Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 * Copyright (C) 2011 Fujitsu.  All rights reserved.
   3 * Written by Miao Xie <miaox@cn.fujitsu.com>
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public
   7 * License v2 as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  12 * General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public
  15 * License along with this program; if not, write to the
  16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17 * Boston, MA 021110-1307, USA.
  18 */
  19
  20#include <linux/slab.h>
 
 
 
 
 
  21#include "delayed-inode.h"
  22#include "disk-io.h"
  23#include "transaction.h"
  24#include "ctree.h"
 
 
 
 
 
  25
  26#define BTRFS_DELAYED_WRITEBACK		512
  27#define BTRFS_DELAYED_BACKGROUND	128
  28#define BTRFS_DELAYED_BATCH		16
  29
  30static struct kmem_cache *delayed_node_cache;
  31
  32int __init btrfs_delayed_inode_init(void)
  33{
  34	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
  35					sizeof(struct btrfs_delayed_node),
  36					0,
  37					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  38					NULL);
  39	if (!delayed_node_cache)
  40		return -ENOMEM;
  41	return 0;
  42}
  43
  44void btrfs_delayed_inode_exit(void)
 
 
 
 
 
  45{
  46	if (delayed_node_cache)
  47		kmem_cache_destroy(delayed_node_cache);
 
 
 
 
 
  48}
  49
  50static inline void btrfs_init_delayed_node(
  51				struct btrfs_delayed_node *delayed_node,
  52				struct btrfs_root *root, u64 inode_id)
  53{
  54	delayed_node->root = root;
  55	delayed_node->inode_id = inode_id;
  56	atomic_set(&delayed_node->refs, 0);
  57	delayed_node->count = 0;
  58	delayed_node->flags = 0;
  59	delayed_node->ins_root = RB_ROOT;
  60	delayed_node->del_root = RB_ROOT;
  61	mutex_init(&delayed_node->mutex);
  62	delayed_node->index_cnt = 0;
  63	INIT_LIST_HEAD(&delayed_node->n_list);
  64	INIT_LIST_HEAD(&delayed_node->p_list);
  65	delayed_node->bytes_reserved = 0;
  66	memset(&delayed_node->inode_item, 0, sizeof(delayed_node->inode_item));
  67}
  68
  69static inline int btrfs_is_continuous_delayed_item(
  70					struct btrfs_delayed_item *item1,
  71					struct btrfs_delayed_item *item2)
  72{
  73	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  74	    item1->key.objectid == item2->key.objectid &&
  75	    item1->key.type == item2->key.type &&
  76	    item1->key.offset + 1 == item2->key.offset)
  77		return 1;
  78	return 0;
  79}
  80
  81static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
  82							struct btrfs_root *root)
  83{
  84	return root->fs_info->delayed_root;
  85}
  86
  87static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
 
  88{
  89	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  90	struct btrfs_root *root = btrfs_inode->root;
  91	u64 ino = btrfs_ino(inode);
  92	struct btrfs_delayed_node *node;
  93
  94	node = ACCESS_ONCE(btrfs_inode->delayed_node);
  95	if (node) {
  96		atomic_inc(&node->refs);
  97		return node;
  98	}
  99
 100	spin_lock(&root->inode_lock);
 101	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
 
 102	if (node) {
 103		if (btrfs_inode->delayed_node) {
 104			atomic_inc(&node->refs);	/* can be accessed */
 105			BUG_ON(btrfs_inode->delayed_node != node);
 106			spin_unlock(&root->inode_lock);
 107			return node;
 108		}
 109		btrfs_inode->delayed_node = node;
 110		/* can be accessed and cached in the inode */
 111		atomic_add(2, &node->refs);
 112		spin_unlock(&root->inode_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 113		return node;
 114	}
 115	spin_unlock(&root->inode_lock);
 116
 117	return NULL;
 118}
 119
 120/* Will return either the node or PTR_ERR(-ENOMEM) */
 121static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
 122							struct inode *inode)
 123{
 124	struct btrfs_delayed_node *node;
 125	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
 126	struct btrfs_root *root = btrfs_inode->root;
 127	u64 ino = btrfs_ino(inode);
 128	int ret;
 
 129
 130again:
 131	node = btrfs_get_delayed_node(inode);
 132	if (node)
 133		return node;
 134
 135	node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
 136	if (!node)
 137		return ERR_PTR(-ENOMEM);
 138	btrfs_init_delayed_node(node, root, ino);
 139
 140	/* cached in the btrfs inode and can be accessed */
 141	atomic_add(2, &node->refs);
 142
 143	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
 144	if (ret) {
 
 145		kmem_cache_free(delayed_node_cache, node);
 146		return ERR_PTR(ret);
 147	}
 148
 149	spin_lock(&root->inode_lock);
 150	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
 151	if (ret == -EEXIST) {
 
 152		kmem_cache_free(delayed_node_cache, node);
 153		spin_unlock(&root->inode_lock);
 154		radix_tree_preload_end();
 155		goto again;
 156	}
 
 
 
 
 157	btrfs_inode->delayed_node = node;
 158	spin_unlock(&root->inode_lock);
 159	radix_tree_preload_end();
 160
 161	return node;
 162}
 163
 164/*
 165 * Call it when holding delayed_node->mutex
 166 *
 167 * If mod = 1, add this node into the prepared list.
 168 */
 169static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
 170				     struct btrfs_delayed_node *node,
 171				     int mod)
 172{
 173	spin_lock(&root->lock);
 174	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 175		if (!list_empty(&node->p_list))
 176			list_move_tail(&node->p_list, &root->prepare_list);
 177		else if (mod)
 178			list_add_tail(&node->p_list, &root->prepare_list);
 179	} else {
 180		list_add_tail(&node->n_list, &root->node_list);
 181		list_add_tail(&node->p_list, &root->prepare_list);
 182		atomic_inc(&node->refs);	/* inserted into list */
 183		root->nodes++;
 184		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
 185	}
 186	spin_unlock(&root->lock);
 187}
 188
 189/* Call it when holding delayed_node->mutex */
 190static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
 191				       struct btrfs_delayed_node *node)
 192{
 193	spin_lock(&root->lock);
 194	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 195		root->nodes--;
 196		atomic_dec(&node->refs);	/* not in the list */
 197		list_del_init(&node->n_list);
 198		if (!list_empty(&node->p_list))
 199			list_del_init(&node->p_list);
 200		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
 201	}
 202	spin_unlock(&root->lock);
 203}
 204
 205static struct btrfs_delayed_node *btrfs_first_delayed_node(
 206			struct btrfs_delayed_root *delayed_root)
 207{
 208	struct list_head *p;
 209	struct btrfs_delayed_node *node = NULL;
 210
 211	spin_lock(&delayed_root->lock);
 212	if (list_empty(&delayed_root->node_list))
 213		goto out;
 214
 215	p = delayed_root->node_list.next;
 216	node = list_entry(p, struct btrfs_delayed_node, n_list);
 217	atomic_inc(&node->refs);
 218out:
 219	spin_unlock(&delayed_root->lock);
 220
 221	return node;
 222}
 223
 224static struct btrfs_delayed_node *btrfs_next_delayed_node(
 225						struct btrfs_delayed_node *node)
 226{
 227	struct btrfs_delayed_root *delayed_root;
 228	struct list_head *p;
 229	struct btrfs_delayed_node *next = NULL;
 230
 231	delayed_root = node->root->fs_info->delayed_root;
 232	spin_lock(&delayed_root->lock);
 233	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 234		/* not in the list */
 235		if (list_empty(&delayed_root->node_list))
 236			goto out;
 237		p = delayed_root->node_list.next;
 238	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
 239		goto out;
 240	else
 241		p = node->n_list.next;
 242
 243	next = list_entry(p, struct btrfs_delayed_node, n_list);
 244	atomic_inc(&next->refs);
 245out:
 246	spin_unlock(&delayed_root->lock);
 247
 248	return next;
 249}
 250
 251static void __btrfs_release_delayed_node(
 252				struct btrfs_delayed_node *delayed_node,
 253				int mod)
 254{
 255	struct btrfs_delayed_root *delayed_root;
 256
 257	if (!delayed_node)
 258		return;
 259
 260	delayed_root = delayed_node->root->fs_info->delayed_root;
 261
 262	mutex_lock(&delayed_node->mutex);
 263	if (delayed_node->count)
 264		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
 265	else
 266		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
 267	mutex_unlock(&delayed_node->mutex);
 268
 269	if (atomic_dec_and_test(&delayed_node->refs)) {
 270		struct btrfs_root *root = delayed_node->root;
 271		spin_lock(&root->inode_lock);
 272		if (atomic_read(&delayed_node->refs) == 0) {
 273			radix_tree_delete(&root->delayed_nodes_tree,
 274					  delayed_node->inode_id);
 275			kmem_cache_free(delayed_node_cache, delayed_node);
 276		}
 277		spin_unlock(&root->inode_lock);
 
 278	}
 279}
 280
 281static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
 282{
 283	__btrfs_release_delayed_node(node, 0);
 284}
 285
 286static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
 287					struct btrfs_delayed_root *delayed_root)
 288{
 289	struct list_head *p;
 290	struct btrfs_delayed_node *node = NULL;
 291
 292	spin_lock(&delayed_root->lock);
 293	if (list_empty(&delayed_root->prepare_list))
 294		goto out;
 295
 296	p = delayed_root->prepare_list.next;
 297	list_del_init(p);
 298	node = list_entry(p, struct btrfs_delayed_node, p_list);
 299	atomic_inc(&node->refs);
 300out:
 301	spin_unlock(&delayed_root->lock);
 302
 303	return node;
 304}
 305
 306static inline void btrfs_release_prepared_delayed_node(
 307					struct btrfs_delayed_node *node)
 308{
 309	__btrfs_release_delayed_node(node, 1);
 310}
 311
 312static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
 
 
 313{
 314	struct btrfs_delayed_item *item;
 315	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
 
 316	if (item) {
 317		item->data_len = data_len;
 318		item->ins_or_del = 0;
 319		item->bytes_reserved = 0;
 320		item->delayed_node = NULL;
 321		atomic_set(&item->refs, 1);
 
 
 
 322	}
 323	return item;
 324}
 325
 326/*
 327 * __btrfs_lookup_delayed_item - look up the delayed item by key
 
 328 * @delayed_node: pointer to the delayed node
 329 * @key:	  the key to look up
 330 * @prev:	  used to store the prev item if the right item isn't found
 331 * @next:	  used to store the next item if the right item isn't found
 332 *
 333 * Note: if we don't find the right item, we will return the prev item and
 334 * the next item.
 335 */
 336static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
 337				struct rb_root *root,
 338				struct btrfs_key *key,
 339				struct btrfs_delayed_item **prev,
 340				struct btrfs_delayed_item **next)
 341{
 342	struct rb_node *node, *prev_node = NULL;
 343	struct btrfs_delayed_item *delayed_item = NULL;
 344	int ret = 0;
 345
 346	node = root->rb_node;
 347
 348	while (node) {
 349		delayed_item = rb_entry(node, struct btrfs_delayed_item,
 350					rb_node);
 351		prev_node = node;
 352		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
 353		if (ret < 0)
 354			node = node->rb_right;
 355		else if (ret > 0)
 356			node = node->rb_left;
 357		else
 358			return delayed_item;
 359	}
 360
 361	if (prev) {
 362		if (!prev_node)
 363			*prev = NULL;
 364		else if (ret < 0)
 365			*prev = delayed_item;
 366		else if ((node = rb_prev(prev_node)) != NULL) {
 367			*prev = rb_entry(node, struct btrfs_delayed_item,
 368					 rb_node);
 369		} else
 370			*prev = NULL;
 371	}
 372
 373	if (next) {
 374		if (!prev_node)
 375			*next = NULL;
 376		else if (ret > 0)
 377			*next = delayed_item;
 378		else if ((node = rb_next(prev_node)) != NULL) {
 379			*next = rb_entry(node, struct btrfs_delayed_item,
 380					 rb_node);
 381		} else
 382			*next = NULL;
 383	}
 384	return NULL;
 385}
 386
 387static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
 388					struct btrfs_delayed_node *delayed_node,
 389					struct btrfs_key *key)
 390{
 391	struct btrfs_delayed_item *item;
 392
 393	item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
 394					   NULL, NULL);
 395	return item;
 396}
 397
 398static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
 399				    struct btrfs_delayed_item *ins,
 400				    int action)
 401{
 402	struct rb_node **p, *node;
 403	struct rb_node *parent_node = NULL;
 404	struct rb_root *root;
 405	struct btrfs_delayed_item *item;
 406	int cmp;
 407
 408	if (action == BTRFS_DELAYED_INSERTION_ITEM)
 409		root = &delayed_node->ins_root;
 410	else if (action == BTRFS_DELAYED_DELETION_ITEM)
 411		root = &delayed_node->del_root;
 412	else
 413		BUG();
 414	p = &root->rb_node;
 
 415	node = &ins->rb_node;
 416
 417	while (*p) {
 418		parent_node = *p;
 419		item = rb_entry(parent_node, struct btrfs_delayed_item,
 420				 rb_node);
 421
 422		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
 423		if (cmp < 0)
 424			p = &(*p)->rb_right;
 425		else if (cmp > 0)
 
 426			p = &(*p)->rb_left;
 427		else
 428			return -EEXIST;
 
 429	}
 430
 431	rb_link_node(node, parent_node, p);
 432	rb_insert_color(node, root);
 433	ins->delayed_node = delayed_node;
 434	ins->ins_or_del = action;
 435
 436	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
 437	    action == BTRFS_DELAYED_INSERTION_ITEM &&
 438	    ins->key.offset >= delayed_node->index_cnt)
 439			delayed_node->index_cnt = ins->key.offset + 1;
 440
 441	delayed_node->count++;
 442	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
 443	return 0;
 444}
 445
 446static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
 447					      struct btrfs_delayed_item *item)
 448{
 449	return __btrfs_add_delayed_item(node, item,
 450					BTRFS_DELAYED_INSERTION_ITEM);
 451}
 452
 453static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
 454					     struct btrfs_delayed_item *item)
 455{
 456	return __btrfs_add_delayed_item(node, item,
 457					BTRFS_DELAYED_DELETION_ITEM);
 458}
 459
 460static void finish_one_item(struct btrfs_delayed_root *delayed_root)
 461{
 462	int seq = atomic_inc_return(&delayed_root->items_seq);
 
 
 463	if ((atomic_dec_return(&delayed_root->items) <
 464	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
 465	    waitqueue_active(&delayed_root->wait))
 466		wake_up(&delayed_root->wait);
 467}
 468
 469static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
 470{
 471	struct rb_root *root;
 
 472	struct btrfs_delayed_root *delayed_root;
 473
 474	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
 
 
 
 
 
 475
 476	BUG_ON(!delayed_root);
 477	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
 478	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
 479
 480	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
 481		root = &delayed_item->delayed_node->ins_root;
 482	else
 483		root = &delayed_item->delayed_node->del_root;
 484
 485	rb_erase(&delayed_item->rb_node, root);
 486	delayed_item->delayed_node->count--;
 
 487
 488	finish_one_item(delayed_root);
 489}
 490
 491static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
 492{
 493	if (item) {
 494		__btrfs_remove_delayed_item(item);
 495		if (atomic_dec_and_test(&item->refs))
 496			kfree(item);
 497	}
 498}
 499
 500static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
 501					struct btrfs_delayed_node *delayed_node)
 502{
 503	struct rb_node *p;
 504	struct btrfs_delayed_item *item = NULL;
 505
 506	p = rb_first(&delayed_node->ins_root);
 507	if (p)
 508		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 509
 510	return item;
 511}
 512
 513static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
 514					struct btrfs_delayed_node *delayed_node)
 515{
 516	struct rb_node *p;
 517	struct btrfs_delayed_item *item = NULL;
 518
 519	p = rb_first(&delayed_node->del_root);
 520	if (p)
 521		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 522
 523	return item;
 524}
 525
 526static struct btrfs_delayed_item *__btrfs_next_delayed_item(
 527						struct btrfs_delayed_item *item)
 528{
 529	struct rb_node *p;
 530	struct btrfs_delayed_item *next = NULL;
 531
 532	p = rb_next(&item->rb_node);
 533	if (p)
 534		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
 535
 536	return next;
 537}
 538
 539static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
 540					       struct btrfs_root *root,
 541					       struct btrfs_delayed_item *item)
 542{
 543	struct btrfs_block_rsv *src_rsv;
 544	struct btrfs_block_rsv *dst_rsv;
 
 545	u64 num_bytes;
 546	int ret;
 547
 548	if (!trans->bytes_reserved)
 549		return 0;
 550
 551	src_rsv = trans->block_rsv;
 552	dst_rsv = &root->fs_info->delayed_block_rsv;
 
