Linux Audio

Check our new training course

Loading...
v3.15
 
  1/*
  2 * linux/fs/jbd2/revoke.c
  3 *
  4 * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
  5 *
  6 * Copyright 2000 Red Hat corp --- All Rights Reserved
  7 *
  8 * This file is part of the Linux kernel and is made available under
  9 * the terms of the GNU General Public License, version 2, or at your
 10 * option, any later version, incorporated herein by reference.
 11 *
 12 * Journal revoke routines for the generic filesystem journaling code;
 13 * part of the ext2fs journaling system.
 14 *
 15 * Revoke is the mechanism used to prevent old log records for deleted
 16 * metadata from being replayed on top of newer data using the same
 17 * blocks.  The revoke mechanism is used in two separate places:
 18 *
 19 * + Commit: during commit we write the entire list of the current
 20 *   transaction's revoked blocks to the journal
 21 *
 22 * + Recovery: during recovery we record the transaction ID of all
 23 *   revoked blocks.  If there are multiple revoke records in the log
 24 *   for a single block, only the last one counts, and if there is a log
 25 *   entry for a block beyond the last revoke, then that log entry still
 26 *   gets replayed.
 27 *
 28 * We can get interactions between revokes and new log data within a
 29 * single transaction:
 30 *
 31 * Block is revoked and then journaled:
 32 *   The desired end result is the journaling of the new block, so we
 33 *   cancel the revoke before the transaction commits.
 34 *
 35 * Block is journaled and then revoked:
 36 *   The revoke must take precedence over the write of the block, so we
 37 *   need either to cancel the journal entry or to write the revoke
 38 *   later in the log than the log block.  In this case, we choose the
 39 *   latter: journaling a block cancels any revoke record for that block
 40 *   in the current transaction, so any revoke for that block in the
 41 *   transaction must have happened after the block was journaled and so
 42 *   the revoke must take precedence.
 43 *
 44 * Block is revoked and then written as data:
 45 *   The data write is allowed to succeed, but the revoke is _not_
 46 *   cancelled.  We still need to prevent old log records from
 47 *   overwriting the new data.  We don't even need to clear the revoke
 48 *   bit here.
 49 *
 50 * We cache revoke status of a buffer in the current transaction in b_states
 51 * bits.  As the name says, revokevalid flag indicates that the cached revoke
 52 * status of a buffer is valid and we can rely on the cached status.
 53 *
 54 * Revoke information on buffers is a tri-state value:
 55 *
 56 * RevokeValid clear:	no cached revoke status, need to look it up
 57 * RevokeValid set, Revoked clear:
 58 *			buffer has not been revoked, and cancel_revoke
 59 *			need do nothing.
 60 * RevokeValid set, Revoked set:
 61 *			buffer has been revoked.
 62 *
 63 * Locking rules:
 64 * We keep two hash tables of revoke records. One hashtable belongs to the
 65 * running transaction (is pointed to by journal->j_revoke), the other one
 66 * belongs to the committing transaction. Accesses to the second hash table
 67 * happen only from the kjournald and no other thread touches this table.  Also
 68 * journal_switch_revoke_table() which switches which hashtable belongs to the
 69 * running and which to the committing transaction is called only from
 70 * kjournald. Therefore we need no locks when accessing the hashtable belonging
 71 * to the committing transaction.
 72 *
 73 * All users operating on the hash table belonging to the running transaction
 74 * have a handle to the transaction. Therefore they are safe from kjournald
 75 * switching hash tables under them. For operations on the lists of entries in
 76 * the hash table j_revoke_lock is used.
 77 *
 78 * Finally, also replay code uses the hash tables but at this moment no one else
 79 * can touch them (filesystem isn't mounted yet) and hence no locking is
 80 * needed.
 81 */
 82
 83#ifndef __KERNEL__
 84#include "jfs_user.h"
 85#else
 86#include <linux/time.h>
 87#include <linux/fs.h>
 88#include <linux/jbd2.h>
 89#include <linux/errno.h>
 90#include <linux/slab.h>
 91#include <linux/list.h>
 92#include <linux/init.h>
 93#include <linux/bio.h>
 94#endif
 95#include <linux/log2.h>
 
 
 96
 97static struct kmem_cache *jbd2_revoke_record_cache;
 98static struct kmem_cache *jbd2_revoke_table_cache;
 99
100/* Each revoke record represents one single revoked block.  During
101   journal replay, this involves recording the transaction ID of the
102   last transaction to revoke this block. */
103
104struct jbd2_revoke_record_s
105{
106	struct list_head  hash;
107	tid_t		  sequence;	/* Used for recovery only */
108	unsigned long long	  blocknr;
109};
110
111
112/* The revoke table is just a simple hash table of revoke records. */
113struct jbd2_revoke_table_s
114{
115	/* It is conceivable that we might want a larger hash table
116	 * for recovery.  Must be a power of two. */
117	int		  hash_size;
118	int		  hash_shift;
119	struct list_head *hash_table;
120};
121
122
123#ifdef __KERNEL__
124static void write_one_revoke_record(journal_t *, transaction_t *,
125				    struct list_head *,
126				    struct buffer_head **, int *,
127				    struct jbd2_revoke_record_s *, int);
128static void flush_descriptor(journal_t *, struct buffer_head *, int, int);
129#endif
130
131/* Utility functions to maintain the revoke table */
132
133/* Borrowed from buffer.c: this is a tried and tested block hash function */
134static inline int hash(journal_t *journal, unsigned long long block)
135{
136	struct jbd2_revoke_table_s *table = journal->j_revoke;
137	int hash_shift = table->hash_shift;
138	int hash = (int)block ^ (int)((block >> 31) >> 1);
139
140	return ((hash << (hash_shift - 6)) ^
141		(hash >> 13) ^
142		(hash << (hash_shift - 12))) & (table->hash_size - 1);
143}
144
145static int insert_revoke_hash(journal_t *journal, unsigned long long blocknr,
146			      tid_t seq)
147{
148	struct list_head *hash_list;
149	struct jbd2_revoke_record_s *record;
 
150
151repeat:
152	record = kmem_cache_alloc(jbd2_revoke_record_cache, GFP_NOFS);
 
