Loading...
1/*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * http://www.ecma.ch/
15 * http://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41#include "udfdecl.h"
42
43#include <linux/blkdev.h>
44#include <linux/slab.h>
45#include <linux/kernel.h>
46#include <linux/module.h>
47#include <linux/parser.h>
48#include <linux/stat.h>
49#include <linux/cdrom.h>
50#include <linux/nls.h>
51#include <linux/buffer_head.h>
52#include <linux/vfs.h>
53#include <linux/vmalloc.h>
54#include <linux/errno.h>
55#include <linux/mount.h>
56#include <linux/seq_file.h>
57#include <linux/bitmap.h>
58#include <linux/crc-itu-t.h>
59#include <linux/log2.h>
60#include <asm/byteorder.h>
61
62#include "udf_sb.h"
63#include "udf_i.h"
64
65#include <linux/init.h>
66#include <asm/uaccess.h>
67
68#define VDS_POS_PRIMARY_VOL_DESC 0
69#define VDS_POS_UNALLOC_SPACE_DESC 1
70#define VDS_POS_LOGICAL_VOL_DESC 2
71#define VDS_POS_PARTITION_DESC 3
72#define VDS_POS_IMP_USE_VOL_DESC 4
73#define VDS_POS_VOL_DESC_PTR 5
74#define VDS_POS_TERMINATING_DESC 6
75#define VDS_POS_LENGTH 7
76
77#define UDF_DEFAULT_BLOCKSIZE 2048
78
79#define VSD_FIRST_SECTOR_OFFSET 32768
80#define VSD_MAX_SECTOR_OFFSET 0x800000
81
82enum { UDF_MAX_LINKS = 0xffff };
83
84/* These are the "meat" - everything else is stuffing */
85static int udf_fill_super(struct super_block *, void *, int);
86static void udf_put_super(struct super_block *);
87static int udf_sync_fs(struct super_block *, int);
88static int udf_remount_fs(struct super_block *, int *, char *);
89static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
90static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
91 struct kernel_lb_addr *);
92static void udf_load_fileset(struct super_block *, struct buffer_head *,
93 struct kernel_lb_addr *);
94static void udf_open_lvid(struct super_block *);
95static void udf_close_lvid(struct super_block *);
96static unsigned int udf_count_free(struct super_block *);
97static int udf_statfs(struct dentry *, struct kstatfs *);
98static int udf_show_options(struct seq_file *, struct dentry *);
99
100struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
101{
102 struct logicalVolIntegrityDesc *lvid;
103 unsigned int partnum;
104 unsigned int offset;
105
106 if (!UDF_SB(sb)->s_lvid_bh)
107 return NULL;
108 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
109 partnum = le32_to_cpu(lvid->numOfPartitions);
110 if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
111 offsetof(struct logicalVolIntegrityDesc, impUse)) /
112 (2 * sizeof(uint32_t)) < partnum) {
113 udf_err(sb, "Logical volume integrity descriptor corrupted "
114 "(numOfPartitions = %u)!\n", partnum);
115 return NULL;
116 }
117 /* The offset is to skip freeSpaceTable and sizeTable arrays */
118 offset = partnum * 2 * sizeof(uint32_t);
119 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
120}
121
122/* UDF filesystem type */
123static struct dentry *udf_mount(struct file_system_type *fs_type,
124 int flags, const char *dev_name, void *data)
125{
126 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
127}
128
129static struct file_system_type udf_fstype = {
130 .owner = THIS_MODULE,
131 .name = "udf",
132 .mount = udf_mount,
133 .kill_sb = kill_block_super,
134 .fs_flags = FS_REQUIRES_DEV,
135};
136MODULE_ALIAS_FS("udf");
137
138static struct kmem_cache *udf_inode_cachep;
139
140static struct inode *udf_alloc_inode(struct super_block *sb)
141{
142 struct udf_inode_info *ei;
143 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
144 if (!ei)
145 return NULL;
146
147 ei->i_unique = 0;
148 ei->i_lenExtents = 0;
149 ei->i_next_alloc_block = 0;
150 ei->i_next_alloc_goal = 0;
151 ei->i_strat4096 = 0;
152 init_rwsem(&ei->i_data_sem);
153 ei->cached_extent.lstart = -1;
154 spin_lock_init(&ei->i_extent_cache_lock);
155
156 return &ei->vfs_inode;
157}
158
159static void udf_i_callback(struct rcu_head *head)
160{
161 struct inode *inode = container_of(head, struct inode, i_rcu);
162 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
163}
164
165static void udf_destroy_inode(struct inode *inode)
166{
167 call_rcu(&inode->i_rcu, udf_i_callback);
168}
169
170static void init_once(void *foo)
171{
172 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
173
174 ei->i_ext.i_data = NULL;
175 inode_init_once(&ei->vfs_inode);
176}
177
178static int __init init_inodecache(void)
179{
180 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
181 sizeof(struct udf_inode_info),
182 0, (SLAB_RECLAIM_ACCOUNT |
183 SLAB_MEM_SPREAD),
184 init_once);
185 if (!udf_inode_cachep)
186 return -ENOMEM;
187 return 0;
188}
189
190static void destroy_inodecache(void)
191{
192 /*
193 * Make sure all delayed rcu free inodes are flushed before we
194 * destroy cache.
195 */
196 rcu_barrier();
197 kmem_cache_destroy(udf_inode_cachep);
198}
199
200/* Superblock operations */
201static const struct super_operations udf_sb_ops = {
202 .alloc_inode = udf_alloc_inode,
203 .destroy_inode = udf_destroy_inode,
204 .write_inode = udf_write_inode,
205 .evict_inode = udf_evict_inode,
206 .put_super = udf_put_super,
207 .sync_fs = udf_sync_fs,
208 .statfs = udf_statfs,
209 .remount_fs = udf_remount_fs,
210 .show_options = udf_show_options,
211};
212
213struct udf_options {
214 unsigned char novrs;
215 unsigned int blocksize;
216 unsigned int session;
217 unsigned int lastblock;
218 unsigned int anchor;
219 unsigned int volume;
220 unsigned short partition;
221 unsigned int fileset;
222 unsigned int rootdir;
223 unsigned int flags;
224 umode_t umask;
225 kgid_t gid;
226 kuid_t uid;
227 umode_t fmode;
228 umode_t dmode;
229 struct nls_table *nls_map;
230};
231
232static int __init init_udf_fs(void)
233{
234 int err;
235
236 err = init_inodecache();
237 if (err)
238 goto out1;
239 err = register_filesystem(&udf_fstype);
240 if (err)
241 goto out;
242
243 return 0;
244
245out:
246 destroy_inodecache();
247
248out1:
249 return err;
250}
251
252static void __exit exit_udf_fs(void)
253{
254 unregister_filesystem(&udf_fstype);
255 destroy_inodecache();
256}
257
258module_init(init_udf_fs)
259module_exit(exit_udf_fs)
260
261static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
262{
263 struct udf_sb_info *sbi = UDF_SB(sb);
264
265 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
266 GFP_KERNEL);
267 if (!sbi->s_partmaps) {
268 udf_err(sb, "Unable to allocate space for %d partition maps\n",
269 count);
270 sbi->s_partitions = 0;
271 return -ENOMEM;
272 }
273
274 sbi->s_partitions = count;
275 return 0;
276}
277
278static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
279{
280 int i;
281 int nr_groups = bitmap->s_nr_groups;
282 int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
283 nr_groups);
284
285 for (i = 0; i < nr_groups; i++)
286 if (bitmap->s_block_bitmap[i])
287 brelse(bitmap->s_block_bitmap[i]);
288
289 if (size <= PAGE_SIZE)
290 kfree(bitmap);
291 else
292 vfree(bitmap);
293}
294
295static void udf_free_partition(struct udf_part_map *map)
296{
297 int i;
298 struct udf_meta_data *mdata;
299
300 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
301 iput(map->s_uspace.s_table);
302 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
303 iput(map->s_fspace.s_table);
304 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
305 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
306 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
307 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
308 if (map->s_partition_type == UDF_SPARABLE_MAP15)
309 for (i = 0; i < 4; i++)
310 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
311 else if (map->s_partition_type == UDF_METADATA_MAP25) {
312 mdata = &map->s_type_specific.s_metadata;
313 iput(mdata->s_metadata_fe);
314 mdata->s_metadata_fe = NULL;
315
316 iput(mdata->s_mirror_fe);
317 mdata->s_mirror_fe = NULL;
318
319 iput(mdata->s_bitmap_fe);
320 mdata->s_bitmap_fe = NULL;
321 }
322}
323
324static void udf_sb_free_partitions(struct super_block *sb)
325{
326 struct udf_sb_info *sbi = UDF_SB(sb);
327 int i;
328 if (sbi->s_partmaps == NULL)
329 return;
330 for (i = 0; i < sbi->s_partitions; i++)
331 udf_free_partition(&sbi->s_partmaps[i]);
332 kfree(sbi->s_partmaps);
333 sbi->s_partmaps = NULL;
334}
335
336static int udf_show_options(struct seq_file *seq, struct dentry *root)
337{
338 struct super_block *sb = root->d_sb;
339 struct udf_sb_info *sbi = UDF_SB(sb);
340
341 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
342 seq_puts(seq, ",nostrict");
343 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
344 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
345 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
346 seq_puts(seq, ",unhide");
347 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
348 seq_puts(seq, ",undelete");
349 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
350 seq_puts(seq, ",noadinicb");
351 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
352 seq_puts(seq, ",shortad");
353 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
354 seq_puts(seq, ",uid=forget");
355 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
356 seq_puts(seq, ",uid=ignore");
357 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
358 seq_puts(seq, ",gid=forget");
359 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
360 seq_puts(seq, ",gid=ignore");
361 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
362 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
363 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
364 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
365 if (sbi->s_umask != 0)
366 seq_printf(seq, ",umask=%ho", sbi->s_umask);
367 if (sbi->s_fmode != UDF_INVALID_MODE)
368 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
369 if (sbi->s_dmode != UDF_INVALID_MODE)
370 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
371 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
372 seq_printf(seq, ",session=%u", sbi->s_session);
373 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
374 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
375 if (sbi->s_anchor != 0)
376 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
377 /*
378 * volume, partition, fileset and rootdir seem to be ignored
379 * currently
380 */
381 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
382 seq_puts(seq, ",utf8");
383 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
384 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
385
386 return 0;
387}
388
389/*
390 * udf_parse_options
391 *
392 * PURPOSE
393 * Parse mount options.
394 *
395 * DESCRIPTION
396 * The following mount options are supported:
397 *
398 * gid= Set the default group.
399 * umask= Set the default umask.
400 * mode= Set the default file permissions.
401 * dmode= Set the default directory permissions.
402 * uid= Set the default user.
403 * bs= Set the block size.
404 * unhide Show otherwise hidden files.
405 * undelete Show deleted files in lists.
406 * adinicb Embed data in the inode (default)
407 * noadinicb Don't embed data in the inode
408 * shortad Use short ad's
409 * longad Use long ad's (default)
410 * nostrict Unset strict conformance
411 * iocharset= Set the NLS character set
412 *
413 * The remaining are for debugging and disaster recovery:
414 *
415 * novrs Skip volume sequence recognition
416 *
417 * The following expect a offset from 0.
418 *
419 * session= Set the CDROM session (default= last session)
420 * anchor= Override standard anchor location. (default= 256)
421 * volume= Override the VolumeDesc location. (unused)
422 * partition= Override the PartitionDesc location. (unused)
423 * lastblock= Set the last block of the filesystem/
424 *
425 * The following expect a offset from the partition root.
426 *
427 * fileset= Override the fileset block location. (unused)
428 * rootdir= Override the root directory location. (unused)
429 * WARNING: overriding the rootdir to a non-directory may
430 * yield highly unpredictable results.
431 *
432 * PRE-CONDITIONS
433 * options Pointer to mount options string.
434 * uopts Pointer to mount options variable.
435 *
436 * POST-CONDITIONS
437 * <return> 1 Mount options parsed okay.
438 * <return> 0 Error parsing mount options.
439 *
440 * HISTORY
441 * July 1, 1997 - Andrew E. Mileski
442 * Written, tested, and released.
443 */
444
445enum {
446 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
447 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
448 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
449 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
450 Opt_rootdir, Opt_utf8, Opt_iocharset,
451 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
452 Opt_fmode, Opt_dmode
453};
454
455static const match_table_t tokens = {
456 {Opt_novrs, "novrs"},
457 {Opt_nostrict, "nostrict"},
458 {Opt_bs, "bs=%u"},
459 {Opt_unhide, "unhide"},
460 {Opt_undelete, "undelete"},
461 {Opt_noadinicb, "noadinicb"},
462 {Opt_adinicb, "adinicb"},
463 {Opt_shortad, "shortad"},
464 {Opt_longad, "longad"},
465 {Opt_uforget, "uid=forget"},
466 {Opt_uignore, "uid=ignore"},
467 {Opt_gforget, "gid=forget"},
468 {Opt_gignore, "gid=ignore"},
469 {Opt_gid, "gid=%u"},
470 {Opt_uid, "uid=%u"},
471 {Opt_umask, "umask=%o"},
472 {Opt_session, "session=%u"},
473 {Opt_lastblock, "lastblock=%u"},
474 {Opt_anchor, "anchor=%u"},
475 {Opt_volume, "volume=%u"},
476 {Opt_partition, "partition=%u"},
477 {Opt_fileset, "fileset=%u"},
478 {Opt_rootdir, "rootdir=%u"},
479 {Opt_utf8, "utf8"},
480 {Opt_iocharset, "iocharset=%s"},
481 {Opt_fmode, "mode=%o"},
482 {Opt_dmode, "dmode=%o"},
483 {Opt_err, NULL}
484};
485
486static int udf_parse_options(char *options, struct udf_options *uopt,
487 bool remount)
488{
489 char *p;
490 int option;
491
492 uopt->novrs = 0;
493 uopt->partition = 0xFFFF;
494 uopt->session = 0xFFFFFFFF;
495 uopt->lastblock = 0;
496 uopt->anchor = 0;
497 uopt->volume = 0xFFFFFFFF;
498 uopt->rootdir = 0xFFFFFFFF;
499 uopt->fileset = 0xFFFFFFFF;
500 uopt->nls_map = NULL;
501
502 if (!options)
503 return 1;
504
505 while ((p = strsep(&options, ",")) != NULL) {
506 substring_t args[MAX_OPT_ARGS];
507 int token;
508 unsigned n;
509 if (!*p)
510 continue;
511
512 token = match_token(p, tokens, args);
513 switch (token) {
514 case Opt_novrs:
515 uopt->novrs = 1;
516 break;
517 case Opt_bs:
518 if (match_int(&args[0], &option))
519 return 0;
520 n = option;
521 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
522 return 0;
523 uopt->blocksize = n;
524 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
525 break;
526 case Opt_unhide:
527 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
528 break;
529 case Opt_undelete:
530 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
531 break;
532 case Opt_noadinicb:
533 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
534 break;
535 case Opt_adinicb:
536 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
537 break;
538 case Opt_shortad:
539 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
540 break;
541 case Opt_longad:
542 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
543 break;
544 case Opt_gid:
545 if (match_int(args, &option))
546 return 0;
547 uopt->gid = make_kgid(current_user_ns(), option);
548 if (!gid_valid(uopt->gid))
549 return 0;
550 uopt->flags |= (1 << UDF_FLAG_GID_SET);
551 break;
552 case Opt_uid:
553 if (match_int(args, &option))
554 return 0;
555 uopt->uid = make_kuid(current_user_ns(), option);
556 if (!uid_valid(uopt->uid))
557 return 0;
558 uopt->flags |= (1 << UDF_FLAG_UID_SET);
559 break;
560 case Opt_umask:
561 if (match_octal(args, &option))
562 return 0;
563 uopt->umask = option;
564 break;
565 case Opt_nostrict:
566 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
567 break;
568 case Opt_session:
569 if (match_int(args, &option))
570 return 0;
571 uopt->session = option;
572 if (!remount)
573 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
574 break;
575 case Opt_lastblock:
576 if (match_int(args, &option))
577 return 0;
578 uopt->lastblock = option;
579 if (!remount)
580 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
581 break;
582 case Opt_anchor:
583 if (match_int(args, &option))
584 return 0;
585 uopt->anchor = option;
586 break;
587 case Opt_volume:
588 if (match_int(args, &option))
589 return 0;
590 uopt->volume = option;
591 break;
592 case Opt_partition:
593 if (match_int(args, &option))
594 return 0;
595 uopt->partition = option;
596 break;
597 case Opt_fileset:
598 if (match_int(args, &option))
599 return 0;
600 uopt->fileset = option;
601 break;
602 case Opt_rootdir:
603 if (match_int(args, &option))
604 return 0;
605 uopt->rootdir = option;
606 break;
607 case Opt_utf8:
608 uopt->flags |= (1 << UDF_FLAG_UTF8);
609 break;
610#ifdef CONFIG_UDF_NLS
611 case Opt_iocharset:
612 uopt->nls_map = load_nls(args[0].from);
613 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
614 break;
615#endif
616 case Opt_uignore:
617 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
618 break;
619 case Opt_uforget:
620 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
621 break;
622 case Opt_gignore:
623 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
624 break;
625 case Opt_gforget:
626 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
627 break;
628 case Opt_fmode:
629 if (match_octal(args, &option))
630 return 0;
631 uopt->fmode = option & 0777;
632 break;
633 case Opt_dmode:
634 if (match_octal(args, &option))
635 return 0;
636 uopt->dmode = option & 0777;
637 break;
638 default:
639 pr_err("bad mount option \"%s\" or missing value\n", p);
640 return 0;
641 }
642 }
643 return 1;
644}
645
646static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
647{
648 struct udf_options uopt;
649 struct udf_sb_info *sbi = UDF_SB(sb);
650 int error = 0;
651 struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
652
653 sync_filesystem(sb);
654 if (lvidiu) {
655 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
656 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
657 return -EACCES;
658 }
659
660 uopt.flags = sbi->s_flags;
661 uopt.uid = sbi->s_uid;
662 uopt.gid = sbi->s_gid;
663 uopt.umask = sbi->s_umask;
664 uopt.fmode = sbi->s_fmode;
665 uopt.dmode = sbi->s_dmode;
666
667 if (!udf_parse_options(options, &uopt, true))
668 return -EINVAL;
669
670 write_lock(&sbi->s_cred_lock);
671 sbi->s_flags = uopt.flags;
672 sbi->s_uid = uopt.uid;
673 sbi->s_gid = uopt.gid;
674 sbi->s_umask = uopt.umask;
675 sbi->s_fmode = uopt.fmode;
676 sbi->s_dmode = uopt.dmode;
677 write_unlock(&sbi->s_cred_lock);
678
679 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
680 goto out_unlock;
681
682 if (*flags & MS_RDONLY)
683 udf_close_lvid(sb);
684 else
685 udf_open_lvid(sb);
686
687out_unlock:
688 return error;
689}
690
691/* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
692/* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
693static loff_t udf_check_vsd(struct super_block *sb)
694{
695 struct volStructDesc *vsd = NULL;
696 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
697 int sectorsize;
698 struct buffer_head *bh = NULL;
699 int nsr02 = 0;
700 int nsr03 = 0;
701 struct udf_sb_info *sbi;
702
703 sbi = UDF_SB(sb);
704 if (sb->s_blocksize < sizeof(struct volStructDesc))
705 sectorsize = sizeof(struct volStructDesc);
706 else
707 sectorsize = sb->s_blocksize;
708
709 sector += (sbi->s_session << sb->s_blocksize_bits);
710
711 udf_debug("Starting at sector %u (%ld byte sectors)\n",
712 (unsigned int)(sector >> sb->s_blocksize_bits),
713 sb->s_blocksize);
714 /* Process the sequence (if applicable). The hard limit on the sector
715 * offset is arbitrary, hopefully large enough so that all valid UDF
716 * filesystems will be recognised. There is no mention of an upper
717 * bound to the size of the volume recognition area in the standard.
