */
 889	}
 890
 891	if (*cp != '\n' && *cp != '\0') {
 892		argc = 0;
 893		cpp = cbuf;
 894		while (*cp) {
 895			/* skip whitespace */
 896			while (isspace(*cp))
 897				cp++;
 898			if ((*cp == '\0') || (*cp == '\n') ||
 899			    (*cp == '#' && !defcmd_in_progress))
 900				break;
 901			/* special case: check for | grep pattern */
 902			if (*cp == '|') {
 903				check_grep++;
 904				break;
 905			}
 906			if (cpp >= cbuf + CMD_BUFLEN) {
 907				kdb_printf("kdb_parse: command buffer "
 908					   "overflow, command ignored\n%s\n",
 909					   cmdstr);
 910				return KDB_NOTFOUND;
 911			}
 912			if (argc >= MAXARGC - 1) {
 913				kdb_printf("kdb_parse: too many arguments, "
 914					   "command ignored\n%s\n", cmdstr);
 915				return KDB_NOTFOUND;
 916			}
 917			argv[argc++] = cpp;
 918			escaped = 0;
 919			quoted = '\0';
 920			/* Copy to next unquoted and unescaped
 921			 * whitespace or '=' */
 922			while (*cp && *cp != '\n' &&
 923			       (escaped || quoted || !isspace(*cp))) {
 924				if (cpp >= cbuf + CMD_BUFLEN)
 925					break;
 926				if (escaped) {
 927					escaped = 0;
 928					*cpp++ = *cp++;
 929					continue;
 930				}
 931				if (*cp == '\\') {
 932					escaped = 1;
 933					++cp;
 934					continue;
 935				}
 936				if (*cp == quoted)
 937					quoted = '\0';
 938				else if (*cp == '\'' || *cp == '"')
 939					quoted = *cp;
 940				*cpp = *cp++;
 941				if (*cpp == '=' && !quoted)
 942					break;
 943				++cpp;
 944			}
 945			*cpp++ = '\0';	/* Squash a ws or '=' character */
 946		}
 947	}
 948	if (!argc)
 949		return 0;
 950	if (check_grep)
 951		parse_grep(cp);
 952	if (defcmd_in_progress) {
 953		int result = kdb_defcmd2(cmdstr, argv[0]);
 954		if (!defcmd_in_progress) {
 955			argc = 0;	/* avoid repeat on endefcmd */
 956			*(argv[0]) = '\0';
 957		}
 958		return result;
 959	}
 960	if (argv[0][0] == '-' && argv[0][1] &&
 961	    (argv[0][1] < '0' || argv[0][1] > '9')) {
 962		ignore_errors = 1;
 963		++argv[0];
 964	}
 965
 966	for_each_kdbcmd(tp, i) {
 967		if (tp->cmd_name) {
 968			/*
 969			 * If this command is allowed to be abbreviated,
 970			 * check to see if this is it.
 971			 */
 972
 973			if (tp->cmd_minlen
 974			 && (strlen(argv[0]) <= tp->cmd_minlen)) {
 975				if (strncmp(argv[0],
 976					    tp->cmd_name,
 977					    tp->cmd_minlen) == 0) {
 978					break;
 979				}
 980			}
 981
 982			if (strcmp(argv[0], tp->cmd_name) == 0)
 983				break;
 984		}
 985	}
 986
 987	/*
 988	 * If we don't find a command by this name, see if the first
 989	 * few characters of this match any of the known commands.
 990	 * e.g., md1c20 should match md.
 991	 */
 992	if (i == kdb_max_commands) {
 993		for_each_kdbcmd(tp, i) {
 994			if (tp->cmd_name) {
 995				if (strncmp(argv[0],
 996					    tp->cmd_name,
 997					    strlen(tp->cmd_name)) == 0) {
 998					break;
 999				}
1000			}
1001		}
1002	}
1003
1004	if (i < kdb_max_commands) {
1005		int result;
 
 
 
 
1006		KDB_STATE_SET(CMD);
1007		result = (*tp->cmd_func)(argc-1, (const char **)argv);
1008		if (result && ignore_errors && result > KDB_CMD_GO)
1009			result = 0;
1010		KDB_STATE_CLEAR(CMD);
1011		switch (tp->cmd_repeat) {
1012		case KDB_REPEAT_NONE:
1013			argc = 0;
1014			if (argv[0])
1015				*(argv[0]) = '\0';
1016			break;
1017		case KDB_REPEAT_NO_ARGS:
1018			argc = 1;
1019			if (argv[1])
1020				*(argv[1]) = '\0';
1021			break;
1022		case KDB_REPEAT_WITH_ARGS:
1023			break;
1024		}
1025		return result;
1026	}
1027
1028	/*
1029	 * If the input with which we were presented does not
1030	 * map to an existing command, attempt to parse it as an
1031	 * address argument and display the result.   Useful for
1032	 * obtaining the address of a variable, or the nearest symbol
1033	 * to an address contained in a register.
1034	 */
1035	{
1036		unsigned long value;
1037		char *name = NULL;
1038		long offset;
1039		int nextarg = 0;
1040
1041		if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1042				  &value, &offset, &name)) {
1043			return KDB_NOTFOUND;
1044		}
1045
1046		kdb_printf("%s = ", argv[0]);
1047		kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1048		kdb_printf("\n");
1049		return 0;
1050	}
1051}
1052
1053
1054static int handle_ctrl_cmd(char *cmd)
1055{
1056#define CTRL_P	16
1057#define CTRL_N	14
1058
1059	/* initial situation */
1060	if (cmd_head == cmd_tail)
1061		return 0;
1062	switch (*cmd) {
1063	case CTRL_P:
1064		if (cmdptr != cmd_tail)
1065			cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1066		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
 
1067		return 1;
1068	case CTRL_N:
1069		if (cmdptr != cmd_head)
1070			cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1071		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1072		return 1;
1073	}
1074	return 0;
1075}
1076
1077/*
1078 * kdb_reboot - This function implements the 'reboot' command.  Reboot
1079 *	the system immediately, or loop for ever on failure.
1080 */
1081static int kdb_reboot(int argc, const char **argv)
1082{
1083	emergency_restart();
1084	kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1085	while (1)
1086		cpu_relax();
1087	/* NOTREACHED */
1088	return 0;
1089}
1090
1091static void kdb_dumpregs(struct pt_regs *regs)
1092{
1093	int old_lvl = console_loglevel;
1094	console_loglevel = 15;
1095	kdb_trap_printk++;
1096	show_regs(regs);
1097	kdb_trap_printk--;
1098	kdb_printf("\n");
1099	console_loglevel = old_lvl;
1100}
1101
1102void kdb_set_current_task(struct task_struct *p)
1103{
1104	kdb_current_task = p;
1105
1106	if (kdb_task_has_cpu(p)) {
1107		kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1108		return;
1109	}
1110	kdb_current_regs = NULL;
1111}
1112
 
 
 
 
 
 
 
 
 
 
1113/*
1114 * kdb_local - The main code for kdb.  This routine is invoked on a
1115 *	specific processor, it is not global.  The main kdb() routine
1116 *	ensures that only one processor at a time is in this routine.
1117 *	This code is called with the real reason code on the first
1118 *	entry to a kdb session, thereafter it is called with reason
1119 *	SWITCH, even if the user goes back to the original cpu.
1120 * Inputs:
1121 *	reason		The reason KDB was invoked
1122 *	error		The hardware-defined error code
1123 *	regs		The exception frame at time of fault/breakpoint.
1124 *	db_result	Result code from the break or debug point.
1125 * Returns:
1126 *	0	KDB was invoked for an event which it wasn't responsible
1127 *	1	KDB handled the event for which it was invoked.
1128 *	KDB_CMD_GO	User typed 'go'.
1129 *	KDB_CMD_CPU	User switched to another cpu.
1130 *	KDB_CMD_SS	Single step.
1131 */
1132static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1133		     kdb_dbtrap_t db_result)
1134{
1135	char *cmdbuf;
1136	int diag;
1137	struct task_struct *kdb_current =
1138		kdb_curr_task(raw_smp_processor_id());
1139
1140	KDB_DEBUG_STATE("kdb_local 1", reason);
 
 
 
1141	kdb_go_count = 0;
1142	if (reason == KDB_REASON_DEBUG) {
1143		/* special case below */
1144	} else {
1145		kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1146			   kdb_current, kdb_current ? kdb_current->pid : 0);
1147#if defined(CONFIG_SMP)
1148		kdb_printf("on processor %d ", raw_smp_processor_id());
1149#endif
1150	}
1151
1152	switch (reason) {
1153	case KDB_REASON_DEBUG:
1154	{
1155		/*
1156		 * If re-entering kdb after a single step
1157		 * command, don't print the message.
1158		 */
1159		switch (db_result) {
1160		case KDB_DB_BPT:
1161			kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1162				   kdb_current, kdb_current->pid);
1163#if defined(CONFIG_SMP)
1164			kdb_printf("on processor %d ", raw_smp_processor_id());
1165#endif
1166			kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1167				   instruction_pointer(regs));
1168			break;
1169		case KDB_DB_SS:
1170			break;
1171		case KDB_DB_SSBPT:
1172			KDB_DEBUG_STATE("kdb_local 4", reason);
1173			return 1;	/* kdba_db_trap did the work */
1174		default:
1175			kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1176				   db_result);
1177			break;
1178		}
1179
1180	}
1181		break;
1182	case KDB_REASON_ENTER:
1183		if (KDB_STATE(KEYBOARD))
1184			kdb_printf("due to Keyboard Entry\n");
1185		else
1186			kdb_printf("due to KDB_ENTER()\n");
1187		break;
1188	case KDB_REASON_KEYBOARD:
1189		KDB_STATE_SET(KEYBOARD);
1190		kdb_printf("due to Keyboard Entry\n");
1191		break;
1192	case KDB_REASON_ENTER_SLAVE:
1193		/* drop through, slaves only get released via cpu switch */
1194	case KDB_REASON_SWITCH:
1195		kdb_printf("due to cpu switch\n");
1196		break;
1197	case KDB_REASON_OOPS:
1198		kdb_printf("Oops: %s\n", kdb_diemsg);
1199		kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1200			   instruction_pointer(regs));
1201		kdb_dumpregs(regs);
1202		break;
1203	case KDB_REASON_SYSTEM_NMI:
1204		kdb_printf("due to System NonMaskable Interrupt\n");
1205		break;
1206	case KDB_REASON_NMI:
1207		kdb_printf("due to NonMaskable Interrupt @ "
1208			   kdb_machreg_fmt "\n",
1209			   instruction_pointer(regs));
1210		kdb_dumpregs(regs);
1211		break;
1212	case KDB_REASON_SSTEP:
1213	case KDB_REASON_BREAK:
1214		kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1215			   reason == KDB_REASON_BREAK ?
1216			   "Breakpoint" : "SS trap", instruction_pointer(regs));
1217		/*
1218		 * Determine if this breakpoint is one that we
1219		 * are interested in.
1220		 */
1221		if (db_result != KDB_DB_BPT) {
1222			kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1223				   db_result);
1224			KDB_DEBUG_STATE("kdb_local 6", reason);
1225			return 0;	/* Not for us, dismiss it */
1226		}
1227		break;
1228	case KDB_REASON_RECURSE:
1229		kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1230			   instruction_pointer(regs));
1231		break;
1232	default:
1233		kdb_printf("kdb: unexpected reason code: %d\n", reason);
1234		KDB_DEBUG_STATE("kdb_local 8", reason);
1235		return 0;	/* Not for us, dismiss it */
1236	}
1237
1238	while (1) {
1239		/*
1240		 * Initialize pager context.
1241		 */
1242		kdb_nextline = 1;
1243		KDB_STATE_CLEAR(SUPPRESS);
 
 
 
1244
1245		cmdbuf = cmd_cur;
1246		*cmdbuf = '\0';
1247		*(cmd_hist[cmd_head]) = '\0';
1248
1249do_full_getstr:
1250#if defined(CONFIG_SMP)
1251		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1252			 raw_smp_processor_id());
1253#else
1254		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1255#endif
1256		if (defcmd_in_progress)
1257			strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1258
1259		/*
1260		 * Fetch command from keyboard
1261		 */
1262		cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1263		if (*cmdbuf != '\n') {
1264			if (*cmdbuf < 32) {
1265				if (cmdptr == cmd_head) {
1266					strncpy(cmd_hist[cmd_head], cmd_cur,
1267						CMD_BUFLEN);
1268					*(cmd_hist[cmd_head] +
1269					  strlen(cmd_hist[cmd_head])-1) = '\0';
1270				}
1271				if (!handle_ctrl_cmd(cmdbuf))
1272					*(cmd_cur+strlen(cmd_cur)-1) = '\0';
1273				cmdbuf = cmd_cur;
1274				goto do_full_getstr;
1275			} else {
1276				strncpy(cmd_hist[cmd_head], cmd_cur,
1277					CMD_BUFLEN);
1278			}
1279
1280			cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1281			if (cmd_head == cmd_tail)
1282				cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1283		}
1284
1285		cmdptr = cmd_head;
1286		diag = kdb_parse(cmdbuf);
1287		if (diag == KDB_NOTFOUND) {
 
1288			kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1289			diag = 0;
1290		}
1291		if (diag == KDB_CMD_GO
1292		 || diag == KDB_CMD_CPU
1293		 || diag == KDB_CMD_SS
1294		 || diag == KDB_CMD_KGDB)
1295			break;
1296
1297		if (diag)
1298			kdb_cmderror(diag);
1299	}
1300	KDB_DEBUG_STATE("kdb_local 9", diag);
1301	return diag;
1302}
1303
1304
1305/*
1306 * kdb_print_state - Print the state data for the current processor
1307 *	for debugging.
1308 * Inputs:
1309 *	text		Identifies the debug point
1310 *	value		Any integer value to be printed, e.g. reason code.
1311 */
1312void kdb_print_state(const char *text, int value)
1313{
1314	kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1315		   text, raw_smp_processor_id(), value, kdb_initial_cpu,
1316		   kdb_state);
1317}
1318
1319/*
1320 * kdb_main_loop - After initial setup and assignment of the
1321 *	controlling cpu, all cpus are in this loop.  One cpu is in
1322 *	control and will issue the kdb prompt, the others will spin
1323 *	until 'go' or cpu switch.
1324 *
1325 *	To get a consistent view of the kernel stacks for all
1326 *	processes, this routine is invoked from the main kdb code via
1327 *	an architecture specific routine.  kdba_main_loop is
1328 *	responsible for making the kernel stacks consistent for all
1329 *	processes, there should be no difference between a blocked
1330 *	process and a running process as far as kdb is concerned.
1331 * Inputs:
1332 *	reason		The reason KDB was invoked
1333 *	error		The hardware-defined error code
1334 *	reason2		kdb's current reason code.
1335 *			Initially error but can change
1336 *			according to kdb state.
1337 *	db_result	Result code from break or debug point.
1338 *	regs		The exception frame at time of fault/breakpoint.
1339 *			should always be valid.
1340 * Returns:
1341 *	0	KDB was invoked for an event which it wasn't responsible
1342 *	1	KDB handled the event for which it was invoked.
1343 */
1344int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1345	      kdb_dbtrap_t db_result, struct pt_regs *regs)
1346{
1347	int result = 1;
1348	/* Stay in kdb() until 'go', 'ss[b]' or an error */
1349	while (1) {
1350		/*
1351		 * All processors except the one that is in control
1352		 * will spin here.
1353		 */
1354		KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1355		while (KDB_STATE(HOLD_CPU)) {
1356			/* state KDB is turned off by kdb_cpu to see if the
1357			 * other cpus are still live, each cpu in this loop
1358			 * turns it back on.
1359			 */
1360			if (!KDB_STATE(KDB))
1361				KDB_STATE_SET(KDB);
1362		}
1363
1364		KDB_STATE_CLEAR(SUPPRESS);
1365		KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1366		if (KDB_STATE(LEAVING))
1367			break;	/* Another cpu said 'go' */
1368		/* Still using kdb, this processor is in control */
1369		result = kdb_local(reason2, error, regs, db_result);
1370		KDB_DEBUG_STATE("kdb_main_loop 3", result);
1371
1372		if (result == KDB_CMD_CPU)
1373			break;
1374
1375		if (result == KDB_CMD_SS) {
1376			KDB_STATE_SET(DOING_SS);
1377			break;
1378		}
1379
1380		if (result == KDB_CMD_KGDB) {
1381			if (!KDB_STATE(DOING_KGDB))
1382				kdb_printf("Entering please attach debugger "
1383					   "or use $D#44+ or $3#33\n");
1384			break;
1385		}
1386		if (result && result != 1 && result != KDB_CMD_GO)
1387			kdb_printf("\nUnexpected kdb_local return code %d\n",
1388				   result);
1389		KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1390		break;
1391	}
1392	if (KDB_STATE(DOING_SS))
1393		KDB_STATE_CLEAR(SSBPT);
1394
1395	/* Clean up any keyboard devices before leaving */
1396	kdb_kbd_cleanup_state();
1397
1398	return result;
1399}
1400
1401/*
1402 * kdb_mdr - This function implements the guts of the 'mdr', memory
1403 * read command.
1404 *	mdr  <addr arg>,<byte count>
1405 * Inputs:
1406 *	addr	Start address
1407 *	count	Number of bytes
1408 * Returns:
1409 *	Always 0.  Any errors are detected and printed by kdb_getarea.
1410 */
1411static int kdb_mdr(unsigned long addr, unsigned int count)
1412{
1413	unsigned char c;
1414	while (count--) {
1415		if (kdb_getarea(c, addr))
1416			return 0;
1417		kdb_printf("%02x", c);
1418		addr++;
1419	}
1420	kdb_printf("\n");
1421	return 0;
1422}
1423
1424/*
1425 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1426 *	'md8' 'mdr' and 'mds' commands.
1427 *
1428 *	md|mds  [<addr arg> [<line count> [<radix>]]]
1429 *	mdWcN	[<addr arg> [<line count> [<radix>]]]
1430 *		where W = is the width (1, 2, 4 or 8) and N is the count.
1431 *		for eg., md1c20 reads 20 bytes, 1 at a time.
1432 *	mdr  <addr arg>,<byte count>
1433 */
1434static void kdb_md_line(const char *fmtstr, unsigned long addr,
1435			int symbolic, int nosect, int bytesperword,
1436			int num, int repeat, int phys)
1437{
1438	/* print just one line of data */
1439	kdb_symtab_t symtab;
1440	char cbuf[32];
1441	char *c = cbuf;
1442	int i;
 
1443	unsigned long word;
1444
1445	memset(cbuf, '\0', sizeof(cbuf));
1446	if (phys)
1447		kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1448	else
1449		kdb_printf(kdb_machreg_fmt0 " ", addr);
1450
1451	for (i = 0; i < num && repeat--; i++) {
1452		if (phys) {
1453			if (kdb_getphysword(&word, addr, bytesperword))
1454				break;
1455		} else if (kdb_getword(&word, addr, bytesperword))
1456			break;
1457		kdb_printf(fmtstr, word);
1458		if (symbolic)
1459			kdbnearsym(word, &symtab);
1460		else
1461			memset(&symtab, 0, sizeof(symtab));
1462		if (symtab.sym_name) {
1463			kdb_symbol_print(word, &symtab, 0);
1464			if (!nosect) {
1465				kdb_printf("\n");
1466				kdb_printf("                       %s %s "
1467					   kdb_machreg_fmt " "
1468					   kdb_machreg_fmt " "
1469					   kdb_machreg_fmt, symtab.mod_name,
1470					   symtab.sec_name, symtab.sec_start,
1471					   symtab.sym_start, symtab.sym_end);
1472			}
1473			addr += bytesperword;
1474		} else {
1475			union {
1476				u64 word;
1477				unsigned char c[8];
1478			} wc;
1479			unsigned char *cp;
1480#ifdef	__BIG_ENDIAN
1481			cp = wc.c + 8 - bytesperword;
1482#else
1483			cp = wc.c;
1484#endif
1485			wc.word = word;
1486#define printable_char(c) \
1487	({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1488			switch (bytesperword) {
1489			case 8:
1490				*c++ = printable_char(*cp++);
1491				*c++ = printable_char(*cp++);
1492				*c++ = printable_char(*cp++);
1493				*c++ = printable_char(*cp++);
1494				addr += 4;
1495			case 4:
1496				*c++ = printable_char(*cp++);
1497				*c++ = printable_char(*cp++);
1498				addr += 2;
1499			case 2:
1500				*c++ = printable_char(*cp++);
1501				addr++;
1502			case 1:
1503				*c++ = printable_char(*cp++);
1504				addr++;
1505				break;
1506			}
1507#undef printable_char
1508		}
1509	}
1510	kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1511		   " ", cbuf);
1512}
1513
1514static int kdb_md(int argc, const char **argv)
1515{
1516	static unsigned long last_addr;
1517	static int last_radix, last_bytesperword, last_repeat;
1518	int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1519	int nosect = 0;
1520	char fmtchar, fmtstr[64];
1521	unsigned long addr;
1522	unsigned long word;
1523	long offset = 0;
1524	int symbolic = 0;
1525	int valid = 0;
1526	int phys = 0;
 
