Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 * linux/fs/jbd2/transaction.c
   3 *
   4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
   5 *
   6 * Copyright 1998 Red Hat corp --- All Rights Reserved
   7 *
   8 * This file is part of the Linux kernel and is made available under
   9 * the terms of the GNU General Public License, version 2, or at your
  10 * option, any later version, incorporated herein by reference.
  11 *
  12 * Generic filesystem transaction handling code; part of the ext2fs
  13 * journaling system.
  14 *
  15 * This file manages transactions (compound commits managed by the
  16 * journaling code) and handles (individual atomic operations by the
  17 * filesystem).
  18 */
  19
  20#include <linux/time.h>
  21#include <linux/fs.h>
  22#include <linux/jbd2.h>
  23#include <linux/errno.h>
  24#include <linux/slab.h>
  25#include <linux/timer.h>
  26#include <linux/mm.h>
  27#include <linux/highmem.h>
  28#include <linux/hrtimer.h>
  29#include <linux/backing-dev.h>
  30#include <linux/bug.h>
  31#include <linux/module.h>
 
  32
  33#include <trace/events/jbd2.h>
  34
  35static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
  36static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
  37
  38static struct kmem_cache *transaction_cache;
  39int __init jbd2_journal_init_transaction_cache(void)
  40{
  41	J_ASSERT(!transaction_cache);
  42	transaction_cache = kmem_cache_create("jbd2_transaction_s",
  43					sizeof(transaction_t),
  44					0,
  45					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
  46					NULL);
  47	if (transaction_cache)
  48		return 0;
  49	return -ENOMEM;
 
 
  50}
  51
  52void jbd2_journal_destroy_transaction_cache(void)
  53{
  54	if (transaction_cache) {
  55		kmem_cache_destroy(transaction_cache);
  56		transaction_cache = NULL;
  57	}
  58}
  59
  60void jbd2_journal_free_transaction(transaction_t *transaction)
  61{
  62	if (unlikely(ZERO_OR_NULL_PTR(transaction)))
  63		return;
  64	kmem_cache_free(transaction_cache, transaction);
  65}
  66
  67/*
  68 * jbd2_get_transaction: obtain a new transaction_t object.
  69 *
  70 * Simply allocate and initialise a new transaction.  Create it in
  71 * RUNNING state and add it to the current journal (which should not
  72 * have an existing running transaction: we only make a new transaction
  73 * once we have started to commit the old one).
  74 *
  75 * Preconditions:
  76 *	The journal MUST be locked.  We don't perform atomic mallocs on the
  77 *	new transaction	and we can't block without protecting against other
  78 *	processes trying to touch the journal while it is in transition.
  79 *
  80 */
  81
  82static transaction_t *
  83jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
  84{
  85	transaction->t_journal = journal;
  86	transaction->t_state = T_RUNNING;
  87	transaction->t_start_time = ktime_get();
  88	transaction->t_tid = journal->j_transaction_sequence++;
  89	transaction->t_expires = jiffies + journal->j_commit_interval;
  90	spin_lock_init(&transaction->t_handle_lock);
  91	atomic_set(&transaction->t_updates, 0);
  92	atomic_set(&transaction->t_outstanding_credits,
 
  93		   atomic_read(&journal->j_reserved_credits));
 
  94	atomic_set(&transaction->t_handle_count, 0);
  95	INIT_LIST_HEAD(&transaction->t_inode_list);
  96	INIT_LIST_HEAD(&transaction->t_private_list);
  97
  98	/* Set up the commit timer for the new transaction. */
  99	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
 100	add_timer(&journal->j_commit_timer);
 101
 102	J_ASSERT(journal->j_running_transaction == NULL);
 103	journal->j_running_transaction = transaction;
 104	transaction->t_max_wait = 0;
 105	transaction->t_start = jiffies;
 106	transaction->t_requested = 0;
 107
 108	return transaction;
 109}
 110
 111/*
 112 * Handle management.
 113 *
 114 * A handle_t is an object which represents a single atomic update to a
 115 * filesystem, and which tracks all of the modifications which form part
 116 * of that one update.
 117 */
 118
 119/*
 120 * Update transaction's maximum wait time, if debugging is enabled.
 121 *
 122 * In order for t_max_wait to be reliable, it must be protected by a
 123 * lock.  But doing so will mean that start_this_handle() can not be
 124 * run in parallel on SMP systems, which limits our scalability.  So
 125 * unless debugging is enabled, we no longer update t_max_wait, which
 126 * means that maximum wait time reported by the jbd2_run_stats
 127 * tracepoint will always be zero.
 128 */
 129static inline void update_t_max_wait(transaction_t *transaction,
 130				     unsigned long ts)
 131{
 132#ifdef CONFIG_JBD2_DEBUG
 133	if (jbd2_journal_enable_debug &&
 134	    time_after(transaction->t_start, ts)) {
 135		ts = jbd2_time_diff(ts, transaction->t_start);
 136		spin_lock(&transaction->t_handle_lock);
 137		if (ts > transaction->t_max_wait)
 138			transaction->t_max_wait = ts;
 139		spin_unlock(&transaction->t_handle_lock);
 140	}
 141#endif
 142}
 143
 144/*
 145 * Wait until running transaction passes T_LOCKED state. Also starts the commit
 146 * if needed. The function expects running transaction to exist and releases
 147 * j_state_lock.
 148 */
 149static void wait_transaction_locked(journal_t *journal)
 150	__releases(journal->j_state_lock)
 151{
 152	DEFINE_WAIT(wait);
 153	int need_to_start;
 154	tid_t tid = journal->j_running_transaction->t_tid;
 155
 156	prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
 157			TASK_UNINTERRUPTIBLE);
 158	need_to_start = !tid_geq(journal->j_commit_request, tid);
 159	read_unlock(&journal->j_state_lock);
 160	if (need_to_start)
 161		jbd2_log_start_commit(journal, tid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 162	schedule();
 163	finish_wait(&journal->j_wait_transaction_locked, &wait);
 164}
 165
 166static void sub_reserved_credits(journal_t *journal, int blocks)
 167{
 168	atomic_sub(blocks, &journal->j_reserved_credits);
 169	wake_up(&journal->j_wait_reserved);
 170}
 171
 
 
 
 
 
 
 
 172/*
 173 * Wait until we can add credits for handle to the running transaction.  Called
 174 * with j_state_lock held for reading. Returns 0 if handle joined the running
 175 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
 176 * caller must retry.
 
 
 
 
 
 177 */
 178static int add_transaction_credits(journal_t *journal, int blocks,
 179				   int rsv_blocks)
 
 180{
 181	transaction_t *t = journal->j_running_transaction;
 182	int needed;
 183	int total = blocks + rsv_blocks;
 184
 185	/*
 186	 * If the current transaction is locked down for commit, wait
 187	 * for the lock to be released.
 188	 */
 189	if (t->t_state == T_LOCKED) {
 
 190		wait_transaction_locked(journal);
 
 191		return 1;
 192	}
 193
 194	/*
 195	 * If there is not enough space left in the log to write all
 196	 * potential buffers requested by this operation, we need to
 197	 * stall pending a log checkpoint to free some more log space.
 198	 */
 199	needed = atomic_add_return(total, &t->t_outstanding_credits);
 200	if (needed > journal->j_max_transaction_buffers) {
 201		/*
 202		 * If the current transaction is already too large,
 203		 * then start to commit it: we can then go back and
 204		 * attach this handle to a new transaction.
 205		 */
 206		atomic_sub(total, &t->t_outstanding_credits);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 207		wait_transaction_locked(journal);
 
 208		return 1;
 209	}
 210
 211	/*
 212	 * The commit code assumes that it can get enough log space
 213	 * without forcing a checkpoint.  This is *critical* for
 214	 * correctness: a checkpoint of a buffer which is also
 215	 * associated with a committing transaction creates a deadlock,
 216	 * so commit simply cannot force through checkpoints.
 217	 *
 218	 * We must therefore ensure the necessary space in the journal
 219	 * *before* starting to dirty potentially checkpointed buffers
 220	 * in the new transaction.
 221	 */
 222	if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
 223		atomic_sub(total, &t->t_outstanding_credits);
 224		read_unlock(&journal->j_state_lock);
 
 225		write_lock(&journal->j_state_lock);
 226		if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
 
 227			__jbd2_log_wait_for_space(journal);
 228		write_unlock(&journal->j_state_lock);
 
 229		return 1;
 230	}
 231
 232	/* No reservation? We are done... */
 233	if (!rsv_blocks)
 234		return 0;
 235
 236	needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
 237	/* We allow at most half of a transaction to be reserved */
 238	if (needed > journal->j_max_transaction_buffers / 2) {
 239		sub_reserved_credits(journal, rsv_blocks);
 240		atomic_sub(total, &t->t_outstanding_credits);
 241		read_unlock(&journal->j_state_lock);
 
 242		wait_event(journal->j_wait_reserved,
 243			 atomic_read(&journal->j_reserved_credits) + rsv_blocks
 244			 <= journal->j_max_transaction_buffers / 2);
 
 245		return 1;
 246	}
 247	return 0;
 248}
 249
 250/*
 251 * start_this_handle: Given a handle, deal with any locking or stalling
 252 * needed to make sure that there is enough journal space for the handle
 253 * to begin.  Attach the handle to a transaction and set up the
 254 * transaction's buffer credits.
 255 */
 256
 257static int start_this_handle(journal_t *journal, handle_t *handle,
 258			     gfp_t gfp_mask)
 259{
 260	transaction_t	*transaction, *new_transaction = NULL;
 261	int		blocks = handle->h_buffer_credits;
 262	int		rsv_blocks = 0;
 263	unsigned long ts = jiffies;
 264
 
 
 
 265	/*
 266	 * 1/2 of transaction can be reserved so we can practically handle
 267	 * only 1/2 of maximum transaction size per operation
 268	 */
 269	if (WARN_ON(blocks > journal->j_max_transaction_buffers / 2)) {
 270		printk(KERN_ERR "JBD2: %s wants too many credits (%d > %d)\n",
 271		       current->comm, blocks,
 272		       journal->j_max_transaction_buffers / 2);
 
 
 
 
 273		return -ENOSPC;
 274	}
 275
 276	if (handle->h_rsv_handle)
 277		rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
 278
 279alloc_transaction:
 280	if (!journal->j_running_transaction) {
 
 
 
 
 
 
 
 
 
 
 
 281		new_transaction = kmem_cache_zalloc(transaction_cache,
 282						    gfp_mask);
 283		if (!new_transaction) {
 284			/*
 285			 * If __GFP_FS is not present, then we may be
 286			 * being called from inside the fs writeback
 287			 * layer, so we MUST NOT fail.  Since
 288			 * __GFP_NOFAIL is going away, we will arrange
 289			 * to retry the allocation ourselves.
 290			 */
 291			if ((gfp_mask & __GFP_FS) == 0) {
 292				congestion_wait(BLK_RW_ASYNC, HZ/50);
 293				goto alloc_transaction;
 294			}
 295			return -ENOMEM;
 296		}
 297	}
 298
 299	jbd_debug(3, "New handle %p going live.\n", handle);
 300
 301	/*
 302	 * We need to hold j_state_lock until t_updates has been incremented,
 303	 * for proper journal barrier handling
 304	 */
 305repeat:
 306	read_lock(&journal->j_state_lock);
 307	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
 308	if (is_journal_aborted(journal) ||
 309	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
 310		read_unlock(&journal->j_state_lock);
 311		jbd2_journal_free_transaction(new_transaction);
 312		return -EROFS;
 313	}
 314
 315	/*
 316	 * Wait on the journal's transaction barrier if necessary. Specifically
 317	 * we allow reserved handles to proceed because otherwise commit could
 318	 * deadlock on page writeback not being able to complete.
 319	 */
 320	if (!handle->h_reserved && journal->j_barrier_count) {
 321		read_unlock(&journal->j_state_lock);
 322		wait_event(journal->j_wait_transaction_locked,
 323				journal->j_barrier_count == 0);
 324		goto repeat;
 325	}
 326
 327	if (!journal->j_running_transaction) {
 328		read_unlock(&journal->j_state_lock);
 329		if (!new_transaction)
 330			goto alloc_transaction;
 331		write_lock(&journal->j_state_lock);
 332		if (!journal->j_running_transaction &&
 333		    (handle->h_reserved || !journal->j_barrier_count)) {
 334			jbd2_get_transaction(journal, new_transaction);
 335			new_transaction = NULL;
 336		}
 337		write_unlock(&journal->j_state_lock);
 338		goto repeat;
 339	}
 340
 341	transaction = journal->j_running_transaction;
 342
 343	if (!handle->h_reserved) {
 344		/* We may have dropped j_state_lock - restart in that case */
 345		if (add_transaction_credits(journal, blocks, rsv_blocks))
 
 
 
 
 
 346			goto repeat;
 
 347	} else {
 348		/*
 349		 * We have handle reserved so we are allowed to join T_LOCKED
 350		 * transaction and we don't have to check for transaction size
 351		 * and journal space.
 
 
 352		 */
 
 
 
 
 353		sub_reserved_credits(journal, blocks);
 354		handle->h_reserved = 0;
 355	}
 356
 357	/* OK, account for the buffers that this operation expects to
 358	 * use and add the handle to the running transaction. 
 359	 */
 360	update_t_max_wait(transaction, ts);
 361	handle->h_transaction = transaction;
 362	handle->h_requested_credits = blocks;
 
 363	handle->h_start_jiffies = jiffies;
 364	atomic_inc(&transaction->t_updates);
 365	atomic_inc(&transaction->t_handle_count);
 366	jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
 367		  handle, blocks,
 368		  atomic_read(&transaction->t_outstanding_credits),
 369		  jbd2_log_space_left(journal));
 370	read_unlock(&journal->j_state_lock);
 371	current->journal_info = handle;
 372
 373	lock_map_acquire(&handle->h_lockdep_map);
 374	jbd2_journal_free_transaction(new_transaction);
 
 
 
 
 
 375	return 0;
 376}
 377
 378static struct lock_class_key jbd2_handle_key;
 379
 380/* Allocate a new handle.  This should probably be in a slab... */
 381static handle_t *new_handle(int nblocks)
 382{
 383	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
 384	if (!handle)
 385		return NULL;
 386	handle->h_buffer_credits = nblocks;
 387	handle->h_ref = 1;
 388
 389	lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
 390						&jbd2_handle_key, 0);
 391
 392	return handle;
 393}
 394
 395/**
 396 * handle_t *jbd2_journal_start() - Obtain a new handle.
 397 * @journal: Journal to start transaction on.
 398 * @nblocks: number of block buffer we might modify
 399 *
 400 * We make sure that the transaction can guarantee at least nblocks of
 401 * modified buffers in the log.  We block until the log can guarantee
 402 * that much space. Additionally, if rsv_blocks > 0, we also create another
 403 * handle with rsv_blocks reserved blocks in the journal. This handle is
 404 * is stored in h_rsv_handle. It is not attached to any particular transaction
 405 * and thus doesn't block transaction commit. If the caller uses this reserved
 406 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
 407 * on the parent handle will dispose the reserved one. Reserved handle has to
 408 * be converted to a normal handle using jbd2_journal_start_reserved() before
 409 * it can be used.
 410 *
 411 * Return a pointer to a newly allocated handle, or an ERR_PTR() value
 412 * on failure.
 413 */
 414handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
 415			      gfp_t gfp_mask, unsigned int type,
 416			      unsigned int line_no)
 417{
 418	handle_t *handle = journal_current_handle();
 419	int err;
 420
 421	if (!journal)
 422		return ERR_PTR(-EROFS);
 423
 424	if (handle) {
 425		J_ASSERT(handle->h_transaction->t_journal == journal);
 426		handle->h_ref++;
 427		return handle;
 428	}
 429
 
 
 430	handle = new_handle(nblocks);
 431	if (!handle)
 432		return ERR_PTR(-ENOMEM);
 433	if (rsv_blocks) {
 434		handle_t *rsv_handle;
 435
 436		rsv_handle = new_handle(rsv_blocks);
 437		if (!rsv_handle) {
 438			jbd2_free_handle(handle);
 439			return ERR_PTR(-ENOMEM);
 440		}
 441		rsv_handle->h_reserved = 1;
 442		rsv_handle->h_journal = journal;
 443		handle->h_rsv_handle = rsv_handle;
 444	}
 
 445
 446	err = start_this_handle(journal, handle, gfp_mask);
 447	if (err < 0) {
 448		if (handle->h_rsv_handle)
 449			jbd2_free_handle(handle->h_rsv_handle);
 450		jbd2_free_handle(handle);
 451		return ERR_PTR(err);
 452	}
 453	handle->h_type = type;
 454	handle->h_line_no = line_no;
 455	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
 456				handle->h_transaction->t_tid, type,
 457				line_no, nblocks);
 
 458	return handle;
 459}
 460EXPORT_SYMBOL(jbd2__journal_start);
 461
 462
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 463handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
 464{
 465	return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
 466}
 467EXPORT_SYMBOL(jbd2_journal_start);
 468
 469void jbd2_journal_free_reserved(handle_t *handle)
 470{
 471	journal_t *journal = handle->h_journal;
 472
 473	WARN_ON(!handle->h_reserved);
 474	sub_reserved_credits(journal, handle->h_buffer_credits);
 
 
 
 
 
 
 
 
 
 
 
 
 475	jbd2_free_handle(handle);
 476}
 477EXPORT_SYMBOL(jbd2_journal_free_reserved);
 478
 479/**
 480 * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle
 481 * @handle: handle to start
 
 
 482 *
 483 * Start handle that has been previously reserved with jbd2_journal_reserve().
 484 * This attaches @handle to the running transaction (or creates one if there's
 485 * not transaction running). Unlike jbd2_journal_start() this function cannot
 486 * block on journal commit, checkpointing, or similar stuff. It can block on
 487 * memory allocation or frozen journal though.
 488 *
 489 * Return 0 on success, non-zero on error - handle is freed in that case.
 490 */
 491int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
 492				unsigned int line_no)
 493{
 494	journal_t *journal = handle->h_journal;
 495	int ret = -EIO;
 496
 497	if (WARN_ON(!handle->h_reserved)) {
 498		/* Someone passed in normal handle? Just stop it. */
 499		jbd2_journal_stop(handle);
 500		return ret;
 501	}
 502	/*
 503	 * Usefulness of mixing of reserved and unreserved handles is
 504	 * questionable. So far nobody seems to need it so just error out.
 505	 */
 506	if (WARN_ON(current->journal_info)) {
 507		jbd2_journal_free_reserved(handle);
 508		return ret;
 509	}
 510
 511	handle->h_journal = NULL;
 512	/*
 513	 * GFP_NOFS is here because callers are likely from writeback or
 514	 * similarly constrained call sites
 515	 */
 516	ret = start_this_handle(journal, handle, GFP_NOFS);
 517	if (ret < 0) {
 
 518		jbd2_journal_free_reserved(handle);
 519		return ret;
 520	}
 521	handle->h_type = type;
 522	handle->h_line_no = line_no;
 
 
 
 523	return 0;
 524}
 525EXPORT_SYMBOL(jbd2_journal_start_reserved);
 526
 527/**
 528 * int jbd2_journal_extend() - extend buffer credits.
 529 * @handle:  handle to 'extend'
 530 * @nblocks: nr blocks to try to extend by.
 
 531 *
 532 * Some transactions, such as large extends and truncates, can be done
 533 * atomically all at once or in several stages.  The operation requests
 534 * a credit for a number of buffer modications in advance, but can
 535 * extend its credit if it needs more.
 536 *
 537 * jbd2_journal_extend tries to give the running handle more buffer credits.
 538 * It does not guarantee that allocation - this is a best-effort only.
 539 * The calling process MUST be able to deal cleanly with a failure to
 540 * extend here.
 541 *
 542 * Return 0 on success, non-zero on failure.
 543 *
 544 * return code < 0 implies an error
 545 * return code > 0 implies normal transaction-full status.
 546 */
 547int jbd2_journal_extend(handle_t *handle, int nblocks)
 548{
 549	transaction_t *transaction = handle->h_transaction;
 550	journal_t *journal;
 551	int result;
 552	int wanted;
 553
 554	WARN_ON(!transaction);
 555	if (is_handle_aborted(handle))
 556		return -EROFS;
 557	journal = transaction->t_journal;
 558
 559	result = 1;
 560
 561	read_lock(&journal->j_state_lock);
 562
 563	/* Don't extend a locked-down transaction! */
 564	if (transaction->t_state != T_RUNNING) {
 565		jbd_debug(3, "denied handle %p %d blocks: "
 566			  "transaction not running\n", handle, nblocks);
 567		goto error_out;
 568	}
 569
 570	spin_lock(&transaction->t_handle_lock);
 
 
 
 
 
 571	wanted = atomic_add_return(nblocks,
 572				   &transaction->t_outstanding_credits);
 573
 574	if (wanted > journal->j_max_transaction_buffers) {
 575		jbd_debug(3, "denied handle %p %d blocks: "
 576			  "transaction too large\n", handle, nblocks);
 577		atomic_sub(nblocks, &transaction->t_outstanding_credits);
 578		goto unlock;
 579	}
 580
 581	if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
 582	    jbd2_log_space_left(journal)) {
 583		jbd_debug(3, "denied handle %p %d blocks: "
 584			  "insufficient log space\n", handle, nblocks);
 585		atomic_sub(nblocks, &transaction->t_outstanding_credits);
 586		goto unlock;
 587	}
 588
 589	trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
 590				 transaction->t_tid,
 591				 handle->h_type, handle->h_line_no,
 592				 handle->h_buffer_credits,
 593				 nblocks);
 594
 595	handle->h_buffer_credits += nblocks;
 596	handle->h_requested_credits += nblocks;
 
 
 597	result = 0;
 598
 599	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
 600unlock:
 601	spin_unlock(&transaction->t_handle_lock);
 602error_out:
 603	read_unlock(&journal->j_state_lock);
 604	return result;
 605}
 606
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 607
 608/**
 609 * int jbd2_journal_restart() - restart a handle .
 610 * @handle:  handle to restart
 611 * @nblocks: nr credits requested
 
 
 612 *
 613 * Restart a handle for a multi-transaction filesystem
 614 * operation.
 615 *
 616 * If the jbd2_journal_extend() call above fails to grant new buffer credits
 617 * to a running handle, a call to jbd2_journal_restart will commit the
 618 * handle's transaction so far and reattach the handle to a new
 619 * transaction capabable of guaranteeing the requested number of
 620 * credits. We preserve reserved handle if there's any attached to the
 621 * passed in handle.
 622 */
 623int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
 
 624{
 625	transaction_t *transaction = handle->h_transaction;
 626	journal_t *journal;
 627	tid_t		tid;
 628	int		need_to_start, ret;
 
 629
 630	WARN_ON(!transaction);
 631	/* If we've had an abort of any type, don't even think about
 632	 * actually doing the restart! */
 633	if (is_handle_aborted(handle))
 634		return 0;
 635	journal = transaction->t_journal;
 
 636
 637	/*
 638	 * First unlink the handle from its current transaction, and start the
 639	 * commit on that.
 640	 */
 641	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
 642	J_ASSERT(journal_current_handle() == handle);
 643
 644	read_lock(&journal->j_state_lock);
 645	spin_lock(&transaction->t_handle_lock);
 646	atomic_sub(handle->h_buffer_credits,
 647		   &transaction->t_outstanding_credits);
 648	if (handle->h_rsv_handle) {
 649		sub_reserved_credits(journal,
 650				     handle->h_rsv_handle->h_buffer_credits);
 651	}
 652	if (atomic_dec_and_test(&transaction->t_updates))
 653		wake_up(&journal->j_wait_updates);
 654	tid = transaction->t_tid;
 655	spin_unlock(&transaction->t_handle_lock);
 656	handle->h_transaction = NULL;
 657	current->journal_info = NULL;
 658
 659	jbd_debug(2, "restarting handle %p\n", handle);
 
