Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_shared.h"
  21#include "xfs_format.h"
  22#include "xfs_log_format.h"
  23#include "xfs_trans_resv.h"
  24#include "xfs_sb.h"
  25#include "xfs_ag.h"
  26#include "xfs_mount.h"
  27#include "xfs_da_format.h"
  28#include "xfs_da_btree.h"
  29#include "xfs_inode.h"
  30#include "xfs_trans.h"
  31#include "xfs_inode_item.h"
  32#include "xfs_bmap.h"
  33#include "xfs_bmap_util.h"
  34#include "xfs_error.h"
  35#include "xfs_dir2.h"
  36#include "xfs_dir2_priv.h"
  37#include "xfs_ioctl.h"
  38#include "xfs_trace.h"
  39#include "xfs_log.h"
  40#include "xfs_dinode.h"
 
 
 
 
  41
  42#include <linux/aio.h>
  43#include <linux/dcache.h>
  44#include <linux/falloc.h>
  45#include <linux/pagevec.h>
 
 
 
  46
  47static const struct vm_operations_struct xfs_file_vm_ops;
  48
  49/*
  50 * Locking primitives for read and write IO paths to ensure we consistently use
  51 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
  52 */
  53static inline void
  54xfs_rw_ilock(
  55	struct xfs_inode	*ip,
  56	int			type)
  57{
  58	if (type & XFS_IOLOCK_EXCL)
  59		mutex_lock(&VFS_I(ip)->i_mutex);
  60	xfs_ilock(ip, type);
  61}
  62
  63static inline void
  64xfs_rw_iunlock(
  65	struct xfs_inode	*ip,
  66	int			type)
  67{
  68	xfs_iunlock(ip, type);
  69	if (type & XFS_IOLOCK_EXCL)
  70		mutex_unlock(&VFS_I(ip)->i_mutex);
  71}
  72
  73static inline void
  74xfs_rw_ilock_demote(
  75	struct xfs_inode	*ip,
  76	int			type)
 
  77{
  78	xfs_ilock_demote(ip, type);
  79	if (type & XFS_IOLOCK_EXCL)
  80		mutex_unlock(&VFS_I(ip)->i_mutex);
  81}
  82
  83/*
  84 *	xfs_iozero
  85 *
  86 *	xfs_iozero clears the specified range of buffer supplied,
  87 *	and marks all the affected blocks as valid and modified.  If
  88 *	an affected block is not allocated, it will be allocated.  If
  89 *	an affected block is not completely overwritten, and is not
  90 *	valid before the operation, it will be read from disk before
  91 *	being partially zeroed.
  92 */
  93int
  94xfs_iozero(
  95	struct xfs_inode	*ip,	/* inode			*/
  96	loff_t			pos,	/* offset in file		*/
  97	size_t			count)	/* size of data to zero		*/
  98{
  99	struct page		*page;
 100	struct address_space	*mapping;
 101	int			status;
 102
 103	mapping = VFS_I(ip)->i_mapping;
 104	do {
 105		unsigned offset, bytes;
 106		void *fsdata;
 107
 108		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
 109		bytes = PAGE_CACHE_SIZE - offset;
 110		if (bytes > count)
 111			bytes = count;
 112
 113		status = pagecache_write_begin(NULL, mapping, pos, bytes,
 114					AOP_FLAG_UNINTERRUPTIBLE,
 115					&page, &fsdata);
 116		if (status)
 117			break;
 118
 119		zero_user(page, offset, bytes);
 120
 121		status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
 122					page, fsdata);
 123		WARN_ON(status <= 0); /* can't return less than zero! */
 124		pos += bytes;
 125		count -= bytes;
 126		status = 0;
 127	} while (count);
 128
 129	return (-status);
 130}
 131
 132/*
 133 * Fsync operations on directories are much simpler than on regular files,
 134 * as there is no file data to flush, and thus also no need for explicit
 135 * cache flush operations, and there are no non-transaction metadata updates
 136 * on directories either.
 137 */
 138STATIC int
 139xfs_dir_fsync(
 140	struct file		*file,
 141	loff_t			start,
 142	loff_t			end,
 143	int			datasync)
 144{
 145	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
 146	struct xfs_mount	*mp = ip->i_mount;
 147	xfs_lsn_t		lsn = 0;
 148
 149	trace_xfs_dir_fsync(ip);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 150
 151	xfs_ilock(ip, XFS_ILOCK_SHARED);
 152	if (xfs_ipincount(ip))
 153		lsn = ip->i_itemp->ili_last_lsn;
 
 
 
 
 
 
 
 154	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 155
 156	if (!lsn)
 157		return 0;
 158	return -_xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
 159}
 160
 161STATIC int
 162xfs_file_fsync(
 163	struct file		*file,
 164	loff_t			start,
 165	loff_t			end,
 166	int			datasync)
 167{
 168	struct inode		*inode = file->f_mapping->host;
 169	struct xfs_inode	*ip = XFS_I(inode);
 170	struct xfs_mount	*mp = ip->i_mount;
 171	int			error = 0;
 172	int			log_flushed = 0;
 173	xfs_lsn_t		lsn = 0;
 174
 175	trace_xfs_file_fsync(ip);
 176
 177	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
 178	if (error)
 179		return error;
 180
 181	if (XFS_FORCED_SHUTDOWN(mp))
 182		return -XFS_ERROR(EIO);
 183
 184	xfs_iflags_clear(ip, XFS_ITRUNCATED);
 185
 186	if (mp->m_flags & XFS_MOUNT_BARRIER) {
 187		/*
 188		 * If we have an RT and/or log subvolume we need to make sure
 189		 * to flush the write cache the device used for file data
 190		 * first.  This is to ensure newly written file data make
 191		 * it to disk before logging the new inode size in case of
 192		 * an extending write.
 193		 */
 194		if (XFS_IS_REALTIME_INODE(ip))
 195			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
 196		else if (mp->m_logdev_targp != mp->m_ddev_targp)
 197			xfs_blkdev_issue_flush(mp->m_ddev_targp);
 198	}
 199
 200	/*
 201	 * All metadata updates are logged, which means that we just have
 202	 * to flush the log up to the latest LSN that touched the inode.
 
 
 203	 */
 204	xfs_ilock(ip, XFS_ILOCK_SHARED);
 205	if (xfs_ipincount(ip)) {
 206		if (!datasync ||
 207		    (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
 208			lsn = ip->i_itemp->ili_last_lsn;
 209	}
 210	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 211
 212	if (lsn)
 213		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
 214
 215	/*
 216	 * If we only have a single device, and the log force about was
 217	 * a no-op we might have to flush the data device cache here.
 218	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
 219	 * an already allocated file and thus do not have any metadata to
 220	 * commit.
 221	 */
 222	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
 223	    mp->m_logdev_targp == mp->m_ddev_targp &&
 224	    !XFS_IS_REALTIME_INODE(ip) &&
 225	    !log_flushed)
 226		xfs_blkdev_issue_flush(mp->m_ddev_targp);
 
 227
 228	return -error;
 229}
 230
 231STATIC ssize_t
 232xfs_file_aio_read(
 233	struct kiocb		*iocb,
 234	const struct iovec	*iovp,
 235	unsigned long		nr_segs,
 236	loff_t			pos)
 237{
 238	struct file		*file = iocb->ki_filp;
 239	struct inode		*inode = file->f_mapping->host;
 240	struct xfs_inode	*ip = XFS_I(inode);
 241	struct xfs_mount	*mp = ip->i_mount;
 242	size_t			size = 0;
 243	ssize_t			ret = 0;
 244	int			ioflags = 0;
 245	xfs_fsize_t		n;
 246
 247	XFS_STATS_INC(xs_read_calls);
 
 
 
 
 
 248
 249	BUG_ON(iocb->ki_pos != pos);
 
 250
 251	if (unlikely(file->f_flags & O_DIRECT))
 252		ioflags |= IO_ISDIRECT;
 253	if (file->f_mode & FMODE_NOCMTIME)
 254		ioflags |= IO_INVIS;
 
 
 
 255
 256	ret = generic_segment_checks(iovp, &nr_segs, &size, VERIFY_WRITE);
 257	if (ret < 0)
 258		return ret;
 259
 260	if (unlikely(ioflags & IO_ISDIRECT)) {
 261		xfs_buftarg_t	*target =
 262			XFS_IS_REALTIME_INODE(ip) ?
 263				mp->m_rtdev_targp : mp->m_ddev_targp;
 264		/* DIO must be aligned to device logical sector size */
 265		if ((pos | size) & target->bt_logical_sectormask) {
 266			if (pos == i_size_read(inode))
 267				return 0;
 268			return -XFS_ERROR(EINVAL);
 269		}
 270	}
 271
 272	n = mp->m_super->s_maxbytes - pos;
 273	if (n <= 0 || size == 0)
 274		return 0;
 275
 276	if (n < size)
 277		size = n;
 
 
 
 
 
 278
 279	if (XFS_FORCED_SHUTDOWN(mp))
 280		return -EIO;
 281
 282	/*
 283	 * Locking is a bit tricky here. If we take an exclusive lock
 284	 * for direct IO, we effectively serialise all new concurrent
 285	 * read IO to this file and block it behind IO that is currently in
 286	 * progress because IO in progress holds the IO lock shared. We only
 287	 * need to hold the lock exclusive to blow away the page cache, so
 288	 * only take lock exclusively if the page cache needs invalidation.
 289	 * This allows the normal direct IO case of no page cache pages to
 290	 * proceeed concurrently without serialisation.
 291	 */
 292	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
 293	if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) {
 294		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
 295		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
 296
 297		if (inode->i_mapping->nrpages) {
 298			ret = filemap_write_and_wait_range(
 299							VFS_I(ip)->i_mapping,
 300							pos, -1);
 301			if (ret) {
 302				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
 303				return ret;
 304			}
 305			truncate_pagecache_range(VFS_I(ip), pos, -1);
 306		}
 307		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
 308	}
 309
 310	trace_xfs_file_read(ip, size, pos, ioflags);
 311
 312	ret = generic_file_aio_read(iocb, iovp, nr_segs, pos);
 313	if (ret > 0)
 314		XFS_STATS_ADD(xs_read_bytes, ret);
 
 
 315
 316	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
 317	return ret;
 318}
 319
 320STATIC ssize_t
 321xfs_file_splice_read(
 322	struct file		*infilp,
 323	loff_t			*ppos,
 324	struct pipe_inode_info	*pipe,
 325	size_t			count,
 326	unsigned int		flags)
 327{
 328	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
 329	int			ioflags = 0;
 330	ssize_t			ret;
 331
 332	XFS_STATS_INC(xs_read_calls);
 333
 334	if (infilp->f_mode & FMODE_NOCMTIME)
 335		ioflags |= IO_INVIS;
 336
 337	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 338		return -EIO;
 
 
 
 339
 340	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
 
 
 341
 342	trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
 
 
 
 
 
 
 343
 344	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
 345	if (ret > 0)
 346		XFS_STATS_ADD(xs_read_bytes, ret);
 
 
 
 
 347
 348	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
 349	return ret;
 350}
 351
 352/*
 353 * xfs_file_splice_write() does not use xfs_rw_ilock() because
 354 * generic_file_splice_write() takes the i_mutex itself. This, in theory,
 355 * couuld cause lock inversions between the aio_write path and the splice path
 356 * if someone is doing concurrent splice(2) based writes and write(2) based
 357 * writes to the same inode. The only real way to fix this is to re-implement
 358 * the generic code here with correct locking orders.
 359 */
 360STATIC ssize_t
 361xfs_file_splice_write(
 362	struct pipe_inode_info	*pipe,
 363	struct file		*outfilp,
 364	loff_t			*ppos,
 365	size_t			count,
 366	unsigned int		flags)
 367{
 368	struct inode		*inode = outfilp->f_mapping->host;
 369	struct xfs_inode	*ip = XFS_I(inode);
 370	int			ioflags = 0;
 371	ssize_t			ret;
 372
 373	XFS_STATS_INC(xs_write_calls);
 374
 375	if (outfilp->f_mode & FMODE_NOCMTIME)
 376		ioflags |= IO_INVIS;
 377
 378	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 379		return -EIO;
 380
 381	xfs_ilock(ip, XFS_IOLOCK_EXCL);
 382
 383	trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
 
 
 
 384
 385	ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
 386	if (ret > 0)
 387		XFS_STATS_ADD(xs_write_bytes, ret);
 388
 389	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
 390	return ret;
 391}
 392
 393/*
 394 * This routine is called to handle zeroing any space in the last block of the
 395 * file that is beyond the EOF.  We do this since the size is being increased
 396 * without writing anything to that block and we don't want to read the
 397 * garbage on the disk.
 398 */
 399STATIC int				/* error (positive) */
 400xfs_zero_last_block(
 401	struct xfs_inode	*ip,
 402	xfs_fsize_t		offset,
 403	xfs_fsize_t		isize)
 404{
 
 
 405	struct xfs_mount	*mp = ip->i_mount;
 406	xfs_fileoff_t		last_fsb = XFS_B_TO_FSBT(mp, isize);
 407	int			zero_offset = XFS_B_FSB_OFFSET(mp, isize);
 408	int			zero_len;
 409	int			nimaps = 1;
 410	int			error = 0;
 411	struct xfs_bmbt_irec	imap;
 412
 413	xfs_ilock(ip, XFS_ILOCK_EXCL);
 414	error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
 415	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 416	if (error)
 417		return error;
 418
 419	ASSERT(nimaps > 0);
 
 420
 421	/*
 422	 * If the block underlying isize is just a hole, then there
 423	 * is nothing to zero.
 424	 */
 425	if (imap.br_startblock == HOLESTARTBLOCK)
 426		return 0;
 427
 428	zero_len = mp->m_sb.sb_blocksize - zero_offset;
 429	if (isize + zero_len > offset)
 430		zero_len = offset - isize;
 431	return xfs_iozero(ip, isize, zero_len);
 
 
 432}
 433
 434/*
 435 * Zero any on disk space between the current EOF and the new, larger EOF.
 436 *
 437 * This handles the normal case of zeroing the remainder of the last block in
 438 * the file and the unusual case of zeroing blocks out beyond the size of the
 439 * file.  This second case only happens with fixed size extents and when the
 440 * system crashes before the inode size was updated but after blocks were
 441 * allocated.
 442 *
 443 * Expects the iolock to be held exclusive, and will take the ilock internally.
 