153	if (!record)
154		goto oom;
155
156	record->sequence = seq;
157	record->blocknr = blocknr;
158	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
159	spin_lock(&journal->j_revoke_lock);
160	list_add(&record->hash, hash_list);
161	spin_unlock(&journal->j_revoke_lock);
162	return 0;
163
164oom:
165	if (!journal_oom_retry)
166		return -ENOMEM;
167	jbd_debug(1, "ENOMEM in %s, retrying\n", __func__);
168	yield();
169	goto repeat;
170}
171
172/* Find a revoke record in the journal's hash table. */
173
174static struct jbd2_revoke_record_s *find_revoke_record(journal_t *journal,
175						      unsigned long long blocknr)
176{
177	struct list_head *hash_list;
178	struct jbd2_revoke_record_s *record;
179
180	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
181
182	spin_lock(&journal->j_revoke_lock);
183	record = (struct jbd2_revoke_record_s *) hash_list->next;
184	while (&(record->hash) != hash_list) {
185		if (record->blocknr == blocknr) {
186			spin_unlock(&journal->j_revoke_lock);
187			return record;
188		}
189		record = (struct jbd2_revoke_record_s *) record->hash.next;
190	}
191	spin_unlock(&journal->j_revoke_lock);
192	return NULL;
193}
194
195void jbd2_journal_destroy_revoke_caches(void)
196{
197	if (jbd2_revoke_record_cache) {
198		kmem_cache_destroy(jbd2_revoke_record_cache);
199		jbd2_revoke_record_cache = NULL;
200	}
201	if (jbd2_revoke_table_cache) {
202		kmem_cache_destroy(jbd2_revoke_table_cache);
203		jbd2_revoke_table_cache = NULL;
204	}
205}
206
207int __init jbd2_journal_init_revoke_caches(void)
208{
209	J_ASSERT(!jbd2_revoke_record_cache);
210	J_ASSERT(!jbd2_revoke_table_cache);
 
211
 
 
 
212	jbd2_revoke_record_cache = KMEM_CACHE(jbd2_revoke_record_s,
213					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY);
214	if (!jbd2_revoke_record_cache)
215		goto record_cache_failure;
216
 
 
 
 
 
 
 
 
 
 
217	jbd2_revoke_table_cache = KMEM_CACHE(jbd2_revoke_table_s,
218					     SLAB_TEMPORARY);
219	if (!jbd2_revoke_table_cache)
220		goto table_cache_failure;
221	return 0;
222table_cache_failure:
223	jbd2_journal_destroy_revoke_caches();
224record_cache_failure:
225		return -ENOMEM;
 
 
226}
227
228static struct jbd2_revoke_table_s *jbd2_journal_init_revoke_table(int hash_size)
229{
230	int shift = 0;
231	int tmp = hash_size;
232	struct jbd2_revoke_table_s *table;
233
234	table = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL);
235	if (!table)
236		goto out;
237
238	while((tmp >>= 1UL) != 0UL)
239		shift++;
240
241	table->hash_size = hash_size;
242	table->hash_shift = shift;
243	table->hash_table =
244		kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
245	if (!table->hash_table) {
246		kmem_cache_free(jbd2_revoke_table_cache, table);
247		table = NULL;
248		goto out;
249	}
250
251	for (tmp = 0; tmp < hash_size; tmp++)
252		INIT_LIST_HEAD(&table->hash_table[tmp]);
253
254out:
255	return table;
256}
257
258static void jbd2_journal_destroy_revoke_table(struct jbd2_revoke_table_s *table)
259{
260	int i;
261	struct list_head *hash_list;
262
263	for (i = 0; i < table->hash_size; i++) {
264		hash_list = &table->hash_table[i];
265		J_ASSERT(list_empty(hash_list));
266	}
267
268	kfree(table->hash_table);
269	kmem_cache_free(jbd2_revoke_table_cache, table);
270}
271
272/* Initialise the revoke table for a given journal to a given size. */
273int jbd2_journal_init_revoke(journal_t *journal, int hash_size)
274{
275	J_ASSERT(journal->j_revoke_table[0] == NULL);
276	J_ASSERT(is_power_of_2(hash_size));
277
278	journal->j_revoke_table[0] = jbd2_journal_init_revoke_table(hash_size);
279	if (!journal->j_revoke_table[0])
280		goto fail0;
281
282	journal->j_revoke_table[1] = jbd2_journal_init_revoke_table(hash_size);
283	if (!journal->j_revoke_table[1])
284		goto fail1;
285
286	journal->j_revoke = journal->j_revoke_table[1];
287
288	spin_lock_init(&journal->j_revoke_lock);
289
290	return 0;
291
292fail1:
293	jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
 
294fail0:
295	return -ENOMEM;
296}
297
298/* Destroy a journal's revoke table.  The table must already be empty! */
299void jbd2_journal_destroy_revoke(journal_t *journal)
300{
301	journal->j_revoke = NULL;
302	if (journal->j_revoke_table[0])
303		jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
304	if (journal->j_revoke_table[1])
305		jbd2_journal_destroy_revoke_table(journal->j_revoke_table[1]);
306}
307
308
309#ifdef __KERNEL__
310
311/*
312 * jbd2_journal_revoke: revoke a given buffer_head from the journal.  This
313 * prevents the block from being replayed during recovery if we take a
314 * crash after this current transaction commits.  Any subsequent
315 * metadata writes of the buffer in this transaction cancel the
316 * revoke.
317 *
318 * Note that this call may block --- it is up to the caller to make
319 * sure that there are no further calls to journal_write_metadata
320 * before the revoke is complete.  In ext3, this implies calling the
321 * revoke before clearing the block bitmap when we are deleting
322 * metadata.
323 *
324 * Revoke performs a jbd2_journal_forget on any buffer_head passed in as a
325 * parameter, but does _not_ forget the buffer_head if the bh was only
326 * found implicitly.
327 *
328 * bh_in may not be a journalled buffer - it may have come off
329 * the hash tables without an attached journal_head.
330 *
331 * If bh_in is non-zero, jbd2_journal_revoke() will decrement its b_count
332 * by one.
333 */
334
335int jbd2_journal_revoke(handle_t *handle, unsigned long long blocknr,
336		   struct buffer_head *bh_in)
337{
338	struct buffer_head *bh = NULL;
339	journal_t *journal;
340	struct block_device *bdev;
341	int err;
342
343	might_sleep();
344	if (bh_in)
345		BUFFER_TRACE(bh_in, "enter");
346
347	journal = handle->h_transaction->t_journal;
348	if (!jbd2_journal_set_features(journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)){
349		J_ASSERT (!"Cannot set revoke feature!");
350		return -EINVAL;
351	}
352
353	bdev = journal->j_fs_dev;
354	bh = bh_in;
355
356	if (!bh) {
357		bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
358		if (bh)
359			BUFFER_TRACE(bh, "found on hash");
360	}
361#ifdef JBD2_EXPENSIVE_CHECKING
362	else {
363		struct buffer_head *bh2;
364
365		/* If there is a different buffer_head lying around in
366		 * memory anywhere... */
367		bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
368		if (bh2) {
369			/* ... and it has RevokeValid status... */
370			if (bh2 != bh && buffer_revokevalid(bh2))
371				/* ...then it better be revoked too,
372				 * since it's illegal to create a revoke
373				 * record against a buffer_head which is
374				 * not marked revoked --- that would
375				 * risk missing a subsequent revoke
376				 * cancel. */
377				J_ASSERT_BH(bh2, buffer_revoked(bh2));
378			put_bh(bh2);
379		}
380	}
381#endif
382
 