1527
1528	kdbgetintenv("MDCOUNT", &mdcount);
1529	kdbgetintenv("RADIX", &radix);
1530	kdbgetintenv("BYTESPERWORD", &bytesperword);
1531
1532	/* Assume 'md <addr>' and start with environment values */
1533	repeat = mdcount * 16 / bytesperword;
1534
1535	if (strcmp(argv[0], "mdr") == 0) {
1536		if (argc != 2)
 
 
1537			return KDB_ARGCOUNT;
1538		valid = 1;
1539	} else if (isdigit(argv[0][2])) {
1540		bytesperword = (int)(argv[0][2] - '0');
1541		if (bytesperword == 0) {
1542			bytesperword = last_bytesperword;
1543			if (bytesperword == 0)
1544				bytesperword = 4;
1545		}
1546		last_bytesperword = bytesperword;
1547		repeat = mdcount * 16 / bytesperword;
1548		if (!argv[0][3])
1549			valid = 1;
1550		else if (argv[0][3] == 'c' && argv[0][4]) {
1551			char *p;
1552			repeat = simple_strtoul(argv[0] + 4, &p, 10);
1553			mdcount = ((repeat * bytesperword) + 15) / 16;
1554			valid = !*p;
1555		}
1556		last_repeat = repeat;
1557	} else if (strcmp(argv[0], "md") == 0)
1558		valid = 1;
1559	else if (strcmp(argv[0], "mds") == 0)
1560		valid = 1;
1561	else if (strcmp(argv[0], "mdp") == 0) {
1562		phys = valid = 1;
1563	}
1564	if (!valid)
1565		return KDB_NOTFOUND;
1566
1567	if (argc == 0) {
1568		if (last_addr == 0)
1569			return KDB_ARGCOUNT;
1570		addr = last_addr;
1571		radix = last_radix;
1572		bytesperword = last_bytesperword;
1573		repeat = last_repeat;
1574		mdcount = ((repeat * bytesperword) + 15) / 16;
 
 
 
1575	}
1576
1577	if (argc) {
1578		unsigned long val;
1579		int diag, nextarg = 1;
1580		diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1581				     &offset, NULL);
1582		if (diag)
1583			return diag;
1584		if (argc > nextarg+2)
1585			return KDB_ARGCOUNT;
1586
1587		if (argc >= nextarg) {
1588			diag = kdbgetularg(argv[nextarg], &val);
1589			if (!diag) {
1590				mdcount = (int) val;
1591				repeat = mdcount * 16 / bytesperword;
 
 
 
1592			}
1593		}
1594		if (argc >= nextarg+1) {
1595			diag = kdbgetularg(argv[nextarg+1], &val);
1596			if (!diag)
1597				radix = (int) val;
1598		}
1599	}
1600
1601	if (strcmp(argv[0], "mdr") == 0)
1602		return kdb_mdr(addr, mdcount);
 
 
 
 
 
 
 
1603
1604	switch (radix) {
1605	case 10:
1606		fmtchar = 'd';
1607		break;
1608	case 16:
1609		fmtchar = 'x';
1610		break;
1611	case 8:
1612		fmtchar = 'o';
1613		break;
1614	default:
1615		return KDB_BADRADIX;
1616	}
1617
1618	last_radix = radix;
1619
1620	if (bytesperword > KDB_WORD_SIZE)
1621		return KDB_BADWIDTH;
1622
1623	switch (bytesperword) {
1624	case 8:
1625		sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1626		break;
1627	case 4:
1628		sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1629		break;
1630	case 2:
1631		sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1632		break;
1633	case 1:
1634		sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1635		break;
1636	default:
1637		return KDB_BADWIDTH;
1638	}
1639
1640	last_repeat = repeat;
1641	last_bytesperword = bytesperword;
1642
1643	if (strcmp(argv[0], "mds") == 0) {
1644		symbolic = 1;
1645		/* Do not save these changes as last_*, they are temporary mds
1646		 * overrides.
1647		 */
1648		bytesperword = KDB_WORD_SIZE;
1649		repeat = mdcount;
1650		kdbgetintenv("NOSECT", &nosect);
1651	}
1652
1653	/* Round address down modulo BYTESPERWORD */
1654
1655	addr &= ~(bytesperword-1);
1656
1657	while (repeat > 0) {
1658		unsigned long a;
1659		int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1660
1661		if (KDB_FLAG(CMD_INTERRUPT))
1662			return 0;
1663		for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1664			if (phys) {
1665				if (kdb_getphysword(&word, a, bytesperword)
1666						|| word)
1667					break;
1668			} else if (kdb_getword(&word, a, bytesperword) || word)
1669				break;
1670		}
1671		n = min(num, repeat);
1672		kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1673			    num, repeat, phys);
1674		addr += bytesperword * n;
1675		repeat -= n;
1676		z = (z + num - 1) / num;
1677		if (z > 2) {
1678			int s = num * (z-2);
1679			kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1680				   " zero suppressed\n",
1681				addr, addr + bytesperword * s - 1);
1682			addr += bytesperword * s;
1683			repeat -= s;
1684		}
1685	}
1686	last_addr = addr;
1687
1688	return 0;
1689}
1690
1691/*
1692 * kdb_mm - This function implements the 'mm' command.
1693 *	mm address-expression new-value
1694 * Remarks:
1695 *	mm works on machine words, mmW works on bytes.
1696 */
1697static int kdb_mm(int argc, const char **argv)
1698{
1699	int diag;
1700	unsigned long addr;
1701	long offset = 0;
1702	unsigned long contents;
1703	int nextarg;
1704	int width;
1705
1706	if (argv[0][2] && !isdigit(argv[0][2]))
1707		return KDB_NOTFOUND;
1708
1709	if (argc < 2)
1710		return KDB_ARGCOUNT;
1711
1712	nextarg = 1;
1713	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1714	if (diag)
1715		return diag;
1716
1717	if (nextarg > argc)
1718		return KDB_ARGCOUNT;
1719	diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1720	if (diag)
1721		return diag;
1722
1723	if (nextarg != argc + 1)
1724		return KDB_ARGCOUNT;
1725
1726	width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1727	diag = kdb_putword(addr, contents, width);
1728	if (diag)
1729		return diag;
1730
1731	kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1732
1733	return 0;
1734}
1735
1736/*
1737 * kdb_go - This function implements the 'go' command.
1738 *	go [address-expression]
1739 */
1740static int kdb_go(int argc, const char **argv)
1741{
1742	unsigned long addr;
1743	int diag;
1744	int nextarg;
1745	long offset;
1746
1747	if (raw_smp_processor_id() != kdb_initial_cpu) {
1748		kdb_printf("go must execute on the entry cpu, "
1749			   "please use \"cpu %d\" and then execute go\n",
1750			   kdb_initial_cpu);
1751		return KDB_BADCPUNUM;
1752	}
1753	if (argc == 1) {
1754		nextarg = 1;
1755		diag = kdbgetaddrarg(argc, argv, &nextarg,
1756				     &addr, &offset, NULL);
1757		if (diag)
1758			return diag;
1759	} else if (argc) {
1760		return KDB_ARGCOUNT;
1761	}
1762
1763	diag = KDB_CMD_GO;
1764	if (KDB_FLAG(CATASTROPHIC)) {
1765		kdb_printf("Catastrophic error detected\n");
1766		kdb_printf("kdb_continue_catastrophic=%d, ",
1767			kdb_continue_catastrophic);
1768		if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1769			kdb_printf("type go a second time if you really want "
1770				   "to continue\n");
1771			return 0;
1772		}
1773		if (kdb_continue_catastrophic == 2) {
1774			kdb_printf("forcing reboot\n");
1775			kdb_reboot(0, NULL);
1776		}
1777		kdb_printf("attempting to continue\n");
1778	}
1779	return diag;
1780}
1781
1782/*
1783 * kdb_rd - This function implements the 'rd' command.
1784 */
1785static int kdb_rd(int argc, const char **argv)
1786{
1787	int len = kdb_check_regs();
1788#if DBG_MAX_REG_NUM > 0
1789	int i;
1790	char *rname;
1791	int rsize;
1792	u64 reg64;
1793	u32 reg32;
1794	u16 reg16;
1795	u8 reg8;
1796
1797	if (len)
1798		return len;
1799
1800	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1801		rsize = dbg_reg_def[i].size * 2;
1802		if (rsize > 16)
1803			rsize = 2;
1804		if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1805			len = 0;
1806			kdb_printf("\n");
1807		}
1808		if (len)
1809			len += kdb_printf("  ");
1810		switch(dbg_reg_def[i].size * 8) {
1811		case 8:
1812			rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1813			if (!rname)
1814				break;
1815			len += kdb_printf("%s: %02x", rname, reg8);
1816			break;
1817		case 16:
1818			rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1819			if (!rname)
1820				break;
1821			len += kdb_printf("%s: %04x", rname, reg16);
1822			break;
1823		case 32:
1824			rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1825			if (!rname)
1826				break;
1827			len += kdb_printf("%s: %08x", rname, reg32);
1828			break;
1829		case 64:
1830			rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1831			if (!rname)
1832				break;
1833			len += kdb_printf("%s: %016llx", rname, reg64);
1834			break;
1835		default:
1836			len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1837		}
1838	}
1839	kdb_printf("\n");
1840#else
1841	if (len)
1842		return len;
1843
1844	kdb_dumpregs(kdb_current_regs);
1845#endif
1846	return 0;
1847}
1848
1849/*
1850 * kdb_rm - This function implements the 'rm' (register modify)  command.
1851 *	rm register-name new-contents
1852 * Remarks:
1853 *	Allows register modification with the same restrictions as gdb
1854 */
1855static int kdb_rm(int argc, const char **argv)
1856{
1857#if DBG_MAX_REG_NUM > 0
1858	int diag;
1859	const char *rname;
1860	int i;
1861	u64 reg64;
1862	u32 reg32;
1863	u16 reg16;
1864	u8 reg8;
1865
1866	if (argc != 2)
1867		return KDB_ARGCOUNT;
1868	/*
1869	 * Allow presence or absence of leading '%' symbol.
1870	 */
1871	rname = argv[1];
1872	if (*rname == '%')
1873		rname++;
1874
1875	diag = kdbgetu64arg(argv[2], &reg64);
1876	if (diag)
1877		return diag;
1878
1879	diag = kdb_check_regs();
1880	if (diag)
1881		return diag;
1882
1883	diag = KDB_BADREG;
1884	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1885		if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1886			diag = 0;
1887			break;
1888		}
1889	}
1890	if (!diag) {
1891		switch(dbg_reg_def[i].size * 8) {
1892		case 8:
1893			reg8 = reg64;
1894			dbg_set_reg(i, &reg8, kdb_current_regs);
1895			break;
1896		case 16:
1897			reg16 = reg64;
1898			dbg_set_reg(i, &reg16, kdb_current_regs);
1899			break;
1900		case 32:
1901			reg32 = reg64;
1902			dbg_set_reg(i, &reg32, kdb_current_regs);
1903			break;
1904		case 64:
1905			dbg_set_reg(i, &reg64, kdb_current_regs);
1906			break;
1907		}
1908	}
1909	return diag;
1910#else
1911	kdb_printf("ERROR: Register set currently not implemented\n");
1912    return 0;
1913#endif
1914}
1915
1916#if defined(CONFIG_MAGIC_SYSRQ)
1917/*
1918 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1919 *	which interfaces to the soi-disant MAGIC SYSRQ functionality.
1920 *		sr <magic-sysrq-code>
1921 */
1922static int kdb_sr(int argc, const char **argv)
1923{
 
 
 
1924	if (argc != 1)
1925		return KDB_ARGCOUNT;
 
1926	kdb_trap_printk++;
1927	__handle_sysrq(*argv[1], false);
1928	kdb_trap_printk--;
1929
1930	return 0;
1931}
1932#endif	/* CONFIG_MAGIC_SYSRQ */
1933
1934/*
1935 * kdb_ef - This function implements the 'regs' (display exception
1936 *	frame) command.  This command takes an address and expects to
1937 *	find an exception frame at that address, formats and prints
1938 *	it.
1939 *		regs address-expression
1940 * Remarks:
1941 *	Not done yet.
1942 */
1943static int kdb_ef(int argc, const char **argv)
1944{
1945	int diag;
1946	unsigned long addr;
1947	long offset;
1948	int nextarg;
1949
1950	if (argc != 1)
1951		return KDB_ARGCOUNT;
1952
1953	nextarg = 1;
1954	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1955	if (diag)
1956		return diag;
1957	show_regs((struct pt_regs *)addr);
1958	return 0;
1959}
1960
1961#if defined(CONFIG_MODULES)
1962/*
1963 * kdb_lsmod - This function implements the 'lsmod' command.  Lists
1964 *	currently loaded kernel modules.
1965 *	Mostly taken from userland lsmod.
1966 */
1967static int kdb_lsmod(int argc, const char **argv)
1968{
1969	struct module *mod;
1970
1971	if (argc != 0)
1972		return KDB_ARGCOUNT;
1973
1974	kdb_printf("Module                  Size  modstruct     Used by\n");
1975	list_for_each_entry(mod, kdb_modules, list) {
1976		if (mod->state == MODULE_STATE_UNFORMED)
1977			continue;
1978
1979		kdb_printf("%-20s%8u  0x%p ", mod->name,
1980			   mod->core_size, (void *)mod);
1981#ifdef CONFIG_MODULE_UNLOAD
1982		kdb_printf("%4ld ", module_refcount(mod));
1983#endif
1984		if (mod->state == MODULE_STATE_GOING)
1985			kdb_printf(" (Unloading)");
1986		else if (mod->state == MODULE_STATE_COMING)
1987			kdb_printf(" (Loading)");
1988		else
1989			kdb_printf(" (Live)");
1990		kdb_printf(" 0x%p", mod->module_core);
1991
1992#ifdef CONFIG_MODULE_UNLOAD
1993		{
1994			struct module_use *use;
1995			kdb_printf(" [ ");
1996			list_for_each_entry(use, &mod->source_list,
1997					    source_list)
1998				kdb_printf("%s ", use->target->name);
1999			kdb_printf("]\n");
2000		}
2001#endif
2002	}
2003
2004	return 0;
2005}
2006
2007#endif	/* CONFIG_MODULES */
2008
2009/*
2010 * kdb_env - This function implements the 'env' command.  Display the
2011 *	current environment variables.
2012 */
2013
2014static int kdb_env(int argc, const char **argv)
2015{
2016	int i;
2017
2018	for (i = 0; i < __nenv; i++) {
2019		if (__env[i])
2020			kdb_printf("%s\n", __env[i]);
2021	}
2022
2023	if (KDB_DEBUG(MASK))
2024		kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
 
2025
2026	return 0;
2027}
2028
2029#ifdef CONFIG_PRINTK
2030/*
2031 * kdb_dmesg - This function implements the 'dmesg' command to display
2032 *	the contents of the syslog buffer.
2033 *		dmesg [lines] [adjust]
2034 */
2035static int kdb_dmesg(int argc, const char **argv)
2036{
2037	int diag;
2038	int logging;
2039	int lines = 0;
2040	int adjust = 0;
2041	int n = 0;
2042	int skip = 0;
2043	struct kmsg_dumper dumper = { .active = 1 };
2044	size_t len;
2045	char buf[201];
2046
2047	if (argc > 2)
2048		return KDB_ARGCOUNT;
2049	if (argc) {
2050		char *cp;
2051		lines = simple_strtol(argv[1], &cp, 0);
2052		if (*cp)
2053			lines = 0;
2054		if (argc > 1) {
2055			adjust = simple_strtoul(argv[2], &cp, 0);
2056			if (*cp || adjust < 0)
2057				adjust = 0;
2058		}
2059	}
2060
2061	/* disable LOGGING if set */
2062	diag = kdbgetintenv("LOGGING", &logging);
2063	if (!diag && logging) {
2064		const char *setargs[] = { "set", "LOGGING", "0" };
2065		kdb_set(2, setargs);
2066	}
2067
2068	kmsg_dump_rewind_nolock(&dumper);
2069	while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2070		n++;
2071
2072	if (lines < 0) {
2073		if (adjust >= n)
2074			kdb_printf("buffer only contains %d lines, nothing "
2075				   "printed\n", n);
2076		else if (adjust - lines >= n)
2077			kdb_printf("buffer only contains %d lines, last %d "
2078				   "lines printed\n", n, n - adjust);
2079		skip = adjust;
2080		lines = abs(lines);
2081	} else if (lines > 0) {
2082		skip = n - lines - adjust;
2083		lines = abs(lines);
2084		if (adjust >= n) {
2085			kdb_printf("buffer only contains %d lines, "
2086				   "nothing printed\n", n);
2087			skip = n;
2088		} else if (skip < 0) {
2089			lines += skip;
2090			skip = 0;
2091			kdb_printf("buffer only contains %d lines, first "
2092				   "%d lines printed\n", n, lines);
2093		}
2094	} else {
2095		lines = n;
2096	}
2097
2098	if (skip >= n || skip < 0)
2099		return 0;
2100
2101	kmsg_dump_rewind_nolock(&dumper);
2102	while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2103		if (skip) {
2104			skip--;
2105			continue;
2106		}
2107		if (!lines--)
2108			break;
2109		if (KDB_FLAG(CMD_INTERRUPT))
2110			return 0;
2111
2112		kdb_printf("%.*s\n", (int)len - 1, buf);
2113	}
2114
2115	return 0;
2116}
2117#endif /* CONFIG_PRINTK */
2118
2119/* Make sure we balance enable/disable calls, must disable first. */
2120static atomic_t kdb_nmi_disabled;
2121
2122static int kdb_disable_nmi(int argc, const char *argv[])
2123{
2124	if (atomic_read(&kdb_nmi_disabled))
2125		return 0;
2126	atomic_set(&kdb_nmi_disabled, 1);
2127	arch_kgdb_ops.enable_nmi(0);
2128	return 0;
2129}
2130
2131static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2132{
2133	if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2134		return -EINVAL;
2135	arch_kgdb_ops.enable_nmi(1);
2136	return 0;
2137}
2138
2139static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2140	.set = kdb_param_enable_nmi,
2141};
2142module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2143
2144/*
2145 * kdb_cpu - This function implements the 'cpu' command.
2146 *	cpu	[<cpunum>]
2147 * Returns:
2148 *	KDB_CMD_CPU for success, a kdb diagnostic if error
2149 */
2150static void kdb_cpu_status(void)
2151{
2152	int i, start_cpu, first_print = 1;
2153	char state, prev_state = '?';
2154
2155	kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2156	kdb_printf("Available cpus: ");
2157	for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2158		if (!cpu_online(i)) {
2159			state = 'F';	/* cpu is offline */
 