 
 444 */
 445int					/* error (positive) */
 446xfs_zero_eof(
 447	struct xfs_inode	*ip,
 448	xfs_off_t		offset,		/* starting I/O offset */
 449	xfs_fsize_t		isize)		/* current inode size */
 
 
 450{
 451	struct xfs_mount	*mp = ip->i_mount;
 452	xfs_fileoff_t		start_zero_fsb;
 453	xfs_fileoff_t		end_zero_fsb;
 454	xfs_fileoff_t		zero_count_fsb;
 455	xfs_fileoff_t		last_fsb;
 456	xfs_fileoff_t		zero_off;
 457	xfs_fsize_t		zero_len;
 458	int			nimaps;
 459	int			error = 0;
 460	struct xfs_bmbt_irec	imap;
 461
 462	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
 463	ASSERT(offset > isize);
 464
 465	/*
 466	 * First handle zeroing the block on which isize resides.
 467	 *
 468	 * We only zero a part of that block so it is handled specially.
 
 
 
 
 469	 */
 470	if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
 471		error = xfs_zero_last_block(ip, offset, isize);
 472		if (error)
 473			return error;
 474	}
 475
 476	/*
 477	 * Calculate the range between the new size and the old where blocks
 478	 * needing to be zeroed may exist.
 479	 *
 480	 * To get the block where the last byte in the file currently resides,
 481	 * we need to subtract one from the size and truncate back to a block
 482	 * boundary.  We subtract 1 in case the size is exactly on a block
 483	 * boundary.
 484	 */
 485	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
 486	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
 487	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
 488	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
 489	if (last_fsb == end_zero_fsb) {
 490		/*
 491		 * The size was only incremented on its last block.
 492		 * We took care of that above, so just return.
 493		 */
 494		return 0;
 495	}
 
 496
 497	ASSERT(start_zero_fsb <= end_zero_fsb);
 498	while (start_zero_fsb <= end_zero_fsb) {
 499		nimaps = 1;
 500		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
 501
 502		xfs_ilock(ip, XFS_ILOCK_EXCL);
 503		error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
 504					  &imap, &nimaps, 0);
 505		xfs_iunlock(ip, XFS_ILOCK_EXCL);
 506		if (error)
 507			return error;
 508
 509		ASSERT(nimaps > 0);
 510
 511		if (imap.br_state == XFS_EXT_UNWRITTEN ||
 512		    imap.br_startblock == HOLESTARTBLOCK) {
 513			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
 514			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
 515			continue;
 
 
 
 
 
 
 516		}
 517
 518		/*
 519		 * There are blocks we need to zero.
 
 
 
 
 520		 */
 521		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
 522		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
 
 
 523
 524		if ((zero_off + zero_len) > offset)
 525			zero_len = offset - zero_off;
 526
 527		error = xfs_iozero(ip, zero_off, zero_len);
 528		if (error)
 529			return error;
 530
 531		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
 532		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
 533	}
 534
 535	return 0;
 536}
 537
 538/*
 539 * Common pre-write limit and setup checks.
 540 *
 541 * Called with the iolocked held either shared and exclusive according to
 542 * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
 543 * if called for a direct write beyond i_size.
 544 */
 545STATIC ssize_t
 546xfs_file_aio_write_checks(
 547	struct file		*file,
 548	loff_t			*pos,
 549	size_t			*count,
 550	int			*iolock)
 551{
 552	struct inode		*inode = file->f_mapping->host;
 553	struct xfs_inode	*ip = XFS_I(inode);
 554	int			error = 0;
 
 555
 556restart:
 557	error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
 
 
 
 
 
 
 
 
 
 
 
 558	if (error)
 559		return error;
 560
 561	/*
 562	 * If the offset is beyond the size of the file, we need to zero any
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 563	 * blocks that fall between the existing EOF and the start of this
 564	 * write.  If zeroing is needed and we are currently holding the
 565	 * iolock shared, we need to update it to exclusive which implies
 566	 * having to redo all checks before.
 
 
 
 567	 */
 568	if (*pos > i_size_read(inode)) {
 569		if (*iolock == XFS_IOLOCK_SHARED) {
 570			xfs_rw_iunlock(ip, *iolock);
 571			*iolock = XFS_IOLOCK_EXCL;
 572			xfs_rw_ilock(ip, *iolock);
 573			goto restart;
 574		}
 575		error = -xfs_zero_eof(ip, *pos, i_size_read(inode));
 576		if (error)
 577			return error;
 578	}
 579
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 580	/*
 581	 * Updating the timestamps will grab the ilock again from
 582	 * xfs_fs_dirty_inode, so we have to call it after dropping the
 583	 * lock above.  Eventually we should look into a way to avoid
 584	 * the pointless lock roundtrip.
 585	 */
 586	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
 587		error = file_update_time(file);
 
 
 588		if (error)
 589			return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 590	}
 591
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 592	/*
 593	 * If we're writing the file then make sure to clear the setuid and
 594	 * setgid bits if the process is not being run by root.  This keeps
 595	 * people from modifying setuid and setgid binaries.
 596	 */
 597	return file_remove_suid(file);
 
 
 
 
 
 
 
 
 
 
 598}
 599
 600/*
 601 * xfs_file_dio_aio_write - handle direct IO writes
 602 *
 603 * Lock the inode appropriately to prepare for and issue a direct IO write.
 604 * By separating it from the buffered write path we remove all the tricky to
 605 * follow locking changes and looping.
 606 *
 607 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 608 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 609 * pages are flushed out.
 610 *
 611 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 612 * allowing them to be done in parallel with reads and other direct IO writes.
 613 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 614 * needs to do sub-block zeroing and that requires serialisation against other
 615 * direct IOs to the same block. In this case we need to serialise the
 616 * submission of the unaligned IOs so that we don't get racing block zeroing in
 617 * the dio layer.  To avoid the problem with aio, we also need to wait for
 618 * outstanding IOs to complete so that unwritten extent conversion is completed
 619 * before we try to map the overlapping block. This is currently implemented by
 620 * hitting it with a big hammer (i.e. inode_dio_wait()).
 621 *
 622 * Returns with locks held indicated by @iolock and errors indicated by
 623 * negative return values.
 
 
 624 */
 625STATIC ssize_t
 626xfs_file_dio_aio_write(
 
 627	struct kiocb		*iocb,
 628	const struct iovec	*iovp,
 629	unsigned long		nr_segs,
 630	loff_t			pos,
 631	size_t			ocount)
 632{
 633	struct file		*file = iocb->ki_filp;
 634	struct address_space	*mapping = file->f_mapping;
 635	struct inode		*inode = mapping->host;
 636	struct xfs_inode	*ip = XFS_I(inode);
 637	struct xfs_mount	*mp = ip->i_mount;
 638	ssize_t			ret = 0;
 639	size_t			count = ocount;
 640	int			unaligned_io = 0;
 641	int			iolock;
 642	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
 643					mp->m_rtdev_targp : mp->m_ddev_targp;
 644
 645	/* DIO must be aligned to device logical sector size */
 646	if ((pos | count) & target->bt_logical_sectormask)
 647		return -XFS_ERROR(EINVAL);
 648
 649	/* "unaligned" here means not aligned to a filesystem block */
 650	if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
 651		unaligned_io = 1;
 652
 653	/*
 654	 * We don't need to take an exclusive lock unless there page cache needs
 655	 * to be invalidated or unaligned IO is being executed. We don't need to
 656	 * consider the EOF extension case here because
 657	 * xfs_file_aio_write_checks() will relock the inode as necessary for
 658	 * EOF zeroing cases and fill out the new inode size as appropriate.
 659	 */
 660	if (unaligned_io || mapping->nrpages)
 661		iolock = XFS_IOLOCK_EXCL;
 662	else
 663		iolock = XFS_IOLOCK_SHARED;
 664	xfs_rw_ilock(ip, iolock);
 665
 666	/*
 667	 * Recheck if there are cached pages that need invalidate after we got
 668	 * the iolock to protect against other threads adding new pages while
 669	 * we were waiting for the iolock.
 670	 */
 671	if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
 672		xfs_rw_iunlock(ip, iolock);
 
 
 673		iolock = XFS_IOLOCK_EXCL;
 674		xfs_rw_ilock(ip, iolock);
 675	}
 676
 677	ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
 678	if (ret)
 679		goto out;
 680
 681	if (mapping->nrpages) {
 682		ret = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
 683						    pos, -1);
 684		if (ret)
 685			goto out;
 686		truncate_pagecache_range(VFS_I(ip), pos, -1);
 
 
 687	}
 688
 
 
 
 
 689	/*
 690	 * If we are doing unaligned IO, wait for all other IO to drain,
 691	 * otherwise demote the lock if we had to flush cached pages
 
 
 692	 */
 693	if (unaligned_io)
 694		inode_dio_wait(inode);
 695	else if (iolock == XFS_IOLOCK_EXCL) {
 696		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
 697		iolock = XFS_IOLOCK_SHARED;
 
 
 
 
 
 
 
 
 
 
 
 698	}
 699
 700	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
 701	ret = generic_file_direct_write(iocb, iovp,
 702			&nr_segs, pos, count, ocount);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 703
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 704out:
 705	xfs_rw_iunlock(ip, iolock);
 
 
 
 706
 707	/* No fallback to buffered IO on errors for XFS. */
 708	ASSERT(ret < 0 || ret == count);
 
 
 
 
 709	return ret;
 710}
 711
 712STATIC ssize_t
 713xfs_file_buffered_aio_write(
 714	struct kiocb		*iocb,
 715	const struct iovec	*iovp,
 716	unsigned long		nr_segs,
 717	loff_t			pos,
 718	size_t			count)
 719{
 720	struct file		*file = iocb->ki_filp;
 721	struct address_space	*mapping = file->f_mapping;
 722	struct inode		*inode = mapping->host;
 723	struct xfs_inode	*ip = XFS_I(inode);
 724	ssize_t			ret;
 725	int			enospc = 0;
 726	int			iolock = XFS_IOLOCK_EXCL;
 727	struct iov_iter		from;
 728
 729	xfs_rw_ilock(ip, iolock);
 
 
 
 
 730
 731	ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
 732	if (ret)
 733		goto out;
 734
 735	iov_iter_init(&from, iovp, nr_segs, count, 0);
 736	/* We can write back this queue in page reclaim */
 737	current->backing_dev_info = mapping->backing_dev_info;
 738
 739write_retry:
 740	trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
 741	ret = generic_perform_write(file, &from, pos);
 742	if (likely(ret >= 0))
 743		iocb->ki_pos = pos + ret;
 744	/*
 745	 * If we just got an ENOSPC, try to write back all dirty inodes to
 746	 * convert delalloc space to free up some of the excess reserved
 747	 * metadata space.
 748	 */
 749	if (ret == -ENOSPC && !enospc) {
 750		enospc = 1;
 
 
 
 
 
 
 
 751		xfs_flush_inodes(ip->i_mount);
 
 
 
 
 752		goto write_retry;
 753	}
 754
 755	current->backing_dev_info = NULL;
 756out:
 757	xfs_rw_iunlock(ip, iolock);
 
 
 
 
 
 
 
 758	return ret;
 759}
 760
 761STATIC ssize_t
 762xfs_file_aio_write(
 763	struct kiocb		*iocb,
 764	const struct iovec	*iovp,
 765	unsigned long		nr_segs,
 766	loff_t			pos)
 767{
 768	struct file		*file = iocb->ki_filp;
 769	struct address_space	*mapping = file->f_mapping;
 770	struct inode		*inode = mapping->host;
 771	struct xfs_inode	*ip = XFS_I(inode);
 772	ssize_t			ret;
 773	size_t			ocount = 0;
 774
 775	XFS_STATS_INC(xs_write_calls);
 776
 777	BUG_ON(iocb->ki_pos != pos);
 778
 779	ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
 780	if (ret)
 781		return ret;
 782
 783	if (ocount == 0)
 784		return 0;
 785
 786	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
 787		ret = -EIO;
 788		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 789	}
 790
 791	if (unlikely(file->f_flags & O_DIRECT))
 792		ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos, ocount);
 793	else
 794		ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos,
 795						  ocount);
 