 
 
 
 
383	/* We really ought not ever to revoke twice in a row without
384           first having the revoke cancelled: it's illegal to free a
385           block twice without allocating it in between! */
386	if (bh) {
387		if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
388				 "inconsistent data on disk")) {
389			if (!bh_in)
390				brelse(bh);
391			return -EIO;
392		}
393		set_buffer_revoked(bh);
394		set_buffer_revokevalid(bh);
395		if (bh_in) {
396			BUFFER_TRACE(bh_in, "call jbd2_journal_forget");
397			jbd2_journal_forget(handle, bh_in);
398		} else {
399			BUFFER_TRACE(bh, "call brelse");
400			__brelse(bh);
401		}
402	}
 
403
404	jbd_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr, bh_in);
405	err = insert_revoke_hash(journal, blocknr,
406				handle->h_transaction->t_tid);
407	BUFFER_TRACE(bh_in, "exit");
408	return err;
409}
410
411/*
412 * Cancel an outstanding revoke.  For use only internally by the
413 * journaling code (called from jbd2_journal_get_write_access).
414 *
415 * We trust buffer_revoked() on the buffer if the buffer is already
416 * being journaled: if there is no revoke pending on the buffer, then we
417 * don't do anything here.
418 *
419 * This would break if it were possible for a buffer to be revoked and
420 * discarded, and then reallocated within the same transaction.  In such
421 * a case we would have lost the revoked bit, but when we arrived here
422 * the second time we would still have a pending revoke to cancel.  So,
423 * do not trust the Revoked bit on buffers unless RevokeValid is also
424 * set.
425 */
426int jbd2_journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
427{
428	struct jbd2_revoke_record_s *record;
429	journal_t *journal = handle->h_transaction->t_journal;
430	int need_cancel;
431	int did_revoke = 0;	/* akpm: debug */
432	struct buffer_head *bh = jh2bh(jh);
433
434	jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
435
436	/* Is the existing Revoke bit valid?  If so, we trust it, and
437	 * only perform the full cancel if the revoke bit is set.  If
438	 * not, we can't trust the revoke bit, and we need to do the
439	 * full search for a revoke record. */
440	if (test_set_buffer_revokevalid(bh)) {
441		need_cancel = test_clear_buffer_revoked(bh);
442	} else {
443		need_cancel = 1;
444		clear_buffer_revoked(bh);
445	}
446
447	if (need_cancel) {
448		record = find_revoke_record(journal, bh->b_blocknr);
449		if (record) {
450			jbd_debug(4, "cancelled existing revoke on "
451				  "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
452			spin_lock(&journal->j_revoke_lock);
453			list_del(&record->hash);
454			spin_unlock(&journal->j_revoke_lock);
455			kmem_cache_free(jbd2_revoke_record_cache, record);
456			did_revoke = 1;
457		}
458	}
459
460#ifdef JBD2_EXPENSIVE_CHECKING
461	/* There better not be one left behind by now! */
462	record = find_revoke_record(journal, bh->b_blocknr);
463	J_ASSERT_JH(jh, record == NULL);
464#endif
465
466	/* Finally, have we just cleared revoke on an unhashed
467	 * buffer_head?  If so, we'd better make sure we clear the
468	 * revoked status on any hashed alias too, otherwise the revoke
469	 * state machine will get very upset later on. */
470	if (need_cancel) {
471		struct buffer_head *bh2;
472		bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
473		if (bh2) {
474			if (bh2 != bh)
475				clear_buffer_revoked(bh2);
476			__brelse(bh2);
477		}
478	}
479	return did_revoke;
480}
481
482/*
483 * journal_clear_revoked_flag clears revoked flag of buffers in
484 * revoke table to reflect there is no revoked buffers in the next
485 * transaction which is going to be started.
486 */
487void jbd2_clear_buffer_revoked_flags(journal_t *journal)
488{
489	struct jbd2_revoke_table_s *revoke = journal->j_revoke;
490	int i = 0;
491
492	for (i = 0; i < revoke->hash_size; i++) {
493		struct list_head *hash_list;
494		struct list_head *list_entry;
495		hash_list = &revoke->hash_table[i];
496
497		list_for_each(list_entry, hash_list) {
498			struct jbd2_revoke_record_s *record;
499			struct buffer_head *bh;
500			record = (struct jbd2_revoke_record_s *)list_entry;
501			bh = __find_get_block(journal->j_fs_dev,
502					      record->blocknr,
503					      journal->j_blocksize);
504			if (bh) {
505				clear_buffer_revoked(bh);
506				__brelse(bh);
507			}
508		}
509	}
510}
511
512/* journal_switch_revoke table select j_revoke for next transaction
513 * we do not want to suspend any processing until all revokes are
514 * written -bzzz
515 */
516void jbd2_journal_switch_revoke_table(journal_t *journal)
517{
518	int i;
519
520	if (journal->j_revoke == journal->j_revoke_table[0])
521		journal->j_revoke = journal->j_revoke_table[1];
522	else
523		journal->j_revoke = journal->j_revoke_table[0];
524
525	for (i = 0; i < journal->j_revoke->hash_size; i++)
526		INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
527}
528
529/*
530 * Write revoke records to the journal for all entries in the current
531 * revoke hash, deleting the entries as we go.
532 */
533void jbd2_journal_write_revoke_records(journal_t *journal,
534				       transaction_t *transaction,
535				       struct list_head *log_bufs,
536				       int write_op)
537{
 
