Loading...
1/*
2 * linux/drivers/mmc/core/core.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/interrupt.h>
16#include <linux/completion.h>
17#include <linux/device.h>
18#include <linux/delay.h>
19#include <linux/pagemap.h>
20#include <linux/err.h>
21#include <linux/leds.h>
22#include <linux/scatterlist.h>
23#include <linux/log2.h>
24#include <linux/regulator/consumer.h>
25#include <linux/pm_runtime.h>
26#include <linux/pm_wakeup.h>
27#include <linux/suspend.h>
28#include <linux/fault-inject.h>
29#include <linux/random.h>
30#include <linux/slab.h>
31#include <linux/of.h>
32
33#include <linux/mmc/card.h>
34#include <linux/mmc/host.h>
35#include <linux/mmc/mmc.h>
36#include <linux/mmc/sd.h>
37#include <linux/mmc/slot-gpio.h>
38
39#include "core.h"
40#include "bus.h"
41#include "host.h"
42#include "sdio_bus.h"
43
44#include "mmc_ops.h"
45#include "sd_ops.h"
46#include "sdio_ops.h"
47
48/* If the device is not responding */
49#define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
50
51/*
52 * Background operations can take a long time, depending on the housekeeping
53 * operations the card has to perform.
54 */
55#define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */
56
57static struct workqueue_struct *workqueue;
58static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
59
60/*
61 * Enabling software CRCs on the data blocks can be a significant (30%)
62 * performance cost, and for other reasons may not always be desired.
63 * So we allow it it to be disabled.
64 */
65bool use_spi_crc = 1;
66module_param(use_spi_crc, bool, 0);
67
68/*
69 * Internal function. Schedule delayed work in the MMC work queue.
70 */
71static int mmc_schedule_delayed_work(struct delayed_work *work,
72 unsigned long delay)
73{
74 return queue_delayed_work(workqueue, work, delay);
75}
76
77/*
78 * Internal function. Flush all scheduled work from the MMC work queue.
79 */
80static void mmc_flush_scheduled_work(void)
81{
82 flush_workqueue(workqueue);
83}
84
85#ifdef CONFIG_FAIL_MMC_REQUEST
86
87/*
88 * Internal function. Inject random data errors.
89 * If mmc_data is NULL no errors are injected.
90 */
91static void mmc_should_fail_request(struct mmc_host *host,
92 struct mmc_request *mrq)
93{
94 struct mmc_command *cmd = mrq->cmd;
95 struct mmc_data *data = mrq->data;
96 static const int data_errors[] = {
97 -ETIMEDOUT,
98 -EILSEQ,
99 -EIO,
100 };
101
102 if (!data)
103 return;
104
105 if (cmd->error || data->error ||
106 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
107 return;
108
109 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
110 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
111}
112
113#else /* CONFIG_FAIL_MMC_REQUEST */
114
115static inline void mmc_should_fail_request(struct mmc_host *host,
116 struct mmc_request *mrq)
117{
118}
119
120#endif /* CONFIG_FAIL_MMC_REQUEST */
121
122/**
123 * mmc_request_done - finish processing an MMC request
124 * @host: MMC host which completed request
125 * @mrq: MMC request which request
126 *
127 * MMC drivers should call this function when they have completed
128 * their processing of a request.
129 */
130void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
131{
132 struct mmc_command *cmd = mrq->cmd;
133 int err = cmd->error;
134
135 if (err && cmd->retries && mmc_host_is_spi(host)) {
136 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
137 cmd->retries = 0;
138 }
139
140 if (err && cmd->retries && !mmc_card_removed(host->card)) {
141 /*
142 * Request starter must handle retries - see
143 * mmc_wait_for_req_done().
144 */
145 if (mrq->done)
146 mrq->done(mrq);
147 } else {
148 mmc_should_fail_request(host, mrq);
149
150 led_trigger_event(host->led, LED_OFF);
151
152 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
153 mmc_hostname(host), cmd->opcode, err,
154 cmd->resp[0], cmd->resp[1],
155 cmd->resp[2], cmd->resp[3]);
156
157 if (mrq->data) {
158 pr_debug("%s: %d bytes transferred: %d\n",
159 mmc_hostname(host),
160 mrq->data->bytes_xfered, mrq->data->error);
161 }
162
163 if (mrq->stop) {
164 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
165 mmc_hostname(host), mrq->stop->opcode,
166 mrq->stop->error,
167 mrq->stop->resp[0], mrq->stop->resp[1],
168 mrq->stop->resp[2], mrq->stop->resp[3]);
169 }
170
171 if (mrq->done)
172 mrq->done(mrq);
173
174 mmc_host_clk_release(host);
175 }
176}
177
178EXPORT_SYMBOL(mmc_request_done);
179
180static void
181mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
182{
183#ifdef CONFIG_MMC_DEBUG
184 unsigned int i, sz;
185 struct scatterlist *sg;
186#endif
187
188 if (mrq->sbc) {
189 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
190 mmc_hostname(host), mrq->sbc->opcode,
191 mrq->sbc->arg, mrq->sbc->flags);
192 }
193
194 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
195 mmc_hostname(host), mrq->cmd->opcode,
196 mrq->cmd->arg, mrq->cmd->flags);
197
198 if (mrq->data) {
199 pr_debug("%s: blksz %d blocks %d flags %08x "
200 "tsac %d ms nsac %d\n",
201 mmc_hostname(host), mrq->data->blksz,
202 mrq->data->blocks, mrq->data->flags,
203 mrq->data->timeout_ns / 1000000,
204 mrq->data->timeout_clks);
205 }
206
207 if (mrq->stop) {
208 pr_debug("%s: CMD%u arg %08x flags %08x\n",
209 mmc_hostname(host), mrq->stop->opcode,
210 mrq->stop->arg, mrq->stop->flags);
211 }
212
213 WARN_ON(!host->claimed);
214
215 mrq->cmd->error = 0;
216 mrq->cmd->mrq = mrq;
217 if (mrq->data) {
218 BUG_ON(mrq->data->blksz > host->max_blk_size);
219 BUG_ON(mrq->data->blocks > host->max_blk_count);
220 BUG_ON(mrq->data->blocks * mrq->data->blksz >
221 host->max_req_size);
222
223#ifdef CONFIG_MMC_DEBUG
224 sz = 0;
225 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
226 sz += sg->length;
227 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
228#endif
229
230 mrq->cmd->data = mrq->data;
231 mrq->data->error = 0;
232 mrq->data->mrq = mrq;
233 if (mrq->stop) {
234 mrq->data->stop = mrq->stop;
235 mrq->stop->error = 0;
236 mrq->stop->mrq = mrq;
237 }
238 }
239 mmc_host_clk_hold(host);
240 led_trigger_event(host->led, LED_FULL);
241 host->ops->request(host, mrq);
242}
243
244/**
245 * mmc_start_bkops - start BKOPS for supported cards
246 * @card: MMC card to start BKOPS
247 * @form_exception: A flag to indicate if this function was
248 * called due to an exception raised by the card
249 *
250 * Start background operations whenever requested.
251 * When the urgent BKOPS bit is set in a R1 command response
252 * then background operations should be started immediately.
253*/
254void mmc_start_bkops(struct mmc_card *card, bool from_exception)
255{
256 int err;
257 int timeout;
258 bool use_busy_signal;
259
260 BUG_ON(!card);
261
262 if (!card->ext_csd.bkops_en || mmc_card_doing_bkops(card))
263 return;
264
265 err = mmc_read_bkops_status(card);
266 if (err) {
267 pr_err("%s: Failed to read bkops status: %d\n",
268 mmc_hostname(card->host), err);
269 return;
270 }
271
272 if (!card->ext_csd.raw_bkops_status)
273 return;
274
275 if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
276 from_exception)
277 return;
278
279 mmc_claim_host(card->host);
280 if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
281 timeout = MMC_BKOPS_MAX_TIMEOUT;
282 use_busy_signal = true;
283 } else {
284 timeout = 0;
285 use_busy_signal = false;
286 }
287
288 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
289 EXT_CSD_BKOPS_START, 1, timeout,
290 use_busy_signal, true, false);
291 if (err) {
292 pr_warn("%s: Error %d starting bkops\n",
293 mmc_hostname(card->host), err);
294 goto out;
295 }
296
297 /*
298 * For urgent bkops status (LEVEL_2 and more)
299 * bkops executed synchronously, otherwise
300 * the operation is in progress
301 */
302 if (!use_busy_signal)
303 mmc_card_set_doing_bkops(card);
304out:
305 mmc_release_host(card->host);
306}
307EXPORT_SYMBOL(mmc_start_bkops);
308
309/*
310 * mmc_wait_data_done() - done callback for data request
311 * @mrq: done data request
312 *
313 * Wakes up mmc context, passed as a callback to host controller driver
314 */
315static void mmc_wait_data_done(struct mmc_request *mrq)
316{
317 mrq->host->context_info.is_done_rcv = true;
318 wake_up_interruptible(&mrq->host->context_info.wait);
319}
320
321static void mmc_wait_done(struct mmc_request *mrq)
322{
323 complete(&mrq->completion);
324}
325
326/*
327 *__mmc_start_data_req() - starts data request
328 * @host: MMC host to start the request
329 * @mrq: data request to start
330 *
331 * Sets the done callback to be called when request is completed by the card.
332 * Starts data mmc request execution
333 */
334static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
335{
336 mrq->done = mmc_wait_data_done;
337 mrq->host = host;
338 if (mmc_card_removed(host->card)) {
339 mrq->cmd->error = -ENOMEDIUM;
340 mmc_wait_data_done(mrq);
341 return -ENOMEDIUM;
342 }
343 mmc_start_request(host, mrq);
344
345 return 0;
346}
347
348static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
349{
350 init_completion(&mrq->completion);
351 mrq->done = mmc_wait_done;
352 if (mmc_card_removed(host->card)) {
353 mrq->cmd->error = -ENOMEDIUM;
354 complete(&mrq->completion);
355 return -ENOMEDIUM;
356 }
357 mmc_start_request(host, mrq);
358 return 0;
359}
360
361/*
362 * mmc_wait_for_data_req_done() - wait for request completed
363 * @host: MMC host to prepare the command.
364 * @mrq: MMC request to wait for
365 *
366 * Blocks MMC context till host controller will ack end of data request
367 * execution or new request notification arrives from the block layer.
368 * Handles command retries.
369 *
370 * Returns enum mmc_blk_status after checking errors.
371 */
372static int mmc_wait_for_data_req_done(struct mmc_host *host,
373 struct mmc_request *mrq,
374 struct mmc_async_req *next_req)
375{
376 struct mmc_command *cmd;
377 struct mmc_context_info *context_info = &host->context_info;
378 int err;
379 unsigned long flags;
380
381 while (1) {
382 wait_event_interruptible(context_info->wait,
383 (context_info->is_done_rcv ||
384 context_info->is_new_req));
385 spin_lock_irqsave(&context_info->lock, flags);
386 context_info->is_waiting_last_req = false;
387 spin_unlock_irqrestore(&context_info->lock, flags);
388 if (context_info->is_done_rcv) {
389 context_info->is_done_rcv = false;
390 context_info->is_new_req = false;
391 cmd = mrq->cmd;
392
393 if (!cmd->error || !cmd->retries ||
394 mmc_card_removed(host->card)) {
395 err = host->areq->err_check(host->card,
396 host->areq);
397 break; /* return err */
398 } else {
399 pr_info("%s: req failed (CMD%u): %d, retrying...\n",
400 mmc_hostname(host),
401 cmd->opcode, cmd->error);
402 cmd->retries--;
403 cmd->error = 0;
404 host->ops->request(host, mrq);
405 continue; /* wait for done/new event again */
406 }
407 } else if (context_info->is_new_req) {
408 context_info->is_new_req = false;
409 if (!next_req) {
410 err = MMC_BLK_NEW_REQUEST;
411 break; /* return err */
412 }
413 }
414 }
415 return err;
416}
417
418static void mmc_wait_for_req_done(struct mmc_host *host,
419 struct mmc_request *mrq)
420{
421 struct mmc_command *cmd;
422
423 while (1) {
424 wait_for_completion(&mrq->completion);
425
426 cmd = mrq->cmd;
427
428 /*
429 * If host has timed out waiting for the sanitize
430 * to complete, card might be still in programming state
431 * so let's try to bring the card out of programming
432 * state.
433 */
434 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
435 if (!mmc_interrupt_hpi(host->card)) {
436 pr_warning("%s: %s: Interrupted sanitize\n",
437 mmc_hostname(host), __func__);
438 cmd->error = 0;
439 break;
440 } else {
441 pr_err("%s: %s: Failed to interrupt sanitize\n",
442 mmc_hostname(host), __func__);
443 }
444 }
445 if (!cmd->error || !cmd->retries ||
446 mmc_card_removed(host->card))
447 break;
448
449 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
450 mmc_hostname(host), cmd->opcode, cmd->error);
451 cmd->retries--;
452 cmd->error = 0;
453 host->ops->request(host, mrq);
454 }
455}
456
457/**
458 * mmc_pre_req - Prepare for a new request
459 * @host: MMC host to prepare command
460 * @mrq: MMC request to prepare for
461 * @is_first_req: true if there is no previous started request
462 * that may run in parellel to this call, otherwise false
463 *
464 * mmc_pre_req() is called in prior to mmc_start_req() to let
465 * host prepare for the new request. Preparation of a request may be
466 * performed while another request is running on the host.
467 */
468static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
469 bool is_first_req)
470{
471 if (host->ops->pre_req) {
472 mmc_host_clk_hold(host);
473 host->ops->pre_req(host, mrq, is_first_req);
474 mmc_host_clk_release(host);
475 }
476}
477
478/**
479 * mmc_post_req - Post process a completed request
480 * @host: MMC host to post process command
481 * @mrq: MMC request to post process for
482 * @err: Error, if non zero, clean up any resources made in pre_req
483 *
484 * Let the host post process a completed request. Post processing of
485 * a request may be performed while another reuqest is running.
486 */
487static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
488 int err)
489{
490 if (host->ops->post_req) {
491 mmc_host_clk_hold(host);
492 host->ops->post_req(host, mrq, err);
493 mmc_host_clk_release(host);
494 }
495}
496
497/**
498 * mmc_start_req - start a non-blocking request
499 * @host: MMC host to start command
500 * @areq: async request to start
501 * @error: out parameter returns 0 for success, otherwise non zero
502 *
503 * Start a new MMC custom command request for a host.
504 * If there is on ongoing async request wait for completion
505 * of that request and start the new one and return.
506 * Does not wait for the new request to complete.
507 *
508 * Returns the completed request, NULL in case of none completed.
509 * Wait for the an ongoing request (previoulsy started) to complete and
510 * return the completed request. If there is no ongoing request, NULL
511 * is returned without waiting. NULL is not an error condition.
512 */
513struct mmc_async_req *mmc_start_req(struct mmc_host *host,
514 struct mmc_async_req *areq, int *error)
515{
516 int err = 0;
517 int start_err = 0;
518 struct mmc_async_req *data = host->areq;
519
520 /* Prepare a new request */
521 if (areq)
522 mmc_pre_req(host, areq->mrq, !host->areq);
523
524 if (host->areq) {
525 err = mmc_wait_for_data_req_done(host, host->areq->mrq, areq);
526 if (err == MMC_BLK_NEW_REQUEST) {
527 if (error)
528 *error = err;
529 /*
530 * The previous request was not completed,
531 * nothing to return
532 */
533 return NULL;
534 }
535 /*
536 * Check BKOPS urgency for each R1 response
537 */
538 if (host->card && mmc_card_mmc(host->card) &&
539 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
540 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
541 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT))
542 mmc_start_bkops(host->card, true);
543 }
544
545 if (!err && areq)
546 start_err = __mmc_start_data_req(host, areq->mrq);
547
548 if (host->areq)
549 mmc_post_req(host, host->areq->mrq, 0);
550
551 /* Cancel a prepared request if it was not started. */
552 if ((err || start_err) && areq)
553 mmc_post_req(host, areq->mrq, -EINVAL);
554
555 if (err)
556 host->areq = NULL;
557 else
558 host->areq = areq;
559
560 if (error)
561 *error = err;
562 return data;
563}
564EXPORT_SYMBOL(mmc_start_req);
565
566/**
567 * mmc_wait_for_req - start a request and wait for completion
568 * @host: MMC host to start command
569 * @mrq: MMC request to start
570 *
571 * Start a new MMC custom command request for a host, and wait
572 * for the command to complete. Does not attempt to parse the
573 * response.