 
 
 
 660	need_to_start = !tid_geq(journal->j_commit_request, tid);
 661	read_unlock(&journal->j_state_lock);
 662	if (need_to_start)
 663		jbd2_log_start_commit(journal, tid);
 664
 665	lock_map_release(&handle->h_lockdep_map);
 666	handle->h_buffer_credits = nblocks;
 
 667	ret = start_this_handle(journal, handle, gfp_mask);
 
 
 
 
 668	return ret;
 669}
 670EXPORT_SYMBOL(jbd2__journal_restart);
 671
 672
 673int jbd2_journal_restart(handle_t *handle, int nblocks)
 674{
 675	return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
 676}
 677EXPORT_SYMBOL(jbd2_journal_restart);
 678
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 679/**
 680 * void jbd2_journal_lock_updates () - establish a transaction barrier.
 681 * @journal:  Journal to establish a barrier on.
 682 *
 683 * This locks out any further updates from being started, and blocks
 684 * until all existing updates have completed, returning only once the
 685 * journal is in a quiescent state with no updates running.
 686 *
 687 * The journal lock should not be held on entry.
 688 */
 689void jbd2_journal_lock_updates(journal_t *journal)
 690{
 691	DEFINE_WAIT(wait);
 692
 693	write_lock(&journal->j_state_lock);
 694	++journal->j_barrier_count;
 695
 696	/* Wait until there are no reserved handles */
 697	if (atomic_read(&journal->j_reserved_credits)) {
 698		write_unlock(&journal->j_state_lock);
 699		wait_event(journal->j_wait_reserved,
 700			   atomic_read(&journal->j_reserved_credits) == 0);
 701		write_lock(&journal->j_state_lock);
 702	}
 703
 704	/* Wait until there are no running updates */
 705	while (1) {
 706		transaction_t *transaction = journal->j_running_transaction;
 707
 708		if (!transaction)
 709			break;
 710
 711		spin_lock(&transaction->t_handle_lock);
 712		prepare_to_wait(&journal->j_wait_updates, &wait,
 713				TASK_UNINTERRUPTIBLE);
 714		if (!atomic_read(&transaction->t_updates)) {
 715			spin_unlock(&transaction->t_handle_lock);
 716			finish_wait(&journal->j_wait_updates, &wait);
 717			break;
 718		}
 719		spin_unlock(&transaction->t_handle_lock);
 720		write_unlock(&journal->j_state_lock);
 721		schedule();
 722		finish_wait(&journal->j_wait_updates, &wait);
 723		write_lock(&journal->j_state_lock);
 724	}
 725	write_unlock(&journal->j_state_lock);
 726
 727	/*
 728	 * We have now established a barrier against other normal updates, but
 729	 * we also need to barrier against other jbd2_journal_lock_updates() calls
 730	 * to make sure that we serialise special journal-locked operations
 731	 * too.
 732	 */
 733	mutex_lock(&journal->j_barrier);
 734}
 735
 736/**
 737 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
 738 * @journal:  Journal to release the barrier on.
 739 *
 740 * Release a transaction barrier obtained with jbd2_journal_lock_updates().
 741 *
 742 * Should be called without the journal lock held.
 743 */
 744void jbd2_journal_unlock_updates (journal_t *journal)
 745{
 746	J_ASSERT(journal->j_barrier_count != 0);
 747
 748	mutex_unlock(&journal->j_barrier);
 749	write_lock(&journal->j_state_lock);
 750	--journal->j_barrier_count;
 751	write_unlock(&journal->j_state_lock);
 752	wake_up(&journal->j_wait_transaction_locked);
 753}
 754
 755static void warn_dirty_buffer(struct buffer_head *bh)
 756{
 757	char b[BDEVNAME_SIZE];
 758
 759	printk(KERN_WARNING
 760	       "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
 761	       "There's a risk of filesystem corruption in case of system "
 762	       "crash.\n",
 763	       bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
 764}
 765
 766static int sleep_on_shadow_bh(void *word)
 
 767{
 768	io_schedule();
 769	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 770}
 771
 772/*
 773 * If the buffer is already part of the current transaction, then there
 774 * is nothing we need to do.  If it is already part of a prior
 775 * transaction which we are still committing to disk, then we need to
 776 * make sure that we do not overwrite the old copy: we do copy-out to
 777 * preserve the copy going to disk.  We also account the buffer against
 778 * the handle's metadata buffer credits (unless the buffer is already
 779 * part of the transaction, that is).
 780 *
 781 */
 782static int
 783do_get_write_access(handle_t *handle, struct journal_head *jh,
 784			int force_copy)
 785{
 786	struct buffer_head *bh;
 787	transaction_t *transaction = handle->h_transaction;
 788	journal_t *journal;
 789	int error;
 790	char *frozen_buffer = NULL;
 791	int need_copy = 0;
 792	unsigned long start_lock, time_lock;
 793
 794	WARN_ON(!transaction);
 795	if (is_handle_aborted(handle))
 796		return -EROFS;
 797	journal = transaction->t_journal;
 798
 799	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
 800
 801	JBUFFER_TRACE(jh, "entry");
 802repeat:
 803	bh = jh2bh(jh);
 804
 805	/* @@@ Need to check for errors here at some point. */
 806
 807 	start_lock = jiffies;
 808	lock_buffer(bh);
 809	jbd_lock_bh_state(bh);
 810
 811	/* If it takes too long to lock the buffer, trace it */
 812	time_lock = jbd2_time_diff(start_lock, jiffies);
 813	if (time_lock > HZ/10)
 814		trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
 815			jiffies_to_msecs(time_lock));
 816
 817	/* We now hold the buffer lock so it is safe to query the buffer
 818	 * state.  Is the buffer dirty?
 819	 *
 820	 * If so, there are two possibilities.  The buffer may be
 821	 * non-journaled, and undergoing a quite legitimate writeback.
 822	 * Otherwise, it is journaled, and we don't expect dirty buffers
 823	 * in that state (the buffers should be marked JBD_Dirty
 824	 * instead.)  So either the IO is being done under our own
 825	 * control and this is a bug, or it's a third party IO such as
 826	 * dump(8) (which may leave the buffer scheduled for read ---
 827	 * ie. locked but not dirty) or tune2fs (which may actually have
 828	 * the buffer dirtied, ugh.)  */
 829
 830	if (buffer_dirty(bh)) {
 
 831		/*
 832		 * First question: is this buffer already part of the current
 833		 * transaction or the existing committing transaction?
 834		 */
 835		if (jh->b_transaction) {
 836			J_ASSERT_JH(jh,
 837				jh->b_transaction == transaction ||
 838				jh->b_transaction ==
 839					journal->j_committing_transaction);
 840			if (jh->b_next_transaction)
 841				J_ASSERT_JH(jh, jh->b_next_transaction ==
 842							transaction);
 843			warn_dirty_buffer(bh);
 844		}
 845		/*
 846		 * In any case we need to clean the dirty flag and we must
 847		 * do it under the buffer lock to be sure we don't race
 848		 * with running write-out.
 849		 */
 850		JBUFFER_TRACE(jh, "Journalling dirty buffer");
 851		clear_buffer_dirty(bh);
 
 
 
 
 
 
 
 852		set_buffer_jbddirty(bh);
 853	}
 854
 855	unlock_buffer(bh);
 856
 857	error = -EROFS;
 858	if (is_handle_aborted(handle)) {
 859		jbd_unlock_bh_state(bh);
 
 860		goto out;
 861	}
 862	error = 0;
 863
 864	/*
 865	 * The buffer is already part of this transaction if b_transaction or
 866	 * b_next_transaction points to it
 867	 */
 868	if (jh->b_transaction == transaction ||
 869	    jh->b_next_transaction == transaction)
 
 870		goto done;
 
 871
 872	/*
 873	 * this is the first time this transaction is touching this buffer,
 874	 * reset the modified flag
 875	 */
 876       jh->b_modified = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 877
 878	/*
 879	 * If there is already a copy-out version of this buffer, then we don't
 880	 * need to make another one
 881	 */
 882	if (jh->b_frozen_data) {
 883		JBUFFER_TRACE(jh, "has frozen data");
 884		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
 885		jh->b_next_transaction = transaction;
 886		goto done;
 887	}
 888
 889	/* Is there data here we need to preserve? */
 890
 891	if (jh->b_transaction && jh->b_transaction != transaction) {
 892		JBUFFER_TRACE(jh, "owned by older transaction");
 893		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
 894		J_ASSERT_JH(jh, jh->b_transaction ==
 895					journal->j_committing_transaction);
 896
 897		/* There is one case we have to be very careful about.
 898		 * If the committing transaction is currently writing
 899		 * this buffer out to disk and has NOT made a copy-out,
 900		 * then we cannot modify the buffer contents at all
 901		 * right now.  The essence of copy-out is that it is the
 902		 * extra copy, not the primary copy, which gets
 903		 * journaled.  If the primary copy is already going to
 904		 * disk then we cannot do copy-out here. */
 905
 906		if (buffer_shadow(bh)) {
 907			JBUFFER_TRACE(jh, "on shadow: sleep");
 908			jbd_unlock_bh_state(bh);
 909			wait_on_bit(&bh->b_state, BH_Shadow,
 910				    sleep_on_shadow_bh, TASK_UNINTERRUPTIBLE);
 911			goto repeat;
 912		}
 913
 914		/*
 915		 * Only do the copy if the currently-owning transaction still
 916		 * needs it. If buffer isn't on BJ_Metadata list, the
 917		 * committing transaction is past that stage (here we use the
 918		 * fact that BH_Shadow is set under bh_state lock together with
 919		 * refiling to BJ_Shadow list and at this point we know the
 920		 * buffer doesn't have BH_Shadow set).
 921		 *
 922		 * Subtle point, though: if this is a get_undo_access,
 923		 * then we will be relying on the frozen_data to contain
 924		 * the new value of the committed_data record after the
 925		 * transaction, so we HAVE to force the frozen_data copy
 926		 * in that case.
 927		 */
 928		if (jh->b_jlist == BJ_Metadata || force_copy) {
 929			JBUFFER_TRACE(jh, "generate frozen data");
 930			if (!frozen_buffer) {
 931				JBUFFER_TRACE(jh, "allocate memory for buffer");
 932				jbd_unlock_bh_state(bh);
 933				frozen_buffer =
 934					jbd2_alloc(jh2bh(jh)->b_size,
 935							 GFP_NOFS);
 936				if (!frozen_buffer) {
 937					printk(KERN_ERR
 938					       "%s: OOM for frozen_buffer\n",
 939					       __func__);
 940					JBUFFER_TRACE(jh, "oom!");
 941					error = -ENOMEM;
 942					jbd_lock_bh_state(bh);
 943					goto done;
 944				}
 945				goto repeat;
 946			}
 947			jh->b_frozen_data = frozen_buffer;
 948			frozen_buffer = NULL;
 949			need_copy = 1;
 950		}
 951		jh->b_next_transaction = transaction;
 952	}
 953
 954
 955	/*
 956	 * Finally, if the buffer is not journaled right now, we need to make
 957	 * sure it doesn't get written to disk before the caller actually
 958	 * commits the new data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 959	 */
 960	if (!jh->b_transaction) {
 961		JBUFFER_TRACE(jh, "no transaction");
 962		J_ASSERT_JH(jh, !jh->b_next_transaction);
 963		JBUFFER_TRACE(jh, "file as BJ_Reserved");
 964		spin_lock(&journal->j_list_lock);
 965		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
 966		spin_unlock(&journal->j_list_lock);
 967	}
 968
 969done:
 970	if (need_copy) {
 971		struct page *page;
 972		int offset;
 973		char *source;
 974
 975		J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
 976			    "Possible IO failure.\n");
 977		page = jh2bh(jh)->b_page;
 978		offset = offset_in_page(jh2bh(jh)->b_data);
 979		source = kmap_atomic(page);
 980		/* Fire data frozen trigger just before we copy the data */
 981		jbd2_buffer_frozen_trigger(jh, source + offset,
 982					   jh->b_triggers);
 983		memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
 984		kunmap_atomic(source);
 985
 986		/*
 987		 * Now that the frozen data is saved off, we need to store
 988		 * any matching triggers.
 989		 */
 990		jh->b_frozen_triggers = jh->b_triggers;
 991	}
 992	jbd_unlock_bh_state(bh);
 993
 994	/*
 995	 * If we are about to journal a buffer, then any revoke pending on it is
 996	 * no longer valid
 997	 */
 998	jbd2_journal_cancel_revoke(handle, jh);
 999
1000out:
1001	if (unlikely(frozen_buffer))	/* It's usually NULL */
1002		jbd2_free(frozen_buffer, bh->b_size);
1003
1004	JBUFFER_TRACE(jh, "exit");
1005	return error;
1006}
1007
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1008/**
1009 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
 
1010 * @handle: transaction to add buffer modifications to
1011 * @bh:     bh to be used for metadata writes
1012 *
1013 * Returns an error code or 0 on success.
1014 *
1015 * In full data journalling mode the buffer may be of type BJ_AsyncData,
1016 * because we're write()ing a buffer which is also part of a shared mapping.
1017 */
1018
1019int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1020{
1021	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
 
1022	int rc;
1023
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1024	/* We do not want to get caught playing with fields which the
1025	 * log thread also manipulates.  Make sure that the buffer
1026	 * completes any outstanding IO before proceeding. */
1027	rc = do_get_write_access(handle, jh, 0);
1028	jbd2_journal_put_journal_head(jh);
1029	return rc;
1030}
1031
1032
1033/*
1034 * When the user wants to journal a newly created buffer_head
1035 * (ie. getblk() returned a new buffer and we are going to populate it
1036 * manually rather than reading off disk), then we need to keep the
1037 * buffer_head locked until it has been completely filled with new
1038 * data.  In this case, we should be able to make the assertion that
1039 * the bh is not already part of an existing transaction.
1040 *
1041 * The buffer should already be locked by the caller by this point.
1042 * There is no lock ranking violation: it was a newly created,
1043 * unlocked buffer beforehand. */
1044
1045/**
1046 * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1047 * @handle: transaction to new buffer to
1048 * @bh: new buffer.
1049 *
1050 * Call this if you create a new bh.
1051 */
1052int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1053{
1054	transaction_t *transaction = handle->h_transaction;
1055	journal_t *journal;
1056	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1057	int err;
1058
1059	jbd_debug(5, "journal_head %p\n", jh);
1060	WARN_ON(!transaction);
1061	err = -EROFS;
1062	if (is_handle_aborted(handle))
1063		goto out;
1064	journal = transaction->t_journal;
1065	err = 0;
1066
1067	JBUFFER_TRACE(jh, "entry");
1068	/*
1069	 * The buffer may already belong to this transaction due to pre-zeroing
1070	 * in the filesystem's new_block code.  It may also be on the previous,
1071	 * committing transaction's lists, but it HAS to be in Forget state in
1072	 * that case: the transaction must have deleted the buffer for it to be
1073	 * reused here.
1074	 */
1075	jbd_lock_bh_state(bh);
1076	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1077		jh->b_transaction == NULL ||
1078		(jh->b_transaction == journal->j_committing_transaction &&
1079			  jh->b_jlist == BJ_Forget)));
1080
1081	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1082	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1083
1084	if (jh->b_transaction == NULL) {
1085		/*
1086		 * Previous jbd2_journal_forget() could have left the buffer
1087		 * with jbddirty bit set because it was being committed. When
1088		 * the commit finished, we've filed the buffer for
1089		 * checkpointing and marked it dirty. Now we are reallocating
1090		 * the buffer so the transaction freeing it must have
1091		 * committed and so it's safe to clear the dirty bit.
1092		 */
1093		clear_buffer_dirty(jh2bh(jh));
1094		/* first access by this transaction */
1095		jh->b_modified = 0;
1096
1097		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1098		spin_lock(&journal->j_list_lock);
1099		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
 
1100	} else if (jh->b_transaction == journal->j_committing_transaction) {
1101		/* first access by this transaction */
1102		jh->b_modified = 0;
1103
1104		JBUFFER_TRACE(jh, "set next transaction");
1105		spin_lock(&journal->j_list_lock);
1106		jh->b_next_transaction = transaction;
 
1107	}
1108	spin_unlock(&journal->j_list_lock);
1109	jbd_unlock_bh_state(bh);
1110
1111	/*
1112	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1113	 * blocks which contain freed but then revoked metadata.  We need
1114	 * to cancel the revoke in case we end up freeing it yet again
1115	 * and the reallocating as data - this would cause a second revoke,
1116	 * which hits an assertion error.
1117	 */
1118	JBUFFER_TRACE(jh, "cancelling revoke");
1119	jbd2_journal_cancel_revoke(handle, jh);
1120out:
1121	jbd2_journal_put_journal_head(jh);
1122	return err;
1123}
1124
1125/**
1126 * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1127 *     non-rewindable consequences
1128 * @handle: transaction
1129 * @bh: buffer to undo
1130 *
1131 * Sometimes there is a need to distinguish between metadata which has
1132 * been committed to disk and that which has not.  The ext3fs code uses
1133 * this for freeing and allocating space, we have to make sure that we
1134 * do not reuse freed space until the deallocation has been committed,
1135 * since if we overwrote that space we would make the delete
1136 * un-rewindable in case of a crash.
1137 *
1138 * To deal with that, jbd2_journal_get_undo_access requests write access to a
1139 * buffer for parts of non-rewindable operations such as delete
1140 * operations on the bitmaps.  The journaling code must keep a copy of
1141 * the buffer's contents prior to the undo_access call until such time
1142 * as we know that the buffer has definitely been committed to disk.
1143 *
1144 * We never need to know which transaction the committed data is part
1145 * of, buffers touched here are guaranteed to be dirtied later and so
1146 * will be committed to a new transaction in due course, at which point
1147 * we can discard the old committed data pointer.
1148 *
1149 * Returns error number or 0 on success.
1150 */
1151int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1152{
1153	int err;
1154	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1155	char *committed_data = NULL;
1156
 
 
 
 
 
 
 
1157	JBUFFER_TRACE(jh, "entry");
1158
1159	/*
1160	 * Do this first --- it can drop the journal lock, so we want to
1161	 * make sure that obtaining the committed_data is done
1162	 * atomically wrt. completion of any outstanding commits.
1163	 */
1164	err = do_get_write_access(handle, jh, 1);
1165	if (err)
1166		goto out;
1167
1168repeat:
1169	if (!jh->b_committed_data) {
1170		committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
1171		if (!committed_data) {
1172			printk(KERN_ERR "%s: No memory for committed data\n",
1173				__func__);
1174			err = -ENOMEM;
1175			goto out;
1176		}
1177	}
1178
1179	jbd_lock_bh_state(bh);
1180	if (!jh->b_committed_data) {
1181		/* Copy out the current buffer contents into the
1182		 * preserved, committed copy. */
1183		JBUFFER_TRACE(jh, "generate b_committed data");
1184		if (!committed_data) {
1185			jbd_unlock_bh_state(bh);
1186			goto repeat;
1187		}
1188
1189		jh->b_committed_data = committed_data;
1190		committed_data = NULL;
1191		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1192	}
1193	jbd_unlock_bh_state(bh);
1194out:
1195	jbd2_journal_put_journal_head(jh);
1196	if (unlikely(committed_data))
1197		jbd2_free(committed_data, bh->b_size);
1198	return err;
1199}
1200
1201/**
1202 * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1203 * @bh: buffer to trigger on
1204 * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1205 *
1206 * Set any triggers on this journal_head.  This is always safe, because
1207 * triggers for a committing buffer will be saved off, and triggers for
1208 * a running transaction will match the buffer in that transaction.
1209 *
1210 * Call with NULL to clear the triggers.
1211 */
1212void jbd2_journal_set_triggers(struct buffer_head *bh,
1213			       struct jbd2_buffer_trigger_type *type)
1214{
1215	struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1216
1217	if (WARN_ON(!jh))
1218		return;
1219	jh->b_triggers = type;
1220	jbd2_journal_put_journal_head(jh);
1221}
1222
1223void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1224				struct jbd2_buffer_trigger_type *triggers)
1225{
1226	struct buffer_head *bh = jh2bh(jh);
1227
1228	if (!triggers || !triggers->t_frozen)
1229		return;
1230
1231	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1232}
1233
1234void jbd2_buffer_abort_trigger(struct journal_head *jh,
1235			       struct jbd2_buffer_trigger_type *triggers)
1236{
1237	if (!triggers || !triggers->t_abort)
1238		return;
1239
1240	triggers->t_abort(triggers, jh2bh(jh));
1241}
1242
1243
1244
1245/**
1246 * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1247 * @handle: transaction to add buffer to.
1248 * @bh: buffer to mark
1249 *
1250 * mark dirty metadata which needs to be journaled as part of the current
1251 * transaction.
1252 *
1253 * The buffer must have previously had jbd2_journal_get_write_access()
1254 * called so that it has a valid journal_head attached to the buffer
1255 * head.
1256 *
1257 * The buffer is placed on the transaction's metadata list and is marked
1258 * as belonging to the transaction.
1259 *
1260 * Returns error number or 0 on success.
1261 *
1262 * Special care needs to be taken if the buffer already belongs to the
1263 * current committing transaction (in which case we should have frozen
1264 * data present for that commit).  In that case, we don't relink the
1265 * buffer: that only gets done when the old transaction finally
1266 * completes its commit.
1267 */
1268int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1269{
1270	transaction_t *transaction = handle->h_transaction;
1271	journal_t *journal;
1272	struct journal_head *jh;
1273	int ret = 0;
1274
1275	WARN_ON(!transaction);
1276	if (is_handle_aborted(handle))
1277		return -EROFS;
1278	journal = transaction->t_journal;
1279	jh = jbd2_journal_grab_journal_head(bh);
1280	if (!jh) {
1281		ret = -EUCLEAN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1282		goto out;
1283	}
1284	jbd_debug(5, "journal_head %p\n", jh);
1285	JBUFFER_TRACE(jh, "entry");
1286
1287	jbd_lock_bh_state(bh);
 
 
 
 
 
 
 
 
 
 
 
 
 
1288
1289	if (jh->b_modified == 0) {
1290		/*
1291		 * This buffer's got modified and becoming part
1292		 * of the transaction. This needs to be done
1293		 * once a transaction -bzzz
1294		 */
1295		jh->b_modified = 1;
1296		if (handle->h_buffer_credits <= 0) {
1297			ret = -ENOSPC;
1298			goto out_unlock_bh;
1299		}
1300		handle->h_buffer_credits--;
 