718 * The limit will prevent the code to read all the sectors of a
719 * specially crafted image (like a bluray disc full of CD001 sectors),
720 * potentially causing minutes or even hours of uninterruptible I/O
721 * activity. This actually happened with uninitialised SSD partitions
722 * (all 0xFF) before the check for the limit and all valid IDs were
723 * added */
724 for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
725 sector += sectorsize) {
726 /* Read a block */
727 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
728 if (!bh)
729 break;
730
731 /* Look for ISO descriptors */
732 vsd = (struct volStructDesc *)(bh->b_data +
733 (sector & (sb->s_blocksize - 1)));
734
735 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
736 VSD_STD_ID_LEN)) {
737 switch (vsd->structType) {
738 case 0:
739 udf_debug("ISO9660 Boot Record found\n");
740 break;
741 case 1:
742 udf_debug("ISO9660 Primary Volume Descriptor found\n");
743 break;
744 case 2:
745 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
746 break;
747 case 3:
748 udf_debug("ISO9660 Volume Partition Descriptor found\n");
749 break;
750 case 255:
751 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
752 break;
753 default:
754 udf_debug("ISO9660 VRS (%u) found\n",
755 vsd->structType);
756 break;
757 }
758 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
759 VSD_STD_ID_LEN))
760 ; /* nothing */
761 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
762 VSD_STD_ID_LEN)) {
763 brelse(bh);
764 break;
765 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
766 VSD_STD_ID_LEN))
767 nsr02 = sector;
768 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
769 VSD_STD_ID_LEN))
770 nsr03 = sector;
771 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
772 VSD_STD_ID_LEN))
773 ; /* nothing */
774 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
775 VSD_STD_ID_LEN))
776 ; /* nothing */
777 else {
778 /* invalid id : end of volume recognition area */
779 brelse(bh);
780 break;
781 }
782 brelse(bh);
783 }
784
785 if (nsr03)
786 return nsr03;
787 else if (nsr02)
788 return nsr02;
789 else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
790 VSD_FIRST_SECTOR_OFFSET)
791 return -1;
792 else
793 return 0;
794}
795
796static int udf_find_fileset(struct super_block *sb,
797 struct kernel_lb_addr *fileset,
798 struct kernel_lb_addr *root)
799{
800 struct buffer_head *bh = NULL;
801 long lastblock;
802 uint16_t ident;
803 struct udf_sb_info *sbi;
804
805 if (fileset->logicalBlockNum != 0xFFFFFFFF ||
806 fileset->partitionReferenceNum != 0xFFFF) {
807 bh = udf_read_ptagged(sb, fileset, 0, &ident);
808
809 if (!bh) {
810 return 1;
811 } else if (ident != TAG_IDENT_FSD) {
812 brelse(bh);
813 return 1;
814 }
815
816 }
817
818 sbi = UDF_SB(sb);
819 if (!bh) {
820 /* Search backwards through the partitions */
821 struct kernel_lb_addr newfileset;
822
823/* --> cvg: FIXME - is it reasonable? */
824 return 1;
825
826 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
827 (newfileset.partitionReferenceNum != 0xFFFF &&
828 fileset->logicalBlockNum == 0xFFFFFFFF &&
829 fileset->partitionReferenceNum == 0xFFFF);
830 newfileset.partitionReferenceNum--) {
831 lastblock = sbi->s_partmaps
832 [newfileset.partitionReferenceNum]
833 .s_partition_len;
834 newfileset.logicalBlockNum = 0;
835
836 do {
837 bh = udf_read_ptagged(sb, &newfileset, 0,
838 &ident);
839 if (!bh) {
840 newfileset.logicalBlockNum++;
841 continue;
842 }
843
844 switch (ident) {
845 case TAG_IDENT_SBD:
846 {
847 struct spaceBitmapDesc *sp;
848 sp = (struct spaceBitmapDesc *)
849 bh->b_data;
850 newfileset.logicalBlockNum += 1 +
851 ((le32_to_cpu(sp->numOfBytes) +
852 sizeof(struct spaceBitmapDesc)
853 - 1) >> sb->s_blocksize_bits);
854 brelse(bh);
855 break;
856 }
857 case TAG_IDENT_FSD:
858 *fileset = newfileset;
859 break;
860 default:
861 newfileset.logicalBlockNum++;
862 brelse(bh);
863 bh = NULL;
864 break;
865 }
866 } while (newfileset.logicalBlockNum < lastblock &&
867 fileset->logicalBlockNum == 0xFFFFFFFF &&
868 fileset->partitionReferenceNum == 0xFFFF);
869 }
870 }
871
872 if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
873 fileset->partitionReferenceNum != 0xFFFF) && bh) {
874 udf_debug("Fileset at block=%d, partition=%d\n",
875 fileset->logicalBlockNum,
876 fileset->partitionReferenceNum);
877
878 sbi->s_partition = fileset->partitionReferenceNum;
879 udf_load_fileset(sb, bh, root);
880 brelse(bh);
881 return 0;
882 }
883 return 1;
884}
885
886/*
887 * Load primary Volume Descriptor Sequence
888 *
889 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
890 * should be tried.
891 */
892static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
893{
894 struct primaryVolDesc *pvoldesc;
895 struct ustr *instr, *outstr;
896 struct buffer_head *bh;
897 uint16_t ident;
898 int ret = -ENOMEM;
899
900 instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
901 if (!instr)
902 return -ENOMEM;
903
904 outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
905 if (!outstr)
906 goto out1;
907
908 bh = udf_read_tagged(sb, block, block, &ident);
909 if (!bh) {
910 ret = -EAGAIN;
911 goto out2;
912 }
913
914 if (ident != TAG_IDENT_PVD) {
915 ret = -EIO;
916 goto out_bh;
917 }
918
919 pvoldesc = (struct primaryVolDesc *)bh->b_data;
920
921 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
922 pvoldesc->recordingDateAndTime)) {
923#ifdef UDFFS_DEBUG
924 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
925 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
926 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
927 ts->minute, le16_to_cpu(ts->typeAndTimezone));
928#endif
929 }
930
931 if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
932 if (udf_CS0toUTF8(outstr, instr)) {
933 strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
934 outstr->u_len > 31 ? 31 : outstr->u_len);
935 udf_debug("volIdent[] = '%s'\n",
936 UDF_SB(sb)->s_volume_ident);
937 }
938
939 if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
940 if (udf_CS0toUTF8(outstr, instr))
941 udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
942
943 ret = 0;
944out_bh:
945 brelse(bh);
946out2:
947 kfree(outstr);
948out1:
949 kfree(instr);
950 return ret;
951}
952
953struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
954 u32 meta_file_loc, u32 partition_num)
955{
956 struct kernel_lb_addr addr;
957 struct inode *metadata_fe;
958
959 addr.logicalBlockNum = meta_file_loc;
960 addr.partitionReferenceNum = partition_num;
961
962 metadata_fe = udf_iget(sb, &addr);
963
964 if (metadata_fe == NULL)
965 udf_warn(sb, "metadata inode efe not found\n");
966 else if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
967 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
968 iput(metadata_fe);
969 metadata_fe = NULL;
970 }
971
972 return metadata_fe;
973}
974
975static int udf_load_metadata_files(struct super_block *sb, int partition)
976{
977 struct udf_sb_info *sbi = UDF_SB(sb);
978 struct udf_part_map *map;
979 struct udf_meta_data *mdata;
980 struct kernel_lb_addr addr;
981
982 map = &sbi->s_partmaps[partition];
983 mdata = &map->s_type_specific.s_metadata;
984
985 /* metadata address */
986 udf_debug("Metadata file location: block = %d part = %d\n",
987 mdata->s_meta_file_loc, map->s_partition_num);
988
989 mdata->s_metadata_fe = udf_find_metadata_inode_efe(sb,
990 mdata->s_meta_file_loc, map->s_partition_num);
991
992 if (mdata->s_metadata_fe == NULL) {
993 /* mirror file entry */
994 udf_debug("Mirror metadata file location: block = %d part = %d\n",
995 mdata->s_mirror_file_loc, map->s_partition_num);
996
997 mdata->s_mirror_fe = udf_find_metadata_inode_efe(sb,
998 mdata->s_mirror_file_loc, map->s_partition_num);
999
1000 if (mdata->s_mirror_fe == NULL) {
1001 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
1002 return -EIO;
1003 }
1004 }
1005
1006 /*
1007 * bitmap file entry
1008 * Note:
1009 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1010 */
1011 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1012 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1013 addr.partitionReferenceNum = map->s_partition_num;
1014
1015 udf_debug("Bitmap file location: block = %d part = %d\n",
1016 addr.logicalBlockNum, addr.partitionReferenceNum);
1017
1018 mdata->s_bitmap_fe = udf_iget(sb, &addr);
1019 if (mdata->s_bitmap_fe == NULL) {
1020 if (sb->s_flags & MS_RDONLY)
1021 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1022 else {
1023 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1024 return -EIO;
1025 }
1026 }
1027 }
1028
1029 udf_debug("udf_load_metadata_files Ok\n");
1030 return 0;
1031}
1032
1033static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1034 struct kernel_lb_addr *root)
1035{
1036 struct fileSetDesc *fset;
1037
1038 fset = (struct fileSetDesc *)bh->b_data;
1039
1040 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1041
1042 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1043
1044 udf_debug("Rootdir at block=%d, partition=%d\n",
1045 root->logicalBlockNum, root->partitionReferenceNum);
1046}
1047
1048int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1049{
1050 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1051 return DIV_ROUND_UP(map->s_partition_len +
1052 (sizeof(struct spaceBitmapDesc) << 3),
1053 sb->s_blocksize * 8);
1054}
1055
1056static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1057{
1058 struct udf_bitmap *bitmap;
1059 int nr_groups;
1060 int size;
1061
1062 nr_groups = udf_compute_nr_groups(sb, index);
1063 size = sizeof(struct udf_bitmap) +
1064 (sizeof(struct buffer_head *) * nr_groups);
1065
1066 if (size <= PAGE_SIZE)
1067 bitmap = kzalloc(size, GFP_KERNEL);
1068 else
1069 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1070
1071 if (bitmap == NULL)
1072 return NULL;
1073
1074 bitmap->s_nr_groups = nr_groups;
1075 return bitmap;
1076}
1077
1078static int udf_fill_partdesc_info(struct super_block *sb,
1079 struct partitionDesc *p, int p_index)
1080{
1081 struct udf_part_map *map;
1082 struct udf_sb_info *sbi = UDF_SB(sb);
1083 struct partitionHeaderDesc *phd;
1084
1085 map = &sbi->s_partmaps[p_index];
1086
1087 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1088 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1089
1090 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1091 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1092 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1093 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1094 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1095 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1096 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1097 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1098
1099 udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1100 p_index, map->s_partition_type,
1101 map->s_partition_root, map->s_partition_len);
1102
1103 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1104 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1105 return 0;
1106
1107 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1108 if (phd->unallocSpaceTable.extLength) {
1109 struct kernel_lb_addr loc = {
1110 .logicalBlockNum = le32_to_cpu(
1111 phd->unallocSpaceTable.extPosition),
1112 .partitionReferenceNum = p_index,
1113 };
1114
1115 map->s_uspace.s_table = udf_iget(sb, &loc);
1116 if (!map->s_uspace.s_table) {
1117 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1118 p_index);
1119 return -EIO;
1120 }
1121 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1122 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1123 p_index, map->s_uspace.s_table->i_ino);
1124 }
1125
1126 if (phd->unallocSpaceBitmap.extLength) {
1127 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1128 if (!bitmap)
1129 return -ENOMEM;
1130 map->s_uspace.s_bitmap = bitmap;
1131 bitmap->s_extPosition = le32_to_cpu(
1132 phd->unallocSpaceBitmap.extPosition);
1133 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1134 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1135 p_index, bitmap->s_extPosition);
1136 }
1137
1138 if (phd->partitionIntegrityTable.extLength)
1139 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1140
1141 if (phd->freedSpaceTable.extLength) {
1142 struct kernel_lb_addr loc = {
1143 .logicalBlockNum = le32_to_cpu(
1144 phd->freedSpaceTable.extPosition),
1145 .partitionReferenceNum = p_index,
1146 };
1147
1148 map->s_fspace.s_table = udf_iget(sb, &loc);
1149 if (!map->s_fspace.s_table) {
1150 udf_debug("cannot load freedSpaceTable (part %d)\n",
1151 p_index);
1152 return -EIO;
1153 }
1154
1155 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1156 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1157 p_index, map->s_fspace.s_table->i_ino);
1158 }
1159
1160 if (phd->freedSpaceBitmap.extLength) {
1161 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1162 if (!bitmap)
1163 return -ENOMEM;
1164 map->s_fspace.s_bitmap = bitmap;
1165 bitmap->s_extPosition = le32_to_cpu(
1166 phd->freedSpaceBitmap.extPosition);
1167 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1168 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1169 p_index, bitmap->s_extPosition);
1170 }
1171 return 0;
1172}
1173
1174static void udf_find_vat_block(struct super_block *sb, int p_index,
1175 int type1_index, sector_t start_block)
1176{
1177 struct udf_sb_info *sbi = UDF_SB(sb);
1178 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1179 sector_t vat_block;
1180 struct kernel_lb_addr ino;
1181
1182 /*
1183 * VAT file entry is in the last recorded block. Some broken disks have
1184 * it a few blocks before so try a bit harder...
1185 */
1186 ino.partitionReferenceNum = type1_index;
1187 for (vat_block = start_block;
1188 vat_block >= map->s_partition_root &&
1189 vat_block >= start_block - 3 &&
1190 !sbi->s_vat_inode; vat_block--) {
1191 ino.logicalBlockNum = vat_block - map->s_partition_root;
1192 sbi->s_vat_inode = udf_iget(sb, &ino);
1193 }
1194}
1195
1196static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1197{
1198 struct udf_sb_info *sbi = UDF_SB(sb);
1199 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1200 struct buffer_head *bh = NULL;
1201 struct udf_inode_info *vati;
1202 uint32_t pos;
1203 struct virtualAllocationTable20 *vat20;
1204 sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1205
1206 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1207 if (!sbi->s_vat_inode &&
1208 sbi->s_last_block != blocks - 1) {
1209 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1210 (unsigned long)sbi->s_last_block,
1211 (unsigned long)blocks - 1);
1212 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1213 }
1214 if (!sbi->s_vat_inode)
1215 return -EIO;
1216
1217 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1218 map->s_type_specific.s_virtual.s_start_offset = 0;
1219 map->s_type_specific.s_virtual.s_num_entries =
1220 (sbi->s_vat_inode->i_size - 36) >> 2;
1221 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1222 vati = UDF_I(sbi->s_vat_inode);
1223 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1224 pos = udf_block_map(sbi->s_vat_inode, 0);
1225 bh = sb_bread(sb, pos);
1226 if (!bh)
1227 return -EIO;
1228 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1229 } else {
1230 vat20 = (struct virtualAllocationTable20 *)
1231 vati->i_ext.i_data;
1232 }
1233
1234 map->s_type_specific.s_virtual.s_start_offset =
1235 le16_to_cpu(vat20->lengthHeader);
1236 map->s_type_specific.s_virtual.s_num_entries =
1237 (sbi->s_vat_inode->i_size -
1238 map->s_type_specific.s_virtual.
1239 s_start_offset) >> 2;
1240 brelse(bh);
1241 }
1242 return 0;
1243}
1244
1245/*
1246 * Load partition descriptor block
1247 *
1248 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1249 * sequence.
1250 */
1251static int udf_load_partdesc(struct super_block *sb, sector_t block)
1252{
1253 struct buffer_head *bh;
1254 struct partitionDesc *p;
1255 struct udf_part_map *map;
1256 struct udf_sb_info *sbi = UDF_SB(sb);
1257 int i, type1_idx;
1258 uint16_t partitionNumber;
1259 uint16_t ident;
1260 int ret;
1261
1262 bh = udf_read_tagged(sb, block, block, &ident);
1263 if (!bh)
1264 return -EAGAIN;
1265 if (ident != TAG_IDENT_PD) {
1266 ret = 0;
1267 goto out_bh;
1268 }
1269
1270 p = (struct partitionDesc *)bh->b_data;
1271 partitionNumber = le16_to_cpu(p->partitionNumber);
1272
1273 /* First scan for TYPE1, SPARABLE and METADATA partitions */
1274 for (i = 0; i < sbi->s_partitions; i++) {
1275 map = &sbi->s_partmaps[i];
1276 udf_debug("Searching map: (%d == %d)\n",
1277 map->s_partition_num, partitionNumber);
1278 if (map->s_partition_num == partitionNumber &&
1279 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1280 map->s_partition_type == UDF_SPARABLE_MAP15))
1281 break;
1282 }
1283
1284 if (i >= sbi->s_partitions) {
1285 udf_debug("Partition (%d) not found in partition map\n",
1286 partitionNumber);
1287 ret = 0;
1288 goto out_bh;
1289 }
1290
1291 ret = udf_fill_partdesc_info(sb, p, i);
1292 if (ret < 0)
1293 goto out_bh;
1294
1295 /*
1296 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1297 * PHYSICAL partitions are already set up
1298 */
1299 type1_idx = i;
1300#ifdef UDFFS_DEBUG
1301 map = NULL; /* supress 'maybe used uninitialized' warning */
1302#endif
1303 for (i = 0; i < sbi->s_partitions; i++) {
1304 map = &sbi->s_partmaps[i];
1305
1306 if (map->s_partition_num == partitionNumber &&
1307 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1308 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1309 map->s_partition_type == UDF_METADATA_MAP25))
1310 break;
1311 }
1312
1313 if (i >= sbi->s_partitions) {
1314 ret = 0;
1315 goto out_bh;
1316 }
1317
1318 ret = udf_fill_partdesc_info(sb, p, i);
1319 if (ret < 0)
1320 goto out_bh;
1321
1322 if (map->s_partition_type == UDF_METADATA_MAP25) {
1323 ret = udf_load_metadata_files(sb, i);
1324 if (ret < 0) {
1325 udf_err(sb, "error loading MetaData partition map %d\n",
1326 i);
1327 goto out_bh;
1328 }
1329 } else {
1330 /*
1331 * If we have a partition with virtual map, we don't handle
1332 * writing to it (we overwrite blocks instead of relocating
1333 * them).