538	struct buffer_head *descriptor;
539	struct jbd2_revoke_record_s *record;
540	struct jbd2_revoke_table_s *revoke;
541	struct list_head *hash_list;
542	int i, offset, count;
543
544	descriptor = NULL;
545	offset = 0;
546	count = 0;
547
548	/* select revoke table for committing transaction */
549	revoke = journal->j_revoke == journal->j_revoke_table[0] ?
550		journal->j_revoke_table[1] : journal->j_revoke_table[0];
551
552	for (i = 0; i < revoke->hash_size; i++) {
553		hash_list = &revoke->hash_table[i];
554
555		while (!list_empty(hash_list)) {
556			record = (struct jbd2_revoke_record_s *)
557				hash_list->next;
558			write_one_revoke_record(journal, transaction, log_bufs,
559						&descriptor, &offset,
560						record, write_op);
561			count++;
562			list_del(&record->hash);
563			kmem_cache_free(jbd2_revoke_record_cache, record);
564		}
565	}
566	if (descriptor)
567		flush_descriptor(journal, descriptor, offset, write_op);
568	jbd_debug(1, "Wrote %d revoke records\n", count);
569}
570
571/*
572 * Write out one revoke record.  We need to create a new descriptor
573 * block if the old one is full or if we have not already created one.
574 */
575
576static void write_one_revoke_record(journal_t *journal,
577				    transaction_t *transaction,
578				    struct list_head *log_bufs,
579				    struct buffer_head **descriptorp,
580				    int *offsetp,
581				    struct jbd2_revoke_record_s *record,
582				    int write_op)
583{
 
584	int csum_size = 0;
585	struct buffer_head *descriptor;
586	int offset;
587	journal_header_t *header;
588
589	/* If we are already aborting, this all becomes a noop.  We
590           still need to go round the loop in
591           jbd2_journal_write_revoke_records in order to free all of the
592           revoke records: only the IO to the journal is omitted. */
593	if (is_journal_aborted(journal))
594		return;
595
596	descriptor = *descriptorp;
597	offset = *offsetp;
598
599	/* Do we need to leave space at the end for a checksum? */
600	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
601		csum_size = sizeof(struct jbd2_journal_revoke_tail);
 
 
 
 
 
602
603	/* Make sure we have a descriptor with space left for the record */
604	if (descriptor) {
605		if (offset >= journal->j_blocksize - csum_size) {
606			flush_descriptor(journal, descriptor, offset, write_op);
607			descriptor = NULL;
608		}
609	}
610
611	if (!descriptor) {
612		descriptor = jbd2_journal_get_descriptor_buffer(journal);
 
613		if (!descriptor)
614			return;
615		header = (journal_header_t *)descriptor->b_data;
616		header->h_magic     = cpu_to_be32(JBD2_MAGIC_NUMBER);
617		header->h_blocktype = cpu_to_be32(JBD2_REVOKE_BLOCK);
618		header->h_sequence  = cpu_to_be32(transaction->t_tid);
619
620		/* Record it so that we can wait for IO completion later */
621		BUFFER_TRACE(descriptor, "file in log_bufs");
622		jbd2_file_log_bh(log_bufs, descriptor);
623
624		offset = sizeof(jbd2_journal_revoke_header_t);
625		*descriptorp = descriptor;
626	}
627
628	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT)) {
629		* ((__be64 *)(&descriptor->b_data[offset])) =
630			cpu_to_be64(record->blocknr);
631		offset += 8;
632
633	} else {
634		* ((__be32 *)(&descriptor->b_data[offset])) =
635			cpu_to_be32(record->blocknr);
636		offset += 4;
637	}
638
639	*offsetp = offset;
640}
641
642static void jbd2_revoke_csum_set(journal_t *j, struct buffer_head *bh)
643{
644	struct jbd2_journal_revoke_tail *tail;
645	__u32 csum;
646
647	if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
648		return;
649
650	tail = (struct jbd2_journal_revoke_tail *)(bh->b_data + j->j_blocksize -
651			sizeof(struct jbd2_journal_revoke_tail));
652	tail->r_checksum = 0;
653	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
654	tail->r_checksum = cpu_to_be32(csum);
655}
656
657/*
658 * Flush a revoke descriptor out to the journal.  If we are aborting,
659 * this is a noop; otherwise we are generating a buffer which needs to
660 * be waited for during commit, so it has to go onto the appropriate
661 * journal buffer list.
662 */
663
664static void flush_descriptor(journal_t *journal,
665			     struct buffer_head *descriptor,
666			     int offset, int write_op)
667{
668	jbd2_journal_revoke_header_t *header;
669
670	if (is_journal_aborted(journal)) {
671		put_bh(descriptor);
672		return;
673	}
674
675	header = (jbd2_journal_revoke_header_t *)descriptor->b_data;
676	header->r_count = cpu_to_be32(offset);
677	jbd2_revoke_csum_set(journal, descriptor);
678
679	set_buffer_jwrite(descriptor);
680	BUFFER_TRACE(descriptor, "write");
681	set_buffer_dirty(descriptor);
682	write_dirty_buffer(descriptor, write_op);
683}
684#endif
685
686/*
687 * Revoke support for recovery.
688 *
689 * Recovery needs to be able to:
690 *
691 *  record all revoke records, including the tid of the latest instance
692 *  of each revoke in the journal
693 *
694 *  check whether a given block in a given transaction should be replayed
695 *  (ie. has not been revoked by a revoke record in that or a subsequent
696 *  transaction)
697 *
698 *  empty the revoke table after recovery.
699 */
700
701/*
702 * First, setting revoke records.  We create a new revoke record for
703 * every block ever revoked in the log as we scan it for recovery, and
704 * we update the existing records if we find multiple revokes for a
705 * single block.
706 */
707
708int jbd2_journal_set_revoke(journal_t *journal,
709		       unsigned long long blocknr,
710		       tid_t sequence)
711{
712	struct jbd2_revoke_record_s *record;
713
714	record = find_revoke_record(journal, blocknr);
715	if (record) {
716		/* If we have multiple occurrences, only record the
717		 * latest sequence number in the hashed record */
718		if (tid_gt(sequence, record->sequence))
719			record->sequence = sequence;
720		return 0;
721	}
722	return insert_revoke_hash(journal, blocknr, sequence);
723}
724
725/*
726 * Test revoke records.  For a given block referenced in the log, has
727 * that block been revoked?  A revoke record with a given transaction
728 * sequence number revokes all blocks in that transaction and earlier
729 * ones, but later transactions still need replayed.
730 */
731
732int jbd2_journal_test_revoke(journal_t *journal,
733			unsigned long long blocknr,
734			tid_t sequence)
735{
736	struct jbd2_revoke_record_s *record;
737
738	record = find_revoke_record(journal, blocknr);
739	if (!record)
740		return 0;
741	if (tid_gt(sequence, record->sequence))
742		return 0;
743	return 1;
744}
745
746/*
747 * Finally, once recovery is over, we need to clear the revoke table so
748 * that it can be reused by the running filesystem.
749 */
750
751void jbd2_journal_clear_revoke(journal_t *journal)
752{
753	int i;
754	struct list_head *hash_list;
755	struct jbd2_revoke_record_s *record;
756	struct jbd2_revoke_table_s *revoke;
757
758	revoke = journal->j_revoke;
759
760	for (i = 0; i < revoke->hash_size; i++) {
761		hash_list = &revoke->hash_table[i];
762		while (!list_empty(hash_list)) {
763			record = (struct jbd2_revoke_record_s*) hash_list->next;
764			list_del(&record->hash);
765			kmem_cache_free(jbd2_revoke_record_cache, record);
766		}
767	}
768}
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0+
  2/*
  3 * linux/fs/jbd2/revoke.c
  4 *
  5 * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
  6 *
  7 * Copyright 2000 Red Hat corp --- All Rights Reserved
  8 *
 