1301	}
1302
1303	/*
1304	 * fastpath, to avoid expensive locking.  If this buffer is already
1305	 * on the running transaction's metadata list there is nothing to do.
1306	 * Nobody can take it off again because there is a handle open.
1307	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1308	 * result in this test being false, so we go in and take the locks.
1309	 */
1310	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1311		JBUFFER_TRACE(jh, "fastpath");
1312		if (unlikely(jh->b_transaction !=
1313			     journal->j_running_transaction)) {
1314			printk(KERN_ERR "JBD2: %s: "
1315			       "jh->b_transaction (%llu, %p, %u) != "
1316			       "journal->j_running_transaction (%p, %u)\n",
1317			       journal->j_devname,
1318			       (unsigned long long) bh->b_blocknr,
1319			       jh->b_transaction,
1320			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1321			       journal->j_running_transaction,
1322			       journal->j_running_transaction ?
1323			       journal->j_running_transaction->t_tid : 0);
1324			ret = -EINVAL;
1325		}
1326		goto out_unlock_bh;
1327	}
1328
1329	set_buffer_jbddirty(bh);
1330
1331	/*
1332	 * Metadata already on the current transaction list doesn't
1333	 * need to be filed.  Metadata on another transaction's list must
1334	 * be committing, and will be refiled once the commit completes:
1335	 * leave it alone for now.
1336	 */
1337	if (jh->b_transaction != transaction) {
1338		JBUFFER_TRACE(jh, "already on other transaction");
1339		if (unlikely(((jh->b_transaction !=
1340			       journal->j_committing_transaction)) ||
1341			     (jh->b_next_transaction != transaction))) {
1342			printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1343			       "bad jh for block %llu: "
1344			       "transaction (%p, %u), "
1345			       "jh->b_transaction (%p, %u), "
1346			       "jh->b_next_transaction (%p, %u), jlist %u\n",
1347			       journal->j_devname,
1348			       (unsigned long long) bh->b_blocknr,
1349			       transaction, transaction->t_tid,
1350			       jh->b_transaction,
1351			       jh->b_transaction ?
1352			       jh->b_transaction->t_tid : 0,
1353			       jh->b_next_transaction,
1354			       jh->b_next_transaction ?
1355			       jh->b_next_transaction->t_tid : 0,
1356			       jh->b_jlist);
1357			WARN_ON(1);
1358			ret = -EINVAL;
1359		}
1360		/* And this case is illegal: we can't reuse another
1361		 * transaction's data buffer, ever. */
1362		goto out_unlock_bh;
1363	}
1364
1365	/* That test should have eliminated the following case: */
1366	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1367
1368	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1369	spin_lock(&journal->j_list_lock);
1370	__jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1371	spin_unlock(&journal->j_list_lock);
1372out_unlock_bh:
1373	jbd_unlock_bh_state(bh);
1374	jbd2_journal_put_journal_head(jh);
1375out:
1376	JBUFFER_TRACE(jh, "exit");
1377	return ret;
1378}
1379
1380/**
1381 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1382 * @handle: transaction handle
1383 * @bh:     bh to 'forget'
1384 *
1385 * We can only do the bforget if there are no commits pending against the
1386 * buffer.  If the buffer is dirty in the current running transaction we
1387 * can safely unlink it.
1388 *
1389 * bh may not be a journalled buffer at all - it may be a non-JBD
1390 * buffer which came off the hashtable.  Check for this.
1391 *
1392 * Decrements bh->b_count by one.
1393 *
1394 * Allow this call even if the handle has aborted --- it may be part of
1395 * the caller's cleanup after an abort.
1396 */
1397int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1398{
1399	transaction_t *transaction = handle->h_transaction;
1400	journal_t *journal;
1401	struct journal_head *jh;
1402	int drop_reserve = 0;
1403	int err = 0;
1404	int was_modified = 0;
1405
1406	WARN_ON(!transaction);
1407	if (is_handle_aborted(handle))
1408		return -EROFS;
1409	journal = transaction->t_journal;
1410
1411	BUFFER_TRACE(bh, "entry");
1412
1413	jbd_lock_bh_state(bh);
 
 
 
 
1414
1415	if (!buffer_jbd(bh))
1416		goto not_jbd;
1417	jh = bh2jh(bh);
1418
1419	/* Critical error: attempting to delete a bitmap buffer, maybe?
1420	 * Don't do any jbd operations, and return an error. */
1421	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1422			 "inconsistent data on disk")) {
1423		err = -EIO;
1424		goto not_jbd;
1425	}
1426
1427	/* keep track of whether or not this transaction modified us */
1428	was_modified = jh->b_modified;
1429
1430	/*
1431	 * The buffer's going from the transaction, we must drop
1432	 * all references -bzzz
1433	 */
1434	jh->b_modified = 0;
1435
1436	if (jh->b_transaction == transaction) {
1437		J_ASSERT_JH(jh, !jh->b_frozen_data);
1438
1439		/* If we are forgetting a buffer which is already part
1440		 * of this transaction, then we can just drop it from
1441		 * the transaction immediately. */
1442		clear_buffer_dirty(bh);
1443		clear_buffer_jbddirty(bh);
1444
1445		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1446
1447		/*
1448		 * we only want to drop a reference if this transaction
1449		 * modified the buffer
1450		 */
1451		if (was_modified)
1452			drop_reserve = 1;
1453
1454		/*
1455		 * We are no longer going to journal this buffer.
1456		 * However, the commit of this transaction is still
1457		 * important to the buffer: the delete that we are now
1458		 * processing might obsolete an old log entry, so by
1459		 * committing, we can satisfy the buffer's checkpoint.
1460		 *
1461		 * So, if we have a checkpoint on the buffer, we should
1462		 * now refile the buffer on our BJ_Forget list so that
1463		 * we know to remove the checkpoint after we commit.
1464		 */
1465
1466		spin_lock(&journal->j_list_lock);
1467		if (jh->b_cp_transaction) {
1468			__jbd2_journal_temp_unlink_buffer(jh);
1469			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1470		} else {
1471			__jbd2_journal_unfile_buffer(jh);
1472			if (!buffer_jbd(bh)) {
1473				spin_unlock(&journal->j_list_lock);
1474				jbd_unlock_bh_state(bh);
1475				__bforget(bh);
1476				goto drop;
1477			}
1478		}
1479		spin_unlock(&journal->j_list_lock);
1480	} else if (jh->b_transaction) {
1481		J_ASSERT_JH(jh, (jh->b_transaction ==
1482				 journal->j_committing_transaction));
1483		/* However, if the buffer is still owned by a prior
1484		 * (committing) transaction, we can't drop it yet... */
1485		JBUFFER_TRACE(jh, "belongs to older transaction");
1486		/* ... but we CAN drop it from the new transaction if we
1487		 * have also modified it since the original commit. */
 
 
 
 
1488
1489		if (jh->b_next_transaction) {
1490			J_ASSERT(jh->b_next_transaction == transaction);
 
1491			spin_lock(&journal->j_list_lock);
1492			jh->b_next_transaction = NULL;
1493			spin_unlock(&journal->j_list_lock);
 
 
1494
1495			/*
1496			 * only drop a reference if this transaction modified
1497			 * the buffer
1498			 */
1499			if (was_modified)
1500				drop_reserve = 1;
1501		}
1502	}
 
 
 
 
 
 
 
 
 
 
 
1503
1504not_jbd:
1505	jbd_unlock_bh_state(bh);
1506	__brelse(bh);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1507drop:
 
 
 
1508	if (drop_reserve) {
1509		/* no need to reserve log space for this block -bzzz */
1510		handle->h_buffer_credits++;
1511	}
1512	return err;
1513}
1514
1515/**
1516 * int jbd2_journal_stop() - complete a transaction
1517 * @handle: tranaction to complete.
1518 *
1519 * All done for a particular handle.
1520 *
1521 * There is not much action needed here.  We just return any remaining
1522 * buffer credits to the transaction and remove the handle.  The only
1523 * complication is that we need to start a commit operation if the
1524 * filesystem is marked for synchronous update.
1525 *
1526 * jbd2_journal_stop itself will not usually return an error, but it may
1527 * do so in unusual circumstances.  In particular, expect it to
1528 * return -EIO if a jbd2_journal_abort has been executed since the
1529 * transaction began.
1530 */
1531int jbd2_journal_stop(handle_t *handle)
1532{
1533	transaction_t *transaction = handle->h_transaction;
1534	journal_t *journal;
1535	int err = 0, wait_for_commit = 0;
1536	tid_t tid;
1537	pid_t pid;
1538
1539	if (!transaction)
 
 
 
 
 
 
 
 
 
 
 
 
1540		goto free_and_exit;
 
1541	journal = transaction->t_journal;
1542
1543	J_ASSERT(journal_current_handle() == handle);
1544
1545	if (is_handle_aborted(handle))
1546		err = -EIO;
1547	else
1548		J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1549
1550	if (--handle->h_ref > 0) {
1551		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1552			  handle->h_ref);
1553		return err;
1554	}
1555
1556	jbd_debug(4, "Handle %p going down\n", handle);
1557	trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1558				transaction->t_tid,
1559				handle->h_type, handle->h_line_no,
1560				jiffies - handle->h_start_jiffies,
1561				handle->h_sync, handle->h_requested_credits,
1562				(handle->h_requested_credits -
1563				 handle->h_buffer_credits));
1564
1565	/*
1566	 * Implement synchronous transaction batching.  If the handle
1567	 * was synchronous, don't force a commit immediately.  Let's
1568	 * yield and let another thread piggyback onto this
1569	 * transaction.  Keep doing that while new threads continue to
1570	 * arrive.  It doesn't cost much - we're about to run a commit
1571	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1572	 * operations by 30x or more...
1573	 *
1574	 * We try and optimize the sleep time against what the
1575	 * underlying disk can do, instead of having a static sleep
1576	 * time.  This is useful for the case where our storage is so
1577	 * fast that it is more optimal to go ahead and force a flush
1578	 * and wait for the transaction to be committed than it is to
1579	 * wait for an arbitrary amount of time for new writers to
1580	 * join the transaction.  We achieve this by measuring how
1581	 * long it takes to commit a transaction, and compare it with
1582	 * how long this transaction has been running, and if run time
1583	 * < commit time then we sleep for the delta and commit.  This
1584	 * greatly helps super fast disks that would see slowdowns as
1585	 * more threads started doing fsyncs.
1586	 *
1587	 * But don't do this if this process was the most recent one
1588	 * to perform a synchronous write.  We do this to detect the
1589	 * case where a single process is doing a stream of sync
1590	 * writes.  No point in waiting for joiners in that case.
 
 
1591	 */
1592	pid = current->pid;
1593	if (handle->h_sync && journal->j_last_sync_writer != pid) {
 
1594		u64 commit_time, trans_time;
1595
1596		journal->j_last_sync_writer = pid;
1597
1598		read_lock(&journal->j_state_lock);
1599		commit_time = journal->j_average_commit_time;
1600		read_unlock(&journal->j_state_lock);
1601
1602		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1603						   transaction->t_start_time));
1604
1605		commit_time = max_t(u64, commit_time,
1606				    1000*journal->j_min_batch_time);
1607		commit_time = min_t(u64, commit_time,
1608				    1000*journal->j_max_batch_time);
1609
1610		if (trans_time < commit_time) {
1611			ktime_t expires = ktime_add_ns(ktime_get(),
1612						       commit_time);
1613			set_current_state(TASK_UNINTERRUPTIBLE);
1614			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1615		}
1616	}
1617
1618	if (handle->h_sync)
1619		transaction->t_synchronous_commit = 1;
1620	current->journal_info = NULL;
1621	atomic_sub(handle->h_buffer_credits,
1622		   &transaction->t_outstanding_credits);
1623
1624	/*
1625	 * If the handle is marked SYNC, we need to set another commit
1626	 * going!  We also want to force a commit if the current
1627	 * transaction is occupying too much of the log, or if the
1628	 * transaction is too old now.
1629	 */
1630	if (handle->h_sync ||
1631	    (atomic_read(&transaction->t_outstanding_credits) >
1632	     journal->j_max_transaction_buffers) ||
1633	    time_after_eq(jiffies, transaction->t_expires)) {
1634		/* Do this even for aborted journals: an abort still
1635		 * completes the commit thread, it just doesn't write
1636		 * anything to disk. */
1637
1638		jbd_debug(2, "transaction too old, requesting commit for "
1639					"handle %p\n", handle);
1640		/* This is non-blocking */
1641		jbd2_log_start_commit(journal, transaction->t_tid);
1642
1643		/*
1644		 * Special case: JBD2_SYNC synchronous updates require us
1645		 * to wait for the commit to complete.
1646		 */
1647		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1648			wait_for_commit = 1;
1649	}
1650
1651	/*
1652	 * Once we drop t_updates, if it goes to zero the transaction
1653	 * could start committing on us and eventually disappear.  So
1654	 * once we do this, we must not dereference transaction
1655	 * pointer again.
1656	 */
1657	tid = transaction->t_tid;
1658	if (atomic_dec_and_test(&transaction->t_updates)) {
1659		wake_up(&journal->j_wait_updates);
1660		if (journal->j_barrier_count)
1661			wake_up(&journal->j_wait_transaction_locked);
1662	}
1663
1664	if (wait_for_commit)
1665		err = jbd2_log_wait_commit(journal, tid);
1666
1667	lock_map_release(&handle->h_lockdep_map);
1668
1669	if (handle->h_rsv_handle)
1670		jbd2_journal_free_reserved(handle->h_rsv_handle);
1671free_and_exit:
 
 
1672	jbd2_free_handle(handle);
1673	return err;
1674}
1675
1676/*
1677 *
1678 * List management code snippets: various functions for manipulating the
1679 * transaction buffer lists.
1680 *
1681 */
1682
1683/*
1684 * Append a buffer to a transaction list, given the transaction's list head
1685 * pointer.
1686 *
1687 * j_list_lock is held.
1688 *
1689 * jbd_lock_bh_state(jh2bh(jh)) is held.
1690 */
1691
1692static inline void
1693__blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1694{
1695	if (!*list) {
1696		jh->b_tnext = jh->b_tprev = jh;
1697		*list = jh;
1698	} else {
1699		/* Insert at the tail of the list to preserve order */
1700		struct journal_head *first = *list, *last = first->b_tprev;
1701		jh->b_tprev = last;
1702		jh->b_tnext = first;
1703		last->b_tnext = first->b_tprev = jh;
1704	}
1705}
1706
1707/*
1708 * Remove a buffer from a transaction list, given the transaction's list
1709 * head pointer.
1710 *
1711 * Called with j_list_lock held, and the journal may not be locked.
1712 *
1713 * jbd_lock_bh_state(jh2bh(jh)) is held.
1714 */
1715
1716static inline void
1717__blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1718{
1719	if (*list == jh) {
1720		*list = jh->b_tnext;
1721		if (*list == jh)
1722			*list = NULL;
1723	}
1724	jh->b_tprev->b_tnext = jh->b_tnext;
1725	jh->b_tnext->b_tprev = jh->b_tprev;
1726}
1727
1728/*
1729 * Remove a buffer from the appropriate transaction list.
1730 *
1731 * Note that this function can *change* the value of
1732 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1733 * t_reserved_list.  If the caller is holding onto a copy of one of these
1734 * pointers, it could go bad.  Generally the caller needs to re-read the
1735 * pointer from the transaction_t.
1736 *
1737 * Called under j_list_lock.
1738 */
1739static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1740{
1741	struct journal_head **list = NULL;
1742	transaction_t *transaction;
1743	struct buffer_head *bh = jh2bh(jh);
1744
1745	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1746	transaction = jh->b_transaction;
1747	if (transaction)
1748		assert_spin_locked(&transaction->t_journal->j_list_lock);
1749
1750	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1751	if (jh->b_jlist != BJ_None)
1752		J_ASSERT_JH(jh, transaction != NULL);
1753
1754	switch (jh->b_jlist) {
1755	case BJ_None:
1756		return;
1757	case BJ_Metadata:
1758		transaction->t_nr_buffers--;
1759		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1760		list = &transaction->t_buffers;
1761		break;
1762	case BJ_Forget:
1763		list = &transaction->t_forget;
1764		break;
1765	case BJ_Shadow:
1766		list = &transaction->t_shadow_list;
1767		break;
1768	case BJ_Reserved:
1769		list = &transaction->t_reserved_list;
1770		break;
1771	}
1772
1773	__blist_del_buffer(list, jh);
1774	jh->b_jlist = BJ_None;
1775	if (test_clear_buffer_jbddirty(bh))
 
 
1776		mark_buffer_dirty(bh);	/* Expose it to the VM */
1777}
1778
1779/*
1780 * Remove buffer from all transactions.
 
1781 *
1782 * Called with bh_state lock and j_list_lock
1783 *
1784 * jh and bh may be already freed when this function returns.
1785 */
1786static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1787{
 
 
 
1788	__jbd2_journal_temp_unlink_buffer(jh);
1789	jh->b_transaction = NULL;
1790	jbd2_journal_put_journal_head(jh);
1791}
1792
1793void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1794{
1795	struct buffer_head *bh = jh2bh(jh);
1796
1797	/* Get reference so that buffer cannot be freed before we unlock it */
1798	get_bh(bh);
1799	jbd_lock_bh_state(bh);
1800	spin_lock(&journal->j_list_lock);
1801	__jbd2_journal_unfile_buffer(jh);
1802	spin_unlock(&journal->j_list_lock);
1803	jbd_unlock_bh_state(bh);
 
1804	__brelse(bh);
1805}
1806
1807/*
1808 * Called from jbd2_journal_try_to_free_buffers().
1809 *
1810 * Called under jbd_lock_bh_state(bh)
1811 */
1812static void
1813__journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1814{
1815	struct journal_head *jh;
1816
1817	jh = bh2jh(bh);
1818
1819	if (buffer_locked(bh) || buffer_dirty(bh))
1820		goto out;
1821
1822	if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1823		goto out;
1824
1825	spin_lock(&journal->j_list_lock);
1826	if (jh->b_cp_transaction != NULL) {
1827		/* written-back checkpointed metadata buffer */
1828		JBUFFER_TRACE(jh, "remove from checkpoint list");
1829		__jbd2_journal_remove_checkpoint(jh);
1830	}
1831	spin_unlock(&journal->j_list_lock);
1832out:
1833	return;
1834}
1835
1836/**
1837 * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1838 * @journal: journal for operation
1839 * @page: to try and free
1840 * @gfp_mask: we use the mask to detect how hard should we try to release
1841 * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1842 * release the buffers.
1843 *
1844 *
1845 * For all the buffers on this page,
1846 * if they are fully written out ordered data, move them onto BUF_CLEAN
1847 * so try_to_free_buffers() can reap them.
1848 *
1849 * This function returns non-zero if we wish try_to_free_buffers()
1850 * to be called. We do this if the page is releasable by try_to_free_buffers().
1851 * We also do it if the page has locked or dirty buffers and the caller wants
1852 * us to perform sync or async writeout.
1853 *
1854 * This complicates JBD locking somewhat.  We aren't protected by the
1855 * BKL here.  We wish to remove the buffer from its committing or
1856 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1857 *
1858 * This may *change* the value of transaction_t->t_datalist, so anyone
1859 * who looks at t_datalist needs to lock against this function.
1860 *
1861 * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1862 * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1863 * will come out of the lock with the buffer dirty, which makes it
1864 * ineligible for release here.
1865 *
1866 * Who else is affected by this?  hmm...  Really the only contender
1867 * is do_get_write_access() - it could be looking at the buffer while
1868 * journal_try_to_free_buffer() is changing its state.  But that
1869 * cannot happen because we never reallocate freed data as metadata
1870 * while the data is part of a transaction.  Yes?
1871 *
1872 * Return 0 on failure, 1 on success
1873 */
1874int jbd2_journal_try_to_free_buffers(journal_t *journal,
1875				struct page *page, gfp_t gfp_mask)
1876{
1877	struct buffer_head *head;
1878	struct buffer_head *bh;
1879	int ret = 0;
1880
1881	J_ASSERT(PageLocked(page));
1882
1883	head = page_buffers(page);
1884	bh = head;
1885	do {
1886		struct journal_head *jh;
1887
1888		/*
1889		 * We take our own ref against the journal_head here to avoid
1890		 * having to add tons of locking around each instance of
1891		 * jbd2_journal_put_journal_head().
1892		 */
1893		jh = jbd2_journal_grab_journal_head(bh);
1894		if (!jh)
1895			continue;
1896
1897		jbd_lock_bh_state(bh);
1898		__journal_try_to_free_buffer(journal, bh);
 
 
 
 
 
 
 
1899		jbd2_journal_put_journal_head(jh);
1900		jbd_unlock_bh_state(bh);
1901		if (buffer_jbd(bh))
1902			goto busy;
1903	} while ((bh = bh->b_this_page) != head);
1904
1905	ret = try_to_free_buffers(page);
1906
1907busy:
1908	return ret;
1909}
1910
1911/*
1912 * This buffer is no longer needed.  If it is on an older transaction's
1913 * checkpoint list we need to record it on this transaction's forget list
1914 * to pin this buffer (and hence its checkpointing transaction) down until
1915 * this transaction commits.  If the buffer isn't on a checkpoint list, we
1916 * release it.
1917 * Returns non-zero if JBD no longer has an interest in the buffer.
1918 *
1919 * Called under j_list_lock.
1920 *
1921 * Called under jbd_lock_bh_state(bh).
1922 */
1923static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1924{
1925	int may_free = 1;
1926	struct buffer_head *bh = jh2bh(jh);
1927
1928	if (jh->b_cp_transaction) {
1929		JBUFFER_TRACE(jh, "on running+cp transaction");
1930		__jbd2_journal_temp_unlink_buffer(jh);
1931		/*
1932		 * We don't want to write the buffer anymore, clear the
1933		 * bit so that we don't confuse checks in
1934		 * __journal_file_buffer
1935		 */
1936		clear_buffer_dirty(bh);
1937		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1938		may_free = 0;
1939	} else {
1940		JBUFFER_TRACE(jh, "on running transaction");
1941		__jbd2_journal_unfile_buffer(jh);
 
1942	}
1943	return may_free;
1944}
1945
1946/*
1947 * jbd2_journal_invalidatepage
1948 *
1949 * This code is tricky.  It has a number of cases to deal with.
1950 *
1951 * There are two invariants which this code relies on:
1952 *
1953 * i_size must be updated on disk before we start calling invalidatepage on the
1954 * data.
1955 *
1956 *  This is done in ext3 by defining an ext3_setattr method which
1957 *  updates i_size before truncate gets going.  By maintaining this
1958 *  invariant, we can be sure that it is safe to throw away any buffers
1959 *  attached to the current transaction: once the transaction commits,
1960 *  we know that the data will not be needed.
1961 *
1962 *  Note however that we can *not* throw away data belonging to the
1963 *  previous, committing transaction!
1964 *
1965 * Any disk blocks which *are* part of the previous, committing
1966 * transaction (and which therefore cannot be discarded immediately) are
1967 * not going to be reused in the new running transaction
1968 *
1969 *  The bitmap committed_data images guarantee this: any block which is
1970 *  allocated in one transaction and removed in the next will be marked
1971 *  as in-use in the committed_data bitmap, so cannot be reused until
1972 *  the next transaction to delete the block commits.  This means that
1973 *  leaving committing buffers dirty is quite safe: the disk blocks
1974 *  cannot be reallocated to a different file and so buffer aliasing is
1975 *  not possible.
1976 *
1977 *
1978 * The above applies mainly to ordered data mode.  In writeback mode we
1979 * don't make guarantees about the order in which data hits disk --- in
1980 * particular we don't guarantee that new dirty data is flushed before
1981 * transaction commit --- so it is always safe just to discard data
1982 * immediately in that mode.  --sct
1983 */
1984
1985/*
1986 * The journal_unmap_buffer helper function returns zero if the buffer
1987 * concerned remains pinned as an anonymous buffer belonging to an older
1988 * transaction.
1989 *
1990 * We're outside-transaction here.  Either or both of j_running_transaction
1991 * and j_committing_transaction may be NULL.
1992 */
1993static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
1994				int partial_page)
1995{
1996	transaction_t *transaction;
1997	struct journal_head *jh;
1998	int may_free = 1;
1999
2000	BUFFER_TRACE(bh, "entry");
2001
2002	/*
2003	 * It is safe to proceed here without the j_list_lock because the
2004	 * buffers cannot be stolen by try_to_free_buffers as long as we are
2005	 * holding the page lock. --sct
2006	 */
2007
2008	if (!buffer_jbd(bh))
 