 
 553
 554	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
 555	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
 
 
 
 
 556	if (!ret) {
 557		trace_btrfs_space_reservation(root->fs_info, "delayed_item",
 558					      item->key.objectid,
 559					      num_bytes, 1);
 560		item->bytes_reserved = num_bytes;
 
 
 
 
 
 
 561	}
 562
 563	return ret;
 564}
 565
 566static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
 567						struct btrfs_delayed_item *item)
 568{
 569	struct btrfs_block_rsv *rsv;
 
 570
 571	if (!item->bytes_reserved)
 572		return;
 573
 574	rsv = &root->fs_info->delayed_block_rsv;
 575	trace_btrfs_space_reservation(root->fs_info, "delayed_item",
 576				      item->key.objectid, item->bytes_reserved,
 577				      0);
 578	btrfs_block_rsv_release(root, rsv,
 579				item->bytes_reserved);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 580}
 581
 582static int btrfs_delayed_inode_reserve_metadata(
 583					struct btrfs_trans_handle *trans,
 584					struct btrfs_root *root,
 585					struct inode *inode,
 586					struct btrfs_delayed_node *node)
 587{
 
 588	struct btrfs_block_rsv *src_rsv;
 589	struct btrfs_block_rsv *dst_rsv;
 590	u64 num_bytes;
 591	int ret;
 592	bool release = false;
 593
 594	src_rsv = trans->block_rsv;
 595	dst_rsv = &root->fs_info->delayed_block_rsv;
 596
 597	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
 598
 599	/*
 600	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
 601	 * which doesn't reserve space for speed.  This is a problem since we
 602	 * still need to reserve space for this update, so try to reserve the
 603	 * space.
 604	 *
 605	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
 606	 * we're accounted for.
 607	 */
 608	if (!src_rsv || (!trans->bytes_reserved &&
 609			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
 610		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
 611					  BTRFS_RESERVE_NO_FLUSH);
 612		/*
 613		 * Since we're under a transaction reserve_metadata_bytes could
 614		 * try to commit the transaction which will make it return
 615		 * EAGAIN to make us stop the transaction we have, so return
 616		 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
 617		 */
 618		if (ret == -EAGAIN)
 619			ret = -ENOSPC;
 620		if (!ret) {
 621			node->bytes_reserved = num_bytes;
 622			trace_btrfs_space_reservation(root->fs_info,
 623						      "delayed_inode",
 624						      btrfs_ino(inode),
 625						      num_bytes, 1);
 626		}
 627		return ret;
 628	} else if (src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
 629		spin_lock(&BTRFS_I(inode)->lock);
 630		if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
 631				       &BTRFS_I(inode)->runtime_flags)) {
 632			spin_unlock(&BTRFS_I(inode)->lock);
 633			release = true;
 634			goto migrate;
 635		}
 636		spin_unlock(&BTRFS_I(inode)->lock);
 637
 638		/* Ok we didn't have space pre-reserved.  This shouldn't happen
 639		 * too often but it can happen if we do delalloc to an existing
 640		 * inode which gets dirtied because of the time update, and then
 641		 * isn't touched again until after the transaction commits and
 642		 * then we try to write out the data.  First try to be nice and
 643		 * reserve something strictly for us.  If not be a pain and try
 644		 * to steal from the delalloc block rsv.
 645		 */
 646		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
 647					  BTRFS_RESERVE_NO_FLUSH);
 648		if (!ret)
 649			goto out;
 650
 651		ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
 652		if (!WARN_ON(ret))
 653			goto out;
 654
 655		/*
 656		 * Ok this is a problem, let's just steal from the global rsv
 657		 * since this really shouldn't happen that often.
 658		 */
 659		ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
 660					      dst_rsv, num_bytes);
 661		goto out;
 662	}
 663
 664migrate:
 665	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
 666
 667out:
 668	/*
 669	 * Migrate only takes a reservation, it doesn't touch the size of the
 670	 * block_rsv.  This is to simplify people who don't normally have things
 671	 * migrated from their block rsv.  If they go to release their
 672	 * reservation, that will decrease the size as well, so if migrate
 673	 * reduced size we'd end up with a negative size.  But for the
 674	 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
 675	 * but we could in fact do this reserve/migrate dance several times
 676	 * between the time we did the original reservation and we'd clean it
 677	 * up.  So to take care of this, release the space for the meta
 678	 * reservation here.  I think it may be time for a documentation page on
 679	 * how block rsvs. work.
 680	 */
 681	if (!ret) {
 682		trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
 683					      btrfs_ino(inode), num_bytes, 1);
 684		node->bytes_reserved = num_bytes;
 685	}
 686
 687	if (release) {
 688		trace_btrfs_space_reservation(root->fs_info, "delalloc",
 689					      btrfs_ino(inode), num_bytes, 0);
 690		btrfs_block_rsv_release(root, src_rsv, num_bytes);
 691	}
 692
 693	return ret;
 694}
 695
 696static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
 697						struct btrfs_delayed_node *node)
 
 698{
 699	struct btrfs_block_rsv *rsv;
 700
 701	if (!node->bytes_reserved)
 702		return;
 703
 704	rsv = &root->fs_info->delayed_block_rsv;
 705	trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
 706				      node->inode_id, node->bytes_reserved, 0);
 707	btrfs_block_rsv_release(root, rsv,
 
 
 
 
 
 708				node->bytes_reserved);
 709	node->bytes_reserved = 0;
 710}
 711
 712/*
 713 * This helper will insert some continuous items into the same leaf according
 714 * to the free space of the leaf.
 
 
 
 
 
 
 715 */
 716static int btrfs_batch_insert_items(struct btrfs_root *root,
 717				    struct btrfs_path *path,
 718				    struct btrfs_delayed_item *item)
 
 719{
 720	struct btrfs_delayed_item *curr, *next;
 721	int free_space;
 722	int total_data_size = 0, total_size = 0;
 723	struct extent_buffer *leaf;
 724	char *data_ptr;
 725	struct btrfs_key *keys;
 726	u32 *data_size;
 727	struct list_head head;
 728	int slot;
 729	int nitems;
 730	int i;
 731	int ret = 0;
 732
 733	BUG_ON(!path->nodes[0]);
 734
 735	leaf = path->nodes[0];
 736	free_space = btrfs_leaf_free_space(root, leaf);
 737	INIT_LIST_HEAD(&head);
 738
 739	next = item;
 740	nitems = 0;
 
 
 
 
 
 
 
 
 
 741
 742	/*
 743	 * count the number of the continuous items that we can insert in batch
 
 
 
 744	 */
 745	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
 746	       free_space) {
 747		total_data_size += next->data_len;
 748		total_size += next->data_len + sizeof(struct btrfs_item);
 749		list_add_tail(&next->tree_list, &head);
 750		nitems++;
 
 
 
 
 751
 752		curr = next;
 753		next = __btrfs_next_delayed_item(curr);
 754		if (!next)
 755			break;
 756
 757		if (!btrfs_is_continuous_delayed_item(curr, next))
 
 
 
 
 758			break;
 759	}
 760
 761	if (!nitems) {
 762		ret = 0;
 763		goto out;
 764	}
 765
 766	/*
 767	 * we need allocate some memory space, but it might cause the task
 768	 * to sleep, so we set all locked nodes in the path to blocking locks
 769	 * first.
 770	 */
 771	btrfs_set_path_blocking(path);
 772
 773	keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
 774	if (!keys) {
 775		ret = -ENOMEM;
 776		goto out;
 
 777	}
 778
 779	data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
 780	if (!data_size) {
 781		ret = -ENOMEM;
 782		goto error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 783	}
 784
 785	/* get keys of all the delayed items */
 786	i = 0;
 787	list_for_each_entry(next, &head, tree_list) {
 788		keys[i] = next->key;
 789		data_size[i] = next->data_len;
 790		i++;
 791	}
 792
 793	/* reset all the locked nodes in the patch to spinning locks. */
 794	btrfs_clear_path_blocking(path, NULL, 0);
 
 
 
 795
 796	/* insert the keys of the items */
 797	setup_items_for_insert(root, path, keys, data_size,
 798			       total_data_size, total_size, nitems);
 
 
 
 799
 800	/* insert the dir index items */
 801	slot = path->slots[0];
 802	list_for_each_entry_safe(curr, next, &head, tree_list) {
 803		data_ptr = btrfs_item_ptr(leaf, slot, char);
 804		write_extent_buffer(leaf, &curr->data,
 805				    (unsigned long)data_ptr,
 806				    curr->data_len);
 807		slot++;
 808
 809		btrfs_delayed_item_release_metadata(root, curr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 810
 
 811		list_del(&curr->tree_list);
 812		btrfs_release_delayed_item(curr);
 813	}
 814
 815error:
 816	kfree(data_size);
 817	kfree(keys);
 818out:
 
 819	return ret;
 820}
 821
 822/*
 823 * This helper can just do simple insertion that needn't extend item for new
 824 * data, such as directory name index insertion, inode insertion.
 825 */
 826static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
 827				     struct btrfs_root *root,
 828				     struct btrfs_path *path,
 829				     struct btrfs_delayed_item *delayed_item)
 830{
 831	struct extent_buffer *leaf;
 832	char *ptr;
 833	int ret;
 834
 835	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
 836				      delayed_item->data_len);
 837	if (ret < 0 && ret != -EEXIST)
 838		return ret;
 839
 840	leaf = path->nodes[0];
 841
 842	ptr = btrfs_item_ptr(leaf, path->slots[0], char);
 843
 844	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
 845			    delayed_item->data_len);
 846	btrfs_mark_buffer_dirty(leaf);
 847
 848	btrfs_delayed_item_release_metadata(root, delayed_item);
 849	return 0;
 850}
 851
 852/*
 853 * we insert an item first, then if there are some continuous items, we try
 854 * to insert those items into the same leaf.
 855 */
 856static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
 857				      struct btrfs_path *path,
 858				      struct btrfs_root *root,
 859				      struct btrfs_delayed_node *node)
 860{
 861	struct btrfs_delayed_item *curr, *prev;
 862	int ret = 0;
 863
 864do_again:
 865	mutex_lock(&node->mutex);
 866	curr = __btrfs_first_delayed_insertion_item(node);
 867	if (!curr)
 868		goto insert_end;
 869
 870	ret = btrfs_insert_delayed_item(trans, root, path, curr);
 871	if (ret < 0) {
 872		btrfs_release_path(path);
 873		goto insert_end;
 874	}
 875
 876	prev = curr;
 877	curr = __btrfs_next_delayed_item(prev);
 878	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
 879		/* insert the continuous items into the same leaf */
 880		path->slots[0]++;
 881		btrfs_batch_insert_items(root, path, curr);
 882	}
 883	btrfs_release_delayed_item(prev);
 884	btrfs_mark_buffer_dirty(path->nodes[0]);
 885
 886	btrfs_release_path(path);
 887	mutex_unlock(&node->mutex);
 888	goto do_again;
 889
 890insert_end:
 891	mutex_unlock(&node->mutex);
 892	return ret;
 893}
 894
 895static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
 896				    struct btrfs_root *root,
 897				    struct btrfs_path *path,
 898				    struct btrfs_delayed_item *item)
 899{
 
 
 900	struct btrfs_delayed_item *curr, *next;
 901	struct extent_buffer *leaf;
 902	struct btrfs_key key;
 903	struct list_head head;
 904	int nitems, i, last_item;
 905	int ret = 0;
 906
 907	BUG_ON(!path->nodes[0]);
 908
 909	leaf = path->nodes[0];
 
 
 
 
 
 
 
 
 
 
 
 
 910
 911	i = path->slots[0];
 912	last_item = btrfs_header_nritems(leaf) - 1;
 913	if (i > last_item)
 914		return -ENOENT;	/* FIXME: Is errno suitable? */
 915
 916	next = item;
 917	INIT_LIST_HEAD(&head);
 918	btrfs_item_key_to_cpu(leaf, &key, i);
 919	nitems = 0;
 920	/*
 921	 * count the number of the dir index items that we can delete in batch
 
 
 922	 */
 923	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
 924		list_add_tail(&next->tree_list, &head);
 925		nitems++;
 926
 927		curr = next;
 928		next = __btrfs_next_delayed_item(curr);
 929		if (!next)
 930			break;
 931
 932		if (!btrfs_is_continuous_delayed_item(curr, next))
 933			break;
 934
 935		i++;
 936		if (i > last_item)
 937			break;
 938		btrfs_item_key_to_cpu(leaf, &key, i);
 
 
 
 939	}
 940
 941	if (!nitems)
 942		return 0;
 943
 944	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
 945	if (ret)
 946		goto out;
 947
 948	list_for_each_entry_safe(curr, next, &head, tree_list) {
 949		btrfs_delayed_item_release_metadata(root, curr);
 
 
 
 
 
 
 
 
 
 
 
 950		list_del(&curr->tree_list);
 951		btrfs_release_delayed_item(curr);
 952	}
 953
 954out:
 955	return ret;
 956}
 957
 958static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
 959				      struct btrfs_path *path,
 960				      struct btrfs_root *root,
 961				      struct btrfs_delayed_node *node)
 962{
 963	struct btrfs_delayed_item *curr, *prev;
 964	int ret = 0;
 965
 966do_again:
 967	mutex_lock(&node->mutex);
 968	curr = __btrfs_first_delayed_deletion_item(node);
 969	if (!curr)
 970		goto delete_fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 971
 972	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
 973	if (ret < 0)
 974		goto delete_fail;
 975	else if (ret > 0) {
 976		/*
 977		 * can't find the item which the node points to, so this node
 978		 * is invalid, just drop it.
 
 
 
 979		 */
 980		prev = curr;
 981		curr = __btrfs_next_delayed_item(prev);
 982		btrfs_release_delayed_item(prev);
 983		ret = 0;
 984		btrfs_release_path(path);
 985		if (curr) {
 986			mutex_unlock(&node->mutex);
 987			goto do_again;
 988		} else
 989			goto delete_fail;
 990	}
 991
 992	btrfs_batch_delete_items(trans, root, path, curr);
 993	btrfs_release_path(path);
 994	mutex_unlock(&node->mutex);
 995	goto do_again;
 996
 997delete_fail:
 998	btrfs_release_path(path);
 999	mutex_unlock(&node->mutex);
1000	return ret;
1001}
1002
1003static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
1004{
1005	struct btrfs_delayed_root *delayed_root;
1006
1007	if (delayed_node &&
1008	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1009		BUG_ON(!delayed_node->root);
1010		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1011		delayed_node->count--;
1012
1013		delayed_root = delayed_node->root->fs_info->delayed_root;
1014		finish_one_item(delayed_root);
1015	}
1016}
1017
1018static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
1019{
1020	struct btrfs_delayed_root *delayed_root;
1021
1022	ASSERT(delayed_node->root);
1023	clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1024	delayed_node->count--;
1025
1026	delayed_root = delayed_node->root->fs_info->delayed_root;
1027	finish_one_item(delayed_root);
 
 
 
 
1028}
1029
1030static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1031					struct btrfs_root *root,
1032					struct btrfs_path *path,
1033					struct btrfs_delayed_node *node)
1034{
 
1035	struct btrfs_key key;
1036	struct btrfs_inode_item *inode_item;
1037	struct extent_buffer *leaf;
1038	int mod;
1039	int ret;
1040
1041	key.objectid = node->inode_id;
1042	btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
1043	key.offset = 0;
1044
1045	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1046		mod = -1;
1047	else
1048		mod = 1;
1049
1050	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1051	if (ret > 0) {
1052		btrfs_release_path(path);
1053		return -ENOENT;
1054	} else if (ret < 0) {
1055		return ret;
1056	}
1057
1058	leaf = path->nodes[0];
1059	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1060				    struct btrfs_inode_item);
1061	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1062			    sizeof(struct btrfs_inode_item));
1063	btrfs_mark_buffer_dirty(leaf);
1064
1065	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1066		goto no_iref;
1067
1068	path->slots[0]++;
1069	if (path->slots[0] >= btrfs_header_nritems(leaf))
1070		goto search;
1071again:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1072	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1073	if (key.objectid != node->inode_id)
1074		goto out;
1075
1076	if (key.type != BTRFS_INODE_REF_KEY &&
1077	    key.type != BTRFS_INODE_EXTREF_KEY)
1078		goto out;
1079
1080	/*
1081	 * Delayed iref deletion is for the inode who has only one link,
1082	 * so there is only one iref. The case that several irefs are
1083	 * in the same item doesn't exist.
1084	 */
1085	btrfs_del_item(trans, root, path);
1086out:
1087	btrfs_release_delayed_iref(node);
1088no_iref:
1089	btrfs_release_path(path);
1090err_out:
1091	btrfs_delayed_inode_release_metadata(root, node);
1092	btrfs_release_delayed_inode(node);
1093
1094	return ret;
1095
1096search:
1097	btrfs_release_path(path);
1098
1099	btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
1100	key.offset = -1;
1101	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1102	if (ret < 0)
1103		goto err_out;
1104	ASSERT(ret);
1105
1106	ret = 0;
1107	leaf = path->nodes[0];
1108	path->slots[0]--;
1109	goto again;
1110}
1111
1112static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1113					     struct btrfs_root *root,
1114					     struct btrfs_path *path,
1115					     struct btrfs_delayed_node *node)
1116{
1117	int ret;
1118
1119	mutex_lock(&node->mutex);
1120	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1121		mutex_unlock(&node->mutex);
1122		return 0;
1123	}
1124
1125	ret = __btrfs_update_delayed_inode(trans, root, path, node);
1126	mutex_unlock(&node->mutex);
1127	return ret;
1128}
1129
1130static inline int
1131__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1132				   struct btrfs_path *path,
1133				   struct btrfs_delayed_node *node)
1134{
1135	int ret;
1136
1137	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1138	if (ret)
1139		return ret;
1140
1141	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1142	if (ret)
1143		return ret;
1144
 
