Linux Audio

Check our new training course

Loading...
v3.15
 
  1/*
  2 * Device tree based initialization code for reserved memory.
  3 *
  4 * Copyright (c) 2013, The Linux Foundation. All Rights Reserved.
  5 * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
  6 *		http://www.samsung.com
  7 * Author: Marek Szyprowski <m.szyprowski@samsung.com>
  8 * Author: Josh Cartwright <joshc@codeaurora.org>
  9 *
 10 * This program is free software; you can redistribute it and/or
 11 * modify it under the terms of the GNU General Public License as
 12 * published by the Free Software Foundation; either version 2 of the
 13 * License or (at your optional) any later version of the license.
 14 */
 15
 
 
 16#include <linux/err.h>
 
 17#include <linux/of.h>
 18#include <linux/of_fdt.h>
 19#include <linux/of_platform.h>
 20#include <linux/mm.h>
 21#include <linux/sizes.h>
 22#include <linux/of_reserved_mem.h>
 
 
 
 
 
 
 
 23
 24#define MAX_RESERVED_REGIONS	16
 25static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
 
 26static int reserved_mem_count;
 27
 28#if defined(CONFIG_HAVE_MEMBLOCK)
 29#include <linux/memblock.h>
 30int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
 31	phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
 32	phys_addr_t *res_base)
 33{
 34	/*
 35	 * We use __memblock_alloc_base() because memblock_alloc_base()
 36	 * panic()s on allocation failure.
 37	 */
 38	phys_addr_t base = __memblock_alloc_base(size, align, end);
 
 39	if (!base)
 40		return -ENOMEM;
 41
 42	/*
 43	 * Check if the allocated region fits in to start..end window
 44	 */
 45	if (base < start) {
 46		memblock_free(base, size);
 47		return -ENOMEM;
 48	}
 49
 50	*res_base = base;
 51	if (nomap)
 52		return memblock_remove(base, size);
 53	return 0;
 54}
 55#else
 56int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
 57	phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
 58	phys_addr_t *res_base)
 
 
 
 
 
 
 
 
 
 59{
 60	pr_err("Reserved memory not supported, ignoring region 0x%llx%s\n",
 61		  size, nomap ? " (nomap)" : "");
 62	return -ENOSYS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 63}
 64#endif
 65
 66/**
 67 * res_mem_save_node() - save fdt node for second pass initialization
 
 68 */
 69void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
 70				      phys_addr_t base, phys_addr_t size)
 71{
 72	struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
 73
 74	if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
 75		pr_err("Reserved memory: not enough space all defined regions.\n");
 76		return;
 77	}
 78
 79	rmem->fdt_node = node;
 80	rmem->name = uname;
 81	rmem->base = base;
 82	rmem->size = size;
 83
 
 
 
 84	reserved_mem_count++;
 85	return;
 86}
 87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 88/**
 89 * res_mem_alloc_size() - allocate reserved memory described by 'size', 'align'
 90 *			  and 'alloc-ranges' properties
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 91 */
 92static int __init __reserved_mem_alloc_size(unsigned long node,
 93	const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 94{
 95	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
 96	phys_addr_t start = 0, end = 0;
 97	phys_addr_t base = 0, align = 0, size;
 98	unsigned long len;
 99	__be32 *prop;
100	int nomap;
101	int ret;
102
103	prop = of_get_flat_dt_prop(node, "size", &len);
104	if (!prop)
105		return -EINVAL;
106
107	if (len != dt_root_size_cells * sizeof(__be32)) {
108		pr_err("Reserved memory: invalid size property in '%s' node.\n",
109				uname);
110		return -EINVAL;
111	}
112	size = dt_mem_next_cell(dt_root_size_cells, &prop);
113
114	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
115
116	prop = of_get_flat_dt_prop(node, "alignment", &len);
117	if (prop) {
118		if (len != dt_root_addr_cells * sizeof(__be32)) {
119			pr_err("Reserved memory: invalid alignment property in '%s' node.\n",
120				uname);
121			return -EINVAL;
122		}
123		align = dt_mem_next_cell(dt_root_addr_cells, &prop);
124	}
125
 
 
 
 
 
 
 
 
 