 
2160		} else {
2161			state = ' ';	/* cpu is responding to kdb */
2162			if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2163				state = 'I';	/* idle task */
2164		}
2165		if (state != prev_state) {
2166			if (prev_state != '?') {
2167				if (!first_print)
2168					kdb_printf(", ");
2169				first_print = 0;
2170				kdb_printf("%d", start_cpu);
2171				if (start_cpu < i-1)
2172					kdb_printf("-%d", i-1);
2173				if (prev_state != ' ')
2174					kdb_printf("(%c)", prev_state);
2175			}
2176			prev_state = state;
2177			start_cpu = i;
2178		}
2179	}
2180	/* print the trailing cpus, ignoring them if they are all offline */
2181	if (prev_state != 'F') {
2182		if (!first_print)
2183			kdb_printf(", ");
2184		kdb_printf("%d", start_cpu);
2185		if (start_cpu < i-1)
2186			kdb_printf("-%d", i-1);
2187		if (prev_state != ' ')
2188			kdb_printf("(%c)", prev_state);
2189	}
2190	kdb_printf("\n");
2191}
2192
2193static int kdb_cpu(int argc, const char **argv)
2194{
2195	unsigned long cpunum;
2196	int diag;
2197
2198	if (argc == 0) {
2199		kdb_cpu_status();
2200		return 0;
2201	}
2202
2203	if (argc != 1)
2204		return KDB_ARGCOUNT;
2205
2206	diag = kdbgetularg(argv[1], &cpunum);
2207	if (diag)
2208		return diag;
2209
2210	/*
2211	 * Validate cpunum
2212	 */
2213	if ((cpunum > NR_CPUS) || !cpu_online(cpunum))
2214		return KDB_BADCPUNUM;
2215
2216	dbg_switch_cpu = cpunum;
2217
2218	/*
2219	 * Switch to other cpu
2220	 */
2221	return KDB_CMD_CPU;
2222}
2223
2224/* The user may not realize that ps/bta with no parameters does not print idle
2225 * or sleeping system daemon processes, so tell them how many were suppressed.
2226 */
2227void kdb_ps_suppressed(void)
2228{
2229	int idle = 0, daemon = 0;
2230	unsigned long mask_I = kdb_task_state_string("I"),
2231		      mask_M = kdb_task_state_string("M");
2232	unsigned long cpu;
2233	const struct task_struct *p, *g;
2234	for_each_online_cpu(cpu) {
2235		p = kdb_curr_task(cpu);
2236		if (kdb_task_state(p, mask_I))
2237			++idle;
2238	}
2239	kdb_do_each_thread(g, p) {
2240		if (kdb_task_state(p, mask_M))
2241			++daemon;
2242	} kdb_while_each_thread(g, p);
2243	if (idle || daemon) {
2244		if (idle)
2245			kdb_printf("%d idle process%s (state I)%s\n",
2246				   idle, idle == 1 ? "" : "es",
2247				   daemon ? " and " : "");
2248		if (daemon)
2249			kdb_printf("%d sleeping system daemon (state M) "
2250				   "process%s", daemon,
2251				   daemon == 1 ? "" : "es");
2252		kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2253	}
2254}
2255
2256/*
2257 * kdb_ps - This function implements the 'ps' command which shows a
2258 *	list of the active processes.
2259 *		ps [DRSTCZEUIMA]   All processes, optionally filtered by state
2260 */
2261void kdb_ps1(const struct task_struct *p)
2262{
2263	int cpu;
2264	unsigned long tmp;
2265
2266	if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
 
2267		return;
2268
2269	cpu = kdb_process_cpu(p);
2270	kdb_printf("0x%p %8d %8d  %d %4d   %c  0x%p %c%s\n",
2271		   (void *)p, p->pid, p->parent->pid,
2272		   kdb_task_has_cpu(p), kdb_process_cpu(p),
2273		   kdb_task_state_char(p),
2274		   (void *)(&p->thread),
2275		   p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2276		   p->comm);
2277	if (kdb_task_has_cpu(p)) {
2278		if (!KDB_TSK(cpu)) {
2279			kdb_printf("  Error: no saved data for this cpu\n");
2280		} else {
2281			if (KDB_TSK(cpu) != p)
2282				kdb_printf("  Error: does not match running "
2283				   "process table (0x%p)\n", KDB_TSK(cpu));
2284		}
2285	}
2286}
2287
 
 
 
 
 
 
 
2288static int kdb_ps(int argc, const char **argv)
2289{
2290	struct task_struct *g, *p;
2291	unsigned long mask, cpu;
 
2292
2293	if (argc == 0)
2294		kdb_ps_suppressed();
2295	kdb_printf("%-*s      Pid   Parent [*] cpu State %-*s Command\n",
2296		(int)(2*sizeof(void *))+2, "Task Addr",
2297		(int)(2*sizeof(void *))+2, "Thread");
2298	mask = kdb_task_state_string(argc ? argv[1] : NULL);
2299	/* Run the active tasks first */
2300	for_each_online_cpu(cpu) {
2301		if (KDB_FLAG(CMD_INTERRUPT))
2302			return 0;
2303		p = kdb_curr_task(cpu);
2304		if (kdb_task_state(p, mask))
2305			kdb_ps1(p);
2306	}
2307	kdb_printf("\n");
2308	/* Now the real tasks */
2309	kdb_do_each_thread(g, p) {
2310		if (KDB_FLAG(CMD_INTERRUPT))
2311			return 0;
2312		if (kdb_task_state(p, mask))
2313			kdb_ps1(p);
2314	} kdb_while_each_thread(g, p);
2315
2316	return 0;
2317}
2318
2319/*
2320 * kdb_pid - This function implements the 'pid' command which switches
2321 *	the currently active process.
2322 *		pid [<pid> | R]
2323 */
2324static int kdb_pid(int argc, const char **argv)
2325{
2326	struct task_struct *p;
2327	unsigned long val;
2328	int diag;
2329
2330	if (argc > 1)
2331		return KDB_ARGCOUNT;
2332
2333	if (argc) {
2334		if (strcmp(argv[1], "R") == 0) {
2335			p = KDB_TSK(kdb_initial_cpu);
2336		} else {
2337			diag = kdbgetularg(argv[1], &val);
2338			if (diag)
2339				return KDB_BADINT;
2340
2341			p = find_task_by_pid_ns((pid_t)val,	&init_pid_ns);
2342			if (!p) {
2343				kdb_printf("No task with pid=%d\n", (pid_t)val);
2344				return 0;
2345			}
2346		}
2347		kdb_set_current_task(p);
2348	}
2349	kdb_printf("KDB current process is %s(pid=%d)\n",
2350		   kdb_current_task->comm,
2351		   kdb_current_task->pid);
2352
2353	return 0;
2354}
2355
2356static int kdb_kgdb(int argc, const char **argv)
2357{
2358	return KDB_CMD_KGDB;
2359}
2360
2361/*
2362 * kdb_help - This function implements the 'help' and '?' commands.
2363 */
2364static int kdb_help(int argc, const char **argv)
2365{
2366	kdbtab_t *kt;
2367	int i;
2368
2369	kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2370	kdb_printf("-----------------------------"
2371		   "-----------------------------\n");
2372	for_each_kdbcmd(kt, i) {
2373		char *space = "";
2374		if (KDB_FLAG(CMD_INTERRUPT))
2375			return 0;
2376		if (!kt->cmd_name)
2377			continue;
2378		if (strlen(kt->cmd_usage) > 20)
2379			space = "\n                                    ";
2380		kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2381			   kt->cmd_usage, space, kt->cmd_help);
2382	}
2383	return 0;
2384}
2385
2386/*
2387 * kdb_kill - This function implements the 'kill' commands.
2388 */
2389static int kdb_kill(int argc, const char **argv)
2390{
2391	long sig, pid;
2392	char *endp;
2393	struct task_struct *p;
2394	struct siginfo info;
2395
2396	if (argc != 2)
2397		return KDB_ARGCOUNT;
2398
2399	sig = simple_strtol(argv[1], &endp, 0);
2400	if (*endp)
2401		return KDB_BADINT;
2402	if (sig >= 0) {
2403		kdb_printf("Invalid signal parameter.<-signal>\n");
2404		return 0;
2405	}
2406	sig = -sig;
2407
2408	pid = simple_strtol(argv[2], &endp, 0);
2409	if (*endp)
2410		return KDB_BADINT;
2411	if (pid <= 0) {
2412		kdb_printf("Process ID must be large than 0.\n");
2413		return 0;
2414	}
2415
2416	/* Find the process. */
2417	p = find_task_by_pid_ns(pid, &init_pid_ns);
2418	if (!p) {
2419		kdb_printf("The specified process isn't found.\n");
2420		return 0;
2421	}
2422	p = p->group_leader;
2423	info.si_signo = sig;
2424	info.si_errno = 0;
2425	info.si_code = SI_USER;
2426	info.si_pid = pid;  /* same capabilities as process being signalled */
2427	info.si_uid = 0;    /* kdb has root authority */
2428	kdb_send_sig_info(p, &info);
2429	return 0;
2430}
2431
2432struct kdb_tm {
2433	int tm_sec;	/* seconds */
2434	int tm_min;	/* minutes */
2435	int tm_hour;	/* hours */
2436	int tm_mday;	/* day of the month */
2437	int tm_mon;	/* month */
2438	int tm_year;	/* year */
2439};
2440
2441static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2442{
2443	/* This will work from 1970-2099, 2100 is not a leap year */
2444	static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2445				 31, 30, 31, 30, 31 };
2446	memset(tm, 0, sizeof(*tm));
2447	tm->tm_sec  = tv->tv_sec % (24 * 60 * 60);
2448	tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2449		(2 * 365 + 1); /* shift base from 1970 to 1968 */
2450	tm->tm_min =  tm->tm_sec / 60 % 60;
2451	tm->tm_hour = tm->tm_sec / 60 / 60;
2452	tm->tm_sec =  tm->tm_sec % 60;
2453	tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2454	tm->tm_mday %= (4*365+1);
2455	mon_day[1] = 29;
2456	while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2457		tm->tm_mday -= mon_day[tm->tm_mon];
2458		if (++tm->tm_mon == 12) {
2459			tm->tm_mon = 0;
2460			++tm->tm_year;
2461			mon_day[1] = 28;
2462		}
2463	}
2464	++tm->tm_mday;
2465}
2466
2467/*
2468 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2469 * I cannot call that code directly from kdb, it has an unconditional
2470 * cli()/sti() and calls routines that take locks which can stop the debugger.
2471 */
2472static void kdb_sysinfo(struct sysinfo *val)
2473{
2474	struct timespec uptime;
2475	do_posix_clock_monotonic_gettime(&uptime);
2476	memset(val, 0, sizeof(*val));
2477	val->uptime = uptime.tv_sec;
2478	val->loads[0] = avenrun[0];
2479	val->loads[1] = avenrun[1];
2480	val->loads[2] = avenrun[2];
2481	val->procs = nr_threads-1;
2482	si_meminfo(val);
2483
2484	return;
2485}
2486
2487/*
2488 * kdb_summary - This function implements the 'summary' command.
2489 */
2490static int kdb_summary(int argc, const char **argv)
2491{
2492	struct timespec now;
2493	struct kdb_tm tm;
2494	struct sysinfo val;
2495
2496	if (argc)
2497		return KDB_ARGCOUNT;
2498
2499	kdb_printf("sysname    %s\n", init_uts_ns.name.sysname);
2500	kdb_printf("release    %s\n", init_uts_ns.name.release);
2501	kdb_printf("version    %s\n", init_uts_ns.name.version);
2502	kdb_printf("machine    %s\n", init_uts_ns.name.machine);
2503	kdb_printf("nodename   %s\n", init_uts_ns.name.nodename);
2504	kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2505	kdb_printf("ccversion  %s\n", __stringify(CCVERSION));
2506
2507	now = __current_kernel_time();
2508	kdb_gmtime(&now, &tm);
2509	kdb_printf("date       %04d-%02d-%02d %02d:%02d:%02d "
2510		   "tz_minuteswest %d\n",
2511		1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2512		tm.tm_hour, tm.tm_min, tm.tm_sec,
2513		sys_tz.tz_minuteswest);
2514
 
 
2515	kdb_sysinfo(&val);
2516	kdb_printf("uptime     ");
2517	if (val.uptime > (24*60*60)) {
2518		int days = val.uptime / (24*60*60);
2519		val.uptime %= (24*60*60);
2520		kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2521	}
2522	kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2523
2524	/* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2525
2526#define LOAD_INT(x) ((x) >> FSHIFT)
2527#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2528	kdb_printf("load avg   %ld.%02ld %ld.%02ld %ld.%02ld\n",
2529		LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2530		LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2531		LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2532#undef LOAD_INT
2533#undef LOAD_FRAC
2534	/* Display in kilobytes */
2535#define K(x) ((x) << (PAGE_SHIFT - 10))
2536	kdb_printf("\nMemTotal:       %8lu kB\nMemFree:        %8lu kB\n"
2537		   "Buffers:        %8lu kB\n",
2538		   val.totalram, val.freeram, val.bufferram);
2539	return 0;
2540}
2541
2542/*
2543 * kdb_per_cpu - This function implements the 'per_cpu' command.
2544 */
2545static int kdb_per_cpu(int argc, const char **argv)
2546{
2547	char fmtstr[64];
2548	int cpu, diag, nextarg = 1;
2549	unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2550
2551	if (argc < 1 || argc > 3)
2552		return KDB_ARGCOUNT;
2553
2554	diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2555	if (diag)
2556		return diag;
2557
2558	if (argc >= 2) {
2559		diag = kdbgetularg(argv[2], &bytesperword);
2560		if (diag)
2561			return diag;
2562	}
2563	if (!bytesperword)
2564		bytesperword = KDB_WORD_SIZE;
2565	else if (bytesperword > KDB_WORD_SIZE)
2566		return KDB_BADWIDTH;
2567	sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2568	if (argc >= 3) {
2569		diag = kdbgetularg(argv[3], &whichcpu);
2570		if (diag)
2571			return diag;
2572		if (!cpu_online(whichcpu)) {
2573			kdb_printf("cpu %ld is not online\n", whichcpu);
2574			return KDB_BADCPUNUM;
2575		}
2576	}
2577
2578	/* Most architectures use __per_cpu_offset[cpu], some use
2579	 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2580	 */
2581#ifdef	__per_cpu_offset
2582#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2583#else
2584#ifdef	CONFIG_SMP
2585#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2586#else
2587#define KDB_PCU(cpu) 0
2588#endif
2589#endif
2590	for_each_online_cpu(cpu) {
2591		if (KDB_FLAG(CMD_INTERRUPT))
2592			return 0;
2593
2594		if (whichcpu != ~0UL && whichcpu != cpu)
2595			continue;
2596		addr = symaddr + KDB_PCU(cpu);
2597		diag = kdb_getword(&val, addr, bytesperword);
2598		if (diag) {
2599			kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2600				   "read, diag=%d\n", cpu, addr, diag);
2601			continue;
2602		}
2603		kdb_printf("%5d ", cpu);
2604		kdb_md_line(fmtstr, addr,
2605			bytesperword == KDB_WORD_SIZE,
2606			1, bytesperword, 1, 1, 0);
2607	}
2608#undef KDB_PCU
2609	return 0;
2610}
2611
2612/*
2613 * display help for the use of cmd | grep pattern
2614 */
2615static int kdb_grep_help(int argc, const char **argv)
2616{
2617	kdb_printf("Usage of  cmd args | grep pattern:\n");
2618	kdb_printf("  Any command's output may be filtered through an ");
2619	kdb_printf("emulated 'pipe'.\n");
2620	kdb_printf("  'grep' is just a key word.\n");
2621	kdb_printf("  The pattern may include a very limited set of "
2622		   "metacharacters:\n");
2623	kdb_printf("   pattern or ^pattern or pattern$ or ^pattern$\n");
2624	kdb_printf("  And if there are spaces in the pattern, you may "
2625		   "quote it:\n");
2626	kdb_printf("   \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2627		   " or \"^pat tern$\"\n");
2628	return 0;
2629}
2630
2631/*
2632 * kdb_register_repeat - This function is used to register a kernel
2633 * 	debugger command.
2634 * Inputs:
2635 *	cmd	Command name
2636 *	func	Function to execute the command
2637 *	usage	A simple usage string showing arguments
2638 *	help	A simple help string describing command
2639 *	repeat	Does the command auto repeat on enter?
2640 * Returns:
2641 *	zero for success, one if a duplicate command.
2642 */
2643#define kdb_command_extend 50	/* arbitrary */
2644int kdb_register_repeat(char *cmd,
2645			kdb_func_t func,
2646			char *usage,
2647			char *help,
2648			short minlen,
2649			kdb_repeat_t repeat)
2650{
2651	int i;
2652	kdbtab_t *kp;
2653
2654	/*
2655	 *  Brute force method to determine duplicates
2656	 */
2657	for_each_kdbcmd(kp, i) {
2658		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2659			kdb_printf("Duplicate kdb command registered: "
2660				"%s, func %p help %s\n", cmd, func, help);
2661			return 1;
2662		}
2663	}
2664
2665	/*
2666	 * Insert command into first available location in table
2667	 */
2668	for_each_kdbcmd(kp, i) {
2669		if (kp->cmd_name == NULL)
2670			break;
2671	}
2672
2673	if (i >= kdb_max_commands) {
2674		kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2675			 kdb_command_extend) * sizeof(*new), GFP_KDB);
2676		if (!new) {
2677			kdb_printf("Could not allocate new kdb_command "
2678				   "table\n");
2679			return 1;
2680		}
2681		if (kdb_commands) {
2682			memcpy(new, kdb_commands,
2683			  (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2684			kfree(kdb_commands);
2685		}
2686		memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2687		       kdb_command_extend * sizeof(*new));
2688		kdb_commands = new;
2689		kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2690		kdb_max_commands += kdb_command_extend;
2691	}
2692
2693	kp->cmd_name   = cmd;
2694	kp->cmd_func   = func;
2695	kp->cmd_usage  = usage;
2696	kp->cmd_help   = help;
2697	kp->cmd_flags  = 0;
2698	kp->cmd_minlen = minlen;
2699	kp->cmd_repeat = repeat;
2700
2701	return 0;
2702}
2703EXPORT_SYMBOL_GPL(kdb_register_repeat);
2704
2705
2706/*
2707 * kdb_register - Compatibility register function for commands that do
2708 *	not need to specify a repeat state.  Equivalent to
2709 *	kdb_register_repeat with KDB_REPEAT_NONE.
2710 * Inputs:
2711 *	cmd	Command name
2712 *	func	Function to execute the command
2713 *	usage	A simple usage string showing arguments
2714 *	help	A simple help string describing command
2715 * Returns:
2716 *	zero for success, one if a duplicate command.
2717 */
2718int kdb_register(char *cmd,
2719	     kdb_func_t func,
2720	     char *usage,
2721	     char *help,
2722	     short minlen)
2723{
2724	return kdb_register_repeat(cmd, func, usage, help, minlen,
2725				   KDB_REPEAT_NONE);
 