2009		goto zap_buffer_unlocked;
2010
2011	/* OK, we have data buffer in journaled mode */
2012	write_lock(&journal->j_state_lock);
2013	jbd_lock_bh_state(bh);
2014	spin_lock(&journal->j_list_lock);
2015
2016	jh = jbd2_journal_grab_journal_head(bh);
2017	if (!jh)
2018		goto zap_buffer_no_jh;
2019
2020	/*
2021	 * We cannot remove the buffer from checkpoint lists until the
2022	 * transaction adding inode to orphan list (let's call it T)
2023	 * is committed.  Otherwise if the transaction changing the
2024	 * buffer would be cleaned from the journal before T is
2025	 * committed, a crash will cause that the correct contents of
2026	 * the buffer will be lost.  On the other hand we have to
2027	 * clear the buffer dirty bit at latest at the moment when the
2028	 * transaction marking the buffer as freed in the filesystem
2029	 * structures is committed because from that moment on the
2030	 * block can be reallocated and used by a different page.
2031	 * Since the block hasn't been freed yet but the inode has
2032	 * already been added to orphan list, it is safe for us to add
2033	 * the buffer to BJ_Forget list of the newest transaction.
2034	 *
2035	 * Also we have to clear buffer_mapped flag of a truncated buffer
2036	 * because the buffer_head may be attached to the page straddling
2037	 * i_size (can happen only when blocksize < pagesize) and thus the
2038	 * buffer_head can be reused when the file is extended again. So we end
2039	 * up keeping around invalidated buffers attached to transactions'
2040	 * BJ_Forget list just to stop checkpointing code from cleaning up
2041	 * the transaction this buffer was modified in.
2042	 */
2043	transaction = jh->b_transaction;
2044	if (transaction == NULL) {
2045		/* First case: not on any transaction.  If it
2046		 * has no checkpoint link, then we can zap it:
2047		 * it's a writeback-mode buffer so we don't care
2048		 * if it hits disk safely. */
2049		if (!jh->b_cp_transaction) {
2050			JBUFFER_TRACE(jh, "not on any transaction: zap");
2051			goto zap_buffer;
2052		}
2053
2054		if (!buffer_dirty(bh)) {
2055			/* bdflush has written it.  We can drop it now */
 
2056			goto zap_buffer;
2057		}
2058
2059		/* OK, it must be in the journal but still not
2060		 * written fully to disk: it's metadata or
2061		 * journaled data... */
2062
2063		if (journal->j_running_transaction) {
2064			/* ... and once the current transaction has
2065			 * committed, the buffer won't be needed any
2066			 * longer. */
2067			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2068			may_free = __dispose_buffer(jh,
2069					journal->j_running_transaction);
2070			goto zap_buffer;
2071		} else {
2072			/* There is no currently-running transaction. So the
2073			 * orphan record which we wrote for this file must have
2074			 * passed into commit.  We must attach this buffer to
2075			 * the committing transaction, if it exists. */
2076			if (journal->j_committing_transaction) {
2077				JBUFFER_TRACE(jh, "give to committing trans");
2078				may_free = __dispose_buffer(jh,
2079					journal->j_committing_transaction);
2080				goto zap_buffer;
2081			} else {
2082				/* The orphan record's transaction has
2083				 * committed.  We can cleanse this buffer */
2084				clear_buffer_jbddirty(bh);
 
2085				goto zap_buffer;
2086			}
2087		}
2088	} else if (transaction == journal->j_committing_transaction) {
2089		JBUFFER_TRACE(jh, "on committing transaction");
2090		/*
2091		 * The buffer is committing, we simply cannot touch
2092		 * it. If the page is straddling i_size we have to wait
2093		 * for commit and try again.
2094		 */
2095		if (partial_page) {
2096			jbd2_journal_put_journal_head(jh);
2097			spin_unlock(&journal->j_list_lock);
2098			jbd_unlock_bh_state(bh);
2099			write_unlock(&journal->j_state_lock);
 
 
 
 
2100			return -EBUSY;
2101		}
2102		/*
2103		 * OK, buffer won't be reachable after truncate. We just set
2104		 * j_next_transaction to the running transaction (if there is
2105		 * one) and mark buffer as freed so that commit code knows it
2106		 * should clear dirty bits when it is done with the buffer.
 
2107		 */
2108		set_buffer_freed(bh);
2109		if (journal->j_running_transaction && buffer_jbddirty(bh))
2110			jh->b_next_transaction = journal->j_running_transaction;
2111		jbd2_journal_put_journal_head(jh);
2112		spin_unlock(&journal->j_list_lock);
2113		jbd_unlock_bh_state(bh);
2114		write_unlock(&journal->j_state_lock);
 
2115		return 0;
2116	} else {
2117		/* Good, the buffer belongs to the running transaction.
2118		 * We are writing our own transaction's data, not any
2119		 * previous one's, so it is safe to throw it away
2120		 * (remember that we expect the filesystem to have set
2121		 * i_size already for this truncate so recovery will not
2122		 * expose the disk blocks we are discarding here.) */
2123		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2124		JBUFFER_TRACE(jh, "on running transaction");
2125		may_free = __dispose_buffer(jh, transaction);
2126	}
2127
2128zap_buffer:
2129	/*
2130	 * This is tricky. Although the buffer is truncated, it may be reused
2131	 * if blocksize < pagesize and it is attached to the page straddling
2132	 * EOF. Since the buffer might have been added to BJ_Forget list of the
2133	 * running transaction, journal_get_write_access() won't clear
2134	 * b_modified and credit accounting gets confused. So clear b_modified
2135	 * here.
2136	 */
2137	jh->b_modified = 0;
2138	jbd2_journal_put_journal_head(jh);
2139zap_buffer_no_jh:
2140	spin_unlock(&journal->j_list_lock);
2141	jbd_unlock_bh_state(bh);
2142	write_unlock(&journal->j_state_lock);
 
2143zap_buffer_unlocked:
2144	clear_buffer_dirty(bh);
2145	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2146	clear_buffer_mapped(bh);
2147	clear_buffer_req(bh);
2148	clear_buffer_new(bh);
2149	clear_buffer_delay(bh);
2150	clear_buffer_unwritten(bh);
2151	bh->b_bdev = NULL;
2152	return may_free;
2153}
2154
2155/**
2156 * void jbd2_journal_invalidatepage()
2157 * @journal: journal to use for flush...
2158 * @page:    page to flush
2159 * @offset:  start of the range to invalidate
2160 * @length:  length of the range to invalidate
2161 *
2162 * Reap page buffers containing data after in the specified range in page.
2163 * Can return -EBUSY if buffers are part of the committing transaction and
2164 * the page is straddling i_size. Caller then has to wait for current commit
2165 * and try again.
2166 */
2167int jbd2_journal_invalidatepage(journal_t *journal,
2168				struct page *page,
2169				unsigned int offset,
2170				unsigned int length)
2171{
2172	struct buffer_head *head, *bh, *next;
2173	unsigned int stop = offset + length;
2174	unsigned int curr_off = 0;
2175	int partial_page = (offset || length < PAGE_CACHE_SIZE);
2176	int may_free = 1;
2177	int ret = 0;
2178
2179	if (!PageLocked(page))
2180		BUG();
2181	if (!page_has_buffers(page))
 
2182		return 0;
2183
2184	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
2185
2186	/* We will potentially be playing with lists other than just the
2187	 * data lists (especially for journaled data mode), so be
2188	 * cautious in our locking. */
2189
2190	head = bh = page_buffers(page);
2191	do {
2192		unsigned int next_off = curr_off + bh->b_size;
2193		next = bh->b_this_page;
2194
2195		if (next_off > stop)
2196			return 0;
2197
2198		if (offset <= curr_off) {
2199			/* This block is wholly outside the truncation point */
2200			lock_buffer(bh);
2201			ret = journal_unmap_buffer(journal, bh, partial_page);
2202			unlock_buffer(bh);
2203			if (ret < 0)
2204				return ret;
2205			may_free &= ret;
2206		}
2207		curr_off = next_off;
2208		bh = next;
2209
2210	} while (bh != head);
2211
2212	if (!partial_page) {
2213		if (may_free && try_to_free_buffers(page))
2214			J_ASSERT(!page_has_buffers(page));
2215	}
2216	return 0;
2217}
2218
2219/*
2220 * File a buffer on the given transaction list.
2221 */
2222void __jbd2_journal_file_buffer(struct journal_head *jh,
2223			transaction_t *transaction, int jlist)
2224{
2225	struct journal_head **list = NULL;
2226	int was_dirty = 0;
2227	struct buffer_head *bh = jh2bh(jh);
2228
2229	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2230	assert_spin_locked(&transaction->t_journal->j_list_lock);
2231
2232	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2233	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2234				jh->b_transaction == NULL);
2235
2236	if (jh->b_transaction && jh->b_jlist == jlist)
2237		return;
2238
2239	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2240	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2241		/*
2242		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2243		 * instead of buffer_dirty. We should not see a dirty bit set
2244		 * here because we clear it in do_get_write_access but e.g.
2245		 * tune2fs can modify the sb and set the dirty bit at any time
2246		 * so we try to gracefully handle that.
2247		 */
2248		if (buffer_dirty(bh))
2249			warn_dirty_buffer(bh);
2250		if (test_clear_buffer_dirty(bh) ||
2251		    test_clear_buffer_jbddirty(bh))
2252			was_dirty = 1;
2253	}
2254
2255	if (jh->b_transaction)
2256		__jbd2_journal_temp_unlink_buffer(jh);
2257	else
2258		jbd2_journal_grab_journal_head(bh);
2259	jh->b_transaction = transaction;
2260
2261	switch (jlist) {
2262	case BJ_None:
2263		J_ASSERT_JH(jh, !jh->b_committed_data);
2264		J_ASSERT_JH(jh, !jh->b_frozen_data);
2265		return;
2266	case BJ_Metadata:
2267		transaction->t_nr_buffers++;
2268		list = &transaction->t_buffers;
2269		break;
2270	case BJ_Forget:
2271		list = &transaction->t_forget;
2272		break;
2273	case BJ_Shadow:
2274		list = &transaction->t_shadow_list;
2275		break;
2276	case BJ_Reserved:
2277		list = &transaction->t_reserved_list;
2278		break;
2279	}
2280
2281	__blist_add_buffer(list, jh);
2282	jh->b_jlist = jlist;
2283
2284	if (was_dirty)
2285		set_buffer_jbddirty(bh);
2286}
2287
2288void jbd2_journal_file_buffer(struct journal_head *jh,
2289				transaction_t *transaction, int jlist)
2290{
2291	jbd_lock_bh_state(jh2bh(jh));
2292	spin_lock(&transaction->t_journal->j_list_lock);
2293	__jbd2_journal_file_buffer(jh, transaction, jlist);
2294	spin_unlock(&transaction->t_journal->j_list_lock);
2295	jbd_unlock_bh_state(jh2bh(jh));
2296}
2297
2298/*
2299 * Remove a buffer from its current buffer list in preparation for
2300 * dropping it from its current transaction entirely.  If the buffer has
2301 * already started to be used by a subsequent transaction, refile the
2302 * buffer on that transaction's metadata list.
2303 *
2304 * Called under j_list_lock
2305 * Called under jbd_lock_bh_state(jh2bh(jh))
2306 *
2307 * jh and bh may be already free when this function returns
 
 
2308 */
2309void __jbd2_journal_refile_buffer(struct journal_head *jh)
2310{
2311	int was_dirty, jlist;
2312	struct buffer_head *bh = jh2bh(jh);
2313
2314	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2315	if (jh->b_transaction)
2316		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2317
2318	/* If the buffer is now unused, just drop it. */
2319	if (jh->b_next_transaction == NULL) {
2320		__jbd2_journal_unfile_buffer(jh);
2321		return;
2322	}
2323
2324	/*
2325	 * It has been modified by a later transaction: add it to the new
2326	 * transaction's metadata list.
2327	 */
2328
2329	was_dirty = test_clear_buffer_jbddirty(bh);
2330	__jbd2_journal_temp_unlink_buffer(jh);
 
 
 
 
 
 
 
2331	/*
2332	 * We set b_transaction here because b_next_transaction will inherit
2333	 * our jh reference and thus __jbd2_journal_file_buffer() must not
2334	 * take a new one.
2335	 */
2336	jh->b_transaction = jh->b_next_transaction;
2337	jh->b_next_transaction = NULL;
2338	if (buffer_freed(bh))
2339		jlist = BJ_Forget;
2340	else if (jh->b_modified)
2341		jlist = BJ_Metadata;
2342	else
2343		jlist = BJ_Reserved;
2344	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2345	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2346
2347	if (was_dirty)
2348		set_buffer_jbddirty(bh);
 
2349}
2350
2351/*
2352 * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2353 * bh reference so that we can safely unlock bh.
2354 *
2355 * The jh and bh may be freed by this call.
2356 */
2357void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2358{
2359	struct buffer_head *bh = jh2bh(jh);
2360
2361	/* Get reference so that buffer cannot be freed before we unlock it */
2362	get_bh(bh);
2363	jbd_lock_bh_state(bh);
2364	spin_lock(&journal->j_list_lock);
2365	__jbd2_journal_refile_buffer(jh);
2366	jbd_unlock_bh_state(bh);
2367	spin_unlock(&journal->j_list_lock);
2368	__brelse(bh);
 
2369}
2370
2371/*
2372 * File inode in the inode list of the handle's transaction
2373 */
2374int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
 
2375{
2376	transaction_t *transaction = handle->h_transaction;
2377	journal_t *journal;
2378
2379	WARN_ON(!transaction);
2380	if (is_handle_aborted(handle))
2381		return -EROFS;
2382	journal = transaction->t_journal;
2383
2384	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2385			transaction->t_tid);
2386
2387	/*
2388	 * First check whether inode isn't already on the transaction's
2389	 * lists without taking the lock. Note that this check is safe
2390	 * without the lock as we cannot race with somebody removing inode
2391	 * from the transaction. The reason is that we remove inode from the
2392	 * transaction only in journal_release_jbd_inode() and when we commit
2393	 * the transaction. We are guarded from the first case by holding
2394	 * a reference to the inode. We are safe against the second case
2395	 * because if jinode->i_transaction == transaction, commit code
2396	 * cannot touch the transaction because we hold reference to it,
2397	 * and if jinode->i_next_transaction == transaction, commit code
2398	 * will only file the inode where we want it.
2399	 */
2400	if (jinode->i_transaction == transaction ||
2401	    jinode->i_next_transaction == transaction)
2402		return 0;
2403
2404	spin_lock(&journal->j_list_lock);
 
 
 
 
 
 
 
 
 
2405
 
2406	if (jinode->i_transaction == transaction ||
2407	    jinode->i_next_transaction == transaction)
2408		goto done;
2409
2410	/*
2411	 * We only ever set this variable to 1 so the test is safe. Since
2412	 * t_need_data_flush is likely to be set, we do the test to save some
2413	 * cacheline bouncing
2414	 */
2415	if (!transaction->t_need_data_flush)
2416		transaction->t_need_data_flush = 1;
2417	/* On some different transaction's list - should be
2418	 * the committing one */
2419	if (jinode->i_transaction) {
2420		J_ASSERT(jinode->i_next_transaction == NULL);
2421		J_ASSERT(jinode->i_transaction ==
2422					journal->j_committing_transaction);
2423		jinode->i_next_transaction = transaction;
2424		goto done;
2425	}
2426	/* Not on any transaction list... */
2427	J_ASSERT(!jinode->i_next_transaction);
2428	jinode->i_transaction = transaction;
2429	list_add(&jinode->i_list, &transaction->t_inode_list);
2430done:
2431	spin_unlock(&journal->j_list_lock);
2432
2433	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2434}
2435
2436/*
2437 * File truncate and transaction commit interact with each other in a
2438 * non-trivial way.  If a transaction writing data block A is
2439 * committing, we cannot discard the data by truncate until we have
2440 * written them.  Otherwise if we crashed after the transaction with
2441 * write has committed but before the transaction with truncate has
2442 * committed, we could see stale data in block A.  This function is a
2443 * helper to solve this problem.  It starts writeout of the truncated
2444 * part in case it is in the committing transaction.
2445 *
2446 * Filesystem code must call this function when inode is journaled in
2447 * ordered mode before truncation happens and after the inode has been
2448 * placed on orphan list with the new inode size. The second condition
2449 * avoids the race that someone writes new data and we start
2450 * committing the transaction after this function has been called but
2451 * before a transaction for truncate is started (and furthermore it
2452 * allows us to optimize the case where the addition to orphan list
2453 * happens in the same transaction as write --- we don't have to write
2454 * any data in such case).
2455 */
2456int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2457					struct jbd2_inode *jinode,
2458					loff_t new_size)
2459{
2460	transaction_t *inode_trans, *commit_trans;
2461	int ret = 0;
2462
2463	/* This is a quick check to avoid locking if not necessary */
2464	if (!jinode->i_transaction)
2465		goto out;
2466	/* Locks are here just to force reading of recent values, it is
2467	 * enough that the transaction was not committing before we started
2468	 * a transaction adding the inode to orphan list */
2469	read_lock(&journal->j_state_lock);
2470	commit_trans = journal->j_committing_transaction;
2471	read_unlock(&journal->j_state_lock);
2472	spin_lock(&journal->j_list_lock);
2473	inode_trans = jinode->i_transaction;
2474	spin_unlock(&journal->j_list_lock);
2475	if (inode_trans == commit_trans) {
2476		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2477			new_size, LLONG_MAX);
2478		if (ret)
2479			jbd2_journal_abort(journal, ret);
2480	}
2481out:
2482	return ret;
2483}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * linux/fs/jbd2/transaction.c
   4 *
   5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
   6 *
   7 * Copyright 1998 Red Hat corp --- All Rights Reserved
   8 *
 
 
 
 
   9 * Generic filesystem transaction handling code; part of the ext2fs
  10 * journaling system.
  11 *
  12 * This file manages transactions (compound commits managed by the
  13 * journaling code) and handles (individual atomic operations by the
  14 * filesystem).
  15 */
  16
  17#include <linux/time.h>
  18#include <linux/fs.h>
  19#include <linux/jbd2.h>
  20#include <linux/errno.h>
  21#include <linux/slab.h>
  22#include <linux/timer.h>
  23#include <linux/mm.h>
  24#include <linux/highmem.h>
  25#include <linux/hrtimer.h>
  26#include <linux/backing-dev.h>
  27#include <linux/bug.h>
  28#include <linux/module.h>
  29#include <linux/sched/mm.h>
  30
  31#include <trace/events/jbd2.h>
  32
  33static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
  34static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
  35
  36static struct kmem_cache *transaction_cache;
  37int __init jbd2_journal_init_transaction_cache(void)
  38{
  39	J_ASSERT(!transaction_cache);
  40	transaction_cache = kmem_cache_create("jbd2_transaction_s",
  41					sizeof(transaction_t),
  42					0,
  43					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
  44					NULL);
  45	if (!transaction_cache) {
  46		pr_emerg("JBD2: failed to create transaction cache\n");
  47		return -ENOMEM;
  48	}
  49	return 0;
  50}
  51
  52void jbd2_journal_destroy_transaction_cache(void)
  53{
  54	kmem_cache_destroy(transaction_cache);
  55	transaction_cache = NULL;
 
 
  56}
  57
  58void jbd2_journal_free_transaction(transaction_t *transaction)
  59{
  60	if (unlikely(ZERO_OR_NULL_PTR(transaction)))
  61		return;
  62	kmem_cache_free(transaction_cache, transaction);
  63}
  64
  65/*
  66 * jbd2_get_transaction: obtain a new transaction_t object.
  67 *
  68 * Simply initialise a new transaction. Initialize it in
  69 * RUNNING state and add it to the current journal (which should not
  70 * have an existing running transaction: we only make a new transaction
  71 * once we have started to commit the old one).
  72 *
  73 * Preconditions:
  74 *	The journal MUST be locked.  We don't perform atomic mallocs on the
  75 *	new transaction	and we can't block without protecting against other
  76 *	processes trying to touch the journal while it is in transition.
  77 *
  78 */
  79
  80static void jbd2_get_transaction(journal_t *journal,
  81				transaction_t *transaction)
  82{
  83	transaction->t_journal = journal;
  84	transaction->t_state = T_RUNNING;
  85	transaction->t_start_time = ktime_get();
  86	transaction->t_tid = journal->j_transaction_sequence++;
  87	transaction->t_expires = jiffies + journal->j_commit_interval;
 
  88	atomic_set(&transaction->t_updates, 0);
  89	atomic_set(&transaction->t_outstanding_credits,
  90		   journal->j_transaction_overhead_buffers +
  91		   atomic_read(&journal->j_reserved_credits));
  92	atomic_set(&transaction->t_outstanding_revokes, 0);
  93	atomic_set(&transaction->t_handle_count, 0);
  94	INIT_LIST_HEAD(&transaction->t_inode_list);
  95	INIT_LIST_HEAD(&transaction->t_private_list);
  96
  97	/* Set up the commit timer for the new transaction. */
  98	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
  99	add_timer(&journal->j_commit_timer);
 100
 101	J_ASSERT(journal->j_running_transaction == NULL);
 102	journal->j_running_transaction = transaction;
 103	transaction->t_max_wait = 0;
 104	transaction->t_start = jiffies;
 105	transaction->t_requested = 0;
 
 
 106}
 107
 108/*
 109 * Handle management.
 110 *
 111 * A handle_t is an object which represents a single atomic update to a
 112 * filesystem, and which tracks all of the modifications which form part
 113 * of that one update.
 114 */
 115
 116/*
 117 * Update transaction's maximum wait time, if debugging is enabled.
 118 *
 119 * t_max_wait is carefully updated here with use of atomic compare exchange.
 120 * Note that there could be multiplre threads trying to do this simultaneously
 121 * hence using cmpxchg to avoid any use of locks in this case.
 122 * With this t_max_wait can be updated w/o enabling jbd2_journal_enable_debug.
 
