Loading...
1/*
2 * linux/fs/befs/btree.c
3 *
4 * Copyright (C) 2001-2002 Will Dyson <will_dyson@pobox.com>
5 *
6 * Licensed under the GNU GPL. See the file COPYING for details.
7 *
8 * 2002-02-05: Sergey S. Kostyliov added binary search within
9 * btree nodes.
10 *
11 * Many thanks to:
12 *
13 * Dominic Giampaolo, author of "Practical File System
14 * Design with the Be File System", for such a helpful book.
15 *
16 * Marcus J. Ranum, author of the b+tree package in
17 * comp.sources.misc volume 10. This code is not copied from that
18 * work, but it is partially based on it.
19 *
20 * Makoto Kato, author of the original BeFS for linux filesystem
21 * driver.
22 */
23
24#include <linux/kernel.h>
25#include <linux/string.h>
26#include <linux/slab.h>
27#include <linux/mm.h>
28#include <linux/buffer_head.h>
29
30#include "befs.h"
31#include "btree.h"
32#include "datastream.h"
33
34/*
35 * The btree functions in this file are built on top of the
36 * datastream.c interface, which is in turn built on top of the
37 * io.c interface.
38 */
39
40/* Befs B+tree structure:
41 *
42 * The first thing in the tree is the tree superblock. It tells you
43 * all kinds of useful things about the tree, like where the rootnode
44 * is located, and the size of the nodes (always 1024 with current version
45 * of BeOS).
46 *
47 * The rest of the tree consists of a series of nodes. Nodes contain a header
48 * (struct befs_btree_nodehead), the packed key data, an array of shorts
49 * containing the ending offsets for each of the keys, and an array of
50 * befs_off_t values. In interior nodes, the keys are the ending keys for
51 * the childnode they point to, and the values are offsets into the
52 * datastream containing the tree.
53 */
54
55/* Note:
56 *
57 * The book states 2 confusing things about befs b+trees. First,
58 * it states that the overflow field of node headers is used by internal nodes
59 * to point to another node that "effectively continues this one". Here is what
60 * I believe that means. Each key in internal nodes points to another node that
61 * contains key values less than itself. Inspection reveals that the last key
62 * in the internal node is not the last key in the index. Keys that are
63 * greater than the last key in the internal node go into the overflow node.
64 * I imagine there is a performance reason for this.
65 *
66 * Second, it states that the header of a btree node is sufficient to
67 * distinguish internal nodes from leaf nodes. Without saying exactly how.
68 * After figuring out the first, it becomes obvious that internal nodes have
69 * overflow nodes and leafnodes do not.
70 */
71
72/*
73 * Currently, this code is only good for directory B+trees.
74 * In order to be used for other BFS indexes, it needs to be extended to handle
75 * duplicate keys and non-string keytypes (int32, int64, float, double).
76 */
77
78/*
79 * In memory structure of each btree node
80 */
81typedef struct {
82 befs_host_btree_nodehead head; /* head of node converted to cpu byteorder */
83 struct buffer_head *bh;
84 befs_btree_nodehead *od_node; /* on disk node */
85} befs_btree_node;
86
87/* local constants */
88static const befs_off_t befs_bt_inval = 0xffffffffffffffffULL;
89
90/* local functions */
91static int befs_btree_seekleaf(struct super_block *sb, befs_data_stream * ds,
92 befs_btree_super * bt_super,
93 befs_btree_node * this_node,
94 befs_off_t * node_off);
95
96static int befs_bt_read_super(struct super_block *sb, befs_data_stream * ds,
97 befs_btree_super * sup);
98
99static int befs_bt_read_node(struct super_block *sb, befs_data_stream * ds,
100 befs_btree_node * node, befs_off_t node_off);
101
102static int befs_leafnode(befs_btree_node * node);
103
104static fs16 *befs_bt_keylen_index(befs_btree_node * node);
105
106static fs64 *befs_bt_valarray(befs_btree_node * node);
107
108static char *befs_bt_keydata(befs_btree_node * node);
109
110static int befs_find_key(struct super_block *sb, befs_btree_node * node,
111 const char *findkey, befs_off_t * value);
112
113static char *befs_bt_get_key(struct super_block *sb, befs_btree_node * node,
114 int index, u16 * keylen);
115
116static int befs_compare_strings(const void *key1, int keylen1,
117 const void *key2, int keylen2);
118
119/**
120 * befs_bt_read_super - read in btree superblock convert to cpu byteorder
121 * @sb: Filesystem superblock
122 * @ds: Datastream to read from
123 * @sup: Buffer in which to place the btree superblock
124 *
125 * Calls befs_read_datastream to read in the btree superblock and
126 * makes sure it is in cpu byteorder, byteswapping if necessary.
127 *
128 * On success, returns BEFS_OK and *@sup contains the btree superblock,
129 * in cpu byte order.
130 *
131 * On failure, BEFS_ERR is returned.
132 */
133static int
134befs_bt_read_super(struct super_block *sb, befs_data_stream * ds,
135 befs_btree_super * sup)
136{
137 struct buffer_head *bh = NULL;
138 befs_disk_btree_super *od_sup = NULL;
139
140 befs_debug(sb, "---> %s", __func__);
141
142 bh = befs_read_datastream(sb, ds, 0, NULL);
143
144 if (!bh) {
145 befs_error(sb, "Couldn't read index header.");
146 goto error;
147 }
148 od_sup = (befs_disk_btree_super *) bh->b_data;
149 befs_dump_index_entry(sb, od_sup);
150
151 sup->magic = fs32_to_cpu(sb, od_sup->magic);
152 sup->node_size = fs32_to_cpu(sb, od_sup->node_size);
153 sup->max_depth = fs32_to_cpu(sb, od_sup->max_depth);
154 sup->data_type = fs32_to_cpu(sb, od_sup->data_type);
155 sup->root_node_ptr = fs64_to_cpu(sb, od_sup->root_node_ptr);
156 sup->free_node_ptr = fs64_to_cpu(sb, od_sup->free_node_ptr);
157 sup->max_size = fs64_to_cpu(sb, od_sup->max_size);
158
159 brelse(bh);
160 if (sup->magic != BEFS_BTREE_MAGIC) {
161 befs_error(sb, "Index header has bad magic.");
162 goto error;
163 }
164
165 befs_debug(sb, "<--- %s", __func__);
166 return BEFS_OK;
167
168 error:
169 befs_debug(sb, "<--- %s ERROR", __func__);
170 return BEFS_ERR;
171}
172
173/**
174 * befs_bt_read_node - read in btree node and convert to cpu byteorder
175 * @sb: Filesystem superblock
176 * @ds: Datastream to read from
177 * @node: Buffer in which to place the btree node
178 * @node_off: Starting offset (in bytes) of the node in @ds
179 *
180 * Calls befs_read_datastream to read in the indicated btree node and
181 * makes sure its header fields are in cpu byteorder, byteswapping if
182 * necessary.