126	prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
127	if (prop) {
128
129		if (len % t_len != 0) {
130			pr_err("Reserved memory: invalid alloc-ranges property in '%s', skipping node.\n",
131			       uname);
132			return -EINVAL;
133		}
134
135		base = 0;
136
137		while (len > 0) {
138			start = dt_mem_next_cell(dt_root_addr_cells, &prop);
139			end = start + dt_mem_next_cell(dt_root_size_cells,
140						       &prop);
141
142			ret = early_init_dt_alloc_reserved_memory_arch(size,
143					align, start, end, nomap, &base);
144			if (ret == 0) {
145				pr_debug("Reserved memory: allocated memory for '%s' node: base %pa, size %ld MiB\n",
146					uname, &base,
147					(unsigned long)size / SZ_1M);
148				break;
149			}
150			len -= t_len;
151		}
152
153	} else {
154		ret = early_init_dt_alloc_reserved_memory_arch(size, align,
155							0, 0, nomap, &base);
156		if (ret == 0)
157			pr_debug("Reserved memory: allocated memory for '%s' node: base %pa, size %ld MiB\n",
158				uname, &base, (unsigned long)size / SZ_1M);
159	}
160
161	if (base == 0) {
162		pr_info("Reserved memory: failed to allocate memory for node '%s'\n",
163			uname);
164		return -ENOMEM;
165	}
166
167	*res_base = base;
168	*res_size = size;
169
170	return 0;
171}
172
173static const struct of_device_id __rmem_of_table_sentinel
174	__used __section(__reservedmem_of_table_end);
175
176/**
177 * res_mem_init_node() - call region specific reserved memory init code
178 */
179static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
180{
181	extern const struct of_device_id __reservedmem_of_table[];
182	const struct of_device_id *i;
 
183
184	for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
185		reservedmem_of_init_fn initfn = i->data;
186		const char *compat = i->compatible;
187
188		if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
189			continue;
190
191		if (initfn(rmem, rmem->fdt_node, rmem->name) == 0) {
192			pr_info("Reserved memory: initialized node %s, compatible id %s\n",
 
193				rmem->name, compat);
194			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
195		}
196	}
197	return -ENOENT;
198}
199
200/**
201 * fdt_init_reserved_mem - allocate and init all saved reserved memory regions
 
 
 
 
202 */
203void __init fdt_init_reserved_mem(void)
204{
205	int i;
206	for (i = 0; i < reserved_mem_count; i++) {
207		struct reserved_mem *rmem = &reserved_mem[i];
208		unsigned long node = rmem->fdt_node;
209		int err = 0;
210
211		if (rmem->size == 0)
212			err = __reserved_mem_alloc_size(node, rmem->name,
213						 &rmem->base, &rmem->size);
214		if (err == 0)
215			__reserved_mem_init_node(rmem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
216	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
217}
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0+
  2/*
  3 * Device tree based initialization code for reserved memory.
  4 *
  5 * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
  6 * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
  7 *		http://www.samsung.com
  8 * Author: Marek Szyprowski <m.szyprowski@samsung.com>
  9 * Author: Josh Cartwright <joshc@codeaurora.org>
 
 
 
 
 
 10 */
 11
 12#define pr_fmt(fmt)	"OF: reserved mem: " fmt
 13
 14#include <linux/err.h>
 15#include <linux/libfdt.h>
 16#include <linux/of.h>
 17#include <linux/of_fdt.h>
 18#include <linux/of_platform.h>
 19#include <linux/mm.h>
 20#include <linux/sizes.h>
 21#include <linux/of_reserved_mem.h>
 22#include <linux/sort.h>
 23#include <linux/slab.h>
 24#include <linux/memblock.h>
 25#include <linux/kmemleak.h>
 26#include <linux/cma.h>
 27
 28#include "of_private.h"
 29
 30static struct reserved_mem reserved_mem_array[MAX_RESERVED_REGIONS] __initdata;
 31static struct reserved_mem *reserved_mem __refdata = reserved_mem_array;
 32static int total_reserved_mem_cnt = MAX_RESERVED_REGIONS;
 33static int reserved_mem_count;
 34
 35static int __init early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
 
 
 36	phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
 37	phys_addr_t *res_base)
 38{
 39	phys_addr_t base;
 40	int err = 0;
 41
 42	end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
 43	align = !align ? SMP_CACHE_BYTES : align;
 44	base = memblock_phys_alloc_range(size, align, start, end);
 45	if (!base)
 46		return -ENOMEM;
 47
 48	*res_base = base;
 49	if (nomap) {
 50		err = memblock_mark_nomap(base, size);
 51		if (err)
 52			memblock_phys_free(base, size);
 