1334 */
1335 if (!(sb->s_flags & MS_RDONLY)) {
1336 ret = -EACCES;
1337 goto out_bh;
1338 }
1339 ret = udf_load_vat(sb, i, type1_idx);
1340 if (ret < 0)
1341 goto out_bh;
1342 }
1343 ret = 0;
1344out_bh:
1345 /* In case loading failed, we handle cleanup in udf_fill_super */
1346 brelse(bh);
1347 return ret;
1348}
1349
1350static int udf_load_sparable_map(struct super_block *sb,
1351 struct udf_part_map *map,
1352 struct sparablePartitionMap *spm)
1353{
1354 uint32_t loc;
1355 uint16_t ident;
1356 struct sparingTable *st;
1357 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1358 int i;
1359 struct buffer_head *bh;
1360
1361 map->s_partition_type = UDF_SPARABLE_MAP15;
1362 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1363 if (!is_power_of_2(sdata->s_packet_len)) {
1364 udf_err(sb, "error loading logical volume descriptor: "
1365 "Invalid packet length %u\n",
1366 (unsigned)sdata->s_packet_len);
1367 return -EIO;
1368 }
1369 if (spm->numSparingTables > 4) {
1370 udf_err(sb, "error loading logical volume descriptor: "
1371 "Too many sparing tables (%d)\n",
1372 (int)spm->numSparingTables);
1373 return -EIO;
1374 }
1375
1376 for (i = 0; i < spm->numSparingTables; i++) {
1377 loc = le32_to_cpu(spm->locSparingTable[i]);
1378 bh = udf_read_tagged(sb, loc, loc, &ident);
1379 if (!bh)
1380 continue;
1381
1382 st = (struct sparingTable *)bh->b_data;
1383 if (ident != 0 ||
1384 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1385 strlen(UDF_ID_SPARING)) ||
1386 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1387 sb->s_blocksize) {
1388 brelse(bh);
1389 continue;
1390 }
1391
1392 sdata->s_spar_map[i] = bh;
1393 }
1394 map->s_partition_func = udf_get_pblock_spar15;
1395 return 0;
1396}
1397
1398static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1399 struct kernel_lb_addr *fileset)
1400{
1401 struct logicalVolDesc *lvd;
1402 int i, offset;
1403 uint8_t type;
1404 struct udf_sb_info *sbi = UDF_SB(sb);
1405 struct genericPartitionMap *gpm;
1406 uint16_t ident;
1407 struct buffer_head *bh;
1408 unsigned int table_len;
1409 int ret;
1410
1411 bh = udf_read_tagged(sb, block, block, &ident);
1412 if (!bh)
1413 return -EAGAIN;
1414 BUG_ON(ident != TAG_IDENT_LVD);
1415 lvd = (struct logicalVolDesc *)bh->b_data;
1416 table_len = le32_to_cpu(lvd->mapTableLength);
1417 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1418 udf_err(sb, "error loading logical volume descriptor: "
1419 "Partition table too long (%u > %lu)\n", table_len,
1420 sb->s_blocksize - sizeof(*lvd));
1421 ret = -EIO;
1422 goto out_bh;
1423 }
1424
1425 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1426 if (ret)
1427 goto out_bh;
1428
1429 for (i = 0, offset = 0;
1430 i < sbi->s_partitions && offset < table_len;
1431 i++, offset += gpm->partitionMapLength) {
1432 struct udf_part_map *map = &sbi->s_partmaps[i];
1433 gpm = (struct genericPartitionMap *)
1434 &(lvd->partitionMaps[offset]);
1435 type = gpm->partitionMapType;
1436 if (type == 1) {
1437 struct genericPartitionMap1 *gpm1 =
1438 (struct genericPartitionMap1 *)gpm;
1439 map->s_partition_type = UDF_TYPE1_MAP15;
1440 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1441 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1442 map->s_partition_func = NULL;
1443 } else if (type == 2) {
1444 struct udfPartitionMap2 *upm2 =
1445 (struct udfPartitionMap2 *)gpm;
1446 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1447 strlen(UDF_ID_VIRTUAL))) {
1448 u16 suf =
1449 le16_to_cpu(((__le16 *)upm2->partIdent.
1450 identSuffix)[0]);
1451 if (suf < 0x0200) {
1452 map->s_partition_type =
1453 UDF_VIRTUAL_MAP15;
1454 map->s_partition_func =
1455 udf_get_pblock_virt15;
1456 } else {
1457 map->s_partition_type =
1458 UDF_VIRTUAL_MAP20;
1459 map->s_partition_func =
1460 udf_get_pblock_virt20;
1461 }
1462 } else if (!strncmp(upm2->partIdent.ident,
1463 UDF_ID_SPARABLE,
1464 strlen(UDF_ID_SPARABLE))) {
1465 ret = udf_load_sparable_map(sb, map,
1466 (struct sparablePartitionMap *)gpm);
1467 if (ret < 0)
1468 goto out_bh;
1469 } else if (!strncmp(upm2->partIdent.ident,
1470 UDF_ID_METADATA,
1471 strlen(UDF_ID_METADATA))) {
1472 struct udf_meta_data *mdata =
1473 &map->s_type_specific.s_metadata;
1474 struct metadataPartitionMap *mdm =
1475 (struct metadataPartitionMap *)
1476 &(lvd->partitionMaps[offset]);
1477 udf_debug("Parsing Logical vol part %d type %d id=%s\n",
1478 i, type, UDF_ID_METADATA);
1479
1480 map->s_partition_type = UDF_METADATA_MAP25;
1481 map->s_partition_func = udf_get_pblock_meta25;
1482
1483 mdata->s_meta_file_loc =
1484 le32_to_cpu(mdm->metadataFileLoc);
1485 mdata->s_mirror_file_loc =
1486 le32_to_cpu(mdm->metadataMirrorFileLoc);
1487 mdata->s_bitmap_file_loc =
1488 le32_to_cpu(mdm->metadataBitmapFileLoc);
1489 mdata->s_alloc_unit_size =
1490 le32_to_cpu(mdm->allocUnitSize);
1491 mdata->s_align_unit_size =
1492 le16_to_cpu(mdm->alignUnitSize);
1493 if (mdm->flags & 0x01)
1494 mdata->s_flags |= MF_DUPLICATE_MD;
1495
1496 udf_debug("Metadata Ident suffix=0x%x\n",
1497 le16_to_cpu(*(__le16 *)
1498 mdm->partIdent.identSuffix));
1499 udf_debug("Metadata part num=%d\n",
1500 le16_to_cpu(mdm->partitionNum));
1501 udf_debug("Metadata part alloc unit size=%d\n",
1502 le32_to_cpu(mdm->allocUnitSize));
1503 udf_debug("Metadata file loc=%d\n",
1504 le32_to_cpu(mdm->metadataFileLoc));
1505 udf_debug("Mirror file loc=%d\n",
1506 le32_to_cpu(mdm->metadataMirrorFileLoc));
1507 udf_debug("Bitmap file loc=%d\n",
1508 le32_to_cpu(mdm->metadataBitmapFileLoc));
1509 udf_debug("Flags: %d %d\n",
1510 mdata->s_flags, mdm->flags);
1511 } else {
1512 udf_debug("Unknown ident: %s\n",
1513 upm2->partIdent.ident);
1514 continue;
1515 }
1516 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1517 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1518 }
1519 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1520 i, map->s_partition_num, type, map->s_volumeseqnum);
1521 }
1522
1523 if (fileset) {
1524 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1525
1526 *fileset = lelb_to_cpu(la->extLocation);
1527 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1528 fileset->logicalBlockNum,
1529 fileset->partitionReferenceNum);
1530 }
1531 if (lvd->integritySeqExt.extLength)
1532 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1533 ret = 0;
1534out_bh:
1535 brelse(bh);
1536 return ret;
1537}
1538
1539/*
1540 * udf_load_logicalvolint
1541 *
1542 */
1543static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1544{
1545 struct buffer_head *bh = NULL;
1546 uint16_t ident;
1547 struct udf_sb_info *sbi = UDF_SB(sb);
1548 struct logicalVolIntegrityDesc *lvid;
1549
1550 while (loc.extLength > 0 &&
1551 (bh = udf_read_tagged(sb, loc.extLocation,
1552 loc.extLocation, &ident)) &&
1553 ident == TAG_IDENT_LVID) {
1554 sbi->s_lvid_bh = bh;
1555 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1556
1557 if (lvid->nextIntegrityExt.extLength)
1558 udf_load_logicalvolint(sb,
1559 leea_to_cpu(lvid->nextIntegrityExt));
1560
1561 if (sbi->s_lvid_bh != bh)
1562 brelse(bh);
1563 loc.extLength -= sb->s_blocksize;
1564 loc.extLocation++;
1565 }
1566 if (sbi->s_lvid_bh != bh)
1567 brelse(bh);
1568}
1569
1570/*
1571 * Process a main/reserve volume descriptor sequence.
1572 * @block First block of first extent of the sequence.
1573 * @lastblock Lastblock of first extent of the sequence.
1574 * @fileset There we store extent containing root fileset
1575 *
1576 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1577 * sequence
1578 */
1579static noinline int udf_process_sequence(
1580 struct super_block *sb,
1581 sector_t block, sector_t lastblock,
1582 struct kernel_lb_addr *fileset)
1583{
1584 struct buffer_head *bh = NULL;
1585 struct udf_vds_record vds[VDS_POS_LENGTH];
1586 struct udf_vds_record *curr;
1587 struct generic_desc *gd;
1588 struct volDescPtr *vdp;
1589 int done = 0;
1590 uint32_t vdsn;
1591 uint16_t ident;
1592 long next_s = 0, next_e = 0;
1593 int ret;
1594
1595 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1596
1597 /*
1598 * Read the main descriptor sequence and find which descriptors
1599 * are in it.
1600 */
1601 for (; (!done && block <= lastblock); block++) {
1602
1603 bh = udf_read_tagged(sb, block, block, &ident);
1604 if (!bh) {
1605 udf_err(sb,
1606 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1607 (unsigned long long)block);
1608 return -EAGAIN;
1609 }
1610
1611 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1612 gd = (struct generic_desc *)bh->b_data;
1613 vdsn = le32_to_cpu(gd->volDescSeqNum);
1614 switch (ident) {
1615 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1616 curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1617 if (vdsn >= curr->volDescSeqNum) {
1618 curr->volDescSeqNum = vdsn;
1619 curr->block = block;
1620 }
1621 break;
1622 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1623 curr = &vds[VDS_POS_VOL_DESC_PTR];
1624 if (vdsn >= curr->volDescSeqNum) {
1625 curr->volDescSeqNum = vdsn;
1626 curr->block = block;
1627
1628 vdp = (struct volDescPtr *)bh->b_data;
1629 next_s = le32_to_cpu(
1630 vdp->nextVolDescSeqExt.extLocation);
1631 next_e = le32_to_cpu(
1632 vdp->nextVolDescSeqExt.extLength);
1633 next_e = next_e >> sb->s_blocksize_bits;
1634 next_e += next_s;
1635 }
1636 break;
1637 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1638 curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1639 if (vdsn >= curr->volDescSeqNum) {
1640 curr->volDescSeqNum = vdsn;
1641 curr->block = block;
1642 }
1643 break;
1644 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1645 curr = &vds[VDS_POS_PARTITION_DESC];
1646 if (!curr->block)
1647 curr->block = block;
1648 break;
1649 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1650 curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1651 if (vdsn >= curr->volDescSeqNum) {
1652 curr->volDescSeqNum = vdsn;
1653 curr->block = block;
1654 }
1655 break;
1656 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1657 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1658 if (vdsn >= curr->volDescSeqNum) {
1659 curr->volDescSeqNum = vdsn;
1660 curr->block = block;
1661 }
1662 break;
1663 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1664 vds[VDS_POS_TERMINATING_DESC].block = block;
1665 if (next_e) {
1666 block = next_s;
1667 lastblock = next_e;
1668 next_s = next_e = 0;
1669 } else
1670 done = 1;
1671 break;
1672 }
1673 brelse(bh);
1674 }
1675 /*
1676 * Now read interesting descriptors again and process them
1677 * in a suitable order
1678 */
1679 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1680 udf_err(sb, "Primary Volume Descriptor not found!\n");
1681 return -EAGAIN;
1682 }
1683 ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1684 if (ret < 0)
1685 return ret;
1686
1687 if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1688 ret = udf_load_logicalvol(sb,
1689 vds[VDS_POS_LOGICAL_VOL_DESC].block,
1690 fileset);
1691 if (ret < 0)
1692 return ret;
1693 }
1694
1695 if (vds[VDS_POS_PARTITION_DESC].block) {
1696 /*
1697 * We rescan the whole descriptor sequence to find
1698 * partition descriptor blocks and process them.
1699 */
1700 for (block = vds[VDS_POS_PARTITION_DESC].block;
1701 block < vds[VDS_POS_TERMINATING_DESC].block;
1702 block++) {
1703 ret = udf_load_partdesc(sb, block);
1704 if (ret < 0)
1705 return ret;
1706 }
1707 }
1708
1709 return 0;
1710}
1711
1712/*
1713 * Load Volume Descriptor Sequence described by anchor in bh
1714 *
1715 * Returns <0 on error, 0 on success
1716 */
1717static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1718 struct kernel_lb_addr *fileset)
1719{
1720 struct anchorVolDescPtr *anchor;
1721 sector_t main_s, main_e, reserve_s, reserve_e;
1722 int ret;
1723
1724 anchor = (struct anchorVolDescPtr *)bh->b_data;
1725
1726 /* Locate the main sequence */
1727 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1728 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1729 main_e = main_e >> sb->s_blocksize_bits;
1730 main_e += main_s;
1731
1732 /* Locate the reserve sequence */
1733 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1734 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1735 reserve_e = reserve_e >> sb->s_blocksize_bits;
1736 reserve_e += reserve_s;
1737
1738 /* Process the main & reserve sequences */
1739 /* responsible for finding the PartitionDesc(s) */
1740 ret = udf_process_sequence(sb, main_s, main_e, fileset);
1741 if (ret != -EAGAIN)
1742 return ret;
1743 udf_sb_free_partitions(sb);
1744 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1745 if (ret < 0) {
1746 udf_sb_free_partitions(sb);
1747 /* No sequence was OK, return -EIO */
1748 if (ret == -EAGAIN)
1749 ret = -EIO;
1750 }
1751 return ret;
1752}
1753
1754/*
1755 * Check whether there is an anchor block in the given block and
1756 * load Volume Descriptor Sequence if so.
1757 *
1758 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1759 * block
1760 */
1761static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1762 struct kernel_lb_addr *fileset)
1763{
1764 struct buffer_head *bh;
1765 uint16_t ident;
1766 int ret;
1767
1768 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1769 udf_fixed_to_variable(block) >=
1770 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1771 return -EAGAIN;
1772
1773 bh = udf_read_tagged(sb, block, block, &ident);
1774 if (!bh)
1775 return -EAGAIN;
1776 if (ident != TAG_IDENT_AVDP) {
1777 brelse(bh);
1778 return -EAGAIN;
1779 }
1780 ret = udf_load_sequence(sb, bh, fileset);
1781 brelse(bh);
1782 return ret;
1783}
1784
1785/*
1786 * Search for an anchor volume descriptor pointer.
1787 *
1788 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1789 * of anchors.
1790 */
1791static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1792 struct kernel_lb_addr *fileset)
1793{
1794 sector_t last[6];
1795 int i;
1796 struct udf_sb_info *sbi = UDF_SB(sb);
1797 int last_count = 0;
1798 int ret;
1799
1800 /* First try user provided anchor */
1801 if (sbi->s_anchor) {
1802 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1803 if (ret != -EAGAIN)
1804 return ret;
1805 }
1806 /*
1807 * according to spec, anchor is in either:
1808 * block 256
1809 * lastblock-256
1810 * lastblock
1811 * however, if the disc isn't closed, it could be 512.
1812 */
1813 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1814 if (ret != -EAGAIN)
1815 return ret;
1816 /*
1817 * The trouble is which block is the last one. Drives often misreport
1818 * this so we try various possibilities.
1819 */
1820 last[last_count++] = *lastblock;
1821 if (*lastblock >= 1)
1822 last[last_count++] = *lastblock - 1;
1823 last[last_count++] = *lastblock + 1;
1824 if (*lastblock >= 2)
1825 last[last_count++] = *lastblock - 2;
1826 if (*lastblock >= 150)
1827 last[last_count++] = *lastblock - 150;
1828 if (*lastblock >= 152)
1829 last[last_count++] = *lastblock - 152;
1830
1831 for (i = 0; i < last_count; i++) {
1832 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1833 sb->s_blocksize_bits)
1834 continue;
1835 ret = udf_check_anchor_block(sb, last[i], fileset);
1836 if (ret != -EAGAIN) {
1837 if (!ret)
1838 *lastblock = last[i];
1839 return ret;
1840 }
1841 if (last[i] < 256)
1842 continue;
1843 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1844 if (ret != -EAGAIN) {
1845 if (!ret)
1846 *lastblock = last[i];
1847 return ret;
1848 }
1849 }
1850
1851 /* Finally try block 512 in case media is open */
1852 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1853}
1854
1855/*
1856 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1857 * area specified by it. The function expects sbi->s_lastblock to be the last
1858 * block on the media.
1859 *
1860 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1861 * was not found.
1862 */
1863static int udf_find_anchor(struct super_block *sb,
1864 struct kernel_lb_addr *fileset)
1865{
1866 struct udf_sb_info *sbi = UDF_SB(sb);
1867 sector_t lastblock = sbi->s_last_block;
1868 int ret;
1869
1870 ret = udf_scan_anchors(sb, &lastblock, fileset);
1871 if (ret != -EAGAIN)
1872 goto out;
1873
1874 /* No anchor found? Try VARCONV conversion of block numbers */
1875 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1876 lastblock = udf_variable_to_fixed(sbi->s_last_block);
1877 /* Firstly, we try to not convert number of the last block */
1878 ret = udf_scan_anchors(sb, &lastblock, fileset);
1879 if (ret != -EAGAIN)
1880 goto out;
1881
1882 lastblock = sbi->s_last_block;
1883 /* Secondly, we try with converted number of the last block */
1884 ret = udf_scan_anchors(sb, &lastblock, fileset);
1885 if (ret < 0) {
1886 /* VARCONV didn't help. Clear it. */
1887 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1888 }
1889out:
1890 if (ret == 0)
1891 sbi->s_last_block = lastblock;
1892 return ret;
1893}
1894
1895/*
1896 * Check Volume Structure Descriptor, find Anchor block and load Volume
1897 * Descriptor Sequence.
1898 *
1899 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1900 * block was not found.