183 * Note: node->bh must be NULL when this function called first
184 * time. Don't forget brelse(node->bh) after last call.
185 *
186 * On success, returns BEFS_OK and *@node contains the btree node that
187 * starts at @node_off, with the node->head fields in cpu byte order.
188 *
189 * On failure, BEFS_ERR is returned.
190 */
191
192static int
193befs_bt_read_node(struct super_block *sb, befs_data_stream * ds,
194 befs_btree_node * node, befs_off_t node_off)
195{
196 uint off = 0;
197
198 befs_debug(sb, "---> %s", __func__);
199
200 if (node->bh)
201 brelse(node->bh);
202
203 node->bh = befs_read_datastream(sb, ds, node_off, &off);
204 if (!node->bh) {
205 befs_error(sb, "%s failed to read "
206 "node at %llu", __func__, node_off);
207 befs_debug(sb, "<--- %s ERROR", __func__);
208
209 return BEFS_ERR;
210 }
211 node->od_node =
212 (befs_btree_nodehead *) ((void *) node->bh->b_data + off);
213
214 befs_dump_index_node(sb, node->od_node);
215
216 node->head.left = fs64_to_cpu(sb, node->od_node->left);
217 node->head.right = fs64_to_cpu(sb, node->od_node->right);
218 node->head.overflow = fs64_to_cpu(sb, node->od_node->overflow);
219 node->head.all_key_count =
220 fs16_to_cpu(sb, node->od_node->all_key_count);
221 node->head.all_key_length =
222 fs16_to_cpu(sb, node->od_node->all_key_length);
223
224 befs_debug(sb, "<--- %s", __func__);
225 return BEFS_OK;
226}
227
228/**
229 * befs_btree_find - Find a key in a befs B+tree
230 * @sb: Filesystem superblock
231 * @ds: Datastream containing btree
232 * @key: Key string to lookup in btree
233 * @value: Value stored with @key
234 *
235 * On success, returns BEFS_OK and sets *@value to the value stored
236 * with @key (usually the disk block number of an inode).
237 *
238 * On failure, returns BEFS_ERR or BEFS_BT_NOT_FOUND.
239 *
240 * Algorithm:
241 * Read the superblock and rootnode of the b+tree.
242 * Drill down through the interior nodes using befs_find_key().
243 * Once at the correct leaf node, use befs_find_key() again to get the
244 * actuall value stored with the key.
245 */
246int
247befs_btree_find(struct super_block *sb, befs_data_stream * ds,
248 const char *key, befs_off_t * value)
249{
250 befs_btree_node *this_node = NULL;
251 befs_btree_super bt_super;
252 befs_off_t node_off;
253 int res;
254
255 befs_debug(sb, "---> %s Key: %s", __func__, key);
256
257 if (befs_bt_read_super(sb, ds, &bt_super) != BEFS_OK) {
258 befs_error(sb,
259 "befs_btree_find() failed to read index superblock");
260 goto error;
261 }
262
263 this_node = kmalloc(sizeof (befs_btree_node),
264 GFP_NOFS);
265 if (!this_node) {
266 befs_error(sb, "befs_btree_find() failed to allocate %zu "
267 "bytes of memory", sizeof (befs_btree_node));
268 goto error;
269 }
270
271 this_node->bh = NULL;
272
273 /* read in root node */
274 node_off = bt_super.root_node_ptr;
275 if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) {
276 befs_error(sb, "befs_btree_find() failed to read "
277 "node at %llu", node_off);
278 goto error_alloc;
279 }
280
281 while (!befs_leafnode(this_node)) {
282 res = befs_find_key(sb, this_node, key, &node_off);
283 if (res == BEFS_BT_NOT_FOUND)
284 node_off = this_node->head.overflow;
285 /* if no match, go to overflow node */
286 if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) {
287 befs_error(sb, "befs_btree_find() failed to read "
288 "node at %llu", node_off);
289 goto error_alloc;
290 }
291 }
292
293 /* at the correct leaf node now */
294
295 res = befs_find_key(sb, this_node, key, value);
296
297 brelse(this_node->bh);
298 kfree(this_node);
299
300 if (res != BEFS_BT_MATCH) {
301 befs_debug(sb, "<--- %s Key %s not found", __func__, key);
302 *value = 0;
303 return BEFS_BT_NOT_FOUND;
304 }
305 befs_debug(sb, "<--- %s Found key %s, value %llu", __func__,
306 key, *value);
307 return BEFS_OK;
308
309 error_alloc:
310 kfree(this_node);
311 error:
312 *value = 0;
313 befs_debug(sb, "<--- %s ERROR", __func__);
314 return BEFS_ERR;
315}
316
317/**
318 * befs_find_key - Search for a key within a node
319 * @sb: Filesystem superblock
320 * @node: Node to find the key within
321 * @key: Keystring to search for
322 * @value: If key is found, the value stored with the key is put here
323 *
324 * finds exact match if one exists, and returns BEFS_BT_MATCH
325 * If no exact match, finds first key in node that is greater
326 * (alphabetically) than the search key and returns BEFS_BT_PARMATCH
327 * (for partial match, I guess). Can you think of something better to
328 * call it?
329 *
330 * If no key was a match or greater than the search key, return
331 * BEFS_BT_NOT_FOUND.
332 *
333 * Use binary search instead of a linear.
334 */
335static int
336befs_find_key(struct super_block *sb, befs_btree_node * node,
337 const char *findkey, befs_off_t * value)
338{
339 int first, last, mid;
340 int eq;
341 u16 keylen;
342 int findkey_len;
343 char *thiskey;
344 fs64 *valarray;
345
346 befs_debug(sb, "---> %s %s", __func__, findkey);
347
348 *value = 0;
349
350 findkey_len = strlen(findkey);
351
352 /* if node can not contain key, just skeep this node */
353 last = node->head.all_key_count - 1;
354 thiskey = befs_bt_get_key(sb, node, last, &keylen);
355
356 eq = befs_compare_strings(thiskey, keylen, findkey, findkey_len);
357 if (eq < 0) {
358 befs_debug(sb, "<--- %s %s not found", __func__, findkey);
359 return BEFS_BT_NOT_FOUND;
360 }
361
362 valarray = befs_bt_valarray(node);
363
364 /* simple binary search */
365 first = 0;
366 mid = 0;
367 while (last >= first) {
368 mid = (last + first) / 2;
369 befs_debug(sb, "first: %d, last: %d, mid: %d", first, last,
370 mid);
371 thiskey = befs_bt_get_key(sb, node, mid, &keylen);
372 eq = befs_compare_strings(thiskey, keylen, findkey,
373 findkey_len);
374
375 if (eq == 0) {
376 befs_debug(sb, "<--- %s found %s at %d",
377 __func__, thiskey, mid);
378
379 *value = fs64_to_cpu(sb, valarray[mid]);
380 return BEFS_BT_MATCH;
381 }
382 if (eq > 0)
383 last = mid - 1;
384 else
385 first = mid + 1;
386 }
387 if (eq < 0)
388 *value = fs64_to_cpu(sb, valarray[mid + 1]);
389 else
390 *value = fs64_to_cpu(sb, valarray[mid]);
391 befs_debug(sb, "<--- %s found %s at %d", __func__, thiskey, mid);
392 return BEFS_BT_PARMATCH;
393}
394
395/**
396 * befs_btree_read - Traverse leafnodes of a btree
397 * @sb: Filesystem superblock
398 * @ds: Datastream containing btree
399 * @key_no: Key number (alphabetical order) of key to read
400 * @bufsize: Size of the buffer to return key in
401 * @keybuf: Pointer to a buffer to put the key in
402 * @keysize: Length of the returned key
403 * @value: Value stored with the returned key
404 *
405 * Heres how it works: Key_no is the index of the key/value pair to
406 * return in keybuf/value.