 
 
1145	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1146	return ret;
1147}
1148
1149/*
1150 * Called when committing the transaction.
1151 * Returns 0 on success.
1152 * Returns < 0 on error and returns with an aborted transaction with any
1153 * outstanding delayed items cleaned up.
1154 */
1155static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1156				     struct btrfs_root *root, int nr)
1157{
 
1158	struct btrfs_delayed_root *delayed_root;
1159	struct btrfs_delayed_node *curr_node, *prev_node;
1160	struct btrfs_path *path;
1161	struct btrfs_block_rsv *block_rsv;
1162	int ret = 0;
1163	bool count = (nr > 0);
1164
1165	if (trans->aborted)
1166		return -EIO;
1167
1168	path = btrfs_alloc_path();
1169	if (!path)
1170		return -ENOMEM;
1171	path->leave_spinning = 1;
1172
1173	block_rsv = trans->block_rsv;
1174	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1175
1176	delayed_root = btrfs_get_delayed_root(root);
1177
1178	curr_node = btrfs_first_delayed_node(delayed_root);
1179	while (curr_node && (!count || (count && nr--))) {
1180		ret = __btrfs_commit_inode_delayed_items(trans, path,
1181							 curr_node);
1182		if (ret) {
1183			btrfs_release_delayed_node(curr_node);
1184			curr_node = NULL;
1185			btrfs_abort_transaction(trans, root, ret);
1186			break;
1187		}
1188
1189		prev_node = curr_node;
1190		curr_node = btrfs_next_delayed_node(curr_node);
 
 
 
 
 
 
 
1191		btrfs_release_delayed_node(prev_node);
1192	}
1193
 
 
 
 
 
 
 
 
 
1194	if (curr_node)
1195		btrfs_release_delayed_node(curr_node);
1196	btrfs_free_path(path);
1197	trans->block_rsv = block_rsv;
1198
1199	return ret;
1200}
1201
1202int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1203			    struct btrfs_root *root)
1204{
1205	return __btrfs_run_delayed_items(trans, root, -1);
1206}
1207
1208int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1209			       struct btrfs_root *root, int nr)
1210{
1211	return __btrfs_run_delayed_items(trans, root, nr);
1212}
1213
1214int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1215				     struct inode *inode)
1216{
1217	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1218	struct btrfs_path *path;
1219	struct btrfs_block_rsv *block_rsv;
1220	int ret;
1221
1222	if (!delayed_node)
1223		return 0;
1224
1225	mutex_lock(&delayed_node->mutex);
1226	if (!delayed_node->count) {
1227		mutex_unlock(&delayed_node->mutex);
1228		btrfs_release_delayed_node(delayed_node);
1229		return 0;
1230	}
1231	mutex_unlock(&delayed_node->mutex);
1232
1233	path = btrfs_alloc_path();
1234	if (!path) {
1235		btrfs_release_delayed_node(delayed_node);
1236		return -ENOMEM;
1237	}
1238	path->leave_spinning = 1;
1239
1240	block_rsv = trans->block_rsv;
1241	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1242
1243	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1244
1245	btrfs_release_delayed_node(delayed_node);
1246	btrfs_free_path(path);
1247	trans->block_rsv = block_rsv;
1248
1249	return ret;
1250}
1251
1252int btrfs_commit_inode_delayed_inode(struct inode *inode)
1253{
 
1254	struct btrfs_trans_handle *trans;
1255	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1256	struct btrfs_path *path;
1257	struct btrfs_block_rsv *block_rsv;
1258	int ret;
1259
1260	if (!delayed_node)
1261		return 0;
1262
1263	mutex_lock(&delayed_node->mutex);
1264	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1265		mutex_unlock(&delayed_node->mutex);
1266		btrfs_release_delayed_node(delayed_node);
1267		return 0;
1268	}
1269	mutex_unlock(&delayed_node->mutex);
1270
1271	trans = btrfs_join_transaction(delayed_node->root);
1272	if (IS_ERR(trans)) {
1273		ret = PTR_ERR(trans);
1274		goto out;
1275	}
1276
1277	path = btrfs_alloc_path();
1278	if (!path) {
1279		ret = -ENOMEM;
1280		goto trans_out;
1281	}
1282	path->leave_spinning = 1;
1283
1284	block_rsv = trans->block_rsv;
1285	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1286
1287	mutex_lock(&delayed_node->mutex);
1288	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1289		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1290						   path, delayed_node);
1291	else
1292		ret = 0;
1293	mutex_unlock(&delayed_node->mutex);
1294
1295	btrfs_free_path(path);
1296	trans->block_rsv = block_rsv;
1297trans_out:
1298	btrfs_end_transaction(trans, delayed_node->root);
1299	btrfs_btree_balance_dirty(delayed_node->root);
1300out:
1301	btrfs_release_delayed_node(delayed_node);
1302
1303	return ret;
1304}
1305
1306void btrfs_remove_delayed_node(struct inode *inode)
1307{
1308	struct btrfs_delayed_node *delayed_node;
1309
1310	delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1311	if (!delayed_node)
1312		return;
1313
1314	BTRFS_I(inode)->delayed_node = NULL;
1315	btrfs_release_delayed_node(delayed_node);
1316}
1317
1318struct btrfs_async_delayed_work {
1319	struct btrfs_delayed_root *delayed_root;
1320	int nr;
1321	struct btrfs_work work;
1322};
1323
1324static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1325{
1326	struct btrfs_async_delayed_work *async_work;
1327	struct btrfs_delayed_root *delayed_root;
1328	struct btrfs_trans_handle *trans;
1329	struct btrfs_path *path;
1330	struct btrfs_delayed_node *delayed_node = NULL;
1331	struct btrfs_root *root;
1332	struct btrfs_block_rsv *block_rsv;
1333	int total_done = 0;
1334
1335	async_work = container_of(work, struct btrfs_async_delayed_work, work);
1336	delayed_root = async_work->delayed_root;
1337
1338	path = btrfs_alloc_path();
1339	if (!path)
1340		goto out;
1341
1342again:
1343	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
1344		goto free_path;
 
1345
1346	delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1347	if (!delayed_node)
1348		goto free_path;
1349
1350	path->leave_spinning = 1;
1351	root = delayed_node->root;
1352
1353	trans = btrfs_join_transaction(root);
1354	if (IS_ERR(trans))
1355		goto release_path;
 
 
 
 
1356
1357	block_rsv = trans->block_rsv;
1358	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1359
1360	__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1361
1362	trans->block_rsv = block_rsv;
1363	btrfs_end_transaction(trans, root);
1364	btrfs_btree_balance_dirty_nodelay(root);
1365
1366release_path:
1367	btrfs_release_path(path);
1368	total_done++;
1369
1370	btrfs_release_prepared_delayed_node(delayed_node);
1371	if (async_work->nr == 0 || total_done < async_work->nr)
1372		goto again;
1373
1374free_path:
1375	btrfs_free_path(path);
1376out:
1377	wake_up(&delayed_root->wait);
1378	kfree(async_work);
1379}
1380
1381
1382static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1383				     struct btrfs_root *root, int nr)
1384{
1385	struct btrfs_async_delayed_work *async_work;
1386
1387	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1388		return 0;
1389
1390	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1391	if (!async_work)
1392		return -ENOMEM;
1393
1394	async_work->delayed_root = delayed_root;
1395	btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root,
1396			NULL, NULL);
1397	async_work->nr = nr;
1398
1399	btrfs_queue_work(root->fs_info->delayed_workers, &async_work->work);
1400	return 0;
1401}
1402
1403void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1404{
1405	struct btrfs_delayed_root *delayed_root;
1406	delayed_root = btrfs_get_delayed_root(root);
1407	WARN_ON(btrfs_first_delayed_node(delayed_root));
1408}
1409
1410static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1411{
1412	int val = atomic_read(&delayed_root->items_seq);
1413
1414	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1415		return 1;
1416
1417	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1418		return 1;
1419
1420	return 0;
1421}
1422
1423void btrfs_balance_delayed_items(struct btrfs_root *root)
1424{
1425	struct btrfs_delayed_root *delayed_root;
1426
1427	delayed_root = btrfs_get_delayed_root(root);
1428
1429	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1430		return;
1431
1432	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1433		int seq;
1434		int ret;
1435
1436		seq = atomic_read(&delayed_root->items_seq);
1437
1438		ret = btrfs_wq_run_delayed_node(delayed_root, root, 0);
1439		if (ret)
1440			return;
1441
1442		wait_event_interruptible(delayed_root->wait,
1443					 could_end_wait(delayed_root, seq));
1444		return;
1445	}
1446
1447	btrfs_wq_run_delayed_node(delayed_root, root, BTRFS_DELAYED_BATCH);
1448}
1449
1450/* Will return 0 or -ENOMEM */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1451int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1452				   struct btrfs_root *root, const char *name,
1453				   int name_len, struct inode *dir,
1454				   struct btrfs_disk_key *disk_key, u8 type,
1455				   u64 index)
1456{
 
 
1457	struct btrfs_delayed_node *delayed_node;
1458	struct btrfs_delayed_item *delayed_item;
1459	struct btrfs_dir_item *dir_item;
 
 
1460	int ret;
1461
1462	delayed_node = btrfs_get_or_create_delayed_node(dir);
1463	if (IS_ERR(delayed_node))
1464		return PTR_ERR(delayed_node);
1465
1466	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
 
 
1467	if (!delayed_item) {
1468		ret = -ENOMEM;
1469		goto release_node;
1470	}
1471
1472	delayed_item->key.objectid = btrfs_ino(dir);
1473	btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
1474	delayed_item->key.offset = index;
1475
1476	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1477	dir_item->location = *disk_key;
1478	btrfs_set_stack_dir_transid(dir_item, trans->transid);
1479	btrfs_set_stack_dir_data_len(dir_item, 0);
1480	btrfs_set_stack_dir_name_len(dir_item, name_len);
1481	btrfs_set_stack_dir_type(dir_item, type);
1482	memcpy((char *)(dir_item + 1), name, name_len);
1483
1484	ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
 
 
 
1485	/*
1486	 * we have reserved enough space when we start a new transaction,
1487	 * so reserving metadata failure is impossible
 
 
 
 
1488	 */
1489	BUG_ON(ret);
 
 
 
 
 
 
 
 
 
 
 
1490
 
 
 
 
 
 
 
 
1491
1492	mutex_lock(&delayed_node->mutex);
1493	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1494	if (unlikely(ret)) {
1495		btrfs_err(root->fs_info, "err add delayed dir index item(name: %.*s) "
1496				"into the insertion tree of the delayed node"
1497				"(root id: %llu, inode id: %llu, errno: %d)",
1498				name_len, name, delayed_node->root->objectid,
1499				delayed_node->inode_id, ret);
1500		BUG();
 
 
 
 
 
 
 
1501	}
1502	mutex_unlock(&delayed_node->mutex);
1503
1504release_node:
1505	btrfs_release_delayed_node(delayed_node);
1506	return ret;
1507}
1508
1509static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1510					       struct btrfs_delayed_node *node,
1511					       struct btrfs_key *key)
1512{
1513	struct btrfs_delayed_item *item;
1514
1515	mutex_lock(&node->mutex);
1516	item = __btrfs_lookup_delayed_insertion_item(node, key);
1517	if (!item) {
1518		mutex_unlock(&node->mutex);
1519		return 1;
1520	}
1521
1522	btrfs_delayed_item_release_metadata(root, item);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1523	btrfs_release_delayed_item(item);
 
 
 
 
 
 
 
1524	mutex_unlock(&node->mutex);
1525	return 0;
1526}
1527
1528int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1529				   struct btrfs_root *root, struct inode *dir,
1530				   u64 index)
1531{
1532	struct btrfs_delayed_node *node;
1533	struct btrfs_delayed_item *item;
1534	struct btrfs_key item_key;
1535	int ret;
1536
1537	node = btrfs_get_or_create_delayed_node(dir);
1538	if (IS_ERR(node))
1539		return PTR_ERR(node);
1540
1541	item_key.objectid = btrfs_ino(dir);
1542	btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
1543	item_key.offset = index;
1544
1545	ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1546	if (!ret)
1547		goto end;
1548
1549	item = btrfs_alloc_delayed_item(0);
1550	if (!item) {
1551		ret = -ENOMEM;
1552		goto end;
1553	}
1554
1555	item->key = item_key;
1556
1557	ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1558	/*
1559	 * we have reserved enough space when we start a new transaction,
1560	 * so reserving metadata failure is impossible.
1561	 */
1562	BUG_ON(ret);
 
 
 
 
 
1563
1564	mutex_lock(&node->mutex);
1565	ret = __btrfs_add_delayed_deletion_item(node, item);
1566	if (unlikely(ret)) {
1567		btrfs_err(root->fs_info, "err add delayed dir index item(index: %llu) "
1568				"into the deletion tree of the delayed node"
1569				"(root id: %llu, inode id: %llu, errno: %d)",
1570				index, node->root->objectid, node->inode_id,
1571				ret);
1572		BUG();
1573	}
1574	mutex_unlock(&node->mutex);
1575end:
1576	btrfs_release_delayed_node(node);
1577	return ret;
1578}
1579
1580int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1581{
1582	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1583
1584	if (!delayed_node)
1585		return -ENOENT;
1586
1587	/*
1588	 * Since we have held i_mutex of this directory, it is impossible that
1589	 * a new directory index is added into the delayed node and index_cnt
1590	 * is updated now. So we needn't lock the delayed node.
1591	 */
1592	if (!delayed_node->index_cnt) {
1593		btrfs_release_delayed_node(delayed_node);
1594		return -EINVAL;
1595	}
1596
1597	BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1598	btrfs_release_delayed_node(delayed_node);
1599	return 0;
1600}
1601
1602void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1603			     struct list_head *del_list)
 
 
1604{
1605	struct btrfs_delayed_node *delayed_node;
1606	struct btrfs_delayed_item *item;
1607
1608	delayed_node = btrfs_get_delayed_node(inode);
1609	if (!delayed_node)
1610		return;
 
 
 
 
 
 
 
1611
1612	mutex_lock(&delayed_node->mutex);
1613	item = __btrfs_first_delayed_insertion_item(delayed_node);
1614	while (item) {
1615		atomic_inc(&item->refs);
1616		list_add_tail(&item->readdir_list, ins_list);
1617		item = __btrfs_next_delayed_item(item);
1618	}
1619
1620	item = __btrfs_first_delayed_deletion_item(delayed_node);
1621	while (item) {
1622		atomic_inc(&item->refs);
1623		list_add_tail(&item->readdir_list, del_list);
1624		item = __btrfs_next_delayed_item(item);
1625	}
1626	mutex_unlock(&delayed_node->mutex);
1627	/*
1628	 * This delayed node is still cached in the btrfs inode, so refs
1629	 * must be > 1 now, and we needn't check it is going to be freed
1630	 * or not.
1631	 *
1632	 * Besides that, this function is used to read dir, we do not
1633	 * insert/delete delayed items in this period. So we also needn't
1634	 * requeue or dequeue this delayed node.
1635	 */
1636	atomic_dec(&delayed_node->refs);
 
 
1637}
1638
1639void btrfs_put_delayed_items(struct list_head *ins_list,
1640			     struct list_head *del_list)
 