 
 
 
  9 * Journal revoke routines for the generic filesystem journaling code;
 10 * part of the ext2fs journaling system.
 11 *
 12 * Revoke is the mechanism used to prevent old log records for deleted
 13 * metadata from being replayed on top of newer data using the same
 14 * blocks.  The revoke mechanism is used in two separate places:
 15 *
 16 * + Commit: during commit we write the entire list of the current
 17 *   transaction's revoked blocks to the journal
 18 *
 19 * + Recovery: during recovery we record the transaction ID of all
 20 *   revoked blocks.  If there are multiple revoke records in the log
 21 *   for a single block, only the last one counts, and if there is a log
 22 *   entry for a block beyond the last revoke, then that log entry still
 23 *   gets replayed.
 24 *
 25 * We can get interactions between revokes and new log data within a
 26 * single transaction:
 27 *
 28 * Block is revoked and then journaled:
 29 *   The desired end result is the journaling of the new block, so we
 30 *   cancel the revoke before the transaction commits.
 31 *
 32 * Block is journaled and then revoked:
 33 *   The revoke must take precedence over the write of the block, so we
 34 *   need either to cancel the journal entry or to write the revoke
 35 *   later in the log than the log block.  In this case, we choose the
 36 *   latter: journaling a block cancels any revoke record for that block
 37 *   in the current transaction, so any revoke for that block in the
 38 *   transaction must have happened after the block was journaled and so
 39 *   the revoke must take precedence.
 40 *
 41 * Block is revoked and then written as data:
 42 *   The data write is allowed to succeed, but the revoke is _not_
 43 *   cancelled.  We still need to prevent old log records from
 44 *   overwriting the new data.  We don't even need to clear the revoke
 45 *   bit here.
 46 *
 47 * We cache revoke status of a buffer in the current transaction in b_states
 48 * bits.  As the name says, revokevalid flag indicates that the cached revoke
 49 * status of a buffer is valid and we can rely on the cached status.
 50 *
 51 * Revoke information on buffers is a tri-state value:
 52 *
 53 * RevokeValid clear:	no cached revoke status, need to look it up
 54 * RevokeValid set, Revoked clear:
 55 *			buffer has not been revoked, and cancel_revoke
 56 *			need do nothing.
 57 * RevokeValid set, Revoked set:
 58 *			buffer has been revoked.
 59 *
 60 * Locking rules:
 61 * We keep two hash tables of revoke records. One hashtable belongs to the
 62 * running transaction (is pointed to by journal->j_revoke), the other one
 63 * belongs to the committing transaction. Accesses to the second hash table
 64 * happen only from the kjournald and no other thread touches this table.  Also
 65 * journal_switch_revoke_table() which switches which hashtable belongs to the
 66 * running and which to the committing transaction is called only from
 67 * kjournald. Therefore we need no locks when accessing the hashtable belonging
 68 * to the committing transaction.
 69 *
 70 * All users operating on the hash table belonging to the running transaction
 71 * have a handle to the transaction. Therefore they are safe from kjournald
 72 * switching hash tables under them. For operations on the lists of entries in
 73 * the hash table j_revoke_lock is used.
 74 *
 75 * Finally, also replay code uses the hash tables but at this moment no one else
 76 * can touch them (filesystem isn't mounted yet) and hence no locking is
 77 * needed.
 78 */
 79
 80#ifndef __KERNEL__
 81#include "jfs_user.h"
 82#else
 83#include <linux/time.h>
 84#include <linux/fs.h>
 85#include <linux/jbd2.h>
 86#include <linux/errno.h>
 87#include <linux/slab.h>
 88#include <linux/list.h>
 89#include <linux/init.h>
 90#include <linux/bio.h>
 
 91#include <linux/log2.h>
 92#include <linux/hash.h>
 93#endif
 94
 95static struct kmem_cache *jbd2_revoke_record_cache;
 96static struct kmem_cache *jbd2_revoke_table_cache;
 97
 98/* Each revoke record represents one single revoked block.  During
 99   journal replay, this involves recording the transaction ID of the
100   last transaction to revoke this block. */
101
102struct jbd2_revoke_record_s
103{
104	struct list_head  hash;
105	tid_t		  sequence;	/* Used for recovery only */
106	unsigned long long	  blocknr;
107};
108
109
110/* The revoke table is just a simple hash table of revoke records. */
111struct jbd2_revoke_table_s
112{
113	/* It is conceivable that we might want a larger hash table
114	 * for recovery.  Must be a power of two. */
115	int		  hash_size;
116	int		  hash_shift;
117	struct list_head *hash_table;
118};
119
120
121#ifdef __KERNEL__
122static void write_one_revoke_record(transaction_t *,
123				    struct list_head *,
124				    struct buffer_head **, int *,
125				    struct jbd2_revoke_record_s *);
126static void flush_descriptor(journal_t *, struct buffer_head *, int);
127#endif
128
129/* Utility functions to maintain the revoke table */
130
 
131static inline int hash(journal_t *journal, unsigned long long block)
132{
133	return hash_64(block, journal->j_revoke->hash_shift);
 
 
 
 
 
 
134}
135
136static int insert_revoke_hash(journal_t *journal, unsigned long long blocknr,
137			      tid_t seq)
138{
139	struct list_head *hash_list;
140	struct jbd2_revoke_record_s *record;
141	gfp_t gfp_mask = GFP_NOFS;
142
143	if (journal_oom_retry)
144		gfp_mask |= __GFP_NOFAIL;
145	record = kmem_cache_alloc(jbd2_revoke_record_cache, gfp_mask);
146	if (!record)
147		return -ENOMEM;
148
149	record->sequence = seq;
150	record->blocknr = blocknr;
151	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
152	spin_lock(&journal->j_revoke_lock);
153	list_add(&record->hash, hash_list);
154	spin_unlock(&journal->j_revoke_lock);
155	return 0;
 
 
 
 
 
 
 