 53	}
 54
 55	if (!err)
 56		kmemleak_ignore_phys(base);
 57
 58	return err;
 59}
 60
 61/*
 62 * alloc_reserved_mem_array() - allocate memory for the reserved_mem
 63 * array using memblock
 64 *
 65 * This function is used to allocate memory for the reserved_mem
 66 * array according to the total number of reserved memory regions
 67 * defined in the DT.
 68 * After the new array is allocated, the information stored in
 69 * the initial static array is copied over to this new array and
 70 * the new array is used from this point on.
 71 */
 72static void __init alloc_reserved_mem_array(void)
 73{
 74	struct reserved_mem *new_array;
 75	size_t alloc_size, copy_size, memset_size;
 76
 77	alloc_size = array_size(total_reserved_mem_cnt, sizeof(*new_array));
 78	if (alloc_size == SIZE_MAX) {
 79		pr_err("Failed to allocate memory for reserved_mem array with err: %d", -EOVERFLOW);
 80		return;
 81	}
 82
 83	new_array = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
 84	if (!new_array) {
 85		pr_err("Failed to allocate memory for reserved_mem array with err: %d", -ENOMEM);
 86		return;
 87	}
 88
 89	copy_size = array_size(reserved_mem_count, sizeof(*new_array));
 90	if (copy_size == SIZE_MAX) {
 91		memblock_free(new_array, alloc_size);
 92		total_reserved_mem_cnt = MAX_RESERVED_REGIONS;
 93		pr_err("Failed to allocate memory for reserved_mem array with err: %d", -EOVERFLOW);
 94		return;
 95	}
 96
 97	memset_size = alloc_size - copy_size;
 98
 99	memcpy(new_array, reserved_mem, copy_size);
100	memset(new_array + reserved_mem_count, 0, memset_size);
101
102	reserved_mem = new_array;
103}
 