574 */
575void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
576{
577 __mmc_start_req(host, mrq);
578 mmc_wait_for_req_done(host, mrq);
579}
580EXPORT_SYMBOL(mmc_wait_for_req);
581
582/**
583 * mmc_interrupt_hpi - Issue for High priority Interrupt
584 * @card: the MMC card associated with the HPI transfer
585 *
586 * Issued High Priority Interrupt, and check for card status
587 * until out-of prg-state.
588 */
589int mmc_interrupt_hpi(struct mmc_card *card)
590{
591 int err;
592 u32 status;
593 unsigned long prg_wait;
594
595 BUG_ON(!card);
596
597 if (!card->ext_csd.hpi_en) {
598 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
599 return 1;
600 }
601
602 mmc_claim_host(card->host);
603 err = mmc_send_status(card, &status);
604 if (err) {
605 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
606 goto out;
607 }
608
609 switch (R1_CURRENT_STATE(status)) {
610 case R1_STATE_IDLE:
611 case R1_STATE_READY:
612 case R1_STATE_STBY:
613 case R1_STATE_TRAN:
614 /*
615 * In idle and transfer states, HPI is not needed and the caller
616 * can issue the next intended command immediately
617 */
618 goto out;
619 case R1_STATE_PRG:
620 break;
621 default:
622 /* In all other states, it's illegal to issue HPI */
623 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
624 mmc_hostname(card->host), R1_CURRENT_STATE(status));
625 err = -EINVAL;
626 goto out;
627 }
628
629 err = mmc_send_hpi_cmd(card, &status);
630 if (err)
631 goto out;
632
633 prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
634 do {
635 err = mmc_send_status(card, &status);
636
637 if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
638 break;
639 if (time_after(jiffies, prg_wait))
640 err = -ETIMEDOUT;
641 } while (!err);
642
643out:
644 mmc_release_host(card->host);
645 return err;
646}
647EXPORT_SYMBOL(mmc_interrupt_hpi);
648
649/**
650 * mmc_wait_for_cmd - start a command and wait for completion
651 * @host: MMC host to start command
652 * @cmd: MMC command to start
653 * @retries: maximum number of retries
654 *
655 * Start a new MMC command for a host, and wait for the command
656 * to complete. Return any error that occurred while the command
657 * was executing. Do not attempt to parse the response.
658 */
659int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
660{
661 struct mmc_request mrq = {NULL};
662
663 WARN_ON(!host->claimed);
664
665 memset(cmd->resp, 0, sizeof(cmd->resp));
666 cmd->retries = retries;
667
668 mrq.cmd = cmd;
669 cmd->data = NULL;
670
671 mmc_wait_for_req(host, &mrq);
672
673 return cmd->error;
674}
675
676EXPORT_SYMBOL(mmc_wait_for_cmd);
677
678/**
679 * mmc_stop_bkops - stop ongoing BKOPS
680 * @card: MMC card to check BKOPS
681 *
682 * Send HPI command to stop ongoing background operations to
683 * allow rapid servicing of foreground operations, e.g. read/
684 * writes. Wait until the card comes out of the programming state
685 * to avoid errors in servicing read/write requests.
686 */
687int mmc_stop_bkops(struct mmc_card *card)
688{
689 int err = 0;
690
691 BUG_ON(!card);
692 err = mmc_interrupt_hpi(card);
693
694 /*
695 * If err is EINVAL, we can't issue an HPI.
696 * It should complete the BKOPS.
697 */
698 if (!err || (err == -EINVAL)) {
699 mmc_card_clr_doing_bkops(card);
700 err = 0;
701 }
702
703 return err;
704}
705EXPORT_SYMBOL(mmc_stop_bkops);
706
707int mmc_read_bkops_status(struct mmc_card *card)
708{
709 int err;
710 u8 *ext_csd;
711
712 /*
713 * In future work, we should consider storing the entire ext_csd.
714 */
715 ext_csd = kmalloc(512, GFP_KERNEL);
716 if (!ext_csd) {
717 pr_err("%s: could not allocate buffer to receive the ext_csd.\n",
718 mmc_hostname(card->host));
719 return -ENOMEM;
720 }
721
722 mmc_claim_host(card->host);
723 err = mmc_send_ext_csd(card, ext_csd);
724 mmc_release_host(card->host);
725 if (err)
726 goto out;
727
728 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
729 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
730out:
731 kfree(ext_csd);
732 return err;
733}
734EXPORT_SYMBOL(mmc_read_bkops_status);
735
736/**
737 * mmc_set_data_timeout - set the timeout for a data command
738 * @data: data phase for command
739 * @card: the MMC card associated with the data transfer
740 *
741 * Computes the data timeout parameters according to the
742 * correct algorithm given the card type.
743 */
744void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
745{
746 unsigned int mult;
747
748 /*
749 * SDIO cards only define an upper 1 s limit on access.
750 */
751 if (mmc_card_sdio(card)) {
752 data->timeout_ns = 1000000000;
753 data->timeout_clks = 0;
754 return;
755 }
756
757 /*
758 * SD cards use a 100 multiplier rather than 10
759 */
760 mult = mmc_card_sd(card) ? 100 : 10;
761
762 /*
763 * Scale up the multiplier (and therefore the timeout) by
764 * the r2w factor for writes.
765 */
766 if (data->flags & MMC_DATA_WRITE)
767 mult <<= card->csd.r2w_factor;
768
769 data->timeout_ns = card->csd.tacc_ns * mult;
770 data->timeout_clks = card->csd.tacc_clks * mult;
771
772 /*
773 * SD cards also have an upper limit on the timeout.
774 */
775 if (mmc_card_sd(card)) {
776 unsigned int timeout_us, limit_us;
777
778 timeout_us = data->timeout_ns / 1000;
779 if (mmc_host_clk_rate(card->host))
780 timeout_us += data->timeout_clks * 1000 /
781 (mmc_host_clk_rate(card->host) / 1000);
782
783 if (data->flags & MMC_DATA_WRITE)
784 /*
785 * The MMC spec "It is strongly recommended
786 * for hosts to implement more than 500ms
787 * timeout value even if the card indicates
788 * the 250ms maximum busy length." Even the
789 * previous value of 300ms is known to be
790 * insufficient for some cards.
791 */
792 limit_us = 3000000;
793 else
794 limit_us = 100000;
795
796 /*
797 * SDHC cards always use these fixed values.
798 */
799 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
800 data->timeout_ns = limit_us * 1000;
801 data->timeout_clks = 0;
802 }
803 }
804
805 /*
806 * Some cards require longer data read timeout than indicated in CSD.
807 * Address this by setting the read timeout to a "reasonably high"
808 * value. For the cards tested, 300ms has proven enough. If necessary,
809 * this value can be increased if other problematic cards require this.
810 */
811 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
812 data->timeout_ns = 300000000;
813 data->timeout_clks = 0;
814 }
815
816 /*
817 * Some cards need very high timeouts if driven in SPI mode.
818 * The worst observed timeout was 900ms after writing a
819 * continuous stream of data until the internal logic
820 * overflowed.
821 */
822 if (mmc_host_is_spi(card->host)) {
823 if (data->flags & MMC_DATA_WRITE) {
824 if (data->timeout_ns < 1000000000)
825 data->timeout_ns = 1000000000; /* 1s */
826 } else {
827 if (data->timeout_ns < 100000000)
828 data->timeout_ns = 100000000; /* 100ms */
829 }
830 }
831}
832EXPORT_SYMBOL(mmc_set_data_timeout);
833
834/**
835 * mmc_align_data_size - pads a transfer size to a more optimal value
836 * @card: the MMC card associated with the data transfer
837 * @sz: original transfer size
838 *
839 * Pads the original data size with a number of extra bytes in
840 * order to avoid controller bugs and/or performance hits
841 * (e.g. some controllers revert to PIO for certain sizes).
842 *
843 * Returns the improved size, which might be unmodified.
844 *
845 * Note that this function is only relevant when issuing a
846 * single scatter gather entry.
847 */
848unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
849{
850 /*
851 * FIXME: We don't have a system for the controller to tell
852 * the core about its problems yet, so for now we just 32-bit
853 * align the size.
854 */
855 sz = ((sz + 3) / 4) * 4;
856
857 return sz;
858}
859EXPORT_SYMBOL(mmc_align_data_size);
860
861/**
862 * __mmc_claim_host - exclusively claim a host
863 * @host: mmc host to claim
864 * @abort: whether or not the operation should be aborted
865 *
866 * Claim a host for a set of operations. If @abort is non null and
867 * dereference a non-zero value then this will return prematurely with
868 * that non-zero value without acquiring the lock. Returns zero
869 * with the lock held otherwise.
870 */
871int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
872{
873 DECLARE_WAITQUEUE(wait, current);
874 unsigned long flags;
875 int stop;
876
877 might_sleep();
878
879 add_wait_queue(&host->wq, &wait);
880 spin_lock_irqsave(&host->lock, flags);
881 while (1) {
882 set_current_state(TASK_UNINTERRUPTIBLE);
883 stop = abort ? atomic_read(abort) : 0;
884 if (stop || !host->claimed || host->claimer == current)
885 break;
886 spin_unlock_irqrestore(&host->lock, flags);
887 schedule();
888 spin_lock_irqsave(&host->lock, flags);
889 }
890 set_current_state(TASK_RUNNING);
891 if (!stop) {
892 host->claimed = 1;
893 host->claimer = current;
894 host->claim_cnt += 1;
895 } else
896 wake_up(&host->wq);
897 spin_unlock_irqrestore(&host->lock, flags);
898 remove_wait_queue(&host->wq, &wait);
899 if (host->ops->enable && !stop && host->claim_cnt == 1)
900 host->ops->enable(host);
901 return stop;
902}
903
904EXPORT_SYMBOL(__mmc_claim_host);
905
906/**
907 * mmc_release_host - release a host
908 * @host: mmc host to release
909 *
910 * Release a MMC host, allowing others to claim the host
911 * for their operations.
912 */
913void mmc_release_host(struct mmc_host *host)
914{
915 unsigned long flags;
916
917 WARN_ON(!host->claimed);
918
919 if (host->ops->disable && host->claim_cnt == 1)
920 host->ops->disable(host);
921
922 spin_lock_irqsave(&host->lock, flags);
923 if (--host->claim_cnt) {
924 /* Release for nested claim */
925 spin_unlock_irqrestore(&host->lock, flags);
926 } else {
927 host->claimed = 0;
928 host->claimer = NULL;
929 spin_unlock_irqrestore(&host->lock, flags);
930 wake_up(&host->wq);
931 }
932}
933EXPORT_SYMBOL(mmc_release_host);
934
935/*
936 * This is a helper function, which fetches a runtime pm reference for the
937 * card device and also claims the host.
938 */
939void mmc_get_card(struct mmc_card *card)
940{
941 pm_runtime_get_sync(&card->dev);
942 mmc_claim_host(card->host);
943}
944EXPORT_SYMBOL(mmc_get_card);
945
946/*
947 * This is a helper function, which releases the host and drops the runtime
948 * pm reference for the card device.
949 */
950void mmc_put_card(struct mmc_card *card)
951{
952 mmc_release_host(card->host);
953 pm_runtime_mark_last_busy(&card->dev);
954 pm_runtime_put_autosuspend(&card->dev);
955}
956EXPORT_SYMBOL(mmc_put_card);
957
958/*
959 * Internal function that does the actual ios call to the host driver,
960 * optionally printing some debug output.
961 */
962static inline void mmc_set_ios(struct mmc_host *host)
963{
964 struct mmc_ios *ios = &host->ios;
965
966 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
967 "width %u timing %u\n",
968 mmc_hostname(host), ios->clock, ios->bus_mode,
969 ios->power_mode, ios->chip_select, ios->vdd,
970 ios->bus_width, ios->timing);
971
972 if (ios->clock > 0)
973 mmc_set_ungated(host);
974 host->ops->set_ios(host, ios);
975}
976
977/*
978 * Control chip select pin on a host.
979 */
980void mmc_set_chip_select(struct mmc_host *host, int mode)
981{
982 mmc_host_clk_hold(host);
983 host->ios.chip_select = mode;
984 mmc_set_ios(host);
985 mmc_host_clk_release(host);
986}
987
988/*
989 * Sets the host clock to the highest possible frequency that
990 * is below "hz".
991 */
992static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
993{
994 WARN_ON(hz < host->f_min);
995
996 if (hz > host->f_max)
997 hz = host->f_max;
998
999 host->ios.clock = hz;
1000 mmc_set_ios(host);
1001}
1002
1003void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1004{
1005 mmc_host_clk_hold(host);
1006 __mmc_set_clock(host, hz);
1007 mmc_host_clk_release(host);
1008}
1009
1010#ifdef CONFIG_MMC_CLKGATE
1011/*
1012 * This gates the clock by setting it to 0 Hz.
1013 */
1014void mmc_gate_clock(struct mmc_host *host)
1015{
1016 unsigned long flags;
1017
1018 spin_lock_irqsave(&host->clk_lock, flags);
1019 host->clk_old = host->ios.clock;
1020 host->ios.clock = 0;
1021 host->clk_gated = true;
1022 spin_unlock_irqrestore(&host->clk_lock, flags);
1023 mmc_set_ios(host);
1024}
1025
1026/*
1027 * This restores the clock from gating by using the cached
1028 * clock value.
1029 */
1030void mmc_ungate_clock(struct mmc_host *host)
1031{
1032 /*
1033 * We should previously have gated the clock, so the clock shall
1034 * be 0 here! The clock may however be 0 during initialization,
1035 * when some request operations are performed before setting
1036 * the frequency. When ungate is requested in that situation
1037 * we just ignore the call.
1038 */
1039 if (host->clk_old) {
1040 BUG_ON(host->ios.clock);
1041 /* This call will also set host->clk_gated to false */
1042 __mmc_set_clock(host, host->clk_old);
1043 }
1044}
1045
1046void mmc_set_ungated(struct mmc_host *host)
1047{
1048 unsigned long flags;
1049
1050 /*
1051 * We've been given a new frequency while the clock is gated,
1052 * so make sure we regard this as ungating it.
1053 */
1054 spin_lock_irqsave(&host->clk_lock, flags);
1055 host->clk_gated = false;
1056 spin_unlock_irqrestore(&host->clk_lock, flags);
1057}
1058
1059#else
1060void mmc_set_ungated(struct mmc_host *host)
1061{
1062}
1063#endif
1064
1065/*
1066 * Change the bus mode (open drain/push-pull) of a host.
1067 */
1068void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1069{
1070 mmc_host_clk_hold(host);
1071 host->ios.bus_mode = mode;
1072 mmc_set_ios(host);
1073 mmc_host_clk_release(host);
1074}
1075
1076/*
1077 * Change data bus width of a host.
1078 */
1079void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1080{
1081 mmc_host_clk_hold(host);
1082 host->ios.bus_width = width;
1083 mmc_set_ios(host);
1084 mmc_host_clk_release(host);
1085}
1086
1087/**
1088 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1089 * @vdd: voltage (mV)
1090 * @low_bits: prefer low bits in boundary cases
1091 *
1092 * This function returns the OCR bit number according to the provided @vdd
1093 * value. If conversion is not possible a negative errno value returned.
1094 *
1095 * Depending on the @low_bits flag the function prefers low or high OCR bits
1096 * on boundary voltages. For example,
1097 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1098 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1099 *
1100 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1101 */
1102static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1103{
1104 const int max_bit = ilog2(MMC_VDD_35_36);
1105 int bit;
1106
1107 if (vdd < 1650 || vdd > 3600)
1108 return -EINVAL;
1109
1110 if (vdd >= 1650 && vdd <= 1950)
1111 return ilog2(MMC_VDD_165_195);
1112
1113 if (low_bits)
1114 vdd -= 1;
1115
1116 /* Base 2000 mV, step 100 mV, bit's base 8. */
1117 bit = (vdd - 2000) / 100 + 8;
1118 if (bit > max_bit)
1119 return max_bit;
1120 return bit;
1121}
1122
1123/**
1124 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1125 * @vdd_min: minimum voltage value (mV)
1126 * @vdd_max: maximum voltage value (mV)
1127 *
1128 * This function returns the OCR mask bits according to the provided @vdd_min
1129 * and @vdd_max values. If conversion is not possible the function returns 0.