 
 123 */
 124static inline void update_t_max_wait(transaction_t *transaction,
 125				     unsigned long ts)
 126{
 127	unsigned long oldts, newts;
 128
 129	if (time_after(transaction->t_start, ts)) {
 130		newts = jbd2_time_diff(ts, transaction->t_start);
 131		oldts = READ_ONCE(transaction->t_max_wait);
 132		while (oldts < newts)
 133			oldts = cmpxchg(&transaction->t_max_wait, oldts, newts);
 
 134	}
 
 135}
 136
 137/*
 138 * Wait until running transaction passes to T_FLUSH state and new transaction
 139 * can thus be started. Also starts the commit if needed. The function expects
 140 * running transaction to exist and releases j_state_lock.
 141 */
 142static void wait_transaction_locked(journal_t *journal)
 143	__releases(journal->j_state_lock)
 144{
 145	DEFINE_WAIT(wait);
 146	int need_to_start;
 147	tid_t tid = journal->j_running_transaction->t_tid;
 148
 149	prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait,
 150			TASK_UNINTERRUPTIBLE);
 151	need_to_start = !tid_geq(journal->j_commit_request, tid);
 152	read_unlock(&journal->j_state_lock);
 153	if (need_to_start)
 154		jbd2_log_start_commit(journal, tid);
 155	jbd2_might_wait_for_commit(journal);
 156	schedule();
 157	finish_wait(&journal->j_wait_transaction_locked, &wait);
 158}
 159
 160/*
 161 * Wait until running transaction transitions from T_SWITCH to T_FLUSH
 162 * state and new transaction can thus be started. The function releases
 163 * j_state_lock.
 164 */
 165static void wait_transaction_switching(journal_t *journal)
 166	__releases(journal->j_state_lock)
 167{
 168	DEFINE_WAIT(wait);
 169
 170	if (WARN_ON(!journal->j_running_transaction ||
 171		    journal->j_running_transaction->t_state != T_SWITCH)) {
 172		read_unlock(&journal->j_state_lock);
 173		return;
 174	}
 175	prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait,
 176			TASK_UNINTERRUPTIBLE);
 177	read_unlock(&journal->j_state_lock);
 178	/*
 179	 * We don't call jbd2_might_wait_for_commit() here as there's no
 180	 * waiting for outstanding handles happening anymore in T_SWITCH state
 181	 * and handling of reserved handles actually relies on that for
 182	 * correctness.
 183	 */
 184	schedule();
 185	finish_wait(&journal->j_wait_transaction_locked, &wait);
 186}
 187
 188static void sub_reserved_credits(journal_t *journal, int blocks)
 189{
 190	atomic_sub(blocks, &journal->j_reserved_credits);
 191	wake_up(&journal->j_wait_reserved);
 192}
 193
 194/* Maximum number of blocks for user transaction payload */
 195static int jbd2_max_user_trans_buffers(journal_t *journal)
 196{
 197	return journal->j_max_transaction_buffers -
 198				journal->j_transaction_overhead_buffers;
 199}
 200
 201/*
 202 * Wait until we can add credits for handle to the running transaction.  Called
 203 * with j_state_lock held for reading. Returns 0 if handle joined the running
 204 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
 205 * caller must retry.
 206 *
 207 * Note: because j_state_lock may be dropped depending on the return
 208 * value, we need to fake out sparse so ti doesn't complain about a
 209 * locking imbalance.  Callers of add_transaction_credits will need to
 210 * make a similar accomodation.
 211 */
 212static int add_transaction_credits(journal_t *journal, int blocks,
 213				   int rsv_blocks)
 214__must_hold(&journal->j_state_lock)
 215{
 216	transaction_t *t = journal->j_running_transaction;
 217	int needed;
 218	int total = blocks + rsv_blocks;
 219
 220	/*
 221	 * If the current transaction is locked down for commit, wait
 222	 * for the lock to be released.
 223	 */
 224	if (t->t_state != T_RUNNING) {
 225		WARN_ON_ONCE(t->t_state >= T_FLUSH);
 226		wait_transaction_locked(journal);
 227		__acquire(&journal->j_state_lock); /* fake out sparse */
 228		return 1;
 229	}
 230
 231	/*
 232	 * If there is not enough space left in the log to write all
 233	 * potential buffers requested by this operation, we need to
 234	 * stall pending a log checkpoint to free some more log space.
 235	 */
 236	needed = atomic_add_return(total, &t->t_outstanding_credits);
 237	if (needed > journal->j_max_transaction_buffers) {
 238		/*
 239		 * If the current transaction is already too large,
 240		 * then start to commit it: we can then go back and
 241		 * attach this handle to a new transaction.
 242		 */
 243		atomic_sub(total, &t->t_outstanding_credits);
 244
 245		/*
 246		 * Is the number of reserved credits in the current transaction too
 247		 * big to fit this handle? Wait until reserved credits are freed.
 248		 */
 249		if (atomic_read(&journal->j_reserved_credits) + total >
 250		    jbd2_max_user_trans_buffers(journal)) {
 251			read_unlock(&journal->j_state_lock);
 252			jbd2_might_wait_for_commit(journal);
 253			wait_event(journal->j_wait_reserved,
 254				   atomic_read(&journal->j_reserved_credits) + total <=
 255				   jbd2_max_user_trans_buffers(journal));
 256			__acquire(&journal->j_state_lock); /* fake out sparse */
 257			return 1;
 258		}
 259
 260		wait_transaction_locked(journal);
 261		__acquire(&journal->j_state_lock); /* fake out sparse */
 262		return 1;
 263	}
 264
 265	/*
 266	 * The commit code assumes that it can get enough log space
 267	 * without forcing a checkpoint.  This is *critical* for
 268	 * correctness: a checkpoint of a buffer which is also
 269	 * associated with a committing transaction creates a deadlock,
 270	 * so commit simply cannot force through checkpoints.
 271	 *
 272	 * We must therefore ensure the necessary space in the journal
 273	 * *before* starting to dirty potentially checkpointed buffers
 274	 * in the new transaction.
 275	 */
 276	if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) {
 277		atomic_sub(total, &t->t_outstanding_credits);
 278		read_unlock(&journal->j_state_lock);
 279		jbd2_might_wait_for_commit(journal);
 280		write_lock(&journal->j_state_lock);
 281		if (jbd2_log_space_left(journal) <
 282					journal->j_max_transaction_buffers)
 283			__jbd2_log_wait_for_space(journal);
 284		write_unlock(&journal->j_state_lock);
 285		__acquire(&journal->j_state_lock); /* fake out sparse */
 286		return 1;
 287	}
 288
 289	/* No reservation? We are done... */
 290	if (!rsv_blocks)
 291		return 0;
 292
 293	needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
 294	/* We allow at most half of a transaction to be reserved */
 295	if (needed > jbd2_max_user_trans_buffers(journal) / 2) {
 296		sub_reserved_credits(journal, rsv_blocks);
 297		atomic_sub(total, &t->t_outstanding_credits);
 298		read_unlock(&journal->j_state_lock);
 299		jbd2_might_wait_for_commit(journal);
 300		wait_event(journal->j_wait_reserved,
 301			 atomic_read(&journal->j_reserved_credits) + rsv_blocks
 302			 <= jbd2_max_user_trans_buffers(journal) / 2);
 303		__acquire(&journal->j_state_lock); /* fake out sparse */
 304		return 1;
 305	}
 306	return 0;
 307}
 308
 309/*
 310 * start_this_handle: Given a handle, deal with any locking or stalling
 311 * needed to make sure that there is enough journal space for the handle
 312 * to begin.  Attach the handle to a transaction and set up the
 313 * transaction's buffer credits.
 314 */
 315
 316static int start_this_handle(journal_t *journal, handle_t *handle,
 317			     gfp_t gfp_mask)
 318{
 319	transaction_t	*transaction, *new_transaction = NULL;
 320	int		blocks = handle->h_total_credits;
 321	int		rsv_blocks = 0;
 322	unsigned long ts = jiffies;
 323
 324	if (handle->h_rsv_handle)
 325		rsv_blocks = handle->h_rsv_handle->h_total_credits;
 326
 327	/*
 328	 * Limit the number of reserved credits to 1/2 of maximum transaction
 329	 * size and limit the number of total credits to not exceed maximum
 330	 * transaction size per operation.
 331	 */
 332	if (rsv_blocks > jbd2_max_user_trans_buffers(journal) / 2 ||
 333	    rsv_blocks + blocks > jbd2_max_user_trans_buffers(journal)) {
 334		printk(KERN_ERR "JBD2: %s wants too many credits "
 335		       "credits:%d rsv_credits:%d max:%d\n",
 336		       current->comm, blocks, rsv_blocks,
 337		       jbd2_max_user_trans_buffers(journal));
 338		WARN_ON(1);
 339		return -ENOSPC;
 340	}
 341
 
 
 
 342alloc_transaction:
 343	/*
 344	 * This check is racy but it is just an optimization of allocating new
 345	 * transaction early if there are high chances we'll need it. If we
 346	 * guess wrong, we'll retry or free unused transaction.
 347	 */
 348	if (!data_race(journal->j_running_transaction)) {
 349		/*
 350		 * If __GFP_FS is not present, then we may be being called from
 351		 * inside the fs writeback layer, so we MUST NOT fail.
 352		 */
 353		if ((gfp_mask & __GFP_FS) == 0)
 354			gfp_mask |= __GFP_NOFAIL;
 355		new_transaction = kmem_cache_zalloc(transaction_cache,
 356						    gfp_mask);
 357		if (!new_transaction)
 
 
 
 
 
 
 
 
 
 
 
 358			return -ENOMEM;
 
 359	}
 360
 361	jbd2_debug(3, "New handle %p going live.\n", handle);
 362
 363	/*
 364	 * We need to hold j_state_lock until t_updates has been incremented,
 365	 * for proper journal barrier handling
 366	 */
 367repeat:
 368	read_lock(&journal->j_state_lock);
 369	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
 370	if (is_journal_aborted(journal) ||
 371	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
 372		read_unlock(&journal->j_state_lock);
 373		jbd2_journal_free_transaction(new_transaction);
 374		return -EROFS;
 375	}
 376
 377	/*
 378	 * Wait on the journal's transaction barrier if necessary. Specifically
 379	 * we allow reserved handles to proceed because otherwise commit could
 380	 * deadlock on page writeback not being able to complete.
 381	 */
 382	if (!handle->h_reserved && journal->j_barrier_count) {
 383		read_unlock(&journal->j_state_lock);
 384		wait_event(journal->j_wait_transaction_locked,
 385				journal->j_barrier_count == 0);
 386		goto repeat;
 387	}
 388
 389	if (!journal->j_running_transaction) {
 390		read_unlock(&journal->j_state_lock);
 391		if (!new_transaction)
 392			goto alloc_transaction;
 393		write_lock(&journal->j_state_lock);
 394		if (!journal->j_running_transaction &&
 395		    (handle->h_reserved || !journal->j_barrier_count)) {
 396			jbd2_get_transaction(journal, new_transaction);
 397			new_transaction = NULL;
 398		}
 399		write_unlock(&journal->j_state_lock);
 400		goto repeat;
 401	}
 402
 403	transaction = journal->j_running_transaction;
 404
 405	if (!handle->h_reserved) {
 406		/* We may have dropped j_state_lock - restart in that case */
 407		if (add_transaction_credits(journal, blocks, rsv_blocks)) {
 408			/*
 409			 * add_transaction_credits releases
 410			 * j_state_lock on a non-zero return
 411			 */
 412			__release(&journal->j_state_lock);
 413			goto repeat;
 414		}
 415	} else {
 416		/*
 417		 * We have handle reserved so we are allowed to join T_LOCKED
 418		 * transaction and we don't have to check for transaction size
 419		 * and journal space. But we still have to wait while running
 420		 * transaction is being switched to a committing one as it
 421		 * won't wait for any handles anymore.
 422		 */
 423		if (transaction->t_state == T_SWITCH) {
 424			wait_transaction_switching(journal);
 425			goto repeat;
 426		}
 427		sub_reserved_credits(journal, blocks);
 428		handle->h_reserved = 0;
 429	}
 430
 431	/* OK, account for the buffers that this operation expects to
 432	 * use and add the handle to the running transaction.
 433	 */
 434	update_t_max_wait(transaction, ts);
 435	handle->h_transaction = transaction;
 436	handle->h_requested_credits = blocks;
 437	handle->h_revoke_credits_requested = handle->h_revoke_credits;
 438	handle->h_start_jiffies = jiffies;
 439	atomic_inc(&transaction->t_updates);
 440	atomic_inc(&transaction->t_handle_count);
 441	jbd2_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
 442		  handle, blocks,
 443		  atomic_read(&transaction->t_outstanding_credits),
 444		  jbd2_log_space_left(journal));
 445	read_unlock(&journal->j_state_lock);
 446	current->journal_info = handle;
 447
 448	rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
 449	jbd2_journal_free_transaction(new_transaction);
 450	/*
 451	 * Ensure that no allocations done while the transaction is open are
 452	 * going to recurse back to the fs layer.
 453	 */
 454	handle->saved_alloc_context = memalloc_nofs_save();
 455	return 0;
 456}
 457
 
 
 458/* Allocate a new handle.  This should probably be in a slab... */
 459static handle_t *new_handle(int nblocks)
 460{
 461	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
 462	if (!handle)
 463		return NULL;
 464	handle->h_total_credits = nblocks;
 465	handle->h_ref = 1;
 466
 
 
 
 467	return handle;
 468}
 469
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 470handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
 471			      int revoke_records, gfp_t gfp_mask,
 472			      unsigned int type, unsigned int line_no)
 473{
 474	handle_t *handle = journal_current_handle();
 475	int err;
 476
 477	if (!journal)
 478		return ERR_PTR(-EROFS);
 479
 480	if (handle) {
 481		J_ASSERT(handle->h_transaction->t_journal == journal);
 482		handle->h_ref++;
 483		return handle;
 484	}
 485
 486	nblocks += DIV_ROUND_UP(revoke_records,
 487				journal->j_revoke_records_per_block);
 488	handle = new_handle(nblocks);
 489	if (!handle)
 490		return ERR_PTR(-ENOMEM);
 491	if (rsv_blocks) {
 492		handle_t *rsv_handle;
 493
 494		rsv_handle = new_handle(rsv_blocks);
 495		if (!rsv_handle) {
 496			jbd2_free_handle(handle);
 497			return ERR_PTR(-ENOMEM);
 498		}
 499		rsv_handle->h_reserved = 1;
 500		rsv_handle->h_journal = journal;
 501		handle->h_rsv_handle = rsv_handle;
 502	}
 503	handle->h_revoke_credits = revoke_records;
 504
 505	err = start_this_handle(journal, handle, gfp_mask);
 506	if (err < 0) {
 507		if (handle->h_rsv_handle)
 508			jbd2_free_handle(handle->h_rsv_handle);
 509		jbd2_free_handle(handle);
 510		return ERR_PTR(err);
 511	}
 512	handle->h_type = type;
 513	handle->h_line_no = line_no;
 514	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
 515				handle->h_transaction->t_tid, type,
 516				line_no, nblocks);
 517
 518	return handle;
 519}
 520EXPORT_SYMBOL(jbd2__journal_start);
 521
 522
 523/**
 524 * jbd2_journal_start() - Obtain a new handle.
 525 * @journal: Journal to start transaction on.
 526 * @nblocks: number of block buffer we might modify
 527 *
 528 * We make sure that the transaction can guarantee at least nblocks of
 529 * modified buffers in the log.  We block until the log can guarantee
 530 * that much space. Additionally, if rsv_blocks > 0, we also create another
 531 * handle with rsv_blocks reserved blocks in the journal. This handle is
 532 * stored in h_rsv_handle. It is not attached to any particular transaction
 533 * and thus doesn't block transaction commit. If the caller uses this reserved
 534 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
 535 * on the parent handle will dispose the reserved one. Reserved handle has to
 536 * be converted to a normal handle using jbd2_journal_start_reserved() before
 537 * it can be used.
 538 *
 539 * Return a pointer to a newly allocated handle, or an ERR_PTR() value
 540 * on failure.
 541 */
 542handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
 543{
 544	return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0);
 545}
 546EXPORT_SYMBOL(jbd2_journal_start);
 547
 548static void __jbd2_journal_unreserve_handle(handle_t *handle, transaction_t *t)
 549{
 550	journal_t *journal = handle->h_journal;
 551
 552	WARN_ON(!handle->h_reserved);
 553	sub_reserved_credits(journal, handle->h_total_credits);
 554	if (t)
 555		atomic_sub(handle->h_total_credits, &t->t_outstanding_credits);
 556}
 557
 558void jbd2_journal_free_reserved(handle_t *handle)
 559{
 560	journal_t *journal = handle->h_journal;
 561
 562	/* Get j_state_lock to pin running transaction if it exists */
 563	read_lock(&journal->j_state_lock);
 564	__jbd2_journal_unreserve_handle(handle, journal->j_running_transaction);
 565	read_unlock(&journal->j_state_lock);
 566	jbd2_free_handle(handle);
 567}
 568EXPORT_SYMBOL(jbd2_journal_free_reserved);
 569
 570/**
 571 * jbd2_journal_start_reserved() - start reserved handle
 572 * @handle: handle to start
 573 * @type: for handle statistics
 574 * @line_no: for handle statistics
 575 *
 576 * Start handle that has been previously reserved with jbd2_journal_reserve().
 577 * This attaches @handle to the running transaction (or creates one if there's
 578 * not transaction running). Unlike jbd2_journal_start() this function cannot
 579 * block on journal commit, checkpointing, or similar stuff. It can block on
 580 * memory allocation or frozen journal though.
 581 *
 582 * Return 0 on success, non-zero on error - handle is freed in that case.
 583 */
 584int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
 585				unsigned int line_no)
 586{
 587	journal_t *journal = handle->h_journal;
 588	int ret = -EIO;
 589
 590	if (WARN_ON(!handle->h_reserved)) {
 591		/* Someone passed in normal handle? Just stop it. */
 592		jbd2_journal_stop(handle);
 593		return ret;
 594	}
 595	/*
 596	 * Usefulness of mixing of reserved and unreserved handles is
 597	 * questionable. So far nobody seems to need it so just error out.
 598	 */
 599	if (WARN_ON(current->journal_info)) {
 600		jbd2_journal_free_reserved(handle);
 601		return ret;
 602	}
 603
 604	handle->h_journal = NULL;
 605	/*
 606	 * GFP_NOFS is here because callers are likely from writeback or
 607	 * similarly constrained call sites
 608	 */
 609	ret = start_this_handle(journal, handle, GFP_NOFS);
 610	if (ret < 0) {
 611		handle->h_journal = journal;
 612		jbd2_journal_free_reserved(handle);
 613		return ret;
 614	}
 615	handle->h_type = type;
 616	handle->h_line_no = line_no;
 617	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
 618				handle->h_transaction->t_tid, type,
 619				line_no, handle->h_total_credits);
 620	return 0;
 621}
 622EXPORT_SYMBOL(jbd2_journal_start_reserved);
 623
 624/**
 625 * jbd2_journal_extend() - extend buffer credits.
 626 * @handle:  handle to 'extend'
 627 * @nblocks: nr blocks to try to extend by.
 628 * @revoke_records: number of revoke records to try to extend by.
 629 *
 630 * Some transactions, such as large extends and truncates, can be done
 631 * atomically all at once or in several stages.  The operation requests
 632 * a credit for a number of buffer modifications in advance, but can
 633 * extend its credit if it needs more.
 634 *
 635 * jbd2_journal_extend tries to give the running handle more buffer credits.
 636 * It does not guarantee that allocation - this is a best-effort only.
 637 * The calling process MUST be able to deal cleanly with a failure to
 638 * extend here.
 639 *
 640 * Return 0 on success, non-zero on failure.
 641 *
 642 * return code < 0 implies an error
 643 * return code > 0 implies normal transaction-full status.
 644 */
 645int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records)
 646{
 647	transaction_t *transaction = handle->h_transaction;
 648	journal_t *journal;
 649	int result;
 650	int wanted;
 651
 
 652	if (is_handle_aborted(handle))
 653		return -EROFS;
 654	journal = transaction->t_journal;
 655
 656	result = 1;
 657
 658	read_lock(&journal->j_state_lock);
 659
 660	/* Don't extend a locked-down transaction! */
 661	if (transaction->t_state != T_RUNNING) {
 662		jbd2_debug(3, "denied handle %p %d blocks: "
 663			  "transaction not running\n", handle, nblocks);
 664		goto error_out;
 665	}
 666
 667	nblocks += DIV_ROUND_UP(
 668			handle->h_revoke_credits_requested + revoke_records,
 669			journal->j_revoke_records_per_block) -
 670		DIV_ROUND_UP(
 671			handle->h_revoke_credits_requested,
 672			journal->j_revoke_records_per_block);
 673	wanted = atomic_add_return(nblocks,
 674				   &transaction->t_outstanding_credits);
 675
 676	if (wanted > journal->j_max_transaction_buffers) {
 677		jbd2_debug(3, "denied handle %p %d blocks: "
 678			  "transaction too large\n", handle, nblocks);
 679		atomic_sub(nblocks, &transaction->t_outstanding_credits);
 680		goto error_out;
 
 
 
 
 
 
 
 
 681	}
 682
 683	trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
 684				 transaction->t_tid,
 685				 handle->h_type, handle->h_line_no,
 686				 handle->h_total_credits,
 687				 nblocks);
 688
 689	handle->h_total_credits += nblocks;
 690	handle->h_requested_credits += nblocks;
 691	handle->h_revoke_credits += revoke_records;
 692	handle->h_revoke_credits_requested += revoke_records;
 693	result = 0;
 694
 695	jbd2_debug(3, "extended handle %p by %d\n", handle, nblocks);
 
 
 696error_out:
 697	read_unlock(&journal->j_state_lock);
 698	return result;
 699}
 700
 701static void stop_this_handle(handle_t *handle)
 702{
 703	transaction_t *transaction = handle->h_transaction;
 704	journal_t *journal = transaction->t_journal;
 705	int revokes;
 706
 707	J_ASSERT(journal_current_handle() == handle);
 708	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
 709	current->journal_info = NULL;
 710	/*
 711	 * Subtract necessary revoke descriptor blocks from handle credits. We
 712	 * take care to account only for revoke descriptor blocks the
 713	 * transaction will really need as large sequences of transactions with
 714	 * small numbers of revokes are relatively common.
 715	 */
 716	revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits;
 717	if (revokes) {
 718		int t_revokes, revoke_descriptors;
 719		int rr_per_blk = journal->j_revoke_records_per_block;
 720
 721		WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk)
 722				> handle->h_total_credits);
 723		t_revokes = atomic_add_return(revokes,
 724				&transaction->t_outstanding_revokes);
 725		revoke_descriptors =
 726			DIV_ROUND_UP(t_revokes, rr_per_blk) -
 727			DIV_ROUND_UP(t_revokes - revokes, rr_per_blk);
 728		handle->h_total_credits -= revoke_descriptors;
 729	}
 730	atomic_sub(handle->h_total_credits,
 731		   &transaction->t_outstanding_credits);
 732	if (handle->h_rsv_handle)
 733		__jbd2_journal_unreserve_handle(handle->h_rsv_handle,
 734						transaction);
 735	if (atomic_dec_and_test(&transaction->t_updates))
 736		wake_up(&journal->j_wait_updates);
 737
 738	rwsem_release(&journal->j_trans_commit_map, _THIS_IP_);
 739	/*
 740	 * Scope of the GFP_NOFS context is over here and so we can restore the
 741	 * original alloc context.
 742	 */
 743	memalloc_nofs_restore(handle->saved_alloc_context);
 744}
 745
 746/**
 747 * jbd2__journal_restart() - restart a handle .
 748 * @handle:  handle to restart
 749 * @nblocks: nr credits requested
 750 * @revoke_records: number of revoke record credits requested
 751 * @gfp_mask: memory allocation flags (for start_this_handle)
 752 *
 753 * Restart a handle for a multi-transaction filesystem
 754 * operation.
 755 *
 756 * If the jbd2_journal_extend() call above fails to grant new buffer credits
 757 * to a running handle, a call to jbd2_journal_restart will commit the
 758 * handle's transaction so far and reattach the handle to a new
 759 * transaction capable of guaranteeing the requested number of
 760 * credits. We preserve reserved handle if there's any attached to the
 761 * passed in handle.
 762 */
 763int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records,
 764			  gfp_t gfp_mask)
 765{
 766	transaction_t *transaction = handle->h_transaction;
 767	journal_t *journal;
 768	tid_t		tid;
 769	int		need_to_start;
 770	int		ret;
 771
 
 772	/* If we've had an abort of any type, don't even think about
 773	 * actually doing the restart! */
 774	if (is_handle_aborted(handle))
 775		return 0;
 776	journal = transaction->t_journal;
 777	tid = transaction->t_tid;
 778
 779	/*
 780	 * First unlink the handle from its current transaction, and start the
 781	 * commit on that.
 782	 */
 783	jbd2_debug(2, "restarting handle %p\n", handle);
 784	stop_this_handle(handle);
 
 
 
 
 
 
 
 
 
 
 
 
 
 785	handle->h_transaction = NULL;
 