104
105static void __init fdt_init_reserved_mem_node(struct reserved_mem *rmem);
106/*
107 * fdt_reserved_mem_save_node() - save fdt node for second pass initialization
108 */
109static void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
110					      phys_addr_t base, phys_addr_t size)
111{
112	struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
113
114	if (reserved_mem_count == total_reserved_mem_cnt) {
115		pr_err("not enough space for all defined regions.\n");
116		return;
117	}
118
119	rmem->fdt_node = node;
120	rmem->name = uname;
121	rmem->base = base;
122	rmem->size = size;
123
124	/* Call the region specific initialization function */
125	fdt_init_reserved_mem_node(rmem);
126
127	reserved_mem_count++;
128	return;
129}
130
131static int __init early_init_dt_reserve_memory(phys_addr_t base,
132					       phys_addr_t size, bool nomap)
133{
134	if (nomap) {
135		/*
136		 * If the memory is already reserved (by another region), we
137		 * should not allow it to be marked nomap, but don't worry
138		 * if the region isn't memory as it won't be mapped.
139		 */
140		if (memblock_overlaps_region(&memblock.memory, base, size) &&
141		    memblock_is_region_reserved(base, size))
142			return -EBUSY;
143
144		return memblock_mark_nomap(base, size);
145	}
146	return memblock_reserve(base, size);
147}
148
149/*
150 * __reserved_mem_reserve_reg() - reserve all memory described in 'reg' property
151 */
152static int __init __reserved_mem_reserve_reg(unsigned long node,
153					     const char *uname)
154{
155	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
156	phys_addr_t base, size;
157	int len;
158	const __be32 *prop;
159	bool nomap;
160
161	prop = of_get_flat_dt_prop(node, "reg", &len);
162	if (!prop)
163		return -ENOENT;
164
165	if (len && len % t_len != 0) {
166		pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
167		       uname);
168		return -EINVAL;
169	}
170
171	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
172
173	while (len >= t_len) {
174		base = dt_mem_next_cell(dt_root_addr_cells, &prop);
175		size = dt_mem_next_cell(dt_root_size_cells, &prop);
176
177		if (size &&
178		    early_init_dt_reserve_memory(base, size, nomap) == 0)
179			pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %lu MiB\n",
180				uname, &base, (unsigned long)(size / SZ_1M));
181		else
182			pr_err("Reserved memory: failed to reserve memory for node '%s': base %pa, size %lu MiB\n",
183			       uname, &base, (unsigned long)(size / SZ_1M));
184
185		len -= t_len;
186	}
187	return 0;
188}
189
190/*
191 * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
192 * in /reserved-memory matches the values supported by the current implementation,
193 * also check if ranges property has been provided
194 */
195static int __init __reserved_mem_check_root(unsigned long node)
196{
197	const __be32 *prop;
198
199	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
200	if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
201		return -EINVAL;
202
203	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
204	if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
205		return -EINVAL;
206
207	prop = of_get_flat_dt_prop(node, "ranges", NULL);
208	if (!prop)
209		return -EINVAL;
210	return 0;
211}
212
213static void __init __rmem_check_for_overlap(void);
214
215/**
216 * fdt_scan_reserved_mem_reg_nodes() - Store info for the "reg" defined
217 * reserved memory regions.
218 *
219 * This function is used to scan through the DT and store the
220 * information for the reserved memory regions that are defined using
221 * the "reg" property. The region node number, name, base address, and
222 * size are all stored in the reserved_mem array by calling the
223 * fdt_reserved_mem_save_node() function.
224 */
225void __init fdt_scan_reserved_mem_reg_nodes(void)
226{
227	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
228	const void *fdt = initial_boot_params;
229	phys_addr_t base, size;
230	const __be32 *prop;
231	int node, child;
232	int len;
233
234	if (!fdt)
235		return;
236
237	node = fdt_path_offset(fdt, "/reserved-memory");
238	if (node < 0) {
239		pr_info("Reserved memory: No reserved-memory node in the DT\n");
240		return;
241	}
242
243	/* Attempt dynamic allocation of a new reserved_mem array */
244	alloc_reserved_mem_array();
245
246	if (__reserved_mem_check_root(node)) {
247		pr_err("Reserved memory: unsupported node format, ignoring\n");
248		return;
249	}
250
251	fdt_for_each_subnode(child, fdt, node) {
252		const char *uname;
253
254		prop = of_get_flat_dt_prop(child, "reg", &len);
255		if (!prop)
256			continue;
257		if (!of_fdt_device_is_available(fdt, child))
258			continue;
259
260		uname = fdt_get_name(fdt, child, NULL);
261		if (len && len % t_len != 0) {
262			pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
263			       uname);
264			continue;
265		}
266
267		if (len > t_len)
268			pr_warn("%s() ignores %d regions in node '%s'\n",
269				__func__, len / t_len - 1, uname);
270
271		base = dt_mem_next_cell(dt_root_addr_cells, &prop);
272		size = dt_mem_next_cell(dt_root_size_cells, &prop);
273
274		if (size)
275			fdt_reserved_mem_save_node(child, uname, base, size);
276	}
277
278	/* check for overlapping reserved regions */
279	__rmem_check_for_overlap();
280}
281
282static int __init __reserved_mem_alloc_size(unsigned long node, const char *uname);
283
284/*
285 * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
286 */
287int __init fdt_scan_reserved_mem(void)
288{
289	int node, child;
290	int dynamic_nodes_cnt = 0, count = 0;
291	int dynamic_nodes[MAX_RESERVED_REGIONS];
292	const void *fdt = initial_boot_params;
293
294	node = fdt_path_offset(fdt, "/reserved-memory");
295	if (node < 0)
296		return -ENODEV;
297
298	if (__reserved_mem_check_root(node) != 0) {
299		pr_err("Reserved memory: unsupported node format, ignoring\n");
300		return -EINVAL;
301	}
302
303	fdt_for_each_subnode(child, fdt, node) {
304		const char *uname;
305		int err;
306
307		if (!of_fdt_device_is_available(fdt, child))
308			continue;
309
310		uname = fdt_get_name(fdt, child, NULL);
311
312		err = __reserved_mem_reserve_reg(child, uname);
313		if (!err)
314			count++;
315		/*
316		 * Save the nodes for the dynamically-placed regions
317		 * into an array which will be used for allocation right
318		 * after all the statically-placed regions are reserved
319		 * or marked as no-map. This is done to avoid dynamically
320		 * allocating from one of the statically-placed regions.
321		 */
322		if (err == -ENOENT && of_get_flat_dt_prop(child, "size", NULL)) {
323			dynamic_nodes[dynamic_nodes_cnt] = child;
324			dynamic_nodes_cnt++;
325		}
326	}
327	for (int i = 0; i < dynamic_nodes_cnt; i++) {
328		const char *uname;
329		int err;
330
331		child = dynamic_nodes[i];
332		uname = fdt_get_name(fdt, child, NULL);
333		err = __reserved_mem_alloc_size(child, uname);
334		if (!err)
335			count++;
336	}
337	total_reserved_mem_cnt = count;
338	return 0;
339}
340
341/*
342 * __reserved_mem_alloc_in_range() - allocate reserved memory described with
343 *	'alloc-ranges'. Choose bottom-up/top-down depending on nearby existing
344 *	reserved regions to keep the reserved memory contiguous if possible.
345 */
346static int __init __reserved_mem_alloc_in_range(phys_addr_t size,
347	phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
348	phys_addr_t *res_base)
349{
350	bool prev_bottom_up = memblock_bottom_up();
351	bool bottom_up = false, top_down = false;
352	int ret, i;
353
354	for (i = 0; i < reserved_mem_count; i++) {
355		struct reserved_mem *rmem = &reserved_mem[i];
356
357		/* Skip regions that were not reserved yet */
358		if (rmem->size == 0)
359			continue;
360
361		/*
362		 * If range starts next to an existing reservation, use bottom-up:
363		 *	|....RRRR................RRRRRRRR..............|
364		 *	       --RRRR------
365		 */
366		if (start >= rmem->base && start <= (rmem->base + rmem->size))
367			bottom_up = true;
368
369		/*
370		 * If range ends next to an existing reservation, use top-down:
371		 *	|....RRRR................RRRRRRRR..............|
372		 *	              -------RRRR-----
373		 */
374		if (end >= rmem->base && end <= (rmem->base + rmem->size))
375			top_down = true;
376	}
377
378	/* Change setting only if either bottom-up or top-down was selected */
379	if (bottom_up != top_down)
380		memblock_set_bottom_up(bottom_up);
381
382	ret = early_init_dt_alloc_reserved_memory_arch(size, align,
383			start, end, nomap, res_base);
384
385	/* Restore old setting if needed */
386	if (bottom_up != top_down)
387		memblock_set_bottom_up(prev_bottom_up);
388
389	return ret;
390}
391
392/*
393 * __reserved_mem_alloc_size() - allocate reserved memory described by
394 *	'size', 'alignment'  and 'alloc-ranges' properties.
395 */
396static int __init __reserved_mem_alloc_size(unsigned long node, const char *uname)
397{
398	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
399	phys_addr_t start = 0, end = 0;
400	phys_addr_t base = 0, align = 0, size;
401	int len;
402	const __be32 *prop;
403	bool nomap;
404	int ret;
405
406	prop = of_get_flat_dt_prop(node, "size", &len);
407	if (!prop)
408		return -EINVAL;
409
410	if (len != dt_root_size_cells * sizeof(__be32)) {
411		pr_err("invalid size property in '%s' node.\n", uname);
 