1901 */
1902static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1903 int silent, struct kernel_lb_addr *fileset)
1904{
1905 struct udf_sb_info *sbi = UDF_SB(sb);
1906 loff_t nsr_off;
1907 int ret;
1908
1909 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1910 if (!silent)
1911 udf_warn(sb, "Bad block size\n");
1912 return -EINVAL;
1913 }
1914 sbi->s_last_block = uopt->lastblock;
1915 if (!uopt->novrs) {
1916 /* Check that it is NSR02 compliant */
1917 nsr_off = udf_check_vsd(sb);
1918 if (!nsr_off) {
1919 if (!silent)
1920 udf_warn(sb, "No VRS found\n");
1921 return 0;
1922 }
1923 if (nsr_off == -1)
1924 udf_debug("Failed to read sector at offset %d. "
1925 "Assuming open disc. Skipping validity "
1926 "check\n", VSD_FIRST_SECTOR_OFFSET);
1927 if (!sbi->s_last_block)
1928 sbi->s_last_block = udf_get_last_block(sb);
1929 } else {
1930 udf_debug("Validity check skipped because of novrs option\n");
1931 }
1932
1933 /* Look for anchor block and load Volume Descriptor Sequence */
1934 sbi->s_anchor = uopt->anchor;
1935 ret = udf_find_anchor(sb, fileset);
1936 if (ret < 0) {
1937 if (!silent && ret == -EAGAIN)
1938 udf_warn(sb, "No anchor found\n");
1939 return ret;
1940 }
1941 return 0;
1942}
1943
1944static void udf_open_lvid(struct super_block *sb)
1945{
1946 struct udf_sb_info *sbi = UDF_SB(sb);
1947 struct buffer_head *bh = sbi->s_lvid_bh;
1948 struct logicalVolIntegrityDesc *lvid;
1949 struct logicalVolIntegrityDescImpUse *lvidiu;
1950
1951 if (!bh)
1952 return;
1953 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1954 lvidiu = udf_sb_lvidiu(sb);
1955 if (!lvidiu)
1956 return;
1957
1958 mutex_lock(&sbi->s_alloc_mutex);
1959 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1960 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1961 udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1962 CURRENT_TIME);
1963 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1964
1965 lvid->descTag.descCRC = cpu_to_le16(
1966 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1967 le16_to_cpu(lvid->descTag.descCRCLength)));
1968
1969 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1970 mark_buffer_dirty(bh);
1971 sbi->s_lvid_dirty = 0;
1972 mutex_unlock(&sbi->s_alloc_mutex);
1973 /* Make opening of filesystem visible on the media immediately */
1974 sync_dirty_buffer(bh);
1975}
1976
1977static void udf_close_lvid(struct super_block *sb)
1978{
1979 struct udf_sb_info *sbi = UDF_SB(sb);
1980 struct buffer_head *bh = sbi->s_lvid_bh;
1981 struct logicalVolIntegrityDesc *lvid;
1982 struct logicalVolIntegrityDescImpUse *lvidiu;
1983
1984 if (!bh)
1985 return;
1986 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1987 lvidiu = udf_sb_lvidiu(sb);
1988 if (!lvidiu)
1989 return;
1990
1991 mutex_lock(&sbi->s_alloc_mutex);
1992 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1993 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1994 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
1995 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1996 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1997 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1998 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1999 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2000 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2001 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2002
2003 lvid->descTag.descCRC = cpu_to_le16(
2004 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2005 le16_to_cpu(lvid->descTag.descCRCLength)));
2006
2007 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2008 /*
2009 * We set buffer uptodate unconditionally here to avoid spurious
2010 * warnings from mark_buffer_dirty() when previous EIO has marked
2011 * the buffer as !uptodate
2012 */
2013 set_buffer_uptodate(bh);
2014 mark_buffer_dirty(bh);
2015 sbi->s_lvid_dirty = 0;
2016 mutex_unlock(&sbi->s_alloc_mutex);
2017 /* Make closing of filesystem visible on the media immediately */
2018 sync_dirty_buffer(bh);
2019}
2020
2021u64 lvid_get_unique_id(struct super_block *sb)
2022{
2023 struct buffer_head *bh;
2024 struct udf_sb_info *sbi = UDF_SB(sb);
2025 struct logicalVolIntegrityDesc *lvid;
2026 struct logicalVolHeaderDesc *lvhd;
2027 u64 uniqueID;
2028 u64 ret;
2029
2030 bh = sbi->s_lvid_bh;
2031 if (!bh)
2032 return 0;
2033
2034 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2035 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2036
2037 mutex_lock(&sbi->s_alloc_mutex);
2038 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2039 if (!(++uniqueID & 0xFFFFFFFF))
2040 uniqueID += 16;
2041 lvhd->uniqueID = cpu_to_le64(uniqueID);
2042 mutex_unlock(&sbi->s_alloc_mutex);
2043 mark_buffer_dirty(bh);
2044
2045 return ret;
2046}
2047
2048static int udf_fill_super(struct super_block *sb, void *options, int silent)
2049{
2050 int ret = -EINVAL;
2051 struct inode *inode = NULL;
2052 struct udf_options uopt;
2053 struct kernel_lb_addr rootdir, fileset;
2054 struct udf_sb_info *sbi;
2055
2056 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2057 uopt.uid = INVALID_UID;
2058 uopt.gid = INVALID_GID;
2059 uopt.umask = 0;
2060 uopt.fmode = UDF_INVALID_MODE;
2061 uopt.dmode = UDF_INVALID_MODE;
2062
2063 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
2064 if (!sbi)
2065 return -ENOMEM;
2066
2067 sb->s_fs_info = sbi;
2068
2069 mutex_init(&sbi->s_alloc_mutex);
2070
2071 if (!udf_parse_options((char *)options, &uopt, false))
2072 goto error_out;
2073
2074 if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2075 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2076 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2077 goto error_out;
2078 }
2079#ifdef CONFIG_UDF_NLS
2080 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2081 uopt.nls_map = load_nls_default();
2082 if (!uopt.nls_map)
2083 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2084 else
2085 udf_debug("Using default NLS map\n");
2086 }
2087#endif
2088 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2089 uopt.flags |= (1 << UDF_FLAG_UTF8);
2090
2091 fileset.logicalBlockNum = 0xFFFFFFFF;
2092 fileset.partitionReferenceNum = 0xFFFF;
2093
2094 sbi->s_flags = uopt.flags;
2095 sbi->s_uid = uopt.uid;
2096 sbi->s_gid = uopt.gid;
2097 sbi->s_umask = uopt.umask;
2098 sbi->s_fmode = uopt.fmode;
2099 sbi->s_dmode = uopt.dmode;
2100 sbi->s_nls_map = uopt.nls_map;
2101 rwlock_init(&sbi->s_cred_lock);
2102
2103 if (uopt.session == 0xFFFFFFFF)
2104 sbi->s_session = udf_get_last_session(sb);
2105 else
2106 sbi->s_session = uopt.session;
2107
2108 udf_debug("Multi-session=%d\n", sbi->s_session);
2109
2110 /* Fill in the rest of the superblock */
2111 sb->s_op = &udf_sb_ops;
2112 sb->s_export_op = &udf_export_ops;
2113
2114 sb->s_magic = UDF_SUPER_MAGIC;
2115 sb->s_time_gran = 1000;
2116
2117 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2118 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2119 } else {
2120 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2121 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2122 if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2123 if (!silent)
2124 pr_notice("Rescanning with blocksize %d\n",
2125 UDF_DEFAULT_BLOCKSIZE);
2126 brelse(sbi->s_lvid_bh);
2127 sbi->s_lvid_bh = NULL;
2128 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2129 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2130 }
2131 }
2132 if (ret < 0) {
2133 if (ret == -EAGAIN) {
2134 udf_warn(sb, "No partition found (1)\n");
2135 ret = -EINVAL;
2136 }
2137 goto error_out;
2138 }
2139
2140 udf_debug("Lastblock=%d\n", sbi->s_last_block);
2141
2142 if (sbi->s_lvid_bh) {
2143 struct logicalVolIntegrityDescImpUse *lvidiu =
2144 udf_sb_lvidiu(sb);
2145 uint16_t minUDFReadRev;
2146 uint16_t minUDFWriteRev;
2147
2148 if (!lvidiu) {
2149 ret = -EINVAL;
2150 goto error_out;
2151 }
2152 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2153 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2154 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2155 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2156 minUDFReadRev,
2157 UDF_MAX_READ_VERSION);
2158 ret = -EINVAL;
2159 goto error_out;
2160 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2161 !(sb->s_flags & MS_RDONLY)) {
2162 ret = -EACCES;
2163 goto error_out;
2164 }
2165
2166 sbi->s_udfrev = minUDFWriteRev;
2167
2168 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2169 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2170 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2171 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2172 }
2173
2174 if (!sbi->s_partitions) {
2175 udf_warn(sb, "No partition found (2)\n");
2176 ret = -EINVAL;
2177 goto error_out;
2178 }
2179
2180 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2181 UDF_PART_FLAG_READ_ONLY &&
2182 !(sb->s_flags & MS_RDONLY)) {
2183 ret = -EACCES;
2184 goto error_out;
2185 }
2186
2187 if (udf_find_fileset(sb, &fileset, &rootdir)) {
2188 udf_warn(sb, "No fileset found\n");
2189 ret = -EINVAL;
2190 goto error_out;
2191 }
2192
2193 if (!silent) {
2194 struct timestamp ts;
2195 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2196 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2197 sbi->s_volume_ident,
2198 le16_to_cpu(ts.year), ts.month, ts.day,
2199 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2200 }
2201 if (!(sb->s_flags & MS_RDONLY))
2202 udf_open_lvid(sb);
2203
2204 /* Assign the root inode */
2205 /* assign inodes by physical block number */
2206 /* perhaps it's not extensible enough, but for now ... */
2207 inode = udf_iget(sb, &rootdir);
2208 if (!inode) {
2209 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2210 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2211 ret = -EIO;
2212 goto error_out;
2213 }
2214
2215 /* Allocate a dentry for the root inode */
2216 sb->s_root = d_make_root(inode);
2217 if (!sb->s_root) {
2218 udf_err(sb, "Couldn't allocate root dentry\n");
2219 ret = -ENOMEM;
2220 goto error_out;
2221 }
2222 sb->s_maxbytes = MAX_LFS_FILESIZE;
2223 sb->s_max_links = UDF_MAX_LINKS;
2224 return 0;
2225
2226error_out:
2227 if (sbi->s_vat_inode)
2228 iput(sbi->s_vat_inode);
2229#ifdef CONFIG_UDF_NLS
2230 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2231 unload_nls(sbi->s_nls_map);
2232#endif
2233 if (!(sb->s_flags & MS_RDONLY))
2234 udf_close_lvid(sb);
2235 brelse(sbi->s_lvid_bh);
2236 udf_sb_free_partitions(sb);
2237 kfree(sbi);
2238 sb->s_fs_info = NULL;
2239
2240 return ret;
2241}
2242
2243void _udf_err(struct super_block *sb, const char *function,
2244 const char *fmt, ...)
2245{
2246 struct va_format vaf;
2247 va_list args;
2248
2249 va_start(args, fmt);
2250
2251 vaf.fmt = fmt;
2252 vaf.va = &args;
2253
2254 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2255
2256 va_end(args);
2257}
2258
2259void _udf_warn(struct super_block *sb, const char *function,
2260 const char *fmt, ...)
2261{
2262 struct va_format vaf;
2263 va_list args;
2264
2265 va_start(args, fmt);
2266
2267 vaf.fmt = fmt;
2268 vaf.va = &args;
2269
2270 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2271
2272 va_end(args);
2273}
2274
2275static void udf_put_super(struct super_block *sb)
2276{
2277 struct udf_sb_info *sbi;
2278
2279 sbi = UDF_SB(sb);
2280
2281 if (sbi->s_vat_inode)
2282 iput(sbi->s_vat_inode);
2283#ifdef CONFIG_UDF_NLS
2284 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2285 unload_nls(sbi->s_nls_map);
2286#endif
2287 if (!(sb->s_flags & MS_RDONLY))
2288 udf_close_lvid(sb);
2289 brelse(sbi->s_lvid_bh);
2290 udf_sb_free_partitions(sb);
2291 kfree(sb->s_fs_info);
2292 sb->s_fs_info = NULL;
2293}
2294
2295static int udf_sync_fs(struct super_block *sb, int wait)
2296{
2297 struct udf_sb_info *sbi = UDF_SB(sb);
2298
2299 mutex_lock(&sbi->s_alloc_mutex);
2300 if (sbi->s_lvid_dirty) {
2301 /*
2302 * Blockdevice will be synced later so we don't have to submit
2303 * the buffer for IO
2304 */
2305 mark_buffer_dirty(sbi->s_lvid_bh);
2306 sbi->s_lvid_dirty = 0;
2307 }
2308 mutex_unlock(&sbi->s_alloc_mutex);
2309
2310 return 0;
2311}
2312
2313static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2314{
2315 struct super_block *sb = dentry->d_sb;
2316 struct udf_sb_info *sbi = UDF_SB(sb);
2317 struct logicalVolIntegrityDescImpUse *lvidiu;
2318 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2319
2320 lvidiu = udf_sb_lvidiu(sb);
2321 buf->f_type = UDF_SUPER_MAGIC;
2322 buf->f_bsize = sb->s_blocksize;
2323 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2324 buf->f_bfree = udf_count_free(sb);
2325 buf->f_bavail = buf->f_bfree;
2326 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2327 le32_to_cpu(lvidiu->numDirs)) : 0)
2328 + buf->f_bfree;
2329 buf->f_ffree = buf->f_bfree;
2330 buf->f_namelen = UDF_NAME_LEN - 2;
2331 buf->f_fsid.val[0] = (u32)id;
2332 buf->f_fsid.val[1] = (u32)(id >> 32);
2333
2334 return 0;
2335}
2336
2337static unsigned int udf_count_free_bitmap(struct super_block *sb,
2338 struct udf_bitmap *bitmap)
2339{
2340 struct buffer_head *bh = NULL;
2341 unsigned int accum = 0;
2342 int index;
2343 int block = 0, newblock;
2344 struct kernel_lb_addr loc;
2345 uint32_t bytes;
2346 uint8_t *ptr;
2347 uint16_t ident;
2348 struct spaceBitmapDesc *bm;
2349
2350 loc.logicalBlockNum = bitmap->s_extPosition;
2351 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2352 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2353
2354 if (!bh) {
2355 udf_err(sb, "udf_count_free failed\n");
2356 goto out;
2357 } else if (ident != TAG_IDENT_SBD) {
2358 brelse(bh);
2359 udf_err(sb, "udf_count_free failed\n");
2360 goto out;
2361 }
2362
2363 bm = (struct spaceBitmapDesc *)bh->b_data;
2364 bytes = le32_to_cpu(bm->numOfBytes);
2365 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2366 ptr = (uint8_t *)bh->b_data;
2367
2368 while (bytes > 0) {
2369 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2370 accum += bitmap_weight((const unsigned long *)(ptr + index),
2371 cur_bytes * 8);
2372 bytes -= cur_bytes;
2373 if (bytes) {
2374 brelse(bh);
2375 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2376 bh = udf_tread(sb, newblock);
2377 if (!bh) {
2378 udf_debug("read failed\n");
2379 goto out;
2380 }
2381 index = 0;
2382 ptr = (uint8_t *)bh->b_data;
2383 }
2384 }
2385 brelse(bh);
2386out:
2387 return accum;
2388}
2389
2390static unsigned int udf_count_free_table(struct super_block *sb,
2391 struct inode *table)
2392{
2393 unsigned int accum = 0;
2394 uint32_t elen;
2395 struct kernel_lb_addr eloc;
2396 int8_t etype;
2397 struct extent_position epos;
2398
2399 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2400 epos.block = UDF_I(table)->i_location;
2401 epos.offset = sizeof(struct unallocSpaceEntry);
2402 epos.bh = NULL;
2403
2404 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2405 accum += (elen >> table->i_sb->s_blocksize_bits);
2406
2407 brelse(epos.bh);
2408 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2409
2410 return accum;
2411}
2412
2413static unsigned int udf_count_free(struct super_block *sb)
2414{
2415 unsigned int accum = 0;
2416 struct udf_sb_info *sbi;
2417 struct udf_part_map *map;
2418
2419 sbi = UDF_SB(sb);
2420 if (sbi->s_lvid_bh) {
2421 struct logicalVolIntegrityDesc *lvid =
2422 (struct logicalVolIntegrityDesc *)
2423 sbi->s_lvid_bh->b_data;
2424 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2425 accum = le32_to_cpu(
2426 lvid->freeSpaceTable[sbi->s_partition]);
2427 if (accum == 0xFFFFFFFF)
2428 accum = 0;
2429 }
2430 }
2431
2432 if (accum)
2433 return accum;
2434
2435 map = &sbi->s_partmaps[sbi->s_partition];
2436 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2437 accum += udf_count_free_bitmap(sb,
2438 map->s_uspace.s_bitmap);
2439 }
2440 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2441 accum += udf_count_free_bitmap(sb,
2442 map->s_fspace.s_bitmap);
2443 }
2444 if (accum)
2445 return accum;
2446
2447 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2448 accum += udf_count_free_table(sb,
2449 map->s_uspace.s_table);
2450 }
2451 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2452 accum += udf_count_free_table(sb,
2453 map->s_fspace.s_table);
2454 }
2455
2456 return accum;
2457}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * super.c
4 *
5 * PURPOSE
6 * Super block routines for the OSTA-UDF(tm) filesystem.
7 *
8 * DESCRIPTION
9 * OSTA-UDF(tm) = Optical Storage Technology Association
10 * Universal Disk Format.
11 *
12 * This code is based on version 2.00 of the UDF specification,
13 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
14 * http://www.osta.org/
15 * https://www.ecma.ch/
16 * https://www.iso.org/
17 *
18 * COPYRIGHT
19 * (C) 1998 Dave Boynton
20 * (C) 1998-2004 Ben Fennema
21 * (C) 2000 Stelias Computing Inc
22 *
23 * HISTORY
24 *
25 * 09/24/98 dgb changed to allow compiling outside of kernel, and
26 * added some debugging.
27 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
28 * 10/16/98 attempting some multi-session support
29 * 10/17/98 added freespace count for "df"
30 * 11/11/98 gr added novrs option
31 * 11/26/98 dgb added fileset,anchor mount options
32 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
33 * vol descs. rewrote option handling based on isofs
34 * 12/20/98 find the free space bitmap (if it exists)
35 */
36
37#include "udfdecl.h"
38
39#include <linux/blkdev.h>
40#include <linux/slab.h>
41#include <linux/kernel.h>
42#include <linux/module.h>
43#include <linux/stat.h>
44#include <linux/cdrom.h>
45#include <linux/nls.h>
46#include <linux/vfs.h>
47#include <linux/vmalloc.h>
48#include <linux/errno.h>
49#include <linux/seq_file.h>
50#include <linux/bitmap.h>
51#include <linux/crc-itu-t.h>
52#include <linux/log2.h>
53#include <asm/byteorder.h>
54#include <linux/iversion.h>
55#include <linux/fs_context.h>
56#include <linux/fs_parser.h>
57
58#include "udf_sb.h"
59#include "udf_i.h"
60
61#include <linux/init.h>
62#include <linux/uaccess.h>
63
64enum {
65 VDS_POS_PRIMARY_VOL_DESC,
66 VDS_POS_UNALLOC_SPACE_DESC,
67 VDS_POS_LOGICAL_VOL_DESC,
68 VDS_POS_IMP_USE_VOL_DESC,
69 VDS_POS_LENGTH
70};
71
72#define VSD_FIRST_SECTOR_OFFSET 32768
73#define VSD_MAX_SECTOR_OFFSET 0x800000
74
75/*
76 * Maximum number of Terminating Descriptor / Logical Volume Integrity
77 * Descriptor redirections. The chosen numbers are arbitrary - just that we
78 * hopefully don't limit any real use of rewritten inode on write-once media
79 * but avoid looping for too long on corrupted media.