1130 *
1131 * Notes wrt boundary cases:
1132 * This function sets the OCR bits for all boundary voltages, for example
1133 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1134 * MMC_VDD_34_35 mask.
1135 */
1136u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1137{
1138 u32 mask = 0;
1139
1140 if (vdd_max < vdd_min)
1141 return 0;
1142
1143 /* Prefer high bits for the boundary vdd_max values. */
1144 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1145 if (vdd_max < 0)
1146 return 0;
1147
1148 /* Prefer low bits for the boundary vdd_min values. */
1149 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1150 if (vdd_min < 0)
1151 return 0;
1152
1153 /* Fill the mask, from max bit to min bit. */
1154 while (vdd_max >= vdd_min)
1155 mask |= 1 << vdd_max--;
1156
1157 return mask;
1158}
1159EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1160
1161#ifdef CONFIG_OF
1162
1163/**
1164 * mmc_of_parse_voltage - return mask of supported voltages
1165 * @np: The device node need to be parsed.
1166 * @mask: mask of voltages available for MMC/SD/SDIO
1167 *
1168 * 1. Return zero on success.
1169 * 2. Return negative errno: voltage-range is invalid.
1170 */
1171int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1172{
1173 const u32 *voltage_ranges;
1174 int num_ranges, i;
1175
1176 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1177 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1178 if (!voltage_ranges || !num_ranges) {
1179 pr_info("%s: voltage-ranges unspecified\n", np->full_name);
1180 return -EINVAL;
1181 }
1182
1183 for (i = 0; i < num_ranges; i++) {
1184 const int j = i * 2;
1185 u32 ocr_mask;
1186
1187 ocr_mask = mmc_vddrange_to_ocrmask(
1188 be32_to_cpu(voltage_ranges[j]),
1189 be32_to_cpu(voltage_ranges[j + 1]));
1190 if (!ocr_mask) {
1191 pr_err("%s: voltage-range #%d is invalid\n",
1192 np->full_name, i);
1193 return -EINVAL;
1194 }
1195 *mask |= ocr_mask;
1196 }
1197
1198 return 0;
1199}
1200EXPORT_SYMBOL(mmc_of_parse_voltage);
1201
1202#endif /* CONFIG_OF */
1203
1204#ifdef CONFIG_REGULATOR
1205
1206/**
1207 * mmc_regulator_get_ocrmask - return mask of supported voltages
1208 * @supply: regulator to use
1209 *
1210 * This returns either a negative errno, or a mask of voltages that
1211 * can be provided to MMC/SD/SDIO devices using the specified voltage
1212 * regulator. This would normally be called before registering the
1213 * MMC host adapter.
1214 */
1215int mmc_regulator_get_ocrmask(struct regulator *supply)
1216{
1217 int result = 0;
1218 int count;
1219 int i;
1220
1221 count = regulator_count_voltages(supply);
1222 if (count < 0)
1223 return count;
1224
1225 for (i = 0; i < count; i++) {
1226 int vdd_uV;
1227 int vdd_mV;
1228
1229 vdd_uV = regulator_list_voltage(supply, i);
1230 if (vdd_uV <= 0)
1231 continue;
1232
1233 vdd_mV = vdd_uV / 1000;
1234 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1235 }
1236
1237 return result;
1238}
1239EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1240
1241/**
1242 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1243 * @mmc: the host to regulate
1244 * @supply: regulator to use
1245 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1246 *
1247 * Returns zero on success, else negative errno.
1248 *
1249 * MMC host drivers may use this to enable or disable a regulator using
1250 * a particular supply voltage. This would normally be called from the
1251 * set_ios() method.
1252 */
1253int mmc_regulator_set_ocr(struct mmc_host *mmc,
1254 struct regulator *supply,
1255 unsigned short vdd_bit)
1256{
1257 int result = 0;
1258 int min_uV, max_uV;
1259
1260 if (vdd_bit) {
1261 int tmp;
1262 int voltage;
1263
1264 /*
1265 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1266 * bits this regulator doesn't quite support ... don't
1267 * be too picky, most cards and regulators are OK with
1268 * a 0.1V range goof (it's a small error percentage).
1269 */
1270 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1271 if (tmp == 0) {
1272 min_uV = 1650 * 1000;
1273 max_uV = 1950 * 1000;
1274 } else {
1275 min_uV = 1900 * 1000 + tmp * 100 * 1000;
1276 max_uV = min_uV + 100 * 1000;
1277 }
1278
1279 /*
1280 * If we're using a fixed/static regulator, don't call
1281 * regulator_set_voltage; it would fail.
1282 */
1283 voltage = regulator_get_voltage(supply);
1284
1285 if (!regulator_can_change_voltage(supply))
1286 min_uV = max_uV = voltage;
1287
1288 if (voltage < 0)
1289 result = voltage;
1290 else if (voltage < min_uV || voltage > max_uV)
1291 result = regulator_set_voltage(supply, min_uV, max_uV);
1292 else
1293 result = 0;
1294
1295 if (result == 0 && !mmc->regulator_enabled) {
1296 result = regulator_enable(supply);
1297 if (!result)
1298 mmc->regulator_enabled = true;
1299 }
1300 } else if (mmc->regulator_enabled) {
1301 result = regulator_disable(supply);
1302 if (result == 0)
1303 mmc->regulator_enabled = false;
1304 }
1305
1306 if (result)
1307 dev_err(mmc_dev(mmc),
1308 "could not set regulator OCR (%d)\n", result);
1309 return result;
1310}
1311EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1312
1313int mmc_regulator_get_supply(struct mmc_host *mmc)
1314{
1315 struct device *dev = mmc_dev(mmc);
1316 struct regulator *supply;
1317 int ret;
1318
1319 supply = devm_regulator_get(dev, "vmmc");
1320 mmc->supply.vmmc = supply;
1321 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1322
1323 if (IS_ERR(supply))
1324 return PTR_ERR(supply);
1325
1326 ret = mmc_regulator_get_ocrmask(supply);
1327 if (ret > 0)
1328 mmc->ocr_avail = ret;
1329 else
1330 dev_warn(mmc_dev(mmc), "Failed getting OCR mask: %d\n", ret);
1331
1332 return 0;
1333}
1334EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1335
1336#endif /* CONFIG_REGULATOR */
1337
1338/*
1339 * Mask off any voltages we don't support and select
1340 * the lowest voltage
1341 */
1342u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1343{
1344 int bit;
1345
1346 /*
1347 * Sanity check the voltages that the card claims to
1348 * support.
1349 */
1350 if (ocr & 0x7F) {
1351 dev_warn(mmc_dev(host),
1352 "card claims to support voltages below defined range\n");
1353 ocr &= ~0x7F;
1354 }
1355
1356 ocr &= host->ocr_avail;
1357 if (!ocr) {
1358 dev_warn(mmc_dev(host), "no support for card's volts\n");
1359 return 0;
1360 }
1361
1362 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1363 bit = ffs(ocr) - 1;
1364 ocr &= 3 << bit;
1365 mmc_power_cycle(host, ocr);
1366 } else {
1367 bit = fls(ocr) - 1;
1368 ocr &= 3 << bit;
1369 if (bit != host->ios.vdd)
1370 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1371 }
1372
1373 return ocr;
1374}
1375
1376int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1377{
1378 int err = 0;
1379 int old_signal_voltage = host->ios.signal_voltage;
1380
1381 host->ios.signal_voltage = signal_voltage;
1382 if (host->ops->start_signal_voltage_switch) {
1383 mmc_host_clk_hold(host);
1384 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1385 mmc_host_clk_release(host);
1386 }
1387
1388 if (err)
1389 host->ios.signal_voltage = old_signal_voltage;
1390
1391 return err;
1392
1393}
1394
1395int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
1396{
1397 struct mmc_command cmd = {0};
1398 int err = 0;
1399 u32 clock;
1400
1401 BUG_ON(!host);
1402
1403 /*
1404 * Send CMD11 only if the request is to switch the card to
1405 * 1.8V signalling.
1406 */
1407 if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1408 return __mmc_set_signal_voltage(host, signal_voltage);
1409
1410 /*
1411 * If we cannot switch voltages, return failure so the caller
1412 * can continue without UHS mode
1413 */
1414 if (!host->ops->start_signal_voltage_switch)
1415 return -EPERM;
1416 if (!host->ops->card_busy)
1417 pr_warning("%s: cannot verify signal voltage switch\n",
1418 mmc_hostname(host));
1419
1420 cmd.opcode = SD_SWITCH_VOLTAGE;
1421 cmd.arg = 0;
1422 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1423
1424 err = mmc_wait_for_cmd(host, &cmd, 0);
1425 if (err)
1426 return err;
1427
1428 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1429 return -EIO;
1430
1431 mmc_host_clk_hold(host);
1432 /*
1433 * The card should drive cmd and dat[0:3] low immediately
1434 * after the response of cmd11, but wait 1 ms to be sure
1435 */
1436 mmc_delay(1);
1437 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1438 err = -EAGAIN;
1439 goto power_cycle;
1440 }
1441 /*
1442 * During a signal voltage level switch, the clock must be gated
1443 * for 5 ms according to the SD spec
1444 */
1445 clock = host->ios.clock;
1446 host->ios.clock = 0;
1447 mmc_set_ios(host);
1448
1449 if (__mmc_set_signal_voltage(host, signal_voltage)) {
1450 /*
1451 * Voltages may not have been switched, but we've already
1452 * sent CMD11, so a power cycle is required anyway
1453 */
1454 err = -EAGAIN;
1455 goto power_cycle;
1456 }
1457
1458 /* Keep clock gated for at least 5 ms */
1459 mmc_delay(5);
1460 host->ios.clock = clock;
1461 mmc_set_ios(host);
1462
1463 /* Wait for at least 1 ms according to spec */
1464 mmc_delay(1);
1465
1466 /*
1467 * Failure to switch is indicated by the card holding
1468 * dat[0:3] low
1469 */
1470 if (host->ops->card_busy && host->ops->card_busy(host))
1471 err = -EAGAIN;
1472
1473power_cycle:
1474 if (err) {
1475 pr_debug("%s: Signal voltage switch failed, "
1476 "power cycling card\n", mmc_hostname(host));
1477 mmc_power_cycle(host, ocr);
1478 }
1479
1480 mmc_host_clk_release(host);
1481
1482 return err;
1483}
1484
1485/*
1486 * Select timing parameters for host.
1487 */
1488void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1489{
1490 mmc_host_clk_hold(host);
1491 host->ios.timing = timing;
1492 mmc_set_ios(host);
1493 mmc_host_clk_release(host);
1494}
1495
1496/*
1497 * Select appropriate driver type for host.
1498 */
1499void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1500{
1501 mmc_host_clk_hold(host);
1502 host->ios.drv_type = drv_type;
1503 mmc_set_ios(host);
1504 mmc_host_clk_release(host);
1505}
1506
1507/*
1508 * Apply power to the MMC stack. This is a two-stage process.
1509 * First, we enable power to the card without the clock running.
1510 * We then wait a bit for the power to stabilise. Finally,
1511 * enable the bus drivers and clock to the card.
1512 *
1513 * We must _NOT_ enable the clock prior to power stablising.
1514 *
1515 * If a host does all the power sequencing itself, ignore the
1516 * initial MMC_POWER_UP stage.
1517 */
1518void mmc_power_up(struct mmc_host *host, u32 ocr)
1519{
1520 if (host->ios.power_mode == MMC_POWER_ON)
1521 return;
1522
1523 mmc_host_clk_hold(host);
1524
1525 host->ios.vdd = fls(ocr) - 1;
1526 if (mmc_host_is_spi(host))
1527 host->ios.chip_select = MMC_CS_HIGH;
1528 else
1529 host->ios.chip_select = MMC_CS_DONTCARE;
1530 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1531 host->ios.power_mode = MMC_POWER_UP;
1532 host->ios.bus_width = MMC_BUS_WIDTH_1;
1533 host->ios.timing = MMC_TIMING_LEGACY;
1534 mmc_set_ios(host);
1535
1536 /* Set signal voltage to 3.3V */
1537 __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1538
1539 /*
1540 * This delay should be sufficient to allow the power supply
1541 * to reach the minimum voltage.
1542 */
1543 mmc_delay(10);
1544
1545 host->ios.clock = host->f_init;
1546
1547 host->ios.power_mode = MMC_POWER_ON;
1548 mmc_set_ios(host);
1549
1550 /*
1551 * This delay must be at least 74 clock sizes, or 1 ms, or the
1552 * time required to reach a stable voltage.
1553 */
1554 mmc_delay(10);
1555
1556 mmc_host_clk_release(host);
1557}
1558
1559void mmc_power_off(struct mmc_host *host)
1560{
1561 if (host->ios.power_mode == MMC_POWER_OFF)
1562 return;
1563
1564 mmc_host_clk_hold(host);
1565
1566 host->ios.clock = 0;
1567 host->ios.vdd = 0;
1568
1569 if (!mmc_host_is_spi(host)) {
1570 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1571 host->ios.chip_select = MMC_CS_DONTCARE;
1572 }
1573 host->ios.power_mode = MMC_POWER_OFF;
1574 host->ios.bus_width = MMC_BUS_WIDTH_1;
1575 host->ios.timing = MMC_TIMING_LEGACY;
1576 mmc_set_ios(host);
1577
1578 /*
1579 * Some configurations, such as the 802.11 SDIO card in the OLPC
1580 * XO-1.5, require a short delay after poweroff before the card
1581 * can be successfully turned on again.
1582 */
1583 mmc_delay(1);
1584
1585 mmc_host_clk_release(host);
1586}
1587
1588void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1589{
1590 mmc_power_off(host);
1591 /* Wait at least 1 ms according to SD spec */
1592 mmc_delay(1);
1593 mmc_power_up(host, ocr);
1594}
1595
1596/*
1597 * Cleanup when the last reference to the bus operator is dropped.
1598 */
1599static void __mmc_release_bus(struct mmc_host *host)
1600{
1601 BUG_ON(!host);
1602 BUG_ON(host->bus_refs);
1603 BUG_ON(!host->bus_dead);
1604
1605 host->bus_ops = NULL;
1606}
1607
1608/*
1609 * Increase reference count of bus operator
1610 */
1611static inline void mmc_bus_get(struct mmc_host *host)
1612{
1613 unsigned long flags;
1614
1615 spin_lock_irqsave(&host->lock, flags);
1616 host->bus_refs++;
1617 spin_unlock_irqrestore(&host->lock, flags);
1618}
1619
1620/*
1621 * Decrease reference count of bus operator and free it if
1622 * it is the last reference.
1623 */
1624static inline void mmc_bus_put(struct mmc_host *host)
1625{
1626 unsigned long flags;
1627
1628 spin_lock_irqsave(&host->lock, flags);
1629 host->bus_refs--;
1630 if ((host->bus_refs == 0) && host->bus_ops)
1631 __mmc_release_bus(host);
1632 spin_unlock_irqrestore(&host->lock, flags);
1633}
1634
1635/*
1636 * Assign a mmc bus handler to a host. Only one bus handler may control a
1637 * host at any given time.
1638 */
1639void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1640{
1641 unsigned long flags;
1642
1643 BUG_ON(!host);
1644 BUG_ON(!ops);
1645
1646 WARN_ON(!host->claimed);
1647
1648 spin_lock_irqsave(&host->lock, flags);
1649
1650 BUG_ON(host->bus_ops);
1651 BUG_ON(host->bus_refs);
1652
1653 host->bus_ops = ops;
1654 host->bus_refs = 1;
1655 host->bus_dead = 0;
1656
1657 spin_unlock_irqrestore(&host->lock, flags);
1658}
1659
1660/*
1661 * Remove the current bus handler from a host.