1641{
1642	struct btrfs_delayed_item *curr, *next;
1643
1644	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1645		list_del(&curr->readdir_list);
1646		if (atomic_dec_and_test(&curr->refs))
1647			kfree(curr);
1648	}
1649
1650	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1651		list_del(&curr->readdir_list);
1652		if (atomic_dec_and_test(&curr->refs))
1653			kfree(curr);
1654	}
 
 
 
 
 
 
1655}
1656
1657int btrfs_should_delete_dir_index(struct list_head *del_list,
1658				  u64 index)
1659{
1660	struct btrfs_delayed_item *curr, *next;
1661	int ret;
1662
1663	if (list_empty(del_list))
1664		return 0;
1665
1666	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1667		if (curr->key.offset > index)
1668			break;
1669
1670		list_del(&curr->readdir_list);
1671		ret = (curr->key.offset == index);
1672
1673		if (atomic_dec_and_test(&curr->refs))
1674			kfree(curr);
1675
1676		if (ret)
1677			return 1;
1678		else
1679			continue;
1680	}
1681	return 0;
1682}
1683
1684/*
1685 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1686 *
1687 */
1688int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1689				    struct list_head *ins_list)
1690{
1691	struct btrfs_dir_item *di;
1692	struct btrfs_delayed_item *curr, *next;
1693	struct btrfs_key location;
1694	char *name;
1695	int name_len;
1696	int over = 0;
1697	unsigned char d_type;
1698
1699	if (list_empty(ins_list))
1700		return 0;
1701
1702	/*
1703	 * Changing the data of the delayed item is impossible. So
1704	 * we needn't lock them. And we have held i_mutex of the
1705	 * directory, nobody can delete any directory indexes now.
1706	 */
1707	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1708		list_del(&curr->readdir_list);
1709
1710		if (curr->key.offset < ctx->pos) {
1711			if (atomic_dec_and_test(&curr->refs))
1712				kfree(curr);
1713			continue;
1714		}
1715
1716		ctx->pos = curr->key.offset;
1717
1718		di = (struct btrfs_dir_item *)curr->data;
1719		name = (char *)(di + 1);
1720		name_len = btrfs_stack_dir_name_len(di);
1721
1722		d_type = btrfs_filetype_table[di->type];
1723		btrfs_disk_key_to_cpu(&location, &di->location);
1724
1725		over = !dir_emit(ctx, name, name_len,
1726			       location.objectid, d_type);
1727
1728		if (atomic_dec_and_test(&curr->refs))
1729			kfree(curr);
1730
1731		if (over)
1732			return 1;
 
1733	}
1734	return 0;
1735}
1736
1737static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1738				  struct btrfs_inode_item *inode_item,
1739				  struct inode *inode)
1740{
 
 
1741	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1742	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1743	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1744	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1745	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1746	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1747	btrfs_set_stack_inode_generation(inode_item,
1748					 BTRFS_I(inode)->generation);
1749	btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
 
1750	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1751	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1752	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
 
 
1753	btrfs_set_stack_inode_block_group(inode_item, 0);
1754
1755	btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
1756				     inode->i_atime.tv_sec);
1757	btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
1758				      inode->i_atime.tv_nsec);
1759
1760	btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
1761				     inode->i_mtime.tv_sec);
1762	btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
1763				      inode->i_mtime.tv_nsec);
1764
1765	btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
1766				     inode->i_ctime.tv_sec);
1767	btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
1768				      inode->i_ctime.tv_nsec);
 
 
 
1769}
1770
1771int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1772{
 
1773	struct btrfs_delayed_node *delayed_node;
1774	struct btrfs_inode_item *inode_item;
1775	struct btrfs_timespec *tspec;
1776
1777	delayed_node = btrfs_get_delayed_node(inode);
1778	if (!delayed_node)
1779		return -ENOENT;
1780
1781	mutex_lock(&delayed_node->mutex);
1782	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1783		mutex_unlock(&delayed_node->mutex);
1784		btrfs_release_delayed_node(delayed_node);
1785		return -ENOENT;
1786	}
1787
1788	inode_item = &delayed_node->inode_item;
1789
1790	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1791	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1792	btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
 
 
1793	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1794	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1795	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1796	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1797	inode->i_version = btrfs_stack_inode_sequence(inode_item);
 
 
 
1798	inode->i_rdev = 0;
1799	*rdev = btrfs_stack_inode_rdev(inode_item);
1800	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
 
 
 
 
1801
1802	tspec = btrfs_inode_atime(inode_item);
1803	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
1804	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1805
1806	tspec = btrfs_inode_mtime(inode_item);
1807	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
1808	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1809
1810	tspec = btrfs_inode_ctime(inode_item);
1811	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
1812	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1813
1814	inode->i_generation = BTRFS_I(inode)->generation;
1815	BTRFS_I(inode)->index_cnt = (u64)-1;
 
1816
1817	mutex_unlock(&delayed_node->mutex);
1818	btrfs_release_delayed_node(delayed_node);
1819	return 0;
1820}
1821
1822int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1823			       struct btrfs_root *root, struct inode *inode)
1824{
 
1825	struct btrfs_delayed_node *delayed_node;
1826	int ret = 0;
1827
1828	delayed_node = btrfs_get_or_create_delayed_node(inode);
1829	if (IS_ERR(delayed_node))
1830		return PTR_ERR(delayed_node);
1831
1832	mutex_lock(&delayed_node->mutex);
1833	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1834		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
 
1835		goto release_node;
1836	}
1837
1838	ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1839						   delayed_node);
1840	if (ret)
1841		goto release_node;
1842
1843	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1844	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1845	delayed_node->count++;
1846	atomic_inc(&root->fs_info->delayed_root->items);
1847release_node:
1848	mutex_unlock(&delayed_node->mutex);
1849	btrfs_release_delayed_node(delayed_node);
1850	return ret;
1851}
1852
1853int btrfs_delayed_delete_inode_ref(struct inode *inode)
1854{
 
1855	struct btrfs_delayed_node *delayed_node;
1856
 
 
 
 
 
 
 
 
1857	delayed_node = btrfs_get_or_create_delayed_node(inode);
1858	if (IS_ERR(delayed_node))
1859		return PTR_ERR(delayed_node);
1860
1861	/*
1862	 * We don't reserve space for inode ref deletion is because:
1863	 * - We ONLY do async inode ref deletion for the inode who has only
1864	 *   one link(i_nlink == 1), it means there is only one inode ref.
1865	 *   And in most case, the inode ref and the inode item are in the
1866	 *   same leaf, and we will deal with them at the same time.
1867	 *   Since we are sure we will reserve the space for the inode item,
1868	 *   it is unnecessary to reserve space for inode ref deletion.
1869	 * - If the inode ref and the inode item are not in the same leaf,
1870	 *   We also needn't worry about enospc problem, because we reserve
1871	 *   much more space for the inode update than it needs.
1872	 * - At the worst, we can steal some space from the global reservation.
1873	 *   It is very rare.
1874	 */
1875	mutex_lock(&delayed_node->mutex);
1876	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1877		goto release_node;
1878
1879	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1880	delayed_node->count++;
1881	atomic_inc(&BTRFS_I(inode)->root->fs_info->delayed_root->items);
1882release_node:
1883	mutex_unlock(&delayed_node->mutex);
1884	btrfs_release_delayed_node(delayed_node);
1885	return 0;
1886}
1887
1888static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1889{
1890	struct btrfs_root *root = delayed_node->root;
 
1891	struct btrfs_delayed_item *curr_item, *prev_item;
1892
1893	mutex_lock(&delayed_node->mutex);
1894	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1895	while (curr_item) {
1896		btrfs_delayed_item_release_metadata(root, curr_item);
1897		prev_item = curr_item;
1898		curr_item = __btrfs_next_delayed_item(prev_item);
1899		btrfs_release_delayed_item(prev_item);
1900	}
1901
 
 
 
 
 
 
1902	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1903	while (curr_item) {
1904		btrfs_delayed_item_release_metadata(root, curr_item);
1905		prev_item = curr_item;
1906		curr_item = __btrfs_next_delayed_item(prev_item);
1907		btrfs_release_delayed_item(prev_item);
1908	}
1909
1910	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1911		btrfs_release_delayed_iref(delayed_node);
1912
1913	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1914		btrfs_delayed_inode_release_metadata(root, delayed_node);
1915		btrfs_release_delayed_inode(delayed_node);
1916	}
1917	mutex_unlock(&delayed_node->mutex);
1918}
1919
1920void btrfs_kill_delayed_inode_items(struct inode *inode)
1921{
1922	struct btrfs_delayed_node *delayed_node;
1923
1924	delayed_node = btrfs_get_delayed_node(inode);
1925	if (!delayed_node)
1926		return;
1927
1928	__btrfs_kill_delayed_node(delayed_node);
1929	btrfs_release_delayed_node(delayed_node);
1930}
1931
1932void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1933{
1934	u64 inode_id = 0;
1935	struct btrfs_delayed_node *delayed_nodes[8];
1936	int i, n;
1937
1938	while (1) {
1939		spin_lock(&root->inode_lock);
1940		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1941					   (void **)delayed_nodes, inode_id,
1942					   ARRAY_SIZE(delayed_nodes));
1943		if (!n) {
1944			spin_unlock(&root->inode_lock);
1945			break;
1946		}
1947
1948		inode_id = delayed_nodes[n - 1]->inode_id + 1;
 
 
 
 
1949
1950		for (i = 0; i < n; i++)
1951			atomic_inc(&delayed_nodes[i]->refs);
1952		spin_unlock(&root->inode_lock);
 
 
 
 
 
 
 
 
 
 
 
 
1953
1954		for (i = 0; i < n; i++) {
1955			__btrfs_kill_delayed_node(delayed_nodes[i]);
1956			btrfs_release_delayed_node(delayed_nodes[i]);
1957		}
1958	}
1959}
1960
1961void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
1962{
1963	struct btrfs_delayed_root *delayed_root;
1964	struct btrfs_delayed_node *curr_node, *prev_node;
1965
1966	delayed_root = btrfs_get_delayed_root(root);
1967
1968	curr_node = btrfs_first_delayed_node(delayed_root);
1969	while (curr_node) {
1970		__btrfs_kill_delayed_node(curr_node);
1971
1972		prev_node = curr_node;
1973		curr_node = btrfs_next_delayed_node(curr_node);
1974		btrfs_release_delayed_node(prev_node);
1975	}
1976}
1977
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011 Fujitsu.  All rights reserved.
   4 * Written by Miao Xie <miaox@cn.fujitsu.com>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6
   7#include <linux/slab.h>
   8#include <linux/iversion.h>
   9#include "ctree.h"
  10#include "fs.h"
  11#include "messages.h"
  12#include "misc.h"
  13#include "delayed-inode.h"
  14#include "disk-io.h"
  15#include "transaction.h"
  16#include "qgroup.h"
  17#include "locking.h"
  18#include "inode-item.h"
  19#include "space-info.h"
  20#include "accessors.h"
  21#include "file-item.h"
  22
  23#define BTRFS_DELAYED_WRITEBACK		512
  24#define BTRFS_DELAYED_BACKGROUND	128
  25#define BTRFS_DELAYED_BATCH		16
  26
  27static struct kmem_cache *delayed_node_cache;
  28
  29int __init btrfs_delayed_inode_init(void)
  30{
  31	delayed_node_cache = KMEM_CACHE(btrfs_delayed_node, 0);
 
 
 
 
  32	if (!delayed_node_cache)
  33		return -ENOMEM;
  34	return 0;
  35}
  36
  37void __cold btrfs_delayed_inode_exit(void)
  38{
  39	kmem_cache_destroy(delayed_node_cache);
  40}
  41
  42void btrfs_init_delayed_root(struct btrfs_delayed_root *delayed_root)
  43{
  44	atomic_set(&delayed_root->items, 0);
  45	atomic_set(&delayed_root->items_seq, 0);
  46	delayed_root->nodes = 0;
  47	spin_lock_init(&delayed_root->lock);
  48	init_waitqueue_head(&delayed_root->wait);
  49	INIT_LIST_HEAD(&delayed_root->node_list);
  50	INIT_LIST_HEAD(&delayed_root->prepare_list);
  51}
  52
  53static inline void btrfs_init_delayed_node(
  54				struct btrfs_delayed_node *delayed_node,
  55				struct btrfs_root *root, u64 inode_id)
  56{
  57	delayed_node->root = root;
  58	delayed_node->inode_id = inode_id;
  59	refcount_set(&delayed_node->refs, 0);
  60	delayed_node->ins_root = RB_ROOT_CACHED;
  61	delayed_node->del_root = RB_ROOT_CACHED;
 
 
  62	mutex_init(&delayed_node->mutex);
 
  63	INIT_LIST_HEAD(&delayed_node->n_list);
  64	INIT_LIST_HEAD(&delayed_node->p_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  65}
  66
  67static struct btrfs_delayed_node *btrfs_get_delayed_node(
  68		struct btrfs_inode *btrfs_inode)
  69{
 
  70	struct btrfs_root *root = btrfs_inode->root;
  71	u64 ino = btrfs_ino(btrfs_inode);
  72	struct btrfs_delayed_node *node;
  73
  74	node = READ_ONCE(btrfs_inode->delayed_node);
  75	if (node) {
  76		refcount_inc(&node->refs);
  77		return node;
  78	}
  79
  80	xa_lock(&root->delayed_nodes);
  81	node = xa_load(&root->delayed_nodes, ino);
  82
  83	if (node) {
  84		if (btrfs_inode->delayed_node) {
  85			refcount_inc(&node->refs);	/* can be accessed */
  86			BUG_ON(btrfs_inode->delayed_node != node);
  87			xa_unlock(&root->delayed_nodes);
  88			return node;
  89		}
  90
  91		/*
  92		 * It's possible that we're racing into the middle of removing
  93		 * this node from the xarray.  In this case, the refcount
  94		 * was zero and it should never go back to one.  Just return
  95		 * NULL like it was never in the xarray at all; our release
  96		 * function is in the process of removing it.
  97		 *
  98		 * Some implementations of refcount_inc refuse to bump the
  99		 * refcount once it has hit zero.  If we don't do this dance
 100		 * here, refcount_inc() may decide to just WARN_ONCE() instead
 101		 * of actually bumping the refcount.
 102		 *
 103		 * If this node is properly in the xarray, we want to bump the
 104		 * refcount twice, once for the inode and once for this get
 105		 * operation.
 106		 */
 107		if (refcount_inc_not_zero(&node->refs)) {
 108			refcount_inc(&node->refs);
 109			btrfs_inode->delayed_node = node;
 110		} else {
 111			node = NULL;
 112		}
 113
 114		xa_unlock(&root->delayed_nodes);
 115		return node;
 116	}
 117	xa_unlock(&root->delayed_nodes);
 118
 119	return NULL;
 120}
 121
 122/* Will return either the node or PTR_ERR(-ENOMEM) */
 123static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
 124		struct btrfs_inode *btrfs_inode)
 125{
 126	struct btrfs_delayed_node *node;
 
 127	struct btrfs_root *root = btrfs_inode->root;
 128	u64 ino = btrfs_ino(btrfs_inode);
 129	int ret;
 130	void *ptr;
 131
 132again:
 133	node = btrfs_get_delayed_node(btrfs_inode);
 134	if (node)
 135		return node;
 136
 137	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
 138	if (!node)
 139		return ERR_PTR(-ENOMEM);
 140	btrfs_init_delayed_node(node, root, ino);
 141
 142	/* Cached in the inode and can be accessed. */
 143	refcount_set(&node->refs, 2);
 144
 145	/* Allocate and reserve the slot, from now it can return a NULL from xa_load(). */
 146	ret = xa_reserve(&root->delayed_nodes, ino, GFP_NOFS);
 147	if (ret == -ENOMEM) {
 148		kmem_cache_free(delayed_node_cache, node);
 149		return ERR_PTR(-ENOMEM);
 150	}
 151	xa_lock(&root->delayed_nodes);
 152	ptr = xa_load(&root->delayed_nodes, ino);
 153	if (ptr) {
 154		/* Somebody inserted it, go back and read it. */
 155		xa_unlock(&root->delayed_nodes);
 156		kmem_cache_free(delayed_node_cache, node);
 157		node = NULL;
 
 158		goto again;
 159	}
 160	ptr = __xa_store(&root->delayed_nodes, ino, node, GFP_ATOMIC);
 161	ASSERT(xa_err(ptr) != -EINVAL);
 162	ASSERT(xa_err(ptr) != -ENOMEM);
 163	ASSERT(ptr == NULL);
 164	btrfs_inode->delayed_node = node;
 165	xa_unlock(&root->delayed_nodes);
 