407 * Bufsize is the size of keybuf (BEFS_NAME_LEN+1 is a good size). Keysize is
408 * the number of charecters in the key (just a convenience).
409 *
410 * Algorithm:
411 * Get the first leafnode of the tree. See if the requested key is in that
412 * node. If not, follow the node->right link to the next leafnode. Repeat
413 * until the (key_no)th key is found or the tree is out of keys.
414 */
415int
416befs_btree_read(struct super_block *sb, befs_data_stream * ds,
417 loff_t key_no, size_t bufsize, char *keybuf, size_t * keysize,
418 befs_off_t * value)
419{
420 befs_btree_node *this_node;
421 befs_btree_super bt_super;
422 befs_off_t node_off = 0;
423 int cur_key;
424 fs64 *valarray;
425 char *keystart;
426 u16 keylen;
427 int res;
428
429 uint key_sum = 0;
430
431 befs_debug(sb, "---> %s", __func__);
432
433 if (befs_bt_read_super(sb, ds, &bt_super) != BEFS_OK) {
434 befs_error(sb,
435 "befs_btree_read() failed to read index superblock");
436 goto error;
437 }
438
439 if ((this_node = kmalloc(sizeof (befs_btree_node), GFP_NOFS)) == NULL) {
440 befs_error(sb, "befs_btree_read() failed to allocate %zu "
441 "bytes of memory", sizeof (befs_btree_node));
442 goto error;
443 }
444
445 node_off = bt_super.root_node_ptr;
446 this_node->bh = NULL;
447
448 /* seeks down to first leafnode, reads it into this_node */
449 res = befs_btree_seekleaf(sb, ds, &bt_super, this_node, &node_off);
450 if (res == BEFS_BT_EMPTY) {
451 brelse(this_node->bh);
452 kfree(this_node);
453 *value = 0;
454 *keysize = 0;
455 befs_debug(sb, "<--- %s Tree is EMPTY", __func__);
456 return BEFS_BT_EMPTY;
457 } else if (res == BEFS_ERR) {
458 goto error_alloc;
459 }
460
461 /* find the leaf node containing the key_no key */
462
463 while (key_sum + this_node->head.all_key_count <= key_no) {
464
465 /* no more nodes to look in: key_no is too large */
466 if (this_node->head.right == befs_bt_inval) {
467 *keysize = 0;
468 *value = 0;
469 befs_debug(sb,
470 "<--- %s END of keys at %llu", __func__,
471 (unsigned long long)
472 key_sum + this_node->head.all_key_count);
473 brelse(this_node->bh);
474 kfree(this_node);
475 return BEFS_BT_END;
476 }
477
478 key_sum += this_node->head.all_key_count;
479 node_off = this_node->head.right;
480
481 if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) {
482 befs_error(sb, "%s failed to read node at %llu",
483 __func__, (unsigned long long)node_off);
484 goto error_alloc;
485 }
486 }
487
488 /* how many keys into this_node is key_no */
489 cur_key = key_no - key_sum;
490
491 /* get pointers to datastructures within the node body */
492 valarray = befs_bt_valarray(this_node);
493
494 keystart = befs_bt_get_key(sb, this_node, cur_key, &keylen);
495
496 befs_debug(sb, "Read [%llu,%d]: keysize %d",
497 (long long unsigned int)node_off, (int)cur_key,
498 (int)keylen);
499
500 if (bufsize < keylen + 1) {
501 befs_error(sb, "%s keybuf too small (%zu) "
502 "for key of size %d", __func__, bufsize, keylen);
503 brelse(this_node->bh);
504 goto error_alloc;
505 };
506
507 strncpy(keybuf, keystart, keylen);
508 *value = fs64_to_cpu(sb, valarray[cur_key]);
509 *keysize = keylen;
510 keybuf[keylen] = '\0';
511
512 befs_debug(sb, "Read [%llu,%d]: Key \"%.*s\", Value %llu", node_off,
513 cur_key, keylen, keybuf, *value);
514
515 brelse(this_node->bh);
516 kfree(this_node);
517
518 befs_debug(sb, "<--- %s", __func__);
519
520 return BEFS_OK;
521
522 error_alloc:
523 kfree(this_node);
524
525 error:
526 *keysize = 0;
527 *value = 0;
528 befs_debug(sb, "<--- %s ERROR", __func__);
529 return BEFS_ERR;
530}
531
532/**
533 * befs_btree_seekleaf - Find the first leafnode in the btree
534 * @sb: Filesystem superblock
535 * @ds: Datastream containing btree
536 * @bt_super: Pointer to the superblock of the btree
537 * @this_node: Buffer to return the leafnode in
538 * @node_off: Pointer to offset of current node within datastream. Modified
539 * by the function.
540 *
541 *
542 * Helper function for btree traverse. Moves the current position to the
543 * start of the first leaf node.
544 *
545 * Also checks for an empty tree. If there are no keys, returns BEFS_BT_EMPTY.