1662 */
1663void mmc_detach_bus(struct mmc_host *host)
1664{
1665 unsigned long flags;
1666
1667 BUG_ON(!host);
1668
1669 WARN_ON(!host->claimed);
1670 WARN_ON(!host->bus_ops);
1671
1672 spin_lock_irqsave(&host->lock, flags);
1673
1674 host->bus_dead = 1;
1675
1676 spin_unlock_irqrestore(&host->lock, flags);
1677
1678 mmc_bus_put(host);
1679}
1680
1681static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1682 bool cd_irq)
1683{
1684#ifdef CONFIG_MMC_DEBUG
1685 unsigned long flags;
1686 spin_lock_irqsave(&host->lock, flags);
1687 WARN_ON(host->removed);
1688 spin_unlock_irqrestore(&host->lock, flags);
1689#endif
1690
1691 /*
1692 * If the device is configured as wakeup, we prevent a new sleep for
1693 * 5 s to give provision for user space to consume the event.
1694 */
1695 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1696 device_can_wakeup(mmc_dev(host)))
1697 pm_wakeup_event(mmc_dev(host), 5000);
1698
1699 host->detect_change = 1;
1700 mmc_schedule_delayed_work(&host->detect, delay);
1701}
1702
1703/**
1704 * mmc_detect_change - process change of state on a MMC socket
1705 * @host: host which changed state.
1706 * @delay: optional delay to wait before detection (jiffies)
1707 *
1708 * MMC drivers should call this when they detect a card has been
1709 * inserted or removed. The MMC layer will confirm that any
1710 * present card is still functional, and initialize any newly
1711 * inserted.
1712 */
1713void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1714{
1715 _mmc_detect_change(host, delay, true);
1716}
1717EXPORT_SYMBOL(mmc_detect_change);
1718
1719void mmc_init_erase(struct mmc_card *card)
1720{
1721 unsigned int sz;
1722
1723 if (is_power_of_2(card->erase_size))
1724 card->erase_shift = ffs(card->erase_size) - 1;
1725 else
1726 card->erase_shift = 0;
1727
1728 /*
1729 * It is possible to erase an arbitrarily large area of an SD or MMC
1730 * card. That is not desirable because it can take a long time
1731 * (minutes) potentially delaying more important I/O, and also the
1732 * timeout calculations become increasingly hugely over-estimated.
1733 * Consequently, 'pref_erase' is defined as a guide to limit erases
1734 * to that size and alignment.
1735 *
1736 * For SD cards that define Allocation Unit size, limit erases to one
1737 * Allocation Unit at a time. For MMC cards that define High Capacity
1738 * Erase Size, whether it is switched on or not, limit to that size.
1739 * Otherwise just have a stab at a good value. For modern cards it
1740 * will end up being 4MiB. Note that if the value is too small, it
1741 * can end up taking longer to erase.
1742 */
1743 if (mmc_card_sd(card) && card->ssr.au) {
1744 card->pref_erase = card->ssr.au;
1745 card->erase_shift = ffs(card->ssr.au) - 1;
1746 } else if (card->ext_csd.hc_erase_size) {
1747 card->pref_erase = card->ext_csd.hc_erase_size;
1748 } else {
1749 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1750 if (sz < 128)
1751 card->pref_erase = 512 * 1024 / 512;
1752 else if (sz < 512)
1753 card->pref_erase = 1024 * 1024 / 512;
1754 else if (sz < 1024)
1755 card->pref_erase = 2 * 1024 * 1024 / 512;
1756 else
1757 card->pref_erase = 4 * 1024 * 1024 / 512;
1758 if (card->pref_erase < card->erase_size)
1759 card->pref_erase = card->erase_size;
1760 else {
1761 sz = card->pref_erase % card->erase_size;
1762 if (sz)
1763 card->pref_erase += card->erase_size - sz;
1764 }
1765 }
1766}
1767
1768static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1769 unsigned int arg, unsigned int qty)
1770{
1771 unsigned int erase_timeout;
1772
1773 if (arg == MMC_DISCARD_ARG ||
1774 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1775 erase_timeout = card->ext_csd.trim_timeout;
1776 } else if (card->ext_csd.erase_group_def & 1) {
1777 /* High Capacity Erase Group Size uses HC timeouts */
1778 if (arg == MMC_TRIM_ARG)
1779 erase_timeout = card->ext_csd.trim_timeout;
1780 else
1781 erase_timeout = card->ext_csd.hc_erase_timeout;
1782 } else {
1783 /* CSD Erase Group Size uses write timeout */
1784 unsigned int mult = (10 << card->csd.r2w_factor);
1785 unsigned int timeout_clks = card->csd.tacc_clks * mult;
1786 unsigned int timeout_us;
1787
1788 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1789 if (card->csd.tacc_ns < 1000000)
1790 timeout_us = (card->csd.tacc_ns * mult) / 1000;
1791 else
1792 timeout_us = (card->csd.tacc_ns / 1000) * mult;
1793
1794 /*
1795 * ios.clock is only a target. The real clock rate might be
1796 * less but not that much less, so fudge it by multiplying by 2.
1797 */
1798 timeout_clks <<= 1;
1799 timeout_us += (timeout_clks * 1000) /
1800 (mmc_host_clk_rate(card->host) / 1000);
1801
1802 erase_timeout = timeout_us / 1000;
1803
1804 /*
1805 * Theoretically, the calculation could underflow so round up
1806 * to 1ms in that case.
1807 */
1808 if (!erase_timeout)
1809 erase_timeout = 1;
1810 }
1811
1812 /* Multiplier for secure operations */
1813 if (arg & MMC_SECURE_ARGS) {
1814 if (arg == MMC_SECURE_ERASE_ARG)
1815 erase_timeout *= card->ext_csd.sec_erase_mult;
1816 else
1817 erase_timeout *= card->ext_csd.sec_trim_mult;
1818 }
1819
1820 erase_timeout *= qty;
1821
1822 /*
1823 * Ensure at least a 1 second timeout for SPI as per
1824 * 'mmc_set_data_timeout()'
1825 */
1826 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1827 erase_timeout = 1000;
1828
1829 return erase_timeout;
1830}
1831
1832static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1833 unsigned int arg,
1834 unsigned int qty)
1835{
1836 unsigned int erase_timeout;
1837
1838 if (card->ssr.erase_timeout) {
1839 /* Erase timeout specified in SD Status Register (SSR) */
1840 erase_timeout = card->ssr.erase_timeout * qty +
1841 card->ssr.erase_offset;
1842 } else {
1843 /*
1844 * Erase timeout not specified in SD Status Register (SSR) so
1845 * use 250ms per write block.
1846 */
1847 erase_timeout = 250 * qty;
1848 }
1849
1850 /* Must not be less than 1 second */
1851 if (erase_timeout < 1000)
1852 erase_timeout = 1000;
1853
1854 return erase_timeout;
1855}
1856
1857static unsigned int mmc_erase_timeout(struct mmc_card *card,
1858 unsigned int arg,
1859 unsigned int qty)
1860{
1861 if (mmc_card_sd(card))
1862 return mmc_sd_erase_timeout(card, arg, qty);
1863 else
1864 return mmc_mmc_erase_timeout(card, arg, qty);
1865}
1866
1867static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1868 unsigned int to, unsigned int arg)
1869{
1870 struct mmc_command cmd = {0};
1871 unsigned int qty = 0;
1872 unsigned long timeout;
1873 int err;
1874
1875 /*
1876 * qty is used to calculate the erase timeout which depends on how many
1877 * erase groups (or allocation units in SD terminology) are affected.
1878 * We count erasing part of an erase group as one erase group.
1879 * For SD, the allocation units are always a power of 2. For MMC, the
1880 * erase group size is almost certainly also power of 2, but it does not
1881 * seem to insist on that in the JEDEC standard, so we fall back to
1882 * division in that case. SD may not specify an allocation unit size,
1883 * in which case the timeout is based on the number of write blocks.
1884 *
1885 * Note that the timeout for secure trim 2 will only be correct if the
1886 * number of erase groups specified is the same as the total of all
1887 * preceding secure trim 1 commands. Since the power may have been
1888 * lost since the secure trim 1 commands occurred, it is generally
1889 * impossible to calculate the secure trim 2 timeout correctly.
1890 */
1891 if (card->erase_shift)
1892 qty += ((to >> card->erase_shift) -
1893 (from >> card->erase_shift)) + 1;
1894 else if (mmc_card_sd(card))
1895 qty += to - from + 1;
1896 else
1897 qty += ((to / card->erase_size) -
1898 (from / card->erase_size)) + 1;
1899
1900 if (!mmc_card_blockaddr(card)) {
1901 from <<= 9;
1902 to <<= 9;
1903 }
1904
1905 if (mmc_card_sd(card))
1906 cmd.opcode = SD_ERASE_WR_BLK_START;
1907 else
1908 cmd.opcode = MMC_ERASE_GROUP_START;
1909 cmd.arg = from;
1910 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1911 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1912 if (err) {
1913 pr_err("mmc_erase: group start error %d, "
1914 "status %#x\n", err, cmd.resp[0]);
1915 err = -EIO;
1916 goto out;
1917 }
1918
1919 memset(&cmd, 0, sizeof(struct mmc_command));
1920 if (mmc_card_sd(card))
1921 cmd.opcode = SD_ERASE_WR_BLK_END;
1922 else
1923 cmd.opcode = MMC_ERASE_GROUP_END;
1924 cmd.arg = to;
1925 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1926 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1927 if (err) {
1928 pr_err("mmc_erase: group end error %d, status %#x\n",
1929 err, cmd.resp[0]);
1930 err = -EIO;
1931 goto out;
1932 }
1933
1934 memset(&cmd, 0, sizeof(struct mmc_command));
1935 cmd.opcode = MMC_ERASE;
1936 cmd.arg = arg;
1937 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1938 cmd.busy_timeout = mmc_erase_timeout(card, arg, qty);
1939 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1940 if (err) {
1941 pr_err("mmc_erase: erase error %d, status %#x\n",
1942 err, cmd.resp[0]);
1943 err = -EIO;
1944 goto out;
1945 }
1946
1947 if (mmc_host_is_spi(card->host))
1948 goto out;
1949
1950 timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
1951 do {
1952 memset(&cmd, 0, sizeof(struct mmc_command));
1953 cmd.opcode = MMC_SEND_STATUS;
1954 cmd.arg = card->rca << 16;
1955 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1956 /* Do not retry else we can't see errors */
1957 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1958 if (err || (cmd.resp[0] & 0xFDF92000)) {
1959 pr_err("error %d requesting status %#x\n",
1960 err, cmd.resp[0]);
1961 err = -EIO;
1962 goto out;
1963 }
1964
1965 /* Timeout if the device never becomes ready for data and
1966 * never leaves the program state.
1967 */
1968 if (time_after(jiffies, timeout)) {
1969 pr_err("%s: Card stuck in programming state! %s\n",
1970 mmc_hostname(card->host), __func__);
1971 err = -EIO;
1972 goto out;
1973 }
1974
1975 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1976 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
1977out:
1978 return err;
1979}
1980
1981/**
1982 * mmc_erase - erase sectors.
1983 * @card: card to erase
1984 * @from: first sector to erase
1985 * @nr: number of sectors to erase
1986 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1987 *
1988 * Caller must claim host before calling this function.
1989 */
1990int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1991 unsigned int arg)
1992{
1993 unsigned int rem, to = from + nr;
1994
1995 if (!(card->host->caps & MMC_CAP_ERASE) ||
1996 !(card->csd.cmdclass & CCC_ERASE))
1997 return -EOPNOTSUPP;
1998
1999 if (!card->erase_size)
2000 return -EOPNOTSUPP;
2001
2002 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2003 return -EOPNOTSUPP;
2004
2005 if ((arg & MMC_SECURE_ARGS) &&
2006 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2007 return -EOPNOTSUPP;
2008
2009 if ((arg & MMC_TRIM_ARGS) &&
2010 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2011 return -EOPNOTSUPP;
2012
2013 if (arg == MMC_SECURE_ERASE_ARG) {
2014 if (from % card->erase_size || nr % card->erase_size)
2015 return -EINVAL;
2016 }
2017
2018 if (arg == MMC_ERASE_ARG) {
2019 rem = from % card->erase_size;
2020 if (rem) {
2021 rem = card->erase_size - rem;
2022 from += rem;
2023 if (nr > rem)
2024 nr -= rem;
2025 else
2026 return 0;
2027 }
2028 rem = nr % card->erase_size;
2029 if (rem)
2030 nr -= rem;
2031 }
2032
2033 if (nr == 0)
2034 return 0;
2035
2036 to = from + nr;
2037
2038 if (to <= from)
2039 return -EINVAL;
2040
2041 /* 'from' and 'to' are inclusive */
2042 to -= 1;
2043
2044 return mmc_do_erase(card, from, to, arg);
2045}
2046EXPORT_SYMBOL(mmc_erase);
2047
2048int mmc_can_erase(struct mmc_card *card)
2049{
2050 if ((card->host->caps & MMC_CAP_ERASE) &&
2051 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2052 return 1;
2053 return 0;
2054}
2055EXPORT_SYMBOL(mmc_can_erase);
2056
2057int mmc_can_trim(struct mmc_card *card)
2058{
2059 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
2060 return 1;
2061 return 0;
2062}
2063EXPORT_SYMBOL(mmc_can_trim);
2064
2065int mmc_can_discard(struct mmc_card *card)
2066{
2067 /*
2068 * As there's no way to detect the discard support bit at v4.5
2069 * use the s/w feature support filed.
2070 */
2071 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2072 return 1;
2073 return 0;
2074}
2075EXPORT_SYMBOL(mmc_can_discard);
2076
2077int mmc_can_sanitize(struct mmc_card *card)
2078{
2079 if (!mmc_can_trim(card) && !mmc_can_erase(card))
2080 return 0;
2081 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2082 return 1;
2083 return 0;
2084}
2085EXPORT_SYMBOL(mmc_can_sanitize);
2086
2087int mmc_can_secure_erase_trim(struct mmc_card *card)
2088{
2089 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
2090 return 1;
2091 return 0;
2092}
2093EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2094
2095int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2096 unsigned int nr)
2097{
2098 if (!card->erase_size)
2099 return 0;
2100 if (from % card->erase_size || nr % card->erase_size)
2101 return 0;
2102 return 1;
2103}
2104EXPORT_SYMBOL(mmc_erase_group_aligned);
2105
2106static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2107 unsigned int arg)
2108{
2109 struct mmc_host *host = card->host;
2110 unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2111 unsigned int last_timeout = 0;
2112
2113 if (card->erase_shift)
2114 max_qty = UINT_MAX >> card->erase_shift;
2115 else if (mmc_card_sd(card))
2116 max_qty = UINT_MAX;
2117 else
2118 max_qty = UINT_MAX / card->erase_size;
2119
2120 /* Find the largest qty with an OK timeout */
2121 do {
2122 y = 0;
2123 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2124 timeout = mmc_erase_timeout(card, arg, qty + x);
2125 if (timeout > host->max_busy_timeout)
2126 break;
2127 if (timeout < last_timeout)
2128 break;
2129 last_timeout = timeout;
2130 y = x;
2131 }
2132 qty += y;
2133 } while (y);
2134
2135 if (!qty)
2136 return 0;
2137
2138 if (qty == 1)
2139 return 1;
2140
2141 /* Convert qty to sectors */
2142 if (card->erase_shift)
2143 max_discard = --qty << card->erase_shift;
2144 else if (mmc_card_sd(card))
2145 max_discard = qty;
2146 else
2147 max_discard = --qty * card->erase_size;
2148
2149 return max_discard;
2150}
2151
2152unsigned int mmc_calc_max_discard(struct mmc_card *card)
2153{
2154 struct mmc_host *host = card->host;
2155 unsigned int max_discard, max_trim;
2156
2157 if (!host->max_busy_timeout)
2158 return UINT_MAX;
2159
2160 /*
2161 * Without erase_group_def set, MMC erase timeout depends on clock
2162 * frequence which can change. In that case, the best choice is
2163 * just the preferred erase size.