 
2726}
2727EXPORT_SYMBOL_GPL(kdb_register);
2728
2729/*
2730 * kdb_unregister - This function is used to unregister a kernel
2731 *	debugger command.  It is generally called when a module which
2732 *	implements kdb commands is unloaded.
2733 * Inputs:
2734 *	cmd	Command name
2735 * Returns:
2736 *	zero for success, one command not registered.
2737 */
2738int kdb_unregister(char *cmd)
2739{
2740	int i;
2741	kdbtab_t *kp;
2742
2743	/*
2744	 *  find the command.
2745	 */
2746	for_each_kdbcmd(kp, i) {
2747		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2748			kp->cmd_name = NULL;
2749			return 0;
2750		}
2751	}
2752
2753	/* Couldn't find it.  */
2754	return 1;
2755}
2756EXPORT_SYMBOL_GPL(kdb_unregister);
2757
2758/* Initialize the kdb command table. */
2759static void __init kdb_inittab(void)
2760{
2761	int i;
2762	kdbtab_t *kp;
2763
2764	for_each_kdbcmd(kp, i)
2765		kp->cmd_name = NULL;
2766
2767	kdb_register_repeat("md", kdb_md, "<vaddr>",
2768	  "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2769			    KDB_REPEAT_NO_ARGS);
2770	kdb_register_repeat("mdr", kdb_md, "<vaddr> <bytes>",
2771	  "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS);
2772	kdb_register_repeat("mdp", kdb_md, "<paddr> <bytes>",
2773	  "Display Physical Memory", 0, KDB_REPEAT_NO_ARGS);
2774	kdb_register_repeat("mds", kdb_md, "<vaddr>",
2775	  "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS);
2776	kdb_register_repeat("mm", kdb_mm, "<vaddr> <contents>",
2777	  "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS);
2778	kdb_register_repeat("go", kdb_go, "[<vaddr>]",
2779	  "Continue Execution", 1, KDB_REPEAT_NONE);
2780	kdb_register_repeat("rd", kdb_rd, "",
2781	  "Display Registers", 0, KDB_REPEAT_NONE);
2782	kdb_register_repeat("rm", kdb_rm, "<reg> <contents>",
2783	  "Modify Registers", 0, KDB_REPEAT_NONE);
2784	kdb_register_repeat("ef", kdb_ef, "<vaddr>",
2785	  "Display exception frame", 0, KDB_REPEAT_NONE);
2786	kdb_register_repeat("bt", kdb_bt, "[<vaddr>]",
2787	  "Stack traceback", 1, KDB_REPEAT_NONE);
2788	kdb_register_repeat("btp", kdb_bt, "<pid>",
2789	  "Display stack for process <pid>", 0, KDB_REPEAT_NONE);
2790	kdb_register_repeat("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2791	  "Backtrace all processes matching state flag", 0, KDB_REPEAT_NONE);
2792	kdb_register_repeat("btc", kdb_bt, "",
2793	  "Backtrace current process on each cpu", 0, KDB_REPEAT_NONE);
2794	kdb_register_repeat("btt", kdb_bt, "<vaddr>",
2795	  "Backtrace process given its struct task address", 0,
2796			    KDB_REPEAT_NONE);
2797	kdb_register_repeat("env", kdb_env, "",
2798	  "Show environment variables", 0, KDB_REPEAT_NONE);
2799	kdb_register_repeat("set", kdb_set, "",
2800	  "Set environment variables", 0, KDB_REPEAT_NONE);
2801	kdb_register_repeat("help", kdb_help, "",
2802	  "Display Help Message", 1, KDB_REPEAT_NONE);
2803	kdb_register_repeat("?", kdb_help, "",
2804	  "Display Help Message", 0, KDB_REPEAT_NONE);
2805	kdb_register_repeat("cpu", kdb_cpu, "<cpunum>",
2806	  "Switch to new cpu", 0, KDB_REPEAT_NONE);
2807	kdb_register_repeat("kgdb", kdb_kgdb, "",
2808	  "Enter kgdb mode", 0, KDB_REPEAT_NONE);
2809	kdb_register_repeat("ps", kdb_ps, "[<flags>|A]",
2810	  "Display active task list", 0, KDB_REPEAT_NONE);
2811	kdb_register_repeat("pid", kdb_pid, "<pidnum>",
2812	  "Switch to another task", 0, KDB_REPEAT_NONE);
2813	kdb_register_repeat("reboot", kdb_reboot, "",
2814	  "Reboot the machine immediately", 0, KDB_REPEAT_NONE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2815#if defined(CONFIG_MODULES)
2816	kdb_register_repeat("lsmod", kdb_lsmod, "",
2817	  "List loaded kernel modules", 0, KDB_REPEAT_NONE);
 
 
 
 
2818#endif
2819#if defined(CONFIG_MAGIC_SYSRQ)
2820	kdb_register_repeat("sr", kdb_sr, "<key>",
2821	  "Magic SysRq key", 0, KDB_REPEAT_NONE);
 
 
 
 
2822#endif
2823#if defined(CONFIG_PRINTK)
2824	kdb_register_repeat("dmesg", kdb_dmesg, "[lines]",
2825	  "Display syslog buffer", 0, KDB_REPEAT_NONE);
 
 
 
 
2826#endif
2827	if (arch_kgdb_ops.enable_nmi) {
2828		kdb_register_repeat("disable_nmi", kdb_disable_nmi, "",
2829		  "Disable NMI entry to KDB", 0, KDB_REPEAT_NONE);
2830	}
2831	kdb_register_repeat("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2832	  "Define a set of commands, down to endefcmd", 0, KDB_REPEAT_NONE);
2833	kdb_register_repeat("kill", kdb_kill, "<-signal> <pid>",
2834	  "Send a signal to a process", 0, KDB_REPEAT_NONE);
2835	kdb_register_repeat("summary", kdb_summary, "",
2836	  "Summarize the system", 4, KDB_REPEAT_NONE);
2837	kdb_register_repeat("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2838	  "Display per_cpu variables", 3, KDB_REPEAT_NONE);
2839	kdb_register_repeat("grephelp", kdb_grep_help, "",
2840	  "Display help on | grep", 0, KDB_REPEAT_NONE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2841}
2842
2843/* Execute any commands defined in kdb_cmds.  */
2844static void __init kdb_cmd_init(void)
2845{
2846	int i, diag;
2847	for (i = 0; kdb_cmds[i]; ++i) {
2848		diag = kdb_parse(kdb_cmds[i]);
2849		if (diag)
2850			kdb_printf("kdb command %s failed, kdb diag %d\n",
2851				kdb_cmds[i], diag);
2852	}
2853	if (defcmd_in_progress) {
2854		kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2855		kdb_parse("endefcmd");
2856	}
2857}
2858
2859/* Initialize kdb_printf, breakpoint tables and kdb state */
2860void __init kdb_init(int lvl)
2861{
2862	static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2863	int i;
2864
2865	if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2866		return;
2867	for (i = kdb_init_lvl; i < lvl; i++) {
2868		switch (i) {
2869		case KDB_NOT_INITIALIZED:
2870			kdb_inittab();		/* Initialize Command Table */
2871			kdb_initbptab();	/* Initialize Breakpoints */
2872			break;
2873		case KDB_INIT_EARLY:
2874			kdb_cmd_init();		/* Build kdb_cmds tables */
2875			break;
2876		}
2877	}
2878	kdb_init_lvl = lvl;
2879}
v6.13.7
   1/*
   2 * Kernel Debugger Architecture Independent Main Code
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
   9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
  10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
  11 * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
  12 */
  13
  14#include <linux/ctype.h>
  15#include <linux/types.h>
  16#include <linux/string.h>
  17#include <linux/kernel.h>
  18#include <linux/kmsg_dump.h>
  19#include <linux/reboot.h>
  20#include <linux/sched.h>
  21#include <linux/sched/loadavg.h>
  22#include <linux/sched/stat.h>
  23#include <linux/sched/debug.h>
  24#include <linux/sysrq.h>
  25#include <linux/smp.h>
  26#include <linux/utsname.h>
  27#include <linux/vmalloc.h>
  28#include <linux/atomic.h>
  29#include <linux/moduleparam.h>
  30#include <linux/mm.h>
  31#include <linux/init.h>
  32#include <linux/kallsyms.h>
  33#include <linux/kgdb.h>
  34#include <linux/kdb.h>
  35#include <linux/notifier.h>
  36#include <linux/interrupt.h>
  37#include <linux/delay.h>
  38#include <linux/nmi.h>
  39#include <linux/time.h>
  40#include <linux/ptrace.h>
  41#include <linux/sysctl.h>
  42#include <linux/cpu.h>
  43#include <linux/kdebug.h>
  44#include <linux/proc_fs.h>
  45#include <linux/uaccess.h>
  46#include <linux/slab.h>
  47#include <linux/security.h>
  48#include "kdb_private.h"
  49
  50#undef	MODULE_PARAM_PREFIX
  51#define	MODULE_PARAM_PREFIX "kdb."
  52
  53static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
  54module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
  55
  56char kdb_grep_string[KDB_GREP_STRLEN];
  57int kdb_grepping_flag;
  58EXPORT_SYMBOL(kdb_grepping_flag);
  59int kdb_grep_leading;
  60int kdb_grep_trailing;
  61
  62/*
  63 * Kernel debugger state flags
  64 */
  65unsigned int kdb_flags;
 
  66
  67/*
  68 * kdb_lock protects updates to kdb_initial_cpu.  Used to
  69 * single thread processors through the kernel debugger.
  70 */
  71int kdb_initial_cpu = -1;	/* cpu number that owns kdb */
  72int kdb_nextline = 1;
  73int kdb_state;			/* General KDB state */
  74
  75struct task_struct *kdb_current_task;
 
  76struct pt_regs *kdb_current_regs;
  77
  78const char *kdb_diemsg;
  79static int kdb_go_count;
  80#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
  81static unsigned int kdb_continue_catastrophic =
  82	CONFIG_KDB_CONTINUE_CATASTROPHIC;
  83#else
  84static unsigned int kdb_continue_catastrophic;
  85#endif
  86
  87/* kdb_cmds_head describes the available commands. */
  88static LIST_HEAD(kdb_cmds_head);
 
 
 
 
 
 
 
  89
  90typedef struct _kdbmsg {
  91	int	km_diag;	/* kdb diagnostic */
  92	char	*km_msg;	/* Corresponding message text */
  93} kdbmsg_t;
  94
  95#define KDBMSG(msgnum, text) \
  96	{ KDB_##msgnum, text }
  97
  98static kdbmsg_t kdbmsgs[] = {
  99	KDBMSG(NOTFOUND, "Command Not Found"),
 100	KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
 101	KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
 102	       "8 is only allowed on 64 bit systems"),
 103	KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
 104	KDBMSG(NOTENV, "Cannot find environment variable"),
 105	KDBMSG(NOENVVALUE, "Environment variable should have value"),
 106	KDBMSG(NOTIMP, "Command not implemented"),
 107	KDBMSG(ENVFULL, "Environment full"),
 108	KDBMSG(ENVBUFFULL, "Environment buffer full"),
 109	KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
 110#ifdef CONFIG_CPU_XSCALE
 111	KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
 112#else
 113	KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
 114#endif
 115	KDBMSG(DUPBPT, "Duplicate breakpoint address"),
 116	KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
 117	KDBMSG(BADMODE, "Invalid IDMODE"),
 118	KDBMSG(BADINT, "Illegal numeric value"),
 119	KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
 120	KDBMSG(BADREG, "Invalid register name"),
 121	KDBMSG(BADCPUNUM, "Invalid cpu number"),
 122	KDBMSG(BADLENGTH, "Invalid length field"),
 123	KDBMSG(NOBP, "No Breakpoint exists"),
 124	KDBMSG(BADADDR, "Invalid address"),
 125	KDBMSG(NOPERM, "Permission denied"),
 126};
 127#undef KDBMSG
 128
 129static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
 130
 131
 132/*
 133 * Initial environment.   This is all kept static and local to
 134 * this file.   We don't want to rely on the memory allocation
 135 * mechanisms in the kernel, so we use a very limited allocate-only
 136 * heap for new and altered environment variables.  The entire
 137 * environment is limited to a fixed number of entries (add more
 138 * to __env[] if required) and a fixed amount of heap (add more to
 139 * KDB_ENVBUFSIZE if required).
 140 */
 141
 142static char *__env[31] = {
 143#if defined(CONFIG_SMP)
 144	"PROMPT=[%d]kdb> ",
 145#else
 146	"PROMPT=kdb> ",
 147#endif
 148	"MOREPROMPT=more> ",
 149	"RADIX=16",
 150	"MDCOUNT=8",		/* lines of md output */
 151	KDB_PLATFORM_ENV,
 152	"DTABCOUNT=30",
 153	"NOSECT=1",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 154};
 155
 156static const int __nenv = ARRAY_SIZE(__env);
 157
 158/*
 159 * Update the permissions flags (kdb_cmd_enabled) to match the
 160 * current lockdown state.
 161 *
 162 * Within this function the calls to security_locked_down() are "lazy". We
 163 * avoid calling them if the current value of kdb_cmd_enabled already excludes
 164 * flags that might be subject to lockdown. Additionally we deliberately check
 165 * the lockdown flags independently (even though read lockdown implies write
 166 * lockdown) since that results in both simpler code and clearer messages to
 167 * the user on first-time debugger entry.
 168 *
 169 * The permission masks during a read+write lockdown permits the following
 170 * flags: INSPECT, SIGNAL, REBOOT (and ALWAYS_SAFE).
 171 *
 172 * The INSPECT commands are not blocked during lockdown because they are
 173 * not arbitrary memory reads. INSPECT covers the backtrace family (sometimes
 174 * forcing them to have no arguments) and lsmod. These commands do expose
 175 * some kernel state but do not allow the developer seated at the console to
 176 * choose what state is reported. SIGNAL and REBOOT should not be controversial,
 177 * given these are allowed for root during lockdown already.
 178 */
 179static void kdb_check_for_lockdown(void)
 180{
 181	const int write_flags = KDB_ENABLE_MEM_WRITE |
 182				KDB_ENABLE_REG_WRITE |
 183				KDB_ENABLE_FLOW_CTRL;
 184	const int read_flags = KDB_ENABLE_MEM_READ |
 185			       KDB_ENABLE_REG_READ;
 186
 187	bool need_to_lockdown_write = false;
 188	bool need_to_lockdown_read = false;
 189
 190	if (kdb_cmd_enabled & (KDB_ENABLE_ALL | write_flags))
 191		need_to_lockdown_write =
 192			security_locked_down(LOCKDOWN_DBG_WRITE_KERNEL);
 193
 194	if (kdb_cmd_enabled & (KDB_ENABLE_ALL | read_flags))
 195		need_to_lockdown_read =
 196			security_locked_down(LOCKDOWN_DBG_READ_KERNEL);
 197
 198	/* De-compose KDB_ENABLE_ALL if required */
 199	if (need_to_lockdown_write || need_to_lockdown_read)
 200		if (kdb_cmd_enabled & KDB_ENABLE_ALL)
 201			kdb_cmd_enabled = KDB_ENABLE_MASK & ~KDB_ENABLE_ALL;
 202
 203	if (need_to_lockdown_write)
 204		kdb_cmd_enabled &= ~write_flags;
 205
 206	if (need_to_lockdown_read)
 207		kdb_cmd_enabled &= ~read_flags;
 208}
 209
 210/*
 211 * Check whether the flags of the current command, the permissions of the kdb
 212 * console and the lockdown state allow a command to be run.
 213 */
 214static bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
 215				   bool no_args)
 216{
 217	/* permissions comes from userspace so needs massaging slightly */
 218	permissions &= KDB_ENABLE_MASK;
 219	permissions |= KDB_ENABLE_ALWAYS_SAFE;
 220
 221	/* some commands change group when launched with no arguments */
 222	if (no_args)
 223		permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
 224
 225	flags |= KDB_ENABLE_ALL;
 226
 227	return permissions & flags;
 228}
 229
 230/*
 231 * kdbgetenv - This function will return the character string value of
 232 *	an environment variable.
 233 * Parameters:
 234 *	match	A character string representing an environment variable.
 235 * Returns:
 236 *	NULL	No environment variable matches 'match'
 237 *	char*	Pointer to string value of environment variable.
 238 */
 239char *kdbgetenv(const char *match)
 240{
 241	char **ep = __env;
 242	int matchlen = strlen(match);
 243	int i;
 244
 245	for (i = 0; i < __nenv; i++) {
 246		char *e = *ep++;
 247
 248		if (!e)
 249			continue;
 250
 251		if ((strncmp(match, e, matchlen) == 0)
 252		 && ((e[matchlen] == '\0')
 253		   || (e[matchlen] == '='))) {
 254			char *cp = strchr(e, '=');
 255			return cp ? ++cp : "";
 256		}
 257	}
 258	return NULL;
 259}
 260
 261/*
 262 * kdballocenv - This function is used to allocate bytes for
 263 *	environment entries.
 264 * Parameters:
 265 *	bytes	The number of bytes to allocate in the static buffer.
 
 
 266 * Returns:
 267 *	A pointer to the allocated space in the buffer on success.
 268 *	NULL if bytes > size available in the envbuffer.
 269 * Remarks:
 270 *	We use a static environment buffer (envbuffer) to hold the values
 271 *	of dynamically generated environment variables (see kdb_set).  Buffer
 272 *	space once allocated is never free'd, so over time, the amount of space
 273 *	(currently 512 bytes) will be exhausted if env variables are changed
 274 *	frequently.
 275 */
 276static char *kdballocenv(size_t bytes)
 277{
 278#define	KDB_ENVBUFSIZE	512
 279	static char envbuffer[KDB_ENVBUFSIZE];
 280	static int envbufsize;
 281	char *ep = NULL;
 282
 283	if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
 284		ep = &envbuffer[envbufsize];
 285		envbufsize += bytes;
 286	}
 287	return ep;
 288}
 289
 290/*
 291 * kdbgetulenv - This function will return the value of an unsigned
 292 *	long-valued environment variable.
 293 * Parameters:
 294 *	match	A character string representing a numeric value
 295 * Outputs:
 296 *	*value  the unsigned long representation of the env variable 'match'
 297 * Returns:
 298 *	Zero on success, a kdb diagnostic on failure.
 299 */
 300static int kdbgetulenv(const char *match, unsigned long *value)
 301{
 302	char *ep;
 303
 304	ep = kdbgetenv(match);
 305	if (!ep)
 306		return KDB_NOTENV;
 307	if (strlen(ep) == 0)
 308		return KDB_NOENVVALUE;
 309	if (kstrtoul(ep, 0, value))
 310		return KDB_BADINT;
 311
 312	return 0;
 313}
 314
 315/*
 316 * kdbgetintenv - This function will return the value of an
 317 *	integer-valued environment variable.
 318 * Parameters:
 319 *	match	A character string representing an integer-valued env variable
 320 * Outputs:
 321 *	*value  the integer representation of the environment variable 'match'
 322 * Returns:
 323 *	Zero on success, a kdb diagnostic on failure.
 324 */
 325int kdbgetintenv(const char *match, int *value)
 326{
 327	unsigned long val;
 328	int diag;
 329
 330	diag = kdbgetulenv(match, &val);
 331	if (!diag)
 332		*value = (int) val;
 333	return diag;
 334}
 335
 336/*
 337 * kdb_setenv() - Alter an existing environment variable or create a new one.
 338 * @var: Name of the variable
 339 * @val: Value of the variable
 340 *
 341 * Return: Zero on success, a kdb diagnostic on failure.
 342 */
 343static int kdb_setenv(const char *var, const char *val)
 344{
 345	int i;
 346	char *ep;
 347	size_t varlen, vallen;
 348
 349	varlen = strlen(var);
 350	vallen = strlen(val);
 351	ep = kdballocenv(varlen + vallen + 2);
 352	if (ep == (char *)0)
 353		return KDB_ENVBUFFULL;
 354
 355	sprintf(ep, "%s=%s", var, val);
 356
 357	for (i = 0; i < __nenv; i++) {
 358		if (__env[i]
 359		 && ((strncmp(__env[i], var, varlen) == 0)
 360		   && ((__env[i][varlen] == '\0')
 361		    || (__env[i][varlen] == '=')))) {
 362			__env[i] = ep;
 363			return 0;
 364		}
 365	}
 366
 367	/*
 368	 * Wasn't existing variable.  Fit into slot.
 369	 */
 370	for (i = 0; i < __nenv-1; i++) {
 371		if (__env[i] == (char *)0) {
 372			__env[i] = ep;
 373			return 0;
 374		}
 375	}
 376
 377	return KDB_ENVFULL;
 378}
 379
 380/*
 381 * kdb_printenv() - Display the current environment variables.
 382 */
 383static void kdb_printenv(void)
 384{
 385	int i;
 386
 387	for (i = 0; i < __nenv; i++) {
 388		if (__env[i])
 389			kdb_printf("%s\n", __env[i]);
 390	}
 391}
 392
 393/*
 394 * kdbgetularg - This function will convert a numeric string into an
 395 *	unsigned long value.
 396 * Parameters:
 397 *	arg	A character string representing a numeric value
 398 * Outputs:
 399 *	*value  the unsigned long representation of arg.
 400 * Returns:
 401 *	Zero on success, a kdb diagnostic on failure.
 402 */
 403int kdbgetularg(const char *arg, unsigned long *value)
 404{
 405	if (kstrtoul(arg, 0, value))
 406		return KDB_BADINT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 407	return 0;
 408}
 409
 410int kdbgetu64arg(const char *arg, u64 *value)
 411{
 412	if (kstrtou64(arg, 0, value))
 413		return KDB_BADINT;
 
 
 
 
 
 
 
 
 
 
 
 
 414	return 0;
 415}
 416
 417/*
 418 * kdb_set - This function implements the 'set' command.  Alter an
 419 *	existing environment variable or create a new one.
 420 */
 421int kdb_set(int argc, const char **argv)
 422{
 
 
 