546 */
547static int
548befs_btree_seekleaf(struct super_block *sb, befs_data_stream * ds,
549 befs_btree_super * bt_super, befs_btree_node * this_node,
550 befs_off_t * node_off)
551{
552
553 befs_debug(sb, "---> %s", __func__);
554
555 if (befs_bt_read_node(sb, ds, this_node, *node_off) != BEFS_OK) {
556 befs_error(sb, "%s failed to read "
557 "node at %llu", __func__, *node_off);
558 goto error;
559 }
560 befs_debug(sb, "Seekleaf to root node %llu", *node_off);
561
562 if (this_node->head.all_key_count == 0 && befs_leafnode(this_node)) {
563 befs_debug(sb, "<--- %s Tree is EMPTY", __func__);
564 return BEFS_BT_EMPTY;
565 }
566
567 while (!befs_leafnode(this_node)) {
568
569 if (this_node->head.all_key_count == 0) {
570 befs_debug(sb, "%s encountered "
571 "an empty interior node: %llu. Using Overflow "
572 "node: %llu", __func__, *node_off,
573 this_node->head.overflow);
574 *node_off = this_node->head.overflow;
575 } else {
576 fs64 *valarray = befs_bt_valarray(this_node);
577 *node_off = fs64_to_cpu(sb, valarray[0]);
578 }
579 if (befs_bt_read_node(sb, ds, this_node, *node_off) != BEFS_OK) {
580 befs_error(sb, "%s failed to read "
581 "node at %llu", __func__, *node_off);
582 goto error;
583 }
584
585 befs_debug(sb, "Seekleaf to child node %llu", *node_off);
586 }
587 befs_debug(sb, "Node %llu is a leaf node", *node_off);
588
589 return BEFS_OK;
590
591 error:
592 befs_debug(sb, "<--- %s ERROR", __func__);
593 return BEFS_ERR;
594}
595
596/**
597 * befs_leafnode - Determine if the btree node is a leaf node or an
598 * interior node
599 * @node: Pointer to node structure to test
600 *
601 * Return 1 if leaf, 0 if interior
602 */
603static int
604befs_leafnode(befs_btree_node * node)
605{
606 /* all interior nodes (and only interior nodes) have an overflow node */
607 if (node->head.overflow == befs_bt_inval)
608 return 1;
609 else
610 return 0;
611}
612
613/**
614 * befs_bt_keylen_index - Finds start of keylen index in a node
615 * @node: Pointer to the node structure to find the keylen index within
616 *
617 * Returns a pointer to the start of the key length index array
618 * of the B+tree node *@node
619 *
620 * "The length of all the keys in the node is added to the size of the
621 * header and then rounded up to a multiple of four to get the beginning
622 * of the key length index" (p.88, practical filesystem design).
623 *
624 * Except that rounding up to 8 works, and rounding up to 4 doesn't.
625 */
626static fs16 *
627befs_bt_keylen_index(befs_btree_node * node)
628{
629 const int keylen_align = 8;
630 unsigned long int off =
631 (sizeof (befs_btree_nodehead) + node->head.all_key_length);
632 ulong tmp = off % keylen_align;
633
634 if (tmp)
635 off += keylen_align - tmp;
636
637 return (fs16 *) ((void *) node->od_node + off);
638}
639
640/**
641 * befs_bt_valarray - Finds the start of value array in a node
642 * @node: Pointer to the node structure to find the value array within
643 *
644 * Returns a pointer to the start of the value array
645 * of the node pointed to by the node header
646 */
647static fs64 *
648befs_bt_valarray(befs_btree_node * node)
649{
650 void *keylen_index_start = (void *) befs_bt_keylen_index(node);
651 size_t keylen_index_size = node->head.all_key_count * sizeof (fs16);
652
653 return (fs64 *) (keylen_index_start + keylen_index_size);
654}
655
656/**
657 * befs_bt_keydata - Finds start of keydata array in a node
658 * @node: Pointer to the node structure to find the keydata array within
659 *
660 * Returns a pointer to the start of the keydata array
661 * of the node pointed to by the node header
662 */
663static char *
664befs_bt_keydata(befs_btree_node * node)
665{
666 return (char *) ((void *) node->od_node + sizeof (befs_btree_nodehead));
667}
668
669/**
670 * befs_bt_get_key - returns a pointer to the start of a key
671 * @sb: filesystem superblock
672 * @node: node in which to look for the key
673 * @index: the index of the key to get
674 * @keylen: modified to be the length of the key at @index
675 *
676 * Returns a valid pointer into @node on success.
677 * Returns NULL on failure (bad input) and sets *@keylen = 0
678 */
679static char *
680befs_bt_get_key(struct super_block *sb, befs_btree_node * node,
681 int index, u16 * keylen)
682{
683 int prev_key_end;
684 char *keystart;
685 fs16 *keylen_index;
686
687 if (index < 0 || index > node->head.all_key_count) {
688 *keylen = 0;
689 return NULL;
690 }
691
692 keystart = befs_bt_keydata(node);
693 keylen_index = befs_bt_keylen_index(node);
694
695 if (index == 0)
696 prev_key_end = 0;
697 else
698 prev_key_end = fs16_to_cpu(sb, keylen_index[index - 1]);
699
700 *keylen = fs16_to_cpu(sb, keylen_index[index]) - prev_key_end;
701
702 return keystart + prev_key_end;
703}
704
705/**
706 * befs_compare_strings - compare two strings
707 * @key1: pointer to the first key to be compared
708 * @keylen1: length in bytes of key1
709 * @key2: pointer to the second key to be compared
710 * @kelen2: length in bytes of key2
711 *
712 * Returns 0 if @key1 and @key2 are equal.
713 * Returns >0 if @key1 is greater.
714 * Returns <0 if @key2 is greater..
715 */
716static int
717befs_compare_strings(const void *key1, int keylen1,
718 const void *key2, int keylen2)
719{
720 int len = min_t(int, keylen1, keylen2);
721 int result = strncmp(key1, key2, len);
722 if (result == 0)
723 result = keylen1 - keylen2;
724 return result;
725}
726
727/* These will be used for non-string keyed btrees */
728#if 0
729static int
730btree_compare_int32(cont void *key1, int keylen1, const void *key2, int keylen2)
731{
732 return *(int32_t *) key1 - *(int32_t *) key2;
733}
734
735static int
736btree_compare_uint32(cont void *key1, int keylen1,
737 const void *key2, int keylen2)
738{
739 if (*(u_int32_t *) key1 == *(u_int32_t *) key2)
740 return 0;
741 else if (*(u_int32_t *) key1 > *(u_int32_t *) key2)
742 return 1;
743
744 return -1;
745}
746static int
747btree_compare_int64(cont void *key1, int keylen1, const void *key2, int keylen2)
748{
749 if (*(int64_t *) key1 == *(int64_t *) key2)
750 return 0;
751 else if (*(int64_t *) key1 > *(int64_t *) key2)
752 return 1;
753
754 return -1;
755}
756
757static int
758btree_compare_uint64(cont void *key1, int keylen1,
759 const void *key2, int keylen2)
760{
761 if (*(u_int64_t *) key1 == *(u_int64_t *) key2)
762 return 0;
763 else if (*(u_int64_t *) key1 > *(u_int64_t *) key2)
764 return 1;
765
766 return -1;
767}
768
769static int
770btree_compare_float(cont void *key1, int keylen1, const void *key2, int keylen2)
771{
772 float result = *(float *) key1 - *(float *) key2;
773 if (result == 0.0f)
774 return 0;
775
776 return (result < 0.0f) ? -1 : 1;
777}
778
779static int
780btree_compare_double(cont void *key1, int keylen1,
781 const void *key2, int keylen2)
782{
783 double result = *(double *) key1 - *(double *) key2;
784 if (result == 0.0)
785 return 0;
786
787 return (result < 0.0) ? -1 : 1;
788}
789#endif //0
1/*
2 * linux/fs/befs/btree.c
3 *
4 * Copyright (C) 2001-2002 Will Dyson <will_dyson@pobox.com>
5 *
6 * Licensed under the GNU GPL. See the file COPYING for details.