 
 
 
 
 
 796
 797	if (ret > 0) {
 798		ssize_t err;
 799
 800		XFS_STATS_ADD(xs_write_bytes, ret);
 
 
 
 801
 802		/* Handle various SYNC-type writes */
 803		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
 804		if (err < 0)
 805			ret = err;
 806	}
 
 807
 808out:
 809	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 810}
 811
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 812STATIC long
 813xfs_file_fallocate(
 814	struct file		*file,
 815	int			mode,
 816	loff_t			offset,
 817	loff_t			len)
 818{
 819	struct inode		*inode = file_inode(file);
 820	struct xfs_inode	*ip = XFS_I(inode);
 821	struct xfs_trans	*tp;
 822	long			error;
 823	loff_t			new_size = 0;
 824
 825	if (!S_ISREG(inode->i_mode))
 826		return -EINVAL;
 827	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
 828		     FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE))
 829		return -EOPNOTSUPP;
 830
 831	xfs_ilock(ip, XFS_IOLOCK_EXCL);
 832	if (mode & FALLOC_FL_PUNCH_HOLE) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 833		error = xfs_free_file_space(ip, offset, len);
 834		if (error)
 835			goto out_unlock;
 836	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
 837		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
 838
 839		if (offset & blksize_mask || len & blksize_mask) {
 840			error = EINVAL;
 841			goto out_unlock;
 842		}
 
 
 
 
 
 
 
 
 
 
 
 843
 844		/*
 845		 * There is no need to overlap collapse range with EOF,
 846		 * in which case it is effectively a truncate operation
 847		 */
 848		if (offset + len >= i_size_read(inode)) {
 849			error = EINVAL;
 850			goto out_unlock;
 851		}
 852
 853		new_size = i_size_read(inode) - len;
 
 
 
 854
 855		error = xfs_collapse_file_space(ip, offset, len);
 856		if (error)
 857			goto out_unlock;
 858	} else {
 859		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
 860		    offset + len > i_size_read(inode)) {
 861			new_size = offset + len;
 862			error = -inode_newsize_ok(inode, new_size);
 863			if (error)
 864				goto out_unlock;
 865		}
 866
 867		if (mode & FALLOC_FL_ZERO_RANGE)
 868			error = xfs_zero_file_space(ip, offset, len);
 869		else
 870			error = xfs_alloc_file_space(ip, offset, len,
 871						     XFS_BMAPI_PREALLOC);
 872		if (error)
 873			goto out_unlock;
 874	}
 
 
 
 
 
 875
 876	tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID);
 877	error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0);
 878	if (error) {
 879		xfs_trans_cancel(tp, 0);
 880		goto out_unlock;
 881	}
 
 
 
 
 
 
 
 
 
 
 
 882
 883	xfs_ilock(ip, XFS_ILOCK_EXCL);
 884	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 885	ip->i_d.di_mode &= ~S_ISUID;
 886	if (ip->i_d.di_mode & S_IXGRP)
 887		ip->i_d.di_mode &= ~S_ISGID;
 888
 889	if (!(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE)))
 890		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
 891
 892	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
 893	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 894
 895	if (file->f_flags & O_DSYNC)
 896		xfs_trans_set_sync(tp);
 897	error = xfs_trans_commit(tp, 0);
 898	if (error)
 
 
 
 
 899		goto out_unlock;
 900
 901	/* Change file size if needed */
 902	if (new_size) {
 903		struct iattr iattr;
 904
 905		iattr.ia_valid = ATTR_SIZE;
 906		iattr.ia_size = new_size;
 907		error = xfs_setattr_size(ip, &iattr);
 908	}
 
 
 
 
 
 
 
 
 909
 
 
 910out_unlock:
 911	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
 912	return -error;
 
 
 
 
 
 
 
 
 
 
 913}
 914
 915
 916STATIC int
 917xfs_file_open(
 918	struct inode	*inode,
 919	struct file	*file)
 920{
 921	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
 922		return -EFBIG;
 923	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
 924		return -EIO;
 925	return 0;
 
 
 
 926}
 927
 928STATIC int
 929xfs_dir_open(
 930	struct inode	*inode,
 931	struct file	*file)
 932{
 933	struct xfs_inode *ip = XFS_I(inode);
 934	int		mode;
 935	int		error;
 936
 937	error = xfs_file_open(inode, file);
 
 
 938	if (error)
 939		return error;
 940
 941	/*
 942	 * If there are any blocks, read-ahead block 0 as we're almost
 943	 * certain to have the next operation be a read there.
 944	 */
 945	mode = xfs_ilock_data_map_shared(ip);
 946	if (ip->i_d.di_nextents > 0)
 947		xfs_dir3_data_readahead(NULL, ip, 0, -1);
 948	xfs_iunlock(ip, mode);
 949	return 0;
 950}
 951
 
 
 
 
 952STATIC int
 953xfs_file_release(
 954	struct inode	*inode,
 955	struct file	*filp)
 956{
 957	return -xfs_release(XFS_I(inode));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 958}
 959
 960STATIC int
 961xfs_file_readdir(
 962	struct file	*file,
 963	struct dir_context *ctx)
 964{
 965	struct inode	*inode = file_inode(file);
 966	xfs_inode_t	*ip = XFS_I(inode);
 967	int		error;
 968	size_t		bufsize;
 969
 970	/*
 971	 * The Linux API doesn't pass down the total size of the buffer
 972	 * we read into down to the filesystem.  With the filldir concept
 973	 * it's not needed for correct information, but the XFS dir2 leaf
 974	 * code wants an estimate of the buffer size to calculate it's
 975	 * readahead window and size the buffers used for mapping to
 976	 * physical blocks.
 977	 *
 978	 * Try to give it an estimate that's good enough, maybe at some
 979	 * point we can change the ->readdir prototype to include the
 980	 * buffer size.  For now we use the current glibc buffer size.
 981	 */
 982	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
 983
 984	error = xfs_readdir(ip, ctx, bufsize);
 985	if (error)
 986		return -error;
 987	return 0;
 988}
 989
 990STATIC int
 991xfs_file_mmap(
 992	struct file	*filp,
 993	struct vm_area_struct *vma)
 994{
 995	vma->vm_ops = &xfs_file_vm_ops;
 996
 997	file_accessed(filp);
 998	return 0;
 999}
1000
1001/*
1002 * mmap()d file has taken write protection fault and is being made
1003 * writable. We can set the page state up correctly for a writable
1004 * page, which means we can do correct delalloc accounting (ENOSPC
1005 * checking!) and unwritten extent mapping.
1006 */
1007STATIC int
1008xfs_vm_page_mkwrite(
1009	struct vm_area_struct	*vma,
1010	struct vm_fault		*vmf)
1011{
1012	return block_page_mkwrite(vma, vmf, xfs_get_blocks);
1013}
1014
1015/*
1016 * This type is designed to indicate the type of offset we would like
1017 * to search from page cache for either xfs_seek_data() or xfs_seek_hole().
1018 */
1019enum {
1020	HOLE_OFF = 0,
1021	DATA_OFF,
1022};
1023
1024/*
1025 * Lookup the desired type of offset from the given page.
1026 *
1027 * On success, return true and the offset argument will point to the
1028 * start of the region that was found.  Otherwise this function will
1029 * return false and keep the offset argument unchanged.
1030 */
1031STATIC bool
1032xfs_lookup_buffer_offset(
1033	struct page		*page,
1034	loff_t			*offset,
1035	unsigned int		type)
1036{
1037	loff_t			lastoff = page_offset(page);
1038	bool			found = false;
1039	struct buffer_head	*bh, *head;
1040
1041	bh = head = page_buffers(page);
1042	do {
1043		/*
1044		 * Unwritten extents that have data in the page
1045		 * cache covering them can be identified by the
1046		 * BH_Unwritten state flag.  Pages with multiple
1047		 * buffers might have a mix of holes, data and
1048		 * unwritten extents - any buffer with valid
1049		 * data in it should have BH_Uptodate flag set
1050		 * on it.
1051		 */
1052		if (buffer_unwritten(bh) ||
1053		    buffer_uptodate(bh)) {
1054			if (type == DATA_OFF)
1055				found = true;
1056		} else {
1057			if (type == HOLE_OFF)
1058				found = true;
1059		}
 
 
 
 
 
 
 
1060
1061		if (found) {
1062			*offset = lastoff;
1063			break;
1064		}
1065		lastoff += bh->b_size;
1066	} while ((bh = bh->b_this_page) != head);
 
 
 
 
 
 
 
1067
1068	return found;
1069}
1070
1071/*
1072 * This routine is called to find out and return a data or hole offset
1073 * from the page cache for unwritten extents according to the desired
1074 * type for xfs_seek_data() or xfs_seek_hole().
1075 *
1076 * The argument offset is used to tell where we start to search from the
1077 * page cache.  Map is used to figure out the end points of the range to
1078 * lookup pages.
1079 *
1080 * Return true if the desired type of offset was found, and the argument
1081 * offset is filled with that address.  Otherwise, return false and keep
1082 * offset unchanged.
1083 */
1084STATIC bool
1085xfs_find_get_desired_pgoff(
1086	struct inode		*inode,
1087	struct xfs_bmbt_irec	*map,
1088	unsigned int		type,
1089	loff_t			*offset)
1090{
1091	struct xfs_inode	*ip = XFS_I(inode);
1092	struct xfs_mount	*mp = ip->i_mount;
1093	struct pagevec		pvec;
1094	pgoff_t			index;
1095	pgoff_t			end;
1096	loff_t			endoff;
1097	loff_t			startoff = *offset;
1098	loff_t			lastoff = startoff;
1099	bool			found = false;
1100
1101	pagevec_init(&pvec, 0);
1102
1103	index = startoff >> PAGE_CACHE_SHIFT;
1104	endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1105	end = endoff >> PAGE_CACHE_SHIFT;
1106	do {
1107		int		want;
1108		unsigned	nr_pages;
1109		unsigned int	i;
1110
1111		want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1112		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1113					  want);
1114		/*
1115		 * No page mapped into given range.  If we are searching holes
1116		 * and if this is the first time we got into the loop, it means
1117		 * that the given offset is landed in a hole, return it.
1118		 *
1119		 * If we have already stepped through some block buffers to find
1120		 * holes but they all contains data.  In this case, the last
1121		 * offset is already updated and pointed to the end of the last
1122		 * mapped page, if it does not reach the endpoint to search,
1123		 * that means there should be a hole between them.
1124		 */
1125		if (nr_pages == 0) {
1126			/* Data search found nothing */
1127			if (type == DATA_OFF)
1128				break;
1129
1130			ASSERT(type == HOLE_OFF);
1131			if (lastoff == startoff || lastoff < endoff) {
1132				found = true;
1133				*offset = lastoff;
1134			}
1135			break;
1136		}
1137
1138		/*
1139		 * At lease we found one page.  If this is the first time we
1140		 * step into the loop, and if the first page index offset is
1141		 * greater than the given search offset, a hole was found.
1142		 */
1143		if (type == HOLE_OFF && lastoff == startoff &&
1144		    lastoff < page_offset(pvec.pages[0])) {
1145			found = true;
1146			break;
1147		}
1148
1149		for (i = 0; i < nr_pages; i++) {
1150			struct page	*page = pvec.pages[i];
1151			loff_t		b_offset;
1152
1153			/*
1154			 * At this point, the page may be truncated or
1155			 * invalidated (changing page->mapping to NULL),
1156			 * or even swizzled back from swapper_space to tmpfs
1157			 * file mapping. However, page->index will not change
1158			 * because we have a reference on the page.
1159			 *
1160			 * Searching done if the page index is out of range.
1161			 * If the current offset is not reaches the end of
1162			 * the specified search range, there should be a hole
1163			 * between them.
1164			 */
1165			if (page->index > end) {
1166				if (type == HOLE_OFF && lastoff < endoff) {
1167					*offset = lastoff;
1168					found = true;
1169				}
1170				goto out;
1171			}
1172
1173			lock_page(page);
1174			/*
1175			 * Page truncated or invalidated(page->mapping == NULL).
1176			 * We can freely skip it and proceed to check the next
1177			 * page.
1178			 */
1179			if (unlikely(page->mapping != inode->i_mapping)) {
1180				unlock_page(page);
1181				continue;
1182			}
1183
1184			if (!page_has_buffers(page)) {
1185				unlock_page(page);
1186				continue;
1187			}
1188
1189			found = xfs_lookup_buffer_offset(page, &b_offset, type);
1190			if (found) {
1191				/*
1192				 * The found offset may be less than the start
1193				 * point to search if this is the first time to
1194				 * come here.
1195				 */
1196				*offset = max_t(loff_t, startoff, b_offset);
1197				unlock_page(page);
1198				goto out;
1199			}
1200
1201			/*
1202			 * We either searching data but nothing was found, or
1203			 * searching hole but found a data buffer.  In either
1204			 * case, probably the next page contains the desired
1205			 * things, update the last offset to it so.
1206			 */
1207			lastoff = page_offset(page) + PAGE_SIZE;
1208			unlock_page(page);
1209		}
1210
1211		/*
1212		 * The number of returned pages less than our desired, search
1213		 * done.  In this case, nothing was found for searching data,
1214		 * but we found a hole behind the last offset.
1215		 */
1216		if (nr_pages < want) {
1217			if (type == HOLE_OFF) {
1218				*offset = lastoff;
1219				found = true;
1220			}
1221			break;
1222		}
1223
1224		index = pvec.pages[i - 1]->index + 1;
1225		pagevec_release(&pvec);
1226	} while (index <= end);
1227
1228out:
1229	pagevec_release(&pvec);
1230	return found;
1231}
1232
1233STATIC loff_t
1234xfs_seek_data(
1235	struct file		*file,
1236	loff_t			start)
1237{
1238	struct inode		*inode = file->f_mapping->host;
1239	struct xfs_inode	*ip = XFS_I(inode);
1240	struct xfs_mount	*mp = ip->i_mount;
1241	loff_t			uninitialized_var(offset);
1242	xfs_fsize_t		isize;
1243	xfs_fileoff_t		fsbno;
1244	xfs_filblks_t		end;
1245	uint			lock;
1246	int			error;
1247
1248	lock = xfs_ilock_data_map_shared(ip);
1249
1250	isize = i_size_read(inode);
1251	if (start >= isize) {
1252		error = ENXIO;
1253		goto out_unlock;
1254	}
1255
1256	/*
1257	 * Try to read extents from the first block indicated
1258	 * by fsbno to the end block of the file.
 