156}
157
158/* Find a revoke record in the journal's hash table. */
159
160static struct jbd2_revoke_record_s *find_revoke_record(journal_t *journal,
161						      unsigned long long blocknr)
162{
163	struct list_head *hash_list;
164	struct jbd2_revoke_record_s *record;
165
166	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
167
168	spin_lock(&journal->j_revoke_lock);
169	record = (struct jbd2_revoke_record_s *) hash_list->next;
170	while (&(record->hash) != hash_list) {
171		if (record->blocknr == blocknr) {
172			spin_unlock(&journal->j_revoke_lock);
173			return record;
174		}
175		record = (struct jbd2_revoke_record_s *) record->hash.next;
176	}
177	spin_unlock(&journal->j_revoke_lock);
178	return NULL;
179}
180
181void jbd2_journal_destroy_revoke_record_cache(void)
182{
183	kmem_cache_destroy(jbd2_revoke_record_cache);
184	jbd2_revoke_record_cache = NULL;
 
 
 
 
 
 
185}
186
187void jbd2_journal_destroy_revoke_table_cache(void)
188{
189	kmem_cache_destroy(jbd2_revoke_table_cache);
190	jbd2_revoke_table_cache = NULL;
191}
192
193int __init jbd2_journal_init_revoke_record_cache(void)
194{
195	J_ASSERT(!jbd2_revoke_record_cache);
196	jbd2_revoke_record_cache = KMEM_CACHE(jbd2_revoke_record_s,
197					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY);
 
 
198
199	if (!jbd2_revoke_record_cache) {
200		pr_emerg("JBD2: failed to create revoke_record cache\n");
201		return -ENOMEM;
202	}
203	return 0;
204}
205
206int __init jbd2_journal_init_revoke_table_cache(void)
207{
208	J_ASSERT(!jbd2_revoke_table_cache);
209	jbd2_revoke_table_cache = KMEM_CACHE(jbd2_revoke_table_s,
210					     SLAB_TEMPORARY);
211	if (!jbd2_revoke_table_cache) {
212		pr_emerg("JBD2: failed to create revoke_table cache\n");
 
 
 