 
 423	/*
 424	 * we can be invoked two ways:
 425	 *   set var=value    argv[1]="var", argv[2]="value"
 426	 *   set var = value  argv[1]="var", argv[2]="=", argv[3]="value"
 427	 * - if the latter, shift 'em down.
 428	 */
 429	if (argc == 3) {
 430		argv[2] = argv[3];
 431		argc--;
 432	}
 433
 434	if (argc != 2)
 435		return KDB_ARGCOUNT;
 436
 437	/*
 438	 * Censor sensitive variables
 439	 */
 440	if (strcmp(argv[1], "PROMPT") == 0 &&
 441	    !kdb_check_flags(KDB_ENABLE_MEM_READ, kdb_cmd_enabled, false))
 442		return KDB_NOPERM;
 443
 444	/*
 445	 * Check for internal variables
 446	 */
 447	if (strcmp(argv[1], "KDBDEBUG") == 0) {
 448		unsigned int debugflags;
 449		int ret;
 450
 451		ret = kstrtouint(argv[2], 0, &debugflags);
 452		if (ret || debugflags & ~KDB_DEBUG_FLAG_MASK) {
 453			kdb_printf("kdb: illegal debug flags '%s'\n",
 454				    argv[2]);
 455			return 0;
 456		}
 457		kdb_flags = (kdb_flags & ~KDB_DEBUG(MASK))
 
 458			| (debugflags << KDB_DEBUG_FLAG_SHIFT);
 459
 460		return 0;
 461	}
 462
 463	/*
 464	 * Tokenizer squashed the '=' sign.  argv[1] is variable
 465	 * name, argv[2] = value.
 466	 */
 467	return kdb_setenv(argv[1], argv[2]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 468}
 469
 470static int kdb_check_regs(void)
 471{
 472	if (!kdb_current_regs) {
 473		kdb_printf("No current kdb registers."
 474			   "  You may need to select another task\n");
 475		return KDB_BADREG;
 476	}
 477	return 0;
 478}
 479
 480/*
 481 * kdbgetaddrarg - This function is responsible for parsing an
 482 *	address-expression and returning the value of the expression,
 483 *	symbol name, and offset to the caller.
 484 *
 485 *	The argument may consist of a numeric value (decimal or
 486 *	hexadecimal), a symbol name, a register name (preceded by the
 487 *	percent sign), an environment variable with a numeric value
 488 *	(preceded by a dollar sign) or a simple arithmetic expression
 489 *	consisting of a symbol name, +/-, and a numeric constant value
 490 *	(offset).
 491 * Parameters:
 492 *	argc	- count of arguments in argv
 493 *	argv	- argument vector
 494 *	*nextarg - index to next unparsed argument in argv[]
 495 *	regs	- Register state at time of KDB entry
 496 * Outputs:
 497 *	*value	- receives the value of the address-expression
 498 *	*offset - receives the offset specified, if any
 499 *	*name   - receives the symbol name, if any
 500 *	*nextarg - index to next unparsed argument in argv[]
 501 * Returns:
 502 *	zero is returned on success, a kdb diagnostic code is
 503 *      returned on error.
 504 */
 505int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
 506		  unsigned long *value,  long *offset,
 507		  char **name)
 508{
 509	unsigned long addr;
 510	unsigned long off = 0;
 511	int positive;
 512	int diag;
 513	int found = 0;
 514	char *symname;
 515	char symbol = '\0';
 516	char *cp;
 517	kdb_symtab_t symtab;
 518
 519	/*
 520	 * If the enable flags prohibit both arbitrary memory access
 521	 * and flow control then there are no reasonable grounds to
 522	 * provide symbol lookup.
 523	 */
 524	if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
 525			     kdb_cmd_enabled, false))
 526		return KDB_NOPERM;
 527
 528	/*
 529	 * Process arguments which follow the following syntax:
 530	 *
 531	 *  symbol | numeric-address [+/- numeric-offset]
 532	 *  %register
 533	 *  $environment-variable
 534	 */
 535
 536	if (*nextarg > argc)
 537		return KDB_ARGCOUNT;
 538
 539	symname = (char *)argv[*nextarg];
 540
 541	/*
 542	 * If there is no whitespace between the symbol
 543	 * or address and the '+' or '-' symbols, we
 544	 * remember the character and replace it with a
 545	 * null so the symbol/value can be properly parsed
 546	 */
 547	cp = strpbrk(symname, "+-");
 548	if (cp != NULL) {
 549		symbol = *cp;
 550		*cp++ = '\0';
 551	}
 552
 553	if (symname[0] == '$') {
 554		diag = kdbgetulenv(&symname[1], &addr);
 555		if (diag)
 556			return diag;
 557	} else if (symname[0] == '%') {
 558		diag = kdb_check_regs();
 559		if (diag)
 560			return diag;
 561		/* Implement register values with % at a later time as it is
 562		 * arch optional.
 563		 */
 564		return KDB_NOTIMP;
 565	} else {
 566		found = kdbgetsymval(symname, &symtab);
 567		if (found) {
 568			addr = symtab.sym_start;
 569		} else {
 570			diag = kdbgetularg(argv[*nextarg], &addr);
 571			if (diag)
 572				return diag;
 573		}
 574	}
 575
 576	if (!found)
 577		found = kdbnearsym(addr, &symtab);
 578
 579	(*nextarg)++;
 580
 581	if (name)
 582		*name = symname;
 583	if (value)
 584		*value = addr;
 585	if (offset && name && *name)
 586		*offset = addr - symtab.sym_start;
 587
 588	if ((*nextarg > argc)
 589	 && (symbol == '\0'))
 590		return 0;
 591
 592	/*
 593	 * check for +/- and offset
 594	 */
 595
 596	if (symbol == '\0') {
 597		if ((argv[*nextarg][0] != '+')
 598		 && (argv[*nextarg][0] != '-')) {
 599			/*
 600			 * Not our argument.  Return.
 601			 */
 602			return 0;
 603		} else {
 604			positive = (argv[*nextarg][0] == '+');
 605			(*nextarg)++;
 606		}
 607	} else
 608		positive = (symbol == '+');
 609
 610	/*
 611	 * Now there must be an offset!
 612	 */
 613	if ((*nextarg > argc)
 614	 && (symbol == '\0')) {
 615		return KDB_INVADDRFMT;
 616	}
 617
 618	if (!symbol) {
 619		cp = (char *)argv[*nextarg];
 620		(*nextarg)++;
 621	}
 622
 623	diag = kdbgetularg(cp, &off);
 624	if (diag)
 625		return diag;
 626
 627	if (!positive)
 628		off = -off;
 629
 630	if (offset)
 631		*offset += off;
 632
 633	if (value)
 634		*value += off;
 635
 636	return 0;
 637}
 638
 639static void kdb_cmderror(int diag)
 640{
 641	int i;
 642
 643	if (diag >= 0) {
 644		kdb_printf("no error detected (diagnostic is %d)\n", diag);
 645		return;
 646	}
 647
 648	for (i = 0; i < __nkdb_err; i++) {
 649		if (kdbmsgs[i].km_diag == diag) {
 650			kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
 651			return;
 652		}
 653	}
 654
 655	kdb_printf("Unknown diag %d\n", -diag);
 656}
 657
 658/*
 659 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
 660 *	command which defines one command as a set of other commands,
 661 *	terminated by endefcmd.  kdb_defcmd processes the initial
 662 *	'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
 663 *	the following commands until 'endefcmd'.
 664 * Inputs:
 665 *	argc	argument count
 666 *	argv	argument vector
 667 * Returns:
 668 *	zero for success, a kdb diagnostic if error
 669 */
 670struct kdb_macro {
 671	kdbtab_t cmd;			/* Macro command */
 672	struct list_head statements;	/* Associated statement list */
 
 
 
 
 673};
 674
 675struct kdb_macro_statement {
 676	char *statement;		/* Statement text */
 677	struct list_head list_node;	/* Statement list node */
 678};
 679
 680static struct kdb_macro *kdb_macro;
 681static bool defcmd_in_progress;
 682
 683/* Forward references */
 684static int kdb_exec_defcmd(int argc, const char **argv);
 685
 686static int kdb_defcmd2(const char *cmdstr, const char *argv0)
 687{
 688	struct kdb_macro_statement *kms;
 689
 690	if (!kdb_macro)
 691		return KDB_NOTIMP;
 692
 693	if (strcmp(argv0, "endefcmd") == 0) {
 694		defcmd_in_progress = false;
 695		if (!list_empty(&kdb_macro->statements))
 696			kdb_register(&kdb_macro->cmd);
 
 
 
 697		return 0;
 698	}
 699
 700	kms = kmalloc(sizeof(*kms), GFP_KDB);
 701	if (!kms) {
 702		kdb_printf("Could not allocate new kdb macro command: %s\n",
 
 703			   cmdstr);
 
 704		return KDB_NOTIMP;
 705	}
 706
 707	kms->statement = kdb_strdup(cmdstr, GFP_KDB);
 708	list_add_tail(&kms->list_node, &kdb_macro->statements);
 709
 710	return 0;
 711}
 712
 713static int kdb_defcmd(int argc, const char **argv)
 714{
 715	kdbtab_t *mp;
 716
 717	if (defcmd_in_progress) {
 718		kdb_printf("kdb: nested defcmd detected, assuming missing "
 719			   "endefcmd\n");
 720		kdb_defcmd2("endefcmd", "endefcmd");
 721	}
 722	if (argc == 0) {
 723		kdbtab_t *kp;
 724		struct kdb_macro *kmp;
 725		struct kdb_macro_statement *kms;
 726
 727		list_for_each_entry(kp, &kdb_cmds_head, list_node) {
 728			if (kp->func == kdb_exec_defcmd) {
 729				kdb_printf("defcmd %s \"%s\" \"%s\"\n",
 730					   kp->name, kp->usage, kp->help);
 731				kmp = container_of(kp, struct kdb_macro, cmd);
 732				list_for_each_entry(kms, &kmp->statements,
 733						    list_node)
 734					kdb_printf("%s", kms->statement);
 735				kdb_printf("endefcmd\n");
 736			}
 737		}
 738		return 0;
 739	}
 740	if (argc != 3)
 741		return KDB_ARGCOUNT;
 742	if (in_dbg_master()) {
 743		kdb_printf("Command only available during kdb_init()\n");
 744		return KDB_NOTIMP;
 745	}
 746	kdb_macro = kzalloc(sizeof(*kdb_macro), GFP_KDB);
 747	if (!kdb_macro)
 
 748		goto fail_defcmd;
 749
 750	mp = &kdb_macro->cmd;
 751	mp->func = kdb_exec_defcmd;
 752	mp->minlen = 0;
 753	mp->flags = KDB_ENABLE_ALWAYS_SAFE;
 754	mp->name = kdb_strdup(argv[1], GFP_KDB);
 755	if (!mp->name)
 756		goto fail_name;
 757	mp->usage = kdb_strdup(argv[2], GFP_KDB);
 758	if (!mp->usage)
 759		goto fail_usage;
 760	mp->help = kdb_strdup(argv[3], GFP_KDB);
 761	if (!mp->help)
 762		goto fail_help;
 763	if (mp->usage[0] == '"') {
 764		strcpy(mp->usage, argv[2]+1);
 765		mp->usage[strlen(mp->usage)-1] = '\0';
 766	}
 767	if (mp->help[0] == '"') {
 768		strcpy(mp->help, argv[3]+1);
 769		mp->help[strlen(mp->help)-1] = '\0';
 770	}
 771
 772	INIT_LIST_HEAD(&kdb_macro->statements);
 773	defcmd_in_progress = true;
 774	return 0;
 775fail_help:
 776	kfree(mp->usage);
 777fail_usage:
 778	kfree(mp->name);
 779fail_name:
 780	kfree(kdb_macro);
 781fail_defcmd:
 782	kdb_printf("Could not allocate new kdb_macro entry for %s\n", argv[1]);
 
 783	return KDB_NOTIMP;
 784}
 785
 786/*
 787 * kdb_exec_defcmd - Execute the set of commands associated with this
 788 *	defcmd name.
 789 * Inputs:
 790 *	argc	argument count
 791 *	argv	argument vector
 792 * Returns:
 793 *	zero for success, a kdb diagnostic if error
 794 */
 795static int kdb_exec_defcmd(int argc, const char **argv)
 796{
 797	int ret;
 798	kdbtab_t *kp;
 799	struct kdb_macro *kmp;
 800	struct kdb_macro_statement *kms;
 801
 802	if (argc != 0)
 803		return KDB_ARGCOUNT;
 804
 805	list_for_each_entry(kp, &kdb_cmds_head, list_node) {
 806		if (strcmp(kp->name, argv[0]) == 0)
 807			break;
 808	}
 809	if (list_entry_is_head(kp, &kdb_cmds_head, list_node)) {
 810		kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
 811			   argv[0]);
 812		return KDB_NOTIMP;
 813	}
 814	kmp = container_of(kp, struct kdb_macro, cmd);
 815	list_for_each_entry(kms, &kmp->statements, list_node) {
 816		/*
 817		 * Recursive use of kdb_parse, do not use argv after this point.
 818		 */
 819		argv = NULL;
 820		kdb_printf("[%s]kdb> %s\n", kmp->cmd.name, kms->statement);
 821		ret = kdb_parse(kms->statement);
 822		if (ret)
 823			return ret;
 824	}
 825	return 0;
 826}
 827
 828/* Command history */
 829#define KDB_CMD_HISTORY_COUNT	32
 830#define CMD_BUFLEN		200	/* kdb_printf: max printline
 831					 * size == 256 */
 832static unsigned int cmd_head, cmd_tail;
 833static unsigned int cmdptr;
 834static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
 835static char cmd_cur[CMD_BUFLEN];
 836
 837/*
 838 * The "str" argument may point to something like  | grep xyz
 839 */
 840static void parse_grep(const char *str)
 841{
 842	int	len;
 843	char	*cp = (char *)str, *cp2;
 844
 845	/* sanity check: we should have been called with the \ first */
 846	if (*cp != '|')
 847		return;
 848	cp++;
 849	while (isspace(*cp))
 850		cp++;
 851	if (!str_has_prefix(cp, "grep ")) {
 852		kdb_printf("invalid 'pipe', see grephelp\n");
 853		return;
 854	}
 855	cp += 5;
 856	while (isspace(*cp))
 857		cp++;
 858	cp2 = strchr(cp, '\n');
 859	if (cp2)
 860		*cp2 = '\0'; /* remove the trailing newline */
 861	len = strlen(cp);
 862	if (len == 0) {
 863		kdb_printf("invalid 'pipe', see grephelp\n");
 864		return;
 865	}
 866	/* now cp points to a nonzero length search string */
 867	if (*cp == '"') {
 868		/* allow it be "x y z" by removing the "'s - there must
 869		   be two of them */
 870		cp++;
 871		cp2 = strchr(cp, '"');
 872		if (!cp2) {
 873			kdb_printf("invalid quoted string, see grephelp\n");
 874			return;
 875		}
 876		*cp2 = '\0'; /* end the string where the 2nd " was */
 877	}
 878	kdb_grep_leading = 0;
 879	if (*cp == '^') {
 880		kdb_grep_leading = 1;
 881		cp++;
 882	}
 883	len = strlen(cp);
 884	kdb_grep_trailing = 0;
 885	if (*(cp+len-1) == '$') {
 886		kdb_grep_trailing = 1;
 887		*(cp+len-1) = '\0';
 888	}
 889	len = strlen(cp);
 890	if (!len)
 891		return;
 892	if (len >= KDB_GREP_STRLEN) {
 893		kdb_printf("search string too long\n");
 894		return;
 895	}
 896	strcpy(kdb_grep_string, cp);
 897	kdb_grepping_flag++;
 898	return;
 899}
 900
 901/*
 902 * kdb_parse - Parse the command line, search the command table for a
 903 *	matching command and invoke the command function.  This
 904 *	function may be called recursively, if it is, the second call
 905 *	will overwrite argv and cbuf.  It is the caller's
 906 *	responsibility to save their argv if they recursively call
 907 *	kdb_parse().
 908 * Parameters:
 909 *      cmdstr	The input command line to be parsed.
 910 *	regs	The registers at the time kdb was entered.
 911 * Returns:
 912 *	Zero for success, a kdb diagnostic if failure.
 913 * Remarks:
 914 *	Limited to 20 tokens.
 915 *
 916 *	Real rudimentary tokenization. Basically only whitespace
 917 *	is considered a token delimiter (but special consideration
 918 *	is taken of the '=' sign as used by the 'set' command).
 919 *
 920 *	The algorithm used to tokenize the input string relies on
 921 *	there being at least one whitespace (or otherwise useless)
 922 *	character between tokens as the character immediately following
 923 *	the token is altered in-place to a null-byte to terminate the
 924 *	token string.
 925 */
 926
 927#define MAXARGC	20
 928
 929int kdb_parse(const char *cmdstr)
 930{
 931	static char *argv[MAXARGC];
 932	static int argc;
 933	static char cbuf[CMD_BUFLEN+2];
 934	char *cp;
 935	char *cpp, quoted;
 936	kdbtab_t *tp;
 937	int escaped, ignore_errors = 0, check_grep = 0;
 938
 939	/*
 940	 * First tokenize the command string.
 941	 */
 942	cp = (char *)cmdstr;
 
 943
 944	if (KDB_FLAG(CMD_INTERRUPT)) {
 945		/* Previous command was interrupted, newline must not
 946		 * repeat the command */
 947		KDB_FLAG_CLEAR(CMD_INTERRUPT);
 948		KDB_STATE_SET(PAGER);
 949		argc = 0;	/* no repeat */
 950	}
 951
 952	if (*cp != '\n' && *cp != '\0') {
 953		argc = 0;
 954		cpp = cbuf;
 955		while (*cp) {
 956			/* skip whitespace */
 957			while (isspace(*cp))
 958				cp++;
 959			if ((*cp == '\0') || (*cp == '\n') ||
 960			    (*cp == '#' && !defcmd_in_progress))
 961				break;
 962			/* special case: check for | grep pattern */
 963			if (*cp == '|') {
 964				check_grep++;
 965				break;
 966			}
 967			if (cpp >= cbuf + CMD_BUFLEN) {
 968				kdb_printf("kdb_parse: command buffer "
 969					   "overflow, command ignored\n%s\n",
 970					   cmdstr);
 971				return KDB_NOTFOUND;
 972			}
 973			if (argc >= MAXARGC - 1) {
 974				kdb_printf("kdb_parse: too many arguments, "
 975					   "command ignored\n%s\n", cmdstr);
 976				return KDB_NOTFOUND;
 977			}
 978			argv[argc++] = cpp;
 979			escaped = 0;
 980			quoted = '\0';
 981			/* Copy to next unquoted and unescaped
 982			 * whitespace or '=' */
 983			while (*cp && *cp != '\n' &&
 984			       (escaped || quoted || !isspace(*cp))) {
 985				if (cpp >= cbuf + CMD_BUFLEN)
 986					break;
 987				if (escaped) {
 988					escaped = 0;
 989					*cpp++ = *cp++;
 990					continue;
 991				}
 992				if (*cp == '\\') {
 993					escaped = 1;
 994					++cp;
 995					continue;
 996				}
 997				if (*cp == quoted)
 998					quoted = '\0';
 999				else if (*cp == '\'' || *cp == '"')
1000					quoted = *cp;
1001				*cpp = *cp++;
1002				if (*cpp == '=' && !quoted)
1003					break;
1004				++cpp;
1005			}
1006			*cpp++ = '\0';	/* Squash a ws or '=' character */
1007		}
1008	}
1009	if (!argc)
1010		return 0;
1011	if (check_grep)
1012		parse_grep(cp);
1013	if (defcmd_in_progress) {
1014		int result = kdb_defcmd2(cmdstr, argv[0]);
1015		if (!defcmd_in_progress) {
1016			argc = 0;	/* avoid repeat on endefcmd */
1017			*(argv[0]) = '\0';
1018		}
1019		return result;
1020	}
1021	if (argv[0][0] == '-' && argv[0][1] &&
1022	    (argv[0][1] < '0' || argv[0][1] > '9')) {
1023		ignore_errors = 1;
1024		++argv[0];
1025	}
1026
1027	list_for_each_entry(tp, &kdb_cmds_head, list_node) {
1028		/*
1029		 * If this command is allowed to be abbreviated,
1030		 * check to see if this is it.
1031		 */
1032		if (tp->minlen && (strlen(argv[0]) <= tp->minlen) &&
1033		    (strncmp(argv[0], tp->name, tp->minlen) == 0))
1034			break;
 
 
 