2164 */
2165 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2166 return card->pref_erase;
2167
2168 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2169 if (mmc_can_trim(card)) {
2170 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2171 if (max_trim < max_discard)
2172 max_discard = max_trim;
2173 } else if (max_discard < card->erase_size) {
2174 max_discard = 0;
2175 }
2176 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2177 mmc_hostname(host), max_discard, host->max_busy_timeout);
2178 return max_discard;
2179}
2180EXPORT_SYMBOL(mmc_calc_max_discard);
2181
2182int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2183{
2184 struct mmc_command cmd = {0};
2185
2186 if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
2187 return 0;
2188
2189 cmd.opcode = MMC_SET_BLOCKLEN;
2190 cmd.arg = blocklen;
2191 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2192 return mmc_wait_for_cmd(card->host, &cmd, 5);
2193}
2194EXPORT_SYMBOL(mmc_set_blocklen);
2195
2196int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2197 bool is_rel_write)
2198{
2199 struct mmc_command cmd = {0};
2200
2201 cmd.opcode = MMC_SET_BLOCK_COUNT;
2202 cmd.arg = blockcount & 0x0000FFFF;
2203 if (is_rel_write)
2204 cmd.arg |= 1 << 31;
2205 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2206 return mmc_wait_for_cmd(card->host, &cmd, 5);
2207}
2208EXPORT_SYMBOL(mmc_set_blockcount);
2209
2210static void mmc_hw_reset_for_init(struct mmc_host *host)
2211{
2212 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2213 return;
2214 mmc_host_clk_hold(host);
2215 host->ops->hw_reset(host);
2216 mmc_host_clk_release(host);
2217}
2218
2219int mmc_can_reset(struct mmc_card *card)
2220{
2221 u8 rst_n_function;
2222
2223 if (!mmc_card_mmc(card))
2224 return 0;
2225 rst_n_function = card->ext_csd.rst_n_function;
2226 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2227 return 0;
2228 return 1;
2229}
2230EXPORT_SYMBOL(mmc_can_reset);
2231
2232static int mmc_do_hw_reset(struct mmc_host *host, int check)
2233{
2234 struct mmc_card *card = host->card;
2235
2236 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2237 return -EOPNOTSUPP;
2238
2239 if (!card)
2240 return -EINVAL;
2241
2242 if (!mmc_can_reset(card))
2243 return -EOPNOTSUPP;
2244
2245 mmc_host_clk_hold(host);
2246 mmc_set_clock(host, host->f_init);
2247
2248 host->ops->hw_reset(host);
2249
2250 /* If the reset has happened, then a status command will fail */
2251 if (check) {
2252 struct mmc_command cmd = {0};
2253 int err;
2254
2255 cmd.opcode = MMC_SEND_STATUS;
2256 if (!mmc_host_is_spi(card->host))
2257 cmd.arg = card->rca << 16;
2258 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2259 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2260 if (!err) {
2261 mmc_host_clk_release(host);
2262 return -ENOSYS;
2263 }
2264 }
2265
2266 host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
2267 if (mmc_host_is_spi(host)) {
2268 host->ios.chip_select = MMC_CS_HIGH;
2269 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
2270 } else {
2271 host->ios.chip_select = MMC_CS_DONTCARE;
2272 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
2273 }
2274 host->ios.bus_width = MMC_BUS_WIDTH_1;
2275 host->ios.timing = MMC_TIMING_LEGACY;
2276 mmc_set_ios(host);
2277
2278 mmc_host_clk_release(host);
2279
2280 return host->bus_ops->power_restore(host);
2281}
2282
2283int mmc_hw_reset(struct mmc_host *host)
2284{
2285 return mmc_do_hw_reset(host, 0);
2286}
2287EXPORT_SYMBOL(mmc_hw_reset);
2288
2289int mmc_hw_reset_check(struct mmc_host *host)
2290{
2291 return mmc_do_hw_reset(host, 1);
2292}
2293EXPORT_SYMBOL(mmc_hw_reset_check);
2294
2295static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2296{
2297 host->f_init = freq;
2298
2299#ifdef CONFIG_MMC_DEBUG
2300 pr_info("%s: %s: trying to init card at %u Hz\n",
2301 mmc_hostname(host), __func__, host->f_init);
2302#endif
2303 mmc_power_up(host, host->ocr_avail);
2304
2305 /*
2306 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2307 * do a hardware reset if possible.
2308 */
2309 mmc_hw_reset_for_init(host);
2310
2311 /*
2312 * sdio_reset sends CMD52 to reset card. Since we do not know
2313 * if the card is being re-initialized, just send it. CMD52
2314 * should be ignored by SD/eMMC cards.
2315 */
2316 sdio_reset(host);
2317 mmc_go_idle(host);
2318
2319 mmc_send_if_cond(host, host->ocr_avail);
2320
2321 /* Order's important: probe SDIO, then SD, then MMC */
2322 if (!mmc_attach_sdio(host))
2323 return 0;
2324 if (!mmc_attach_sd(host))
2325 return 0;
2326 if (!mmc_attach_mmc(host))
2327 return 0;
2328
2329 mmc_power_off(host);
2330 return -EIO;
2331}
2332
2333int _mmc_detect_card_removed(struct mmc_host *host)
2334{
2335 int ret;
2336
2337 if (host->caps & MMC_CAP_NONREMOVABLE)
2338 return 0;
2339
2340 if (!host->card || mmc_card_removed(host->card))
2341 return 1;
2342
2343 ret = host->bus_ops->alive(host);
2344
2345 /*
2346 * Card detect status and alive check may be out of sync if card is
2347 * removed slowly, when card detect switch changes while card/slot
2348 * pads are still contacted in hardware (refer to "SD Card Mechanical
2349 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2350 * detect work 200ms later for this case.
2351 */
2352 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2353 mmc_detect_change(host, msecs_to_jiffies(200));
2354 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2355 }
2356
2357 if (ret) {
2358 mmc_card_set_removed(host->card);
2359 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2360 }
2361
2362 return ret;
2363}
2364
2365int mmc_detect_card_removed(struct mmc_host *host)
2366{
2367 struct mmc_card *card = host->card;
2368 int ret;
2369
2370 WARN_ON(!host->claimed);
2371
2372 if (!card)
2373 return 1;
2374
2375 ret = mmc_card_removed(card);
2376 /*
2377 * The card will be considered unchanged unless we have been asked to
2378 * detect a change or host requires polling to provide card detection.
2379 */
2380 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2381 return ret;
2382
2383 host->detect_change = 0;
2384 if (!ret) {
2385 ret = _mmc_detect_card_removed(host);
2386 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2387 /*
2388 * Schedule a detect work as soon as possible to let a
2389 * rescan handle the card removal.
2390 */
2391 cancel_delayed_work(&host->detect);
2392 _mmc_detect_change(host, 0, false);
2393 }
2394 }
2395
2396 return ret;
2397}
2398EXPORT_SYMBOL(mmc_detect_card_removed);
2399
2400void mmc_rescan(struct work_struct *work)
2401{
2402 struct mmc_host *host =
2403 container_of(work, struct mmc_host, detect.work);
2404 int i;
2405
2406 if (host->rescan_disable)
2407 return;
2408
2409 /* If there is a non-removable card registered, only scan once */
2410 if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2411 return;
2412 host->rescan_entered = 1;
2413
2414 mmc_bus_get(host);
2415
2416 /*
2417 * if there is a _removable_ card registered, check whether it is
2418 * still present
2419 */
2420 if (host->bus_ops && !host->bus_dead
2421 && !(host->caps & MMC_CAP_NONREMOVABLE))
2422 host->bus_ops->detect(host);
2423
2424 host->detect_change = 0;
2425
2426 /*
2427 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2428 * the card is no longer present.
2429 */
2430 mmc_bus_put(host);
2431 mmc_bus_get(host);
2432
2433 /* if there still is a card present, stop here */
2434 if (host->bus_ops != NULL) {
2435 mmc_bus_put(host);
2436 goto out;
2437 }
2438
2439 /*
2440 * Only we can add a new handler, so it's safe to
2441 * release the lock here.
2442 */
2443 mmc_bus_put(host);
2444
2445 if (!(host->caps & MMC_CAP_NONREMOVABLE) && host->ops->get_cd &&
2446 host->ops->get_cd(host) == 0) {
2447 mmc_claim_host(host);
2448 mmc_power_off(host);
2449 mmc_release_host(host);
2450 goto out;
2451 }
2452
2453 mmc_claim_host(host);
2454 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2455 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2456 break;
2457 if (freqs[i] <= host->f_min)
2458 break;
2459 }
2460 mmc_release_host(host);
2461
2462 out:
2463 if (host->caps & MMC_CAP_NEEDS_POLL)
2464 mmc_schedule_delayed_work(&host->detect, HZ);
2465}
2466
2467void mmc_start_host(struct mmc_host *host)
2468{
2469 host->f_init = max(freqs[0], host->f_min);
2470 host->rescan_disable = 0;
2471 if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2472 mmc_power_off(host);
2473 else
2474 mmc_power_up(host, host->ocr_avail);
2475 mmc_gpiod_request_cd_irq(host);
2476 _mmc_detect_change(host, 0, false);
2477}
2478
2479void mmc_stop_host(struct mmc_host *host)
2480{
2481#ifdef CONFIG_MMC_DEBUG
2482 unsigned long flags;
2483 spin_lock_irqsave(&host->lock, flags);
2484 host->removed = 1;
2485 spin_unlock_irqrestore(&host->lock, flags);
2486#endif
2487 if (host->slot.cd_irq >= 0)
2488 disable_irq(host->slot.cd_irq);
2489
2490 host->rescan_disable = 1;
2491 cancel_delayed_work_sync(&host->detect);
2492 mmc_flush_scheduled_work();
2493
2494 /* clear pm flags now and let card drivers set them as needed */
2495 host->pm_flags = 0;
2496
2497 mmc_bus_get(host);
2498 if (host->bus_ops && !host->bus_dead) {
2499 /* Calling bus_ops->remove() with a claimed host can deadlock */
2500 host->bus_ops->remove(host);
2501 mmc_claim_host(host);
2502 mmc_detach_bus(host);
2503 mmc_power_off(host);
2504 mmc_release_host(host);
2505 mmc_bus_put(host);
2506 return;
2507 }
2508 mmc_bus_put(host);
2509
2510 BUG_ON(host->card);
2511
2512 mmc_power_off(host);
2513}
2514
2515int mmc_power_save_host(struct mmc_host *host)
2516{
2517 int ret = 0;
2518
2519#ifdef CONFIG_MMC_DEBUG
2520 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2521#endif
2522
2523 mmc_bus_get(host);
2524
2525 if (!host->bus_ops || host->bus_dead) {
2526 mmc_bus_put(host);
2527 return -EINVAL;
2528 }
2529
2530 if (host->bus_ops->power_save)
2531 ret = host->bus_ops->power_save(host);
2532
2533 mmc_bus_put(host);
2534
2535 mmc_power_off(host);
2536
2537 return ret;
2538}
2539EXPORT_SYMBOL(mmc_power_save_host);
2540
2541int mmc_power_restore_host(struct mmc_host *host)
2542{
2543 int ret;
2544
2545#ifdef CONFIG_MMC_DEBUG
2546 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2547#endif
2548
2549 mmc_bus_get(host);
2550
2551 if (!host->bus_ops || host->bus_dead) {
2552 mmc_bus_put(host);
2553 return -EINVAL;
2554 }
2555
2556 mmc_power_up(host, host->card->ocr);
2557 ret = host->bus_ops->power_restore(host);
2558
2559 mmc_bus_put(host);
2560
2561 return ret;
2562}
2563EXPORT_SYMBOL(mmc_power_restore_host);
2564
2565/*
2566 * Flush the cache to the non-volatile storage.
2567 */
2568int mmc_flush_cache(struct mmc_card *card)
2569{
2570 int err = 0;
2571
2572 if (mmc_card_mmc(card) &&
2573 (card->ext_csd.cache_size > 0) &&
2574 (card->ext_csd.cache_ctrl & 1)) {
2575 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2576 EXT_CSD_FLUSH_CACHE, 1, 0);
2577 if (err)
2578 pr_err("%s: cache flush error %d\n",
2579 mmc_hostname(card->host), err);
2580 }
2581
2582 return err;
2583}
2584EXPORT_SYMBOL(mmc_flush_cache);
2585
2586#ifdef CONFIG_PM
2587
2588/* Do the card removal on suspend if card is assumed removeable
2589 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2590 to sync the card.
2591*/
2592int mmc_pm_notify(struct notifier_block *notify_block,
2593 unsigned long mode, void *unused)
2594{
2595 struct mmc_host *host = container_of(
2596 notify_block, struct mmc_host, pm_notify);
2597 unsigned long flags;
2598 int err = 0;
2599
2600 switch (mode) {
2601 case PM_HIBERNATION_PREPARE:
2602 case PM_SUSPEND_PREPARE:
2603 spin_lock_irqsave(&host->lock, flags);
2604 host->rescan_disable = 1;
2605 spin_unlock_irqrestore(&host->lock, flags);
2606 cancel_delayed_work_sync(&host->detect);
2607
2608 if (!host->bus_ops)
2609 break;
2610
2611 /* Validate prerequisites for suspend */
2612 if (host->bus_ops->pre_suspend)
2613 err = host->bus_ops->pre_suspend(host);
2614 if (!err)
2615 break;
2616
2617 /* Calling bus_ops->remove() with a claimed host can deadlock */
2618 host->bus_ops->remove(host);
2619 mmc_claim_host(host);
2620 mmc_detach_bus(host);
2621 mmc_power_off(host);
2622 mmc_release_host(host);
2623 host->pm_flags = 0;
2624 break;
2625
2626 case PM_POST_SUSPEND:
2627 case PM_POST_HIBERNATION:
2628 case PM_POST_RESTORE:
2629
2630 spin_lock_irqsave(&host->lock, flags);
2631 host->rescan_disable = 0;
2632 spin_unlock_irqrestore(&host->lock, flags);
2633 _mmc_detect_change(host, 0, false);
2634
2635 }
2636
2637 return 0;
2638}
2639#endif
2640
2641/**
2642 * mmc_init_context_info() - init synchronization context
2643 * @host: mmc host
2644 *
2645 * Init struct context_info needed to implement asynchronous
2646 * request mechanism, used by mmc core, host driver and mmc requests
2647 * supplier.
2648 */
2649void mmc_init_context_info(struct mmc_host *host)
2650{
2651 spin_lock_init(&host->context_info.lock);
2652 host->context_info.is_new_req = false;
2653 host->context_info.is_done_rcv = false;
2654 host->context_info.is_waiting_last_req = false;
2655 init_waitqueue_head(&host->context_info.wait);
2656}
2657
2658static int __init mmc_init(void)
2659{
2660 int ret;
2661
2662 workqueue = alloc_ordered_workqueue("kmmcd", 0);
2663 if (!workqueue)
2664 return -ENOMEM;
2665
2666 ret = mmc_register_bus();
2667 if (ret)
2668 goto destroy_workqueue;
2669
2670 ret = mmc_register_host_class();
2671 if (ret)
2672 goto unregister_bus;
2673
2674 ret = sdio_register_bus();
2675 if (ret)
2676 goto unregister_host_class;
2677
2678 return 0;
2679
2680unregister_host_class:
2681 mmc_unregister_host_class();
2682unregister_bus:
2683 mmc_unregister_bus();
2684destroy_workqueue:
2685 destroy_workqueue(workqueue);
2686
2687 return ret;
2688}
2689
2690static void __exit mmc_exit(void)
2691{
2692 sdio_unregister_bus();
2693 mmc_unregister_host_class();
2694 mmc_unregister_bus();
2695 destroy_workqueue(workqueue);
2696}
2697
2698subsys_initcall(mmc_init);
2699module_exit(mmc_exit);
2700
2701MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/drivers/mmc/core/core.c
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
8 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 */
10#include <linux/module.h>
11#include <linux/init.h>
12#include <linux/interrupt.h>
13#include <linux/completion.h>
14#include <linux/device.h>
15#include <linux/delay.h>
16#include <linux/pagemap.h>
17#include <linux/err.h>
18#include <linux/leds.h>
19#include <linux/scatterlist.h>
20#include <linux/log2.h>
21#include <linux/pm_runtime.h>
22#include <linux/pm_wakeup.h>
23#include <linux/suspend.h>
24#include <linux/fault-inject.h>
25#include <linux/random.h>
26#include <linux/slab.h>
27#include <linux/of.h>
28
29#include <linux/mmc/card.h>
30#include <linux/mmc/host.h>
31#include <linux/mmc/mmc.h>
32#include <linux/mmc/sd.h>
33#include <linux/mmc/slot-gpio.h>
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/mmc.h>
37
38#include "core.h"
39#include "card.h"
40#include "crypto.h"
41#include "bus.h"
42#include "host.h"
43#include "sdio_bus.h"
44#include "pwrseq.h"
45
46#include "mmc_ops.h"
47#include "sd_ops.h"
48#include "sdio_ops.h"
49
50/* The max erase timeout, used when host->max_busy_timeout isn't specified */
51#define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
52#define SD_DISCARD_TIMEOUT_MS (250)
53
54static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
55
56/*
57 * Enabling software CRCs on the data blocks can be a significant (30%)
58 * performance cost, and for other reasons may not always be desired.