 
213		return -ENOMEM;
214	}
215	return 0;
216}
217
218static struct jbd2_revoke_table_s *jbd2_journal_init_revoke_table(int hash_size)
219{
220	int shift = 0;
221	int tmp = hash_size;
222	struct jbd2_revoke_table_s *table;
223
224	table = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL);
225	if (!table)
226		goto out;
227
228	while((tmp >>= 1UL) != 0UL)
229		shift++;
230
231	table->hash_size = hash_size;
232	table->hash_shift = shift;
233	table->hash_table =
234		kmalloc_array(hash_size, sizeof(struct list_head), GFP_KERNEL);
235	if (!table->hash_table) {
236		kmem_cache_free(jbd2_revoke_table_cache, table);
237		table = NULL;
238		goto out;
239	}
240
241	for (tmp = 0; tmp < hash_size; tmp++)
242		INIT_LIST_HEAD(&table->hash_table[tmp]);
243
244out:
245	return table;
246}
247
248static void jbd2_journal_destroy_revoke_table(struct jbd2_revoke_table_s *table)
249{
250	int i;
251	struct list_head *hash_list;
252
253	for (i = 0; i < table->hash_size; i++) {
254		hash_list = &table->hash_table[i];
255		J_ASSERT(list_empty(hash_list));
256	}
257
258	kfree(table->hash_table);
259	kmem_cache_free(jbd2_revoke_table_cache, table);
260}
261
262/* Initialise the revoke table for a given journal to a given size. */
263int jbd2_journal_init_revoke(journal_t *journal, int hash_size)
264{
265	J_ASSERT(journal->j_revoke_table[0] == NULL);
266	J_ASSERT(is_power_of_2(hash_size));
267
268	journal->j_revoke_table[0] = jbd2_journal_init_revoke_table(hash_size);
269	if (!journal->j_revoke_table[0])
270		goto fail0;
271
272	journal->j_revoke_table[1] = jbd2_journal_init_revoke_table(hash_size);
273	if (!journal->j_revoke_table[1])
274		goto fail1;
275
276	journal->j_revoke = journal->j_revoke_table[1];
277
278	spin_lock_init(&journal->j_revoke_lock);
279
280	return 0;
281
282fail1:
283	jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
284	journal->j_revoke_table[0] = NULL;
285fail0:
286	return -ENOMEM;
287}
288
289/* Destroy a journal's revoke table.  The table must already be empty! */
290void jbd2_journal_destroy_revoke(journal_t *journal)
291{
292	journal->j_revoke = NULL;
293	if (journal->j_revoke_table[0])
294		jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
295	if (journal->j_revoke_table[1])
296		jbd2_journal_destroy_revoke_table(journal->j_revoke_table[1]);
297}
298
299
300#ifdef __KERNEL__
301
302/*
303 * jbd2_journal_revoke: revoke a given buffer_head from the journal.  This
304 * prevents the block from being replayed during recovery if we take a
305 * crash after this current transaction commits.  Any subsequent
306 * metadata writes of the buffer in this transaction cancel the
307 * revoke.
308 *
309 * Note that this call may block --- it is up to the caller to make
310 * sure that there are no further calls to journal_write_metadata
311 * before the revoke is complete.  In ext3, this implies calling the
312 * revoke before clearing the block bitmap when we are deleting
313 * metadata.
314 *
315 * Revoke performs a jbd2_journal_forget on any buffer_head passed in as a
316 * parameter, but does _not_ forget the buffer_head if the bh was only
317 * found implicitly.
318 *
319 * bh_in may not be a journalled buffer - it may have come off
320 * the hash tables without an attached journal_head.
321 *
322 * If bh_in is non-zero, jbd2_journal_revoke() will decrement its b_count
323 * by one.
324 */
325
326int jbd2_journal_revoke(handle_t *handle, unsigned long long blocknr,
327		   struct buffer_head *bh_in)
328{
329	struct buffer_head *bh = NULL;
330	journal_t *journal;
331	struct block_device *bdev;
332	int err;
333
334	might_sleep();
335	if (bh_in)
336		BUFFER_TRACE(bh_in, "enter");
337
338	journal = handle->h_transaction->t_journal;
339	if (!jbd2_journal_set_features(journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)){
340		J_ASSERT (!"Cannot set revoke feature!");
341		return -EINVAL;
342	}
343
344	bdev = journal->j_fs_dev;
345	bh = bh_in;
346
347	if (!bh) {
348		bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
349		if (bh)
350			BUFFER_TRACE(bh, "found on hash");
351	}
352#ifdef JBD2_EXPENSIVE_CHECKING
353	else {
354		struct buffer_head *bh2;
355
356		/* If there is a different buffer_head lying around in
357		 * memory anywhere... */
358		bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
359		if (bh2) {
360			/* ... and it has RevokeValid status... */
361			if (bh2 != bh && buffer_revokevalid(bh2))
362				/* ...then it better be revoked too,
363				 * since it's illegal to create a revoke
364				 * record against a buffer_head which is
365				 * not marked revoked --- that would
366				 * risk missing a subsequent revoke
367				 * cancel. */
368				J_ASSERT_BH(bh2, buffer_revoked(bh2));
369			put_bh(bh2);
370		}
371	}
372#endif
373
374	if (WARN_ON_ONCE(handle->h_revoke_credits <= 0)) {
375		if (!bh_in)
376			brelse(bh);
377		return -EIO;
378	}
379	/* We really ought not ever to revoke twice in a row without
380           first having the revoke cancelled: it's illegal to free a
381           block twice without allocating it in between! */
382	if (bh) {
383		if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
384				 "inconsistent data on disk")) {
385			if (!bh_in)
386				brelse(bh);
387			return -EIO;
388		}
389		set_buffer_revoked(bh);
390		set_buffer_revokevalid(bh);
391		if (bh_in) {
392			BUFFER_TRACE(bh_in, "call jbd2_journal_forget");
393			jbd2_journal_forget(handle, bh_in);
394		} else {
395			BUFFER_TRACE(bh, "call brelse");
396			__brelse(bh);
397		}
398	}
399	handle->h_revoke_credits--;
400
401	jbd2_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr, bh_in);
402	err = insert_revoke_hash(journal, blocknr,
403				handle->h_transaction->t_tid);
404	BUFFER_TRACE(bh_in, "exit");
405	return err;
406}
407
408/*
409 * Cancel an outstanding revoke.  For use only internally by the
410 * journaling code (called from jbd2_journal_get_write_access).
411 *
412 * We trust buffer_revoked() on the buffer if the buffer is already
413 * being journaled: if there is no revoke pending on the buffer, then we
414 * don't do anything here.
415 *
416 * This would break if it were possible for a buffer to be revoked and
417 * discarded, and then reallocated within the same transaction.  In such
418 * a case we would have lost the revoked bit, but when we arrived here
419 * the second time we would still have a pending revoke to cancel.  So,
420 * do not trust the Revoked bit on buffers unless RevokeValid is also
421 * set.
422 */
423int jbd2_journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
424{
425	struct jbd2_revoke_record_s *record;
426	journal_t *journal = handle->h_transaction->t_journal;
427	int need_cancel;
428	int did_revoke = 0;	/* akpm: debug */
429	struct buffer_head *bh = jh2bh(jh);
430
431	jbd2_debug(4, "journal_head %p, cancelling revoke\n", jh);
432
433	/* Is the existing Revoke bit valid?  If so, we trust it, and
434	 * only perform the full cancel if the revoke bit is set.  If
435	 * not, we can't trust the revoke bit, and we need to do the
436	 * full search for a revoke record. */
437	if (test_set_buffer_revokevalid(bh)) {
438		need_cancel = test_clear_buffer_revoked(bh);
439	} else {
440		need_cancel = 1;
441		clear_buffer_revoked(bh);
442	}
443
444	if (need_cancel) {
445		record = find_revoke_record(journal, bh->b_blocknr);
446		if (record) {
447			jbd2_debug(4, "cancelled existing revoke on "
448				  "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
449			spin_lock(&journal->j_revoke_lock);
450			list_del(&record->hash);
451			spin_unlock(&journal->j_revoke_lock);
452			kmem_cache_free(jbd2_revoke_record_cache, record);
453			did_revoke = 1;
454		}
455	}
456
457#ifdef JBD2_EXPENSIVE_CHECKING
458	/* There better not be one left behind by now! */
459	record = find_revoke_record(journal, bh->b_blocknr);
460	J_ASSERT_JH(jh, record == NULL);
461#endif
462
463	/* Finally, have we just cleared revoke on an unhashed
464	 * buffer_head?  If so, we'd better make sure we clear the
465	 * revoked status on any hashed alias too, otherwise the revoke
466	 * state machine will get very upset later on. */
467	if (need_cancel) {
468		struct buffer_head *bh2;
469		bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
470		if (bh2) {
471			if (bh2 != bh)
472				clear_buffer_revoked(bh2);
473			__brelse(bh2);
474		}
475	}
476	return did_revoke;
477}
478
479/*
480 * journal_clear_revoked_flag clears revoked flag of buffers in
481 * revoke table to reflect there is no revoked buffers in the next
482 * transaction which is going to be started.
483 */
484void jbd2_clear_buffer_revoked_flags(journal_t *journal)
485{
486	struct jbd2_revoke_table_s *revoke = journal->j_revoke;
487	int i = 0;
488
489	for (i = 0; i < revoke->hash_size; i++) {
490		struct list_head *hash_list;
491		struct list_head *list_entry;
492		hash_list = &revoke->hash_table[i];
493
494		list_for_each(list_entry, hash_list) {
495			struct jbd2_revoke_record_s *record;
496			struct buffer_head *bh;
497			record = (struct jbd2_revoke_record_s *)list_entry;
498			bh = __find_get_block(journal->j_fs_dev,
499					      record->blocknr,
500					      journal->j_blocksize);
501			if (bh) {
502				clear_buffer_revoked(bh);
503				__brelse(bh);
504			}
505		}
506	}
507}
508
509/* journal_switch_revoke table select j_revoke for next transaction
510 * we do not want to suspend any processing until all revokes are
511 * written -bzzz
512 */
513void jbd2_journal_switch_revoke_table(journal_t *journal)
514{
515	int i;
516
517	if (journal->j_revoke == journal->j_revoke_table[0])
518		journal->j_revoke = journal->j_revoke_table[1];
519	else
520		journal->j_revoke = journal->j_revoke_table[0];
521
522	for (i = 0; i < journal->j_revoke->hash_size; i++)
523		INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
524}
525
526/*
527 * Write revoke records to the journal for all entries in the current
528 * revoke hash, deleting the entries as we go.
529 */
530void jbd2_journal_write_revoke_records(transaction_t *transaction,
531				       struct list_head *log_bufs)
 
 
532{
533	journal_t *journal = transaction->t_journal;
534	struct buffer_head *descriptor;
535	struct jbd2_revoke_record_s *record;
536	struct jbd2_revoke_table_s *revoke;
537	struct list_head *hash_list;
538	int i, offset, count;
539
540	descriptor = NULL;
541	offset = 0;
542	count = 0;
543
544	/* select revoke table for committing transaction */
545	revoke = journal->j_revoke == journal->j_revoke_table[0] ?
546		journal->j_revoke_table[1] : journal->j_revoke_table[0];
547
548	for (i = 0; i < revoke->hash_size; i++) {
549		hash_list = &revoke->hash_table[i];
550
551		while (!list_empty(hash_list)) {
552			record = (struct jbd2_revoke_record_s *)
553				hash_list->next;
554			write_one_revoke_record(transaction, log_bufs,
555						&descriptor, &offset, record);
 