 
 
 
 
1035
1036		if (strcmp(argv[0], tp->name) == 0)
1037			break;
 
1038	}
1039
1040	/*
1041	 * If we don't find a command by this name, see if the first
1042	 * few characters of this match any of the known commands.
1043	 * e.g., md1c20 should match md.
1044	 */
1045	if (list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
1046		list_for_each_entry(tp, &kdb_cmds_head, list_node) {
1047			if (strncmp(argv[0], tp->name, strlen(tp->name)) == 0)
1048				break;
 
 
 
 
 
1049		}
1050	}
1051
1052	if (!list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
1053		int result;
1054
1055		if (!kdb_check_flags(tp->flags, kdb_cmd_enabled, argc <= 1))
1056			return KDB_NOPERM;
1057
1058		KDB_STATE_SET(CMD);
1059		result = (*tp->func)(argc-1, (const char **)argv);
1060		if (result && ignore_errors && result > KDB_CMD_GO)
1061			result = 0;
1062		KDB_STATE_CLEAR(CMD);
1063
1064		if (tp->flags & KDB_REPEAT_WITH_ARGS)
1065			return result;
1066
1067		argc = tp->flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1068		if (argv[argc])
1069			*(argv[argc]) = '\0';
 
 
 
 
 
 
 
1070		return result;
1071	}
1072
1073	/*
1074	 * If the input with which we were presented does not
1075	 * map to an existing command, attempt to parse it as an
1076	 * address argument and display the result.   Useful for
1077	 * obtaining the address of a variable, or the nearest symbol
1078	 * to an address contained in a register.
1079	 */
1080	{
1081		unsigned long value;
1082		char *name = NULL;
1083		long offset;
1084		int nextarg = 0;
1085
1086		if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1087				  &value, &offset, &name)) {
1088			return KDB_NOTFOUND;
1089		}
1090
1091		kdb_printf("%s = ", argv[0]);
1092		kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1093		kdb_printf("\n");
1094		return 0;
1095	}
1096}
1097
1098
1099static int handle_ctrl_cmd(char *cmd)
1100{
1101#define CTRL_P	16
1102#define CTRL_N	14
1103
1104	/* initial situation */
1105	if (cmd_head == cmd_tail)
1106		return 0;
1107	switch (*cmd) {
1108	case CTRL_P:
1109		if (cmdptr != cmd_tail)
1110			cmdptr = (cmdptr + KDB_CMD_HISTORY_COUNT - 1) %
1111				 KDB_CMD_HISTORY_COUNT;
1112		strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1113		return 1;
1114	case CTRL_N:
1115		if (cmdptr != cmd_head)
1116			cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1117		strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1118		return 1;
1119	}
1120	return 0;
1121}
1122
1123/*
1124 * kdb_reboot - This function implements the 'reboot' command.  Reboot
1125 *	the system immediately, or loop for ever on failure.
1126 */
1127static int kdb_reboot(int argc, const char **argv)
1128{
1129	emergency_restart();
1130	kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1131	while (1)
1132		cpu_relax();
1133	/* NOTREACHED */
1134	return 0;
1135}
1136
1137static void kdb_dumpregs(struct pt_regs *regs)
1138{
1139	int old_lvl = console_loglevel;
1140	console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1141	kdb_trap_printk++;
1142	show_regs(regs);
1143	kdb_trap_printk--;
1144	kdb_printf("\n");
1145	console_loglevel = old_lvl;
1146}
1147
1148static void kdb_set_current_task(struct task_struct *p)
1149{
1150	kdb_current_task = p;
1151
1152	if (kdb_task_has_cpu(p)) {
1153		kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1154		return;
1155	}
1156	kdb_current_regs = NULL;
1157}
1158
1159static void drop_newline(char *buf)
1160{
1161	size_t len = strlen(buf);
1162
1163	if (len == 0)
1164		return;
1165	if (*(buf + len - 1) == '\n')
1166		*(buf + len - 1) = '\0';
1167}
1168
1169/*
1170 * kdb_local - The main code for kdb.  This routine is invoked on a
1171 *	specific processor, it is not global.  The main kdb() routine
1172 *	ensures that only one processor at a time is in this routine.
1173 *	This code is called with the real reason code on the first
1174 *	entry to a kdb session, thereafter it is called with reason
1175 *	SWITCH, even if the user goes back to the original cpu.
1176 * Inputs:
1177 *	reason		The reason KDB was invoked
1178 *	error		The hardware-defined error code
1179 *	regs		The exception frame at time of fault/breakpoint.
1180 *	db_result	Result code from the break or debug point.
1181 * Returns:
1182 *	0	KDB was invoked for an event which it wasn't responsible
1183 *	1	KDB handled the event for which it was invoked.
1184 *	KDB_CMD_GO	User typed 'go'.
1185 *	KDB_CMD_CPU	User switched to another cpu.
1186 *	KDB_CMD_SS	Single step.
1187 */
1188static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1189		     kdb_dbtrap_t db_result)
1190{
1191	char *cmdbuf;
1192	int diag;
1193	struct task_struct *kdb_current =
1194		curr_task(raw_smp_processor_id());
1195
1196	KDB_DEBUG_STATE("kdb_local 1", reason);
1197
1198	kdb_check_for_lockdown();
1199
1200	kdb_go_count = 0;
1201	if (reason == KDB_REASON_DEBUG) {
1202		/* special case below */
1203	} else {
1204		kdb_printf("\nEntering kdb (current=0x%px, pid %d) ",
1205			   kdb_current, kdb_current ? kdb_current->pid : 0);
1206#if defined(CONFIG_SMP)
1207		kdb_printf("on processor %d ", raw_smp_processor_id());
1208#endif
1209	}
1210
1211	switch (reason) {
1212	case KDB_REASON_DEBUG:
1213	{
1214		/*
1215		 * If re-entering kdb after a single step
1216		 * command, don't print the message.
1217		 */
1218		switch (db_result) {
1219		case KDB_DB_BPT:
1220			kdb_printf("\nEntering kdb (0x%px, pid %d) ",
1221				   kdb_current, kdb_current->pid);
1222#if defined(CONFIG_SMP)
1223			kdb_printf("on processor %d ", raw_smp_processor_id());
1224#endif
1225			kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1226				   instruction_pointer(regs));
1227			break;
1228		case KDB_DB_SS:
1229			break;
1230		case KDB_DB_SSBPT:
1231			KDB_DEBUG_STATE("kdb_local 4", reason);
1232			return 1;	/* kdba_db_trap did the work */
1233		default:
1234			kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1235				   db_result);
1236			break;
1237		}
1238
1239	}
1240		break;
1241	case KDB_REASON_ENTER:
1242		if (KDB_STATE(KEYBOARD))
1243			kdb_printf("due to Keyboard Entry\n");
1244		else
1245			kdb_printf("due to KDB_ENTER()\n");
1246		break;
1247	case KDB_REASON_KEYBOARD:
1248		KDB_STATE_SET(KEYBOARD);
1249		kdb_printf("due to Keyboard Entry\n");
1250		break;
1251	case KDB_REASON_ENTER_SLAVE:
1252		/* drop through, slaves only get released via cpu switch */
1253	case KDB_REASON_SWITCH:
1254		kdb_printf("due to cpu switch\n");
1255		break;
1256	case KDB_REASON_OOPS:
1257		kdb_printf("Oops: %s\n", kdb_diemsg);
1258		kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1259			   instruction_pointer(regs));
1260		kdb_dumpregs(regs);
1261		break;
1262	case KDB_REASON_SYSTEM_NMI:
1263		kdb_printf("due to System NonMaskable Interrupt\n");
1264		break;
1265	case KDB_REASON_NMI:
1266		kdb_printf("due to NonMaskable Interrupt @ "
1267			   kdb_machreg_fmt "\n",
1268			   instruction_pointer(regs));
 
1269		break;
1270	case KDB_REASON_SSTEP:
1271	case KDB_REASON_BREAK:
1272		kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1273			   reason == KDB_REASON_BREAK ?
1274			   "Breakpoint" : "SS trap", instruction_pointer(regs));
1275		/*
1276		 * Determine if this breakpoint is one that we
1277		 * are interested in.
1278		 */
1279		if (db_result != KDB_DB_BPT) {
1280			kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1281				   db_result);
1282			KDB_DEBUG_STATE("kdb_local 6", reason);
1283			return 0;	/* Not for us, dismiss it */
1284		}
1285		break;
1286	case KDB_REASON_RECURSE:
1287		kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1288			   instruction_pointer(regs));
1289		break;
1290	default:
1291		kdb_printf("kdb: unexpected reason code: %d\n", reason);
1292		KDB_DEBUG_STATE("kdb_local 8", reason);
1293		return 0;	/* Not for us, dismiss it */
1294	}
1295
1296	while (1) {
1297		/*
1298		 * Initialize pager context.
1299		 */
1300		kdb_nextline = 1;
1301		KDB_STATE_CLEAR(SUPPRESS);
1302		kdb_grepping_flag = 0;
1303		/* ensure the old search does not leak into '/' commands */
1304		kdb_grep_string[0] = '\0';
1305
1306		cmdbuf = cmd_cur;
1307		*cmdbuf = '\0';
1308		*(cmd_hist[cmd_head]) = '\0';
1309
1310do_full_getstr:
1311		/* PROMPT can only be set if we have MEM_READ permission. */
1312		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1313			 raw_smp_processor_id());
 
 
 
 
 
1314
1315		/*
1316		 * Fetch command from keyboard
1317		 */
1318		cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1319		if (*cmdbuf != '\n') {
1320			if (*cmdbuf < 32) {
1321				if (cmdptr == cmd_head) {
1322					strscpy(cmd_hist[cmd_head], cmd_cur,
1323						CMD_BUFLEN);
1324					*(cmd_hist[cmd_head] +
1325					  strlen(cmd_hist[cmd_head])-1) = '\0';
1326				}
1327				if (!handle_ctrl_cmd(cmdbuf))
1328					*(cmd_cur+strlen(cmd_cur)-1) = '\0';
1329				cmdbuf = cmd_cur;
1330				goto do_full_getstr;
1331			} else {
1332				strscpy(cmd_hist[cmd_head], cmd_cur,
1333					CMD_BUFLEN);
1334			}
1335
1336			cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1337			if (cmd_head == cmd_tail)
1338				cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1339		}
1340
1341		cmdptr = cmd_head;
1342		diag = kdb_parse(cmdbuf);
1343		if (diag == KDB_NOTFOUND) {
1344			drop_newline(cmdbuf);
1345			kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1346			diag = 0;
1347		}
1348		if (diag == KDB_CMD_GO
1349		 || diag == KDB_CMD_CPU
1350		 || diag == KDB_CMD_SS
1351		 || diag == KDB_CMD_KGDB)
1352			break;
1353
1354		if (diag)
1355			kdb_cmderror(diag);
1356	}
1357	KDB_DEBUG_STATE("kdb_local 9", diag);
1358	return diag;
1359}
1360
1361
1362/*
1363 * kdb_print_state - Print the state data for the current processor
1364 *	for debugging.
1365 * Inputs:
1366 *	text		Identifies the debug point
1367 *	value		Any integer value to be printed, e.g. reason code.
1368 */
1369void kdb_print_state(const char *text, int value)
1370{
1371	kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1372		   text, raw_smp_processor_id(), value, kdb_initial_cpu,
1373		   kdb_state);
1374}
1375
1376/*
1377 * kdb_main_loop - After initial setup and assignment of the
1378 *	controlling cpu, all cpus are in this loop.  One cpu is in
1379 *	control and will issue the kdb prompt, the others will spin
1380 *	until 'go' or cpu switch.
1381 *
1382 *	To get a consistent view of the kernel stacks for all
1383 *	processes, this routine is invoked from the main kdb code via
1384 *	an architecture specific routine.  kdba_main_loop is
1385 *	responsible for making the kernel stacks consistent for all
1386 *	processes, there should be no difference between a blocked
1387 *	process and a running process as far as kdb is concerned.
1388 * Inputs:
1389 *	reason		The reason KDB was invoked
1390 *	error		The hardware-defined error code
1391 *	reason2		kdb's current reason code.
1392 *			Initially error but can change
1393 *			according to kdb state.
1394 *	db_result	Result code from break or debug point.
1395 *	regs		The exception frame at time of fault/breakpoint.
1396 *			should always be valid.
1397 * Returns:
1398 *	0	KDB was invoked for an event which it wasn't responsible
1399 *	1	KDB handled the event for which it was invoked.
1400 */
1401int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1402	      kdb_dbtrap_t db_result, struct pt_regs *regs)
1403{
1404	int result = 1;
1405	/* Stay in kdb() until 'go', 'ss[b]' or an error */
1406	while (1) {
1407		/*
1408		 * All processors except the one that is in control
1409		 * will spin here.
1410		 */
1411		KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1412		while (KDB_STATE(HOLD_CPU)) {
1413			/* state KDB is turned off by kdb_cpu to see if the
1414			 * other cpus are still live, each cpu in this loop
1415			 * turns it back on.
1416			 */
1417			if (!KDB_STATE(KDB))
1418				KDB_STATE_SET(KDB);
1419		}
1420
1421		KDB_STATE_CLEAR(SUPPRESS);
1422		KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1423		if (KDB_STATE(LEAVING))
1424			break;	/* Another cpu said 'go' */
1425		/* Still using kdb, this processor is in control */
1426		result = kdb_local(reason2, error, regs, db_result);
1427		KDB_DEBUG_STATE("kdb_main_loop 3", result);
1428
1429		if (result == KDB_CMD_CPU)
1430			break;
1431
1432		if (result == KDB_CMD_SS) {
1433			KDB_STATE_SET(DOING_SS);
1434			break;
1435		}
1436
1437		if (result == KDB_CMD_KGDB) {
1438			if (!KDB_STATE(DOING_KGDB))
1439				kdb_printf("Entering please attach debugger "
1440					   "or use $D#44+ or $3#33\n");
1441			break;
1442		}
1443		if (result && result != 1 && result != KDB_CMD_GO)
1444			kdb_printf("\nUnexpected kdb_local return code %d\n",
1445				   result);
1446		KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1447		break;
1448	}
1449	if (KDB_STATE(DOING_SS))
1450		KDB_STATE_CLEAR(SSBPT);
1451
1452	/* Clean up any keyboard devices before leaving */
1453	kdb_kbd_cleanup_state();
1454
1455	return result;
1456}
1457
1458/*
1459 * kdb_mdr - This function implements the guts of the 'mdr', memory
1460 * read command.
1461 *	mdr  <addr arg>,<byte count>
1462 * Inputs:
1463 *	addr	Start address
1464 *	count	Number of bytes
1465 * Returns:
1466 *	Always 0.  Any errors are detected and printed by kdb_getarea.
1467 */
1468static int kdb_mdr(unsigned long addr, unsigned int count)
1469{
1470	unsigned char c;
1471	while (count--) {
1472		if (kdb_getarea(c, addr))
1473			return 0;
1474		kdb_printf("%02x", c);
1475		addr++;
1476	}
1477	kdb_printf("\n");
1478	return 0;
1479}
1480
1481/*
1482 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1483 *	'md8' 'mdr' and 'mds' commands.
1484 *
1485 *	md|mds  [<addr arg> [<line count> [<radix>]]]
1486 *	mdWcN	[<addr arg> [<line count> [<radix>]]]
1487 *		where W = is the width (1, 2, 4 or 8) and N is the count.
1488 *		for eg., md1c20 reads 20 bytes, 1 at a time.
1489 *	mdr  <addr arg>,<byte count>
1490 */
1491static void kdb_md_line(const char *fmtstr, unsigned long addr,
1492			int symbolic, int nosect, int bytesperword,
1493			int num, int repeat, int phys)
1494{
1495	/* print just one line of data */
1496	kdb_symtab_t symtab;
1497	char cbuf[32];
1498	char *c = cbuf;
1499	int i;
1500	int j;
1501	unsigned long word;
1502
1503	memset(cbuf, '\0', sizeof(cbuf));
1504	if (phys)
1505		kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1506	else
1507		kdb_printf(kdb_machreg_fmt0 " ", addr);
1508
1509	for (i = 0; i < num && repeat--; i++) {
1510		if (phys) {
1511			if (kdb_getphysword(&word, addr, bytesperword))
1512				break;
1513		} else if (kdb_getword(&word, addr, bytesperword))
1514			break;
1515		kdb_printf(fmtstr, word);
1516		if (symbolic)
1517			kdbnearsym(word, &symtab);
1518		else
1519			memset(&symtab, 0, sizeof(symtab));
1520		if (symtab.sym_name) {
1521			kdb_symbol_print(word, &symtab, 0);
1522			if (!nosect) {
1523				kdb_printf("\n");
1524				kdb_printf("                       %s %s "
1525					   kdb_machreg_fmt " "
1526					   kdb_machreg_fmt " "
1527					   kdb_machreg_fmt, symtab.mod_name,
1528					   symtab.sec_name, symtab.sec_start,
1529					   symtab.sym_start, symtab.sym_end);
1530			}
1531			addr += bytesperword;
1532		} else {
1533			union {
1534				u64 word;
1535				unsigned char c[8];
1536			} wc;
1537			unsigned char *cp;
1538#ifdef	__BIG_ENDIAN
1539			cp = wc.c + 8 - bytesperword;
1540#else
1541			cp = wc.c;
1542#endif
1543			wc.word = word;
1544#define printable_char(c) \
1545	({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1546			for (j = 0; j < bytesperword; j++)
 
1547				*c++ = printable_char(*cp++);
1548			addr += bytesperword;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1549#undef printable_char
1550		}
1551	}
1552	kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1553		   " ", cbuf);
1554}
1555
1556static int kdb_md(int argc, const char **argv)
1557{
1558	static unsigned long last_addr;
1559	static int last_radix, last_bytesperword, last_repeat;
1560	int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1561	int nosect = 0;
1562	char fmtchar, fmtstr[64];
1563	unsigned long addr;
1564	unsigned long word;
1565	long offset = 0;
1566	int symbolic = 0;
1567	int valid = 0;
1568	int phys = 0;
1569	int raw = 0;
1570
1571	kdbgetintenv("MDCOUNT", &mdcount);
1572	kdbgetintenv("RADIX", &radix);
1573	kdbgetintenv("BYTESPERWORD", &bytesperword);
1574
1575	/* Assume 'md <addr>' and start with environment values */
1576	repeat = mdcount * 16 / bytesperword;
1577
1578	if (strcmp(argv[0], "mdr") == 0) {
1579		if (argc == 2 || (argc == 0 && last_addr != 0))
1580			valid = raw = 1;
1581		else
1582			return KDB_ARGCOUNT;
 