412		return -EINVAL;
413	}
414	size = dt_mem_next_cell(dt_root_size_cells, &prop);
415
 
 
416	prop = of_get_flat_dt_prop(node, "alignment", &len);
417	if (prop) {
418		if (len != dt_root_addr_cells * sizeof(__be32)) {
419			pr_err("invalid alignment property in '%s' node.\n",
420				uname);
421			return -EINVAL;
422		}
423		align = dt_mem_next_cell(dt_root_addr_cells, &prop);
424	}
425
426	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
427
428	/* Need adjust the alignment to satisfy the CMA requirement */
429	if (IS_ENABLED(CONFIG_CMA)
430	    && of_flat_dt_is_compatible(node, "shared-dma-pool")
431	    && of_get_flat_dt_prop(node, "reusable", NULL)
432	    && !nomap)
433		align = max_t(phys_addr_t, align, CMA_MIN_ALIGNMENT_BYTES);
434
435	prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
436	if (prop) {
437
438		if (len % t_len != 0) {
439			pr_err("invalid alloc-ranges property in '%s', skipping node.\n",
440			       uname);
441			return -EINVAL;
442		}
443
444		base = 0;
445
446		while (len > 0) {
447			start = dt_mem_next_cell(dt_root_addr_cells, &prop);
448			end = start + dt_mem_next_cell(dt_root_size_cells,
449						       &prop);
450
451			ret = __reserved_mem_alloc_in_range(size, align,
452					start, end, nomap, &base);
453			if (ret == 0) {
454				pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
455					uname, &base,
456					(unsigned long)(size / SZ_1M));
457				break;
458			}
459			len -= t_len;
460		}
461
462	} else {
463		ret = early_init_dt_alloc_reserved_memory_arch(size, align,
464							0, 0, nomap, &base);
465		if (ret == 0)
466			pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
467				uname, &base, (unsigned long)(size / SZ_1M));
468	}
469
470	if (base == 0) {
471		pr_err("failed to allocate memory for node '%s': size %lu MiB\n",
472		       uname, (unsigned long)(size / SZ_1M));
473		return -ENOMEM;
474	}
475
476	/* Save region in the reserved_mem array */
477	fdt_reserved_mem_save_node(node, uname, base, size);
 