556			count++;
557			list_del(&record->hash);
558			kmem_cache_free(jbd2_revoke_record_cache, record);
559		}
560	}
561	if (descriptor)
562		flush_descriptor(journal, descriptor, offset);
563	jbd2_debug(1, "Wrote %d revoke records\n", count);
564}
565
566/*
567 * Write out one revoke record.  We need to create a new descriptor
568 * block if the old one is full or if we have not already created one.
569 */
570
571static void write_one_revoke_record(transaction_t *transaction,
 
572				    struct list_head *log_bufs,
573				    struct buffer_head **descriptorp,
574				    int *offsetp,
575				    struct jbd2_revoke_record_s *record)
 
576{
577	journal_t *journal = transaction->t_journal;
578	int csum_size = 0;
579	struct buffer_head *descriptor;
580	int sz, offset;
 
581
582	/* If we are already aborting, this all becomes a noop.  We
583           still need to go round the loop in
584           jbd2_journal_write_revoke_records in order to free all of the
585           revoke records: only the IO to the journal is omitted. */
586	if (is_journal_aborted(journal))
587		return;
588
589	descriptor = *descriptorp;
590	offset = *offsetp;
591
592	/* Do we need to leave space at the end for a checksum? */
593	if (jbd2_journal_has_csum_v2or3(journal))
594		csum_size = sizeof(struct jbd2_journal_block_tail);
595
596	if (jbd2_has_feature_64bit(journal))
597		sz = 8;
598	else
599		sz = 4;
600
601	/* Make sure we have a descriptor with space left for the record */
602	if (descriptor) {
603		if (offset + sz > journal->j_blocksize - csum_size) {
604			flush_descriptor(journal, descriptor, offset);
605			descriptor = NULL;
606		}
607	}
608
609	if (!descriptor) {
610		descriptor = jbd2_journal_get_descriptor_buffer(transaction,
611							JBD2_REVOKE_BLOCK);
612		if (!descriptor)
613			return;
 
 
 
 
614
615		/* Record it so that we can wait for IO completion later */
616		BUFFER_TRACE(descriptor, "file in log_bufs");
617		jbd2_file_log_bh(log_bufs, descriptor);
618
619		offset = sizeof(jbd2_journal_revoke_header_t);
620		*descriptorp = descriptor;
621	}
622
623	if (jbd2_has_feature_64bit(journal))
624		* ((__be64 *)(&descriptor->b_data[offset])) =
625			cpu_to_be64(record->blocknr);
626	else
 
 
627		* ((__be32 *)(&descriptor->b_data[offset])) =
628			cpu_to_be32(record->blocknr);
629	offset += sz;
 
630
631	*offsetp = offset;
632}
633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
634/*
635 * Flush a revoke descriptor out to the journal.  If we are aborting,
636 * this is a noop; otherwise we are generating a buffer which needs to
637 * be waited for during commit, so it has to go onto the appropriate
638 * journal buffer list.
639 */
640
641static void flush_descriptor(journal_t *journal,
642			     struct buffer_head *descriptor,
643			     int offset)
644{
645	jbd2_journal_revoke_header_t *header;
646
647	if (is_journal_aborted(journal))
 
648		return;
 
649
650	header = (jbd2_journal_revoke_header_t *)descriptor->b_data;
651	header->r_count = cpu_to_be32(offset);
652	jbd2_descriptor_block_csum_set(journal, descriptor);
653
654	set_buffer_jwrite(descriptor);
655	BUFFER_TRACE(descriptor, "write");
656	set_buffer_dirty(descriptor);
657	write_dirty_buffer(descriptor, JBD2_JOURNAL_REQ_FLAGS);
658}
659#endif
660
661/*
662 * Revoke support for recovery.
663 *
664 * Recovery needs to be able to:
665 *
666 *  record all revoke records, including the tid of the latest instance
667 *  of each revoke in the journal
668 *
669 *  check whether a given block in a given transaction should be replayed
670 *  (ie. has not been revoked by a revoke record in that or a subsequent
671 *  transaction)
672 *
673 *  empty the revoke table after recovery.
674 */
675
676/*
677 * First, setting revoke records.  We create a new revoke record for
678 * every block ever revoked in the log as we scan it for recovery, and
679 * we update the existing records if we find multiple revokes for a
680 * single block.
681 */
682
683int jbd2_journal_set_revoke(journal_t *journal,
684		       unsigned long long blocknr,
685		       tid_t sequence)
686{
687	struct jbd2_revoke_record_s *record;
688
689	record = find_revoke_record(journal, blocknr);
690	if (record) {
691		/* If we have multiple occurrences, only record the
692		 * latest sequence number in the hashed record */
693		if (tid_gt(sequence, record->sequence))
694			record->sequence = sequence;
695		return 0;
696	}
697	return insert_revoke_hash(journal, blocknr, sequence);
698}
699
700/*
701 * Test revoke records.  For a given block referenced in the log, has
702 * that block been revoked?  A revoke record with a given transaction
703 * sequence number revokes all blocks in that transaction and earlier
704 * ones, but later transactions still need replayed.
705 */
706
707int jbd2_journal_test_revoke(journal_t *journal,
708			unsigned long long blocknr,
709			tid_t sequence)
710{
711	struct jbd2_revoke_record_s *record;
712
713	record = find_revoke_record(journal, blocknr);
714	if (!record)
715		return 0;
716	if (tid_gt(sequence, record->sequence))
717		return 0;
718	return 1;
719}
720
721/*
722 * Finally, once recovery is over, we need to clear the revoke table so
723 * that it can be reused by the running filesystem.
724 */
725
726void jbd2_journal_clear_revoke(journal_t *journal)
727{
728	int i;
729	struct list_head *hash_list;
730	struct jbd2_revoke_record_s *record;
731	struct jbd2_revoke_table_s *revoke;
732
733	revoke = journal->j_revoke;
734
735	for (i = 0; i < revoke->hash_size; i++) {
736		hash_list = &revoke->hash_table[i];
737		while (!list_empty(hash_list)) {
738			record = (struct jbd2_revoke_record_s*) hash_list->next;
739			list_del(&record->hash);
740			kmem_cache_free(jbd2_revoke_record_cache, record);
741		}
742	}
743}