80 */
81#define UDF_MAX_TD_NESTING 64
82#define UDF_MAX_LVID_NESTING 1000
83
84enum { UDF_MAX_LINKS = 0xffff };
85/*
86 * We limit filesize to 4TB. This is arbitrary as the on-disk format supports
87 * more but because the file space is described by a linked list of extents,
88 * each of which can have at most 1GB, the creation and handling of extents
89 * gets unusably slow beyond certain point...
90 */
91#define UDF_MAX_FILESIZE (1ULL << 42)
92
93/* These are the "meat" - everything else is stuffing */
94static int udf_fill_super(struct super_block *sb, struct fs_context *fc);
95static void udf_put_super(struct super_block *);
96static int udf_sync_fs(struct super_block *, int);
97static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
98static void udf_open_lvid(struct super_block *);
99static void udf_close_lvid(struct super_block *);
100static unsigned int udf_count_free(struct super_block *);
101static int udf_statfs(struct dentry *, struct kstatfs *);
102static int udf_show_options(struct seq_file *, struct dentry *);
103static int udf_init_fs_context(struct fs_context *fc);
104static int udf_parse_param(struct fs_context *fc, struct fs_parameter *param);
105static int udf_reconfigure(struct fs_context *fc);
106static void udf_free_fc(struct fs_context *fc);
107static const struct fs_parameter_spec udf_param_spec[];
108
109struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
110{
111 struct logicalVolIntegrityDesc *lvid;
112 unsigned int partnum;
113 unsigned int offset;
114
115 if (!UDF_SB(sb)->s_lvid_bh)
116 return NULL;
117 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
118 partnum = le32_to_cpu(lvid->numOfPartitions);
119 /* The offset is to skip freeSpaceTable and sizeTable arrays */
120 offset = partnum * 2 * sizeof(uint32_t);
121 return (struct logicalVolIntegrityDescImpUse *)
122 (((uint8_t *)(lvid + 1)) + offset);
123}
124
125/* UDF filesystem type */
126static int udf_get_tree(struct fs_context *fc)
127{
128 return get_tree_bdev(fc, udf_fill_super);
129}
130
131static const struct fs_context_operations udf_context_ops = {
132 .parse_param = udf_parse_param,
133 .get_tree = udf_get_tree,
134 .reconfigure = udf_reconfigure,
135 .free = udf_free_fc,
136};
137
138static struct file_system_type udf_fstype = {
139 .owner = THIS_MODULE,
140 .name = "udf",
141 .kill_sb = kill_block_super,
142 .fs_flags = FS_REQUIRES_DEV,
143 .init_fs_context = udf_init_fs_context,
144 .parameters = udf_param_spec,
145};
146MODULE_ALIAS_FS("udf");
147
148static struct kmem_cache *udf_inode_cachep;
149
150static struct inode *udf_alloc_inode(struct super_block *sb)
151{
152 struct udf_inode_info *ei;
153 ei = alloc_inode_sb(sb, udf_inode_cachep, GFP_KERNEL);
154 if (!ei)
155 return NULL;
156
157 ei->i_unique = 0;
158 ei->i_lenExtents = 0;
159 ei->i_lenStreams = 0;
160 ei->i_next_alloc_block = 0;
161 ei->i_next_alloc_goal = 0;
162 ei->i_strat4096 = 0;
163 ei->i_streamdir = 0;
164 ei->i_hidden = 0;
165 init_rwsem(&ei->i_data_sem);
166 ei->cached_extent.lstart = -1;
167 spin_lock_init(&ei->i_extent_cache_lock);
168 inode_set_iversion(&ei->vfs_inode, 1);
169
170 return &ei->vfs_inode;
171}
172
173static void udf_free_in_core_inode(struct inode *inode)
174{
175 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
176}
177
178static void init_once(void *foo)
179{
180 struct udf_inode_info *ei = foo;
181
182 ei->i_data = NULL;
183 inode_init_once(&ei->vfs_inode);
184}
185
186static int __init init_inodecache(void)
187{
188 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
189 sizeof(struct udf_inode_info),
190 0, (SLAB_RECLAIM_ACCOUNT |
191 SLAB_ACCOUNT),
192 init_once);
193 if (!udf_inode_cachep)
194 return -ENOMEM;
195 return 0;
196}
197
198static void destroy_inodecache(void)
199{
200 /*
201 * Make sure all delayed rcu free inodes are flushed before we
202 * destroy cache.
203 */
204 rcu_barrier();
205 kmem_cache_destroy(udf_inode_cachep);
206}
207
208/* Superblock operations */
209static const struct super_operations udf_sb_ops = {
210 .alloc_inode = udf_alloc_inode,
211 .free_inode = udf_free_in_core_inode,
212 .write_inode = udf_write_inode,
213 .evict_inode = udf_evict_inode,
214 .put_super = udf_put_super,
215 .sync_fs = udf_sync_fs,
216 .statfs = udf_statfs,
217 .show_options = udf_show_options,
218};
219
220struct udf_options {
221 unsigned int blocksize;
222 unsigned int session;
223 unsigned int lastblock;
224 unsigned int anchor;
225 unsigned int flags;
226 umode_t umask;
227 kgid_t gid;
228 kuid_t uid;
229 umode_t fmode;
230 umode_t dmode;
231 struct nls_table *nls_map;
232};
233
234/*
235 * UDF has historically preserved prior mount options across
236 * a remount, so copy those here if remounting, otherwise set
237 * initial mount defaults.
238 */
239static void udf_init_options(struct fs_context *fc, struct udf_options *uopt)
240{
241 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
242 struct super_block *sb = fc->root->d_sb;
243 struct udf_sb_info *sbi = UDF_SB(sb);
244
245 uopt->flags = sbi->s_flags;
246 uopt->uid = sbi->s_uid;
247 uopt->gid = sbi->s_gid;
248 uopt->umask = sbi->s_umask;
249 uopt->fmode = sbi->s_fmode;
250 uopt->dmode = sbi->s_dmode;
251 uopt->nls_map = NULL;
252 } else {
253 uopt->flags = (1 << UDF_FLAG_USE_AD_IN_ICB) |
254 (1 << UDF_FLAG_STRICT);
255 /*
256 * By default we'll use overflow[ug]id when UDF
257 * inode [ug]id == -1
258 */
259 uopt->uid = make_kuid(current_user_ns(), overflowuid);
260 uopt->gid = make_kgid(current_user_ns(), overflowgid);
261 uopt->umask = 0;
262 uopt->fmode = UDF_INVALID_MODE;
263 uopt->dmode = UDF_INVALID_MODE;
264 uopt->nls_map = NULL;
265 uopt->session = 0xFFFFFFFF;
266 }
267}
268
269static int udf_init_fs_context(struct fs_context *fc)
270{
271 struct udf_options *uopt;
272
273 uopt = kzalloc(sizeof(*uopt), GFP_KERNEL);
274 if (!uopt)
275 return -ENOMEM;
276
277 udf_init_options(fc, uopt);
278
279 fc->fs_private = uopt;
280 fc->ops = &udf_context_ops;
281
282 return 0;
283}
284
285static void udf_free_fc(struct fs_context *fc)
286{
287 struct udf_options *uopt = fc->fs_private;
288
289 unload_nls(uopt->nls_map);
290 kfree(fc->fs_private);
291}
292
293static int __init init_udf_fs(void)
294{
295 int err;
296
297 err = init_inodecache();
298 if (err)
299 goto out1;
300 err = register_filesystem(&udf_fstype);
301 if (err)
302 goto out;
303
304 return 0;
305
306out:
307 destroy_inodecache();
308
309out1:
310 return err;
311}
312
313static void __exit exit_udf_fs(void)
314{
315 unregister_filesystem(&udf_fstype);
316 destroy_inodecache();
317}
318
319static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
320{
321 struct udf_sb_info *sbi = UDF_SB(sb);
322
323 sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
324 if (!sbi->s_partmaps) {
325 sbi->s_partitions = 0;
326 return -ENOMEM;
327 }
328
329 sbi->s_partitions = count;
330 return 0;
331}
332
333static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
334{
335 int i;
336 int nr_groups = bitmap->s_nr_groups;
337
338 for (i = 0; i < nr_groups; i++)
339 if (!IS_ERR_OR_NULL(bitmap->s_block_bitmap[i]))
340 brelse(bitmap->s_block_bitmap[i]);
341
342 kvfree(bitmap);
343}
344
345static void udf_free_partition(struct udf_part_map *map)
346{
347 int i;
348 struct udf_meta_data *mdata;
349
350 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
351 iput(map->s_uspace.s_table);
352 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
353 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
354 if (map->s_partition_type == UDF_SPARABLE_MAP15)
355 for (i = 0; i < 4; i++)
356 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
357 else if (map->s_partition_type == UDF_METADATA_MAP25) {
358 mdata = &map->s_type_specific.s_metadata;
359 iput(mdata->s_metadata_fe);
360 mdata->s_metadata_fe = NULL;
361
362 iput(mdata->s_mirror_fe);
363 mdata->s_mirror_fe = NULL;
364
365 iput(mdata->s_bitmap_fe);
366 mdata->s_bitmap_fe = NULL;
367 }
368}
369
370static void udf_sb_free_partitions(struct super_block *sb)
371{
372 struct udf_sb_info *sbi = UDF_SB(sb);
373 int i;
374
375 if (!sbi->s_partmaps)
376 return;
377 for (i = 0; i < sbi->s_partitions; i++)
378 udf_free_partition(&sbi->s_partmaps[i]);
379 kfree(sbi->s_partmaps);
380 sbi->s_partmaps = NULL;
381}
382
383static int udf_show_options(struct seq_file *seq, struct dentry *root)
384{
385 struct super_block *sb = root->d_sb;
386 struct udf_sb_info *sbi = UDF_SB(sb);
387
388 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
389 seq_puts(seq, ",nostrict");
390 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
391 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
392 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
393 seq_puts(seq, ",unhide");
394 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
395 seq_puts(seq, ",undelete");
396 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
397 seq_puts(seq, ",noadinicb");
398 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
399 seq_puts(seq, ",shortad");
400 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
401 seq_puts(seq, ",uid=forget");
402 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
403 seq_puts(seq, ",gid=forget");
404 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
405 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
406 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
407 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
408 if (sbi->s_umask != 0)
409 seq_printf(seq, ",umask=%ho", sbi->s_umask);
410 if (sbi->s_fmode != UDF_INVALID_MODE)
411 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
412 if (sbi->s_dmode != UDF_INVALID_MODE)
413 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
414 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
415 seq_printf(seq, ",session=%d", sbi->s_session);
416 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
417 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
418 if (sbi->s_anchor != 0)
419 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
420 if (sbi->s_nls_map)
421 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
422 else
423 seq_puts(seq, ",iocharset=utf8");
424
425 return 0;
426}
427
428/*
429 * udf_parse_param
430 *
431 * PURPOSE
432 * Parse mount options.
433 *
434 * DESCRIPTION
435 * The following mount options are supported:
436 *
437 * gid= Set the default group.
438 * umask= Set the default umask.
439 * mode= Set the default file permissions.
440 * dmode= Set the default directory permissions.
441 * uid= Set the default user.
442 * bs= Set the block size.
443 * unhide Show otherwise hidden files.
444 * undelete Show deleted files in lists.
445 * adinicb Embed data in the inode (default)
446 * noadinicb Don't embed data in the inode
447 * shortad Use short ad's
448 * longad Use long ad's (default)
449 * nostrict Unset strict conformance
450 * iocharset= Set the NLS character set
451 *
452 * The remaining are for debugging and disaster recovery:
453 *
454 * novrs Skip volume sequence recognition
455 *
456 * The following expect a offset from 0.
457 *
458 * session= Set the CDROM session (default= last session)
459 * anchor= Override standard anchor location. (default= 256)
460 * volume= Override the VolumeDesc location. (unused)
461 * partition= Override the PartitionDesc location. (unused)
462 * lastblock= Set the last block of the filesystem/
463 *
464 * The following expect a offset from the partition root.
465 *
466 * fileset= Override the fileset block location. (unused)
467 * rootdir= Override the root directory location. (unused)
468 * WARNING: overriding the rootdir to a non-directory may
469 * yield highly unpredictable results.
470 *
471 * PRE-CONDITIONS
472 * fc fs_context with pointer to mount options variable.
473 * param Pointer to fs_parameter being parsed.
474 *
475 * POST-CONDITIONS
476 * <return> 0 Mount options parsed okay.
477 * <return> errno Error parsing mount options.
478 *
479 * HISTORY
480 * July 1, 1997 - Andrew E. Mileski
481 * Written, tested, and released.
482 */
483
484enum {
485 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
486 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
487 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
488 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
489 Opt_rootdir, Opt_utf8, Opt_iocharset, Opt_err, Opt_fmode, Opt_dmode
490};
491
492static const struct fs_parameter_spec udf_param_spec[] = {
493 fsparam_flag ("novrs", Opt_novrs),
494 fsparam_flag ("nostrict", Opt_nostrict),
495 fsparam_u32 ("bs", Opt_bs),
496 fsparam_flag ("unhide", Opt_unhide),
497 fsparam_flag ("undelete", Opt_undelete),
498 fsparam_flag_no ("adinicb", Opt_adinicb),
499 fsparam_flag ("shortad", Opt_shortad),
500 fsparam_flag ("longad", Opt_longad),
501 fsparam_string ("gid", Opt_gid),
502 fsparam_string ("uid", Opt_uid),
503 fsparam_u32 ("umask", Opt_umask),
504 fsparam_u32 ("session", Opt_session),
505 fsparam_u32 ("lastblock", Opt_lastblock),
506 fsparam_u32 ("anchor", Opt_anchor),
507 fsparam_u32 ("volume", Opt_volume),
508 fsparam_u32 ("partition", Opt_partition),
509 fsparam_u32 ("fileset", Opt_fileset),
510 fsparam_u32 ("rootdir", Opt_rootdir),
511 fsparam_flag ("utf8", Opt_utf8),
512 fsparam_string ("iocharset", Opt_iocharset),
513 fsparam_u32 ("mode", Opt_fmode),
514 fsparam_u32 ("dmode", Opt_dmode),
515 {}
516 };
517
518static int udf_parse_param(struct fs_context *fc, struct fs_parameter *param)
519{
520 unsigned int uv;
521 unsigned int n;
522 struct udf_options *uopt = fc->fs_private;
523 struct fs_parse_result result;
524 int token;
525 bool remount = (fc->purpose & FS_CONTEXT_FOR_RECONFIGURE);
526
527 token = fs_parse(fc, udf_param_spec, param, &result);
528 if (token < 0)
529 return token;
530
531 switch (token) {
532 case Opt_novrs:
533 uopt->flags |= (1 << UDF_FLAG_NOVRS);
534 break;
535 case Opt_bs:
536 n = result.uint_32;
537 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
538 return -EINVAL;
539 uopt->blocksize = n;
540 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
541 break;
542 case Opt_unhide:
543 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
544 break;
545 case Opt_undelete:
546 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
547 break;
548 case Opt_adinicb:
549 if (result.negated)
550 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
551 else
552 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
553 break;
554 case Opt_shortad:
555 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
556 break;
557 case Opt_longad:
558 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
559 break;
560 case Opt_gid:
561 if (kstrtoint(param->string, 10, &uv) == 0) {
562 kgid_t gid = make_kgid(current_user_ns(), uv);
563 if (!gid_valid(gid))
564 return -EINVAL;
565 uopt->gid = gid;
566 uopt->flags |= (1 << UDF_FLAG_GID_SET);
567 } else if (!strcmp(param->string, "forget")) {
568 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
569 } else if (!strcmp(param->string, "ignore")) {
570 /* this option is superseded by gid=<number> */
571 ;
572 } else {
573 return -EINVAL;
574 }
575 break;
576 case Opt_uid:
577 if (kstrtoint(param->string, 10, &uv) == 0) {
578 kuid_t uid = make_kuid(current_user_ns(), uv);
579 if (!uid_valid(uid))
580 return -EINVAL;
581 uopt->uid = uid;
582 uopt->flags |= (1 << UDF_FLAG_UID_SET);
583 } else if (!strcmp(param->string, "forget")) {
584 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
585 } else if (!strcmp(param->string, "ignore")) {
586 /* this option is superseded by uid=<number> */
587 ;
588 } else {
589 return -EINVAL;
590 }
591 break;
592 case Opt_umask:
593 uopt->umask = result.uint_32;
594 break;
595 case Opt_nostrict:
596 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
597 break;
598 case Opt_session:
599 uopt->session = result.uint_32;
600 if (!remount)
601 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
602 break;
603 case Opt_lastblock:
604 uopt->lastblock = result.uint_32;
605 if (!remount)
606 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
607 break;
608 case Opt_anchor:
609 uopt->anchor = result.uint_32;
610 break;
611 case Opt_volume:
612 case Opt_partition:
613 case Opt_fileset:
614 case Opt_rootdir:
615 /* Ignored (never implemented properly) */
616 break;
617 case Opt_utf8:
618 if (!remount) {
619 unload_nls(uopt->nls_map);
620 uopt->nls_map = NULL;
621 }
622 break;
623 case Opt_iocharset:
624 if (!remount) {
625 unload_nls(uopt->nls_map);
626 uopt->nls_map = NULL;
627 }
628 /* When nls_map is not loaded then UTF-8 is used */
629 if (!remount && strcmp(param->string, "utf8") != 0) {
630 uopt->nls_map = load_nls(param->string);
631 if (!uopt->nls_map) {
632 errorf(fc, "iocharset %s not found",
633 param->string);
634 return -EINVAL;
635 }
636 }
637 break;
638 case Opt_fmode:
639 uopt->fmode = result.uint_32 & 0777;
640 break;
641 case Opt_dmode:
642 uopt->dmode = result.uint_32 & 0777;
643 break;
644 default:
645 return -EINVAL;
646 }
647 return 0;
648}
649
650static int udf_reconfigure(struct fs_context *fc)
651{
652 struct udf_options *uopt = fc->fs_private;
653 struct super_block *sb = fc->root->d_sb;
654 struct udf_sb_info *sbi = UDF_SB(sb);
655 int readonly = fc->sb_flags & SB_RDONLY;
656 int error = 0;
657
658 if (!readonly && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
659 return -EACCES;
660
661 sync_filesystem(sb);
662
663 write_lock(&sbi->s_cred_lock);
664 sbi->s_flags = uopt->flags;
665 sbi->s_uid = uopt->uid;
666 sbi->s_gid = uopt->gid;
667 sbi->s_umask = uopt->umask;
668 sbi->s_fmode = uopt->fmode;
669 sbi->s_dmode = uopt->dmode;
670 write_unlock(&sbi->s_cred_lock);
671
672 if (readonly == sb_rdonly(sb))
673 goto out_unlock;
674
675 if (readonly)
676 udf_close_lvid(sb);
677 else
678 udf_open_lvid(sb);
679
680out_unlock:
681 return error;
682}
683
684/*
685 * Check VSD descriptor. Returns -1 in case we are at the end of volume
686 * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
687 * we found one of NSR descriptors we are looking for.