1583	} else if (isdigit(argv[0][2])) {
1584		bytesperword = (int)(argv[0][2] - '0');
1585		if (bytesperword == 0) {
1586			bytesperword = last_bytesperword;
1587			if (bytesperword == 0)
1588				bytesperword = 4;
1589		}
1590		last_bytesperword = bytesperword;
1591		repeat = mdcount * 16 / bytesperword;
1592		if (!argv[0][3])
1593			valid = 1;
1594		else if (argv[0][3] == 'c' && argv[0][4]) {
1595			if (kstrtouint(argv[0] + 4, 10, &repeat))
1596				return KDB_BADINT;
1597			mdcount = ((repeat * bytesperword) + 15) / 16;
1598			valid = 1;
1599		}
1600		last_repeat = repeat;
1601	} else if (strcmp(argv[0], "md") == 0)
1602		valid = 1;
1603	else if (strcmp(argv[0], "mds") == 0)
1604		valid = 1;
1605	else if (strcmp(argv[0], "mdp") == 0) {
1606		phys = valid = 1;
1607	}
1608	if (!valid)
1609		return KDB_NOTFOUND;
1610
1611	if (argc == 0) {
1612		if (last_addr == 0)
1613			return KDB_ARGCOUNT;
1614		addr = last_addr;
1615		radix = last_radix;
1616		bytesperword = last_bytesperword;
1617		repeat = last_repeat;
1618		if (raw)
1619			mdcount = repeat;
1620		else
1621			mdcount = ((repeat * bytesperword) + 15) / 16;
1622	}
1623
1624	if (argc) {
1625		unsigned long val;
1626		int diag, nextarg = 1;
1627		diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1628				     &offset, NULL);
1629		if (diag)
1630			return diag;
1631		if (argc > nextarg+2)
1632			return KDB_ARGCOUNT;
1633
1634		if (argc >= nextarg) {
1635			diag = kdbgetularg(argv[nextarg], &val);
1636			if (!diag) {
1637				mdcount = (int) val;
1638				if (raw)
1639					repeat = mdcount;
1640				else
1641					repeat = mdcount * 16 / bytesperword;
1642			}
1643		}
1644		if (argc >= nextarg+1) {
1645			diag = kdbgetularg(argv[nextarg+1], &val);
1646			if (!diag)
1647				radix = (int) val;
1648		}
1649	}
1650
1651	if (strcmp(argv[0], "mdr") == 0) {
1652		int ret;
1653		last_addr = addr;
1654		ret = kdb_mdr(addr, mdcount);
1655		last_addr += mdcount;
1656		last_repeat = mdcount;
1657		last_bytesperword = bytesperword; // to make REPEAT happy
1658		return ret;
1659	}
1660
1661	switch (radix) {
1662	case 10:
1663		fmtchar = 'd';
1664		break;
1665	case 16:
1666		fmtchar = 'x';
1667		break;
1668	case 8:
1669		fmtchar = 'o';
1670		break;
1671	default:
1672		return KDB_BADRADIX;
1673	}
1674
1675	last_radix = radix;
1676
1677	if (bytesperword > KDB_WORD_SIZE)
1678		return KDB_BADWIDTH;
1679
1680	switch (bytesperword) {
1681	case 8:
1682		sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1683		break;
1684	case 4:
1685		sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1686		break;
1687	case 2:
1688		sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1689		break;
1690	case 1:
1691		sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1692		break;
1693	default:
1694		return KDB_BADWIDTH;
1695	}
1696
1697	last_repeat = repeat;
1698	last_bytesperword = bytesperword;
1699
1700	if (strcmp(argv[0], "mds") == 0) {
1701		symbolic = 1;
1702		/* Do not save these changes as last_*, they are temporary mds
1703		 * overrides.
1704		 */
1705		bytesperword = KDB_WORD_SIZE;
1706		repeat = mdcount;
1707		kdbgetintenv("NOSECT", &nosect);
1708	}
1709
1710	/* Round address down modulo BYTESPERWORD */
1711
1712	addr &= ~(bytesperword-1);
1713
1714	while (repeat > 0) {
1715		unsigned long a;
1716		int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1717
1718		if (KDB_FLAG(CMD_INTERRUPT))
1719			return 0;
1720		for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1721			if (phys) {
1722				if (kdb_getphysword(&word, a, bytesperword)
1723						|| word)
1724					break;
1725			} else if (kdb_getword(&word, a, bytesperword) || word)
1726				break;
1727		}
1728		n = min(num, repeat);
1729		kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1730			    num, repeat, phys);
1731		addr += bytesperword * n;
1732		repeat -= n;
1733		z = (z + num - 1) / num;
1734		if (z > 2) {
1735			int s = num * (z-2);
1736			kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1737				   " zero suppressed\n",
1738				addr, addr + bytesperword * s - 1);
1739			addr += bytesperword * s;
1740			repeat -= s;
1741		}
1742	}
1743	last_addr = addr;
1744
1745	return 0;
1746}
1747
1748/*
1749 * kdb_mm - This function implements the 'mm' command.
1750 *	mm address-expression new-value
1751 * Remarks:
1752 *	mm works on machine words, mmW works on bytes.
1753 */
1754static int kdb_mm(int argc, const char **argv)
1755{
1756	int diag;
1757	unsigned long addr;
1758	long offset = 0;
1759	unsigned long contents;
1760	int nextarg;
1761	int width;
1762
1763	if (argv[0][2] && !isdigit(argv[0][2]))
1764		return KDB_NOTFOUND;
1765
1766	if (argc < 2)
1767		return KDB_ARGCOUNT;
1768
1769	nextarg = 1;
1770	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1771	if (diag)
1772		return diag;
1773
1774	if (nextarg > argc)
1775		return KDB_ARGCOUNT;
1776	diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1777	if (diag)
1778		return diag;
1779
1780	if (nextarg != argc + 1)
1781		return KDB_ARGCOUNT;
1782
1783	width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1784	diag = kdb_putword(addr, contents, width);
1785	if (diag)
1786		return diag;
1787
1788	kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1789
1790	return 0;
1791}
1792
1793/*
1794 * kdb_go - This function implements the 'go' command.
1795 *	go [address-expression]
1796 */
1797static int kdb_go(int argc, const char **argv)
1798{
1799	unsigned long addr;
1800	int diag;
1801	int nextarg;
1802	long offset;
1803
1804	if (raw_smp_processor_id() != kdb_initial_cpu) {
1805		kdb_printf("go must execute on the entry cpu, "
1806			   "please use \"cpu %d\" and then execute go\n",
1807			   kdb_initial_cpu);
1808		return KDB_BADCPUNUM;
1809	}
1810	if (argc == 1) {
1811		nextarg = 1;
1812		diag = kdbgetaddrarg(argc, argv, &nextarg,
1813				     &addr, &offset, NULL);
1814		if (diag)
1815			return diag;
1816	} else if (argc) {
1817		return KDB_ARGCOUNT;
1818	}
1819
1820	diag = KDB_CMD_GO;
1821	if (KDB_FLAG(CATASTROPHIC)) {
1822		kdb_printf("Catastrophic error detected\n");
1823		kdb_printf("kdb_continue_catastrophic=%d, ",
1824			kdb_continue_catastrophic);
1825		if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1826			kdb_printf("type go a second time if you really want "
1827				   "to continue\n");
1828			return 0;
1829		}
1830		if (kdb_continue_catastrophic == 2) {
1831			kdb_printf("forcing reboot\n");
1832			kdb_reboot(0, NULL);
1833		}
1834		kdb_printf("attempting to continue\n");
1835	}
1836	return diag;
1837}
1838
1839/*
1840 * kdb_rd - This function implements the 'rd' command.
1841 */
1842static int kdb_rd(int argc, const char **argv)
1843{
1844	int len = kdb_check_regs();
1845#if DBG_MAX_REG_NUM > 0
1846	int i;
1847	char *rname;
1848	int rsize;
1849	u64 reg64;
1850	u32 reg32;
1851	u16 reg16;
1852	u8 reg8;
1853
1854	if (len)
1855		return len;
1856
1857	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1858		rsize = dbg_reg_def[i].size * 2;
1859		if (rsize > 16)
1860			rsize = 2;
1861		if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1862			len = 0;
1863			kdb_printf("\n");
1864		}
1865		if (len)
1866			len += kdb_printf("  ");
1867		switch(dbg_reg_def[i].size * 8) {
1868		case 8:
1869			rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1870			if (!rname)
1871				break;
1872			len += kdb_printf("%s: %02x", rname, reg8);
1873			break;
1874		case 16:
1875			rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1876			if (!rname)
1877				break;
1878			len += kdb_printf("%s: %04x", rname, reg16);
1879			break;
1880		case 32:
1881			rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1882			if (!rname)
1883				break;
1884			len += kdb_printf("%s: %08x", rname, reg32);
1885			break;
1886		case 64:
1887			rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1888			if (!rname)
1889				break;
1890			len += kdb_printf("%s: %016llx", rname, reg64);
1891			break;
1892		default:
1893			len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1894		}
1895	}
1896	kdb_printf("\n");
1897#else
1898	if (len)
1899		return len;
1900
1901	kdb_dumpregs(kdb_current_regs);
1902#endif
1903	return 0;
1904}
1905
1906/*
1907 * kdb_rm - This function implements the 'rm' (register modify)  command.
1908 *	rm register-name new-contents
1909 * Remarks:
1910 *	Allows register modification with the same restrictions as gdb
1911 */
1912static int kdb_rm(int argc, const char **argv)
1913{
1914#if DBG_MAX_REG_NUM > 0
1915	int diag;
1916	const char *rname;
1917	int i;
1918	u64 reg64;
1919	u32 reg32;
1920	u16 reg16;
1921	u8 reg8;
1922
1923	if (argc != 2)
1924		return KDB_ARGCOUNT;
1925	/*
1926	 * Allow presence or absence of leading '%' symbol.
1927	 */
1928	rname = argv[1];
1929	if (*rname == '%')
1930		rname++;
1931
1932	diag = kdbgetu64arg(argv[2], &reg64);
1933	if (diag)
1934		return diag;
1935
1936	diag = kdb_check_regs();
1937	if (diag)
1938		return diag;
1939
1940	diag = KDB_BADREG;
1941	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1942		if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1943			diag = 0;
1944			break;
1945		}
1946	}
1947	if (!diag) {
1948		switch(dbg_reg_def[i].size * 8) {
1949		case 8:
1950			reg8 = reg64;
1951			dbg_set_reg(i, &reg8, kdb_current_regs);
1952			break;
1953		case 16:
1954			reg16 = reg64;
1955			dbg_set_reg(i, &reg16, kdb_current_regs);
1956			break;
1957		case 32:
1958			reg32 = reg64;
1959			dbg_set_reg(i, &reg32, kdb_current_regs);
1960			break;
1961		case 64:
1962			dbg_set_reg(i, &reg64, kdb_current_regs);
1963			break;
1964		}
1965	}
1966	return diag;
1967#else
1968	kdb_printf("ERROR: Register set currently not implemented\n");
1969    return 0;
1970#endif
1971}
1972
1973#if defined(CONFIG_MAGIC_SYSRQ)
1974/*
1975 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1976 *	which interfaces to the soi-disant MAGIC SYSRQ functionality.
1977 *		sr <magic-sysrq-code>
1978 */
1979static int kdb_sr(int argc, const char **argv)
1980{
1981	bool check_mask =
1982	    !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1983
1984	if (argc != 1)
1985		return KDB_ARGCOUNT;
1986
1987	kdb_trap_printk++;
1988	__handle_sysrq(*argv[1], check_mask);
1989	kdb_trap_printk--;
1990
1991	return 0;
1992}
1993#endif	/* CONFIG_MAGIC_SYSRQ */
1994
1995/*
1996 * kdb_ef - This function implements the 'regs' (display exception
1997 *	frame) command.  This command takes an address and expects to
1998 *	find an exception frame at that address, formats and prints
1999 *	it.
2000 *		regs address-expression
2001 * Remarks:
2002 *	Not done yet.
2003 */
2004static int kdb_ef(int argc, const char **argv)
2005{
2006	int diag;
2007	unsigned long addr;
2008	long offset;
2009	int nextarg;
2010
2011	if (argc != 1)
2012		return KDB_ARGCOUNT;
2013
2014	nextarg = 1;
2015	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2016	if (diag)
2017		return diag;
2018	show_regs((struct pt_regs *)addr);
2019	return 0;
2020}
2021
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2022/*
2023 * kdb_env - This function implements the 'env' command.  Display the
2024 *	current environment variables.
2025 */
2026
2027static int kdb_env(int argc, const char **argv)
2028{
2029	kdb_printenv();
 
 
 
 
 
2030
2031	if (KDB_DEBUG(MASK))
2032		kdb_printf("KDBDEBUG=0x%x\n",
2033			(kdb_flags & KDB_DEBUG(MASK)) >> KDB_DEBUG_FLAG_SHIFT);
2034
2035	return 0;
2036}
2037
2038#ifdef CONFIG_PRINTK
2039/*
2040 * kdb_dmesg - This function implements the 'dmesg' command to display
2041 *	the contents of the syslog buffer.
2042 *		dmesg [lines] [adjust]
2043 */
2044static int kdb_dmesg(int argc, const char **argv)
2045{
2046	int diag;
2047	int logging;
2048	int lines = 0;
2049	int adjust = 0;
2050	int n = 0;
2051	int skip = 0;
2052	struct kmsg_dump_iter iter;
2053	size_t len;
2054	char buf[201];
2055
2056	if (argc > 2)
2057		return KDB_ARGCOUNT;
2058	if (argc) {
2059		if (kstrtoint(argv[1], 0, &lines))
 
 
2060			lines = 0;
2061		if (argc > 1 && (kstrtoint(argv[2], 0, &adjust) || adjust < 0))
2062			adjust = 0;
 
 
 
2063	}
2064
2065	/* disable LOGGING if set */
2066	diag = kdbgetintenv("LOGGING", &logging);
2067	if (!diag && logging) {
2068		const char *setargs[] = { "set", "LOGGING", "0" };
2069		kdb_set(2, setargs);
2070	}
2071
2072	kmsg_dump_rewind(&iter);
2073	while (kmsg_dump_get_line(&iter, 1, NULL, 0, NULL))
2074		n++;
2075
2076	if (lines < 0) {
2077		if (adjust >= n)
2078			kdb_printf("buffer only contains %d lines, nothing "
2079				   "printed\n", n);
2080		else if (adjust - lines >= n)
2081			kdb_printf("buffer only contains %d lines, last %d "
2082				   "lines printed\n", n, n - adjust);
2083		skip = adjust;
2084		lines = abs(lines);
2085	} else if (lines > 0) {
2086		skip = n - lines - adjust;
2087		lines = abs(lines);
2088		if (adjust >= n) {
2089			kdb_printf("buffer only contains %d lines, "
2090				   "nothing printed\n", n);
2091			skip = n;
2092		} else if (skip < 0) {
2093			lines += skip;
2094			skip = 0;
2095			kdb_printf("buffer only contains %d lines, first "
2096				   "%d lines printed\n", n, lines);
2097		}
2098	} else {
2099		lines = n;
2100	}
2101
2102	if (skip >= n || skip < 0)
2103		return 0;
2104
2105	kmsg_dump_rewind(&iter);
2106	while (kmsg_dump_get_line(&iter, 1, buf, sizeof(buf), &len)) {
2107		if (skip) {
2108			skip--;
2109			continue;
2110		}
2111		if (!lines--)
2112			break;
2113		if (KDB_FLAG(CMD_INTERRUPT))
2114			return 0;
2115
2116		kdb_printf("%.*s\n", (int)len - 1, buf);
2117	}
2118
2119	return 0;
2120}
2121#endif /* CONFIG_PRINTK */
2122
2123/* Make sure we balance enable/disable calls, must disable first. */
2124static atomic_t kdb_nmi_disabled;
2125
2126static int kdb_disable_nmi(int argc, const char *argv[])
2127{
2128	if (atomic_read(&kdb_nmi_disabled))
2129		return 0;
2130	atomic_set(&kdb_nmi_disabled, 1);
2131	arch_kgdb_ops.enable_nmi(0);
2132	return 0;
2133}
2134
2135static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2136{
2137	if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2138		return -EINVAL;
2139	arch_kgdb_ops.enable_nmi(1);
2140	return 0;
2141}
2142
2143static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2144	.set = kdb_param_enable_nmi,
2145};
2146module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2147
2148/*
2149 * kdb_cpu - This function implements the 'cpu' command.
2150 *	cpu	[<cpunum>]
2151 * Returns:
2152 *	KDB_CMD_CPU for success, a kdb diagnostic if error
2153 */
2154static void kdb_cpu_status(void)
2155{
2156	int i, start_cpu, first_print = 1;
2157	char state, prev_state = '?';
2158
2159	kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2160	kdb_printf("Available cpus: ");
2161	for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2162		if (!cpu_online(i)) {
2163			state = 'F';	/* cpu is offline */
2164		} else if (!kgdb_info[i].enter_kgdb) {
2165			state = 'D';	/* cpu is online but unresponsive */
2166		} else {
2167			state = ' ';	/* cpu is responding to kdb */
2168			if (kdb_task_state_char(KDB_TSK(i)) == '-')
2169				state = '-';	/* idle task */
2170		}
2171		if (state != prev_state) {
2172			if (prev_state != '?') {
2173				if (!first_print)
2174					kdb_printf(", ");
2175				first_print = 0;
2176				kdb_printf("%d", start_cpu);
2177				if (start_cpu < i-1)
2178					kdb_printf("-%d", i-1);
2179				if (prev_state != ' ')
2180					kdb_printf("(%c)", prev_state);
2181			}
2182			prev_state = state;
2183			start_cpu = i;
2184		}
2185	}
2186	/* print the trailing cpus, ignoring them if they are all offline */
2187	if (prev_state != 'F') {
2188		if (!first_print)
2189			kdb_printf(", ");
2190		kdb_printf("%d", start_cpu);
2191		if (start_cpu < i-1)
2192			kdb_printf("-%d", i-1);
2193		if (prev_state != ' ')
2194			kdb_printf("(%c)", prev_state);
2195	}
2196	kdb_printf("\n");
2197}
2198
2199static int kdb_cpu(int argc, const char **argv)
2200{
2201	unsigned long cpunum;
2202	int diag;
2203
2204	if (argc == 0) {
2205		kdb_cpu_status();
2206		return 0;
2207	}
2208
2209	if (argc != 1)
2210		return KDB_ARGCOUNT;
2211
2212	diag = kdbgetularg(argv[1], &cpunum);
2213	if (diag)
2214		return diag;
2215
2216	/*
2217	 * Validate cpunum
2218	 */
2219	if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2220		return KDB_BADCPUNUM;
2221
2222	dbg_switch_cpu = cpunum;
2223
2224	/*
2225	 * Switch to other cpu
2226	 */
2227	return KDB_CMD_CPU;
2228}
2229
2230/* The user may not realize that ps/bta with no parameters does not print idle
2231 * or sleeping system daemon processes, so tell them how many were suppressed.
2232 */
2233void kdb_ps_suppressed(void)
2234{
2235	int idle = 0, daemon = 0;
 
 
2236	unsigned long cpu;
2237	const struct task_struct *p, *g;
2238	for_each_online_cpu(cpu) {
2239		p = curr_task(cpu);
2240		if (kdb_task_state(p, "-"))
2241			++idle;
2242	}
2243	for_each_process_thread(g, p) {
2244		if (kdb_task_state(p, "ims"))
2245			++daemon;
2246	}
2247	if (idle || daemon) {
2248		if (idle)
2249			kdb_printf("%d idle process%s (state -)%s\n",
2250				   idle, idle == 1 ? "" : "es",
2251				   daemon ? " and " : "");
2252		if (daemon)
2253			kdb_printf("%d sleeping system daemon (state [ims]) "
2254				   "process%s", daemon,
2255				   daemon == 1 ? "" : "es");
2256		kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2257	}
2258}
2259
 
 
 
 
 