7 *
8 * 2002-02-05: Sergey S. Kostyliov added binary search within
9 * btree nodes.
10 *
11 * Many thanks to:
12 *
13 * Dominic Giampaolo, author of "Practical File System
14 * Design with the Be File System", for such a helpful book.
15 *
16 * Marcus J. Ranum, author of the b+tree package in
17 * comp.sources.misc volume 10. This code is not copied from that
18 * work, but it is partially based on it.
19 *
20 * Makoto Kato, author of the original BeFS for linux filesystem
21 * driver.
22 */
23
24#include <linux/kernel.h>
25#include <linux/string.h>
26#include <linux/slab.h>
27#include <linux/mm.h>
28#include <linux/buffer_head.h>
29
30#include "befs.h"
31#include "btree.h"
32#include "datastream.h"
33
34/*
35 * The btree functions in this file are built on top of the
36 * datastream.c interface, which is in turn built on top of the
37 * io.c interface.
38 */
39
40/* Befs B+tree structure:
41 *
42 * The first thing in the tree is the tree superblock. It tells you
43 * all kinds of useful things about the tree, like where the rootnode
44 * is located, and the size of the nodes (always 1024 with current version
45 * of BeOS).
46 *
47 * The rest of the tree consists of a series of nodes. Nodes contain a header
48 * (struct befs_btree_nodehead), the packed key data, an array of shorts
49 * containing the ending offsets for each of the keys, and an array of
50 * befs_off_t values. In interior nodes, the keys are the ending keys for
51 * the childnode they point to, and the values are offsets into the
52 * datastream containing the tree.
53 */
54
55/* Note:
56 *
57 * The book states 2 confusing things about befs b+trees. First,
58 * it states that the overflow field of node headers is used by internal nodes
59 * to point to another node that "effectively continues this one". Here is what
60 * I believe that means. Each key in internal nodes points to another node that
61 * contains key values less than itself. Inspection reveals that the last key
62 * in the internal node is not the last key in the index. Keys that are
63 * greater than the last key in the internal node go into the overflow node.
64 * I imagine there is a performance reason for this.
65 *
66 * Second, it states that the header of a btree node is sufficient to
67 * distinguish internal nodes from leaf nodes. Without saying exactly how.
68 * After figuring out the first, it becomes obvious that internal nodes have
69 * overflow nodes and leafnodes do not.
70 */
71
72/*
73 * Currently, this code is only good for directory B+trees.
74 * In order to be used for other BFS indexes, it needs to be extended to handle
75 * duplicate keys and non-string keytypes (int32, int64, float, double).
76 */
77
78/*
79 * In memory structure of each btree node
80 */
81struct befs_btree_node {
82 befs_host_btree_nodehead head; /* head of node converted to cpu byteorder */
83 struct buffer_head *bh;
84 befs_btree_nodehead *od_node; /* on disk node */
85};
86
87/* local constants */
88static const befs_off_t BEFS_BT_INVAL = 0xffffffffffffffffULL;
89
90/* local functions */
91static int befs_btree_seekleaf(struct super_block *sb, const befs_data_stream *ds,
92 befs_btree_super * bt_super,
93 struct befs_btree_node *this_node,
94 befs_off_t * node_off);
95
96static int befs_bt_read_super(struct super_block *sb, const befs_data_stream *ds,
97 befs_btree_super * sup);
98
99static int befs_bt_read_node(struct super_block *sb, const befs_data_stream *ds,
100 struct befs_btree_node *node,
101 befs_off_t node_off);
102
103static int befs_leafnode(struct befs_btree_node *node);
104
105static fs16 *befs_bt_keylen_index(struct befs_btree_node *node);
106
107static fs64 *befs_bt_valarray(struct befs_btree_node *node);
108
109static char *befs_bt_keydata(struct befs_btree_node *node);
110
111static int befs_find_key(struct super_block *sb,
112 struct befs_btree_node *node,
113 const char *findkey, befs_off_t * value);
114
115static char *befs_bt_get_key(struct super_block *sb,
116 struct befs_btree_node *node,
117 int index, u16 * keylen);
118
119static int befs_compare_strings(const void *key1, int keylen1,
120 const void *key2, int keylen2);
121
122/**
123 * befs_bt_read_super() - read in btree superblock convert to cpu byteorder
124 * @sb: Filesystem superblock
125 * @ds: Datastream to read from
126 * @sup: Buffer in which to place the btree superblock
127 *
128 * Calls befs_read_datastream to read in the btree superblock and
129 * makes sure it is in cpu byteorder, byteswapping if necessary.
130 * Return: BEFS_OK on success and if *@sup contains the btree superblock in cpu
131 * byte order. Otherwise return BEFS_ERR on error.
132 */
133static int
134befs_bt_read_super(struct super_block *sb, const befs_data_stream *ds,
135 befs_btree_super * sup)
136{
137 struct buffer_head *bh;
138 befs_disk_btree_super *od_sup;
139
140 befs_debug(sb, "---> %s", __func__);
141
142 bh = befs_read_datastream(sb, ds, 0, NULL);
143
144 if (!bh) {
145 befs_error(sb, "Couldn't read index header.");
146 goto error;
147 }
148 od_sup = (befs_disk_btree_super *) bh->b_data;
149 befs_dump_index_entry(sb, od_sup);
150
151 sup->magic = fs32_to_cpu(sb, od_sup->magic);
152 sup->node_size = fs32_to_cpu(sb, od_sup->node_size);
153 sup->max_depth = fs32_to_cpu(sb, od_sup->max_depth);
154 sup->data_type = fs32_to_cpu(sb, od_sup->data_type);
155 sup->root_node_ptr = fs64_to_cpu(sb, od_sup->root_node_ptr);
156
157 brelse(bh);
158 if (sup->magic != BEFS_BTREE_MAGIC) {
159 befs_error(sb, "Index header has bad magic.");
160 goto error;
161 }
162
163 befs_debug(sb, "<--- %s", __func__);
164 return BEFS_OK;
165
166 error:
167 befs_debug(sb, "<--- %s ERROR", __func__);
168 return BEFS_ERR;
169}
170
171/**
172 * befs_bt_read_node - read in btree node and convert to cpu byteorder
173 * @sb: Filesystem superblock
174 * @ds: Datastream to read from
175 * @node: Buffer in which to place the btree node
176 * @node_off: Starting offset (in bytes) of the node in @ds
177 *
178 * Calls befs_read_datastream to read in the indicated btree node and
179 * makes sure its header fields are in cpu byteorder, byteswapping if
180 * necessary.
181 * Note: node->bh must be NULL when this function is called the first time.