1259	 */
1260	fsbno = XFS_B_TO_FSBT(mp, start);
1261	end = XFS_B_TO_FSB(mp, isize);
1262	for (;;) {
1263		struct xfs_bmbt_irec	map[2];
1264		int			nmap = 2;
1265		unsigned int		i;
1266
1267		error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1268				       XFS_BMAPI_ENTIRE);
1269		if (error)
1270			goto out_unlock;
1271
1272		/* No extents at given offset, must be beyond EOF */
1273		if (nmap == 0) {
1274			error = ENXIO;
1275			goto out_unlock;
1276		}
1277
1278		for (i = 0; i < nmap; i++) {
1279			offset = max_t(loff_t, start,
1280				       XFS_FSB_TO_B(mp, map[i].br_startoff));
1281
1282			/* Landed in a data extent */
1283			if (map[i].br_startblock == DELAYSTARTBLOCK ||
1284			    (map[i].br_state == XFS_EXT_NORM &&
1285			     !isnullstartblock(map[i].br_startblock)))
1286				goto out;
1287
1288			/*
1289			 * Landed in an unwritten extent, try to search data
1290			 * from page cache.
1291			 */
1292			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1293				if (xfs_find_get_desired_pgoff(inode, &map[i],
1294							DATA_OFF, &offset))
1295					goto out;
1296			}
1297		}
1298
1299		/*
1300		 * map[0] is hole or its an unwritten extent but
1301		 * without data in page cache.  Probably means that
1302		 * we are reading after EOF if nothing in map[1].
1303		 */
1304		if (nmap == 1) {
1305			error = ENXIO;
1306			goto out_unlock;
1307		}
1308
1309		ASSERT(i > 1);
1310
1311		/*
1312		 * Nothing was found, proceed to the next round of search
1313		 * if reading offset not beyond or hit EOF.
1314		 */
1315		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1316		start = XFS_FSB_TO_B(mp, fsbno);
1317		if (start >= isize) {
1318			error = ENXIO;
1319			goto out_unlock;
1320		}
1321	}
1322
1323out:
1324	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1325
1326out_unlock:
1327	xfs_iunlock(ip, lock);
1328
1329	if (error)
1330		return -error;
1331	return offset;
1332}
1333
1334STATIC loff_t
1335xfs_seek_hole(
1336	struct file		*file,
1337	loff_t			start)
1338{
1339	struct inode		*inode = file->f_mapping->host;
1340	struct xfs_inode	*ip = XFS_I(inode);
1341	struct xfs_mount	*mp = ip->i_mount;
1342	loff_t			uninitialized_var(offset);
1343	xfs_fsize_t		isize;
1344	xfs_fileoff_t		fsbno;
1345	xfs_filblks_t		end;
1346	uint			lock;
1347	int			error;
1348
1349	if (XFS_FORCED_SHUTDOWN(mp))
1350		return -XFS_ERROR(EIO);
1351
1352	lock = xfs_ilock_data_map_shared(ip);
 
 
 
 
1353
1354	isize = i_size_read(inode);
1355	if (start >= isize) {
1356		error = ENXIO;
1357		goto out_unlock;
 
1358	}
1359
1360	fsbno = XFS_B_TO_FSBT(mp, start);
1361	end = XFS_B_TO_FSB(mp, isize);
1362
1363	for (;;) {
1364		struct xfs_bmbt_irec	map[2];
1365		int			nmap = 2;
1366		unsigned int		i;
1367
1368		error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1369				       XFS_BMAPI_ENTIRE);
1370		if (error)
1371			goto out_unlock;
 
 
 
1372
1373		/* No extents at given offset, must be beyond EOF */
1374		if (nmap == 0) {
1375			error = ENXIO;
1376			goto out_unlock;
1377		}
1378
1379		for (i = 0; i < nmap; i++) {
1380			offset = max_t(loff_t, start,
1381				       XFS_FSB_TO_B(mp, map[i].br_startoff));
1382
1383			/* Landed in a hole */
1384			if (map[i].br_startblock == HOLESTARTBLOCK)
1385				goto out;
1386
1387			/*
1388			 * Landed in an unwritten extent, try to search hole
1389			 * from page cache.
1390			 */
1391			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1392				if (xfs_find_get_desired_pgoff(inode, &map[i],
1393							HOLE_OFF, &offset))
1394					goto out;
1395			}
1396		}
1397
1398		/*
1399		 * map[0] contains data or its unwritten but contains
1400		 * data in page cache, probably means that we are
1401		 * reading after EOF.  We should fix offset to point
1402		 * to the end of the file(i.e., there is an implicit
1403		 * hole at the end of any file).
1404		 */
1405		if (nmap == 1) {
1406			offset = isize;
1407			break;
1408		}
1409
1410		ASSERT(i > 1);
 
 
 
 
 
 
1411
1412		/*
1413		 * Both mappings contains data, proceed to the next round of
1414		 * search if the current reading offset not beyond or hit EOF.
1415		 */
1416		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1417		start = XFS_FSB_TO_B(mp, fsbno);
1418		if (start >= isize) {
1419			offset = isize;
1420			break;
1421		}
1422	}
1423
1424out:
1425	/*
1426	 * At this point, we must have found a hole.  However, the returned
1427	 * offset may be bigger than the file size as it may be aligned to
1428	 * page boundary for unwritten extents, we need to deal with this
1429	 * situation in particular.
1430	 */
1431	offset = min_t(loff_t, offset, isize);
1432	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1433
1434out_unlock:
1435	xfs_iunlock(ip, lock);
1436
1437	if (error)
1438		return -error;
1439	return offset;
1440}
1441
1442STATIC loff_t
1443xfs_file_llseek(
1444	struct file	*file,
1445	loff_t		offset,
1446	int		origin)
1447{
1448	switch (origin) {
1449	case SEEK_END:
1450	case SEEK_CUR:
1451	case SEEK_SET:
1452		return generic_file_llseek(file, offset, origin);
1453	case SEEK_DATA:
1454		return xfs_seek_data(file, offset);
1455	case SEEK_HOLE:
1456		return xfs_seek_hole(file, offset);
1457	default:
1458		return -EINVAL;
1459	}
1460}
1461
1462const struct file_operations xfs_file_operations = {
1463	.llseek		= xfs_file_llseek,
1464	.read		= do_sync_read,
1465	.write		= do_sync_write,
1466	.aio_read	= xfs_file_aio_read,
1467	.aio_write	= xfs_file_aio_write,
1468	.splice_read	= xfs_file_splice_read,
1469	.splice_write	= xfs_file_splice_write,
 
1470	.unlocked_ioctl	= xfs_file_ioctl,
1471#ifdef CONFIG_COMPAT
1472	.compat_ioctl	= xfs_file_compat_ioctl,
1473#endif
1474	.mmap		= xfs_file_mmap,
1475	.open		= xfs_file_open,
1476	.release	= xfs_file_release,
1477	.fsync		= xfs_file_fsync,
 
1478	.fallocate	= xfs_file_fallocate,
 
 
 
 
1479};
1480
1481const struct file_operations xfs_dir_file_operations = {
1482	.open		= xfs_dir_open,
1483	.read		= generic_read_dir,
1484	.iterate	= xfs_file_readdir,
1485	.llseek		= generic_file_llseek,
1486	.unlocked_ioctl	= xfs_file_ioctl,
1487#ifdef CONFIG_COMPAT
1488	.compat_ioctl	= xfs_file_compat_ioctl,
1489#endif
1490	.fsync		= xfs_dir_fsync,
1491};
1492
1493static const struct vm_operations_struct xfs_file_vm_ops = {
1494	.fault		= filemap_fault,
1495	.map_pages	= filemap_map_pages,
1496	.page_mkwrite	= xfs_vm_page_mkwrite,
1497	.remap_pages	= generic_file_remap_pages,
1498};
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
 
 
  12#include "xfs_mount.h"
 
 
  13#include "xfs_inode.h"
  14#include "xfs_trans.h"
  15#include "xfs_inode_item.h"
  16#include "xfs_bmap.h"
  17#include "xfs_bmap_util.h"
 
  18#include "xfs_dir2.h"
  19#include "xfs_dir2_priv.h"
  20#include "xfs_ioctl.h"
  21#include "xfs_trace.h"
  22#include "xfs_log.h"
  23#include "xfs_icache.h"
  24#include "xfs_pnfs.h"
  25#include "xfs_iomap.h"
  26#include "xfs_reflink.h"
  27#include "xfs_file.h"
  28
  29#include <linux/dax.h>
 
  30#include <linux/falloc.h>
  31#include <linux/backing-dev.h>
  32#include <linux/mman.h>
  33#include <linux/fadvise.h>
  34#include <linux/mount.h>
  35
  36static const struct vm_operations_struct xfs_file_vm_ops;
  37
  38/*
  39 * Decide if the given file range is aligned to the size of the fundamental
  40 * allocation unit for the file.
  41 */
  42bool
  43xfs_is_falloc_aligned(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  44	struct xfs_inode	*ip,
  45	loff_t			pos,
  46	long long int		len)
  47{
  48	unsigned int		alloc_unit = xfs_inode_alloc_unitsize(ip);
 
 
 
  49
  50	if (!is_power_of_2(alloc_unit))
  51		return isaligned_64(pos, alloc_unit) &&
  52		       isaligned_64(len, alloc_unit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  53
  54	return !((pos | len) & (alloc_unit - 1));
  55}
  56
  57/*
  58 * Fsync operations on directories are much simpler than on regular files,
  59 * as there is no file data to flush, and thus also no need for explicit
  60 * cache flush operations, and there are no non-transaction metadata updates
  61 * on directories either.
  62 */
  63STATIC int
  64xfs_dir_fsync(
  65	struct file		*file,
  66	loff_t			start,
  67	loff_t			end,
  68	int			datasync)
  69{
  70	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
 
 
  71
  72	trace_xfs_dir_fsync(ip);
  73	return xfs_log_force_inode(ip);
  74}
  75
  76static xfs_csn_t
  77xfs_fsync_seq(
  78	struct xfs_inode	*ip,
  79	bool			datasync)
  80{
  81	if (!xfs_ipincount(ip))
  82		return 0;
  83	if (datasync && !(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
  84		return 0;
  85	return ip->i_itemp->ili_commit_seq;
  86}
  87
  88/*
  89 * All metadata updates are logged, which means that we just have to flush the
  90 * log up to the latest LSN that touched the inode.
  91 *
  92 * If we have concurrent fsync/fdatasync() calls, we need them to all block on
  93 * the log force before we clear the ili_fsync_fields field. This ensures that
  94 * we don't get a racing sync operation that does not wait for the metadata to
  95 * hit the journal before returning.  If we race with clearing ili_fsync_fields,
  96 * then all that will happen is the log force will do nothing as the lsn will
  97 * already be on disk.  We can't race with setting ili_fsync_fields because that
  98 * is done under XFS_ILOCK_EXCL, and that can't happen because we hold the lock
  99 * shared until after the ili_fsync_fields is cleared.
 100 */
 101static  int
 102xfs_fsync_flush_log(
 103	struct xfs_inode	*ip,
 104	bool			datasync,
 105	int			*log_flushed)
 106{
 107	int			error = 0;
 108	xfs_csn_t		seq;
 109
 110	xfs_ilock(ip, XFS_ILOCK_SHARED);
 111	seq = xfs_fsync_seq(ip, datasync);
 112	if (seq) {
 113		error = xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC,
 114					  log_flushed);
 115
 116		spin_lock(&ip->i_itemp->ili_lock);
 117		ip->i_itemp->ili_fsync_fields = 0;
 118		spin_unlock(&ip->i_itemp->ili_lock);
 119	}
 120	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 121	return error;
 
 
 
 122}
 123
 124STATIC int
 125xfs_file_fsync(
 126	struct file		*file,
 127	loff_t			start,
 128	loff_t			end,
 129	int			datasync)
 130{
 131	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
 