 786
 787	/*
 788	 * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can
 789 	 * get rid of pointless j_state_lock traffic like this.
 790	 */
 791	read_lock(&journal->j_state_lock);
 792	need_to_start = !tid_geq(journal->j_commit_request, tid);
 793	read_unlock(&journal->j_state_lock);
 794	if (need_to_start)
 795		jbd2_log_start_commit(journal, tid);
 796	handle->h_total_credits = nblocks +
 797		DIV_ROUND_UP(revoke_records,
 798			     journal->j_revoke_records_per_block);
 799	handle->h_revoke_credits = revoke_records;
 800	ret = start_this_handle(journal, handle, gfp_mask);
 801	trace_jbd2_handle_restart(journal->j_fs_dev->bd_dev,
 802				 ret ? 0 : handle->h_transaction->t_tid,
 803				 handle->h_type, handle->h_line_no,
 804				 handle->h_total_credits);
 805	return ret;
 806}
 807EXPORT_SYMBOL(jbd2__journal_restart);
 808
 809
 810int jbd2_journal_restart(handle_t *handle, int nblocks)
 811{
 812	return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS);
 813}
 814EXPORT_SYMBOL(jbd2_journal_restart);
 815
 816/*
 817 * Waits for any outstanding t_updates to finish.
 818 * This is called with write j_state_lock held.
 819 */
 820void jbd2_journal_wait_updates(journal_t *journal)
 821{
 822	DEFINE_WAIT(wait);
 823
 824	while (1) {
 825		/*
 826		 * Note that the running transaction can get freed under us if
 827		 * this transaction is getting committed in
 828		 * jbd2_journal_commit_transaction() ->
 829		 * jbd2_journal_free_transaction(). This can only happen when we
 830		 * release j_state_lock -> schedule() -> acquire j_state_lock.
 831		 * Hence we should everytime retrieve new j_running_transaction
 832		 * value (after j_state_lock release acquire cycle), else it may
 833		 * lead to use-after-free of old freed transaction.
 834		 */
 835		transaction_t *transaction = journal->j_running_transaction;
 836
 837		if (!transaction)
 838			break;
 839
 840		prepare_to_wait(&journal->j_wait_updates, &wait,
 841				TASK_UNINTERRUPTIBLE);
 842		if (!atomic_read(&transaction->t_updates)) {
 843			finish_wait(&journal->j_wait_updates, &wait);
 844			break;
 845		}
 846		write_unlock(&journal->j_state_lock);
 847		schedule();
 848		finish_wait(&journal->j_wait_updates, &wait);
 849		write_lock(&journal->j_state_lock);
 850	}
 851}
 852
 853/**
 854 * jbd2_journal_lock_updates () - establish a transaction barrier.
 855 * @journal:  Journal to establish a barrier on.
 856 *
 857 * This locks out any further updates from being started, and blocks
 858 * until all existing updates have completed, returning only once the
 859 * journal is in a quiescent state with no updates running.
 860 *
 861 * The journal lock should not be held on entry.
 862 */
 863void jbd2_journal_lock_updates(journal_t *journal)
 864{
 865	jbd2_might_wait_for_commit(journal);
 866
 867	write_lock(&journal->j_state_lock);
 868	++journal->j_barrier_count;
 869
 870	/* Wait until there are no reserved handles */
 871	if (atomic_read(&journal->j_reserved_credits)) {
 872		write_unlock(&journal->j_state_lock);
 873		wait_event(journal->j_wait_reserved,
 874			   atomic_read(&journal->j_reserved_credits) == 0);
 875		write_lock(&journal->j_state_lock);
 876	}
 877
 878	/* Wait until there are no running t_updates */
 879	jbd2_journal_wait_updates(journal);
 
 880
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 881	write_unlock(&journal->j_state_lock);
 882
 883	/*
 884	 * We have now established a barrier against other normal updates, but
 885	 * we also need to barrier against other jbd2_journal_lock_updates() calls
 886	 * to make sure that we serialise special journal-locked operations
 887	 * too.
 888	 */
 889	mutex_lock(&journal->j_barrier);
 890}
 891
 892/**
 893 * jbd2_journal_unlock_updates () - release barrier
 894 * @journal:  Journal to release the barrier on.
 895 *
 896 * Release a transaction barrier obtained with jbd2_journal_lock_updates().
 897 *
 898 * Should be called without the journal lock held.
 899 */
 900void jbd2_journal_unlock_updates (journal_t *journal)
 901{
 902	J_ASSERT(journal->j_barrier_count != 0);
 903
 904	mutex_unlock(&journal->j_barrier);
 905	write_lock(&journal->j_state_lock);
 906	--journal->j_barrier_count;
 907	write_unlock(&journal->j_state_lock);
 908	wake_up_all(&journal->j_wait_transaction_locked);
 909}
 910
 911static void warn_dirty_buffer(struct buffer_head *bh)
 912{
 
 
 913	printk(KERN_WARNING
 914	       "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
 915	       "There's a risk of filesystem corruption in case of system "
 916	       "crash.\n",
 917	       bh->b_bdev, (unsigned long long)bh->b_blocknr);
 918}
 919
 920/* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
 921static void jbd2_freeze_jh_data(struct journal_head *jh)
 922{
 923	char *source;
 924	struct buffer_head *bh = jh2bh(jh);
 925
 926	J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
 927	source = kmap_local_folio(bh->b_folio, bh_offset(bh));
 928	/* Fire data frozen trigger just before we copy the data */
 929	jbd2_buffer_frozen_trigger(jh, source, jh->b_triggers);
 930	memcpy(jh->b_frozen_data, source, bh->b_size);
 931	kunmap_local(source);
 932
 933	/*
 934	 * Now that the frozen data is saved off, we need to store any matching
 935	 * triggers.
 936	 */
 937	jh->b_frozen_triggers = jh->b_triggers;
 938}
 939
 940/*
 941 * If the buffer is already part of the current transaction, then there
 942 * is nothing we need to do.  If it is already part of a prior
 943 * transaction which we are still committing to disk, then we need to
 944 * make sure that we do not overwrite the old copy: we do copy-out to
 945 * preserve the copy going to disk.  We also account the buffer against
 946 * the handle's metadata buffer credits (unless the buffer is already
 947 * part of the transaction, that is).
 948 *
 949 */
 950static int
 951do_get_write_access(handle_t *handle, struct journal_head *jh,
 952			int force_copy)
 953{
 954	struct buffer_head *bh;
 955	transaction_t *transaction = handle->h_transaction;
 956	journal_t *journal;
 957	int error;
 958	char *frozen_buffer = NULL;
 
 959	unsigned long start_lock, time_lock;
 960
 
 
 
 961	journal = transaction->t_journal;
 962
 963	jbd2_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
 964
 965	JBUFFER_TRACE(jh, "entry");
 966repeat:
 967	bh = jh2bh(jh);
 968
 969	/* @@@ Need to check for errors here at some point. */
 970
 971 	start_lock = jiffies;
 972	lock_buffer(bh);
 973	spin_lock(&jh->b_state_lock);
 974
 975	/* If it takes too long to lock the buffer, trace it */
 976	time_lock = jbd2_time_diff(start_lock, jiffies);
 977	if (time_lock > HZ/10)
 978		trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
 979			jiffies_to_msecs(time_lock));
 980
 981	/* We now hold the buffer lock so it is safe to query the buffer
 982	 * state.  Is the buffer dirty?
 983	 *
 984	 * If so, there are two possibilities.  The buffer may be
 985	 * non-journaled, and undergoing a quite legitimate writeback.
 986	 * Otherwise, it is journaled, and we don't expect dirty buffers
 987	 * in that state (the buffers should be marked JBD_Dirty
 988	 * instead.)  So either the IO is being done under our own
 989	 * control and this is a bug, or it's a third party IO such as
 990	 * dump(8) (which may leave the buffer scheduled for read ---
 991	 * ie. locked but not dirty) or tune2fs (which may actually have
 992	 * the buffer dirtied, ugh.)  */
 993
 994	if (buffer_dirty(bh) && jh->b_transaction) {
 995		warn_dirty_buffer(bh);
 996		/*
 997		 * We need to clean the dirty flag and we must do it under the
 998		 * buffer lock to be sure we don't race with running write-out.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 999		 */
1000		JBUFFER_TRACE(jh, "Journalling dirty buffer");
1001		clear_buffer_dirty(bh);
1002		/*
1003		 * The buffer is going to be added to BJ_Reserved list now and
1004		 * nothing guarantees jbd2_journal_dirty_metadata() will be
1005		 * ever called for it. So we need to set jbddirty bit here to
1006		 * make sure the buffer is dirtied and written out when the
1007		 * journaling machinery is done with it.
1008		 */
1009		set_buffer_jbddirty(bh);
1010	}
1011
 
 
1012	error = -EROFS;
1013	if (is_handle_aborted(handle)) {
1014		spin_unlock(&jh->b_state_lock);
1015		unlock_buffer(bh);
1016		goto out;
1017	}
1018	error = 0;
1019
1020	/*
1021	 * The buffer is already part of this transaction if b_transaction or
1022	 * b_next_transaction points to it
1023	 */
1024	if (jh->b_transaction == transaction ||
1025	    jh->b_next_transaction == transaction) {
1026		unlock_buffer(bh);
1027		goto done;
1028	}
1029
1030	/*
1031	 * this is the first time this transaction is touching this buffer,
1032	 * reset the modified flag
1033	 */
1034	jh->b_modified = 0;
1035
1036	/*
1037	 * If the buffer is not journaled right now, we need to make sure it
1038	 * doesn't get written to disk before the caller actually commits the
1039	 * new data
1040	 */
1041	if (!jh->b_transaction) {
1042		JBUFFER_TRACE(jh, "no transaction");
1043		J_ASSERT_JH(jh, !jh->b_next_transaction);
1044		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1045		/*
1046		 * Make sure all stores to jh (b_modified, b_frozen_data) are
1047		 * visible before attaching it to the running transaction.
1048		 * Paired with barrier in jbd2_write_access_granted()
1049		 */
1050		smp_wmb();
1051		spin_lock(&journal->j_list_lock);
1052		if (test_clear_buffer_dirty(bh)) {
1053			/*
1054			 * Execute buffer dirty clearing and jh->b_transaction
1055			 * assignment under journal->j_list_lock locked to
1056			 * prevent bh being removed from checkpoint list if
1057			 * the buffer is in an intermediate state (not dirty
1058			 * and jh->b_transaction is NULL).
1059			 */
1060			JBUFFER_TRACE(jh, "Journalling dirty buffer");
1061			set_buffer_jbddirty(bh);
1062		}
1063		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1064		spin_unlock(&journal->j_list_lock);
1065		unlock_buffer(bh);
1066		goto done;
1067	}
1068	unlock_buffer(bh);
1069
1070	/*
1071	 * If there is already a copy-out version of this buffer, then we don't
1072	 * need to make another one
1073	 */
1074	if (jh->b_frozen_data) {
1075		JBUFFER_TRACE(jh, "has frozen data");
1076		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1077		goto attach_next;
 
1078	}
1079
1080	JBUFFER_TRACE(jh, "owned by older transaction");
1081	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1082	J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1083
1084	/*
1085	 * There is one case we have to be very careful about.  If the
1086	 * committing transaction is currently writing this buffer out to disk
1087	 * and has NOT made a copy-out, then we cannot modify the buffer
1088	 * contents at all right now.  The essence of copy-out is that it is
1089	 * the extra copy, not the primary copy, which gets journaled.  If the
1090	 * primary copy is already going to disk then we cannot do copy-out
1091	 * here.
1092	 */
1093	if (buffer_shadow(bh)) {
1094		JBUFFER_TRACE(jh, "on shadow: sleep");
1095		spin_unlock(&jh->b_state_lock);
1096		wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
1097		goto repeat;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1098	}
1099
 
1100	/*
1101	 * Only do the copy if the currently-owning transaction still needs it.
1102	 * If buffer isn't on BJ_Metadata list, the committing transaction is
1103	 * past that stage (here we use the fact that BH_Shadow is set under
1104	 * bh_state lock together with refiling to BJ_Shadow list and at this
1105	 * point we know the buffer doesn't have BH_Shadow set).
1106	 *
1107	 * Subtle point, though: if this is a get_undo_access, then we will be
1108	 * relying on the frozen_data to contain the new value of the
1109	 * committed_data record after the transaction, so we HAVE to force the
1110	 * frozen_data copy in that case.
1111	 */
1112	if (jh->b_jlist == BJ_Metadata || force_copy) {
1113		JBUFFER_TRACE(jh, "generate frozen data");
1114		if (!frozen_buffer) {
1115			JBUFFER_TRACE(jh, "allocate memory for buffer");
1116			spin_unlock(&jh->b_state_lock);
1117			frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
1118						   GFP_NOFS | __GFP_NOFAIL);
1119			goto repeat;
1120		}
1121		jh->b_frozen_data = frozen_buffer;
1122		frozen_buffer = NULL;
1123		jbd2_freeze_jh_data(jh);
1124	}
1125attach_next:
1126	/*
1127	 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
1128	 * before attaching it to the running transaction. Paired with barrier
1129	 * in jbd2_write_access_granted()
1130	 */
1131	smp_wmb();
1132	jh->b_next_transaction = transaction;
 
 
 
 
 
 
1133
1134done:
1135	spin_unlock(&jh->b_state_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1136
1137	/*
1138	 * If we are about to journal a buffer, then any revoke pending on it is
1139	 * no longer valid
1140	 */
1141	jbd2_journal_cancel_revoke(handle, jh);
1142
1143out:
1144	if (unlikely(frozen_buffer))	/* It's usually NULL */
1145		jbd2_free(frozen_buffer, bh->b_size);
1146
1147	JBUFFER_TRACE(jh, "exit");
1148	return error;
1149}
1150
1151/* Fast check whether buffer is already attached to the required transaction */
1152static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1153							bool undo)
1154{
1155	struct journal_head *jh;
1156	bool ret = false;
1157
1158	/* Dirty buffers require special handling... */
1159	if (buffer_dirty(bh))
1160		return false;
1161
1162	/*
1163	 * RCU protects us from dereferencing freed pages. So the checks we do
1164	 * are guaranteed not to oops. However the jh slab object can get freed
1165	 * & reallocated while we work with it. So we have to be careful. When
1166	 * we see jh attached to the running transaction, we know it must stay
1167	 * so until the transaction is committed. Thus jh won't be freed and
1168	 * will be attached to the same bh while we run.  However it can
1169	 * happen jh gets freed, reallocated, and attached to the transaction
1170	 * just after we get pointer to it from bh. So we have to be careful
1171	 * and recheck jh still belongs to our bh before we return success.
1172	 */
1173	rcu_read_lock();
1174	if (!buffer_jbd(bh))
1175		goto out;
1176	/* This should be bh2jh() but that doesn't work with inline functions */
1177	jh = READ_ONCE(bh->b_private);
1178	if (!jh)
1179		goto out;
1180	/* For undo access buffer must have data copied */
1181	if (undo && !jh->b_committed_data)
1182		goto out;
1183	if (READ_ONCE(jh->b_transaction) != handle->h_transaction &&
1184	    READ_ONCE(jh->b_next_transaction) != handle->h_transaction)
1185		goto out;
1186	/*
1187	 * There are two reasons for the barrier here:
1188	 * 1) Make sure to fetch b_bh after we did previous checks so that we
1189	 * detect when jh went through free, realloc, attach to transaction
1190	 * while we were checking. Paired with implicit barrier in that path.
1191	 * 2) So that access to bh done after jbd2_write_access_granted()
1192	 * doesn't get reordered and see inconsistent state of concurrent
1193	 * do_get_write_access().
1194	 */
1195	smp_mb();
1196	if (unlikely(jh->b_bh != bh))
1197		goto out;
1198	ret = true;
1199out:
1200	rcu_read_unlock();
1201	return ret;
1202}
1203
1204/**
1205 * jbd2_journal_get_write_access() - notify intent to modify a buffer
1206 *				     for metadata (not data) update.
1207 * @handle: transaction to add buffer modifications to
1208 * @bh:     bh to be used for metadata writes
1209 *
1210 * Returns: error code or 0 on success.
1211 *
1212 * In full data journalling mode the buffer may be of type BJ_AsyncData,
1213 * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1214 */
1215
1216int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1217{
1218	struct journal_head *jh;
1219	journal_t *journal;
1220	int rc;
1221
1222	if (is_handle_aborted(handle))
1223		return -EROFS;
1224
1225	journal = handle->h_transaction->t_journal;
1226	if (jbd2_check_fs_dev_write_error(journal)) {
1227		/*
1228		 * If the fs dev has writeback errors, it may have failed
1229		 * to async write out metadata buffers in the background.
1230		 * In this case, we could read old data from disk and write
1231		 * it out again, which may lead to on-disk filesystem
1232		 * inconsistency. Aborting journal can avoid it happen.
1233		 */
1234		jbd2_journal_abort(journal, -EIO);
1235		return -EIO;
1236	}
1237
1238	if (jbd2_write_access_granted(handle, bh, false))
1239		return 0;
1240
1241	jh = jbd2_journal_add_journal_head(bh);
1242	/* We do not want to get caught playing with fields which the
1243	 * log thread also manipulates.  Make sure that the buffer
1244	 * completes any outstanding IO before proceeding. */
1245	rc = do_get_write_access(handle, jh, 0);
1246	jbd2_journal_put_journal_head(jh);
1247	return rc;
1248}
1249
1250
1251/*
1252 * When the user wants to journal a newly created buffer_head
1253 * (ie. getblk() returned a new buffer and we are going to populate it
1254 * manually rather than reading off disk), then we need to keep the
1255 * buffer_head locked until it has been completely filled with new
1256 * data.  In this case, we should be able to make the assertion that
1257 * the bh is not already part of an existing transaction.
1258 *
1259 * The buffer should already be locked by the caller by this point.
1260 * There is no lock ranking violation: it was a newly created,
1261 * unlocked buffer beforehand. */
1262
1263/**
1264 * jbd2_journal_get_create_access () - notify intent to use newly created bh
1265 * @handle: transaction to new buffer to
1266 * @bh: new buffer.
1267 *
1268 * Call this if you create a new bh.
1269 */
1270int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1271{
1272	transaction_t *transaction = handle->h_transaction;
1273	journal_t *journal;
1274	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1275	int err;
1276
1277	jbd2_debug(5, "journal_head %p\n", jh);
 
1278	err = -EROFS;
1279	if (is_handle_aborted(handle))
1280		goto out;
1281	journal = transaction->t_journal;
1282	err = 0;
1283
1284	JBUFFER_TRACE(jh, "entry");
1285	/*
1286	 * The buffer may already belong to this transaction due to pre-zeroing
1287	 * in the filesystem's new_block code.  It may also be on the previous,
1288	 * committing transaction's lists, but it HAS to be in Forget state in
1289	 * that case: the transaction must have deleted the buffer for it to be
1290	 * reused here.
1291	 */
1292	spin_lock(&jh->b_state_lock);
1293	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1294		jh->b_transaction == NULL ||
1295		(jh->b_transaction == journal->j_committing_transaction &&
1296			  jh->b_jlist == BJ_Forget)));
1297
1298	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1299	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1300
1301	if (jh->b_transaction == NULL) {
1302		/*
1303		 * Previous jbd2_journal_forget() could have left the buffer
1304		 * with jbddirty bit set because it was being committed. When
1305		 * the commit finished, we've filed the buffer for
1306		 * checkpointing and marked it dirty. Now we are reallocating
1307		 * the buffer so the transaction freeing it must have
1308		 * committed and so it's safe to clear the dirty bit.
1309		 */
1310		clear_buffer_dirty(jh2bh(jh));
1311		/* first access by this transaction */
1312		jh->b_modified = 0;
1313
1314		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1315		spin_lock(&journal->j_list_lock);
1316		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1317		spin_unlock(&journal->j_list_lock);
1318	} else if (jh->b_transaction == journal->j_committing_transaction) {
1319		/* first access by this transaction */
1320		jh->b_modified = 0;
1321
1322		JBUFFER_TRACE(jh, "set next transaction");
1323		spin_lock(&journal->j_list_lock);
1324		jh->b_next_transaction = transaction;
1325		spin_unlock(&journal->j_list_lock);
1326	}
1327	spin_unlock(&jh->b_state_lock);
 
1328
1329	/*
1330	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1331	 * blocks which contain freed but then revoked metadata.  We need
1332	 * to cancel the revoke in case we end up freeing it yet again
1333	 * and the reallocating as data - this would cause a second revoke,
1334	 * which hits an assertion error.
1335	 */
1336	JBUFFER_TRACE(jh, "cancelling revoke");
1337	jbd2_journal_cancel_revoke(handle, jh);
1338out:
1339	jbd2_journal_put_journal_head(jh);
1340	return err;
1341}
1342
1343/**
1344 * jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1345 *     non-rewindable consequences
1346 * @handle: transaction
1347 * @bh: buffer to undo
1348 *
1349 * Sometimes there is a need to distinguish between metadata which has
1350 * been committed to disk and that which has not.  The ext3fs code uses
1351 * this for freeing and allocating space, we have to make sure that we
1352 * do not reuse freed space until the deallocation has been committed,
1353 * since if we overwrote that space we would make the delete
1354 * un-rewindable in case of a crash.
1355 *
1356 * To deal with that, jbd2_journal_get_undo_access requests write access to a
1357 * buffer for parts of non-rewindable operations such as delete
1358 * operations on the bitmaps.  The journaling code must keep a copy of
1359 * the buffer's contents prior to the undo_access call until such time
1360 * as we know that the buffer has definitely been committed to disk.
1361 *
1362 * We never need to know which transaction the committed data is part
1363 * of, buffers touched here are guaranteed to be dirtied later and so
1364 * will be committed to a new transaction in due course, at which point
1365 * we can discard the old committed data pointer.
1366 *
1367 * Returns error number or 0 on success.
1368 */
1369int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1370{
1371	int err;
1372	struct journal_head *jh;
1373	char *committed_data = NULL;
1374
1375	if (is_handle_aborted(handle))
1376		return -EROFS;
1377
1378	if (jbd2_write_access_granted(handle, bh, true))
1379		return 0;
1380
1381	jh = jbd2_journal_add_journal_head(bh);
1382	JBUFFER_TRACE(jh, "entry");
1383
1384	/*
1385	 * Do this first --- it can drop the journal lock, so we want to
1386	 * make sure that obtaining the committed_data is done
1387	 * atomically wrt. completion of any outstanding commits.
1388	 */
1389	err = do_get_write_access(handle, jh, 1);
1390	if (err)
1391		goto out;
1392
1393repeat:
1394	if (!jh->b_committed_data)
1395		committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1396					    GFP_NOFS|__GFP_NOFAIL);
 
 
 
 
 
 
1397
1398	spin_lock(&jh->b_state_lock);
1399	if (!jh->b_committed_data) {
1400		/* Copy out the current buffer contents into the
1401		 * preserved, committed copy. */
1402		JBUFFER_TRACE(jh, "generate b_committed data");
1403		if (!committed_data) {
1404			spin_unlock(&jh->b_state_lock);
1405			goto repeat;
1406		}
1407
1408		jh->b_committed_data = committed_data;
1409		committed_data = NULL;
1410		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1411	}
1412	spin_unlock(&jh->b_state_lock);
1413out:
1414	jbd2_journal_put_journal_head(jh);
1415	if (unlikely(committed_data))
1416		jbd2_free(committed_data, bh->b_size);
1417	return err;
1418}
1419
1420/**
1421 * jbd2_journal_set_triggers() - Add triggers for commit writeout
1422 * @bh: buffer to trigger on
1423 * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1424 *
1425 * Set any triggers on this journal_head.  This is always safe, because
1426 * triggers for a committing buffer will be saved off, and triggers for
1427 * a running transaction will match the buffer in that transaction.
1428 *
1429 * Call with NULL to clear the triggers.
1430 */
1431void jbd2_journal_set_triggers(struct buffer_head *bh,
1432			       struct jbd2_buffer_trigger_type *type)
1433{
1434	struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1435
1436	if (WARN_ON_ONCE(!jh))
1437		return;
1438	jh->b_triggers = type;
1439	jbd2_journal_put_journal_head(jh);
1440}
1441
1442void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1443				struct jbd2_buffer_trigger_type *triggers)
1444{
1445	struct buffer_head *bh = jh2bh(jh);
1446
1447	if (!triggers || !triggers->t_frozen)
1448		return;
1449
1450	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1451}
1452
1453void jbd2_buffer_abort_trigger(struct journal_head *jh,
1454			       struct jbd2_buffer_trigger_type *triggers)
1455{
1456	if (!triggers || !triggers->t_abort)
1457		return;
1458
1459	triggers->t_abort(triggers, jh2bh(jh));
1460}
1461
 