 166
 167	return node;
 168}
 169
 170/*
 171 * Call it when holding delayed_node->mutex
 172 *
 173 * If mod = 1, add this node into the prepared list.
 174 */
 175static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
 176				     struct btrfs_delayed_node *node,
 177				     int mod)
 178{
 179	spin_lock(&root->lock);
 180	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 181		if (!list_empty(&node->p_list))
 182			list_move_tail(&node->p_list, &root->prepare_list);
 183		else if (mod)
 184			list_add_tail(&node->p_list, &root->prepare_list);
 185	} else {
 186		list_add_tail(&node->n_list, &root->node_list);
 187		list_add_tail(&node->p_list, &root->prepare_list);
 188		refcount_inc(&node->refs);	/* inserted into list */
 189		root->nodes++;
 190		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
 191	}
 192	spin_unlock(&root->lock);
 193}
 194
 195/* Call it when holding delayed_node->mutex */
 196static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
 197				       struct btrfs_delayed_node *node)
 198{
 199	spin_lock(&root->lock);
 200	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 201		root->nodes--;
 202		refcount_dec(&node->refs);	/* not in the list */
 203		list_del_init(&node->n_list);
 204		if (!list_empty(&node->p_list))
 205			list_del_init(&node->p_list);
 206		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
 207	}
 208	spin_unlock(&root->lock);
 209}
 210
 211static struct btrfs_delayed_node *btrfs_first_delayed_node(
 212			struct btrfs_delayed_root *delayed_root)
 213{
 214	struct list_head *p;
 215	struct btrfs_delayed_node *node = NULL;
 216
 217	spin_lock(&delayed_root->lock);
 218	if (list_empty(&delayed_root->node_list))
 219		goto out;
 220
 221	p = delayed_root->node_list.next;
 222	node = list_entry(p, struct btrfs_delayed_node, n_list);
 223	refcount_inc(&node->refs);
 224out:
 225	spin_unlock(&delayed_root->lock);
 226
 227	return node;
 228}
 229
 230static struct btrfs_delayed_node *btrfs_next_delayed_node(
 231						struct btrfs_delayed_node *node)
 232{
 233	struct btrfs_delayed_root *delayed_root;
 234	struct list_head *p;
 235	struct btrfs_delayed_node *next = NULL;
 236
 237	delayed_root = node->root->fs_info->delayed_root;
 238	spin_lock(&delayed_root->lock);
 239	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 240		/* not in the list */
 241		if (list_empty(&delayed_root->node_list))
 242			goto out;
 243		p = delayed_root->node_list.next;
 244	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
 245		goto out;
 246	else
 247		p = node->n_list.next;
 248
 249	next = list_entry(p, struct btrfs_delayed_node, n_list);
 250	refcount_inc(&next->refs);
 251out:
 252	spin_unlock(&delayed_root->lock);
 253
 254	return next;
 255}
 256
 257static void __btrfs_release_delayed_node(
 258				struct btrfs_delayed_node *delayed_node,
 259				int mod)
 260{
 261	struct btrfs_delayed_root *delayed_root;
 262
 263	if (!delayed_node)
 264		return;
 265
 266	delayed_root = delayed_node->root->fs_info->delayed_root;
 267
 268	mutex_lock(&delayed_node->mutex);
 269	if (delayed_node->count)
 270		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
 271	else
 272		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
 273	mutex_unlock(&delayed_node->mutex);
 274
 275	if (refcount_dec_and_test(&delayed_node->refs)) {
 276		struct btrfs_root *root = delayed_node->root;
 277
 278		xa_erase(&root->delayed_nodes, delayed_node->inode_id);
 279		/*
 280		 * Once our refcount goes to zero, nobody is allowed to bump it
 281		 * back up.  We can delete it now.
 282		 */
 283		ASSERT(refcount_read(&delayed_node->refs) == 0);
 284		kmem_cache_free(delayed_node_cache, delayed_node);
 285	}
 286}
 287
 288static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
 289{
 290	__btrfs_release_delayed_node(node, 0);
 291}
 292
 293static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
 294					struct btrfs_delayed_root *delayed_root)
 295{
 296	struct list_head *p;
 297	struct btrfs_delayed_node *node = NULL;
 298
 299	spin_lock(&delayed_root->lock);
 300	if (list_empty(&delayed_root->prepare_list))
 301		goto out;
 302
 303	p = delayed_root->prepare_list.next;
 304	list_del_init(p);
 305	node = list_entry(p, struct btrfs_delayed_node, p_list);
 306	refcount_inc(&node->refs);
 307out:
 308	spin_unlock(&delayed_root->lock);
 309
 310	return node;
 311}
 312
 313static inline void btrfs_release_prepared_delayed_node(
 314					struct btrfs_delayed_node *node)
 315{
 316	__btrfs_release_delayed_node(node, 1);
 317}
 318
 319static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len,
 320					   struct btrfs_delayed_node *node,
 321					   enum btrfs_delayed_item_type type)
 322{
 323	struct btrfs_delayed_item *item;
 324
 325	item = kmalloc(struct_size(item, data, data_len), GFP_NOFS);
 326	if (item) {
 327		item->data_len = data_len;
 328		item->type = type;
 329		item->bytes_reserved = 0;
 330		item->delayed_node = node;
 331		RB_CLEAR_NODE(&item->rb_node);
 332		INIT_LIST_HEAD(&item->log_list);
 333		item->logged = false;
 334		refcount_set(&item->refs, 1);
 335	}
 336	return item;
 337}
 338
 339/*
 340 * Look up the delayed item by key.
 341 *
 342 * @delayed_node: pointer to the delayed node
 343 * @index:	  the dir index value to lookup (offset of a dir index key)
 
 
 344 *
 345 * Note: if we don't find the right item, we will return the prev item and
 346 * the next item.
 347 */
 348static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
 349				struct rb_root *root,
 350				u64 index)
 
 
 351{
 352	struct rb_node *node = root->rb_node;
 353	struct btrfs_delayed_item *delayed_item = NULL;
 
 
 
 354
 355	while (node) {
 356		delayed_item = rb_entry(node, struct btrfs_delayed_item,
 357					rb_node);
 358		if (delayed_item->index < index)
 
 
 359			node = node->rb_right;
 360		else if (delayed_item->index > index)
 361			node = node->rb_left;
 362		else
 363			return delayed_item;
 364	}
 365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 366	return NULL;
 367}
 368
 
 
 
 
 
 
 
 
 
 
 
 369static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
 370				    struct btrfs_delayed_item *ins)
 
 371{
 372	struct rb_node **p, *node;
 373	struct rb_node *parent_node = NULL;
 374	struct rb_root_cached *root;
 375	struct btrfs_delayed_item *item;
 376	bool leftmost = true;
 377
 378	if (ins->type == BTRFS_DELAYED_INSERTION_ITEM)
 379		root = &delayed_node->ins_root;
 
 
 380	else
 381		root = &delayed_node->del_root;
 382
 383	p = &root->rb_root.rb_node;
 384	node = &ins->rb_node;
 385
 386	while (*p) {
 387		parent_node = *p;
 388		item = rb_entry(parent_node, struct btrfs_delayed_item,
 389				 rb_node);
 390
 391		if (item->index < ins->index) {
 
 392			p = &(*p)->rb_right;
 393			leftmost = false;
 394		} else if (item->index > ins->index) {
 395			p = &(*p)->rb_left;
 396		} else {
 397			return -EEXIST;
 398		}
 399	}
 400
 401	rb_link_node(node, parent_node, p);
 402	rb_insert_color_cached(node, root, leftmost);
 403
 404	if (ins->type == BTRFS_DELAYED_INSERTION_ITEM &&
 405	    ins->index >= delayed_node->index_cnt)
 406		delayed_node->index_cnt = ins->index + 1;
 
 
 
 407
 408	delayed_node->count++;
 409	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
 410	return 0;
 411}
 412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 413static void finish_one_item(struct btrfs_delayed_root *delayed_root)
 414{
 415	int seq = atomic_inc_return(&delayed_root->items_seq);
 416
 417	/* atomic_dec_return implies a barrier */
 418	if ((atomic_dec_return(&delayed_root->items) <
 419	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
 420		cond_wake_up_nomb(&delayed_root->wait);
 
 421}
 422
 423static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
 424{
 425	struct btrfs_delayed_node *delayed_node = delayed_item->delayed_node;
 426	struct rb_root_cached *root;
 427	struct btrfs_delayed_root *delayed_root;
 428
 429	/* Not inserted, ignore it. */
 430	if (RB_EMPTY_NODE(&delayed_item->rb_node))
 431		return;
 432
 433	/* If it's in a rbtree, then we need to have delayed node locked. */
 434	lockdep_assert_held(&delayed_node->mutex);
 435
 436	delayed_root = delayed_node->root->fs_info->delayed_root;
 
 
 437
 438	if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM)
 439		root = &delayed_node->ins_root;
 440	else
 441		root = &delayed_node->del_root;
 442
 443	rb_erase_cached(&delayed_item->rb_node, root);
 444	RB_CLEAR_NODE(&delayed_item->rb_node);
 445	delayed_node->count--;
 446
 447	finish_one_item(delayed_root);
 448}
 449
 450static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
 451{
 452	if (item) {
 453		__btrfs_remove_delayed_item(item);
 454		if (refcount_dec_and_test(&item->refs))
 455			kfree(item);
 456	}
 457}
 458
 459static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
 460					struct btrfs_delayed_node *delayed_node)
 461{
 462	struct rb_node *p;
 463	struct btrfs_delayed_item *item = NULL;
 464
 465	p = rb_first_cached(&delayed_node->ins_root);
 466	if (p)
 467		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 468
 469	return item;
 470}
 471
 472static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
 473					struct btrfs_delayed_node *delayed_node)
 474{
 475	struct rb_node *p;
 476	struct btrfs_delayed_item *item = NULL;
 477
 478	p = rb_first_cached(&delayed_node->del_root);
 479	if (p)
 480		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 481
 482	return item;
 483}
 484
 485static struct btrfs_delayed_item *__btrfs_next_delayed_item(
 486						struct btrfs_delayed_item *item)
 487{
 488	struct rb_node *p;
 489	struct btrfs_delayed_item *next = NULL;
 490
 491	p = rb_next(&item->rb_node);
 492	if (p)
 493		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
 494
 495	return next;
 496}
 497
 498static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
 
 499					       struct btrfs_delayed_item *item)
 500{
 501	struct btrfs_block_rsv *src_rsv;
 502	struct btrfs_block_rsv *dst_rsv;
 503	struct btrfs_fs_info *fs_info = trans->fs_info;
 504	u64 num_bytes;
 505	int ret;
 506
 507	if (!trans->bytes_reserved)
 508		return 0;
 509
 510	src_rsv = trans->block_rsv;
 511	dst_rsv = &fs_info->delayed_block_rsv;
 512
 513	num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
 514
 515	/*
 516	 * Here we migrate space rsv from transaction rsv, since have already
 517	 * reserved space when starting a transaction.  So no need to reserve
 518	 * qgroup space here.
 519	 */
 520	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
 521	if (!ret) {
 522		trace_btrfs_space_reservation(fs_info, "delayed_item",
 523					      item->delayed_node->inode_id,
 524					      num_bytes, 1);
 525		/*
 526		 * For insertions we track reserved metadata space by accounting
 527		 * for the number of leaves that will be used, based on the delayed
 528		 * node's curr_index_batch_size and index_item_leaves fields.
 529		 */
 530		if (item->type == BTRFS_DELAYED_DELETION_ITEM)
 531			item->bytes_reserved = num_bytes;
 532	}
 533
 534	return ret;
 535}
 536
 537static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
 538						struct btrfs_delayed_item *item)
 539{
 540	struct btrfs_block_rsv *rsv;
 541	struct btrfs_fs_info *fs_info = root->fs_info;
 542
 543	if (!item->bytes_reserved)
 544		return;
 545
 546	rsv = &fs_info->delayed_block_rsv;
 547	/*
 548	 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
 549	 * to release/reserve qgroup space.
 550	 */
 551	trace_btrfs_space_reservation(fs_info, "delayed_item",
 552				      item->delayed_node->inode_id,
 553				      item->bytes_reserved, 0);
 554	btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
 555}
 556
 557static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node,
 558					      unsigned int num_leaves)
 559{
 560	struct btrfs_fs_info *fs_info = node->root->fs_info;
 561	const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves);
 562
 563	/* There are no space reservations during log replay, bail out. */
 564	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
 565		return;
 566
 567	trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id,
 568				      bytes, 0);
 569	btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL);
 570}
 571
 572static int btrfs_delayed_inode_reserve_metadata(
 573					struct btrfs_trans_handle *trans,
 574					struct btrfs_root *root,
 
 575					struct btrfs_delayed_node *node)
 576{
 577	struct btrfs_fs_info *fs_info = root->fs_info;
 578	struct btrfs_block_rsv *src_rsv;
 579	struct btrfs_block_rsv *dst_rsv;
 580	u64 num_bytes;
 581	int ret;
 
 582
 583	src_rsv = trans->block_rsv;
 584	dst_rsv = &fs_info->delayed_block_rsv;
 585
 586	num_bytes = btrfs_calc_metadata_size(fs_info, 1);
 587
 588	/*
 589	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
 590	 * which doesn't reserve space for speed.  This is a problem since we
 591	 * still need to reserve space for this update, so try to reserve the
 592	 * space.
 593	 *
 594	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
 595	 * we always reserve enough to update the inode item.
 596	 */
 597	if (!src_rsv || (!trans->bytes_reserved &&
 598			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
 599		ret = btrfs_qgroup_reserve_meta(root, num_bytes,
 600					  BTRFS_QGROUP_RSV_META_PREALLOC, true);
 601		if (ret < 0)
 602			return ret;
 603		ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 604					  BTRFS_RESERVE_NO_FLUSH);
 605		/* NO_FLUSH could only fail with -ENOSPC */
 606		ASSERT(ret == 0 || ret == -ENOSPC);
 607		if (ret)
 608			btrfs_qgroup_free_meta_prealloc(root, num_bytes);
 609	} else {
 610		ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
 
 
 
 
 
 
 
 
 611	}
 612
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 613	if (!ret) {
 614		trace_btrfs_space_reservation(fs_info, "delayed_inode",
 615					      node->inode_id, num_bytes, 1);
 616		node->bytes_reserved = num_bytes;
 617	}
 618
 
 
 
 
 
 
 619	return ret;
 620}
 621
 622static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
 623						struct btrfs_delayed_node *node,
 624						bool qgroup_free)
 625{
 626	struct btrfs_block_rsv *rsv;
 627
 628	if (!node->bytes_reserved)
 629		return;
 630
 631	rsv = &fs_info->delayed_block_rsv;
 632	trace_btrfs_space_reservation(fs_info, "delayed_inode",
 633				      node->inode_id, node->bytes_reserved, 0);
 634	btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
 635	if (qgroup_free)
 636		btrfs_qgroup_free_meta_prealloc(node->root,
 637				node->bytes_reserved);
 638	else
 639		btrfs_qgroup_convert_reserved_meta(node->root,
 640				node->bytes_reserved);
 641	node->bytes_reserved = 0;
 642}
 643
 644/*
 645 * Insert a single delayed item or a batch of delayed items, as many as possible
 646 * that fit in a leaf. The delayed items (dir index keys) are sorted by their key
 647 * in the rbtree, and if there's a gap between two consecutive dir index items,
 648 * then it means at some point we had delayed dir indexes to add but they got
 649 * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them
 650 * into the subvolume tree. Dir index keys also have their offsets coming from a
 651 * monotonically increasing counter, so we can't get new keys with an offset that
 652 * fits within a gap between delayed dir index items.
 653 */
 654static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
 655				     struct btrfs_root *root,
 656				     struct btrfs_path *path,
 657				     struct btrfs_delayed_item *first_item)
 658{
 659	struct btrfs_fs_info *fs_info = root->fs_info;
 660	struct btrfs_delayed_node *node = first_item->delayed_node;
 661	LIST_HEAD(item_list);
 662	struct btrfs_delayed_item *curr;
 663	struct btrfs_delayed_item *next;
 664	const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info);
 665	struct btrfs_item_batch batch;
 666	struct btrfs_key first_key;
 667	const u32 first_data_size = first_item->data_len;
 668	int total_size;
 669	char *ins_data = NULL;
 670	int ret;
 671	bool continuous_keys_only = false;
 
 672
 673	lockdep_assert_held(&node->mutex);
 