688 */
689static int identify_vsd(const struct volStructDesc *vsd)
690{
691 int ret = 0;
692
693 if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
694 switch (vsd->structType) {
695 case 0:
696 udf_debug("ISO9660 Boot Record found\n");
697 break;
698 case 1:
699 udf_debug("ISO9660 Primary Volume Descriptor found\n");
700 break;
701 case 2:
702 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
703 break;
704 case 3:
705 udf_debug("ISO9660 Volume Partition Descriptor found\n");
706 break;
707 case 255:
708 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
709 break;
710 default:
711 udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
712 break;
713 }
714 } else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
715 ; /* ret = 0 */
716 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
717 ret = 1;
718 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
719 ret = 1;
720 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
721 ; /* ret = 0 */
722 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
723 ; /* ret = 0 */
724 else {
725 /* TEA01 or invalid id : end of volume recognition area */
726 ret = -1;
727 }
728
729 return ret;
730}
731
732/*
733 * Check Volume Structure Descriptors (ECMA 167 2/9.1)
734 * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
735 * @return 1 if NSR02 or NSR03 found,
736 * -1 if first sector read error, 0 otherwise
737 */
738static int udf_check_vsd(struct super_block *sb)
739{
740 struct volStructDesc *vsd = NULL;
741 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
742 int sectorsize;
743 struct buffer_head *bh = NULL;
744 int nsr = 0;
745 struct udf_sb_info *sbi;
746 loff_t session_offset;
747
748 sbi = UDF_SB(sb);
749 if (sb->s_blocksize < sizeof(struct volStructDesc))
750 sectorsize = sizeof(struct volStructDesc);
751 else
752 sectorsize = sb->s_blocksize;
753
754 session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits;
755 sector += session_offset;
756
757 udf_debug("Starting at sector %u (%lu byte sectors)\n",
758 (unsigned int)(sector >> sb->s_blocksize_bits),
759 sb->s_blocksize);
760 /* Process the sequence (if applicable). The hard limit on the sector
761 * offset is arbitrary, hopefully large enough so that all valid UDF
762 * filesystems will be recognised. There is no mention of an upper
763 * bound to the size of the volume recognition area in the standard.
764 * The limit will prevent the code to read all the sectors of a
765 * specially crafted image (like a bluray disc full of CD001 sectors),
766 * potentially causing minutes or even hours of uninterruptible I/O
767 * activity. This actually happened with uninitialised SSD partitions
768 * (all 0xFF) before the check for the limit and all valid IDs were
769 * added */
770 for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
771 /* Read a block */
772 bh = sb_bread(sb, sector >> sb->s_blocksize_bits);
773 if (!bh)
774 break;
775
776 vsd = (struct volStructDesc *)(bh->b_data +
777 (sector & (sb->s_blocksize - 1)));
778 nsr = identify_vsd(vsd);
779 /* Found NSR or end? */
780 if (nsr) {
781 brelse(bh);
782 break;
783 }
784 /*
785 * Special handling for improperly formatted VRS (e.g., Win10)
786 * where components are separated by 2048 bytes even though
787 * sectors are 4K
788 */
789 if (sb->s_blocksize == 4096) {
790 nsr = identify_vsd(vsd + 1);
791 /* Ignore unknown IDs... */
792 if (nsr < 0)
793 nsr = 0;
794 }
795 brelse(bh);
796 }
797
798 if (nsr > 0)
799 return 1;
800 else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET)
801 return -1;
802 else
803 return 0;
804}
805
806static int udf_verify_domain_identifier(struct super_block *sb,
807 struct regid *ident, char *dname)
808{
809 struct domainIdentSuffix *suffix;
810
811 if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
812 udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
813 goto force_ro;
814 }
815 if (ident->flags & ENTITYID_FLAGS_DIRTY) {
816 udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
817 dname);
818 goto force_ro;
819 }
820 suffix = (struct domainIdentSuffix *)ident->identSuffix;
821 if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
822 (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
823 if (!sb_rdonly(sb)) {
824 udf_warn(sb, "Descriptor for %s marked write protected."
825 " Forcing read only mount.\n", dname);
826 }
827 goto force_ro;
828 }
829 return 0;
830
831force_ro:
832 if (!sb_rdonly(sb))
833 return -EACCES;
834 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
835 return 0;
836}
837
838static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
839 struct kernel_lb_addr *root)
840{
841 int ret;
842
843 ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
844 if (ret < 0)
845 return ret;
846
847 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
848 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
849
850 udf_debug("Rootdir at block=%u, partition=%u\n",
851 root->logicalBlockNum, root->partitionReferenceNum);
852 return 0;
853}
854
855static int udf_find_fileset(struct super_block *sb,
856 struct kernel_lb_addr *fileset,
857 struct kernel_lb_addr *root)
858{
859 struct buffer_head *bh;
860 uint16_t ident;
861 int ret;
862
863 if (fileset->logicalBlockNum == 0xFFFFFFFF &&
864 fileset->partitionReferenceNum == 0xFFFF)
865 return -EINVAL;
866
867 bh = udf_read_ptagged(sb, fileset, 0, &ident);
868 if (!bh)
869 return -EIO;
870 if (ident != TAG_IDENT_FSD) {
871 brelse(bh);
872 return -EINVAL;
873 }
874
875 udf_debug("Fileset at block=%u, partition=%u\n",
876 fileset->logicalBlockNum, fileset->partitionReferenceNum);
877
878 UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
879 ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
880 brelse(bh);
881 return ret;
882}
883
884/*
885 * Load primary Volume Descriptor Sequence
886 *
887 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
888 * should be tried.
889 */
890static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
891{
892 struct primaryVolDesc *pvoldesc;
893 uint8_t *outstr;
894 struct buffer_head *bh;
895 uint16_t ident;
896 int ret;
897 struct timestamp *ts;
898
899 outstr = kzalloc(128, GFP_KERNEL);
900 if (!outstr)
901 return -ENOMEM;
902
903 bh = udf_read_tagged(sb, block, block, &ident);
904 if (!bh) {
905 ret = -EAGAIN;
906 goto out2;
907 }
908
909 if (ident != TAG_IDENT_PVD) {
910 ret = -EIO;
911 goto out_bh;
912 }
913
914 pvoldesc = (struct primaryVolDesc *)bh->b_data;
915
916 udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
917 pvoldesc->recordingDateAndTime);
918 ts = &pvoldesc->recordingDateAndTime;
919 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
920 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
921 ts->minute, le16_to_cpu(ts->typeAndTimezone));
922
923 ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
924 if (ret < 0) {
925 strscpy_pad(UDF_SB(sb)->s_volume_ident, "InvalidName");
926 pr_warn("incorrect volume identification, setting to "
927 "'InvalidName'\n");
928 } else {
929 strscpy_pad(UDF_SB(sb)->s_volume_ident, outstr);
930 }
931 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
932
933 ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
934 if (ret < 0) {
935 ret = 0;
936 goto out_bh;
937 }
938 outstr[ret] = 0;
939 udf_debug("volSetIdent[] = '%s'\n", outstr);
940
941 ret = 0;
942out_bh:
943 brelse(bh);
944out2:
945 kfree(outstr);
946 return ret;
947}
948
949struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
950 u32 meta_file_loc, u32 partition_ref)
951{
952 struct kernel_lb_addr addr;
953 struct inode *metadata_fe;
954
955 addr.logicalBlockNum = meta_file_loc;
956 addr.partitionReferenceNum = partition_ref;
957
958 metadata_fe = udf_iget_special(sb, &addr);
959
960 if (IS_ERR(metadata_fe)) {
961 udf_warn(sb, "metadata inode efe not found\n");
962 return metadata_fe;
963 }
964 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
965 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
966 iput(metadata_fe);
967 return ERR_PTR(-EIO);
968 }
969
970 return metadata_fe;
971}
972
973static int udf_load_metadata_files(struct super_block *sb, int partition,
974 int type1_index)
975{
976 struct udf_sb_info *sbi = UDF_SB(sb);
977 struct udf_part_map *map;
978 struct udf_meta_data *mdata;
979 struct kernel_lb_addr addr;
980 struct inode *fe;
981
982 map = &sbi->s_partmaps[partition];
983 mdata = &map->s_type_specific.s_metadata;
984 mdata->s_phys_partition_ref = type1_index;
985
986 /* metadata address */
987 udf_debug("Metadata file location: block = %u part = %u\n",
988 mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
989
990 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
991 mdata->s_phys_partition_ref);
992 if (IS_ERR(fe)) {
993 /* mirror file entry */
994 udf_debug("Mirror metadata file location: block = %u part = %u\n",
995 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
996
997 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
998 mdata->s_phys_partition_ref);
999
1000 if (IS_ERR(fe)) {
1001 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
1002 return PTR_ERR(fe);
1003 }
1004 mdata->s_mirror_fe = fe;
1005 } else
1006 mdata->s_metadata_fe = fe;
1007
1008
1009 /*
1010 * bitmap file entry
1011 * Note:
1012 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1013 */
1014 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1015 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1016 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
1017
1018 udf_debug("Bitmap file location: block = %u part = %u\n",
1019 addr.logicalBlockNum, addr.partitionReferenceNum);
1020
1021 fe = udf_iget_special(sb, &addr);
1022 if (IS_ERR(fe)) {
1023 if (sb_rdonly(sb))
1024 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1025 else {
1026 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1027 return PTR_ERR(fe);
1028 }
1029 } else
1030 mdata->s_bitmap_fe = fe;
1031 }
1032
1033 udf_debug("udf_load_metadata_files Ok\n");
1034 return 0;
1035}
1036
1037int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1038{
1039 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1040 return DIV_ROUND_UP(map->s_partition_len +
1041 (sizeof(struct spaceBitmapDesc) << 3),
1042 sb->s_blocksize * 8);
1043}
1044
1045static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1046{
1047 struct udf_bitmap *bitmap;
1048 int nr_groups = udf_compute_nr_groups(sb, index);
1049
1050 bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups),
1051 GFP_KERNEL);
1052 if (!bitmap)
1053 return NULL;
1054
1055 bitmap->s_nr_groups = nr_groups;
1056 return bitmap;
1057}
1058
1059static int check_partition_desc(struct super_block *sb,
1060 struct partitionDesc *p,
1061 struct udf_part_map *map)
1062{
1063 bool umap, utable, fmap, ftable;
1064 struct partitionHeaderDesc *phd;
1065
1066 switch (le32_to_cpu(p->accessType)) {
1067 case PD_ACCESS_TYPE_READ_ONLY:
1068 case PD_ACCESS_TYPE_WRITE_ONCE:
1069 case PD_ACCESS_TYPE_NONE:
1070 goto force_ro;
1071 }
1072
1073 /* No Partition Header Descriptor? */
1074 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1075 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1076 goto force_ro;
1077
1078 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1079 utable = phd->unallocSpaceTable.extLength;
1080 umap = phd->unallocSpaceBitmap.extLength;
1081 ftable = phd->freedSpaceTable.extLength;
1082 fmap = phd->freedSpaceBitmap.extLength;
1083
1084 /* No allocation info? */
1085 if (!utable && !umap && !ftable && !fmap)
1086 goto force_ro;
1087
1088 /* We don't support blocks that require erasing before overwrite */
1089 if (ftable || fmap)
1090 goto force_ro;
1091 /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1092 if (utable && umap)
1093 goto force_ro;
1094
1095 if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1096 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1097 map->s_partition_type == UDF_METADATA_MAP25)
1098 goto force_ro;
1099
1100 return 0;
1101force_ro:
1102 if (!sb_rdonly(sb))
1103 return -EACCES;
1104 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1105 return 0;
1106}
1107
1108static int udf_fill_partdesc_info(struct super_block *sb,
1109 struct partitionDesc *p, int p_index)
1110{
1111 struct udf_part_map *map;
1112 struct udf_sb_info *sbi = UDF_SB(sb);
1113 struct partitionHeaderDesc *phd;
1114 u32 sum;
1115 int err;
1116
1117 map = &sbi->s_partmaps[p_index];
1118
1119 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1120 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1121 if (check_add_overflow(map->s_partition_root, map->s_partition_len,
1122 &sum)) {
1123 udf_err(sb, "Partition %d has invalid location %u + %u\n",
1124 p_index, map->s_partition_root, map->s_partition_len);
1125 return -EFSCORRUPTED;
1126 }
1127
1128 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1129 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1130 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1131 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1132 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1133 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1134 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1135 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1136
1137 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1138 p_index, map->s_partition_type,
1139 map->s_partition_root, map->s_partition_len);
1140
1141 err = check_partition_desc(sb, p, map);
1142 if (err)
1143 return err;
1144
1145 /*
1146 * Skip loading allocation info it we cannot ever write to the fs.
1147 * This is a correctness thing as we may have decided to force ro mount
1148 * to avoid allocation info we don't support.
1149 */
1150 if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1151 return 0;
1152
1153 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1154 if (phd->unallocSpaceTable.extLength) {
1155 struct kernel_lb_addr loc = {
1156 .logicalBlockNum = le32_to_cpu(
1157 phd->unallocSpaceTable.extPosition),
1158 .partitionReferenceNum = p_index,
1159 };
1160 struct inode *inode;
1161
1162 inode = udf_iget_special(sb, &loc);
1163 if (IS_ERR(inode)) {
1164 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1165 p_index);
1166 return PTR_ERR(inode);
1167 }
1168 map->s_uspace.s_table = inode;
1169 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1170 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1171 p_index, map->s_uspace.s_table->i_ino);
1172 }
1173
1174 if (phd->unallocSpaceBitmap.extLength) {
1175 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1176 if (!bitmap)
1177 return -ENOMEM;
1178 map->s_uspace.s_bitmap = bitmap;
1179 bitmap->s_extPosition = le32_to_cpu(
1180 phd->unallocSpaceBitmap.extPosition);
1181 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1182 /* Check whether math over bitmap won't overflow. */
1183 if (check_add_overflow(map->s_partition_len,
1184 sizeof(struct spaceBitmapDesc) << 3,
1185 &sum)) {
1186 udf_err(sb, "Partition %d is too long (%u)\n", p_index,
1187 map->s_partition_len);
1188 return -EFSCORRUPTED;
1189 }
1190 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1191 p_index, bitmap->s_extPosition);
1192 }
1193
1194 return 0;
1195}
1196
1197static void udf_find_vat_block(struct super_block *sb, int p_index,
1198 int type1_index, sector_t start_block)
1199{
1200 struct udf_sb_info *sbi = UDF_SB(sb);
1201 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1202 sector_t vat_block;
1203 struct kernel_lb_addr ino;
1204 struct inode *inode;
1205
1206 /*
1207 * VAT file entry is in the last recorded block. Some broken disks have
1208 * it a few blocks before so try a bit harder...
1209 */
1210 ino.partitionReferenceNum = type1_index;
1211 for (vat_block = start_block;
1212 vat_block >= map->s_partition_root &&
1213 vat_block >= start_block - 3; vat_block--) {
1214 ino.logicalBlockNum = vat_block - map->s_partition_root;
1215 inode = udf_iget_special(sb, &ino);
1216 if (!IS_ERR(inode)) {
1217 sbi->s_vat_inode = inode;
1218 break;
1219 }
1220 }
1221}
1222
1223static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1224{
1225 struct udf_sb_info *sbi = UDF_SB(sb);
1226 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1227 struct buffer_head *bh = NULL;
1228 struct udf_inode_info *vati;
1229 struct virtualAllocationTable20 *vat20;
1230 sector_t blocks = sb_bdev_nr_blocks(sb);
1231
1232 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1233 if (!sbi->s_vat_inode &&
1234 sbi->s_last_block != blocks - 1) {
1235 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1236 (unsigned long)sbi->s_last_block,
1237 (unsigned long)blocks - 1);
1238 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1239 }
1240 if (!sbi->s_vat_inode)
1241 return -EIO;
1242
1243 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1244 map->s_type_specific.s_virtual.s_start_offset = 0;
1245 map->s_type_specific.s_virtual.s_num_entries =
1246 (sbi->s_vat_inode->i_size - 36) >> 2;
1247 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1248 vati = UDF_I(sbi->s_vat_inode);
1249 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1250 int err = 0;
1251
1252 bh = udf_bread(sbi->s_vat_inode, 0, 0, &err);
1253 if (!bh) {
1254 if (!err)
1255 err = -EFSCORRUPTED;
1256 return err;
1257 }
1258 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1259 } else {
1260 vat20 = (struct virtualAllocationTable20 *)
1261 vati->i_data;
1262 }
1263
1264 map->s_type_specific.s_virtual.s_start_offset =
1265 le16_to_cpu(vat20->lengthHeader);
1266 map->s_type_specific.s_virtual.s_num_entries =
1267 (sbi->s_vat_inode->i_size -
1268 map->s_type_specific.s_virtual.
1269 s_start_offset) >> 2;
1270 brelse(bh);
1271 }
1272 return 0;
1273}
1274
1275/*
1276 * Load partition descriptor block
1277 *
1278 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1279 * sequence.
1280 */
1281static int udf_load_partdesc(struct super_block *sb, sector_t block)
1282{
1283 struct buffer_head *bh;
1284 struct partitionDesc *p;
1285 struct udf_part_map *map;
1286 struct udf_sb_info *sbi = UDF_SB(sb);
1287 int i, type1_idx;
1288 uint16_t partitionNumber;
1289 uint16_t ident;
1290 int ret;
1291
1292 bh = udf_read_tagged(sb, block, block, &ident);
1293 if (!bh)
1294 return -EAGAIN;
1295 if (ident != TAG_IDENT_PD) {
1296 ret = 0;
1297 goto out_bh;
1298 }
1299
1300 p = (struct partitionDesc *)bh->b_data;
1301 partitionNumber = le16_to_cpu(p->partitionNumber);
1302
1303 /* First scan for TYPE1 and SPARABLE partitions */
1304 for (i = 0; i < sbi->s_partitions; i++) {
1305 map = &sbi->s_partmaps[i];
1306 udf_debug("Searching map: (%u == %u)\n",
1307 map->s_partition_num, partitionNumber);
1308 if (map->s_partition_num == partitionNumber &&
1309 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1310 map->s_partition_type == UDF_SPARABLE_MAP15))
1311 break;
1312 }
1313
1314 if (i >= sbi->s_partitions) {
1315 udf_debug("Partition (%u) not found in partition map\n",
1316 partitionNumber);
1317 ret = 0;
1318 goto out_bh;
1319 }
1320
1321 ret = udf_fill_partdesc_info(sb, p, i);
1322 if (ret < 0)
1323 goto out_bh;
1324
1325 /*
1326 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1327 * PHYSICAL partitions are already set up
1328 */
1329 type1_idx = i;
1330 map = NULL; /* supress 'maybe used uninitialized' warning */
1331 for (i = 0; i < sbi->s_partitions; i++) {
1332 map = &sbi->s_partmaps[i];
1333
1334 if (map->s_partition_num == partitionNumber &&
1335 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1336 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1337 map->s_partition_type == UDF_METADATA_MAP25))
1338 break;
1339 }
1340
1341 if (i >= sbi->s_partitions) {
1342 ret = 0;
1343 goto out_bh;
1344 }
1345
1346 ret = udf_fill_partdesc_info(sb, p, i);
1347 if (ret < 0)
1348 goto out_bh;
1349
1350 if (map->s_partition_type == UDF_METADATA_MAP25) {
1351 ret = udf_load_metadata_files(sb, i, type1_idx);
1352 if (ret < 0) {
1353 udf_err(sb, "error loading MetaData partition map %d\n",
1354 i);
1355 goto out_bh;
1356 }
1357 } else {
1358 /*
1359 * If we have a partition with virtual map, we don't handle
1360 * writing to it (we overwrite blocks instead of relocating
1361 * them).