59 * So we allow it to be disabled.
60 */
61bool use_spi_crc = 1;
62module_param(use_spi_crc, bool, 0);
63
64static int mmc_schedule_delayed_work(struct delayed_work *work,
65 unsigned long delay)
66{
67 /*
68 * We use the system_freezable_wq, because of two reasons.
69 * First, it allows several works (not the same work item) to be
70 * executed simultaneously. Second, the queue becomes frozen when
71 * userspace becomes frozen during system PM.
72 */
73 return queue_delayed_work(system_freezable_wq, work, delay);
74}
75
76#ifdef CONFIG_FAIL_MMC_REQUEST
77
78/*
79 * Internal function. Inject random data errors.
80 * If mmc_data is NULL no errors are injected.
81 */
82static void mmc_should_fail_request(struct mmc_host *host,
83 struct mmc_request *mrq)
84{
85 struct mmc_command *cmd = mrq->cmd;
86 struct mmc_data *data = mrq->data;
87 static const int data_errors[] = {
88 -ETIMEDOUT,
89 -EILSEQ,
90 -EIO,
91 };
92
93 if (!data)
94 return;
95
96 if ((cmd && cmd->error) || data->error ||
97 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
98 return;
99
100 data->error = data_errors[get_random_u32_below(ARRAY_SIZE(data_errors))];
101 data->bytes_xfered = get_random_u32_below(data->bytes_xfered >> 9) << 9;
102}
103
104#else /* CONFIG_FAIL_MMC_REQUEST */
105
106static inline void mmc_should_fail_request(struct mmc_host *host,
107 struct mmc_request *mrq)
108{
109}
110
111#endif /* CONFIG_FAIL_MMC_REQUEST */
112
113static inline void mmc_complete_cmd(struct mmc_request *mrq)
114{
115 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
116 complete_all(&mrq->cmd_completion);
117}
118
119void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
120{
121 if (!mrq->cap_cmd_during_tfr)
122 return;
123
124 mmc_complete_cmd(mrq);
125
126 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
127 mmc_hostname(host), mrq->cmd->opcode);
128}
129EXPORT_SYMBOL(mmc_command_done);
130
131/**
132 * mmc_request_done - finish processing an MMC request
133 * @host: MMC host which completed request
134 * @mrq: MMC request which request
135 *
136 * MMC drivers should call this function when they have completed
137 * their processing of a request.
138 */
139void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
140{
141 struct mmc_command *cmd = mrq->cmd;
142 int err = cmd->error;
143
144 /* Flag re-tuning needed on CRC errors */
145 if (!mmc_op_tuning(cmd->opcode) &&
146 !host->retune_crc_disable &&
147 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
148 (mrq->data && mrq->data->error == -EILSEQ) ||
149 (mrq->stop && mrq->stop->error == -EILSEQ)))
150 mmc_retune_needed(host);
151
152 if (err && cmd->retries && mmc_host_is_spi(host)) {
153 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
154 cmd->retries = 0;
155 }
156
157 if (host->ongoing_mrq == mrq)
158 host->ongoing_mrq = NULL;
159
160 mmc_complete_cmd(mrq);
161
162 trace_mmc_request_done(host, mrq);
163
164 /*
165 * We list various conditions for the command to be considered
166 * properly done:
167 *
168 * - There was no error, OK fine then
169 * - We are not doing some kind of retry
170 * - The card was removed (...so just complete everything no matter
171 * if there are errors or retries)
172 */
173 if (!err || !cmd->retries || mmc_card_removed(host->card)) {
174 mmc_should_fail_request(host, mrq);
175
176 if (!host->ongoing_mrq)
177 led_trigger_event(host->led, LED_OFF);
178
179 if (mrq->sbc) {
180 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
181 mmc_hostname(host), mrq->sbc->opcode,
182 mrq->sbc->error,
183 mrq->sbc->resp[0], mrq->sbc->resp[1],
184 mrq->sbc->resp[2], mrq->sbc->resp[3]);
185 }
186
187 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
188 mmc_hostname(host), cmd->opcode, err,
189 cmd->resp[0], cmd->resp[1],
190 cmd->resp[2], cmd->resp[3]);
191
192 if (mrq->data) {
193 pr_debug("%s: %d bytes transferred: %d\n",
194 mmc_hostname(host),
195 mrq->data->bytes_xfered, mrq->data->error);
196 }
197
198 if (mrq->stop) {
199 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
200 mmc_hostname(host), mrq->stop->opcode,
201 mrq->stop->error,
202 mrq->stop->resp[0], mrq->stop->resp[1],
203 mrq->stop->resp[2], mrq->stop->resp[3]);
204 }
205 }
206 /*
207 * Request starter must handle retries - see
208 * mmc_wait_for_req_done().
209 */
210 if (mrq->done)
211 mrq->done(mrq);
212}
213
214EXPORT_SYMBOL(mmc_request_done);
215
216static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
217{
218 int err;
219
220 /* Assumes host controller has been runtime resumed by mmc_claim_host */
221 err = mmc_retune(host);
222 if (err) {
223 mrq->cmd->error = err;
224 mmc_request_done(host, mrq);
225 return;
226 }
227
228 /*
229 * For sdio rw commands we must wait for card busy otherwise some
230 * sdio devices won't work properly.
231 * And bypass I/O abort, reset and bus suspend operations.
232 */
233 if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
234 host->ops->card_busy) {
235 int tries = 500; /* Wait aprox 500ms at maximum */
236
237 while (host->ops->card_busy(host) && --tries)
238 mmc_delay(1);
239
240 if (tries == 0) {
241 mrq->cmd->error = -EBUSY;
242 mmc_request_done(host, mrq);
243 return;
244 }
245 }
246
247 if (mrq->cap_cmd_during_tfr) {
248 host->ongoing_mrq = mrq;
249 /*
250 * Retry path could come through here without having waiting on
251 * cmd_completion, so ensure it is reinitialised.
252 */
253 reinit_completion(&mrq->cmd_completion);
254 }
255
256 trace_mmc_request_start(host, mrq);
257
258 if (host->cqe_on)
259 host->cqe_ops->cqe_off(host);
260
261 host->ops->request(host, mrq);
262}
263
264static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
265 bool cqe)
266{
267 if (mrq->sbc) {
268 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
269 mmc_hostname(host), mrq->sbc->opcode,
270 mrq->sbc->arg, mrq->sbc->flags);
271 }
272
273 if (mrq->cmd) {
274 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
275 mmc_hostname(host), cqe ? "CQE direct " : "",
276 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
277 } else if (cqe) {
278 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
279 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
280 }
281
282 if (mrq->data) {
283 pr_debug("%s: blksz %d blocks %d flags %08x "
284 "tsac %d ms nsac %d\n",
285 mmc_hostname(host), mrq->data->blksz,
286 mrq->data->blocks, mrq->data->flags,
287 mrq->data->timeout_ns / 1000000,
288 mrq->data->timeout_clks);
289 }
290
291 if (mrq->stop) {
292 pr_debug("%s: CMD%u arg %08x flags %08x\n",
293 mmc_hostname(host), mrq->stop->opcode,
294 mrq->stop->arg, mrq->stop->flags);
295 }
296}
297
298static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
299{
300 unsigned int i, sz = 0;
301 struct scatterlist *sg;
302
303 if (mrq->cmd) {
304 mrq->cmd->error = 0;
305 mrq->cmd->mrq = mrq;
306 mrq->cmd->data = mrq->data;
307 }
308 if (mrq->sbc) {
309 mrq->sbc->error = 0;
310 mrq->sbc->mrq = mrq;
311 }
312 if (mrq->data) {
313 if (mrq->data->blksz > host->max_blk_size ||
314 mrq->data->blocks > host->max_blk_count ||
315 mrq->data->blocks * mrq->data->blksz > host->max_req_size)
316 return -EINVAL;
317
318 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
319 sz += sg->length;
320 if (sz != mrq->data->blocks * mrq->data->blksz)
321 return -EINVAL;
322
323 mrq->data->error = 0;
324 mrq->data->mrq = mrq;
325 if (mrq->stop) {
326 mrq->data->stop = mrq->stop;
327 mrq->stop->error = 0;
328 mrq->stop->mrq = mrq;
329 }
330 }
331
332 return 0;
333}
334
335int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
336{
337 int err;
338
339 if (mrq->cmd && mrq->cmd->has_ext_addr)
340 mmc_send_ext_addr(host, mrq->cmd->ext_addr);
341
342 init_completion(&mrq->cmd_completion);
343
344 mmc_retune_hold(host);
345
346 if (mmc_card_removed(host->card))
347 return -ENOMEDIUM;
348
349 mmc_mrq_pr_debug(host, mrq, false);
350
351 WARN_ON(!host->claimed);
352
353 err = mmc_mrq_prep(host, mrq);
354 if (err)
355 return err;
356
357 if (host->uhs2_sd_tran)
358 mmc_uhs2_prepare_cmd(host, mrq);
359
360 led_trigger_event(host->led, LED_FULL);
361 __mmc_start_request(host, mrq);
362
363 return 0;
364}
365EXPORT_SYMBOL(mmc_start_request);
366
367static void mmc_wait_done(struct mmc_request *mrq)
368{
369 complete(&mrq->completion);
370}
371
372static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
373{
374 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
375
376 /*
377 * If there is an ongoing transfer, wait for the command line to become
378 * available.
379 */
380 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
381 wait_for_completion(&ongoing_mrq->cmd_completion);
382}
383
384static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
385{
386 int err;
387
388 mmc_wait_ongoing_tfr_cmd(host);
389
390 init_completion(&mrq->completion);
391 mrq->done = mmc_wait_done;
392
393 err = mmc_start_request(host, mrq);
394 if (err) {
395 mrq->cmd->error = err;
396 mmc_complete_cmd(mrq);
397 complete(&mrq->completion);
398 }
399
400 return err;
401}
402
403void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
404{
405 struct mmc_command *cmd;
406
407 while (1) {
408 wait_for_completion(&mrq->completion);
409
410 cmd = mrq->cmd;
411
412 if (!cmd->error || !cmd->retries ||
413 mmc_card_removed(host->card))
414 break;
415
416 mmc_retune_recheck(host);
417
418 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
419 mmc_hostname(host), cmd->opcode, cmd->error);
420 cmd->retries--;
421 cmd->error = 0;
422 __mmc_start_request(host, mrq);
423 }
424
425 mmc_retune_release(host);
426}
427EXPORT_SYMBOL(mmc_wait_for_req_done);
428
429/*
430 * mmc_cqe_start_req - Start a CQE request.
431 * @host: MMC host to start the request
432 * @mrq: request to start
433 *
434 * Start the request, re-tuning if needed and it is possible. Returns an error
435 * code if the request fails to start or -EBUSY if CQE is busy.
436 */
437int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
438{
439 int err;
440
441 /*
442 * CQE cannot process re-tuning commands. Caller must hold retuning
443 * while CQE is in use. Re-tuning can happen here only when CQE has no
444 * active requests i.e. this is the first. Note, re-tuning will call
445 * ->cqe_off().
446 */
447 err = mmc_retune(host);
448 if (err)
449 goto out_err;
450
451 mrq->host = host;
452
453 mmc_mrq_pr_debug(host, mrq, true);
454
455 err = mmc_mrq_prep(host, mrq);
456 if (err)
457 goto out_err;
458
459 if (host->uhs2_sd_tran)
460 mmc_uhs2_prepare_cmd(host, mrq);
461
462 err = host->cqe_ops->cqe_request(host, mrq);
463 if (err)
464 goto out_err;
465
466 trace_mmc_request_start(host, mrq);
467
468 return 0;
469
470out_err:
471 if (mrq->cmd) {
472 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
473 mmc_hostname(host), mrq->cmd->opcode, err);
474 } else {
475 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
476 mmc_hostname(host), mrq->tag, err);
477 }
478 return err;
479}
480EXPORT_SYMBOL(mmc_cqe_start_req);
481
482/**
483 * mmc_cqe_request_done - CQE has finished processing an MMC request
484 * @host: MMC host which completed request
485 * @mrq: MMC request which completed
486 *
487 * CQE drivers should call this function when they have completed
488 * their processing of a request.
489 */
490void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
491{
492 mmc_should_fail_request(host, mrq);
493
494 /* Flag re-tuning needed on CRC errors */
495 if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
496 (mrq->data && mrq->data->error == -EILSEQ))
497 mmc_retune_needed(host);
498
499 trace_mmc_request_done(host, mrq);
500
501 if (mrq->cmd) {
502 pr_debug("%s: CQE req done (direct CMD%u): %d\n",
503 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
504 } else {
505 pr_debug("%s: CQE transfer done tag %d\n",
506 mmc_hostname(host), mrq->tag);
507 }
508
509 if (mrq->data) {
510 pr_debug("%s: %d bytes transferred: %d\n",
511 mmc_hostname(host),
512 mrq->data->bytes_xfered, mrq->data->error);
513 }
514
515 mrq->done(mrq);
516}
517EXPORT_SYMBOL(mmc_cqe_request_done);
518
519/**
520 * mmc_cqe_post_req - CQE post process of a completed MMC request
521 * @host: MMC host
522 * @mrq: MMC request to be processed
523 */
524void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
525{
526 if (host->cqe_ops->cqe_post_req)
527 host->cqe_ops->cqe_post_req(host, mrq);
528}
529EXPORT_SYMBOL(mmc_cqe_post_req);
530
531/* Arbitrary 1 second timeout */
532#define MMC_CQE_RECOVERY_TIMEOUT 1000
533
534/*
535 * mmc_cqe_recovery - Recover from CQE errors.
536 * @host: MMC host to recover
537 *
538 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue
539 * in eMMC, and discarding the queue in CQE. CQE must call
540 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
541 * fails to discard its queue.
542 */
543int mmc_cqe_recovery(struct mmc_host *host)
544{
545 struct mmc_command cmd;
546 int err;
547
548 mmc_retune_hold_now(host);
549
550 /*
551 * Recovery is expected seldom, if at all, but it reduces performance,
552 * so make sure it is not completely silent.
553 */
554 pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
555
556 host->cqe_ops->cqe_recovery_start(host);
557
558 memset(&cmd, 0, sizeof(cmd));
559 cmd.opcode = MMC_STOP_TRANSMISSION;
560 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
561 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
562 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
563 mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
564
565 mmc_poll_for_busy(host->card, MMC_CQE_RECOVERY_TIMEOUT, true, MMC_BUSY_IO);
566
567 memset(&cmd, 0, sizeof(cmd));
568 cmd.opcode = MMC_CMDQ_TASK_MGMT;
569 cmd.arg = 1; /* Discard entire queue */
570 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
571 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
572 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
573 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
574
575 host->cqe_ops->cqe_recovery_finish(host);
576
577 if (err)
578 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
579
580 mmc_retune_release(host);
581
582 return err;
583}
584EXPORT_SYMBOL(mmc_cqe_recovery);
585
586/**
587 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
588 * @host: MMC host
589 * @mrq: MMC request
590 *
591 * mmc_is_req_done() is used with requests that have
592 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
593 * starting a request and before waiting for it to complete. That is,
594 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
595 * and before mmc_wait_for_req_done(). If it is called at other times the
596 * result is not meaningful.