 
 674
 675	/*
 676	 * During normal operation the delayed index offset is continuously
 677	 * increasing, so we can batch insert all items as there will not be any
 678	 * overlapping keys in the tree.
 679	 *
 680	 * The exception to this is log replay, where we may have interleaved
 681	 * offsets in the tree, so our batch needs to be continuous keys only in
 682	 * order to ensure we do not end up with out of order items in our leaf.
 683	 */
 684	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
 685		continuous_keys_only = true;
 686
 687	/*
 688	 * For delayed items to insert, we track reserved metadata bytes based
 689	 * on the number of leaves that we will use.
 690	 * See btrfs_insert_delayed_dir_index() and
 691	 * btrfs_delayed_item_reserve_metadata()).
 692	 */
 693	ASSERT(first_item->bytes_reserved == 0);
 694
 695	list_add_tail(&first_item->tree_list, &item_list);
 696	batch.total_data_size = first_data_size;
 697	batch.nr = 1;
 698	total_size = first_data_size + sizeof(struct btrfs_item);
 699	curr = first_item;
 700
 701	while (true) {
 702		int next_size;
 703
 
 704		next = __btrfs_next_delayed_item(curr);
 705		if (!next)
 706			break;
 707
 708		/*
 709		 * We cannot allow gaps in the key space if we're doing log
 710		 * replay.
 711		 */
 712		if (continuous_keys_only && (next->index != curr->index + 1))
 713			break;
 
 714
 715		ASSERT(next->bytes_reserved == 0);
 
 
 
 716
 717		next_size = next->data_len + sizeof(struct btrfs_item);
 718		if (total_size + next_size > max_size)
 719			break;
 
 
 
 720
 721		list_add_tail(&next->tree_list, &item_list);
 722		batch.nr++;
 723		total_size += next_size;
 724		batch.total_data_size += next->data_len;
 725		curr = next;
 726	}
 727
 728	if (batch.nr == 1) {
 729		first_key.objectid = node->inode_id;
 730		first_key.type = BTRFS_DIR_INDEX_KEY;
 731		first_key.offset = first_item->index;
 732		batch.keys = &first_key;
 733		batch.data_sizes = &first_data_size;
 734	} else {
 735		struct btrfs_key *ins_keys;
 736		u32 *ins_sizes;
 737		int i = 0;
 738
 739		ins_data = kmalloc(batch.nr * sizeof(u32) +
 740				   batch.nr * sizeof(struct btrfs_key), GFP_NOFS);
 741		if (!ins_data) {
 742			ret = -ENOMEM;
 743			goto out;
 744		}
 745		ins_sizes = (u32 *)ins_data;
 746		ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
 747		batch.keys = ins_keys;
 748		batch.data_sizes = ins_sizes;
 749		list_for_each_entry(curr, &item_list, tree_list) {
 750			ins_keys[i].objectid = node->inode_id;
 751			ins_keys[i].type = BTRFS_DIR_INDEX_KEY;
 752			ins_keys[i].offset = curr->index;
 753			ins_sizes[i] = curr->data_len;
 754			i++;
 755		}
 756	}
 757
 758	ret = btrfs_insert_empty_items(trans, root, path, &batch);
 759	if (ret)
 760		goto out;
 761
 762	list_for_each_entry(curr, &item_list, tree_list) {
 763		char *data_ptr;
 
 764
 765		data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
 766		write_extent_buffer(path->nodes[0], &curr->data,
 767				    (unsigned long)data_ptr, curr->data_len);
 768		path->slots[0]++;
 769	}
 770
 771	/*
 772	 * Now release our path before releasing the delayed items and their
 773	 * metadata reservations, so that we don't block other tasks for more
 774	 * time than needed.
 775	 */
 776	btrfs_release_path(path);
 777
 778	ASSERT(node->index_item_leaves > 0);
 
 
 
 
 
 
 
 779
 780	/*
 781	 * For normal operations we will batch an entire leaf's worth of delayed
 782	 * items, so if there are more items to process we can decrement
 783	 * index_item_leaves by 1 as we inserted 1 leaf's worth of items.
 784	 *
 785	 * However for log replay we may not have inserted an entire leaf's
 786	 * worth of items, we may have not had continuous items, so decrementing
 787	 * here would mess up the index_item_leaves accounting.  For this case
 788	 * only clean up the accounting when there are no items left.
 789	 */
 790	if (next && !continuous_keys_only) {
 791		/*
 792		 * We inserted one batch of items into a leaf a there are more
 793		 * items to flush in a future batch, now release one unit of
 794		 * metadata space from the delayed block reserve, corresponding
 795		 * the leaf we just flushed to.
 796		 */
 797		btrfs_delayed_item_release_leaves(node, 1);
 798		node->index_item_leaves--;
 799	} else if (!next) {
 800		/*
 801		 * There are no more items to insert. We can have a number of
 802		 * reserved leaves > 1 here - this happens when many dir index
 803		 * items are added and then removed before they are flushed (file
 804		 * names with a very short life, never span a transaction). So
 805		 * release all remaining leaves.
 806		 */
 807		btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
 808		node->index_item_leaves = 0;
 809	}
 810
 811	list_for_each_entry_safe(curr, next, &item_list, tree_list) {
 812		list_del(&curr->tree_list);
 813		btrfs_release_delayed_item(curr);
 814	}
 
 
 
 
 815out:
 816	kfree(ins_data);
 817	return ret;
 818}
 819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 820static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
 821				      struct btrfs_path *path,
 822				      struct btrfs_root *root,
 823				      struct btrfs_delayed_node *node)
 824{
 
 825	int ret = 0;
 826
 827	while (ret == 0) {
 828		struct btrfs_delayed_item *curr;
 
 
 
 829
 830		mutex_lock(&node->mutex);
 831		curr = __btrfs_first_delayed_insertion_item(node);
 832		if (!curr) {
 833			mutex_unlock(&node->mutex);
 834			break;
 835		}
 836		ret = btrfs_insert_delayed_item(trans, root, path, curr);
 837		mutex_unlock(&node->mutex);
 
 
 
 
 838	}
 
 
 839
 
 
 
 
 
 
 840	return ret;
 841}
 842
 843static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
 844				    struct btrfs_root *root,
 845				    struct btrfs_path *path,
 846				    struct btrfs_delayed_item *item)
 847{
 848	const u64 ino = item->delayed_node->inode_id;
 849	struct btrfs_fs_info *fs_info = root->fs_info;
 850	struct btrfs_delayed_item *curr, *next;
 851	struct extent_buffer *leaf = path->nodes[0];
 852	LIST_HEAD(batch_list);
 853	int nitems, slot, last_slot;
 854	int ret;
 855	u64 total_reserved_size = item->bytes_reserved;
 856
 857	ASSERT(leaf != NULL);
 858
 859	slot = path->slots[0];
 860	last_slot = btrfs_header_nritems(leaf) - 1;
 861	/*
 862	 * Our caller always gives us a path pointing to an existing item, so
 863	 * this can not happen.
 864	 */
 865	ASSERT(slot <= last_slot);
 866	if (WARN_ON(slot > last_slot))
 867		return -ENOENT;
 868
 869	nitems = 1;
 870	curr = item;
 871	list_add_tail(&curr->tree_list, &batch_list);
 872
 
 
 
 
 
 
 
 
 
 873	/*
 874	 * Keep checking if the next delayed item matches the next item in the
 875	 * leaf - if so, we can add it to the batch of items to delete from the
 876	 * leaf.
 877	 */
 878	while (slot < last_slot) {
 879		struct btrfs_key key;
 
 880
 
 881		next = __btrfs_next_delayed_item(curr);
 882		if (!next)
 883			break;
 884
 885		slot++;
 886		btrfs_item_key_to_cpu(leaf, &key, slot);
 887		if (key.objectid != ino ||
 888		    key.type != BTRFS_DIR_INDEX_KEY ||
 889		    key.offset != next->index)
 890			break;
 891		nitems++;
 892		curr = next;
 893		list_add_tail(&curr->tree_list, &batch_list);
 894		total_reserved_size += curr->bytes_reserved;
 895	}
 896
 
 
 
 897	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
 898	if (ret)
 899		return ret;
 900
 901	/* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */
 902	if (total_reserved_size > 0) {
 903		/*
 904		 * Check btrfs_delayed_item_reserve_metadata() to see why we
 905		 * don't need to release/reserve qgroup space.
 906		 */
 907		trace_btrfs_space_reservation(fs_info, "delayed_item", ino,
 908					      total_reserved_size, 0);
 909		btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv,
 910					total_reserved_size, NULL);
 911	}
 912
 913	list_for_each_entry_safe(curr, next, &batch_list, tree_list) {
 914		list_del(&curr->tree_list);
 915		btrfs_release_delayed_item(curr);
 916	}
 917
 918	return 0;
 
 919}
 920
 921static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
 922				      struct btrfs_path *path,
 923				      struct btrfs_root *root,
 924				      struct btrfs_delayed_node *node)
 925{
 926	struct btrfs_key key;
 927	int ret = 0;
 928
 929	key.objectid = node->inode_id;
 930	key.type = BTRFS_DIR_INDEX_KEY;
 931
 932	while (ret == 0) {
 933		struct btrfs_delayed_item *item;
 934
 935		mutex_lock(&node->mutex);
 936		item = __btrfs_first_delayed_deletion_item(node);
 937		if (!item) {
 938			mutex_unlock(&node->mutex);
 939			break;
 940		}
 941
 942		key.offset = item->index;
 943		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 944		if (ret > 0) {
 945			/*
 946			 * There's no matching item in the leaf. This means we
 947			 * have already deleted this item in a past run of the
 948			 * delayed items. We ignore errors when running delayed
 949			 * items from an async context, through a work queue job
 950			 * running btrfs_async_run_delayed_root(), and don't
 951			 * release delayed items that failed to complete. This
 952			 * is because we will retry later, and at transaction
 953			 * commit time we always run delayed items and will
 954			 * then deal with errors if they fail to run again.
 955			 *
 956			 * So just release delayed items for which we can't find
 957			 * an item in the tree, and move to the next item.
 958			 */
 959			btrfs_release_path(path);
 960			btrfs_release_delayed_item(item);
 961			ret = 0;
 962		} else if (ret == 0) {
 963			ret = btrfs_batch_delete_items(trans, root, path, item);
 964			btrfs_release_path(path);
 965		}
 966
 
 
 
 
 967		/*
 968		 * We unlock and relock on each iteration, this is to prevent
 969		 * blocking other tasks for too long while we are being run from
 970		 * the async context (work queue job). Those tasks are typically
 971		 * running system calls like creat/mkdir/rename/unlink/etc which
 972		 * need to add delayed items to this delayed node.
 973		 */
 974		mutex_unlock(&node->mutex);
 
 
 
 
 
 
 
 
 
 975	}
 976
 
 
 
 
 
 
 
 
 977	return ret;
 978}
 979
 980static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
 981{
 982	struct btrfs_delayed_root *delayed_root;
 983
 984	if (delayed_node &&
 985	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
 986		ASSERT(delayed_node->root);
 987		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
 988		delayed_node->count--;
 989
 990		delayed_root = delayed_node->root->fs_info->delayed_root;
 991		finish_one_item(delayed_root);
 992	}
 993}
 994
 995static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
 996{
 
 997
 998	if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
 999		struct btrfs_delayed_root *delayed_root;
 
1000
1001		ASSERT(delayed_node->root);
1002		delayed_node->count--;
1003
1004		delayed_root = delayed_node->root->fs_info->delayed_root;
1005		finish_one_item(delayed_root);
1006	}
1007}
1008
1009static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1010					struct btrfs_root *root,
1011					struct btrfs_path *path,
1012					struct btrfs_delayed_node *node)
1013{
1014	struct btrfs_fs_info *fs_info = root->fs_info;
1015	struct btrfs_key key;
1016	struct btrfs_inode_item *inode_item;
1017	struct extent_buffer *leaf;
1018	int mod;
1019	int ret;
1020
1021	key.objectid = node->inode_id;
1022	key.type = BTRFS_INODE_ITEM_KEY;
1023	key.offset = 0;
1024
1025	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1026		mod = -1;
1027	else
1028		mod = 1;
1029
1030	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1031	if (ret > 0)
1032		ret = -ENOENT;
1033	if (ret < 0)
1034		goto out;
 
 
1035
1036	leaf = path->nodes[0];
1037	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1038				    struct btrfs_inode_item);
1039	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1040			    sizeof(struct btrfs_inode_item));
1041	btrfs_mark_buffer_dirty(trans, leaf);
1042
1043	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1044		goto out;
1045
1046	/*
1047	 * Now we're going to delete the INODE_REF/EXTREF, which should be the
1048	 * only one ref left.  Check if the next item is an INODE_REF/EXTREF.
1049	 *
1050	 * But if we're the last item already, release and search for the last
1051	 * INODE_REF/EXTREF.
1052	 */
1053	if (path->slots[0] + 1 >= btrfs_header_nritems(leaf)) {
1054		key.objectid = node->inode_id;
1055		key.type = BTRFS_INODE_EXTREF_KEY;
1056		key.offset = (u64)-1;
1057
1058		btrfs_release_path(path);
1059		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1060		if (ret < 0)
1061			goto err_out;
1062		ASSERT(ret > 0);
1063		ASSERT(path->slots[0] > 0);
1064		ret = 0;
1065		path->slots[0]--;
1066		leaf = path->nodes[0];
1067	} else {
1068		path->slots[0]++;
1069	}
1070	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1071	if (key.objectid != node->inode_id)
1072		goto out;
 
1073	if (key.type != BTRFS_INODE_REF_KEY &&
1074	    key.type != BTRFS_INODE_EXTREF_KEY)
1075		goto out;
1076
1077	/*
1078	 * Delayed iref deletion is for the inode who has only one link,
1079	 * so there is only one iref. The case that several irefs are
1080	 * in the same item doesn't exist.
1081	 */
1082	ret = btrfs_del_item(trans, root, path);
1083out:
1084	btrfs_release_delayed_iref(node);
 
1085	btrfs_release_path(path);
1086err_out:
1087	btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1088	btrfs_release_delayed_inode(node);
1089
1090	/*
1091	 * If we fail to update the delayed inode we need to abort the
1092	 * transaction, because we could leave the inode with the improper
1093	 * counts behind.
1094	 */
1095	if (ret && ret != -ENOENT)
1096		btrfs_abort_transaction(trans, ret);
 
 
 
 
1097
1098	return ret;
 
 
 
1099}
1100
1101static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1102					     struct btrfs_root *root,
1103					     struct btrfs_path *path,
1104					     struct btrfs_delayed_node *node)
1105{
1106	int ret;
1107
1108	mutex_lock(&node->mutex);
1109	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1110		mutex_unlock(&node->mutex);
1111		return 0;
1112	}
1113
1114	ret = __btrfs_update_delayed_inode(trans, root, path, node);
1115	mutex_unlock(&node->mutex);
1116	return ret;
1117}
1118
1119static inline int
1120__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1121				   struct btrfs_path *path,
1122				   struct btrfs_delayed_node *node)
1123{
1124	int ret;
1125
1126	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1127	if (ret)
1128		return ret;
1129
1130	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1131	if (ret)
1132		return ret;
1133
1134	ret = btrfs_record_root_in_trans(trans, node->root);
1135	if (ret)
1136		return ret;
1137	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1138	return ret;
1139}
1140
1141/*
1142 * Called when committing the transaction.
1143 * Returns 0 on success.
1144 * Returns < 0 on error and returns with an aborted transaction with any
1145 * outstanding delayed items cleaned up.
1146 */
1147static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
 
1148{
1149	struct btrfs_fs_info *fs_info = trans->fs_info;
1150	struct btrfs_delayed_root *delayed_root;
1151	struct btrfs_delayed_node *curr_node, *prev_node;
1152	struct btrfs_path *path;
1153	struct btrfs_block_rsv *block_rsv;
1154	int ret = 0;
1155	bool count = (nr > 0);
1156
1157	if (TRANS_ABORTED(trans))
1158		return -EIO;
1159
1160	path = btrfs_alloc_path();
1161	if (!path)
1162		return -ENOMEM;
 
1163
1164	block_rsv = trans->block_rsv;
1165	trans->block_rsv = &fs_info->delayed_block_rsv;
1166
1167	delayed_root = fs_info->delayed_root;
1168
1169	curr_node = btrfs_first_delayed_node(delayed_root);
1170	while (curr_node && (!count || nr--)) {
1171		ret = __btrfs_commit_inode_delayed_items(trans, path,
1172							 curr_node);
1173		if (ret) {
1174			btrfs_abort_transaction(trans, ret);
 