182 * Don't forget brelse(node->bh) after last call.
183 *
184 * On success, returns BEFS_OK and *@node contains the btree node that
185 * starts at @node_off, with the node->head fields in cpu byte order.
186 *
187 * On failure, BEFS_ERR is returned.
188 */
189
190static int
191befs_bt_read_node(struct super_block *sb, const befs_data_stream *ds,
192 struct befs_btree_node *node, befs_off_t node_off)
193{
194 uint off = 0;
195
196 befs_debug(sb, "---> %s", __func__);
197
198 if (node->bh)
199 brelse(node->bh);
200
201 node->bh = befs_read_datastream(sb, ds, node_off, &off);
202 if (!node->bh) {
203 befs_error(sb, "%s failed to read "
204 "node at %llu", __func__, node_off);
205 befs_debug(sb, "<--- %s ERROR", __func__);
206
207 return BEFS_ERR;
208 }
209 node->od_node =
210 (befs_btree_nodehead *) ((void *) node->bh->b_data + off);
211
212 befs_dump_index_node(sb, node->od_node);
213
214 node->head.left = fs64_to_cpu(sb, node->od_node->left);
215 node->head.right = fs64_to_cpu(sb, node->od_node->right);
216 node->head.overflow = fs64_to_cpu(sb, node->od_node->overflow);
217 node->head.all_key_count =
218 fs16_to_cpu(sb, node->od_node->all_key_count);
219 node->head.all_key_length =
220 fs16_to_cpu(sb, node->od_node->all_key_length);
221
222 befs_debug(sb, "<--- %s", __func__);
223 return BEFS_OK;
224}
225
226/**
227 * befs_btree_find - Find a key in a befs B+tree
228 * @sb: Filesystem superblock
229 * @ds: Datastream containing btree
230 * @key: Key string to lookup in btree
231 * @value: Value stored with @key
232 *
233 * On success, returns BEFS_OK and sets *@value to the value stored
234 * with @key (usually the disk block number of an inode).
235 *
236 * On failure, returns BEFS_ERR or BEFS_BT_NOT_FOUND.
237 *
238 * Algorithm:
239 * Read the superblock and rootnode of the b+tree.
240 * Drill down through the interior nodes using befs_find_key().
241 * Once at the correct leaf node, use befs_find_key() again to get the
242 * actual value stored with the key.
243 */
244int
245befs_btree_find(struct super_block *sb, const befs_data_stream *ds,
246 const char *key, befs_off_t * value)
247{
248 struct befs_btree_node *this_node;
249 befs_btree_super bt_super;
250 befs_off_t node_off;
251 int res;
252
253 befs_debug(sb, "---> %s Key: %s", __func__, key);
254
255 if (befs_bt_read_super(sb, ds, &bt_super) != BEFS_OK) {
256 befs_error(sb,
257 "befs_btree_find() failed to read index superblock");
258 goto error;
259 }
260
261 this_node = kmalloc(sizeof(struct befs_btree_node),
262 GFP_NOFS);
263 if (!this_node) {
264 befs_error(sb, "befs_btree_find() failed to allocate %zu "
265 "bytes of memory", sizeof(struct befs_btree_node));
266 goto error;
267 }
268
269 this_node->bh = NULL;
270
271 /* read in root node */
272 node_off = bt_super.root_node_ptr;
273 if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) {
274 befs_error(sb, "befs_btree_find() failed to read "
275 "node at %llu", node_off);
276 goto error_alloc;
277 }
278
279 while (!befs_leafnode(this_node)) {
280 res = befs_find_key(sb, this_node, key, &node_off);
281 /* if no key set, try the overflow node */
282 if (res == BEFS_BT_OVERFLOW)
283 node_off = this_node->head.overflow;
284 if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) {
285 befs_error(sb, "befs_btree_find() failed to read "
286 "node at %llu", node_off);
287 goto error_alloc;
288 }
289 }
290
291 /* at a leaf node now, check if it is correct */
292 res = befs_find_key(sb, this_node, key, value);
293
294 brelse(this_node->bh);
295 kfree(this_node);
296
297 if (res != BEFS_BT_MATCH) {
298 befs_error(sb, "<--- %s Key %s not found", __func__, key);
299 befs_debug(sb, "<--- %s ERROR", __func__);
300 *value = 0;
301 return BEFS_BT_NOT_FOUND;
302 }
303 befs_debug(sb, "<--- %s Found key %s, value %llu", __func__,
304 key, *value);
305 return BEFS_OK;
306
307 error_alloc:
308 kfree(this_node);
309 error:
310 *value = 0;
311 befs_debug(sb, "<--- %s ERROR", __func__);
312 return BEFS_ERR;
313}
314
315/**
316 * befs_find_key - Search for a key within a node
317 * @sb: Filesystem superblock
318 * @node: Node to find the key within
319 * @findkey: Keystring to search for
320 * @value: If key is found, the value stored with the key is put here
321 *
322 * Finds exact match if one exists, and returns BEFS_BT_MATCH.
323 * If there is no match and node's value array is too small for key, return
324 * BEFS_BT_OVERFLOW.
325 * If no match and node should countain this key, return BEFS_BT_NOT_FOUND.
326 *
327 * Uses binary search instead of a linear.
328 */
329static int
330befs_find_key(struct super_block *sb, struct befs_btree_node *node,
331 const char *findkey, befs_off_t * value)
332{
333 int first, last, mid;
334 int eq;
335 u16 keylen;
336 int findkey_len;
337 char *thiskey;
338 fs64 *valarray;
339
340 befs_debug(sb, "---> %s %s", __func__, findkey);
341
342 findkey_len = strlen(findkey);
343
344 /* if node can not contain key, just skip this node */
345 last = node->head.all_key_count - 1;
346 thiskey = befs_bt_get_key(sb, node, last, &keylen);
347
348 eq = befs_compare_strings(thiskey, keylen, findkey, findkey_len);
349 if (eq < 0) {
350 befs_debug(sb, "<--- node can't contain %s", findkey);
351 return BEFS_BT_OVERFLOW;
352 }
353
354 valarray = befs_bt_valarray(node);
355
356 /* simple binary search */
357 first = 0;
358 mid = 0;
359 while (last >= first) {
360 mid = (last + first) / 2;
361 befs_debug(sb, "first: %d, last: %d, mid: %d", first, last,
362 mid);
363 thiskey = befs_bt_get_key(sb, node, mid, &keylen);
364 eq = befs_compare_strings(thiskey, keylen, findkey,
365 findkey_len);
366
367 if (eq == 0) {
368 befs_debug(sb, "<--- %s found %s at %d",
369 __func__, thiskey, mid);
370
371 *value = fs64_to_cpu(sb, valarray[mid]);
372 return BEFS_BT_MATCH;
373 }
374 if (eq > 0)
375 last = mid - 1;
376 else
377 first = mid + 1;
378 }
379
380 /* return an existing value so caller can arrive to a leaf node */
381 if (eq < 0)
382 *value = fs64_to_cpu(sb, valarray[mid + 1]);
383 else
384 *value = fs64_to_cpu(sb, valarray[mid]);
385 befs_error(sb, "<--- %s %s not found", __func__, findkey);
386 befs_debug(sb, "<--- %s ERROR", __func__);
387 return BEFS_BT_NOT_FOUND;
388}
389
390/**
391 * befs_btree_read - Traverse leafnodes of a btree
392 * @sb: Filesystem superblock
393 * @ds: Datastream containing btree
394 * @key_no: Key number (alphabetical order) of key to read
395 * @bufsize: Size of the buffer to return key in
396 * @keybuf: Pointer to a buffer to put the key in
397 * @keysize: Length of the returned key
398 * @value: Value stored with the returned key
399 *
400 * Here's how it works: Key_no is the index of the key/value pair to
401 * return in keybuf/value.