 132	struct xfs_mount	*mp = ip->i_mount;
 133	int			error, err2;
 134	int			log_flushed = 0;
 
 135
 136	trace_xfs_file_fsync(ip);
 137
 138	error = file_write_and_wait_range(file, start, end);
 139	if (error)
 140		return error;
 141
 142	if (xfs_is_shutdown(mp))
 143		return -EIO;
 144
 145	xfs_iflags_clear(ip, XFS_ITRUNCATED);
 146
 147	/*
 148	 * If we have an RT and/or log subvolume we need to make sure to flush
 149	 * the write cache the device used for file data first.  This is to
 150	 * ensure newly written file data make it to disk before logging the new
 151	 * inode size in case of an extending write.
 152	 */
 153	if (XFS_IS_REALTIME_INODE(ip))
 154		error = blkdev_issue_flush(mp->m_rtdev_targp->bt_bdev);
 155	else if (mp->m_logdev_targp != mp->m_ddev_targp)
 156		error = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
 
 
 
 157
 158	/*
 159	 * Any inode that has dirty modifications in the log is pinned.  The
 160	 * racy check here for a pinned inode will not catch modifications
 161	 * that happen concurrently to the fsync call, but fsync semantics
 162	 * only require to sync previously completed I/O.
 163	 */
 
 164	if (xfs_ipincount(ip)) {
 165		err2 = xfs_fsync_flush_log(ip, datasync, &log_flushed);
 166		if (err2 && !error)
 167			error = err2;
 168	}
 
 
 
 
 169
 170	/*
 171	 * If we only have a single device, and the log force about was
 172	 * a no-op we might have to flush the data device cache here.
 173	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
 174	 * an already allocated file and thus do not have any metadata to
 175	 * commit.
 176	 */
 177	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
 178	    mp->m_logdev_targp == mp->m_ddev_targp) {
 179		err2 = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
 180		if (err2 && !error)
 181			error = err2;
 182	}
 183
 184	return error;
 185}
 186
 187static int
 188xfs_ilock_iocb(
 189	struct kiocb		*iocb,
 190	unsigned int		lock_mode)
 
 
 191{
 192	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 
 
 
 
 
 
 
 193
 194	if (iocb->ki_flags & IOCB_NOWAIT) {
 195		if (!xfs_ilock_nowait(ip, lock_mode))
 196			return -EAGAIN;
 197	} else {
 198		xfs_ilock(ip, lock_mode);
 199	}
 200
 201	return 0;
 202}
 203
 204static int
 205xfs_ilock_iocb_for_write(
 206	struct kiocb		*iocb,
 207	unsigned int		*lock_mode)
 208{
 209	ssize_t			ret;
 210	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 211
 212	ret = xfs_ilock_iocb(iocb, *lock_mode);
 213	if (ret)
 214		return ret;
 215
 216	/*
 217	 * If a reflink remap is in progress we always need to take the iolock
 218	 * exclusively to wait for it to finish.
 219	 */
 220	if (*lock_mode == XFS_IOLOCK_SHARED &&
 221	    xfs_iflags_test(ip, XFS_IREMAPPING)) {
 222		xfs_iunlock(ip, *lock_mode);
 223		*lock_mode = XFS_IOLOCK_EXCL;
 224		return xfs_ilock_iocb(iocb, *lock_mode);
 
 225	}
 226
 227	return 0;
 228}
 
 229
 230STATIC ssize_t
 231xfs_file_dio_read(
 232	struct kiocb		*iocb,
 233	struct iov_iter		*to)
 234{
 235	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 236	ssize_t			ret;
 237
 238	trace_xfs_file_direct_read(iocb, to);
 
 239
 240	if (!iov_iter_count(to))
 241		return 0; /* skip atime */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 242
 243	file_accessed(iocb->ki_filp);
 244
 245	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
 246	if (ret)
 247		return ret;
 248	ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL, 0, NULL, 0);
 249	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 250
 
 251	return ret;
 252}
 253
 254static noinline ssize_t
 255xfs_file_dax_read(
 256	struct kiocb		*iocb,
 257	struct iov_iter		*to)
 
 
 
 258{
 259	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
 260	ssize_t			ret = 0;
 
 261
 262	trace_xfs_file_dax_read(iocb, to);
 263
 264	if (!iov_iter_count(to))
 265		return 0; /* skip atime */
 266
 267	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
 268	if (ret)
 269		return ret;
 270	ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops);
 271	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 272
 273	file_accessed(iocb->ki_filp);
 274	return ret;
 275}
 276
 277STATIC ssize_t
 278xfs_file_buffered_read(
 279	struct kiocb		*iocb,
 280	struct iov_iter		*to)
 281{
 282	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 283	ssize_t			ret;
 284
 285	trace_xfs_file_buffered_read(iocb, to);
 286
 287	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
 288	if (ret)
 289		return ret;
 290	ret = generic_file_read_iter(iocb, to);
 291	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 292
 
 293	return ret;
 294}
 295
 
 
 
 
 
 
 
 
 296STATIC ssize_t
 297xfs_file_read_iter(
 298	struct kiocb		*iocb,
 299	struct iov_iter		*to)
 
 
 
 300{
 301	struct inode		*inode = file_inode(iocb->ki_filp);
 302	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
 303	ssize_t			ret = 0;
 
 
 
 304
 305	XFS_STATS_INC(mp, xs_read_calls);
 
 306
 307	if (xfs_is_shutdown(mp))
 308		return -EIO;
 309
 310	if (IS_DAX(inode))
 311		ret = xfs_file_dax_read(iocb, to);
 312	else if (iocb->ki_flags & IOCB_DIRECT)
 313		ret = xfs_file_dio_read(iocb, to);
 314	else
 315		ret = xfs_file_buffered_read(iocb, to);
 316
 
 317	if (ret > 0)
 318		XFS_STATS_ADD(mp, xs_read_bytes, ret);
 
 
 319	return ret;
 320}
 321
 322STATIC ssize_t
 323xfs_file_splice_read(
 324	struct file		*in,
 325	loff_t			*ppos,
 326	struct pipe_inode_info	*pipe,
 327	size_t			len,
 328	unsigned int		flags)
 
 
 
 
 329{
 330	struct inode		*inode = file_inode(in);
 331	struct xfs_inode	*ip = XFS_I(inode);
 332	struct xfs_mount	*mp = ip->i_mount;
 333	ssize_t			ret = 0;
 
 
 
 
 
 334
 335	XFS_STATS_INC(mp, xs_read_calls);
 
 
 
 
 336
 337	if (xfs_is_shutdown(mp))
 338		return -EIO;
 339
 340	trace_xfs_file_splice_read(ip, *ppos, len);
 
 
 
 
 
 341
 342	xfs_ilock(ip, XFS_IOLOCK_SHARED);
 343	ret = filemap_splice_read(in, ppos, pipe, len, flags);
 344	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 345	if (ret > 0)
 346		XFS_STATS_ADD(mp, xs_read_bytes, ret);
 347	return ret;
 348}
 349
 350/*
 351 * Take care of zeroing post-EOF blocks when they might exist.
 
 
 
 
 
 
 352 *
 353 * Returns 0 if successfully, a negative error for a failure, or 1 if this
 354 * function dropped the iolock and reacquired it exclusively and the caller
 355 * needs to restart the write sanity checks.
 356 */
 357static ssize_t
 358xfs_file_write_zero_eof(
 359	struct kiocb		*iocb,
 360	struct iov_iter		*from,
 361	unsigned int		*iolock,
 362	size_t			count,
 363	bool			*drained_dio)
 364{
 365	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
 366	loff_t			isize;
 367	int			error;
 
 
 
 
 
 
 
 
 
 
 368
 369	/*
 370	 * We need to serialise against EOF updates that occur in IO completions
 371	 * here. We want to make sure that nobody is changing the size while
 372	 * we do this check until we have placed an IO barrier (i.e. hold
 373	 * XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.  The
 374	 * spinlock effectively forms a memory barrier once we have
 375	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value and
 376	 * hence be able to correctly determine if we need to run zeroing.
 377	 */
 378	spin_lock(&ip->i_flags_lock);
 379	isize = i_size_read(VFS_I(ip));
 380	if (iocb->ki_pos <= isize) {
 381		spin_unlock(&ip->i_flags_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 382		return 0;
 383	}
 384	spin_unlock(&ip->i_flags_lock);
 385
 386	if (iocb->ki_flags & IOCB_NOWAIT)
 387		return -EAGAIN;
 
 
 
 
 
 
 
 
 
 
 
 388
 389	if (!*drained_dio) {
 390		/*
 391		 * If zeroing is needed and we are currently holding the iolock
 392		 * shared, we need to update it to exclusive which implies
 393		 * having to redo all checks before.
 394		 */
 395		if (*iolock == XFS_IOLOCK_SHARED) {
 396			xfs_iunlock(ip, *iolock);
 397			*iolock = XFS_IOLOCK_EXCL;
 398			xfs_ilock(ip, *iolock);
 399			iov_iter_reexpand(from, count);
 400		}
 401
 402		/*
 403		 * We now have an IO submission barrier in place, but AIO can do
 404		 * EOF updates during IO completion and hence we now need to
 405		 * wait for all of them to drain.  Non-AIO DIO will have drained
 406		 * before we are given the XFS_IOLOCK_EXCL, and so for most
 407		 * cases this wait is a no-op.
 408		 */
 409		inode_dio_wait(VFS_I(ip));
 410		*drained_dio = true;
 411		return 1;
 412	}
 413
 414	trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
 
 415
 416	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
 417	error = xfs_zero_range(ip, isize, iocb->ki_pos - isize, NULL);
 418	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
 419
 420	return error;
 
 
 
 
 421}
 422
 423/*
 424 * Common pre-write limit and setup checks.
 425 *
 426 * Called with the iolock held either shared and exclusive according to
 427 * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
 428 * if called for a direct write beyond i_size.
 429 */
 430STATIC ssize_t
 431xfs_file_write_checks(
 432	struct kiocb		*iocb,
 433	struct iov_iter		*from,
 434	unsigned int		*iolock)
 
 435{
 436	struct inode		*inode = iocb->ki_filp->f_mapping->host;
 437	size_t			count = iov_iter_count(from);
 438	bool			drained_dio = false;
 439	ssize_t			error;
 440
 441restart:
 442	error = generic_write_checks(iocb, from);
 443	if (error <= 0)
 444		return error;
 445
 446	if (iocb->ki_flags & IOCB_NOWAIT) {
 447		error = break_layout(inode, false);
 448		if (error == -EWOULDBLOCK)
 449			error = -EAGAIN;
 450	} else {
 451		error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
 452	}
 453
 454	if (error)
 455		return error;
 456
 457	/*
 458	 * For changing security info in file_remove_privs() we need i_rwsem
 459	 * exclusively.
 460	 */
 461	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
 462		xfs_iunlock(XFS_I(inode), *iolock);
 463		*iolock = XFS_IOLOCK_EXCL;
 464		error = xfs_ilock_iocb(iocb, *iolock);
 465		if (error) {
 466			*iolock = 0;
 467			return error;
 468		}
 469		goto restart;
 470	}
 471
 472	/*
 473	 * If the offset is beyond the size of the file, we need to zero all
 474	 * blocks that fall between the existing EOF and the start of this
 475	 * write.
 476	 *
 477	 * We can do an unlocked check for i_size here safely as I/O completion
 478	 * can only extend EOF.  Truncate is locked out at this point, so the
 479	 * EOF can not move backwards, only forwards. Hence we only need to take
 480	 * the slow path when we are at or beyond the current EOF.
 481	 */
 482	if (iocb->ki_pos > i_size_read(inode)) {
 483		error = xfs_file_write_zero_eof(iocb, from, iolock, count,
 484				&drained_dio);
 485		if (error == 1)
 
 486			goto restart;
 
 
 487		if (error)
 488			return error;
 489	}
 490
 491	return kiocb_modified(iocb);
 492}
 493
 494static int
 495xfs_dio_write_end_io(
 496	struct kiocb		*iocb,
 497	ssize_t			size,
 498	int			error,
 499	unsigned		flags)
 500{
 501	struct inode		*inode = file_inode(iocb->ki_filp);
 502	struct xfs_inode	*ip = XFS_I(inode);
 503	loff_t			offset = iocb->ki_pos;
 504	unsigned int		nofs_flag;
 505
 506	trace_xfs_end_io_direct_write(ip, offset, size);
 507
 508	if (xfs_is_shutdown(ip->i_mount))
 509		return -EIO;
 510
 511	if (error)
 512		return error;
 513	if (!size)
 514		return 0;
 515
 516	/*
 517	 * Capture amount written on completion as we can't reliably account
 518	 * for it on submission.
 519	 */
 520	XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
 521
 522	/*
 523	 * We can allocate memory here while doing writeback on behalf of
 524	 * memory reclaim.  To avoid memory allocation deadlocks set the
 525	 * task-wide nofs context for the following operations.
 