478	return 0;
479}
480
481static const struct of_device_id __rmem_of_table_sentinel
482	__used __section("__reservedmem_of_table_end");
483
484/*
485 * __reserved_mem_init_node() - call region specific reserved memory init code
486 */
487static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
488{
489	extern const struct of_device_id __reservedmem_of_table[];
490	const struct of_device_id *i;
491	int ret = -ENOENT;
492
493	for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
494		reservedmem_of_init_fn initfn = i->data;
495		const char *compat = i->compatible;
496
497		if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
498			continue;
499
500		ret = initfn(rmem);
501		if (ret == 0) {
502			pr_info("initialized node %s, compatible id %s\n",
503				rmem->name, compat);
504			break;
505		}
506	}
507	return ret;
508}
509
510static int __init __rmem_cmp(const void *a, const void *b)
511{
512	const struct reserved_mem *ra = a, *rb = b;
513
514	if (ra->base < rb->base)
515		return -1;
516
517	if (ra->base > rb->base)
518		return 1;
519
520	/*
521	 * Put the dynamic allocations (address == 0, size == 0) before static
522	 * allocations at address 0x0 so that overlap detection works
523	 * correctly.
524	 */
525	if (ra->size < rb->size)
526		return -1;
527	if (ra->size > rb->size)
528		return 1;
529
530	if (ra->fdt_node < rb->fdt_node)
531		return -1;
532	if (ra->fdt_node > rb->fdt_node)
533		return 1;
534
535	return 0;
536}
537
538static void __init __rmem_check_for_overlap(void)
539{
540	int i;
541
542	if (reserved_mem_count < 2)
543		return;
544
545	sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
546	     __rmem_cmp, NULL);
547	for (i = 0; i < reserved_mem_count - 1; i++) {
548		struct reserved_mem *this, *next;
549
550		this = &reserved_mem[i];
551		next = &reserved_mem[i + 1];
552
553		if (this->base + this->size > next->base) {
554			phys_addr_t this_end, next_end;
555
556			this_end = this->base + this->size;
557			next_end = next->base + next->size;
558			pr_err("OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
559			       this->name, &this->base, &this_end,
560			       next->name, &next->base, &next_end);
561		}
562	}
 
563}
564
565/**
566 * fdt_init_reserved_mem_node() - Initialize a reserved memory region
567 * @rmem: reserved_mem struct of the memory region to be initialized.
568 *
569 * This function is used to call the region specific initialization
570 * function for a reserved memory region.
571 */
572static void __init fdt_init_reserved_mem_node(struct reserved_mem *rmem)
573{
574	unsigned long node = rmem->fdt_node;
575	int err = 0;
576	bool nomap;
 