2260void kdb_ps1(const struct task_struct *p)
2261{
2262	int cpu;
2263	unsigned long tmp;
2264
2265	if (!p ||
2266	    copy_from_kernel_nofault(&tmp, (char *)p, sizeof(unsigned long)))
2267		return;
2268
2269	cpu = kdb_process_cpu(p);
2270	kdb_printf("0x%px %8d %8d  %d %4d   %c  0x%px %c%s\n",
2271		   (void *)p, p->pid, p->parent->pid,
2272		   kdb_task_has_cpu(p), kdb_process_cpu(p),
2273		   kdb_task_state_char(p),
2274		   (void *)(&p->thread),
2275		   p == curr_task(raw_smp_processor_id()) ? '*' : ' ',
2276		   p->comm);
2277	if (kdb_task_has_cpu(p)) {
2278		if (!KDB_TSK(cpu)) {
2279			kdb_printf("  Error: no saved data for this cpu\n");
2280		} else {
2281			if (KDB_TSK(cpu) != p)
2282				kdb_printf("  Error: does not match running "
2283				   "process table (0x%px)\n", KDB_TSK(cpu));
2284		}
2285	}
2286}
2287
2288/*
2289 * kdb_ps - This function implements the 'ps' command which shows a
2290 *	    list of the active processes.
2291 *
2292 * ps [<state_chars>]   Show processes, optionally selecting only those whose
2293 *                      state character is found in <state_chars>.
2294 */
2295static int kdb_ps(int argc, const char **argv)
2296{
2297	struct task_struct *g, *p;
2298	const char *mask;
2299	unsigned long cpu;
2300
2301	if (argc == 0)
2302		kdb_ps_suppressed();
2303	kdb_printf("%-*s      Pid   Parent [*] cpu State %-*s Command\n",
2304		(int)(2*sizeof(void *))+2, "Task Addr",
2305		(int)(2*sizeof(void *))+2, "Thread");
2306	mask = argc ? argv[1] : kdbgetenv("PS");
2307	/* Run the active tasks first */
2308	for_each_online_cpu(cpu) {
2309		if (KDB_FLAG(CMD_INTERRUPT))
2310			return 0;
2311		p = curr_task(cpu);
2312		if (kdb_task_state(p, mask))
2313			kdb_ps1(p);
2314	}
2315	kdb_printf("\n");
2316	/* Now the real tasks */
2317	for_each_process_thread(g, p) {
2318		if (KDB_FLAG(CMD_INTERRUPT))
2319			return 0;
2320		if (kdb_task_state(p, mask))
2321			kdb_ps1(p);
2322	}
2323
2324	return 0;
2325}
2326
2327/*
2328 * kdb_pid - This function implements the 'pid' command which switches
2329 *	the currently active process.
2330 *		pid [<pid> | R]
2331 */
2332static int kdb_pid(int argc, const char **argv)
2333{
2334	struct task_struct *p;
2335	unsigned long val;
2336	int diag;
2337
2338	if (argc > 1)
2339		return KDB_ARGCOUNT;
2340
2341	if (argc) {
2342		if (strcmp(argv[1], "R") == 0) {
2343			p = KDB_TSK(kdb_initial_cpu);
2344		} else {
2345			diag = kdbgetularg(argv[1], &val);
2346			if (diag)
2347				return KDB_BADINT;
2348
2349			p = find_task_by_pid_ns((pid_t)val,	&init_pid_ns);
2350			if (!p) {
2351				kdb_printf("No task with pid=%d\n", (pid_t)val);
2352				return 0;
2353			}
2354		}
2355		kdb_set_current_task(p);
2356	}
2357	kdb_printf("KDB current process is %s(pid=%d)\n",
2358		   kdb_current_task->comm,
2359		   kdb_current_task->pid);
2360
2361	return 0;
2362}
2363
2364static int kdb_kgdb(int argc, const char **argv)
2365{
2366	return KDB_CMD_KGDB;
2367}
2368
2369/*
2370 * kdb_help - This function implements the 'help' and '?' commands.
2371 */
2372static int kdb_help(int argc, const char **argv)
2373{
2374	kdbtab_t *kt;
 
2375
2376	kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2377	kdb_printf("-----------------------------"
2378		   "-----------------------------\n");
2379	list_for_each_entry(kt, &kdb_cmds_head, list_node) {
2380		char *space = "";
2381		if (KDB_FLAG(CMD_INTERRUPT))
2382			return 0;
2383		if (!kdb_check_flags(kt->flags, kdb_cmd_enabled, true))
2384			continue;
2385		if (strlen(kt->usage) > 20)
2386			space = "\n                                    ";
2387		kdb_printf("%-15.15s %-20s%s%s\n", kt->name,
2388			   kt->usage, space, kt->help);
2389	}
2390	return 0;
2391}
2392
2393/*
2394 * kdb_kill - This function implements the 'kill' commands.
2395 */
2396static int kdb_kill(int argc, const char **argv)
2397{
2398	long sig, pid;
 
2399	struct task_struct *p;
 
2400
2401	if (argc != 2)
2402		return KDB_ARGCOUNT;
2403
2404	if (kstrtol(argv[1], 0, &sig))
 
2405		return KDB_BADINT;
2406	if ((sig >= 0) || !valid_signal(-sig)) {
2407		kdb_printf("Invalid signal parameter.<-signal>\n");
2408		return 0;
2409	}
2410	sig = -sig;
2411
2412	if (kstrtol(argv[2], 0, &pid))
 
2413		return KDB_BADINT;
2414	if (pid <= 0) {
2415		kdb_printf("Process ID must be large than 0.\n");
2416		return 0;
2417	}
2418
2419	/* Find the process. */
2420	p = find_task_by_pid_ns(pid, &init_pid_ns);
2421	if (!p) {
2422		kdb_printf("The specified process isn't found.\n");
2423		return 0;
2424	}
2425	p = p->group_leader;
2426	kdb_send_sig(p, sig);
 
 
 
 
 
2427	return 0;
2428}
2429
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2430/*
2431 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2432 * I cannot call that code directly from kdb, it has an unconditional
2433 * cli()/sti() and calls routines that take locks which can stop the debugger.
2434 */
2435static void kdb_sysinfo(struct sysinfo *val)
2436{
2437	u64 uptime = ktime_get_mono_fast_ns();
2438
2439	memset(val, 0, sizeof(*val));
2440	val->uptime = div_u64(uptime, NSEC_PER_SEC);
2441	val->loads[0] = avenrun[0];
2442	val->loads[1] = avenrun[1];
2443	val->loads[2] = avenrun[2];
2444	val->procs = nr_threads-1;
2445	si_meminfo(val);
2446
2447	return;
2448}
2449
2450/*
2451 * kdb_summary - This function implements the 'summary' command.
2452 */
2453static int kdb_summary(int argc, const char **argv)
2454{
2455	time64_t now;
 
2456	struct sysinfo val;
2457
2458	if (argc)
2459		return KDB_ARGCOUNT;
2460
2461	kdb_printf("sysname    %s\n", init_uts_ns.name.sysname);
2462	kdb_printf("release    %s\n", init_uts_ns.name.release);
2463	kdb_printf("version    %s\n", init_uts_ns.name.version);
2464	kdb_printf("machine    %s\n", init_uts_ns.name.machine);
2465	kdb_printf("nodename   %s\n", init_uts_ns.name.nodename);
2466	kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
 
 
 
 
 
 
 
 
 
2467
2468	now = __ktime_get_real_seconds();
2469	kdb_printf("date       %ptTs tz_minuteswest %d\n", &now, sys_tz.tz_minuteswest);
2470	kdb_sysinfo(&val);
2471	kdb_printf("uptime     ");
2472	if (val.uptime > (24*60*60)) {
2473		int days = val.uptime / (24*60*60);
2474		val.uptime %= (24*60*60);
2475		kdb_printf("%d day%s ", days, str_plural(days));
2476	}
2477	kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2478
 
 
 
 
2479	kdb_printf("load avg   %ld.%02ld %ld.%02ld %ld.%02ld\n",
2480		LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2481		LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2482		LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2483
 
2484	/* Display in kilobytes */
2485#define K(x) ((x) << (PAGE_SHIFT - 10))
2486	kdb_printf("\nMemTotal:       %8lu kB\nMemFree:        %8lu kB\n"
2487		   "Buffers:        %8lu kB\n",
2488		   K(val.totalram), K(val.freeram), K(val.bufferram));
2489	return 0;
2490}
2491
2492/*
2493 * kdb_per_cpu - This function implements the 'per_cpu' command.
2494 */
2495static int kdb_per_cpu(int argc, const char **argv)
2496{
2497	char fmtstr[64];
2498	int cpu, diag, nextarg = 1;
2499	unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2500
2501	if (argc < 1 || argc > 3)
2502		return KDB_ARGCOUNT;
2503
2504	diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2505	if (diag)
2506		return diag;
2507
2508	if (argc >= 2) {
2509		diag = kdbgetularg(argv[2], &bytesperword);
2510		if (diag)
2511			return diag;
2512	}
2513	if (!bytesperword)
2514		bytesperword = KDB_WORD_SIZE;
2515	else if (bytesperword > KDB_WORD_SIZE)
2516		return KDB_BADWIDTH;
2517	sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2518	if (argc >= 3) {
2519		diag = kdbgetularg(argv[3], &whichcpu);
2520		if (diag)
2521			return diag;
2522		if (whichcpu >= nr_cpu_ids || !cpu_online(whichcpu)) {
2523			kdb_printf("cpu %ld is not online\n", whichcpu);
2524			return KDB_BADCPUNUM;
2525		}
2526	}
2527
2528	/* Most architectures use __per_cpu_offset[cpu], some use
2529	 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2530	 */
2531#ifdef	__per_cpu_offset
2532#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2533#else
2534#ifdef	CONFIG_SMP
2535#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2536#else
2537#define KDB_PCU(cpu) 0
2538#endif
2539#endif
2540	for_each_online_cpu(cpu) {
2541		if (KDB_FLAG(CMD_INTERRUPT))
2542			return 0;
2543
2544		if (whichcpu != ~0UL && whichcpu != cpu)
2545			continue;
2546		addr = symaddr + KDB_PCU(cpu);
2547		diag = kdb_getword(&val, addr, bytesperword);
2548		if (diag) {
2549			kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2550				   "read, diag=%d\n", cpu, addr, diag);
2551			continue;
2552		}
2553		kdb_printf("%5d ", cpu);
2554		kdb_md_line(fmtstr, addr,
2555			bytesperword == KDB_WORD_SIZE,
2556			1, bytesperword, 1, 1, 0);
2557	}
2558#undef KDB_PCU
2559	return 0;
2560}
2561
2562/*
2563 * display help for the use of cmd | grep pattern
2564 */
2565static int kdb_grep_help(int argc, const char **argv)
2566{
2567	kdb_printf("Usage of  cmd args | grep pattern:\n");
2568	kdb_printf("  Any command's output may be filtered through an ");
2569	kdb_printf("emulated 'pipe'.\n");
2570	kdb_printf("  'grep' is just a key word.\n");
2571	kdb_printf("  The pattern may include a very limited set of "
2572		   "metacharacters:\n");
2573	kdb_printf("   pattern or ^pattern or pattern$ or ^pattern$\n");
2574	kdb_printf("  And if there are spaces in the pattern, you may "
2575		   "quote it:\n");
2576	kdb_printf("   \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2577		   " or \"^pat tern$\"\n");
2578	return 0;
2579}
2580
2581/**
2582 * kdb_register() - This function is used to register a kernel debugger
2583 *                  command.
2584 * @cmd: pointer to kdb command
2585 *
2586 * Note that it's the job of the caller to keep the memory for the cmd
2587 * allocated until unregister is called.
 
 
 
 
2588 */
2589int kdb_register(kdbtab_t *cmd)
 
 
 
 
 
 
2590{
 
2591	kdbtab_t *kp;
2592
2593	list_for_each_entry(kp, &kdb_cmds_head, list_node) {
2594		if (strcmp(kp->name, cmd->name) == 0) {
2595			kdb_printf("Duplicate kdb cmd: %s, func %p help %s\n",
2596				   cmd->name, cmd->func, cmd->help);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2597			return 1;
2598		}
 
 
 
 
 
 
 
 
 
 
2599	}
2600
2601	list_add_tail(&cmd->list_node, &kdb_cmds_head);
 
 
 
 
 
 
 
2602	return 0;
2603}
2604EXPORT_SYMBOL_GPL(kdb_register);
 
2605
2606/**
2607 * kdb_register_table() - This function is used to register a kdb command
2608 *                        table.
2609 * @kp: pointer to kdb command table
2610 * @len: length of kdb command table
 
 
 
 
 
 
2611 */
2612void kdb_register_table(kdbtab_t *kp, size_t len)
 
 
 
 
2613{
2614	while (len--) {
2615		list_add_tail(&kp->list_node, &kdb_cmds_head);
2616		kp++;
2617	}
2618}
 
2619
2620/**
2621 * kdb_unregister() - This function is used to unregister a kernel debugger
2622 *                    command. It is generally called when a module which
2623 *                    implements kdb command is unloaded.
2624 * @cmd: pointer to kdb command
 
 
 
2625 */
2626void kdb_unregister(kdbtab_t *cmd)
2627{
2628	list_del(&cmd->list_node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2629}
2630EXPORT_SYMBOL_GPL(kdb_unregister);
2631
2632static kdbtab_t maintab[] = {
2633	{	.name = "md",
2634		.func = kdb_md,
2635		.usage = "<vaddr>",
2636		.help = "Display Memory Contents, also mdWcN, e.g. md8c1",
2637		.minlen = 1,
2638		.flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2639	},
2640	{	.name = "mdr",
2641		.func = kdb_md,
2642		.usage = "<vaddr> <bytes>",
2643		.help = "Display Raw Memory",
2644		.flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2645	},
2646	{	.name = "mdp",
2647		.func = kdb_md,
2648		.usage = "<paddr> <bytes>",
2649		.help = "Display Physical Memory",
2650		.flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2651	},
2652	{	.name = "mds",
2653		.func = kdb_md,
2654		.usage = "<vaddr>",
2655		.help = "Display Memory Symbolically",
2656		.flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2657	},
2658	{	.name = "mm",
2659		.func = kdb_mm,
2660		.usage = "<vaddr> <contents>",
2661		.help = "Modify Memory Contents",
2662		.flags = KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS,
2663	},
2664	{	.name = "go",
2665		.func = kdb_go,
2666		.usage = "[<vaddr>]",
2667		.help = "Continue Execution",
2668		.minlen = 1,
2669		.flags = KDB_ENABLE_REG_WRITE |
2670			     KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
2671	},
2672	{	.name = "rd",
2673		.func = kdb_rd,
2674		.usage = "",
2675		.help = "Display Registers",
2676		.flags = KDB_ENABLE_REG_READ,
2677	},
2678	{	.name = "rm",
2679		.func = kdb_rm,
2680		.usage = "<reg> <contents>",
2681		.help = "Modify Registers",
2682		.flags = KDB_ENABLE_REG_WRITE,
2683	},
2684	{	.name = "ef",
2685		.func = kdb_ef,
2686		.usage = "<vaddr>",
2687		.help = "Display exception frame",
2688		.flags = KDB_ENABLE_MEM_READ,
2689	},
2690	{	.name = "bt",
2691		.func = kdb_bt,
2692		.usage = "[<vaddr>]",
2693		.help = "Stack traceback",
2694		.minlen = 1,
2695		.flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
2696	},
2697	{	.name = "btp",
2698		.func = kdb_bt,
2699		.usage = "<pid>",
2700		.help = "Display stack for process <pid>",
2701		.flags = KDB_ENABLE_INSPECT,
2702	},
2703	{	.name = "bta",
2704		.func = kdb_bt,
2705		.usage = "[<state_chars>|A]",
2706		.help = "Backtrace all processes whose state matches",
2707		.flags = KDB_ENABLE_INSPECT,
2708	},
2709	{	.name = "btc",
2710		.func = kdb_bt,
2711		.usage = "",
2712		.help = "Backtrace current process on each cpu",
2713		.flags = KDB_ENABLE_INSPECT,
2714	},
2715	{	.name = "btt",
2716		.func = kdb_bt,
2717		.usage = "<vaddr>",
2718		.help = "Backtrace process given its struct task address",
2719		.flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
2720	},
2721	{	.name = "env",
2722		.func = kdb_env,
2723		.usage = "",
2724		.help = "Show environment variables",
2725		.flags = KDB_ENABLE_ALWAYS_SAFE,
2726	},
2727	{	.name = "set",
2728		.func = kdb_set,
2729		.usage = "",
2730		.help = "Set environment variables",
2731		.flags = KDB_ENABLE_ALWAYS_SAFE,
2732	},
2733	{	.name = "help",
2734		.func = kdb_help,
2735		.usage = "",
2736		.help = "Display Help Message",
2737		.minlen = 1,
2738		.flags = KDB_ENABLE_ALWAYS_SAFE,
2739	},
2740	{	.name = "?",
2741		.func = kdb_help,
2742		.usage = "",
2743		.help = "Display Help Message",
2744		.flags = KDB_ENABLE_ALWAYS_SAFE,
2745	},
2746	{	.name = "cpu",
2747		.func = kdb_cpu,
2748		.usage = "<cpunum>",
2749		.help = "Switch to new cpu",
2750		.flags = KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
2751	},
2752	{	.name = "kgdb",
2753		.func = kdb_kgdb,
2754		.usage = "",
2755		.help = "Enter kgdb mode",
2756		.flags = 0,
2757	},
2758	{	.name = "ps",
2759		.func = kdb_ps,
2760		.usage = "[<state_chars>|A]",
2761		.help = "Display active task list",
2762		.flags = KDB_ENABLE_INSPECT,
2763	},
2764	{	.name = "pid",
2765		.func = kdb_pid,
2766		.usage = "<pidnum>",
2767		.help = "Switch to another task",
2768		.flags = KDB_ENABLE_INSPECT,
2769	},
2770	{	.name = "reboot",
2771		.func = kdb_reboot,
2772		.usage = "",
2773		.help = "Reboot the machine immediately",
2774		.flags = KDB_ENABLE_REBOOT,
2775	},
2776#if defined(CONFIG_MODULES)
2777	{	.name = "lsmod",
2778		.func = kdb_lsmod,
2779		.usage = "",
2780		.help = "List loaded kernel modules",
2781		.flags = KDB_ENABLE_INSPECT,
2782	},
2783#endif
2784#if defined(CONFIG_MAGIC_SYSRQ)
2785	{	.name = "sr",
2786		.func = kdb_sr,
2787		.usage = "<key>",
2788		.help = "Magic SysRq key",
2789		.flags = KDB_ENABLE_ALWAYS_SAFE,
2790	},
2791#endif
2792#if defined(CONFIG_PRINTK)
2793	{	.name = "dmesg",
2794		.func = kdb_dmesg,
2795		.usage = "[lines]",
2796		.help = "Display syslog buffer",
2797		.flags = KDB_ENABLE_ALWAYS_SAFE,
2798	},
2799#endif
2800	{	.name = "defcmd",
2801		.func = kdb_defcmd,
2802		.usage = "name \"usage\" \"help\"",
2803		.help = "Define a set of commands, down to endefcmd",
2804		/*
2805		 * Macros are always safe because when executed each
2806		 * internal command re-enters kdb_parse() and is safety
2807		 * checked individually.
2808		 */
2809		.flags = KDB_ENABLE_ALWAYS_SAFE,
2810	},
2811	{	.name = "kill",
2812		.func = kdb_kill,
2813		.usage = "<-signal> <pid>",
2814		.help = "Send a signal to a process",
2815		.flags = KDB_ENABLE_SIGNAL,
2816	},
2817	{	.name = "summary",
2818		.func = kdb_summary,
2819		.usage = "",
2820		.help = "Summarize the system",
2821		.minlen = 4,
2822		.flags = KDB_ENABLE_ALWAYS_SAFE,
2823	},
2824	{	.name = "per_cpu",
2825		.func = kdb_per_cpu,
2826		.usage = "<sym> [<bytes>] [<cpu>]",
2827		.help = "Display per_cpu variables",
2828		.minlen = 3,
2829		.flags = KDB_ENABLE_MEM_READ,
2830	},
2831	{	.name = "grephelp",
2832		.func = kdb_grep_help,
2833		.usage = "",
2834		.help = "Display help on | grep",
2835		.flags = KDB_ENABLE_ALWAYS_SAFE,
2836	},
2837};
2838
2839static kdbtab_t nmicmd = {
2840	.name = "disable_nmi",
2841	.func = kdb_disable_nmi,
2842	.usage = "",
2843	.help = "Disable NMI entry to KDB",
2844	.flags = KDB_ENABLE_ALWAYS_SAFE,
2845};
2846
2847/* Initialize the kdb command table. */
2848static void __init kdb_inittab(void)
2849{
2850	kdb_register_table(maintab, ARRAY_SIZE(maintab));
2851	if (arch_kgdb_ops.enable_nmi)
2852		kdb_register_table(&nmicmd, 1);
2853}
2854
2855/* Execute any commands defined in kdb_cmds.  */
2856static void __init kdb_cmd_init(void)
2857{
2858	int i, diag;
2859	for (i = 0; kdb_cmds[i]; ++i) {
2860		diag = kdb_parse(kdb_cmds[i]);
2861		if (diag)
2862			kdb_printf("kdb command %s failed, kdb diag %d\n",
2863				kdb_cmds[i], diag);
2864	}
2865	if (defcmd_in_progress) {
2866		kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2867		kdb_parse("endefcmd");
2868	}
2869}
2870
2871/* Initialize kdb_printf, breakpoint tables and kdb state */
2872void __init kdb_init(int lvl)
2873{
2874	static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2875	int i;
2876
2877	if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2878		return;
2879	for (i = kdb_init_lvl; i < lvl; i++) {
2880		switch (i) {
2881		case KDB_NOT_INITIALIZED:
2882			kdb_inittab();		/* Initialize Command Table */
2883			kdb_initbptab();	/* Initialize Breakpoints */
2884			break;
2885		case KDB_INIT_EARLY:
2886			kdb_cmd_init();		/* Build kdb_cmds tables */
2887			break;
2888		}
2889	}
2890	kdb_init_lvl = lvl;
2891}