402 * Bufsize is the size of keybuf (BEFS_NAME_LEN+1 is a good size). Keysize is
403 * the number of characters in the key (just a convenience).
404 *
405 * Algorithm:
406 * Get the first leafnode of the tree. See if the requested key is in that
407 * node. If not, follow the node->right link to the next leafnode. Repeat
408 * until the (key_no)th key is found or the tree is out of keys.
409 */
410int
411befs_btree_read(struct super_block *sb, const befs_data_stream *ds,
412 loff_t key_no, size_t bufsize, char *keybuf, size_t * keysize,
413 befs_off_t * value)
414{
415 struct befs_btree_node *this_node;
416 befs_btree_super bt_super;
417 befs_off_t node_off;
418 int cur_key;
419 fs64 *valarray;
420 char *keystart;
421 u16 keylen;
422 int res;
423
424 uint key_sum = 0;
425
426 befs_debug(sb, "---> %s", __func__);
427
428 if (befs_bt_read_super(sb, ds, &bt_super) != BEFS_OK) {
429 befs_error(sb,
430 "befs_btree_read() failed to read index superblock");
431 goto error;
432 }
433
434 this_node = kmalloc(sizeof(struct befs_btree_node), GFP_NOFS);
435 if (this_node == NULL) {
436 befs_error(sb, "befs_btree_read() failed to allocate %zu "
437 "bytes of memory", sizeof(struct befs_btree_node));
438 goto error;
439 }
440
441 node_off = bt_super.root_node_ptr;
442 this_node->bh = NULL;
443
444 /* seeks down to first leafnode, reads it into this_node */
445 res = befs_btree_seekleaf(sb, ds, &bt_super, this_node, &node_off);
446 if (res == BEFS_BT_EMPTY) {
447 brelse(this_node->bh);
448 kfree(this_node);
449 *value = 0;
450 *keysize = 0;
451 befs_debug(sb, "<--- %s Tree is EMPTY", __func__);
452 return BEFS_BT_EMPTY;
453 } else if (res == BEFS_ERR) {
454 goto error_alloc;
455 }
456
457 /* find the leaf node containing the key_no key */
458
459 while (key_sum + this_node->head.all_key_count <= key_no) {
460
461 /* no more nodes to look in: key_no is too large */
462 if (this_node->head.right == BEFS_BT_INVAL) {
463 *keysize = 0;
464 *value = 0;
465 befs_debug(sb,
466 "<--- %s END of keys at %llu", __func__,
467 (unsigned long long)
468 key_sum + this_node->head.all_key_count);
469 brelse(this_node->bh);
470 kfree(this_node);
471 return BEFS_BT_END;
472 }
473
474 key_sum += this_node->head.all_key_count;
475 node_off = this_node->head.right;
476
477 if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) {
478 befs_error(sb, "%s failed to read node at %llu",
479 __func__, (unsigned long long)node_off);
480 goto error_alloc;
481 }
482 }
483
484 /* how many keys into this_node is key_no */
485 cur_key = key_no - key_sum;
486
487 /* get pointers to datastructures within the node body */
488 valarray = befs_bt_valarray(this_node);
489
490 keystart = befs_bt_get_key(sb, this_node, cur_key, &keylen);
491
492 befs_debug(sb, "Read [%llu,%d]: keysize %d",
493 (long long unsigned int)node_off, (int)cur_key,
494 (int)keylen);
495
496 if (bufsize < keylen + 1) {
497 befs_error(sb, "%s keybuf too small (%zu) "
498 "for key of size %d", __func__, bufsize, keylen);
499 brelse(this_node->bh);
500 goto error_alloc;
501 }
502
503 strscpy(keybuf, keystart, keylen + 1);
504 *value = fs64_to_cpu(sb, valarray[cur_key]);
505 *keysize = keylen;
506
507 befs_debug(sb, "Read [%llu,%d]: Key \"%.*s\", Value %llu", node_off,
508 cur_key, keylen, keybuf, *value);
509
510 brelse(this_node->bh);
511 kfree(this_node);
512
513 befs_debug(sb, "<--- %s", __func__);
514
515 return BEFS_OK;
516
517 error_alloc:
518 kfree(this_node);
519
520 error:
521 *keysize = 0;
522 *value = 0;
523 befs_debug(sb, "<--- %s ERROR", __func__);
524 return BEFS_ERR;
525}
526
527/**
528 * befs_btree_seekleaf - Find the first leafnode in the btree
529 * @sb: Filesystem superblock
530 * @ds: Datastream containing btree
531 * @bt_super: Pointer to the superblock of the btree
532 * @this_node: Buffer to return the leafnode in
533 * @node_off: Pointer to offset of current node within datastream. Modified
534 * by the function.
535 *
536 * Helper function for btree traverse. Moves the current position to the
537 * start of the first leaf node.
538 *
539 * Also checks for an empty tree. If there are no keys, returns BEFS_BT_EMPTY.