 
1462/**
1463 * jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1464 * @handle: transaction to add buffer to.
1465 * @bh: buffer to mark
1466 *
1467 * mark dirty metadata which needs to be journaled as part of the current
1468 * transaction.
1469 *
1470 * The buffer must have previously had jbd2_journal_get_write_access()
1471 * called so that it has a valid journal_head attached to the buffer
1472 * head.
1473 *
1474 * The buffer is placed on the transaction's metadata list and is marked
1475 * as belonging to the transaction.
1476 *
1477 * Returns error number or 0 on success.
1478 *
1479 * Special care needs to be taken if the buffer already belongs to the
1480 * current committing transaction (in which case we should have frozen
1481 * data present for that commit).  In that case, we don't relink the
1482 * buffer: that only gets done when the old transaction finally
1483 * completes its commit.
1484 */
1485int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1486{
1487	transaction_t *transaction = handle->h_transaction;
1488	journal_t *journal;
1489	struct journal_head *jh;
1490	int ret = 0;
1491
1492	if (!buffer_jbd(bh))
1493		return -EUCLEAN;
1494
1495	/*
1496	 * We don't grab jh reference here since the buffer must be part
1497	 * of the running transaction.
1498	 */
1499	jh = bh2jh(bh);
1500	jbd2_debug(5, "journal_head %p\n", jh);
1501	JBUFFER_TRACE(jh, "entry");
1502
1503	/*
1504	 * This and the following assertions are unreliable since we may see jh
1505	 * in inconsistent state unless we grab bh_state lock. But this is
1506	 * crucial to catch bugs so let's do a reliable check until the
1507	 * lockless handling is fully proven.
1508	 */
1509	if (data_race(jh->b_transaction != transaction &&
1510	    jh->b_next_transaction != transaction)) {
1511		spin_lock(&jh->b_state_lock);
1512		J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1513				jh->b_next_transaction == transaction);
1514		spin_unlock(&jh->b_state_lock);
1515	}
1516	if (jh->b_modified == 1) {
1517		/* If it's in our transaction it must be in BJ_Metadata list. */
1518		if (data_race(jh->b_transaction == transaction &&
1519		    jh->b_jlist != BJ_Metadata)) {
1520			spin_lock(&jh->b_state_lock);
1521			if (jh->b_transaction == transaction &&
1522			    jh->b_jlist != BJ_Metadata)
1523				pr_err("JBD2: assertion failure: h_type=%u "
1524				       "h_line_no=%u block_no=%llu jlist=%u\n",
1525				       handle->h_type, handle->h_line_no,
1526				       (unsigned long long) bh->b_blocknr,
1527				       jh->b_jlist);
1528			J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1529					jh->b_jlist == BJ_Metadata);
1530			spin_unlock(&jh->b_state_lock);
1531		}
1532		goto out;
1533	}
 
 
1534
1535	journal = transaction->t_journal;
1536	spin_lock(&jh->b_state_lock);
1537
1538	if (is_handle_aborted(handle)) {
1539		/*
1540		 * Check journal aborting with @jh->b_state_lock locked,
1541		 * since 'jh->b_transaction' could be replaced with
1542		 * 'jh->b_next_transaction' during old transaction
1543		 * committing if journal aborted, which may fail
1544		 * assertion on 'jh->b_frozen_data == NULL'.
1545		 */
1546		ret = -EROFS;
1547		goto out_unlock_bh;
1548	}
1549
1550	if (jh->b_modified == 0) {
1551		/*
1552		 * This buffer's got modified and becoming part
1553		 * of the transaction. This needs to be done
1554		 * once a transaction -bzzz
1555		 */
1556		if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) {
 
1557			ret = -ENOSPC;
1558			goto out_unlock_bh;
1559		}
1560		jh->b_modified = 1;
1561		handle->h_total_credits--;
1562	}
1563
1564	/*
1565	 * fastpath, to avoid expensive locking.  If this buffer is already
1566	 * on the running transaction's metadata list there is nothing to do.
1567	 * Nobody can take it off again because there is a handle open.
1568	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1569	 * result in this test being false, so we go in and take the locks.
1570	 */
1571	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1572		JBUFFER_TRACE(jh, "fastpath");
1573		if (unlikely(jh->b_transaction !=
1574			     journal->j_running_transaction)) {
1575			printk(KERN_ERR "JBD2: %s: "
1576			       "jh->b_transaction (%llu, %p, %u) != "
1577			       "journal->j_running_transaction (%p, %u)\n",
1578			       journal->j_devname,
1579			       (unsigned long long) bh->b_blocknr,
1580			       jh->b_transaction,
1581			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1582			       journal->j_running_transaction,
1583			       journal->j_running_transaction ?
1584			       journal->j_running_transaction->t_tid : 0);
1585			ret = -EINVAL;
1586		}
1587		goto out_unlock_bh;
1588	}
1589
1590	set_buffer_jbddirty(bh);
1591
1592	/*
1593	 * Metadata already on the current transaction list doesn't
1594	 * need to be filed.  Metadata on another transaction's list must
1595	 * be committing, and will be refiled once the commit completes:
1596	 * leave it alone for now.
1597	 */
1598	if (jh->b_transaction != transaction) {
1599		JBUFFER_TRACE(jh, "already on other transaction");
1600		if (unlikely(((jh->b_transaction !=
1601			       journal->j_committing_transaction)) ||
1602			     (jh->b_next_transaction != transaction))) {
1603			printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1604			       "bad jh for block %llu: "
1605			       "transaction (%p, %u), "
1606			       "jh->b_transaction (%p, %u), "
1607			       "jh->b_next_transaction (%p, %u), jlist %u\n",
1608			       journal->j_devname,
1609			       (unsigned long long) bh->b_blocknr,
1610			       transaction, transaction->t_tid,
1611			       jh->b_transaction,
1612			       jh->b_transaction ?
1613			       jh->b_transaction->t_tid : 0,
1614			       jh->b_next_transaction,
1615			       jh->b_next_transaction ?
1616			       jh->b_next_transaction->t_tid : 0,
1617			       jh->b_jlist);
1618			WARN_ON(1);
1619			ret = -EINVAL;
1620		}
1621		/* And this case is illegal: we can't reuse another
1622		 * transaction's data buffer, ever. */
1623		goto out_unlock_bh;
1624	}
1625
1626	/* That test should have eliminated the following case: */
1627	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1628
1629	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1630	spin_lock(&journal->j_list_lock);
1631	__jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1632	spin_unlock(&journal->j_list_lock);
1633out_unlock_bh:
1634	spin_unlock(&jh->b_state_lock);
 
1635out:
1636	JBUFFER_TRACE(jh, "exit");
1637	return ret;
1638}
1639
1640/**
1641 * jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1642 * @handle: transaction handle
1643 * @bh:     bh to 'forget'
1644 *
1645 * We can only do the bforget if there are no commits pending against the
1646 * buffer.  If the buffer is dirty in the current running transaction we
1647 * can safely unlink it.
1648 *
1649 * bh may not be a journalled buffer at all - it may be a non-JBD
1650 * buffer which came off the hashtable.  Check for this.
1651 *
1652 * Decrements bh->b_count by one.
1653 *
1654 * Allow this call even if the handle has aborted --- it may be part of
1655 * the caller's cleanup after an abort.
1656 */
1657int jbd2_journal_forget(handle_t *handle, struct buffer_head *bh)
1658{
1659	transaction_t *transaction = handle->h_transaction;
1660	journal_t *journal;
1661	struct journal_head *jh;
1662	int drop_reserve = 0;
1663	int err = 0;
1664	int was_modified = 0;
1665
 
1666	if (is_handle_aborted(handle))
1667		return -EROFS;
1668	journal = transaction->t_journal;
1669
1670	BUFFER_TRACE(bh, "entry");
1671
1672	jh = jbd2_journal_grab_journal_head(bh);
1673	if (!jh) {
1674		__bforget(bh);
1675		return 0;
1676	}
1677
1678	spin_lock(&jh->b_state_lock);
 
 
1679
1680	/* Critical error: attempting to delete a bitmap buffer, maybe?
1681	 * Don't do any jbd operations, and return an error. */
1682	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1683			 "inconsistent data on disk")) {
1684		err = -EIO;
1685		goto drop;
1686	}
1687
1688	/* keep track of whether or not this transaction modified us */
1689	was_modified = jh->b_modified;
1690
1691	/*
1692	 * The buffer's going from the transaction, we must drop
1693	 * all references -bzzz
1694	 */
1695	jh->b_modified = 0;
1696
1697	if (jh->b_transaction == transaction) {
1698		J_ASSERT_JH(jh, !jh->b_frozen_data);
1699
1700		/* If we are forgetting a buffer which is already part
1701		 * of this transaction, then we can just drop it from
1702		 * the transaction immediately. */
1703		clear_buffer_dirty(bh);
1704		clear_buffer_jbddirty(bh);
1705
1706		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1707
1708		/*
1709		 * we only want to drop a reference if this transaction
1710		 * modified the buffer
1711		 */
1712		if (was_modified)
1713			drop_reserve = 1;
1714
1715		/*
1716		 * We are no longer going to journal this buffer.
1717		 * However, the commit of this transaction is still
1718		 * important to the buffer: the delete that we are now
1719		 * processing might obsolete an old log entry, so by
1720		 * committing, we can satisfy the buffer's checkpoint.
1721		 *
1722		 * So, if we have a checkpoint on the buffer, we should
1723		 * now refile the buffer on our BJ_Forget list so that
1724		 * we know to remove the checkpoint after we commit.
1725		 */
1726
1727		spin_lock(&journal->j_list_lock);
1728		if (jh->b_cp_transaction) {
1729			__jbd2_journal_temp_unlink_buffer(jh);
1730			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1731		} else {
1732			__jbd2_journal_unfile_buffer(jh);
1733			jbd2_journal_put_journal_head(jh);
 
 
 
 
 
1734		}
1735		spin_unlock(&journal->j_list_lock);
1736	} else if (jh->b_transaction) {
1737		J_ASSERT_JH(jh, (jh->b_transaction ==
1738				 journal->j_committing_transaction));
1739		/* However, if the buffer is still owned by a prior
1740		 * (committing) transaction, we can't drop it yet... */
1741		JBUFFER_TRACE(jh, "belongs to older transaction");
1742		/* ... but we CAN drop it from the new transaction through
1743		 * marking the buffer as freed and set j_next_transaction to
1744		 * the new transaction, so that not only the commit code
1745		 * knows it should clear dirty bits when it is done with the
1746		 * buffer, but also the buffer can be checkpointed only
1747		 * after the new transaction commits. */
1748
1749		set_buffer_freed(bh);
1750
1751		if (!jh->b_next_transaction) {
1752			spin_lock(&journal->j_list_lock);
1753			jh->b_next_transaction = transaction;
1754			spin_unlock(&journal->j_list_lock);
1755		} else {
1756			J_ASSERT(jh->b_next_transaction == transaction);
1757
1758			/*
1759			 * only drop a reference if this transaction modified
1760			 * the buffer
1761			 */
1762			if (was_modified)
1763				drop_reserve = 1;
1764		}
1765	} else {
1766		/*
1767		 * Finally, if the buffer is not belongs to any
1768		 * transaction, we can just drop it now if it has no
1769		 * checkpoint.
1770		 */
1771		spin_lock(&journal->j_list_lock);
1772		if (!jh->b_cp_transaction) {
1773			JBUFFER_TRACE(jh, "belongs to none transaction");
1774			spin_unlock(&journal->j_list_lock);
1775			goto drop;
1776		}
1777
1778		/*
1779		 * Otherwise, if the buffer has been written to disk,
1780		 * it is safe to remove the checkpoint and drop it.
1781		 */
1782		if (jbd2_journal_try_remove_checkpoint(jh) >= 0) {
1783			spin_unlock(&journal->j_list_lock);
1784			goto drop;
1785		}
1786
1787		/*
1788		 * The buffer is still not written to disk, we should
1789		 * attach this buffer to current transaction so that the
1790		 * buffer can be checkpointed only after the current
1791		 * transaction commits.
1792		 */
1793		clear_buffer_dirty(bh);
1794		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1795		spin_unlock(&journal->j_list_lock);
1796	}
1797drop:
1798	__brelse(bh);
1799	spin_unlock(&jh->b_state_lock);
1800	jbd2_journal_put_journal_head(jh);
1801	if (drop_reserve) {
1802		/* no need to reserve log space for this block -bzzz */
1803		handle->h_total_credits++;
1804	}
1805	return err;
1806}
1807
1808/**
1809 * jbd2_journal_stop() - complete a transaction
1810 * @handle: transaction to complete.
1811 *
1812 * All done for a particular handle.
1813 *
1814 * There is not much action needed here.  We just return any remaining
1815 * buffer credits to the transaction and remove the handle.  The only
1816 * complication is that we need to start a commit operation if the
1817 * filesystem is marked for synchronous update.
1818 *
1819 * jbd2_journal_stop itself will not usually return an error, but it may
1820 * do so in unusual circumstances.  In particular, expect it to
1821 * return -EIO if a jbd2_journal_abort has been executed since the
1822 * transaction began.
1823 */
1824int jbd2_journal_stop(handle_t *handle)
1825{
1826	transaction_t *transaction = handle->h_transaction;
1827	journal_t *journal;
1828	int err = 0, wait_for_commit = 0;
1829	tid_t tid;
1830	pid_t pid;
1831
1832	if (--handle->h_ref > 0) {
1833		jbd2_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1834						 handle->h_ref);
1835		if (is_handle_aborted(handle))
1836			return -EIO;
1837		return 0;
1838	}
1839	if (!transaction) {
1840		/*
1841		 * Handle is already detached from the transaction so there is
1842		 * nothing to do other than free the handle.
1843		 */
1844		memalloc_nofs_restore(handle->saved_alloc_context);
1845		goto free_and_exit;
1846	}
1847	journal = transaction->t_journal;
1848	tid = transaction->t_tid;
 
1849
1850	if (is_handle_aborted(handle))
1851		err = -EIO;
 
 
 
 
 
 
 
 
1852
1853	jbd2_debug(4, "Handle %p going down\n", handle);
1854	trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1855				tid, handle->h_type, handle->h_line_no,
 
1856				jiffies - handle->h_start_jiffies,
1857				handle->h_sync, handle->h_requested_credits,
1858				(handle->h_requested_credits -
1859				 handle->h_total_credits));
1860
1861	/*
1862	 * Implement synchronous transaction batching.  If the handle
1863	 * was synchronous, don't force a commit immediately.  Let's
1864	 * yield and let another thread piggyback onto this
1865	 * transaction.  Keep doing that while new threads continue to
1866	 * arrive.  It doesn't cost much - we're about to run a commit
1867	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1868	 * operations by 30x or more...
1869	 *
1870	 * We try and optimize the sleep time against what the
1871	 * underlying disk can do, instead of having a static sleep
1872	 * time.  This is useful for the case where our storage is so
1873	 * fast that it is more optimal to go ahead and force a flush
1874	 * and wait for the transaction to be committed than it is to
1875	 * wait for an arbitrary amount of time for new writers to
1876	 * join the transaction.  We achieve this by measuring how
1877	 * long it takes to commit a transaction, and compare it with
1878	 * how long this transaction has been running, and if run time
1879	 * < commit time then we sleep for the delta and commit.  This
1880	 * greatly helps super fast disks that would see slowdowns as
1881	 * more threads started doing fsyncs.
1882	 *
1883	 * But don't do this if this process was the most recent one
1884	 * to perform a synchronous write.  We do this to detect the
1885	 * case where a single process is doing a stream of sync
1886	 * writes.  No point in waiting for joiners in that case.
1887	 *
1888	 * Setting max_batch_time to 0 disables this completely.
1889	 */
1890	pid = current->pid;
1891	if (handle->h_sync && journal->j_last_sync_writer != pid &&
1892	    journal->j_max_batch_time) {
1893		u64 commit_time, trans_time;
1894
1895		journal->j_last_sync_writer = pid;
1896
1897		read_lock(&journal->j_state_lock);
1898		commit_time = journal->j_average_commit_time;
1899		read_unlock(&journal->j_state_lock);
1900
1901		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1902						   transaction->t_start_time));
1903
1904		commit_time = max_t(u64, commit_time,
1905				    1000*journal->j_min_batch_time);
1906		commit_time = min_t(u64, commit_time,
1907				    1000*journal->j_max_batch_time);
1908
1909		if (trans_time < commit_time) {
1910			ktime_t expires = ktime_add_ns(ktime_get(),
1911						       commit_time);
1912			set_current_state(TASK_UNINTERRUPTIBLE);
1913			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1914		}
1915	}
1916
1917	if (handle->h_sync)
1918		transaction->t_synchronous_commit = 1;
 
 
 
1919
1920	/*
1921	 * If the handle is marked SYNC, we need to set another commit
1922	 * going!  We also want to force a commit if the transaction is too
1923	 * old now.
 
1924	 */
1925	if (handle->h_sync ||
 
 
1926	    time_after_eq(jiffies, transaction->t_expires)) {
1927		/* Do this even for aborted journals: an abort still
1928		 * completes the commit thread, it just doesn't write
1929		 * anything to disk. */
1930
1931		jbd2_debug(2, "transaction too old, requesting commit for "
1932					"handle %p\n", handle);
1933		/* This is non-blocking */
1934		jbd2_log_start_commit(journal, tid);
1935
1936		/*
1937		 * Special case: JBD2_SYNC synchronous updates require us
1938		 * to wait for the commit to complete.
1939		 */
1940		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1941			wait_for_commit = 1;
1942	}
1943
1944	/*
1945	 * Once stop_this_handle() drops t_updates, the transaction could start
1946	 * committing on us and eventually disappear.  So we must not
1947	 * dereference transaction pointer again after calling
1948	 * stop_this_handle().
1949	 */
1950	stop_this_handle(handle);
 
 
 
 
 
1951
1952	if (wait_for_commit)
1953		err = jbd2_log_wait_commit(journal, tid);
1954
 
 
 
 
1955free_and_exit:
1956	if (handle->h_rsv_handle)
1957		jbd2_free_handle(handle->h_rsv_handle);
1958	jbd2_free_handle(handle);
1959	return err;
1960}
1961
1962/*
1963 *
1964 * List management code snippets: various functions for manipulating the
1965 * transaction buffer lists.
1966 *
1967 */
1968
1969/*
1970 * Append a buffer to a transaction list, given the transaction's list head
1971 * pointer.
1972 *
1973 * j_list_lock is held.
1974 *
1975 * jh->b_state_lock is held.
1976 */
1977
1978static inline void
1979__blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1980{
1981	if (!*list) {
1982		jh->b_tnext = jh->b_tprev = jh;
1983		*list = jh;
1984	} else {
1985		/* Insert at the tail of the list to preserve order */
1986		struct journal_head *first = *list, *last = first->b_tprev;
1987		jh->b_tprev = last;
1988		jh->b_tnext = first;
1989		last->b_tnext = first->b_tprev = jh;
1990	}
1991}
1992
1993/*
1994 * Remove a buffer from a transaction list, given the transaction's list
1995 * head pointer.
1996 *
1997 * Called with j_list_lock held, and the journal may not be locked.
1998 *
1999 * jh->b_state_lock is held.
2000 */
2001
2002static inline void
2003__blist_del_buffer(struct journal_head **list, struct journal_head *jh)
2004{
2005	if (*list == jh) {
2006		*list = jh->b_tnext;
2007		if (*list == jh)
2008			*list = NULL;
2009	}
2010	jh->b_tprev->b_tnext = jh->b_tnext;
2011	jh->b_tnext->b_tprev = jh->b_tprev;
2012}
2013
2014/*
2015 * Remove a buffer from the appropriate transaction list.
2016 *
2017 * Note that this function can *change* the value of
2018 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
2019 * t_reserved_list.  If the caller is holding onto a copy of one of these
2020 * pointers, it could go bad.  Generally the caller needs to re-read the
2021 * pointer from the transaction_t.
2022 *
2023 * Called under j_list_lock.
2024 */
2025static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
2026{
2027	struct journal_head **list = NULL;
2028	transaction_t *transaction;
2029	struct buffer_head *bh = jh2bh(jh);
2030
2031	lockdep_assert_held(&jh->b_state_lock);
2032	transaction = jh->b_transaction;
2033	if (transaction)
2034		assert_spin_locked(&transaction->t_journal->j_list_lock);
2035
2036	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2037	if (jh->b_jlist != BJ_None)
2038		J_ASSERT_JH(jh, transaction != NULL);
2039
2040	switch (jh->b_jlist) {
2041	case BJ_None:
2042		return;
2043	case BJ_Metadata:
2044		transaction->t_nr_buffers--;
2045		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
2046		list = &transaction->t_buffers;
2047		break;
2048	case BJ_Forget:
2049		list = &transaction->t_forget;
2050		break;
2051	case BJ_Shadow:
2052		list = &transaction->t_shadow_list;
2053		break;
2054	case BJ_Reserved:
2055		list = &transaction->t_reserved_list;
2056		break;
2057	}
2058
2059	__blist_del_buffer(list, jh);
2060	jh->b_jlist = BJ_None;
2061	if (transaction && is_journal_aborted(transaction->t_journal))
2062		clear_buffer_jbddirty(bh);
2063	else if (test_clear_buffer_jbddirty(bh))
2064		mark_buffer_dirty(bh);	/* Expose it to the VM */
2065}
2066
2067/*
2068 * Remove buffer from all transactions. The caller is responsible for dropping
2069 * the jh reference that belonged to the transaction.
2070 *
2071 * Called with bh_state lock and j_list_lock
 
 
2072 */
2073static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
2074{
2075	J_ASSERT_JH(jh, jh->b_transaction != NULL);
2076	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2077
2078	__jbd2_journal_temp_unlink_buffer(jh);
2079	jh->b_transaction = NULL;
 
2080}
2081
2082void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
2083{
2084	struct buffer_head *bh = jh2bh(jh);
2085
2086	/* Get reference so that buffer cannot be freed before we unlock it */
2087	get_bh(bh);
2088	spin_lock(&jh->b_state_lock);
2089	spin_lock(&journal->j_list_lock);
2090	__jbd2_journal_unfile_buffer(jh);
2091	spin_unlock(&journal->j_list_lock);
2092	spin_unlock(&jh->b_state_lock);
2093	jbd2_journal_put_journal_head(jh);
2094	__brelse(bh);
2095}
2096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2097/**
2098 * jbd2_journal_try_to_free_buffers() - try to free page buffers.
2099 * @journal: journal for operation
2100 * @folio: Folio to detach data from.
 