1362 */
1363 if (!sb_rdonly(sb)) {
1364 ret = -EACCES;
1365 goto out_bh;
1366 }
1367 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1368 ret = udf_load_vat(sb, i, type1_idx);
1369 if (ret < 0)
1370 goto out_bh;
1371 }
1372 ret = 0;
1373out_bh:
1374 /* In case loading failed, we handle cleanup in udf_fill_super */
1375 brelse(bh);
1376 return ret;
1377}
1378
1379static int udf_load_sparable_map(struct super_block *sb,
1380 struct udf_part_map *map,
1381 struct sparablePartitionMap *spm)
1382{
1383 uint32_t loc;
1384 uint16_t ident;
1385 struct sparingTable *st;
1386 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1387 int i;
1388 struct buffer_head *bh;
1389
1390 map->s_partition_type = UDF_SPARABLE_MAP15;
1391 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1392 if (!is_power_of_2(sdata->s_packet_len)) {
1393 udf_err(sb, "error loading logical volume descriptor: "
1394 "Invalid packet length %u\n",
1395 (unsigned)sdata->s_packet_len);
1396 return -EIO;
1397 }
1398 if (spm->numSparingTables > 4) {
1399 udf_err(sb, "error loading logical volume descriptor: "
1400 "Too many sparing tables (%d)\n",
1401 (int)spm->numSparingTables);
1402 return -EIO;
1403 }
1404 if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1405 udf_err(sb, "error loading logical volume descriptor: "
1406 "Too big sparing table size (%u)\n",
1407 le32_to_cpu(spm->sizeSparingTable));
1408 return -EIO;
1409 }
1410
1411 for (i = 0; i < spm->numSparingTables; i++) {
1412 loc = le32_to_cpu(spm->locSparingTable[i]);
1413 bh = udf_read_tagged(sb, loc, loc, &ident);
1414 if (!bh)
1415 continue;
1416
1417 st = (struct sparingTable *)bh->b_data;
1418 if (ident != 0 ||
1419 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1420 strlen(UDF_ID_SPARING)) ||
1421 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1422 sb->s_blocksize) {
1423 brelse(bh);
1424 continue;
1425 }
1426
1427 sdata->s_spar_map[i] = bh;
1428 }
1429 map->s_partition_func = udf_get_pblock_spar15;
1430 return 0;
1431}
1432
1433static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1434 struct kernel_lb_addr *fileset)
1435{
1436 struct logicalVolDesc *lvd;
1437 int i, offset;
1438 uint8_t type;
1439 struct udf_sb_info *sbi = UDF_SB(sb);
1440 struct genericPartitionMap *gpm;
1441 uint16_t ident;
1442 struct buffer_head *bh;
1443 unsigned int table_len;
1444 int ret;
1445
1446 bh = udf_read_tagged(sb, block, block, &ident);
1447 if (!bh)
1448 return -EAGAIN;
1449 BUG_ON(ident != TAG_IDENT_LVD);
1450 lvd = (struct logicalVolDesc *)bh->b_data;
1451 table_len = le32_to_cpu(lvd->mapTableLength);
1452 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1453 udf_err(sb, "error loading logical volume descriptor: "
1454 "Partition table too long (%u > %lu)\n", table_len,
1455 sb->s_blocksize - sizeof(*lvd));
1456 ret = -EIO;
1457 goto out_bh;
1458 }
1459
1460 ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1461 "logical volume");
1462 if (ret)
1463 goto out_bh;
1464 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1465 if (ret)
1466 goto out_bh;
1467
1468 for (i = 0, offset = 0;
1469 i < sbi->s_partitions && offset < table_len;
1470 i++, offset += gpm->partitionMapLength) {
1471 struct udf_part_map *map = &sbi->s_partmaps[i];
1472 gpm = (struct genericPartitionMap *)
1473 &(lvd->partitionMaps[offset]);
1474 type = gpm->partitionMapType;
1475 if (type == 1) {
1476 struct genericPartitionMap1 *gpm1 =
1477 (struct genericPartitionMap1 *)gpm;
1478 map->s_partition_type = UDF_TYPE1_MAP15;
1479 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1480 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1481 map->s_partition_func = NULL;
1482 } else if (type == 2) {
1483 struct udfPartitionMap2 *upm2 =
1484 (struct udfPartitionMap2 *)gpm;
1485 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1486 strlen(UDF_ID_VIRTUAL))) {
1487 u16 suf =
1488 le16_to_cpu(((__le16 *)upm2->partIdent.
1489 identSuffix)[0]);
1490 if (suf < 0x0200) {
1491 map->s_partition_type =
1492 UDF_VIRTUAL_MAP15;
1493 map->s_partition_func =
1494 udf_get_pblock_virt15;
1495 } else {
1496 map->s_partition_type =
1497 UDF_VIRTUAL_MAP20;
1498 map->s_partition_func =
1499 udf_get_pblock_virt20;
1500 }
1501 } else if (!strncmp(upm2->partIdent.ident,
1502 UDF_ID_SPARABLE,
1503 strlen(UDF_ID_SPARABLE))) {
1504 ret = udf_load_sparable_map(sb, map,
1505 (struct sparablePartitionMap *)gpm);
1506 if (ret < 0)
1507 goto out_bh;
1508 } else if (!strncmp(upm2->partIdent.ident,
1509 UDF_ID_METADATA,
1510 strlen(UDF_ID_METADATA))) {
1511 struct udf_meta_data *mdata =
1512 &map->s_type_specific.s_metadata;
1513 struct metadataPartitionMap *mdm =
1514 (struct metadataPartitionMap *)
1515 &(lvd->partitionMaps[offset]);
1516 udf_debug("Parsing Logical vol part %d type %u id=%s\n",
1517 i, type, UDF_ID_METADATA);
1518
1519 map->s_partition_type = UDF_METADATA_MAP25;
1520 map->s_partition_func = udf_get_pblock_meta25;
1521
1522 mdata->s_meta_file_loc =
1523 le32_to_cpu(mdm->metadataFileLoc);
1524 mdata->s_mirror_file_loc =
1525 le32_to_cpu(mdm->metadataMirrorFileLoc);
1526 mdata->s_bitmap_file_loc =
1527 le32_to_cpu(mdm->metadataBitmapFileLoc);
1528 mdata->s_alloc_unit_size =
1529 le32_to_cpu(mdm->allocUnitSize);
1530 mdata->s_align_unit_size =
1531 le16_to_cpu(mdm->alignUnitSize);
1532 if (mdm->flags & 0x01)
1533 mdata->s_flags |= MF_DUPLICATE_MD;
1534
1535 udf_debug("Metadata Ident suffix=0x%x\n",
1536 le16_to_cpu(*(__le16 *)
1537 mdm->partIdent.identSuffix));
1538 udf_debug("Metadata part num=%u\n",
1539 le16_to_cpu(mdm->partitionNum));
1540 udf_debug("Metadata part alloc unit size=%u\n",
1541 le32_to_cpu(mdm->allocUnitSize));
1542 udf_debug("Metadata file loc=%u\n",
1543 le32_to_cpu(mdm->metadataFileLoc));
1544 udf_debug("Mirror file loc=%u\n",
1545 le32_to_cpu(mdm->metadataMirrorFileLoc));
1546 udf_debug("Bitmap file loc=%u\n",
1547 le32_to_cpu(mdm->metadataBitmapFileLoc));
1548 udf_debug("Flags: %d %u\n",
1549 mdata->s_flags, mdm->flags);
1550 } else {
1551 udf_debug("Unknown ident: %s\n",
1552 upm2->partIdent.ident);
1553 continue;
1554 }
1555 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1556 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1557 }
1558 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1559 i, map->s_partition_num, type, map->s_volumeseqnum);
1560 }
1561
1562 if (fileset) {
1563 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1564
1565 *fileset = lelb_to_cpu(la->extLocation);
1566 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1567 fileset->logicalBlockNum,
1568 fileset->partitionReferenceNum);
1569 }
1570 if (lvd->integritySeqExt.extLength)
1571 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1572 ret = 0;
1573
1574 if (!sbi->s_lvid_bh) {
1575 /* We can't generate unique IDs without a valid LVID */
1576 if (sb_rdonly(sb)) {
1577 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1578 } else {
1579 udf_warn(sb, "Damaged or missing LVID, forcing "
1580 "readonly mount\n");
1581 ret = -EACCES;
1582 }
1583 }
1584out_bh:
1585 brelse(bh);
1586 return ret;
1587}
1588
1589static bool udf_lvid_valid(struct super_block *sb,
1590 struct logicalVolIntegrityDesc *lvid)
1591{
1592 u32 parts, impuselen;
1593
1594 parts = le32_to_cpu(lvid->numOfPartitions);
1595 impuselen = le32_to_cpu(lvid->lengthOfImpUse);
1596 if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize ||
1597 sizeof(struct logicalVolIntegrityDesc) + impuselen +
1598 2 * parts * sizeof(u32) > sb->s_blocksize)
1599 return false;
1600 return true;
1601}
1602
1603/*
1604 * Find the prevailing Logical Volume Integrity Descriptor.
1605 */
1606static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1607{
1608 struct buffer_head *bh, *final_bh;
1609 uint16_t ident;
1610 struct udf_sb_info *sbi = UDF_SB(sb);
1611 struct logicalVolIntegrityDesc *lvid;
1612 int indirections = 0;
1613
1614 while (++indirections <= UDF_MAX_LVID_NESTING) {
1615 final_bh = NULL;
1616 while (loc.extLength > 0 &&
1617 (bh = udf_read_tagged(sb, loc.extLocation,
1618 loc.extLocation, &ident))) {
1619 if (ident != TAG_IDENT_LVID) {
1620 brelse(bh);
1621 break;
1622 }
1623
1624 brelse(final_bh);
1625 final_bh = bh;
1626
1627 loc.extLength -= sb->s_blocksize;
1628 loc.extLocation++;
1629 }
1630
1631 if (!final_bh)
1632 return;
1633
1634 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1635 if (udf_lvid_valid(sb, lvid)) {
1636 brelse(sbi->s_lvid_bh);
1637 sbi->s_lvid_bh = final_bh;
1638 } else {
1639 udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), "
1640 "ignoring.\n",
1641 le32_to_cpu(lvid->numOfPartitions),
1642 le32_to_cpu(lvid->lengthOfImpUse));
1643 }
1644
1645 if (lvid->nextIntegrityExt.extLength == 0)
1646 return;
1647
1648 loc = leea_to_cpu(lvid->nextIntegrityExt);
1649 }
1650
1651 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1652 UDF_MAX_LVID_NESTING);
1653 brelse(sbi->s_lvid_bh);
1654 sbi->s_lvid_bh = NULL;
1655}
1656
1657/*
1658 * Step for reallocation of table of partition descriptor sequence numbers.
1659 * Must be power of 2.
1660 */
1661#define PART_DESC_ALLOC_STEP 32
1662
1663struct part_desc_seq_scan_data {
1664 struct udf_vds_record rec;
1665 u32 partnum;
1666};
1667
1668struct desc_seq_scan_data {
1669 struct udf_vds_record vds[VDS_POS_LENGTH];
1670 unsigned int size_part_descs;
1671 unsigned int num_part_descs;
1672 struct part_desc_seq_scan_data *part_descs_loc;
1673};
1674
1675static struct udf_vds_record *handle_partition_descriptor(
1676 struct buffer_head *bh,
1677 struct desc_seq_scan_data *data)
1678{
1679 struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1680 int partnum;
1681 int i;
1682
1683 partnum = le16_to_cpu(desc->partitionNumber);
1684 for (i = 0; i < data->num_part_descs; i++)
1685 if (partnum == data->part_descs_loc[i].partnum)
1686 return &(data->part_descs_loc[i].rec);
1687 if (data->num_part_descs >= data->size_part_descs) {
1688 struct part_desc_seq_scan_data *new_loc;
1689 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1690
1691 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1692 if (!new_loc)
1693 return ERR_PTR(-ENOMEM);
1694 memcpy(new_loc, data->part_descs_loc,
1695 data->size_part_descs * sizeof(*new_loc));
1696 kfree(data->part_descs_loc);
1697 data->part_descs_loc = new_loc;
1698 data->size_part_descs = new_size;
1699 }
1700 return &(data->part_descs_loc[data->num_part_descs++].rec);
1701}
1702
1703
1704static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1705 struct buffer_head *bh, struct desc_seq_scan_data *data)
1706{
1707 switch (ident) {
1708 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1709 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1710 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1711 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1712 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1713 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1714 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1715 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1716 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1717 return handle_partition_descriptor(bh, data);
1718 }
1719 return NULL;
1720}
1721
1722/*
1723 * Process a main/reserve volume descriptor sequence.
1724 * @block First block of first extent of the sequence.
1725 * @lastblock Lastblock of first extent of the sequence.
1726 * @fileset There we store extent containing root fileset
1727 *
1728 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1729 * sequence
1730 */
1731static noinline int udf_process_sequence(
1732 struct super_block *sb,
1733 sector_t block, sector_t lastblock,
1734 struct kernel_lb_addr *fileset)
1735{
1736 struct buffer_head *bh = NULL;
1737 struct udf_vds_record *curr;
1738 struct generic_desc *gd;
1739 struct volDescPtr *vdp;
1740 bool done = false;
1741 uint32_t vdsn;
1742 uint16_t ident;
1743 int ret;
1744 unsigned int indirections = 0;
1745 struct desc_seq_scan_data data;
1746 unsigned int i;
1747
1748 memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1749 data.size_part_descs = PART_DESC_ALLOC_STEP;
1750 data.num_part_descs = 0;
1751 data.part_descs_loc = kcalloc(data.size_part_descs,
1752 sizeof(*data.part_descs_loc),
1753 GFP_KERNEL);
1754 if (!data.part_descs_loc)
1755 return -ENOMEM;
1756
1757 /*
1758 * Read the main descriptor sequence and find which descriptors
1759 * are in it.
1760 */
1761 for (; (!done && block <= lastblock); block++) {
1762 bh = udf_read_tagged(sb, block, block, &ident);
1763 if (!bh)
1764 break;
1765
1766 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1767 gd = (struct generic_desc *)bh->b_data;
1768 vdsn = le32_to_cpu(gd->volDescSeqNum);
1769 switch (ident) {
1770 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1771 if (++indirections > UDF_MAX_TD_NESTING) {
1772 udf_err(sb, "too many Volume Descriptor "
1773 "Pointers (max %u supported)\n",
1774 UDF_MAX_TD_NESTING);
1775 brelse(bh);
1776 ret = -EIO;
1777 goto out;
1778 }
1779
1780 vdp = (struct volDescPtr *)bh->b_data;
1781 block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1782 lastblock = le32_to_cpu(
1783 vdp->nextVolDescSeqExt.extLength) >>
1784 sb->s_blocksize_bits;
1785 lastblock += block - 1;
1786 /* For loop is going to increment 'block' again */
1787 block--;
1788 break;
1789 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1790 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1791 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1792 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1793 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1794 curr = get_volume_descriptor_record(ident, bh, &data);
1795 if (IS_ERR(curr)) {
1796 brelse(bh);
1797 ret = PTR_ERR(curr);
1798 goto out;
1799 }
1800 /* Descriptor we don't care about? */
1801 if (!curr)
1802 break;
1803 if (vdsn >= curr->volDescSeqNum) {
1804 curr->volDescSeqNum = vdsn;
1805 curr->block = block;
1806 }
1807 break;
1808 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1809 done = true;
1810 break;
1811 }
1812 brelse(bh);
1813 }
1814 /*
1815 * Now read interesting descriptors again and process them
1816 * in a suitable order
1817 */
1818 if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1819 udf_err(sb, "Primary Volume Descriptor not found!\n");
1820 ret = -EAGAIN;
1821 goto out;
1822 }
1823 ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1824 if (ret < 0)
1825 goto out;
1826
1827 if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1828 ret = udf_load_logicalvol(sb,
1829 data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1830 fileset);
1831 if (ret < 0)
1832 goto out;
1833 }
1834
1835 /* Now handle prevailing Partition Descriptors */
1836 for (i = 0; i < data.num_part_descs; i++) {
1837 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1838 if (ret < 0)
1839 goto out;
1840 }
1841 ret = 0;
1842out:
1843 kfree(data.part_descs_loc);
1844 return ret;
1845}
1846
1847/*
1848 * Load Volume Descriptor Sequence described by anchor in bh
1849 *
1850 * Returns <0 on error, 0 on success
1851 */
1852static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1853 struct kernel_lb_addr *fileset)
1854{
1855 struct anchorVolDescPtr *anchor;
1856 sector_t main_s, main_e, reserve_s, reserve_e;
1857 int ret;
1858
1859 anchor = (struct anchorVolDescPtr *)bh->b_data;
1860
1861 /* Locate the main sequence */
1862 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1863 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1864 main_e = main_e >> sb->s_blocksize_bits;
1865 main_e += main_s - 1;
1866
1867 /* Locate the reserve sequence */
1868 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1869 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1870 reserve_e = reserve_e >> sb->s_blocksize_bits;
1871 reserve_e += reserve_s - 1;
1872
1873 /* Process the main & reserve sequences */
1874 /* responsible for finding the PartitionDesc(s) */
1875 ret = udf_process_sequence(sb, main_s, main_e, fileset);
1876 if (ret != -EAGAIN)
1877 return ret;
1878 udf_sb_free_partitions(sb);
1879 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1880 if (ret < 0) {
1881 udf_sb_free_partitions(sb);
1882 /* No sequence was OK, return -EIO */
1883 if (ret == -EAGAIN)
1884 ret = -EIO;
1885 }
1886 return ret;
1887}
1888
1889/*
1890 * Check whether there is an anchor block in the given block and
1891 * load Volume Descriptor Sequence if so.
1892 *
1893 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1894 * block
1895 */
1896static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1897 struct kernel_lb_addr *fileset)
1898{
1899 struct buffer_head *bh;
1900 uint16_t ident;
1901 int ret;
1902
1903 bh = udf_read_tagged(sb, block, block, &ident);
1904 if (!bh)
1905 return -EAGAIN;
1906 if (ident != TAG_IDENT_AVDP) {
1907 brelse(bh);
1908 return -EAGAIN;
1909 }
1910 ret = udf_load_sequence(sb, bh, fileset);
1911 brelse(bh);
1912 return ret;
1913}
1914
1915/*
1916 * Search for an anchor volume descriptor pointer.
1917 *
1918 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1919 * of anchors.
1920 */
1921static int udf_scan_anchors(struct super_block *sb, udf_pblk_t *lastblock,
1922 struct kernel_lb_addr *fileset)
1923{
1924 udf_pblk_t last[6];
1925 int i;
1926 struct udf_sb_info *sbi = UDF_SB(sb);
1927 int last_count = 0;
1928 int ret;
1929
1930 /* First try user provided anchor */
1931 if (sbi->s_anchor) {
1932 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1933 if (ret != -EAGAIN)
1934 return ret;
1935 }
1936 /*
1937 * according to spec, anchor is in either:
1938 * block 256
1939 * lastblock-256
1940 * lastblock
1941 * however, if the disc isn't closed, it could be 512.
1942 */
1943 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1944 if (ret != -EAGAIN)
1945 return ret;
1946 /*
1947 * The trouble is which block is the last one. Drives often misreport
1948 * this so we try various possibilities.