597 */
598bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
599{
600 return completion_done(&mrq->completion);
601}
602EXPORT_SYMBOL(mmc_is_req_done);
603
604/**
605 * mmc_wait_for_req - start a request and wait for completion
606 * @host: MMC host to start command
607 * @mrq: MMC request to start
608 *
609 * Start a new MMC custom command request for a host, and wait
610 * for the command to complete. In the case of 'cap_cmd_during_tfr'
611 * requests, the transfer is ongoing and the caller can issue further
612 * commands that do not use the data lines, and then wait by calling
613 * mmc_wait_for_req_done().
614 * Does not attempt to parse the response.
615 */
616void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
617{
618 __mmc_start_req(host, mrq);
619
620 if (!mrq->cap_cmd_during_tfr)
621 mmc_wait_for_req_done(host, mrq);
622}
623EXPORT_SYMBOL(mmc_wait_for_req);
624
625/**
626 * mmc_wait_for_cmd - start a command and wait for completion
627 * @host: MMC host to start command
628 * @cmd: MMC command to start
629 * @retries: maximum number of retries
630 *
631 * Start a new MMC command for a host, and wait for the command
632 * to complete. Return any error that occurred while the command
633 * was executing. Do not attempt to parse the response.
634 */
635int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
636{
637 struct mmc_request mrq = {};
638
639 WARN_ON(!host->claimed);
640
641 memset(cmd->resp, 0, sizeof(cmd->resp));
642 cmd->retries = retries;
643
644 mrq.cmd = cmd;
645 cmd->data = NULL;
646
647 mmc_wait_for_req(host, &mrq);
648
649 return cmd->error;
650}
651
652EXPORT_SYMBOL(mmc_wait_for_cmd);
653
654/**
655 * mmc_set_data_timeout - set the timeout for a data command
656 * @data: data phase for command
657 * @card: the MMC card associated with the data transfer
658 *
659 * Computes the data timeout parameters according to the
660 * correct algorithm given the card type.
661 */
662void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
663{
664 unsigned int mult;
665
666 /*
667 * SDIO cards only define an upper 1 s limit on access.
668 */
669 if (mmc_card_sdio(card)) {
670 data->timeout_ns = 1000000000;
671 data->timeout_clks = 0;
672 return;
673 }
674
675 /*
676 * SD cards use a 100 multiplier rather than 10
677 */
678 mult = mmc_card_sd(card) ? 100 : 10;
679
680 /*
681 * Scale up the multiplier (and therefore the timeout) by
682 * the r2w factor for writes.
683 */
684 if (data->flags & MMC_DATA_WRITE)
685 mult <<= card->csd.r2w_factor;
686
687 data->timeout_ns = card->csd.taac_ns * mult;
688 data->timeout_clks = card->csd.taac_clks * mult;
689
690 /*
691 * SD cards also have an upper limit on the timeout.
692 */
693 if (mmc_card_sd(card)) {
694 unsigned int timeout_us, limit_us;
695
696 timeout_us = data->timeout_ns / 1000;
697 if (card->host->ios.clock)
698 timeout_us += data->timeout_clks * 1000 /
699 (card->host->ios.clock / 1000);
700
701 if (data->flags & MMC_DATA_WRITE)
702 /*
703 * The MMC spec "It is strongly recommended
704 * for hosts to implement more than 500ms
705 * timeout value even if the card indicates
706 * the 250ms maximum busy length." Even the
707 * previous value of 300ms is known to be
708 * insufficient for some cards.
709 */
710 limit_us = 3000000;
711 else
712 limit_us = 100000;
713
714 /*
715 * SDHC cards always use these fixed values.
716 */
717 if (timeout_us > limit_us) {
718 data->timeout_ns = limit_us * 1000;
719 data->timeout_clks = 0;
720 }
721
722 /* assign limit value if invalid */
723 if (timeout_us == 0)
724 data->timeout_ns = limit_us * 1000;
725 }
726
727 /*
728 * Some cards require longer data read timeout than indicated in CSD.
729 * Address this by setting the read timeout to a "reasonably high"
730 * value. For the cards tested, 600ms has proven enough. If necessary,
731 * this value can be increased if other problematic cards require this.
732 */
733 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
734 data->timeout_ns = 600000000;
735 data->timeout_clks = 0;
736 }
737
738 /*
739 * Some cards need very high timeouts if driven in SPI mode.
740 * The worst observed timeout was 900ms after writing a
741 * continuous stream of data until the internal logic
742 * overflowed.
743 */
744 if (mmc_host_is_spi(card->host)) {
745 if (data->flags & MMC_DATA_WRITE) {
746 if (data->timeout_ns < 1000000000)
747 data->timeout_ns = 1000000000; /* 1s */
748 } else {
749 if (data->timeout_ns < 100000000)
750 data->timeout_ns = 100000000; /* 100ms */
751 }
752 }
753}
754EXPORT_SYMBOL(mmc_set_data_timeout);
755
756/*
757 * Allow claiming an already claimed host if the context is the same or there is
758 * no context but the task is the same.
759 */
760static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
761 struct task_struct *task)
762{
763 return host->claimer == ctx ||
764 (!ctx && task && host->claimer->task == task);
765}
766
767static inline void mmc_ctx_set_claimer(struct mmc_host *host,
768 struct mmc_ctx *ctx,
769 struct task_struct *task)
770{
771 if (!host->claimer) {
772 if (ctx)
773 host->claimer = ctx;
774 else
775 host->claimer = &host->default_ctx;
776 }
777 if (task)
778 host->claimer->task = task;
779}
780
781/**
782 * __mmc_claim_host - exclusively claim a host
783 * @host: mmc host to claim
784 * @ctx: context that claims the host or NULL in which case the default
785 * context will be used
786 * @abort: whether or not the operation should be aborted
787 *
788 * Claim a host for a set of operations. If @abort is non null and
789 * dereference a non-zero value then this will return prematurely with
790 * that non-zero value without acquiring the lock. Returns zero
791 * with the lock held otherwise.
792 */
793int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
794 atomic_t *abort)
795{
796 struct task_struct *task = ctx ? NULL : current;
797 DECLARE_WAITQUEUE(wait, current);
798 unsigned long flags;
799 int stop;
800 bool pm = false;
801
802 might_sleep();
803
804 add_wait_queue(&host->wq, &wait);
805 spin_lock_irqsave(&host->lock, flags);
806 while (1) {
807 set_current_state(TASK_UNINTERRUPTIBLE);
808 stop = abort ? atomic_read(abort) : 0;
809 if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
810 break;
811 spin_unlock_irqrestore(&host->lock, flags);
812 schedule();
813 spin_lock_irqsave(&host->lock, flags);
814 }
815 set_current_state(TASK_RUNNING);
816 if (!stop) {
817 host->claimed = 1;
818 mmc_ctx_set_claimer(host, ctx, task);
819 host->claim_cnt += 1;
820 if (host->claim_cnt == 1)
821 pm = true;
822 } else
823 wake_up(&host->wq);
824 spin_unlock_irqrestore(&host->lock, flags);
825 remove_wait_queue(&host->wq, &wait);
826
827 if (pm)
828 pm_runtime_get_sync(mmc_dev(host));
829
830 return stop;
831}
832EXPORT_SYMBOL(__mmc_claim_host);
833
834/**
835 * mmc_release_host - release a host
836 * @host: mmc host to release
837 *
838 * Release a MMC host, allowing others to claim the host
839 * for their operations.
840 */
841void mmc_release_host(struct mmc_host *host)
842{
843 unsigned long flags;
844
845 WARN_ON(!host->claimed);
846
847 spin_lock_irqsave(&host->lock, flags);
848 if (--host->claim_cnt) {
849 /* Release for nested claim */
850 spin_unlock_irqrestore(&host->lock, flags);
851 } else {
852 host->claimed = 0;
853 host->claimer->task = NULL;
854 host->claimer = NULL;
855 spin_unlock_irqrestore(&host->lock, flags);
856 wake_up(&host->wq);
857 pm_runtime_mark_last_busy(mmc_dev(host));
858 if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
859 pm_runtime_put_sync_suspend(mmc_dev(host));
860 else
861 pm_runtime_put_autosuspend(mmc_dev(host));
862 }
863}
864EXPORT_SYMBOL(mmc_release_host);
865
866/*
867 * This is a helper function, which fetches a runtime pm reference for the
868 * card device and also claims the host.
869 */
870void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
871{
872 pm_runtime_get_sync(&card->dev);
873 __mmc_claim_host(card->host, ctx, NULL);
874}
875EXPORT_SYMBOL(mmc_get_card);
876
877/*
878 * This is a helper function, which releases the host and drops the runtime
879 * pm reference for the card device.
880 */
881void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
882{
883 struct mmc_host *host = card->host;
884
885 WARN_ON(ctx && host->claimer != ctx);
886
887 mmc_release_host(host);
888 pm_runtime_mark_last_busy(&card->dev);
889 pm_runtime_put_autosuspend(&card->dev);
890}
891EXPORT_SYMBOL(mmc_put_card);
892
893/*
894 * Internal function that does the actual ios call to the host driver,
895 * optionally printing some debug output.
896 */
897static inline void mmc_set_ios(struct mmc_host *host)
898{
899 struct mmc_ios *ios = &host->ios;
900
901 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
902 "width %u timing %u\n",
903 mmc_hostname(host), ios->clock, ios->bus_mode,
904 ios->power_mode, ios->chip_select, ios->vdd,
905 1 << ios->bus_width, ios->timing);
906
907 host->ops->set_ios(host, ios);
908}
909
910/*
911 * Control chip select pin on a host.
912 */
913void mmc_set_chip_select(struct mmc_host *host, int mode)
914{
915 host->ios.chip_select = mode;
916 mmc_set_ios(host);
917}
918
919/*
920 * Sets the host clock to the highest possible frequency that
921 * is below "hz".
922 */
923void mmc_set_clock(struct mmc_host *host, unsigned int hz)
924{
925 WARN_ON(hz && hz < host->f_min);
926
927 if (hz > host->f_max)
928 hz = host->f_max;
929
930 host->ios.clock = hz;
931 mmc_set_ios(host);
932}
933
934int mmc_execute_tuning(struct mmc_card *card)
935{
936 struct mmc_host *host = card->host;
937 u32 opcode;
938 int err;
939
940 if (!host->ops->execute_tuning)
941 return 0;
942
943 if (host->cqe_on)
944 host->cqe_ops->cqe_off(host);
945
946 if (mmc_card_mmc(card))
947 opcode = MMC_SEND_TUNING_BLOCK_HS200;
948 else
949 opcode = MMC_SEND_TUNING_BLOCK;
950
951 err = host->ops->execute_tuning(host, opcode);
952 if (!err) {
953 mmc_retune_clear(host);
954 mmc_retune_enable(host);
955 return 0;
956 }
957
958 /* Only print error when we don't check for card removal */
959 if (!host->detect_change) {
960 pr_err("%s: tuning execution failed: %d\n",
961 mmc_hostname(host), err);
962 mmc_debugfs_err_stats_inc(host, MMC_ERR_TUNING);
963 }
964
965 return err;
966}
967
968/*
969 * Change the bus mode (open drain/push-pull) of a host.
970 */
971void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
972{
973 host->ios.bus_mode = mode;
974 mmc_set_ios(host);
975}
976
977/*
978 * Change data bus width of a host.
979 */
980void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
981{
982 host->ios.bus_width = width;
983 mmc_set_ios(host);
984}
985
986/*
987 * Set initial state after a power cycle or a hw_reset.
988 */
989void mmc_set_initial_state(struct mmc_host *host)
990{
991 if (host->cqe_on)
992 host->cqe_ops->cqe_off(host);
993
994 mmc_retune_disable(host);
995
996 if (mmc_host_is_spi(host))
997 host->ios.chip_select = MMC_CS_HIGH;
998 else
999 host->ios.chip_select = MMC_CS_DONTCARE;
1000 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1001 host->ios.bus_width = MMC_BUS_WIDTH_1;
1002 host->ios.timing = MMC_TIMING_LEGACY;
1003 host->ios.drv_type = 0;
1004 host->ios.enhanced_strobe = false;
1005
1006 /*
1007 * Make sure we are in non-enhanced strobe mode before we
1008 * actually enable it in ext_csd.
1009 */
1010 if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1011 host->ops->hs400_enhanced_strobe)
1012 host->ops->hs400_enhanced_strobe(host, &host->ios);
1013
1014 mmc_set_ios(host);
1015
1016 mmc_crypto_set_initial_state(host);
1017}
1018
1019/**
1020 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1021 * @vdd: voltage (mV)
1022 * @low_bits: prefer low bits in boundary cases
1023 *
1024 * This function returns the OCR bit number according to the provided @vdd
1025 * value. If conversion is not possible a negative errno value returned.
1026 *
1027 * Depending on the @low_bits flag the function prefers low or high OCR bits
1028 * on boundary voltages. For example,
1029 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1030 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1031 *
1032 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1033 */
1034static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1035{
1036 const int max_bit = ilog2(MMC_VDD_35_36);
1037 int bit;
1038
1039 if (vdd < 1650 || vdd > 3600)
1040 return -EINVAL;
1041
1042 if (vdd >= 1650 && vdd <= 1950)
1043 return ilog2(MMC_VDD_165_195);
1044
1045 if (low_bits)
1046 vdd -= 1;
1047
1048 /* Base 2000 mV, step 100 mV, bit's base 8. */
1049 bit = (vdd - 2000) / 100 + 8;
1050 if (bit > max_bit)
1051 return max_bit;
1052 return bit;
1053}
1054
1055/**
1056 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1057 * @vdd_min: minimum voltage value (mV)
1058 * @vdd_max: maximum voltage value (mV)
1059 *
1060 * This function returns the OCR mask bits according to the provided @vdd_min
1061 * and @vdd_max values. If conversion is not possible the function returns 0.
1062 *
1063 * Notes wrt boundary cases:
1064 * This function sets the OCR bits for all boundary voltages, for example
1065 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1066 * MMC_VDD_34_35 mask.
1067 */
1068u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1069{
1070 u32 mask = 0;
1071
1072 if (vdd_max < vdd_min)
1073 return 0;
1074
1075 /* Prefer high bits for the boundary vdd_max values. */
1076 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1077 if (vdd_max < 0)
1078 return 0;
1079
1080 /* Prefer low bits for the boundary vdd_min values. */
1081 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1082 if (vdd_min < 0)
1083 return 0;
1084
1085 /* Fill the mask, from max bit to min bit. */
1086 while (vdd_max >= vdd_min)
1087 mask |= 1 << vdd_max--;
1088
1089 return mask;
1090}
1091
1092static int mmc_of_get_func_num(struct device_node *node)
1093{
1094 u32 reg;
1095 int ret;
1096
1097 ret = of_property_read_u32(node, "reg", ®);
1098 if (ret < 0)
1099 return ret;
1100
1101 return reg;
1102}
1103
1104struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1105 unsigned func_num)
1106{
1107 struct device_node *node;
1108
1109 if (!host->parent || !host->parent->of_node)
1110 return NULL;
1111
1112 for_each_child_of_node(host->parent->of_node, node) {
1113 if (mmc_of_get_func_num(node) == func_num)
1114 return node;
1115 }
1116
1117 return NULL;
1118}
1119
1120/*
1121 * Mask off any voltages we don't support and select
1122 * the lowest voltage
1123 */
1124u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1125{
1126 int bit;
1127
1128 /*
1129 * Sanity check the voltages that the card claims to
1130 * support.
1131 */
1132 if (ocr & 0x7F) {
1133 dev_warn(mmc_dev(host),
1134 "card claims to support voltages below defined range\n");
1135 ocr &= ~0x7F;
1136 }
1137
1138 ocr &= host->ocr_avail;
1139 if (!ocr) {
1140 dev_warn(mmc_dev(host), "no support for card's volts\n");
1141 return 0;
1142 }
1143
1144 if (!mmc_card_uhs2(host) && host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1145 bit = ffs(ocr) - 1;
1146 ocr &= 3 << bit;
1147 mmc_power_cycle(host, ocr);
1148 } else {
1149 bit = fls(ocr) - 1;
1150 /*
1151 * The bit variable represents the highest voltage bit set in
1152 * the OCR register.