 
1175			break;
1176		}
1177
1178		prev_node = curr_node;
1179		curr_node = btrfs_next_delayed_node(curr_node);
1180		/*
1181		 * See the comment below about releasing path before releasing
1182		 * node. If the commit of delayed items was successful the path
1183		 * should always be released, but in case of an error, it may
1184		 * point to locked extent buffers (a leaf at the very least).
1185		 */
1186		ASSERT(path->nodes[0] == NULL);
1187		btrfs_release_delayed_node(prev_node);
1188	}
1189
1190	/*
1191	 * Release the path to avoid a potential deadlock and lockdep splat when
1192	 * releasing the delayed node, as that requires taking the delayed node's
1193	 * mutex. If another task starts running delayed items before we take
1194	 * the mutex, it will first lock the mutex and then it may try to lock
1195	 * the same btree path (leaf).
1196	 */
1197	btrfs_free_path(path);
1198
1199	if (curr_node)
1200		btrfs_release_delayed_node(curr_node);
 
1201	trans->block_rsv = block_rsv;
1202
1203	return ret;
1204}
1205
1206int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
 
1207{
1208	return __btrfs_run_delayed_items(trans, -1);
1209}
1210
1211int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
 
1212{
1213	return __btrfs_run_delayed_items(trans, nr);
1214}
1215
1216int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1217				     struct btrfs_inode *inode)
1218{
1219	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1220	struct btrfs_path *path;
1221	struct btrfs_block_rsv *block_rsv;
1222	int ret;
1223
1224	if (!delayed_node)
1225		return 0;
1226
1227	mutex_lock(&delayed_node->mutex);
1228	if (!delayed_node->count) {
1229		mutex_unlock(&delayed_node->mutex);
1230		btrfs_release_delayed_node(delayed_node);
1231		return 0;
1232	}
1233	mutex_unlock(&delayed_node->mutex);
1234
1235	path = btrfs_alloc_path();
1236	if (!path) {
1237		btrfs_release_delayed_node(delayed_node);
1238		return -ENOMEM;
1239	}
 
1240
1241	block_rsv = trans->block_rsv;
1242	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1243
1244	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1245
1246	btrfs_release_delayed_node(delayed_node);
1247	btrfs_free_path(path);
1248	trans->block_rsv = block_rsv;
1249
1250	return ret;
1251}
1252
1253int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1254{
1255	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1256	struct btrfs_trans_handle *trans;
1257	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1258	struct btrfs_path *path;
1259	struct btrfs_block_rsv *block_rsv;
1260	int ret;
1261
1262	if (!delayed_node)
1263		return 0;
1264
1265	mutex_lock(&delayed_node->mutex);
1266	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1267		mutex_unlock(&delayed_node->mutex);
1268		btrfs_release_delayed_node(delayed_node);
1269		return 0;
1270	}
1271	mutex_unlock(&delayed_node->mutex);
1272
1273	trans = btrfs_join_transaction(delayed_node->root);
1274	if (IS_ERR(trans)) {
1275		ret = PTR_ERR(trans);
1276		goto out;
1277	}
1278
1279	path = btrfs_alloc_path();
1280	if (!path) {
1281		ret = -ENOMEM;
1282		goto trans_out;
1283	}
 
1284
1285	block_rsv = trans->block_rsv;
1286	trans->block_rsv = &fs_info->delayed_block_rsv;
1287
1288	mutex_lock(&delayed_node->mutex);
1289	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1290		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1291						   path, delayed_node);
1292	else
1293		ret = 0;
1294	mutex_unlock(&delayed_node->mutex);
1295
1296	btrfs_free_path(path);
1297	trans->block_rsv = block_rsv;
1298trans_out:
1299	btrfs_end_transaction(trans);
1300	btrfs_btree_balance_dirty(fs_info);
1301out:
1302	btrfs_release_delayed_node(delayed_node);
1303
1304	return ret;
1305}
1306
1307void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1308{
1309	struct btrfs_delayed_node *delayed_node;
1310
1311	delayed_node = READ_ONCE(inode->delayed_node);
1312	if (!delayed_node)
1313		return;
1314
1315	inode->delayed_node = NULL;
1316	btrfs_release_delayed_node(delayed_node);
1317}
1318
1319struct btrfs_async_delayed_work {
1320	struct btrfs_delayed_root *delayed_root;
1321	int nr;
1322	struct btrfs_work work;
1323};
1324
1325static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1326{
1327	struct btrfs_async_delayed_work *async_work;
1328	struct btrfs_delayed_root *delayed_root;
1329	struct btrfs_trans_handle *trans;
1330	struct btrfs_path *path;
1331	struct btrfs_delayed_node *delayed_node = NULL;
1332	struct btrfs_root *root;
1333	struct btrfs_block_rsv *block_rsv;
1334	int total_done = 0;
1335
1336	async_work = container_of(work, struct btrfs_async_delayed_work, work);
1337	delayed_root = async_work->delayed_root;
1338
1339	path = btrfs_alloc_path();
1340	if (!path)
1341		goto out;
1342
1343	do {
1344		if (atomic_read(&delayed_root->items) <
1345		    BTRFS_DELAYED_BACKGROUND / 2)
1346			break;
1347
1348		delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1349		if (!delayed_node)
1350			break;
1351
1352		root = delayed_node->root;
 
1353
1354		trans = btrfs_join_transaction(root);
1355		if (IS_ERR(trans)) {
1356			btrfs_release_path(path);
1357			btrfs_release_prepared_delayed_node(delayed_node);
1358			total_done++;
1359			continue;
1360		}
1361
1362		block_rsv = trans->block_rsv;
1363		trans->block_rsv = &root->fs_info->delayed_block_rsv;
1364
1365		__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1366
1367		trans->block_rsv = block_rsv;
1368		btrfs_end_transaction(trans);
1369		btrfs_btree_balance_dirty_nodelay(root->fs_info);
1370
1371		btrfs_release_path(path);
1372		btrfs_release_prepared_delayed_node(delayed_node);
1373		total_done++;
1374
1375	} while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1376		 || total_done < async_work->nr);
 
1377
 
1378	btrfs_free_path(path);
1379out:
1380	wake_up(&delayed_root->wait);
1381	kfree(async_work);
1382}
1383
1384
1385static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1386				     struct btrfs_fs_info *fs_info, int nr)
1387{
1388	struct btrfs_async_delayed_work *async_work;
1389
 
 
 
1390	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1391	if (!async_work)
1392		return -ENOMEM;
1393
1394	async_work->delayed_root = delayed_root;
1395	btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL);
 
1396	async_work->nr = nr;
1397
1398	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1399	return 0;
1400}
1401
1402void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1403{
1404	WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
 
 
1405}
1406
1407static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1408{
1409	int val = atomic_read(&delayed_root->items_seq);
1410
1411	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1412		return 1;
1413
1414	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1415		return 1;
1416
1417	return 0;
1418}
1419
1420void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1421{
1422	struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1423
1424	if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1425		btrfs_workqueue_normal_congested(fs_info->delayed_workers))
 
1426		return;
1427
1428	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1429		int seq;
1430		int ret;
1431
1432		seq = atomic_read(&delayed_root->items_seq);
1433
1434		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1435		if (ret)
1436			return;
1437
1438		wait_event_interruptible(delayed_root->wait,
1439					 could_end_wait(delayed_root, seq));
1440		return;
1441	}
1442
1443	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1444}
1445
1446static void btrfs_release_dir_index_item_space(struct btrfs_trans_handle *trans)
1447{
1448	struct btrfs_fs_info *fs_info = trans->fs_info;
1449	const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
1450
1451	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1452		return;
1453
1454	/*
1455	 * Adding the new dir index item does not require touching another
1456	 * leaf, so we can release 1 unit of metadata that was previously
1457	 * reserved when starting the transaction. This applies only to
1458	 * the case where we had a transaction start and excludes the
1459	 * transaction join case (when replaying log trees).
1460	 */
1461	trace_btrfs_space_reservation(fs_info, "transaction",
1462				      trans->transid, bytes, 0);
1463	btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL);
1464	ASSERT(trans->bytes_reserved >= bytes);
1465	trans->bytes_reserved -= bytes;
1466}
1467
1468/* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */
1469int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1470				   const char *name, int name_len,
1471				   struct btrfs_inode *dir,
1472				   const struct btrfs_disk_key *disk_key, u8 flags,
1473				   u64 index)
1474{
1475	struct btrfs_fs_info *fs_info = trans->fs_info;
1476	const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info);
1477	struct btrfs_delayed_node *delayed_node;
1478	struct btrfs_delayed_item *delayed_item;
1479	struct btrfs_dir_item *dir_item;
1480	bool reserve_leaf_space;
1481	u32 data_len;
1482	int ret;
1483
1484	delayed_node = btrfs_get_or_create_delayed_node(dir);
1485	if (IS_ERR(delayed_node))
1486		return PTR_ERR(delayed_node);
1487
1488	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len,
1489						delayed_node,
1490						BTRFS_DELAYED_INSERTION_ITEM);
1491	if (!delayed_item) {
1492		ret = -ENOMEM;
1493		goto release_node;
1494	}
1495
1496	delayed_item->index = index;
 
 
1497
1498	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1499	dir_item->location = *disk_key;
1500	btrfs_set_stack_dir_transid(dir_item, trans->transid);
1501	btrfs_set_stack_dir_data_len(dir_item, 0);
1502	btrfs_set_stack_dir_name_len(dir_item, name_len);
1503	btrfs_set_stack_dir_flags(dir_item, flags);
1504	memcpy((char *)(dir_item + 1), name, name_len);
1505
1506	data_len = delayed_item->data_len + sizeof(struct btrfs_item);
1507
1508	mutex_lock(&delayed_node->mutex);
1509
1510	/*
1511	 * First attempt to insert the delayed item. This is to make the error
1512	 * handling path simpler in case we fail (-EEXIST). There's no risk of
1513	 * any other task coming in and running the delayed item before we do
1514	 * the metadata space reservation below, because we are holding the
1515	 * delayed node's mutex and that mutex must also be locked before the
1516	 * node's delayed items can be run.
1517	 */
1518	ret = __btrfs_add_delayed_item(delayed_node, delayed_item);
1519	if (unlikely(ret)) {
1520		btrfs_err(trans->fs_info,
1521"error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d",
1522			  name_len, name, index, btrfs_root_id(delayed_node->root),
1523			  delayed_node->inode_id, dir->index_cnt,
1524			  delayed_node->index_cnt, ret);
1525		btrfs_release_delayed_item(delayed_item);
1526		btrfs_release_dir_index_item_space(trans);
1527		mutex_unlock(&delayed_node->mutex);
1528		goto release_node;
1529	}
1530
1531	if (delayed_node->index_item_leaves == 0 ||
1532	    delayed_node->curr_index_batch_size + data_len > leaf_data_size) {
1533		delayed_node->curr_index_batch_size = data_len;
1534		reserve_leaf_space = true;
1535	} else {
1536		delayed_node->curr_index_batch_size += data_len;
1537		reserve_leaf_space = false;
1538	}
1539
1540	if (reserve_leaf_space) {
1541		ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item);
1542		/*
1543		 * Space was reserved for a dir index item insertion when we
1544		 * started the transaction, so getting a failure here should be
1545		 * impossible.
1546		 */
1547		if (WARN_ON(ret)) {
1548			btrfs_release_delayed_item(delayed_item);
1549			mutex_unlock(&delayed_node->mutex);
1550			goto release_node;
1551		}
1552
1553		delayed_node->index_item_leaves++;
1554	} else {
1555		btrfs_release_dir_index_item_space(trans);
1556	}
1557	mutex_unlock(&delayed_node->mutex);
1558
1559release_node:
1560	btrfs_release_delayed_node(delayed_node);
1561	return ret;
1562}
1563
1564static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1565					       struct btrfs_delayed_node *node,
1566					       u64 index)
1567{
1568	struct btrfs_delayed_item *item;
1569
1570	mutex_lock(&node->mutex);
1571	item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index);
1572	if (!item) {
1573		mutex_unlock(&node->mutex);
1574		return 1;
1575	}
1576
1577	/*
1578	 * For delayed items to insert, we track reserved metadata bytes based
1579	 * on the number of leaves that we will use.
1580	 * See btrfs_insert_delayed_dir_index() and
1581	 * btrfs_delayed_item_reserve_metadata()).
1582	 */
1583	ASSERT(item->bytes_reserved == 0);
1584	ASSERT(node->index_item_leaves > 0);
1585
1586	/*
1587	 * If there's only one leaf reserved, we can decrement this item from the
1588	 * current batch, otherwise we can not because we don't know which leaf
1589	 * it belongs to. With the current limit on delayed items, we rarely
1590	 * accumulate enough dir index items to fill more than one leaf (even
1591	 * when using a leaf size of 4K).
1592	 */
1593	if (node->index_item_leaves == 1) {
1594		const u32 data_len = item->data_len + sizeof(struct btrfs_item);
1595
1596		ASSERT(node->curr_index_batch_size >= data_len);
1597		node->curr_index_batch_size -= data_len;
1598	}
1599
1600	btrfs_release_delayed_item(item);
1601
1602	/* If we now have no more dir index items, we can release all leaves. */
1603	if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) {
1604		btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
1605		node->index_item_leaves = 0;
1606	}
1607
1608	mutex_unlock(&node->mutex);
1609	return 0;
1610}
1611
1612int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1613				   struct btrfs_inode *dir, u64 index)
 
1614{
1615	struct btrfs_delayed_node *node;
1616	struct btrfs_delayed_item *item;
 
1617	int ret;
1618
1619	node = btrfs_get_or_create_delayed_node(dir);
1620	if (IS_ERR(node))
1621		return PTR_ERR(node);
1622
1623	ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, index);
 
 
 
 
1624	if (!ret)
1625		goto end;
1626
1627	item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM);
1628	if (!item) {
1629		ret = -ENOMEM;
1630		goto end;
1631	}
1632
1633	item->index = index;
1634
1635	ret = btrfs_delayed_item_reserve_metadata(trans, item);
1636	/*
1637	 * we have reserved enough space when we start a new transaction,
1638	 * so reserving metadata failure is impossible.
1639	 */
1640	if (ret < 0) {
1641		btrfs_err(trans->fs_info,
1642"metadata reservation failed for delayed dir item deltiona, should have been reserved");
1643		btrfs_release_delayed_item(item);
1644		goto end;
1645	}
1646
1647	mutex_lock(&node->mutex);
1648	ret = __btrfs_add_delayed_item(node, item);
1649	if (unlikely(ret)) {
1650		btrfs_err(trans->fs_info,
1651			  "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1652			  index, btrfs_root_id(node->root),
1653			  node->inode_id, ret);
1654		btrfs_delayed_item_release_metadata(dir->root, item);
1655		btrfs_release_delayed_item(item);
1656	}
1657	mutex_unlock(&node->mutex);
1658end:
1659	btrfs_release_delayed_node(node);
1660	return ret;
1661}
1662
1663int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1664{
1665	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1666
1667	if (!delayed_node)
1668		return -ENOENT;
1669
1670	/*
1671	 * Since we have held i_mutex of this directory, it is impossible that
1672	 * a new directory index is added into the delayed node and index_cnt
1673	 * is updated now. So we needn't lock the delayed node.
1674	 */
1675	if (!delayed_node->index_cnt) {
1676		btrfs_release_delayed_node(delayed_node);
1677		return -EINVAL;
1678	}
1679
1680	inode->index_cnt = delayed_node->index_cnt;
1681	btrfs_release_delayed_node(delayed_node);
1682	return 0;
1683}
1684
1685bool btrfs_readdir_get_delayed_items(struct btrfs_inode *inode,
1686				     u64 last_index,
1687				     struct list_head *ins_list,
1688				     struct list_head *del_list)
1689{
1690	struct btrfs_delayed_node *delayed_node;
1691	struct btrfs_delayed_item *item;
1692
1693	delayed_node = btrfs_get_delayed_node(inode);
1694	if (!delayed_node)
1695		return false;
1696
1697	/*
1698	 * We can only do one readdir with delayed items at a time because of
1699	 * item->readdir_list.
1700	 */
1701	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1702	btrfs_inode_lock(inode, 0);
1703
1704	mutex_lock(&delayed_node->mutex);
1705	item = __btrfs_first_delayed_insertion_item(delayed_node);
1706	while (item && item->index <= last_index) {
1707		refcount_inc(&item->refs);
1708		list_add_tail(&item->readdir_list, ins_list);
1709		item = __btrfs_next_delayed_item(item);
1710	}
1711
1712	item = __btrfs_first_delayed_deletion_item(delayed_node);
1713	while (item && item->index <= last_index) {
1714		refcount_inc(&item->refs);
1715		list_add_tail(&item->readdir_list, del_list);
1716		item = __btrfs_next_delayed_item(item);
1717	}
1718	mutex_unlock(&delayed_node->mutex);
1719	/*
1720	 * This delayed node is still cached in the btrfs inode, so refs
1721	 * must be > 1 now, and we needn't check it is going to be freed
1722	 * or not.
1723	 *
1724	 * Besides that, this function is used to read dir, we do not
1725	 * insert/delete delayed items in this period. So we also needn't
1726	 * requeue or dequeue this delayed node.
1727	 */
1728	refcount_dec(&delayed_node->refs);
1729
1730	return true;
1731}
1732
1733void btrfs_readdir_put_delayed_items(struct btrfs_inode *inode,
1734				     struct list_head *ins_list,
1735				     struct list_head *del_list)
1736{
1737	struct btrfs_delayed_item *curr, *next;
1738
1739	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1740		list_del(&curr->readdir_list);
1741		if (refcount_dec_and_test(&curr->refs))
1742			kfree(curr);
1743	}
1744
1745	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1746		list_del(&curr->readdir_list);
1747		if (refcount_dec_and_test(&curr->refs))
1748			kfree(curr);
1749	}
1750
1751	/*
1752	 * The VFS is going to do up_read(), so we need to downgrade back to a
1753	 * read lock.
1754	 */
1755	downgrade_write(&inode->vfs_inode.i_rwsem);
1756}
1757
1758int btrfs_should_delete_dir_index(const struct list_head *del_list,
1759				  u64 index)
1760{
1761	struct btrfs_delayed_item *curr;
1762	int ret = 0;
 
 
 
1763
1764	list_for_each_entry(curr, del_list, readdir_list) {
1765		if (curr->index > index)
1766			break;
1767		if (curr->index == index) {
1768			ret = 1;
1769			break;
1770		}
 
 
 
 
 
 
 
1771	}
1772	return ret;
1773}
1774
1775/*
1776 * Read dir info stored in the delayed tree.
 