 526	 */
 527	nofs_flag = memalloc_nofs_save();
 528
 529	if (flags & IOMAP_DIO_COW) {
 530		error = xfs_reflink_end_cow(ip, offset, size);
 531		if (error)
 532			goto out;
 533	}
 534
 535	/*
 536	 * Unwritten conversion updates the in-core isize after extent
 537	 * conversion but before updating the on-disk size. Updating isize any
 538	 * earlier allows a racing dio read to find unwritten extents before
 539	 * they are converted.
 540	 */
 541	if (flags & IOMAP_DIO_UNWRITTEN) {
 542		error = xfs_iomap_write_unwritten(ip, offset, size, true);
 543		goto out;
 544	}
 545
 546	/*
 547	 * We need to update the in-core inode size here so that we don't end up
 548	 * with the on-disk inode size being outside the in-core inode size. We
 549	 * have no other method of updating EOF for AIO, so always do it here
 550	 * if necessary.
 551	 *
 552	 * We need to lock the test/set EOF update as we can be racing with
 553	 * other IO completions here to update the EOF. Failing to serialise
 554	 * here can result in EOF moving backwards and Bad Things Happen when
 555	 * that occurs.
 556	 *
 557	 * As IO completion only ever extends EOF, we can do an unlocked check
 558	 * here to avoid taking the spinlock. If we land within the current EOF,
 559	 * then we do not need to do an extending update at all, and we don't
 560	 * need to take the lock to check this. If we race with an update moving
 561	 * EOF, then we'll either still be beyond EOF and need to take the lock,
 562	 * or we'll be within EOF and we don't need to take it at all.
 563	 */
 564	if (offset + size <= i_size_read(inode))
 565		goto out;
 566
 567	spin_lock(&ip->i_flags_lock);
 568	if (offset + size > i_size_read(inode)) {
 569		i_size_write(inode, offset + size);
 570		spin_unlock(&ip->i_flags_lock);
 571		error = xfs_setfilesize(ip, offset, size);
 572	} else {
 573		spin_unlock(&ip->i_flags_lock);
 574	}
 575
 576out:
 577	memalloc_nofs_restore(nofs_flag);
 578	return error;
 579}
 580
 581static const struct iomap_dio_ops xfs_dio_write_ops = {
 582	.end_io		= xfs_dio_write_end_io,
 583};
 584
 585/*
 586 * Handle block aligned direct I/O writes
 587 */
 588static noinline ssize_t
 589xfs_file_dio_write_aligned(
 590	struct xfs_inode	*ip,
 591	struct kiocb		*iocb,
 592	struct iov_iter		*from)
 593{
 594	unsigned int		iolock = XFS_IOLOCK_SHARED;
 595	ssize_t			ret;
 596
 597	ret = xfs_ilock_iocb_for_write(iocb, &iolock);
 598	if (ret)
 599		return ret;
 600	ret = xfs_file_write_checks(iocb, from, &iolock);
 601	if (ret)
 602		goto out_unlock;
 603
 604	/*
 605	 * We don't need to hold the IOLOCK exclusively across the IO, so demote
 606	 * the iolock back to shared if we had to take the exclusive lock in
 607	 * xfs_file_write_checks() for other reasons.
 608	 */
 609	if (iolock == XFS_IOLOCK_EXCL) {
 610		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
 611		iolock = XFS_IOLOCK_SHARED;
 612	}
 613	trace_xfs_file_direct_write(iocb, from);
 614	ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
 615			   &xfs_dio_write_ops, 0, NULL, 0);
 616out_unlock:
 617	if (iolock)
 618		xfs_iunlock(ip, iolock);
 619	return ret;
 620}
 621
 622/*
 623 * Handle block unaligned direct I/O writes
 
 
 
 
 
 
 
 
 624 *
 625 * In most cases direct I/O writes will be done holding IOLOCK_SHARED, allowing
 626 * them to be done in parallel with reads and other direct I/O writes.  However,
 627 * if the I/O is not aligned to filesystem blocks, the direct I/O layer may need
 628 * to do sub-block zeroing and that requires serialisation against other direct
 629 * I/O to the same block.  In this case we need to serialise the submission of
 630 * the unaligned I/O so that we don't get racing block zeroing in the dio layer.
 631 * In the case where sub-block zeroing is not required, we can do concurrent
 632 * sub-block dios to the same block successfully.
 
 
 633 *
 634 * Optimistically submit the I/O using the shared lock first, but use the
 635 * IOMAP_DIO_OVERWRITE_ONLY flag to tell the lower layers to return -EAGAIN
 636 * if block allocation or partial block zeroing would be required.  In that case
 637 * we try again with the exclusive lock.
 638 */
 639static noinline ssize_t
 640xfs_file_dio_write_unaligned(
 641	struct xfs_inode	*ip,
 642	struct kiocb		*iocb,
 643	struct iov_iter		*from)
 
 
 
 644{
 645	size_t			isize = i_size_read(VFS_I(ip));
 646	size_t			count = iov_iter_count(from);
 647	unsigned int		iolock = XFS_IOLOCK_SHARED;
 648	unsigned int		flags = IOMAP_DIO_OVERWRITE_ONLY;
 649	ssize_t			ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 650
 651	/*
 652	 * Extending writes need exclusivity because of the sub-block zeroing
 653	 * that the DIO code always does for partial tail blocks beyond EOF, so
 654	 * don't even bother trying the fast path in this case.
 655	 */
 656	if (iocb->ki_pos > isize || iocb->ki_pos + count >= isize) {
 657		if (iocb->ki_flags & IOCB_NOWAIT)
 658			return -EAGAIN;
 659retry_exclusive:
 660		iolock = XFS_IOLOCK_EXCL;
 661		flags = IOMAP_DIO_FORCE_WAIT;
 662	}
 663
 664	ret = xfs_ilock_iocb_for_write(iocb, &iolock);
 665	if (ret)
 666		return ret;
 667
 668	/*
 669	 * We can't properly handle unaligned direct I/O to reflink files yet,
 670	 * as we can't unshare a partial block.
 671	 */
 672	if (xfs_is_cow_inode(ip)) {
 673		trace_xfs_reflink_bounce_dio_write(iocb, from);
 674		ret = -ENOTBLK;
 675		goto out_unlock;
 676	}
 677
 678	ret = xfs_file_write_checks(iocb, from, &iolock);
 679	if (ret)
 680		goto out_unlock;
 681
 682	/*
 683	 * If we are doing exclusive unaligned I/O, this must be the only I/O
 684	 * in-flight.  Otherwise we risk data corruption due to unwritten extent
 685	 * conversions from the AIO end_io handler.  Wait for all other I/O to
 686	 * drain first.
 687	 */
 688	if (flags & IOMAP_DIO_FORCE_WAIT)
 689		inode_dio_wait(VFS_I(ip));
 690
 691	trace_xfs_file_direct_write(iocb, from);
 692	ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
 693			   &xfs_dio_write_ops, flags, NULL, 0);
 694
 695	/*
 696	 * Retry unaligned I/O with exclusive blocking semantics if the DIO
 697	 * layer rejected it for mapping or locking reasons. If we are doing
 698	 * nonblocking user I/O, propagate the error.
 699	 */
 700	if (ret == -EAGAIN && !(iocb->ki_flags & IOCB_NOWAIT)) {
 701		ASSERT(flags & IOMAP_DIO_OVERWRITE_ONLY);
 702		xfs_iunlock(ip, iolock);
 703		goto retry_exclusive;
 704	}
 705
 706out_unlock:
 707	if (iolock)
 708		xfs_iunlock(ip, iolock);
 709	return ret;
 710}
 711
 712static ssize_t
 713xfs_file_dio_write(
 714	struct kiocb		*iocb,
 715	struct iov_iter		*from)
 716{
 717	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 718	struct xfs_buftarg      *target = xfs_inode_buftarg(ip);
 719	size_t			count = iov_iter_count(from);
 720
 721	/* direct I/O must be aligned to device logical sector size */
 722	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
 723		return -EINVAL;
 724	if ((iocb->ki_pos | count) & ip->i_mount->m_blockmask)
 725		return xfs_file_dio_write_unaligned(ip, iocb, from);
 726	return xfs_file_dio_write_aligned(ip, iocb, from);
 727}
 728
 729static noinline ssize_t
 730xfs_file_dax_write(
 731	struct kiocb		*iocb,
 732	struct iov_iter		*from)
 733{
 734	struct inode		*inode = iocb->ki_filp->f_mapping->host;
 735	struct xfs_inode	*ip = XFS_I(inode);
 736	unsigned int		iolock = XFS_IOLOCK_EXCL;
 737	ssize_t			ret, error = 0;
 738	loff_t			pos;
 739
 740	ret = xfs_ilock_iocb(iocb, iolock);
 741	if (ret)
 742		return ret;
 743	ret = xfs_file_write_checks(iocb, from, &iolock);
 744	if (ret)
 745		goto out;
 746
 747	pos = iocb->ki_pos;
 748
 749	trace_xfs_file_dax_write(iocb, from);
 750	ret = dax_iomap_rw(iocb, from, &xfs_dax_write_iomap_ops);
 751	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
 752		i_size_write(inode, iocb->ki_pos);
 753		error = xfs_setfilesize(ip, pos, ret);
 754	}
 755out:
 756	if (iolock)
 757		xfs_iunlock(ip, iolock);
 758	if (error)
 759		return error;
 760
 761	if (ret > 0) {
 762		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
 763
 764		/* Handle various SYNC-type writes */
 765		ret = generic_write_sync(iocb, ret);
 766	}
 767	return ret;
 768}
 769
 770STATIC ssize_t
 771xfs_file_buffered_write(
 772	struct kiocb		*iocb,
 773	struct iov_iter		*from)
 
 
 
 774{
 775	struct inode		*inode = iocb->ki_filp->f_mapping->host;
 
 
 776	struct xfs_inode	*ip = XFS_I(inode);
 777	ssize_t			ret;
 778	bool			cleared_space = false;
 779	unsigned int		iolock;
 
 780
 781write_retry:
 782	iolock = XFS_IOLOCK_EXCL;
 783	ret = xfs_ilock_iocb(iocb, iolock);
 784	if (ret)
 785		return ret;
 786
 787	ret = xfs_file_write_checks(iocb, from, &iolock);
 788	if (ret)
 789		goto out;
 790
 791	trace_xfs_file_buffered_write(iocb, from);
 792	ret = iomap_file_buffered_write(iocb, from,
 793			&xfs_buffered_write_iomap_ops, NULL);
 794
 795	/*
 796	 * If we hit a space limit, try to free up some lingering preallocated
 797	 * space before returning an error. In the case of ENOSPC, first try to
 798	 * write back all dirty inodes to free up some of the excess reserved
 799	 * metadata space. This reduces the chances that the eofblocks scan
 800	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
 801	 * also behaves as a filter to prevent too many eofblocks scans from
 802	 * running at the same time.  Use a synchronous scan to increase the
 803	 * effectiveness of the scan.
 804	 */
 805	if (ret == -EDQUOT && !cleared_space) {
 806		xfs_iunlock(ip, iolock);
 807		xfs_blockgc_free_quota(ip, XFS_ICWALK_FLAG_SYNC);
 808		cleared_space = true;
 809		goto write_retry;
 810	} else if (ret == -ENOSPC && !cleared_space) {
 811		struct xfs_icwalk	icw = {0};
 812
 813		cleared_space = true;
 814		xfs_flush_inodes(ip->i_mount);
 815
 816		xfs_iunlock(ip, iolock);
 817		icw.icw_flags = XFS_ICWALK_FLAG_SYNC;
 818		xfs_blockgc_free_space(ip->i_mount, &icw);
 819		goto write_retry;
 820	}
 821
 
 822out:
 823	if (iolock)
 824		xfs_iunlock(ip, iolock);
 825
 826	if (ret > 0) {
 827		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
 828		/* Handle various SYNC-type writes */
 829		ret = generic_write_sync(iocb, ret);
 830	}
 831	return ret;
 832}
 833
 834STATIC ssize_t
 835xfs_file_write_iter(
 836	struct kiocb		*iocb,
 837	struct iov_iter		*from)
 838{
 839	struct inode		*inode = iocb->ki_filp->f_mapping->host;
 
 
 
 
 840	struct xfs_inode	*ip = XFS_I(inode);
 841	ssize_t			ret;
 842	size_t			ocount = iov_iter_count(from);
 
 
 843
 844	XFS_STATS_INC(ip->i_mount, xs_write_calls);
 
 
 