540 */
541static int
542befs_btree_seekleaf(struct super_block *sb, const befs_data_stream *ds,
543 befs_btree_super *bt_super,
544 struct befs_btree_node *this_node,
545 befs_off_t * node_off)
546{
547
548 befs_debug(sb, "---> %s", __func__);
549
550 if (befs_bt_read_node(sb, ds, this_node, *node_off) != BEFS_OK) {
551 befs_error(sb, "%s failed to read "
552 "node at %llu", __func__, *node_off);
553 goto error;
554 }
555 befs_debug(sb, "Seekleaf to root node %llu", *node_off);
556
557 if (this_node->head.all_key_count == 0 && befs_leafnode(this_node)) {
558 befs_debug(sb, "<--- %s Tree is EMPTY", __func__);
559 return BEFS_BT_EMPTY;
560 }
561
562 while (!befs_leafnode(this_node)) {
563
564 if (this_node->head.all_key_count == 0) {
565 befs_debug(sb, "%s encountered "
566 "an empty interior node: %llu. Using Overflow "
567 "node: %llu", __func__, *node_off,
568 this_node->head.overflow);
569 *node_off = this_node->head.overflow;
570 } else {
571 fs64 *valarray = befs_bt_valarray(this_node);
572 *node_off = fs64_to_cpu(sb, valarray[0]);
573 }
574 if (befs_bt_read_node(sb, ds, this_node, *node_off) != BEFS_OK) {
575 befs_error(sb, "%s failed to read "
576 "node at %llu", __func__, *node_off);
577 goto error;
578 }
579
580 befs_debug(sb, "Seekleaf to child node %llu", *node_off);
581 }
582 befs_debug(sb, "Node %llu is a leaf node", *node_off);
583
584 return BEFS_OK;
585
586 error:
587 befs_debug(sb, "<--- %s ERROR", __func__);
588 return BEFS_ERR;
589}
590
591/**
592 * befs_leafnode - Determine if the btree node is a leaf node or an
593 * interior node
594 * @node: Pointer to node structure to test
595 *
596 * Return 1 if leaf, 0 if interior
597 */
598static int
599befs_leafnode(struct befs_btree_node *node)
600{
601 /* all interior nodes (and only interior nodes) have an overflow node */
602 if (node->head.overflow == BEFS_BT_INVAL)
603 return 1;
604 else
605 return 0;
606}
607
608/**
609 * befs_bt_keylen_index - Finds start of keylen index in a node
610 * @node: Pointer to the node structure to find the keylen index within
611 *
612 * Returns a pointer to the start of the key length index array
613 * of the B+tree node *@node
614 *
615 * "The length of all the keys in the node is added to the size of the
616 * header and then rounded up to a multiple of four to get the beginning
617 * of the key length index" (p.88, practical filesystem design).
618 *
619 * Except that rounding up to 8 works, and rounding up to 4 doesn't.
620 */
621static fs16 *
622befs_bt_keylen_index(struct befs_btree_node *node)
623{
624 const int keylen_align = 8;
625 unsigned long int off =
626 (sizeof (befs_btree_nodehead) + node->head.all_key_length);
627 ulong tmp = off % keylen_align;
628
629 if (tmp)
630 off += keylen_align - tmp;
631
632 return (fs16 *) ((void *) node->od_node + off);
633}
634
635/**
636 * befs_bt_valarray - Finds the start of value array in a node
637 * @node: Pointer to the node structure to find the value array within
638 *
639 * Returns a pointer to the start of the value array
640 * of the node pointed to by the node header
641 */
642static fs64 *
643befs_bt_valarray(struct befs_btree_node *node)
644{
645 void *keylen_index_start = (void *) befs_bt_keylen_index(node);
646 size_t keylen_index_size = node->head.all_key_count * sizeof (fs16);
647
648 return (fs64 *) (keylen_index_start + keylen_index_size);
649}
650
651/**
652 * befs_bt_keydata - Finds start of keydata array in a node
653 * @node: Pointer to the node structure to find the keydata array within
654 *
655 * Returns a pointer to the start of the keydata array
656 * of the node pointed to by the node header
657 */
658static char *
659befs_bt_keydata(struct befs_btree_node *node)
660{
661 return (char *) ((void *) node->od_node + sizeof (befs_btree_nodehead));
662}
663
664/**
665 * befs_bt_get_key - returns a pointer to the start of a key
666 * @sb: filesystem superblock
667 * @node: node in which to look for the key
668 * @index: the index of the key to get
669 * @keylen: modified to be the length of the key at @index
670 *
671 * Returns a valid pointer into @node on success.
672 * Returns NULL on failure (bad input) and sets *@keylen = 0
673 */
674static char *
675befs_bt_get_key(struct super_block *sb, struct befs_btree_node *node,
676 int index, u16 * keylen)
677{
678 int prev_key_end;
679 char *keystart;
680 fs16 *keylen_index;
681
682 if (index < 0 || index > node->head.all_key_count) {
683 *keylen = 0;
684 return NULL;
685 }
686
687 keystart = befs_bt_keydata(node);
688 keylen_index = befs_bt_keylen_index(node);
689
690 if (index == 0)
691 prev_key_end = 0;
692 else
693 prev_key_end = fs16_to_cpu(sb, keylen_index[index - 1]);
694
695 *keylen = fs16_to_cpu(sb, keylen_index[index]) - prev_key_end;
696
697 return keystart + prev_key_end;
698}
699
700/**
701 * befs_compare_strings - compare two strings
702 * @key1: pointer to the first key to be compared
703 * @keylen1: length in bytes of key1
704 * @key2: pointer to the second key to be compared
705 * @keylen2: length in bytes of key2
706 *
707 * Returns 0 if @key1 and @key2 are equal.
708 * Returns >0 if @key1 is greater.
709 * Returns <0 if @key2 is greater.
710 */
711static int
712befs_compare_strings(const void *key1, int keylen1,
713 const void *key2, int keylen2)
714{
715 int len = min_t(int, keylen1, keylen2);
716 int result = strncmp(key1, key2, len);
717 if (result == 0)
718 result = keylen1 - keylen2;
719 return result;
720}
721
722/* These will be used for non-string keyed btrees */
723#if 0
724static int
725btree_compare_int32(cont void *key1, int keylen1, const void *key2, int keylen2)
726{
727 return *(int32_t *) key1 - *(int32_t *) key2;
728}
729
730static int
731btree_compare_uint32(cont void *key1, int keylen1,
732 const void *key2, int keylen2)
733{
734 if (*(u_int32_t *) key1 == *(u_int32_t *) key2)
735 return 0;
736 else if (*(u_int32_t *) key1 > *(u_int32_t *) key2)
737 return 1;
738
739 return -1;
740}
741static int
742btree_compare_int64(cont void *key1, int keylen1, const void *key2, int keylen2)
743{
744 if (*(int64_t *) key1 == *(int64_t *) key2)
745 return 0;
746 else if (*(int64_t *) key1 > *(int64_t *) key2)
747 return 1;
748
749 return -1;
750}
751
752static int
753btree_compare_uint64(cont void *key1, int keylen1,
754 const void *key2, int keylen2)
755{
756 if (*(u_int64_t *) key1 == *(u_int64_t *) key2)
757 return 0;
758 else if (*(u_int64_t *) key1 > *(u_int64_t *) key2)
759 return 1;
760
761 return -1;
762}
763
764static int
765btree_compare_float(cont void *key1, int keylen1, const void *key2, int keylen2)
766{
767 float result = *(float *) key1 - *(float *) key2;
768 if (result == 0.0f)
769 return 0;
770
771 return (result < 0.0f) ? -1 : 1;
772}
773
774static int
775btree_compare_double(cont void *key1, int keylen1,
776 const void *key2, int keylen2)
777{
778 double result = *(double *) key1 - *(double *) key2;
779 if (result == 0.0)
780 return 0;
781
782 return (result < 0.0) ? -1 : 1;
783}
784#endif //0