1777 */
1778int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1779				    const struct list_head *ins_list)
1780{
1781	struct btrfs_dir_item *di;
1782	struct btrfs_delayed_item *curr, *next;
1783	struct btrfs_key location;
1784	char *name;
1785	int name_len;
1786	int over = 0;
1787	unsigned char d_type;
1788
 
 
 
1789	/*
1790	 * Changing the data of the delayed item is impossible. So
1791	 * we needn't lock them. And we have held i_mutex of the
1792	 * directory, nobody can delete any directory indexes now.
1793	 */
1794	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1795		list_del(&curr->readdir_list);
1796
1797		if (curr->index < ctx->pos) {
1798			if (refcount_dec_and_test(&curr->refs))
1799				kfree(curr);
1800			continue;
1801		}
1802
1803		ctx->pos = curr->index;
1804
1805		di = (struct btrfs_dir_item *)curr->data;
1806		name = (char *)(di + 1);
1807		name_len = btrfs_stack_dir_name_len(di);
1808
1809		d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type));
1810		btrfs_disk_key_to_cpu(&location, &di->location);
1811
1812		over = !dir_emit(ctx, name, name_len,
1813			       location.objectid, d_type);
1814
1815		if (refcount_dec_and_test(&curr->refs))
1816			kfree(curr);
1817
1818		if (over)
1819			return 1;
1820		ctx->pos++;
1821	}
1822	return 0;
1823}
1824
1825static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1826				  struct btrfs_inode_item *inode_item,
1827				  struct inode *inode)
1828{
1829	u64 flags;
1830
1831	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1832	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1833	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1834	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1835	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1836	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1837	btrfs_set_stack_inode_generation(inode_item,
1838					 BTRFS_I(inode)->generation);
1839	btrfs_set_stack_inode_sequence(inode_item,
1840				       inode_peek_iversion(inode));
1841	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1842	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1843	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
1844					  BTRFS_I(inode)->ro_flags);
1845	btrfs_set_stack_inode_flags(inode_item, flags);
1846	btrfs_set_stack_inode_block_group(inode_item, 0);
1847
1848	btrfs_set_stack_timespec_sec(&inode_item->atime,
1849				     inode_get_atime_sec(inode));
1850	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1851				      inode_get_atime_nsec(inode));
1852
1853	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1854				     inode_get_mtime_sec(inode));
1855	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1856				      inode_get_mtime_nsec(inode));
1857
1858	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1859				     inode_get_ctime_sec(inode));
1860	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1861				      inode_get_ctime_nsec(inode));
1862
1863	btrfs_set_stack_timespec_sec(&inode_item->otime, BTRFS_I(inode)->i_otime_sec);
1864	btrfs_set_stack_timespec_nsec(&inode_item->otime, BTRFS_I(inode)->i_otime_nsec);
1865}
1866
1867int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1868{
1869	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1870	struct btrfs_delayed_node *delayed_node;
1871	struct btrfs_inode_item *inode_item;
 
1872
1873	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1874	if (!delayed_node)
1875		return -ENOENT;
1876
1877	mutex_lock(&delayed_node->mutex);
1878	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1879		mutex_unlock(&delayed_node->mutex);
1880		btrfs_release_delayed_node(delayed_node);
1881		return -ENOENT;
1882	}
1883
1884	inode_item = &delayed_node->inode_item;
1885
1886	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1887	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1888	btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1889	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1890			round_up(i_size_read(inode), fs_info->sectorsize));
1891	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1892	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1893	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1894	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1895        BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1896
1897	inode_set_iversion_queried(inode,
1898				   btrfs_stack_inode_sequence(inode_item));
1899	inode->i_rdev = 0;
1900	*rdev = btrfs_stack_inode_rdev(inode_item);
1901	btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1902				&BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
1903
1904	inode_set_atime(inode, btrfs_stack_timespec_sec(&inode_item->atime),
1905			btrfs_stack_timespec_nsec(&inode_item->atime));
1906
1907	inode_set_mtime(inode, btrfs_stack_timespec_sec(&inode_item->mtime),
1908			btrfs_stack_timespec_nsec(&inode_item->mtime));
1909
1910	inode_set_ctime(inode, btrfs_stack_timespec_sec(&inode_item->ctime),
1911			btrfs_stack_timespec_nsec(&inode_item->ctime));
1912
1913	BTRFS_I(inode)->i_otime_sec = btrfs_stack_timespec_sec(&inode_item->otime);
1914	BTRFS_I(inode)->i_otime_nsec = btrfs_stack_timespec_nsec(&inode_item->otime);
 
 
 
1915
1916	inode->i_generation = BTRFS_I(inode)->generation;
1917	if (S_ISDIR(inode->i_mode))
1918		BTRFS_I(inode)->index_cnt = (u64)-1;
1919
1920	mutex_unlock(&delayed_node->mutex);
1921	btrfs_release_delayed_node(delayed_node);
1922	return 0;
1923}
1924
1925int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1926			       struct btrfs_inode *inode)
1927{
1928	struct btrfs_root *root = inode->root;
1929	struct btrfs_delayed_node *delayed_node;
1930	int ret = 0;
1931
1932	delayed_node = btrfs_get_or_create_delayed_node(inode);
1933	if (IS_ERR(delayed_node))
1934		return PTR_ERR(delayed_node);
1935
1936	mutex_lock(&delayed_node->mutex);
1937	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1938		fill_stack_inode_item(trans, &delayed_node->inode_item,
1939				      &inode->vfs_inode);
1940		goto release_node;
1941	}
1942
1943	ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
 
1944	if (ret)
1945		goto release_node;
1946
1947	fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode);
1948	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1949	delayed_node->count++;
1950	atomic_inc(&root->fs_info->delayed_root->items);
1951release_node:
1952	mutex_unlock(&delayed_node->mutex);
1953	btrfs_release_delayed_node(delayed_node);
1954	return ret;
1955}
1956
1957int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1958{
1959	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1960	struct btrfs_delayed_node *delayed_node;
1961
1962	/*
1963	 * we don't do delayed inode updates during log recovery because it
1964	 * leads to enospc problems.  This means we also can't do
1965	 * delayed inode refs
1966	 */
1967	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1968		return -EAGAIN;
1969
1970	delayed_node = btrfs_get_or_create_delayed_node(inode);
1971	if (IS_ERR(delayed_node))
1972		return PTR_ERR(delayed_node);
1973
1974	/*
1975	 * We don't reserve space for inode ref deletion is because:
1976	 * - We ONLY do async inode ref deletion for the inode who has only
1977	 *   one link(i_nlink == 1), it means there is only one inode ref.
1978	 *   And in most case, the inode ref and the inode item are in the
1979	 *   same leaf, and we will deal with them at the same time.
1980	 *   Since we are sure we will reserve the space for the inode item,
1981	 *   it is unnecessary to reserve space for inode ref deletion.
1982	 * - If the inode ref and the inode item are not in the same leaf,
1983	 *   We also needn't worry about enospc problem, because we reserve
1984	 *   much more space for the inode update than it needs.
1985	 * - At the worst, we can steal some space from the global reservation.
1986	 *   It is very rare.
1987	 */
1988	mutex_lock(&delayed_node->mutex);
1989	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1990		goto release_node;
1991
1992	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1993	delayed_node->count++;
1994	atomic_inc(&fs_info->delayed_root->items);
1995release_node:
1996	mutex_unlock(&delayed_node->mutex);
1997	btrfs_release_delayed_node(delayed_node);
1998	return 0;
1999}
2000
2001static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
2002{
2003	struct btrfs_root *root = delayed_node->root;
2004	struct btrfs_fs_info *fs_info = root->fs_info;
2005	struct btrfs_delayed_item *curr_item, *prev_item;
2006
2007	mutex_lock(&delayed_node->mutex);
2008	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
2009	while (curr_item) {
 
2010		prev_item = curr_item;
2011		curr_item = __btrfs_next_delayed_item(prev_item);
2012		btrfs_release_delayed_item(prev_item);
2013	}
2014
2015	if (delayed_node->index_item_leaves > 0) {
2016		btrfs_delayed_item_release_leaves(delayed_node,
2017					  delayed_node->index_item_leaves);
2018		delayed_node->index_item_leaves = 0;
2019	}
2020
2021	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
2022	while (curr_item) {
2023		btrfs_delayed_item_release_metadata(root, curr_item);
2024		prev_item = curr_item;
2025		curr_item = __btrfs_next_delayed_item(prev_item);
2026		btrfs_release_delayed_item(prev_item);
2027	}
2028
2029	btrfs_release_delayed_iref(delayed_node);
 
2030
2031	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
2032		btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
2033		btrfs_release_delayed_inode(delayed_node);
2034	}
2035	mutex_unlock(&delayed_node->mutex);
2036}
2037
2038void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
2039{
2040	struct btrfs_delayed_node *delayed_node;
2041
2042	delayed_node = btrfs_get_delayed_node(inode);
2043	if (!delayed_node)
2044		return;
2045
2046	__btrfs_kill_delayed_node(delayed_node);
2047	btrfs_release_delayed_node(delayed_node);
2048}
2049
2050void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
2051{
2052	unsigned long index = 0;
2053	struct btrfs_delayed_node *delayed_nodes[8];
 
2054
2055	while (1) {
2056		struct btrfs_delayed_node *node;
2057		int count;
 
 
 
 
 
 
2058
2059		xa_lock(&root->delayed_nodes);
2060		if (xa_empty(&root->delayed_nodes)) {
2061			xa_unlock(&root->delayed_nodes);
2062			return;
2063		}
2064
2065		count = 0;
2066		xa_for_each_start(&root->delayed_nodes, index, node, index) {
2067			/*
2068			 * Don't increase refs in case the node is dead and
2069			 * about to be removed from the tree in the loop below
2070			 */
2071			if (refcount_inc_not_zero(&node->refs)) {
2072				delayed_nodes[count] = node;
2073				count++;
2074			}
2075			if (count >= ARRAY_SIZE(delayed_nodes))
2076				break;
2077		}
2078		xa_unlock(&root->delayed_nodes);
2079		index++;
2080
2081		for (int i = 0; i < count; i++) {
2082			__btrfs_kill_delayed_node(delayed_nodes[i]);
2083			btrfs_release_delayed_node(delayed_nodes[i]);
2084		}
2085	}
2086}
2087
2088void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
2089{
 
2090	struct btrfs_delayed_node *curr_node, *prev_node;
2091
2092	curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
 
 
2093	while (curr_node) {
2094		__btrfs_kill_delayed_node(curr_node);
2095
2096		prev_node = curr_node;
2097		curr_node = btrfs_next_delayed_node(curr_node);
2098		btrfs_release_delayed_node(prev_node);
2099	}
2100}
2101
2102void btrfs_log_get_delayed_items(struct btrfs_inode *inode,
2103				 struct list_head *ins_list,
2104				 struct list_head *del_list)
2105{
2106	struct btrfs_delayed_node *node;
2107	struct btrfs_delayed_item *item;
2108
2109	node = btrfs_get_delayed_node(inode);
2110	if (!node)
2111		return;
2112
2113	mutex_lock(&node->mutex);
2114	item = __btrfs_first_delayed_insertion_item(node);
2115	while (item) {
2116		/*
2117		 * It's possible that the item is already in a log list. This
2118		 * can happen in case two tasks are trying to log the same
2119		 * directory. For example if we have tasks A and task B:
2120		 *
2121		 * Task A collected the delayed items into a log list while
2122		 * under the inode's log_mutex (at btrfs_log_inode()), but it
2123		 * only releases the items after logging the inodes they point
2124		 * to (if they are new inodes), which happens after unlocking
2125		 * the log mutex;
2126		 *
2127		 * Task B enters btrfs_log_inode() and acquires the log_mutex
2128		 * of the same directory inode, before task B releases the
2129		 * delayed items. This can happen for example when logging some
2130		 * inode we need to trigger logging of its parent directory, so
2131		 * logging two files that have the same parent directory can
2132		 * lead to this.
2133		 *
2134		 * If this happens, just ignore delayed items already in a log
2135		 * list. All the tasks logging the directory are under a log
2136		 * transaction and whichever finishes first can not sync the log
2137		 * before the other completes and leaves the log transaction.
2138		 */
2139		if (!item->logged && list_empty(&item->log_list)) {
2140			refcount_inc(&item->refs);
2141			list_add_tail(&item->log_list, ins_list);
2142		}
2143		item = __btrfs_next_delayed_item(item);
2144	}
2145
2146	item = __btrfs_first_delayed_deletion_item(node);
2147	while (item) {
2148		/* It may be non-empty, for the same reason mentioned above. */
2149		if (!item->logged && list_empty(&item->log_list)) {
2150			refcount_inc(&item->refs);
2151			list_add_tail(&item->log_list, del_list);
2152		}
2153		item = __btrfs_next_delayed_item(item);
2154	}
2155	mutex_unlock(&node->mutex);
2156
2157	/*
2158	 * We are called during inode logging, which means the inode is in use
2159	 * and can not be evicted before we finish logging the inode. So we never
2160	 * have the last reference on the delayed inode.
2161	 * Also, we don't use btrfs_release_delayed_node() because that would
2162	 * requeue the delayed inode (change its order in the list of prepared
2163	 * nodes) and we don't want to do such change because we don't create or
2164	 * delete delayed items.
2165	 */
2166	ASSERT(refcount_read(&node->refs) > 1);
2167	refcount_dec(&node->refs);
2168}
2169
2170void btrfs_log_put_delayed_items(struct btrfs_inode *inode,
2171				 struct list_head *ins_list,
2172				 struct list_head *del_list)
2173{
2174	struct btrfs_delayed_node *node;
2175	struct btrfs_delayed_item *item;
2176	struct btrfs_delayed_item *next;
2177
2178	node = btrfs_get_delayed_node(inode);
2179	if (!node)
2180		return;
2181
2182	mutex_lock(&node->mutex);
2183
2184	list_for_each_entry_safe(item, next, ins_list, log_list) {
2185		item->logged = true;
2186		list_del_init(&item->log_list);
2187		if (refcount_dec_and_test(&item->refs))
2188			kfree(item);
2189	}
2190
2191	list_for_each_entry_safe(item, next, del_list, log_list) {
2192		item->logged = true;
2193		list_del_init(&item->log_list);
2194		if (refcount_dec_and_test(&item->refs))
2195			kfree(item);
2196	}
2197
2198	mutex_unlock(&node->mutex);
2199
2200	/*
2201	 * We are called during inode logging, which means the inode is in use
2202	 * and can not be evicted before we finish logging the inode. So we never
2203	 * have the last reference on the delayed inode.
2204	 * Also, we don't use btrfs_release_delayed_node() because that would
2205	 * requeue the delayed inode (change its order in the list of prepared
2206	 * nodes) and we don't want to do such change because we don't create or
2207	 * delete delayed items.
2208	 */
2209	ASSERT(refcount_read(&node->refs) > 1);
2210	refcount_dec(&node->refs);
2211}