1949 */
1950 last[last_count++] = *lastblock;
1951 if (*lastblock >= 1)
1952 last[last_count++] = *lastblock - 1;
1953 last[last_count++] = *lastblock + 1;
1954 if (*lastblock >= 2)
1955 last[last_count++] = *lastblock - 2;
1956 if (*lastblock >= 150)
1957 last[last_count++] = *lastblock - 150;
1958 if (*lastblock >= 152)
1959 last[last_count++] = *lastblock - 152;
1960
1961 for (i = 0; i < last_count; i++) {
1962 if (last[i] >= sb_bdev_nr_blocks(sb))
1963 continue;
1964 ret = udf_check_anchor_block(sb, last[i], fileset);
1965 if (ret != -EAGAIN) {
1966 if (!ret)
1967 *lastblock = last[i];
1968 return ret;
1969 }
1970 if (last[i] < 256)
1971 continue;
1972 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1973 if (ret != -EAGAIN) {
1974 if (!ret)
1975 *lastblock = last[i];
1976 return ret;
1977 }
1978 }
1979
1980 /* Finally try block 512 in case media is open */
1981 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1982}
1983
1984/*
1985 * Check Volume Structure Descriptor, find Anchor block and load Volume
1986 * Descriptor Sequence.
1987 *
1988 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1989 * block was not found.
1990 */
1991static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1992 int silent, struct kernel_lb_addr *fileset)
1993{
1994 struct udf_sb_info *sbi = UDF_SB(sb);
1995 int nsr = 0;
1996 int ret;
1997
1998 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1999 if (!silent)
2000 udf_warn(sb, "Bad block size\n");
2001 return -EINVAL;
2002 }
2003 sbi->s_last_block = uopt->lastblock;
2004 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_NOVRS)) {
2005 /* Check that it is NSR02 compliant */
2006 nsr = udf_check_vsd(sb);
2007 if (!nsr) {
2008 if (!silent)
2009 udf_warn(sb, "No VRS found\n");
2010 return -EINVAL;
2011 }
2012 if (nsr == -1)
2013 udf_debug("Failed to read sector at offset %d. "
2014 "Assuming open disc. Skipping validity "
2015 "check\n", VSD_FIRST_SECTOR_OFFSET);
2016 if (!sbi->s_last_block)
2017 sbi->s_last_block = udf_get_last_block(sb);
2018 } else {
2019 udf_debug("Validity check skipped because of novrs option\n");
2020 }
2021
2022 /* Look for anchor block and load Volume Descriptor Sequence */
2023 sbi->s_anchor = uopt->anchor;
2024 ret = udf_scan_anchors(sb, &sbi->s_last_block, fileset);
2025 if (ret < 0) {
2026 if (!silent && ret == -EAGAIN)
2027 udf_warn(sb, "No anchor found\n");
2028 return ret;
2029 }
2030 return 0;
2031}
2032
2033static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
2034{
2035 struct timespec64 ts;
2036
2037 ktime_get_real_ts64(&ts);
2038 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2039 lvid->descTag.descCRC = cpu_to_le16(
2040 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2041 le16_to_cpu(lvid->descTag.descCRCLength)));
2042 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2043}
2044
2045static void udf_open_lvid(struct super_block *sb)
2046{
2047 struct udf_sb_info *sbi = UDF_SB(sb);
2048 struct buffer_head *bh = sbi->s_lvid_bh;
2049 struct logicalVolIntegrityDesc *lvid;
2050 struct logicalVolIntegrityDescImpUse *lvidiu;
2051
2052 if (!bh)
2053 return;
2054 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2055 lvidiu = udf_sb_lvidiu(sb);
2056 if (!lvidiu)
2057 return;
2058
2059 mutex_lock(&sbi->s_alloc_mutex);
2060 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2061 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2062 if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2063 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2064 else
2065 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2066
2067 udf_finalize_lvid(lvid);
2068 mark_buffer_dirty(bh);
2069 sbi->s_lvid_dirty = 0;
2070 mutex_unlock(&sbi->s_alloc_mutex);
2071 /* Make opening of filesystem visible on the media immediately */
2072 sync_dirty_buffer(bh);
2073}
2074
2075static void udf_close_lvid(struct super_block *sb)
2076{
2077 struct udf_sb_info *sbi = UDF_SB(sb);
2078 struct buffer_head *bh = sbi->s_lvid_bh;
2079 struct logicalVolIntegrityDesc *lvid;
2080 struct logicalVolIntegrityDescImpUse *lvidiu;
2081
2082 if (!bh)
2083 return;
2084 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2085 lvidiu = udf_sb_lvidiu(sb);
2086 if (!lvidiu)
2087 return;
2088
2089 mutex_lock(&sbi->s_alloc_mutex);
2090 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2091 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2092 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2093 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2094 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2095 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2096 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2097 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2098 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2099 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2100
2101 /*
2102 * We set buffer uptodate unconditionally here to avoid spurious
2103 * warnings from mark_buffer_dirty() when previous EIO has marked
2104 * the buffer as !uptodate
2105 */
2106 set_buffer_uptodate(bh);
2107 udf_finalize_lvid(lvid);
2108 mark_buffer_dirty(bh);
2109 sbi->s_lvid_dirty = 0;
2110 mutex_unlock(&sbi->s_alloc_mutex);
2111 /* Make closing of filesystem visible on the media immediately */
2112 sync_dirty_buffer(bh);
2113}
2114
2115u64 lvid_get_unique_id(struct super_block *sb)
2116{
2117 struct buffer_head *bh;
2118 struct udf_sb_info *sbi = UDF_SB(sb);
2119 struct logicalVolIntegrityDesc *lvid;
2120 struct logicalVolHeaderDesc *lvhd;
2121 u64 uniqueID;
2122 u64 ret;
2123
2124 bh = sbi->s_lvid_bh;
2125 if (!bh)
2126 return 0;
2127
2128 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2129 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2130
2131 mutex_lock(&sbi->s_alloc_mutex);
2132 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2133 if (!(++uniqueID & 0xFFFFFFFF))
2134 uniqueID += 16;
2135 lvhd->uniqueID = cpu_to_le64(uniqueID);
2136 udf_updated_lvid(sb);
2137 mutex_unlock(&sbi->s_alloc_mutex);
2138
2139 return ret;
2140}
2141
2142static int udf_fill_super(struct super_block *sb, struct fs_context *fc)
2143{
2144 int ret = -EINVAL;
2145 struct inode *inode = NULL;
2146 struct udf_options *uopt = fc->fs_private;
2147 struct kernel_lb_addr rootdir, fileset;
2148 struct udf_sb_info *sbi;
2149 bool lvid_open = false;
2150 int silent = fc->sb_flags & SB_SILENT;
2151
2152 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2153 if (!sbi)
2154 return -ENOMEM;
2155
2156 sb->s_fs_info = sbi;
2157
2158 mutex_init(&sbi->s_alloc_mutex);
2159
2160 fileset.logicalBlockNum = 0xFFFFFFFF;
2161 fileset.partitionReferenceNum = 0xFFFF;
2162
2163 sbi->s_flags = uopt->flags;
2164 sbi->s_uid = uopt->uid;
2165 sbi->s_gid = uopt->gid;
2166 sbi->s_umask = uopt->umask;
2167 sbi->s_fmode = uopt->fmode;
2168 sbi->s_dmode = uopt->dmode;
2169 sbi->s_nls_map = uopt->nls_map;
2170 uopt->nls_map = NULL;
2171 rwlock_init(&sbi->s_cred_lock);
2172
2173 if (uopt->session == 0xFFFFFFFF)
2174 sbi->s_session = udf_get_last_session(sb);
2175 else
2176 sbi->s_session = uopt->session;
2177
2178 udf_debug("Multi-session=%d\n", sbi->s_session);
2179
2180 /* Fill in the rest of the superblock */
2181 sb->s_op = &udf_sb_ops;
2182 sb->s_export_op = &udf_export_ops;
2183
2184 sb->s_magic = UDF_SUPER_MAGIC;
2185 sb->s_time_gran = 1000;
2186
2187 if (uopt->flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2188 ret = udf_load_vrs(sb, uopt, silent, &fileset);
2189 } else {
2190 uopt->blocksize = bdev_logical_block_size(sb->s_bdev);
2191 while (uopt->blocksize <= 4096) {
2192 ret = udf_load_vrs(sb, uopt, silent, &fileset);
2193 if (ret < 0) {
2194 if (!silent && ret != -EACCES) {
2195 pr_notice("Scanning with blocksize %u failed\n",
2196 uopt->blocksize);
2197 }
2198 brelse(sbi->s_lvid_bh);
2199 sbi->s_lvid_bh = NULL;
2200 /*
2201 * EACCES is special - we want to propagate to
2202 * upper layers that we cannot handle RW mount.
2203 */
2204 if (ret == -EACCES)
2205 break;
2206 } else
2207 break;
2208
2209 uopt->blocksize <<= 1;
2210 }
2211 }
2212 if (ret < 0) {
2213 if (ret == -EAGAIN) {
2214 udf_warn(sb, "No partition found (1)\n");
2215 ret = -EINVAL;
2216 }
2217 goto error_out;
2218 }
2219
2220 udf_debug("Lastblock=%u\n", sbi->s_last_block);
2221
2222 if (sbi->s_lvid_bh) {
2223 struct logicalVolIntegrityDescImpUse *lvidiu =
2224 udf_sb_lvidiu(sb);
2225 uint16_t minUDFReadRev;
2226 uint16_t minUDFWriteRev;
2227
2228 if (!lvidiu) {
2229 ret = -EINVAL;
2230 goto error_out;
2231 }
2232 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2233 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2234 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2235 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2236 minUDFReadRev,
2237 UDF_MAX_READ_VERSION);
2238 ret = -EINVAL;
2239 goto error_out;
2240 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2241 if (!sb_rdonly(sb)) {
2242 ret = -EACCES;
2243 goto error_out;
2244 }
2245 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2246 }
2247
2248 sbi->s_udfrev = minUDFWriteRev;
2249
2250 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2251 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2252 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2253 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2254 }
2255
2256 if (!sbi->s_partitions) {
2257 udf_warn(sb, "No partition found (2)\n");
2258 ret = -EINVAL;
2259 goto error_out;
2260 }
2261
2262 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2263 UDF_PART_FLAG_READ_ONLY) {
2264 if (!sb_rdonly(sb)) {
2265 ret = -EACCES;
2266 goto error_out;
2267 }
2268 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2269 }
2270
2271 ret = udf_find_fileset(sb, &fileset, &rootdir);
2272 if (ret < 0) {
2273 udf_warn(sb, "No fileset found\n");
2274 goto error_out;
2275 }
2276
2277 if (!silent) {
2278 struct timestamp ts;
2279 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2280 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2281 sbi->s_volume_ident,
2282 le16_to_cpu(ts.year), ts.month, ts.day,
2283 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2284 }
2285 if (!sb_rdonly(sb)) {
2286 udf_open_lvid(sb);
2287 lvid_open = true;
2288 }
2289
2290 /* Assign the root inode */
2291 /* assign inodes by physical block number */
2292 /* perhaps it's not extensible enough, but for now ... */
2293 inode = udf_iget(sb, &rootdir);
2294 if (IS_ERR(inode)) {
2295 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2296 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2297 ret = PTR_ERR(inode);
2298 goto error_out;
2299 }
2300
2301 /* Allocate a dentry for the root inode */
2302 sb->s_root = d_make_root(inode);
2303 if (!sb->s_root) {
2304 udf_err(sb, "Couldn't allocate root dentry\n");
2305 ret = -ENOMEM;
2306 goto error_out;
2307 }
2308 sb->s_maxbytes = UDF_MAX_FILESIZE;
2309 sb->s_max_links = UDF_MAX_LINKS;
2310 return 0;
2311
2312error_out:
2313 iput(sbi->s_vat_inode);
2314 unload_nls(uopt->nls_map);
2315 if (lvid_open)
2316 udf_close_lvid(sb);
2317 brelse(sbi->s_lvid_bh);
2318 udf_sb_free_partitions(sb);
2319 kfree(sbi);
2320 sb->s_fs_info = NULL;
2321
2322 return ret;
2323}
2324
2325void _udf_err(struct super_block *sb, const char *function,
2326 const char *fmt, ...)
2327{
2328 struct va_format vaf;
2329 va_list args;
2330
2331 va_start(args, fmt);
2332
2333 vaf.fmt = fmt;
2334 vaf.va = &args;
2335
2336 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2337
2338 va_end(args);
2339}
2340
2341void _udf_warn(struct super_block *sb, const char *function,
2342 const char *fmt, ...)
2343{
2344 struct va_format vaf;
2345 va_list args;
2346
2347 va_start(args, fmt);
2348
2349 vaf.fmt = fmt;
2350 vaf.va = &args;
2351
2352 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2353
2354 va_end(args);
2355}
2356
2357static void udf_put_super(struct super_block *sb)
2358{
2359 struct udf_sb_info *sbi;
2360
2361 sbi = UDF_SB(sb);
2362
2363 iput(sbi->s_vat_inode);
2364 unload_nls(sbi->s_nls_map);
2365 if (!sb_rdonly(sb))
2366 udf_close_lvid(sb);
2367 brelse(sbi->s_lvid_bh);
2368 udf_sb_free_partitions(sb);
2369 mutex_destroy(&sbi->s_alloc_mutex);
2370 kfree(sb->s_fs_info);
2371 sb->s_fs_info = NULL;
2372}
2373
2374static int udf_sync_fs(struct super_block *sb, int wait)
2375{
2376 struct udf_sb_info *sbi = UDF_SB(sb);
2377
2378 mutex_lock(&sbi->s_alloc_mutex);
2379 if (sbi->s_lvid_dirty) {
2380 struct buffer_head *bh = sbi->s_lvid_bh;
2381 struct logicalVolIntegrityDesc *lvid;
2382
2383 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2384 udf_finalize_lvid(lvid);
2385
2386 /*
2387 * Blockdevice will be synced later so we don't have to submit
2388 * the buffer for IO
2389 */
2390 mark_buffer_dirty(bh);
2391 sbi->s_lvid_dirty = 0;
2392 }
2393 mutex_unlock(&sbi->s_alloc_mutex);
2394
2395 return 0;
2396}
2397
2398static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2399{
2400 struct super_block *sb = dentry->d_sb;
2401 struct udf_sb_info *sbi = UDF_SB(sb);
2402 struct logicalVolIntegrityDescImpUse *lvidiu;
2403 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2404
2405 lvidiu = udf_sb_lvidiu(sb);
2406 buf->f_type = UDF_SUPER_MAGIC;
2407 buf->f_bsize = sb->s_blocksize;
2408 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2409 buf->f_bfree = udf_count_free(sb);
2410 buf->f_bavail = buf->f_bfree;
2411 /*
2412 * Let's pretend each free block is also a free 'inode' since UDF does
2413 * not have separate preallocated table of inodes.
2414 */
2415 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2416 le32_to_cpu(lvidiu->numDirs)) : 0)
2417 + buf->f_bfree;
2418 buf->f_ffree = buf->f_bfree;
2419 buf->f_namelen = UDF_NAME_LEN;
2420 buf->f_fsid = u64_to_fsid(id);
2421
2422 return 0;
2423}
2424
2425static unsigned int udf_count_free_bitmap(struct super_block *sb,
2426 struct udf_bitmap *bitmap)
2427{
2428 struct buffer_head *bh = NULL;
2429 unsigned int accum = 0;
2430 int index;
2431 udf_pblk_t block = 0, newblock;
2432 struct kernel_lb_addr loc;
2433 uint32_t bytes;
2434 uint8_t *ptr;
2435 uint16_t ident;
2436 struct spaceBitmapDesc *bm;
2437
2438 loc.logicalBlockNum = bitmap->s_extPosition;
2439 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2440 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2441
2442 if (!bh) {
2443 udf_err(sb, "udf_count_free failed\n");
2444 goto out;
2445 } else if (ident != TAG_IDENT_SBD) {
2446 brelse(bh);
2447 udf_err(sb, "udf_count_free failed\n");
2448 goto out;
2449 }
2450
2451 bm = (struct spaceBitmapDesc *)bh->b_data;
2452 bytes = le32_to_cpu(bm->numOfBytes);
2453 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2454 ptr = (uint8_t *)bh->b_data;
2455
2456 while (bytes > 0) {
2457 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2458 accum += bitmap_weight((const unsigned long *)(ptr + index),
2459 cur_bytes * 8);
2460 bytes -= cur_bytes;
2461 if (bytes) {
2462 brelse(bh);
2463 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2464 bh = sb_bread(sb, newblock);
2465 if (!bh) {
2466 udf_debug("read failed\n");
2467 goto out;
2468 }
2469 index = 0;
2470 ptr = (uint8_t *)bh->b_data;
2471 }
2472 }
2473 brelse(bh);
2474out:
2475 return accum;
2476}
2477
2478static unsigned int udf_count_free_table(struct super_block *sb,
2479 struct inode *table)
2480{
2481 unsigned int accum = 0;
2482 uint32_t elen;
2483 struct kernel_lb_addr eloc;
2484 struct extent_position epos;
2485 int8_t etype;
2486
2487 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2488 epos.block = UDF_I(table)->i_location;
2489 epos.offset = sizeof(struct unallocSpaceEntry);
2490 epos.bh = NULL;
2491
2492 while (udf_next_aext(table, &epos, &eloc, &elen, &etype, 1) > 0)
2493 accum += (elen >> table->i_sb->s_blocksize_bits);
2494
2495 brelse(epos.bh);
2496 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2497
2498 return accum;
2499}
2500
2501static unsigned int udf_count_free(struct super_block *sb)
2502{
2503 unsigned int accum = 0;
2504 struct udf_sb_info *sbi = UDF_SB(sb);
2505 struct udf_part_map *map;
2506 unsigned int part = sbi->s_partition;
2507 int ptype = sbi->s_partmaps[part].s_partition_type;
2508
2509 if (ptype == UDF_METADATA_MAP25) {
2510 part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2511 s_phys_partition_ref;
2512 } else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2513 /*
2514 * Filesystems with VAT are append-only and we cannot write to
2515 * them. Let's just report 0 here.
2516 */
2517 return 0;
2518 }
2519
2520 if (sbi->s_lvid_bh) {
2521 struct logicalVolIntegrityDesc *lvid =
2522 (struct logicalVolIntegrityDesc *)
2523 sbi->s_lvid_bh->b_data;
2524 if (le32_to_cpu(lvid->numOfPartitions) > part) {
2525 accum = le32_to_cpu(
2526 lvid->freeSpaceTable[part]);
2527 if (accum == 0xFFFFFFFF)
2528 accum = 0;
2529 }
2530 }
2531
2532 if (accum)
2533 return accum;
2534
2535 map = &sbi->s_partmaps[part];
2536 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2537 accum += udf_count_free_bitmap(sb,
2538 map->s_uspace.s_bitmap);
2539 }
2540 if (accum)
2541 return accum;
2542
2543 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2544 accum += udf_count_free_table(sb,
2545 map->s_uspace.s_table);
2546 }
2547 return accum;
2548}
2549
2550MODULE_AUTHOR("Ben Fennema");
2551MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2552MODULE_LICENSE("GPL");
2553module_init(init_udf_fs)
2554module_exit(exit_udf_fs)