 
577
578	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
579
580	err = __reserved_mem_init_node(rmem);
581	if (err != 0 && err != -ENOENT) {
582		pr_info("node %s compatible matching fail\n", rmem->name);
583		if (nomap)
584			memblock_clear_nomap(rmem->base, rmem->size);
585		else
586			memblock_phys_free(rmem->base, rmem->size);
587	} else {
588		phys_addr_t end = rmem->base + rmem->size - 1;
589		bool reusable =
590			(of_get_flat_dt_prop(node, "reusable", NULL)) != NULL;
591
592		pr_info("%pa..%pa (%lu KiB) %s %s %s\n",
593			&rmem->base, &end, (unsigned long)(rmem->size / SZ_1K),
594			nomap ? "nomap" : "map",
595			reusable ? "reusable" : "non-reusable",
596			rmem->name ? rmem->name : "unknown");
597	}
598}
599
600struct rmem_assigned_device {
601	struct device *dev;
602	struct reserved_mem *rmem;
603	struct list_head list;
604};
605
606static LIST_HEAD(of_rmem_assigned_device_list);
607static DEFINE_MUTEX(of_rmem_assigned_device_mutex);
608
609/**
610 * of_reserved_mem_device_init_by_idx() - assign reserved memory region to
611 *					  given device
612 * @dev:	Pointer to the device to configure
613 * @np:		Pointer to the device_node with 'reserved-memory' property
614 * @idx:	Index of selected region
615 *
616 * This function assigns respective DMA-mapping operations based on reserved
617 * memory region specified by 'memory-region' property in @np node to the @dev
618 * device. When driver needs to use more than one reserved memory region, it
619 * should allocate child devices and initialize regions by name for each of
620 * child device.
621 *
622 * Returns error code or zero on success.
623 */
624int of_reserved_mem_device_init_by_idx(struct device *dev,
625				       struct device_node *np, int idx)
626{
627	struct rmem_assigned_device *rd;
628	struct device_node *target;
629	struct reserved_mem *rmem;
630	int ret;
631
632	if (!np || !dev)
633		return -EINVAL;
634
635	target = of_parse_phandle(np, "memory-region", idx);
636	if (!target)
637		return -ENODEV;
638
639	if (!of_device_is_available(target)) {
640		of_node_put(target);
641		return 0;
642	}
643
644	rmem = of_reserved_mem_lookup(target);
645	of_node_put(target);
646
647	if (!rmem || !rmem->ops || !rmem->ops->device_init)
648		return -EINVAL;
649
650	rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
651	if (!rd)
652		return -ENOMEM;
653
654	ret = rmem->ops->device_init(rmem, dev);
655	if (ret == 0) {
656		rd->dev = dev;
657		rd->rmem = rmem;
658
659		mutex_lock(&of_rmem_assigned_device_mutex);
660		list_add(&rd->list, &of_rmem_assigned_device_list);
661		mutex_unlock(&of_rmem_assigned_device_mutex);
662
663		dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
664	} else {
665		kfree(rd);
666	}
667
668	return ret;
669}
670EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
671
672/**
673 * of_reserved_mem_device_init_by_name() - assign named reserved memory region
674 *					   to given device
675 * @dev: pointer to the device to configure
676 * @np: pointer to the device node with 'memory-region' property
677 * @name: name of the selected memory region
678 *
679 * Returns: 0 on success or a negative error-code on failure.
680 */
681int of_reserved_mem_device_init_by_name(struct device *dev,
682					struct device_node *np,
683					const char *name)
684{
685	int idx = of_property_match_string(np, "memory-region-names", name);
686
687	return of_reserved_mem_device_init_by_idx(dev, np, idx);
688}
689EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_name);
690
691/**
692 * of_reserved_mem_device_release() - release reserved memory device structures
693 * @dev:	Pointer to the device to deconfigure
694 *
695 * This function releases structures allocated for memory region handling for
696 * the given device.
697 */
698void of_reserved_mem_device_release(struct device *dev)
699{
700	struct rmem_assigned_device *rd, *tmp;
701	LIST_HEAD(release_list);
702
703	mutex_lock(&of_rmem_assigned_device_mutex);
704	list_for_each_entry_safe(rd, tmp, &of_rmem_assigned_device_list, list) {
705		if (rd->dev == dev)
706			list_move_tail(&rd->list, &release_list);
707	}
708	mutex_unlock(&of_rmem_assigned_device_mutex);
709
710	list_for_each_entry_safe(rd, tmp, &release_list, list) {
711		if (rd->rmem && rd->rmem->ops && rd->rmem->ops->device_release)
712			rd->rmem->ops->device_release(rd->rmem, dev);
713
714		kfree(rd);
715	}
716}
717EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
718
719/**
720 * of_reserved_mem_lookup() - acquire reserved_mem from a device node
721 * @np:		node pointer of the desired reserved-memory region
722 *
723 * This function allows drivers to acquire a reference to the reserved_mem
724 * struct based on a device node handle.
725 *
726 * Returns a reserved_mem reference, or NULL on error.
727 */
728struct reserved_mem *of_reserved_mem_lookup(struct device_node *np)
729{
730	const char *name;
731	int i;
732
733	if (!np->full_name)
734		return NULL;
735
736	name = kbasename(np->full_name);
737	for (i = 0; i < reserved_mem_count; i++)
738		if (!strcmp(reserved_mem[i].name, name))
739			return &reserved_mem[i];
740
741	return NULL;
742}
743EXPORT_SYMBOL_GPL(of_reserved_mem_lookup);