 
 845
 846	if (ocount == 0)
 847		return 0;
 848
 849	if (xfs_is_shutdown(ip->i_mount))
 850		return -EIO;
 851
 852	if (IS_DAX(inode))
 853		return xfs_file_dax_write(iocb, from);
 854
 855	if (iocb->ki_flags & IOCB_ATOMIC) {
 856		/*
 857		 * Currently only atomic writing of a single FS block is
 858		 * supported. It would be possible to atomic write smaller than
 859		 * a FS block, but there is no requirement to support this.
 860		 * Note that iomap also does not support this yet.
 861		 */
 862		if (ocount != ip->i_mount->m_sb.sb_blocksize)
 863			return -EINVAL;
 864		ret = generic_atomic_write_valid(iocb, from);
 865		if (ret)
 866			return ret;
 867	}
 868
 869	if (iocb->ki_flags & IOCB_DIRECT) {
 870		/*
 871		 * Allow a directio write to fall back to a buffered
 872		 * write *only* in the case that we're doing a reflink
 873		 * CoW.  In all other directio scenarios we do not
 874		 * allow an operation to fall back to buffered mode.
 875		 */
 876		ret = xfs_file_dio_write(iocb, from);
 877		if (ret != -ENOTBLK)
 878			return ret;
 879	}
 880
 881	return xfs_file_buffered_write(iocb, from);
 882}
 883
 884/* Does this file, inode, or mount want synchronous writes? */
 885static inline bool xfs_file_sync_writes(struct file *filp)
 886{
 887	struct xfs_inode	*ip = XFS_I(file_inode(filp));
 888
 889	if (xfs_has_wsync(ip->i_mount))
 890		return true;
 891	if (filp->f_flags & (__O_SYNC | O_DSYNC))
 892		return true;
 893	if (IS_SYNC(file_inode(filp)))
 894		return true;
 895
 896	return false;
 897}
 898
 899static int
 900xfs_falloc_newsize(
 901	struct file		*file,
 902	int			mode,
 903	loff_t			offset,
 904	loff_t			len,
 905	loff_t			*new_size)
 906{
 907	struct inode		*inode = file_inode(file);
 908
 909	if ((mode & FALLOC_FL_KEEP_SIZE) || offset + len <= i_size_read(inode))
 910		return 0;
 911	*new_size = offset + len;
 912	return inode_newsize_ok(inode, *new_size);
 913}
 914
 915static int
 916xfs_falloc_setsize(
 917	struct file		*file,
 918	loff_t			new_size)
 919{
 920	struct iattr iattr = {
 921		.ia_valid	= ATTR_SIZE,
 922		.ia_size	= new_size,
 923	};
 924
 925	if (!new_size)
 926		return 0;
 927	return xfs_vn_setattr_size(file_mnt_idmap(file), file_dentry(file),
 928			&iattr);
 929}
 930
 931static int
 932xfs_falloc_collapse_range(
 933	struct file		*file,
 934	loff_t			offset,
 935	loff_t			len)
 936{
 937	struct inode		*inode = file_inode(file);
 938	loff_t			new_size = i_size_read(inode) - len;
 939	int			error;
 940
 941	if (!xfs_is_falloc_aligned(XFS_I(inode), offset, len))
 942		return -EINVAL;
 943
 944	/*
 945	 * There is no need to overlap collapse range with EOF, in which case it
 946	 * is effectively a truncate operation
 947	 */
 948	if (offset + len >= i_size_read(inode))
 949		return -EINVAL;
 950
 951	error = xfs_collapse_file_space(XFS_I(inode), offset, len);
 952	if (error)
 953		return error;
 954	return xfs_falloc_setsize(file, new_size);
 955}
 956
 957static int
 958xfs_falloc_insert_range(
 959	struct file		*file,
 960	loff_t			offset,
 961	loff_t			len)
 962{
 963	struct inode		*inode = file_inode(file);
 964	loff_t			isize = i_size_read(inode);
 965	int			error;
 966
 967	if (!xfs_is_falloc_aligned(XFS_I(inode), offset, len))
 968		return -EINVAL;
 969
 970	/*
 971	 * New inode size must not exceed ->s_maxbytes, accounting for
 972	 * possible signed overflow.
 973	 */
 974	if (inode->i_sb->s_maxbytes - isize < len)
 975		return -EFBIG;
 976
 977	/* Offset should be less than i_size */
 978	if (offset >= isize)
 979		return -EINVAL;
 980
 981	error = xfs_falloc_setsize(file, isize + len);
 982	if (error)
 983		return error;
 984
 985	/*
 986	 * Perform hole insertion now that the file size has been updated so
 987	 * that if we crash during the operation we don't leave shifted extents
 988	 * past EOF and hence losing access to the data that is contained within
 989	 * them.
 990	 */
 991	return xfs_insert_file_space(XFS_I(inode), offset, len);
 992}
 993
 994/*
 995 * Punch a hole and prealloc the range.  We use a hole punch rather than
 996 * unwritten extent conversion for two reasons:
 997 *
 998 *   1.) Hole punch handles partial block zeroing for us.
 999 *   2.) If prealloc returns ENOSPC, the file range is still zero-valued by
1000 *	 virtue of the hole punch.
1001 */
1002static int
1003xfs_falloc_zero_range(
1004	struct file		*file,
1005	int			mode,
1006	loff_t			offset,
1007	loff_t			len)
1008{
1009	struct inode		*inode = file_inode(file);
1010	unsigned int		blksize = i_blocksize(inode);
1011	loff_t			new_size = 0;
1012	int			error;
1013
1014	trace_xfs_zero_file_space(XFS_I(inode));
1015
1016	error = xfs_falloc_newsize(file, mode, offset, len, &new_size);
1017	if (error)
1018		return error;
1019
1020	error = xfs_free_file_space(XFS_I(inode), offset, len);
1021	if (error)
1022		return error;
1023
1024	len = round_up(offset + len, blksize) - round_down(offset, blksize);
1025	offset = round_down(offset, blksize);
1026	error = xfs_alloc_file_space(XFS_I(inode), offset, len);
1027	if (error)
1028		return error;
1029	return xfs_falloc_setsize(file, new_size);
1030}
1031
1032static int
1033xfs_falloc_unshare_range(
1034	struct file		*file,
1035	int			mode,
1036	loff_t			offset,
1037	loff_t			len)
1038{
1039	struct inode		*inode = file_inode(file);
1040	loff_t			new_size = 0;
1041	int			error;
1042
1043	error = xfs_falloc_newsize(file, mode, offset, len, &new_size);
1044	if (error)
1045		return error;
1046
1047	error = xfs_reflink_unshare(XFS_I(inode), offset, len);
1048	if (error)
1049		return error;
1050
1051	error = xfs_alloc_file_space(XFS_I(inode), offset, len);
1052	if (error)
1053		return error;
1054	return xfs_falloc_setsize(file, new_size);
1055}
1056
1057static int
1058xfs_falloc_allocate_range(
1059	struct file		*file,
1060	int			mode,
1061	loff_t			offset,
1062	loff_t			len)
1063{
1064	struct inode		*inode = file_inode(file);
1065	loff_t			new_size = 0;
1066	int			error;
1067
1068	/*
1069	 * If always_cow mode we can't use preallocations and thus should not
1070	 * create them.
1071	 */
1072	if (xfs_is_always_cow_inode(XFS_I(inode)))
1073		return -EOPNOTSUPP;
1074
1075	error = xfs_falloc_newsize(file, mode, offset, len, &new_size);
1076	if (error)
1077		return error;
1078
1079	error = xfs_alloc_file_space(XFS_I(inode), offset, len);
1080	if (error)
1081		return error;
1082	return xfs_falloc_setsize(file, new_size);
1083}
1084
1085#define	XFS_FALLOC_FL_SUPPORTED						\
1086		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
1087		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
1088		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
1089
1090STATIC long
1091xfs_file_fallocate(
1092	struct file		*file,
1093	int			mode,
1094	loff_t			offset,
1095	loff_t			len)
1096{
1097	struct inode		*inode = file_inode(file);
1098	struct xfs_inode	*ip = XFS_I(inode);
 
1099	long			error;
1100	uint			iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
1101
1102	if (!S_ISREG(inode->i_mode))
1103		return -EINVAL;
1104	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
 
1105		return -EOPNOTSUPP;
1106
1107	xfs_ilock(ip, iolock);
1108	error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
1109	if (error)
1110		goto out_unlock;
1111
1112	/*
1113	 * Must wait for all AIO to complete before we continue as AIO can
1114	 * change the file size on completion without holding any locks we
1115	 * currently hold. We must do this first because AIO can update both
1116	 * the on disk and in memory inode sizes, and the operations that follow
1117	 * require the in-memory size to be fully up-to-date.
1118	 */
1119	inode_dio_wait(inode);
1120
1121	error = file_modified(file);
1122	if (error)
1123		goto out_unlock;
1124
1125	switch (mode & FALLOC_FL_MODE_MASK) {
1126	case FALLOC_FL_PUNCH_HOLE:
1127		error = xfs_free_file_space(ip, offset, len);
1128		break;
1129	case FALLOC_FL_COLLAPSE_RANGE:
1130		error = xfs_falloc_collapse_range(file, offset, len);
1131		break;
1132	case FALLOC_FL_INSERT_RANGE:
1133		error = xfs_falloc_insert_range(file, offset, len);
1134		break;
1135	case FALLOC_FL_ZERO_RANGE:
1136		error = xfs_falloc_zero_range(file, mode, offset, len);
1137		break;
1138	case FALLOC_FL_UNSHARE_RANGE:
1139		error = xfs_falloc_unshare_range(file, mode, offset, len);
1140		break;
1141	case FALLOC_FL_ALLOCATE_RANGE:
1142		error = xfs_falloc_allocate_range(file, mode, offset, len);
1143		break;
1144	default:
1145		error = -EOPNOTSUPP;
1146		break;
1147	}
1148
1149	if (!error && xfs_file_sync_writes(file))
1150		error = xfs_log_force_inode(ip);
 
 
 
 
 
 
1151
1152out_unlock:
1153	xfs_iunlock(ip, iolock);
1154	return error;
1155}
1156
1157STATIC int
1158xfs_file_fadvise(
1159	struct file	*file,
1160	loff_t		start,
1161	loff_t		end,
1162	int		advice)
1163{
1164	struct xfs_inode *ip = XFS_I(file_inode(file));
1165	int ret;
1166	int lockflags = 0;
 
1167
1168	/*
1169	 * Operations creating pages in page cache need protection from hole
1170	 * punching and similar ops
1171	 */
1172	if (advice == POSIX_FADV_WILLNEED) {
1173		lockflags = XFS_IOLOCK_SHARED;
1174		xfs_ilock(ip, lockflags);
1175	}
1176	ret = generic_fadvise(file, start, end, advice);
1177	if (lockflags)
1178		xfs_iunlock(ip, lockflags);
1179	return ret;
1180}
1181
1182STATIC loff_t
1183xfs_file_remap_range(
1184	struct file		*file_in,
1185	loff_t			pos_in,
1186	struct file		*file_out,
1187	loff_t			pos_out,
1188	loff_t			len,
1189	unsigned int		remap_flags)
1190{
1191	struct inode		*inode_in = file_inode(file_in);
1192	struct xfs_inode	*src = XFS_I(inode_in);
1193	struct inode		*inode_out = file_inode(file_out);
1194	struct xfs_inode	*dest = XFS_I(inode_out);
1195	struct xfs_mount	*mp = src->i_mount;
1196	loff_t			remapped = 0;
1197	xfs_extlen_t		cowextsize;
1198	int			ret;
1199
1200	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
1201		return -EINVAL;
1202
1203	if (!xfs_has_reflink(mp))
1204		return -EOPNOTSUPP;
1205
1206	if (xfs_is_shutdown(mp))
1207		return -EIO;
1208
1209	/* Prepare and then clone file data. */
1210	ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1211			&len, remap_flags);
1212	if (ret || len == 0)
1213		return ret;
1214
1215	trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1216
1217	ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1218			&remapped);
1219	if (ret)
1220		goto out_unlock;
1221
1222	/*
1223	 * Carry the cowextsize hint from src to dest if we're sharing the
1224	 * entire source file to the entire destination file, the source file
1225	 * has a cowextsize hint, and the destination file does not.
1226	 */
1227	cowextsize = 0;
1228	if (pos_in == 0 && len == i_size_read(inode_in) &&
1229	    (src->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1230	    pos_out == 0 && len >= i_size_read(inode_out) &&
1231	    !(dest->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE))
1232		cowextsize = src->i_cowextsize;
1233
1234	ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1235			remap_flags);
1236	if (ret)
1237		goto out_unlock;
1238
1239	if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out))
1240		xfs_log_force_inode(dest);
1241out_unlock:
1242	xfs_iunlock2_remapping(src, dest);
1243	if (ret)
1244		trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1245	/*
1246	 * If the caller did not set CAN_SHORTEN, then it is not prepared to
1247	 * handle partial results -- either the whole remap succeeds, or we
1248	 * must say why it did not.  In this case, any error should be returned
1249	 * to the caller.
1250	 */
1251	if (ret && remapped < len && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
1252		return ret;
1253	return remapped > 0 ? remapped : ret;
1254}
1255
 
1256STATIC int
1257xfs_file_open(
1258	struct inode	*inode,
1259	struct file	*file)
1260{
1261	if (xfs_is_shutdown(XFS_M(inode->i_sb)))
 