 
 
 
2101 *
2102 * For all the buffers on this page,
2103 * if they are fully written out ordered data, move them onto BUF_CLEAN
2104 * so try_to_free_buffers() can reap them.
2105 *
2106 * This function returns non-zero if we wish try_to_free_buffers()
2107 * to be called. We do this if the page is releasable by try_to_free_buffers().
2108 * We also do it if the page has locked or dirty buffers and the caller wants
2109 * us to perform sync or async writeout.
2110 *
2111 * This complicates JBD locking somewhat.  We aren't protected by the
2112 * BKL here.  We wish to remove the buffer from its committing or
2113 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
2114 *
2115 * This may *change* the value of transaction_t->t_datalist, so anyone
2116 * who looks at t_datalist needs to lock against this function.
2117 *
2118 * Even worse, someone may be doing a jbd2_journal_dirty_data on this
2119 * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
2120 * will come out of the lock with the buffer dirty, which makes it
2121 * ineligible for release here.
2122 *
2123 * Who else is affected by this?  hmm...  Really the only contender
2124 * is do_get_write_access() - it could be looking at the buffer while
2125 * journal_try_to_free_buffer() is changing its state.  But that
2126 * cannot happen because we never reallocate freed data as metadata
2127 * while the data is part of a transaction.  Yes?
2128 *
2129 * Return false on failure, true on success
2130 */
2131bool jbd2_journal_try_to_free_buffers(journal_t *journal, struct folio *folio)
 
2132{
2133	struct buffer_head *head;
2134	struct buffer_head *bh;
2135	bool ret = false;
2136
2137	J_ASSERT(folio_test_locked(folio));
2138
2139	head = folio_buffers(folio);
2140	bh = head;
2141	do {
2142		struct journal_head *jh;
2143
2144		/*
2145		 * We take our own ref against the journal_head here to avoid
2146		 * having to add tons of locking around each instance of
2147		 * jbd2_journal_put_journal_head().
2148		 */
2149		jh = jbd2_journal_grab_journal_head(bh);
2150		if (!jh)
2151			continue;
2152
2153		spin_lock(&jh->b_state_lock);
2154		if (!jh->b_transaction && !jh->b_next_transaction) {
2155			spin_lock(&journal->j_list_lock);
2156			/* Remove written-back checkpointed metadata buffer */
2157			if (jh->b_cp_transaction != NULL)
2158				jbd2_journal_try_remove_checkpoint(jh);
2159			spin_unlock(&journal->j_list_lock);
2160		}
2161		spin_unlock(&jh->b_state_lock);
2162		jbd2_journal_put_journal_head(jh);
 
2163		if (buffer_jbd(bh))
2164			goto busy;
2165	} while ((bh = bh->b_this_page) != head);
2166
2167	ret = try_to_free_buffers(folio);
 
2168busy:
2169	return ret;
2170}
2171
2172/*
2173 * This buffer is no longer needed.  If it is on an older transaction's
2174 * checkpoint list we need to record it on this transaction's forget list
2175 * to pin this buffer (and hence its checkpointing transaction) down until
2176 * this transaction commits.  If the buffer isn't on a checkpoint list, we
2177 * release it.
2178 * Returns non-zero if JBD no longer has an interest in the buffer.
2179 *
2180 * Called under j_list_lock.
2181 *
2182 * Called under jh->b_state_lock.
2183 */
2184static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2185{
2186	int may_free = 1;
2187	struct buffer_head *bh = jh2bh(jh);
2188
2189	if (jh->b_cp_transaction) {
2190		JBUFFER_TRACE(jh, "on running+cp transaction");
2191		__jbd2_journal_temp_unlink_buffer(jh);
2192		/*
2193		 * We don't want to write the buffer anymore, clear the
2194		 * bit so that we don't confuse checks in
2195		 * __journal_file_buffer
2196		 */
2197		clear_buffer_dirty(bh);
2198		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2199		may_free = 0;
2200	} else {
2201		JBUFFER_TRACE(jh, "on running transaction");
2202		__jbd2_journal_unfile_buffer(jh);
2203		jbd2_journal_put_journal_head(jh);
2204	}
2205	return may_free;
2206}
2207
2208/*
2209 * jbd2_journal_invalidate_folio
2210 *
2211 * This code is tricky.  It has a number of cases to deal with.
2212 *
2213 * There are two invariants which this code relies on:
2214 *
2215 * i_size must be updated on disk before we start calling invalidate_folio
2216 * on the data.
2217 *
2218 *  This is done in ext3 by defining an ext3_setattr method which
2219 *  updates i_size before truncate gets going.  By maintaining this
2220 *  invariant, we can be sure that it is safe to throw away any buffers
2221 *  attached to the current transaction: once the transaction commits,
2222 *  we know that the data will not be needed.
2223 *
2224 *  Note however that we can *not* throw away data belonging to the
2225 *  previous, committing transaction!
2226 *
2227 * Any disk blocks which *are* part of the previous, committing
2228 * transaction (and which therefore cannot be discarded immediately) are
2229 * not going to be reused in the new running transaction
2230 *
2231 *  The bitmap committed_data images guarantee this: any block which is
2232 *  allocated in one transaction and removed in the next will be marked
2233 *  as in-use in the committed_data bitmap, so cannot be reused until
2234 *  the next transaction to delete the block commits.  This means that
2235 *  leaving committing buffers dirty is quite safe: the disk blocks
2236 *  cannot be reallocated to a different file and so buffer aliasing is
2237 *  not possible.
2238 *
2239 *
2240 * The above applies mainly to ordered data mode.  In writeback mode we
2241 * don't make guarantees about the order in which data hits disk --- in
2242 * particular we don't guarantee that new dirty data is flushed before
2243 * transaction commit --- so it is always safe just to discard data
2244 * immediately in that mode.  --sct
2245 */
2246
2247/*
2248 * The journal_unmap_buffer helper function returns zero if the buffer
2249 * concerned remains pinned as an anonymous buffer belonging to an older
2250 * transaction.
2251 *
2252 * We're outside-transaction here.  Either or both of j_running_transaction
2253 * and j_committing_transaction may be NULL.
2254 */
2255static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2256				int partial_page)
2257{
2258	transaction_t *transaction;
2259	struct journal_head *jh;
2260	int may_free = 1;
2261
2262	BUFFER_TRACE(bh, "entry");
2263
2264	/*
2265	 * It is safe to proceed here without the j_list_lock because the
2266	 * buffers cannot be stolen by try_to_free_buffers as long as we are
2267	 * holding the page lock. --sct
2268	 */
2269
2270	jh = jbd2_journal_grab_journal_head(bh);
2271	if (!jh)
2272		goto zap_buffer_unlocked;
2273
2274	/* OK, we have data buffer in journaled mode */
2275	write_lock(&journal->j_state_lock);
2276	spin_lock(&jh->b_state_lock);
2277	spin_lock(&journal->j_list_lock);
2278
 
 
 
 
2279	/*
2280	 * We cannot remove the buffer from checkpoint lists until the
2281	 * transaction adding inode to orphan list (let's call it T)
2282	 * is committed.  Otherwise if the transaction changing the
2283	 * buffer would be cleaned from the journal before T is
2284	 * committed, a crash will cause that the correct contents of
2285	 * the buffer will be lost.  On the other hand we have to
2286	 * clear the buffer dirty bit at latest at the moment when the
2287	 * transaction marking the buffer as freed in the filesystem
2288	 * structures is committed because from that moment on the
2289	 * block can be reallocated and used by a different page.
2290	 * Since the block hasn't been freed yet but the inode has
2291	 * already been added to orphan list, it is safe for us to add
2292	 * the buffer to BJ_Forget list of the newest transaction.
2293	 *
2294	 * Also we have to clear buffer_mapped flag of a truncated buffer
2295	 * because the buffer_head may be attached to the page straddling
2296	 * i_size (can happen only when blocksize < pagesize) and thus the
2297	 * buffer_head can be reused when the file is extended again. So we end
2298	 * up keeping around invalidated buffers attached to transactions'
2299	 * BJ_Forget list just to stop checkpointing code from cleaning up
2300	 * the transaction this buffer was modified in.
2301	 */
2302	transaction = jh->b_transaction;
2303	if (transaction == NULL) {
2304		/* First case: not on any transaction.  If it
2305		 * has no checkpoint link, then we can zap it:
2306		 * it's a writeback-mode buffer so we don't care
2307		 * if it hits disk safely. */
2308		if (!jh->b_cp_transaction) {
2309			JBUFFER_TRACE(jh, "not on any transaction: zap");
2310			goto zap_buffer;
2311		}
2312
2313		if (!buffer_dirty(bh)) {
2314			/* bdflush has written it.  We can drop it now */
2315			__jbd2_journal_remove_checkpoint(jh);
2316			goto zap_buffer;
2317		}
2318
2319		/* OK, it must be in the journal but still not
2320		 * written fully to disk: it's metadata or
2321		 * journaled data... */
2322
2323		if (journal->j_running_transaction) {
2324			/* ... and once the current transaction has
2325			 * committed, the buffer won't be needed any
2326			 * longer. */
2327			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2328			may_free = __dispose_buffer(jh,
2329					journal->j_running_transaction);
2330			goto zap_buffer;
2331		} else {
2332			/* There is no currently-running transaction. So the
2333			 * orphan record which we wrote for this file must have
2334			 * passed into commit.  We must attach this buffer to
2335			 * the committing transaction, if it exists. */
2336			if (journal->j_committing_transaction) {
2337				JBUFFER_TRACE(jh, "give to committing trans");
2338				may_free = __dispose_buffer(jh,
2339					journal->j_committing_transaction);
2340				goto zap_buffer;
2341			} else {
2342				/* The orphan record's transaction has
2343				 * committed.  We can cleanse this buffer */
2344				clear_buffer_jbddirty(bh);
2345				__jbd2_journal_remove_checkpoint(jh);
2346				goto zap_buffer;
2347			}
2348		}
2349	} else if (transaction == journal->j_committing_transaction) {
2350		JBUFFER_TRACE(jh, "on committing transaction");
2351		/*
2352		 * The buffer is committing, we simply cannot touch
2353		 * it. If the page is straddling i_size we have to wait
2354		 * for commit and try again.
2355		 */
2356		if (partial_page) {
 
2357			spin_unlock(&journal->j_list_lock);
2358			spin_unlock(&jh->b_state_lock);
2359			write_unlock(&journal->j_state_lock);
2360			jbd2_journal_put_journal_head(jh);
2361			/* Already zapped buffer? Nothing to do... */
2362			if (!bh->b_bdev)
2363				return 0;
2364			return -EBUSY;
2365		}
2366		/*
2367		 * OK, buffer won't be reachable after truncate. We just clear
2368		 * b_modified to not confuse transaction credit accounting, and
2369		 * set j_next_transaction to the running transaction (if there
2370		 * is one) and mark buffer as freed so that commit code knows
2371		 * it should clear dirty bits when it is done with the buffer.
2372		 */
2373		set_buffer_freed(bh);
2374		if (journal->j_running_transaction && buffer_jbddirty(bh))
2375			jh->b_next_transaction = journal->j_running_transaction;
2376		jh->b_modified = 0;
2377		spin_unlock(&journal->j_list_lock);
2378		spin_unlock(&jh->b_state_lock);
2379		write_unlock(&journal->j_state_lock);
2380		jbd2_journal_put_journal_head(jh);
2381		return 0;
2382	} else {
2383		/* Good, the buffer belongs to the running transaction.
2384		 * We are writing our own transaction's data, not any
2385		 * previous one's, so it is safe to throw it away
2386		 * (remember that we expect the filesystem to have set
2387		 * i_size already for this truncate so recovery will not
2388		 * expose the disk blocks we are discarding here.) */
2389		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2390		JBUFFER_TRACE(jh, "on running transaction");
2391		may_free = __dispose_buffer(jh, transaction);
2392	}
2393
2394zap_buffer:
2395	/*
2396	 * This is tricky. Although the buffer is truncated, it may be reused
2397	 * if blocksize < pagesize and it is attached to the page straddling
2398	 * EOF. Since the buffer might have been added to BJ_Forget list of the
2399	 * running transaction, journal_get_write_access() won't clear
2400	 * b_modified and credit accounting gets confused. So clear b_modified
2401	 * here.
2402	 */
2403	jh->b_modified = 0;
 
 
2404	spin_unlock(&journal->j_list_lock);
2405	spin_unlock(&jh->b_state_lock);
2406	write_unlock(&journal->j_state_lock);
2407	jbd2_journal_put_journal_head(jh);
2408zap_buffer_unlocked:
2409	clear_buffer_dirty(bh);
2410	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2411	clear_buffer_mapped(bh);
2412	clear_buffer_req(bh);
2413	clear_buffer_new(bh);
2414	clear_buffer_delay(bh);
2415	clear_buffer_unwritten(bh);
2416	bh->b_bdev = NULL;
2417	return may_free;
2418}
2419
2420/**
2421 * jbd2_journal_invalidate_folio()
2422 * @journal: journal to use for flush...
2423 * @folio:    folio to flush
2424 * @offset:  start of the range to invalidate
2425 * @length:  length of the range to invalidate
2426 *
2427 * Reap page buffers containing data after in the specified range in page.
2428 * Can return -EBUSY if buffers are part of the committing transaction and
2429 * the page is straddling i_size. Caller then has to wait for current commit
2430 * and try again.
2431 */
2432int jbd2_journal_invalidate_folio(journal_t *journal, struct folio *folio,
2433				size_t offset, size_t length)
 
 
2434{
2435	struct buffer_head *head, *bh, *next;
2436	unsigned int stop = offset + length;
2437	unsigned int curr_off = 0;
2438	int partial_page = (offset || length < folio_size(folio));
2439	int may_free = 1;
2440	int ret = 0;
2441
2442	if (!folio_test_locked(folio))
2443		BUG();
2444	head = folio_buffers(folio);
2445	if (!head)
2446		return 0;
2447
2448	BUG_ON(stop > folio_size(folio) || stop < length);
2449
2450	/* We will potentially be playing with lists other than just the
2451	 * data lists (especially for journaled data mode), so be
2452	 * cautious in our locking. */
2453
2454	bh = head;
2455	do {
2456		unsigned int next_off = curr_off + bh->b_size;
2457		next = bh->b_this_page;
2458
2459		if (next_off > stop)
2460			return 0;
2461
2462		if (offset <= curr_off) {
2463			/* This block is wholly outside the truncation point */
2464			lock_buffer(bh);
2465			ret = journal_unmap_buffer(journal, bh, partial_page);
2466			unlock_buffer(bh);
2467			if (ret < 0)
2468				return ret;
2469			may_free &= ret;
2470		}
2471		curr_off = next_off;
2472		bh = next;
2473
2474	} while (bh != head);
2475
2476	if (!partial_page) {
2477		if (may_free && try_to_free_buffers(folio))
2478			J_ASSERT(!folio_buffers(folio));
2479	}
2480	return 0;
2481}
2482
2483/*
2484 * File a buffer on the given transaction list.
2485 */
2486void __jbd2_journal_file_buffer(struct journal_head *jh,
2487			transaction_t *transaction, int jlist)
2488{
2489	struct journal_head **list = NULL;
2490	int was_dirty = 0;
2491	struct buffer_head *bh = jh2bh(jh);
2492
2493	lockdep_assert_held(&jh->b_state_lock);
2494	assert_spin_locked(&transaction->t_journal->j_list_lock);
2495
2496	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2497	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2498				jh->b_transaction == NULL);
2499
2500	if (jh->b_transaction && jh->b_jlist == jlist)
2501		return;
2502
2503	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2504	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2505		/*
2506		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2507		 * instead of buffer_dirty. We should not see a dirty bit set
2508		 * here because we clear it in do_get_write_access but e.g.
2509		 * tune2fs can modify the sb and set the dirty bit at any time
2510		 * so we try to gracefully handle that.
2511		 */
2512		if (buffer_dirty(bh))
2513			warn_dirty_buffer(bh);
2514		if (test_clear_buffer_dirty(bh) ||
2515		    test_clear_buffer_jbddirty(bh))
2516			was_dirty = 1;
2517	}
2518
2519	if (jh->b_transaction)
2520		__jbd2_journal_temp_unlink_buffer(jh);
2521	else
2522		jbd2_journal_grab_journal_head(bh);
2523	jh->b_transaction = transaction;
2524
2525	switch (jlist) {
2526	case BJ_None:
2527		J_ASSERT_JH(jh, !jh->b_committed_data);
2528		J_ASSERT_JH(jh, !jh->b_frozen_data);
2529		return;
2530	case BJ_Metadata:
2531		transaction->t_nr_buffers++;
2532		list = &transaction->t_buffers;
2533		break;
2534	case BJ_Forget:
2535		list = &transaction->t_forget;
2536		break;
2537	case BJ_Shadow:
2538		list = &transaction->t_shadow_list;
2539		break;
2540	case BJ_Reserved:
2541		list = &transaction->t_reserved_list;
2542		break;
2543	}
2544
2545	__blist_add_buffer(list, jh);
2546	jh->b_jlist = jlist;
2547
2548	if (was_dirty)
2549		set_buffer_jbddirty(bh);
2550}
2551
2552void jbd2_journal_file_buffer(struct journal_head *jh,
2553				transaction_t *transaction, int jlist)
2554{
2555	spin_lock(&jh->b_state_lock);
2556	spin_lock(&transaction->t_journal->j_list_lock);
2557	__jbd2_journal_file_buffer(jh, transaction, jlist);
2558	spin_unlock(&transaction->t_journal->j_list_lock);
2559	spin_unlock(&jh->b_state_lock);
2560}
2561
2562/*
2563 * Remove a buffer from its current buffer list in preparation for
2564 * dropping it from its current transaction entirely.  If the buffer has
2565 * already started to be used by a subsequent transaction, refile the
2566 * buffer on that transaction's metadata list.
2567 *
2568 * Called under j_list_lock
2569 * Called under jh->b_state_lock
2570 *
2571 * When this function returns true, there's no next transaction to refile to
2572 * and the caller has to drop jh reference through
2573 * jbd2_journal_put_journal_head().
2574 */
2575bool __jbd2_journal_refile_buffer(struct journal_head *jh)
2576{
2577	int was_dirty, jlist;
2578	struct buffer_head *bh = jh2bh(jh);
2579
2580	lockdep_assert_held(&jh->b_state_lock);
2581	if (jh->b_transaction)
2582		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2583
2584	/* If the buffer is now unused, just drop it. */
2585	if (jh->b_next_transaction == NULL) {
2586		__jbd2_journal_unfile_buffer(jh);
2587		return true;
2588	}
2589
2590	/*
2591	 * It has been modified by a later transaction: add it to the new
2592	 * transaction's metadata list.
2593	 */
2594
2595	was_dirty = test_clear_buffer_jbddirty(bh);
2596	__jbd2_journal_temp_unlink_buffer(jh);
2597
2598	/*
2599	 * b_transaction must be set, otherwise the new b_transaction won't
2600	 * be holding jh reference
2601	 */
2602	J_ASSERT_JH(jh, jh->b_transaction != NULL);
2603
2604	/*
2605	 * We set b_transaction here because b_next_transaction will inherit
2606	 * our jh reference and thus __jbd2_journal_file_buffer() must not
2607	 * take a new one.
2608	 */
2609	WRITE_ONCE(jh->b_transaction, jh->b_next_transaction);
2610	WRITE_ONCE(jh->b_next_transaction, NULL);
2611	if (buffer_freed(bh))
2612		jlist = BJ_Forget;
2613	else if (jh->b_modified)
2614		jlist = BJ_Metadata;
2615	else
2616		jlist = BJ_Reserved;
2617	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2618	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2619
2620	if (was_dirty)
2621		set_buffer_jbddirty(bh);
2622	return false;
2623}
2624
2625/*
2626 * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2627 * bh reference so that we can safely unlock bh.
2628 *
2629 * The jh and bh may be freed by this call.
2630 */
2631void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2632{
2633	bool drop;
2634
2635	spin_lock(&jh->b_state_lock);
 
 
2636	spin_lock(&journal->j_list_lock);
2637	drop = __jbd2_journal_refile_buffer(jh);
2638	spin_unlock(&jh->b_state_lock);
2639	spin_unlock(&journal->j_list_lock);
2640	if (drop)
2641		jbd2_journal_put_journal_head(jh);
2642}
2643
2644/*
2645 * File inode in the inode list of the handle's transaction
2646 */
2647static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2648		unsigned long flags, loff_t start_byte, loff_t end_byte)
2649{
2650	transaction_t *transaction = handle->h_transaction;
2651	journal_t *journal;
2652
 
2653	if (is_handle_aborted(handle))
2654		return -EROFS;
2655	journal = transaction->t_journal;
2656
2657	jbd2_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2658			transaction->t_tid);
2659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2660	spin_lock(&journal->j_list_lock);
2661	jinode->i_flags |= flags;
2662
2663	if (jinode->i_dirty_end) {
2664		jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte);
2665		jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte);
2666	} else {
2667		jinode->i_dirty_start = start_byte;
2668		jinode->i_dirty_end = end_byte;
2669	}
2670
2671	/* Is inode already attached where we need it? */
2672	if (jinode->i_transaction == transaction ||
2673	    jinode->i_next_transaction == transaction)
2674		goto done;
2675
2676	/*
2677	 * We only ever set this variable to 1 so the test is safe. Since
2678	 * t_need_data_flush is likely to be set, we do the test to save some
2679	 * cacheline bouncing
2680	 */
2681	if (!transaction->t_need_data_flush)
2682		transaction->t_need_data_flush = 1;
2683	/* On some different transaction's list - should be
2684	 * the committing one */
2685	if (jinode->i_transaction) {
2686		J_ASSERT(jinode->i_next_transaction == NULL);
2687		J_ASSERT(jinode->i_transaction ==
2688					journal->j_committing_transaction);
2689		jinode->i_next_transaction = transaction;
2690		goto done;
2691	}
2692	/* Not on any transaction list... */
2693	J_ASSERT(!jinode->i_next_transaction);
2694	jinode->i_transaction = transaction;
2695	list_add(&jinode->i_list, &transaction->t_inode_list);
2696done:
2697	spin_unlock(&journal->j_list_lock);
2698
2699	return 0;
2700}
2701
2702int jbd2_journal_inode_ranged_write(handle_t *handle,
2703		struct jbd2_inode *jinode, loff_t start_byte, loff_t length)
2704{
2705	return jbd2_journal_file_inode(handle, jinode,
2706			JI_WRITE_DATA | JI_WAIT_DATA, start_byte,
2707			start_byte + length - 1);
2708}
2709
2710int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode,
2711		loff_t start_byte, loff_t length)
2712{
2713	return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA,
2714			start_byte, start_byte + length - 1);
2715}
2716
2717/*
2718 * File truncate and transaction commit interact with each other in a
2719 * non-trivial way.  If a transaction writing data block A is
2720 * committing, we cannot discard the data by truncate until we have
2721 * written them.  Otherwise if we crashed after the transaction with
2722 * write has committed but before the transaction with truncate has
2723 * committed, we could see stale data in block A.  This function is a
2724 * helper to solve this problem.  It starts writeout of the truncated
2725 * part in case it is in the committing transaction.
2726 *
2727 * Filesystem code must call this function when inode is journaled in
2728 * ordered mode before truncation happens and after the inode has been
2729 * placed on orphan list with the new inode size. The second condition
2730 * avoids the race that someone writes new data and we start
2731 * committing the transaction after this function has been called but
2732 * before a transaction for truncate is started (and furthermore it
2733 * allows us to optimize the case where the addition to orphan list
2734 * happens in the same transaction as write --- we don't have to write
2735 * any data in such case).
2736 */
2737int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2738					struct jbd2_inode *jinode,
2739					loff_t new_size)
2740{
2741	transaction_t *inode_trans, *commit_trans;
2742	int ret = 0;
2743
2744	/* This is a quick check to avoid locking if not necessary */
2745	if (!jinode->i_transaction)
2746		goto out;
2747	/* Locks are here just to force reading of recent values, it is
2748	 * enough that the transaction was not committing before we started
2749	 * a transaction adding the inode to orphan list */
2750	read_lock(&journal->j_state_lock);
2751	commit_trans = journal->j_committing_transaction;
2752	read_unlock(&journal->j_state_lock);
2753	spin_lock(&journal->j_list_lock);
2754	inode_trans = jinode->i_transaction;
2755	spin_unlock(&journal->j_list_lock);
2756	if (inode_trans == commit_trans) {
2757		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2758			new_size, LLONG_MAX);
2759		if (ret)
2760			jbd2_journal_abort(journal, ret);
2761	}
2762out:
2763	return ret;
2764}