 
1262		return -EIO;
1263	file->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT;
1264	if (xfs_inode_can_atomicwrite(XFS_I(inode)))
1265		file->f_mode |= FMODE_CAN_ATOMIC_WRITE;
1266	return generic_file_open(inode, file);
1267}
1268
1269STATIC int
1270xfs_dir_open(
1271	struct inode	*inode,
1272	struct file	*file)
1273{
1274	struct xfs_inode *ip = XFS_I(inode);
1275	unsigned int	mode;
1276	int		error;
1277
1278	if (xfs_is_shutdown(ip->i_mount))
1279		return -EIO;
1280	error = generic_file_open(inode, file);
1281	if (error)
1282		return error;
1283
1284	/*
1285	 * If there are any blocks, read-ahead block 0 as we're almost
1286	 * certain to have the next operation be a read there.
1287	 */
1288	mode = xfs_ilock_data_map_shared(ip);
1289	if (ip->i_df.if_nextents > 0)
1290		error = xfs_dir3_data_readahead(ip, 0, 0);
1291	xfs_iunlock(ip, mode);
1292	return error;
1293}
1294
1295/*
1296 * Don't bother propagating errors.  We're just doing cleanup, and the caller
1297 * ignores the return value anyway.
1298 */
1299STATIC int
1300xfs_file_release(
1301	struct inode		*inode,
1302	struct file		*file)
1303{
1304	struct xfs_inode	*ip = XFS_I(inode);
1305	struct xfs_mount	*mp = ip->i_mount;
1306
1307	/*
1308	 * If this is a read-only mount or the file system has been shut down,
1309	 * don't generate I/O.
1310	 */
1311	if (xfs_is_readonly(mp) || xfs_is_shutdown(mp))
1312		return 0;
1313
1314	/*
1315	 * If we previously truncated this file and removed old data in the
1316	 * process, we want to initiate "early" writeout on the last close.
1317	 * This is an attempt to combat the notorious NULL files problem which
1318	 * is particularly noticeable from a truncate down, buffered (re-)write
1319	 * (delalloc), followed by a crash.  What we are effectively doing here
1320	 * is significantly reducing the time window where we'd otherwise be
1321	 * exposed to that problem.
1322	 */
1323	if (xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED)) {
1324		xfs_iflags_clear(ip, XFS_EOFBLOCKS_RELEASED);
1325		if (ip->i_delayed_blks > 0)
1326			filemap_flush(inode->i_mapping);
1327	}
1328
1329	/*
1330	 * XFS aggressively preallocates post-EOF space to generate contiguous
1331	 * allocations for writers that append to the end of the file.
1332	 *
1333	 * To support workloads that close and reopen the file frequently, these
1334	 * preallocations usually persist after a close unless it is the first
1335	 * close for the inode.  This is a tradeoff to generate tightly packed
1336	 * data layouts for unpacking tarballs or similar archives that write
1337	 * one file after another without going back to it while keeping the
1338	 * preallocation for files that have recurring open/write/close cycles.
1339	 *
1340	 * This heuristic is skipped for inodes with the append-only flag as
1341	 * that flag is rather pointless for inodes written only once.
1342	 *
1343	 * There is no point in freeing blocks here for open but unlinked files
1344	 * as they will be taken care of by the inactivation path soon.
1345	 *
1346	 * When releasing a read-only context, don't flush data or trim post-EOF
1347	 * blocks.  This avoids open/read/close workloads from removing EOF
1348	 * blocks that other writers depend upon to reduce fragmentation.
1349	 *
1350	 * If we can't get the iolock just skip truncating the blocks past EOF
1351	 * because we could deadlock with the mmap_lock otherwise. We'll get
1352	 * another chance to drop them once the last reference to the inode is
1353	 * dropped, so we'll never leak blocks permanently.
1354	 */
1355	if (inode->i_nlink &&
1356	    (file->f_mode & FMODE_WRITE) &&
1357	    !(ip->i_diflags & XFS_DIFLAG_APPEND) &&
1358	    !xfs_iflags_test(ip, XFS_EOFBLOCKS_RELEASED) &&
1359	    xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1360		if (xfs_can_free_eofblocks(ip) &&
1361		    !xfs_iflags_test_and_set(ip, XFS_EOFBLOCKS_RELEASED))
1362			xfs_free_eofblocks(ip);
1363		xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1364	}
1365
1366	return 0;
1367}
1368
1369STATIC int
1370xfs_file_readdir(
1371	struct file	*file,
1372	struct dir_context *ctx)
1373{
1374	struct inode	*inode = file_inode(file);
1375	xfs_inode_t	*ip = XFS_I(inode);
 
1376	size_t		bufsize;
1377
1378	/*
1379	 * The Linux API doesn't pass down the total size of the buffer
1380	 * we read into down to the filesystem.  With the filldir concept
1381	 * it's not needed for correct information, but the XFS dir2 leaf
1382	 * code wants an estimate of the buffer size to calculate it's
1383	 * readahead window and size the buffers used for mapping to
1384	 * physical blocks.
1385	 *
1386	 * Try to give it an estimate that's good enough, maybe at some
1387	 * point we can change the ->readdir prototype to include the
1388	 * buffer size.  For now we use the current glibc buffer size.
1389	 */
1390	bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_disk_size);
1391
1392	return xfs_readdir(NULL, ip, ctx, bufsize);
 
 
 
1393}
1394
1395STATIC loff_t
1396xfs_file_llseek(
1397	struct file	*file,
1398	loff_t		offset,
1399	int		whence)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1400{
1401	struct inode		*inode = file->f_mapping->host;
 
1402
1403	if (xfs_is_shutdown(XFS_I(inode)->i_mount))
1404		return -EIO;
 
 
 
 
 
 
1405
1406	switch (whence) {
1407	default:
1408		return generic_file_llseek(file, offset, whence);
1409	case SEEK_HOLE:
1410		offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1411		break;
1412	case SEEK_DATA:
1413		offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1414		break;
1415	}
 
 
 
 
 
 
1416
1417	if (offset < 0)
1418		return offset;
1419	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1420}
1421
1422static inline vm_fault_t
1423xfs_dax_fault_locked(
1424	struct vm_fault		*vmf,
1425	unsigned int		order,
1426	bool			write_fault)
1427{
1428	vm_fault_t		ret;
1429	pfn_t			pfn;
1430
1431	if (!IS_ENABLED(CONFIG_FS_DAX)) {
1432		ASSERT(0);
1433		return VM_FAULT_SIGBUS;
1434	}
1435	ret = dax_iomap_fault(vmf, order, &pfn, NULL,
1436			(write_fault && !vmf->cow_page) ?
1437				&xfs_dax_write_iomap_ops :
1438				&xfs_read_iomap_ops);
1439	if (ret & VM_FAULT_NEEDDSYNC)
1440		ret = dax_finish_sync_fault(vmf, order, pfn);
1441	return ret;
1442}
1443
1444static vm_fault_t
1445xfs_dax_read_fault(
1446	struct vm_fault		*vmf,
1447	unsigned int		order)
1448{
1449	struct xfs_inode	*ip = XFS_I(file_inode(vmf->vma->vm_file));
1450	vm_fault_t		ret;
1451
1452	trace_xfs_read_fault(ip, order);
1453
1454	xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1455	ret = xfs_dax_fault_locked(vmf, order, false);
1456	xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1457
1458	return ret;
1459}
1460
1461/*
1462 * Locking for serialisation of IO during page faults. This results in a lock
1463 * ordering of:
 
1464 *
1465 * mmap_lock (MM)
1466 *   sb_start_pagefault(vfs, freeze)
1467 *     invalidate_lock (vfs/XFS_MMAPLOCK - truncate serialisation)
1468 *       page_lock (MM)
1469 *         i_lock (XFS - extent map serialisation)
 
 
1470 */
1471static vm_fault_t
1472xfs_write_fault(
1473	struct vm_fault		*vmf,
1474	unsigned int		order)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1475{
1476	struct inode		*inode = file_inode(vmf->vma->vm_file);
1477	struct xfs_inode	*ip = XFS_I(inode);
1478	unsigned int		lock_mode = XFS_MMAPLOCK_SHARED;
1479	vm_fault_t		ret;
 
 
 
 
 
1480
1481	trace_xfs_write_fault(ip, order);
1482
1483	sb_start_pagefault(inode->i_sb);
1484	file_update_time(vmf->vma->vm_file);
 
 
 
1485
1486	/*
1487	 * Normally we only need the shared mmaplock, but if a reflink remap is
1488	 * in progress we take the exclusive lock to wait for the remap to
1489	 * finish before taking a write fault.
1490	 */
1491	xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1492	if (xfs_iflags_test(ip, XFS_IREMAPPING)) {
1493		xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1494		xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1495		lock_mode = XFS_MMAPLOCK_EXCL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1496	}
1497
1498	if (IS_DAX(inode))
1499		ret = xfs_dax_fault_locked(vmf, order, true);
1500	else
1501		ret = iomap_page_mkwrite(vmf, &xfs_buffered_write_iomap_ops);
1502	xfs_iunlock(ip, lock_mode);
1503
1504	sb_end_pagefault(inode->i_sb);
1505	return ret;
 
1506}
1507
1508static inline bool
1509xfs_is_write_fault(
1510	struct vm_fault		*vmf)
 
1511{
1512	return (vmf->flags & FAULT_FLAG_WRITE) &&
1513	       (vmf->vma->vm_flags & VM_SHARED);
1514}
 
 
 
 
 
 
 
 
 
1515
1516static vm_fault_t
1517xfs_filemap_fault(
1518	struct vm_fault		*vmf)
1519{
1520	struct inode		*inode = file_inode(vmf->vma->vm_file);
1521
1522	/* DAX can shortcut the normal fault path on write faults! */
1523	if (IS_DAX(inode)) {
1524		if (xfs_is_write_fault(vmf))
1525			return xfs_write_fault(vmf, 0);
1526		return xfs_dax_read_fault(vmf, 0);
1527	}
1528
1529	trace_xfs_read_fault(XFS_I(inode), 0);
1530	return filemap_fault(vmf);
1531}
 
 
 
 
1532
1533static vm_fault_t
1534xfs_filemap_huge_fault(
1535	struct vm_fault		*vmf,
1536	unsigned int		order)
1537{
1538	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1539		return VM_FAULT_FALLBACK;
1540
1541	/* DAX can shortcut the normal fault path on write faults! */
1542	if (xfs_is_write_fault(vmf))
1543		return xfs_write_fault(vmf, order);
1544	return xfs_dax_read_fault(vmf, order);
1545}
1546
1547static vm_fault_t
1548xfs_filemap_page_mkwrite(
1549	struct vm_fault		*vmf)
1550{
1551	return xfs_write_fault(vmf, 0);
1552}
 
 
 
 
 
 
 
 
 
 
 
 
1553
1554/*
1555 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1556 * on write faults. In reality, it needs to serialise against truncate and
1557 * prepare memory for writing so handle is as standard write fault.
1558 */
1559static vm_fault_t
1560xfs_filemap_pfn_mkwrite(
1561	struct vm_fault		*vmf)
1562{
1563	return xfs_write_fault(vmf, 0);
1564}
1565
1566static const struct vm_operations_struct xfs_file_vm_ops = {
1567	.fault		= xfs_filemap_fault,
1568	.huge_fault	= xfs_filemap_huge_fault,
1569	.map_pages	= filemap_map_pages,
1570	.page_mkwrite	= xfs_filemap_page_mkwrite,
1571	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1572};
1573
1574STATIC int
1575xfs_file_mmap(
1576	struct file		*file,
1577	struct vm_area_struct	*vma)
1578{
1579	struct inode		*inode = file_inode(file);
1580	struct xfs_buftarg	*target = xfs_inode_buftarg(XFS_I(inode));
 
 
 
 
1581
 
1582	/*
1583	 * We don't support synchronous mappings for non-DAX files and
1584	 * for DAX files if underneath dax_device is not synchronous.
 
 
1585	 */
1586	if (!daxdev_mapping_supported(vma, target->bt_daxdev))
1587		return -EOPNOTSUPP;
 
 
 
 
 
 
 
 
1588
1589	file_accessed(file);
1590	vma->vm_ops = &xfs_file_vm_ops;
1591	if (IS_DAX(inode))
1592		vm_flags_set(vma, VM_HUGEPAGE);
1593	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
1594}
1595
1596const struct file_operations xfs_file_operations = {
1597	.llseek		= xfs_file_llseek,
1598	.read_iter	= xfs_file_read_iter,
1599	.write_iter	= xfs_file_write_iter,
 
 
1600	.splice_read	= xfs_file_splice_read,
1601	.splice_write	= iter_file_splice_write,
1602	.iopoll		= iocb_bio_iopoll,
1603	.unlocked_ioctl	= xfs_file_ioctl,
1604#ifdef CONFIG_COMPAT
1605	.compat_ioctl	= xfs_file_compat_ioctl,
1606#endif
1607	.mmap		= xfs_file_mmap,
1608	.open		= xfs_file_open,
1609	.release	= xfs_file_release,
1610	.fsync		= xfs_file_fsync,
1611	.get_unmapped_area = thp_get_unmapped_area,
1612	.fallocate	= xfs_file_fallocate,
1613	.fadvise	= xfs_file_fadvise,
1614	.remap_file_range = xfs_file_remap_range,
1615	.fop_flags	= FOP_MMAP_SYNC | FOP_BUFFER_RASYNC |
1616			  FOP_BUFFER_WASYNC | FOP_DIO_PARALLEL_WRITE,
1617};
1618
1619const struct file_operations xfs_dir_file_operations = {
1620	.open		= xfs_dir_open,
1621	.read		= generic_read_dir,
1622	.iterate_shared	= xfs_file_readdir,
1623	.llseek		= generic_file_llseek,
1624	.unlocked_ioctl	= xfs_file_ioctl,
1625#ifdef CONFIG_COMPAT
1626	.compat_ioctl	= xfs_file_compat_ioctl,
1627#endif
1628	.fsync		= xfs_dir_fsync,
 
 
 
 
 
 
 
1629};