1153 * To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V),
1154 * we must shift the mask '3' with (bit - 1).
1155 */
1156 ocr &= 3 << (bit - 1);
1157 if (bit != host->ios.vdd)
1158 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1159 }
1160
1161 return ocr;
1162}
1163
1164int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1165{
1166 int err = 0;
1167 int old_signal_voltage = host->ios.signal_voltage;
1168
1169 host->ios.signal_voltage = signal_voltage;
1170 if (host->ops->start_signal_voltage_switch)
1171 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1172
1173 if (err)
1174 host->ios.signal_voltage = old_signal_voltage;
1175
1176 return err;
1177
1178}
1179
1180void mmc_set_initial_signal_voltage(struct mmc_host *host)
1181{
1182 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1183 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1184 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1185 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1186 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1187 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1188 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1189}
1190
1191int mmc_host_set_uhs_voltage(struct mmc_host *host)
1192{
1193 u32 clock;
1194
1195 /*
1196 * During a signal voltage level switch, the clock must be gated
1197 * for 5 ms according to the SD spec
1198 */
1199 clock = host->ios.clock;
1200 host->ios.clock = 0;
1201 mmc_set_ios(host);
1202
1203 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1204 return -EAGAIN;
1205
1206 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1207 mmc_delay(10);
1208 host->ios.clock = clock;
1209 mmc_set_ios(host);
1210
1211 return 0;
1212}
1213
1214int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1215{
1216 struct mmc_command cmd = {};
1217 int err = 0;
1218
1219 /*
1220 * If we cannot switch voltages, return failure so the caller
1221 * can continue without UHS mode
1222 */
1223 if (!host->ops->start_signal_voltage_switch)
1224 return -EPERM;
1225 if (!host->ops->card_busy)
1226 pr_warn("%s: cannot verify signal voltage switch\n",
1227 mmc_hostname(host));
1228
1229 cmd.opcode = SD_SWITCH_VOLTAGE;
1230 cmd.arg = 0;
1231 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1232
1233 err = mmc_wait_for_cmd(host, &cmd, 0);
1234 if (err)
1235 goto power_cycle;
1236
1237 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1238 return -EIO;
1239
1240 /*
1241 * The card should drive cmd and dat[0:3] low immediately
1242 * after the response of cmd11, but wait 1 ms to be sure
1243 */
1244 mmc_delay(1);
1245 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1246 err = -EAGAIN;
1247 goto power_cycle;
1248 }
1249
1250 if (mmc_host_set_uhs_voltage(host)) {
1251 /*
1252 * Voltages may not have been switched, but we've already
1253 * sent CMD11, so a power cycle is required anyway
1254 */
1255 err = -EAGAIN;
1256 goto power_cycle;
1257 }
1258
1259 /* Wait for at least 1 ms according to spec */
1260 mmc_delay(1);
1261
1262 /*
1263 * Failure to switch is indicated by the card holding
1264 * dat[0:3] low
1265 */
1266 if (host->ops->card_busy && host->ops->card_busy(host))
1267 err = -EAGAIN;
1268
1269power_cycle:
1270 if (err) {
1271 pr_debug("%s: Signal voltage switch failed, "
1272 "power cycling card\n", mmc_hostname(host));
1273 mmc_power_cycle(host, ocr);
1274 }
1275
1276 return err;
1277}
1278
1279/*
1280 * Select timing parameters for host.
1281 */
1282void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1283{
1284 host->ios.timing = timing;
1285 mmc_set_ios(host);
1286}
1287
1288/*
1289 * Select appropriate driver type for host.
1290 */
1291void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1292{
1293 host->ios.drv_type = drv_type;
1294 mmc_set_ios(host);
1295}
1296
1297int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1298 int card_drv_type, int *drv_type)
1299{
1300 struct mmc_host *host = card->host;
1301 int host_drv_type = SD_DRIVER_TYPE_B;
1302
1303 *drv_type = 0;
1304
1305 if (!host->ops->select_drive_strength)
1306 return 0;
1307
1308 /* Use SD definition of driver strength for hosts */
1309 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1310 host_drv_type |= SD_DRIVER_TYPE_A;
1311
1312 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1313 host_drv_type |= SD_DRIVER_TYPE_C;
1314
1315 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1316 host_drv_type |= SD_DRIVER_TYPE_D;
1317
1318 /*
1319 * The drive strength that the hardware can support
1320 * depends on the board design. Pass the appropriate
1321 * information and let the hardware specific code
1322 * return what is possible given the options
1323 */
1324 return host->ops->select_drive_strength(card, max_dtr,
1325 host_drv_type,
1326 card_drv_type,
1327 drv_type);
1328}
1329
1330/*
1331 * Apply power to the MMC stack. This is a two-stage process.
1332 * First, we enable power to the card without the clock running.
1333 * We then wait a bit for the power to stabilise. Finally,
1334 * enable the bus drivers and clock to the card.
1335 *
1336 * We must _NOT_ enable the clock prior to power stablising.
1337 *
1338 * If a host does all the power sequencing itself, ignore the
1339 * initial MMC_POWER_UP stage.
1340 */
1341void mmc_power_up(struct mmc_host *host, u32 ocr)
1342{
1343 if (host->ios.power_mode == MMC_POWER_ON)
1344 return;
1345
1346 mmc_pwrseq_pre_power_on(host);
1347
1348 host->ios.vdd = fls(ocr) - 1;
1349 host->ios.power_mode = MMC_POWER_UP;
1350 /* Set initial state and call mmc_set_ios */
1351 mmc_set_initial_state(host);
1352
1353 mmc_set_initial_signal_voltage(host);
1354
1355 /*
1356 * This delay should be sufficient to allow the power supply
1357 * to reach the minimum voltage.
1358 */
1359 mmc_delay(host->ios.power_delay_ms);
1360
1361 mmc_pwrseq_post_power_on(host);
1362
1363 host->ios.clock = host->f_init;
1364
1365 host->ios.power_mode = MMC_POWER_ON;
1366 mmc_set_ios(host);
1367
1368 /*
1369 * This delay must be at least 74 clock sizes, or 1 ms, or the
1370 * time required to reach a stable voltage.
1371 */
1372 mmc_delay(host->ios.power_delay_ms);
1373}
1374
1375void mmc_power_off(struct mmc_host *host)
1376{
1377 if (host->ios.power_mode == MMC_POWER_OFF)
1378 return;
1379
1380 mmc_pwrseq_power_off(host);
1381
1382 host->ios.clock = 0;
1383 host->ios.vdd = 0;
1384
1385 host->ios.power_mode = MMC_POWER_OFF;
1386 /* Set initial state and call mmc_set_ios */
1387 mmc_set_initial_state(host);
1388
1389 /*
1390 * Some configurations, such as the 802.11 SDIO card in the OLPC
1391 * XO-1.5, require a short delay after poweroff before the card
1392 * can be successfully turned on again.
1393 */
1394 mmc_delay(1);
1395}
1396
1397void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1398{
1399 mmc_power_off(host);
1400 /* Wait at least 1 ms according to SD spec */
1401 mmc_delay(1);
1402 mmc_power_up(host, ocr);
1403}
1404
1405/*
1406 * Assign a mmc bus handler to a host. Only one bus handler may control a
1407 * host at any given time.
1408 */
1409void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1410{
1411 host->bus_ops = ops;
1412}
1413
1414/*
1415 * Remove the current bus handler from a host.
1416 */
1417void mmc_detach_bus(struct mmc_host *host)
1418{
1419 host->bus_ops = NULL;
1420}
1421
1422void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1423{
1424 /*
1425 * Prevent system sleep for 5s to allow user space to consume the
1426 * corresponding uevent. This is especially useful, when CD irq is used
1427 * as a system wakeup, but doesn't hurt in other cases.
1428 */
1429 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1430 __pm_wakeup_event(host->ws, 5000);
1431
1432 host->detect_change = 1;
1433 mmc_schedule_delayed_work(&host->detect, delay);
1434}
1435
1436/**
1437 * mmc_detect_change - process change of state on a MMC socket
1438 * @host: host which changed state.
1439 * @delay: optional delay to wait before detection (jiffies)
1440 *
1441 * MMC drivers should call this when they detect a card has been
1442 * inserted or removed. The MMC layer will confirm that any
1443 * present card is still functional, and initialize any newly
1444 * inserted.
1445 */
1446void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1447{
1448 _mmc_detect_change(host, delay, true);
1449}
1450EXPORT_SYMBOL(mmc_detect_change);
1451
1452void mmc_init_erase(struct mmc_card *card)
1453{
1454 unsigned int sz;
1455
1456 if (is_power_of_2(card->erase_size))
1457 card->erase_shift = ffs(card->erase_size) - 1;
1458 else
1459 card->erase_shift = 0;
1460
1461 /*
1462 * It is possible to erase an arbitrarily large area of an SD or MMC
1463 * card. That is not desirable because it can take a long time
1464 * (minutes) potentially delaying more important I/O, and also the
1465 * timeout calculations become increasingly hugely over-estimated.
1466 * Consequently, 'pref_erase' is defined as a guide to limit erases
1467 * to that size and alignment.
1468 *
1469 * For SD cards that define Allocation Unit size, limit erases to one
1470 * Allocation Unit at a time.
1471 * For MMC, have a stab at ai good value and for modern cards it will
1472 * end up being 4MiB. Note that if the value is too small, it can end
1473 * up taking longer to erase. Also note, erase_size is already set to
1474 * High Capacity Erase Size if available when this function is called.
1475 */
1476 if (mmc_card_sd(card) && card->ssr.au) {
1477 card->pref_erase = card->ssr.au;
1478 card->erase_shift = ffs(card->ssr.au) - 1;
1479 } else if (card->erase_size) {
1480 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1481 if (sz < 128)
1482 card->pref_erase = 512 * 1024 / 512;
1483 else if (sz < 512)
1484 card->pref_erase = 1024 * 1024 / 512;
1485 else if (sz < 1024)
1486 card->pref_erase = 2 * 1024 * 1024 / 512;
1487 else
1488 card->pref_erase = 4 * 1024 * 1024 / 512;
1489 if (card->pref_erase < card->erase_size)
1490 card->pref_erase = card->erase_size;
1491 else {
1492 sz = card->pref_erase % card->erase_size;
1493 if (sz)
1494 card->pref_erase += card->erase_size - sz;
1495 }
1496 } else
1497 card->pref_erase = 0;
1498}
1499
1500static bool is_trim_arg(unsigned int arg)
1501{
1502 return (arg & MMC_TRIM_OR_DISCARD_ARGS) && arg != MMC_DISCARD_ARG;
1503}
1504
1505static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1506 unsigned int arg, unsigned int qty)
1507{
1508 unsigned int erase_timeout;
1509
1510 if (arg == MMC_DISCARD_ARG ||
1511 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1512 erase_timeout = card->ext_csd.trim_timeout;
1513 } else if (card->ext_csd.erase_group_def & 1) {
1514 /* High Capacity Erase Group Size uses HC timeouts */
1515 if (arg == MMC_TRIM_ARG)
1516 erase_timeout = card->ext_csd.trim_timeout;
1517 else
1518 erase_timeout = card->ext_csd.hc_erase_timeout;
1519 } else {
1520 /* CSD Erase Group Size uses write timeout */
1521 unsigned int mult = (10 << card->csd.r2w_factor);
1522 unsigned int timeout_clks = card->csd.taac_clks * mult;
1523 unsigned int timeout_us;
1524
1525 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1526 if (card->csd.taac_ns < 1000000)
1527 timeout_us = (card->csd.taac_ns * mult) / 1000;
1528 else
1529 timeout_us = (card->csd.taac_ns / 1000) * mult;
1530
1531 /*
1532 * ios.clock is only a target. The real clock rate might be
1533 * less but not that much less, so fudge it by multiplying by 2.
1534 */
1535 timeout_clks <<= 1;
1536 timeout_us += (timeout_clks * 1000) /
1537 (card->host->ios.clock / 1000);
1538
1539 erase_timeout = timeout_us / 1000;
1540
1541 /*
1542 * Theoretically, the calculation could underflow so round up
1543 * to 1ms in that case.
1544 */
1545 if (!erase_timeout)
1546 erase_timeout = 1;
1547 }
1548
1549 /* Multiplier for secure operations */
1550 if (arg & MMC_SECURE_ARGS) {
1551 if (arg == MMC_SECURE_ERASE_ARG)
1552 erase_timeout *= card->ext_csd.sec_erase_mult;
1553 else
1554 erase_timeout *= card->ext_csd.sec_trim_mult;
1555 }
1556
1557 erase_timeout *= qty;
1558
1559 /*
1560 * Ensure at least a 1 second timeout for SPI as per
1561 * 'mmc_set_data_timeout()'
1562 */
1563 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1564 erase_timeout = 1000;
1565
1566 return erase_timeout;
1567}
1568
1569static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1570 unsigned int arg,
1571 unsigned int qty)
1572{
1573 unsigned int erase_timeout;
1574
1575 /* for DISCARD none of the below calculation applies.
1576 * the busy timeout is 250msec per discard command.
1577 */
1578 if (arg == SD_DISCARD_ARG)
1579 return SD_DISCARD_TIMEOUT_MS;
1580
1581 if (card->ssr.erase_timeout) {
1582 /* Erase timeout specified in SD Status Register (SSR) */
1583 erase_timeout = card->ssr.erase_timeout * qty +
1584 card->ssr.erase_offset;
1585 } else {
1586 /*
1587 * Erase timeout not specified in SD Status Register (SSR) so
1588 * use 250ms per write block.
1589 */
1590 erase_timeout = 250 * qty;
1591 }
1592
1593 /* Must not be less than 1 second */
1594 if (erase_timeout < 1000)
1595 erase_timeout = 1000;
1596
1597 return erase_timeout;
1598}
1599
1600static unsigned int mmc_erase_timeout(struct mmc_card *card,
1601 unsigned int arg,
1602 unsigned int qty)
1603{
1604 if (mmc_card_sd(card))
1605 return mmc_sd_erase_timeout(card, arg, qty);
1606 else
1607 return mmc_mmc_erase_timeout(card, arg, qty);
1608}
1609
1610static int mmc_do_erase(struct mmc_card *card, sector_t from,
1611 sector_t to, unsigned int arg)
1612{
1613 struct mmc_command cmd = {};
1614 unsigned int qty = 0, busy_timeout = 0;
1615 bool use_r1b_resp;
1616 int err;
1617
1618 mmc_retune_hold(card->host);
1619
1620 /*
1621 * qty is used to calculate the erase timeout which depends on how many
1622 * erase groups (or allocation units in SD terminology) are affected.
1623 * We count erasing part of an erase group as one erase group.
1624 * For SD, the allocation units are always a power of 2. For MMC, the
1625 * erase group size is almost certainly also power of 2, but it does not
1626 * seem to insist on that in the JEDEC standard, so we fall back to
1627 * division in that case. SD may not specify an allocation unit size,
1628 * in which case the timeout is based on the number of write blocks.
1629 *
1630 * Note that the timeout for secure trim 2 will only be correct if the
1631 * number of erase groups specified is the same as the total of all
1632 * preceding secure trim 1 commands. Since the power may have been
1633 * lost since the secure trim 1 commands occurred, it is generally
1634 * impossible to calculate the secure trim 2 timeout correctly.
1635 */
1636 if (card->erase_shift)
1637 qty += ((to >> card->erase_shift) -
1638 (from >> card->erase_shift)) + 1;
1639 else if (mmc_card_sd(card))
1640 qty += to - from + 1;
1641 else
1642 qty += (mmc_sector_div(to, card->erase_size) -
1643 mmc_sector_div(from, card->erase_size)) + 1;
1644
1645 if (!mmc_card_blockaddr(card)) {
1646 from <<= 9;
1647 to <<= 9;
1648 }
1649
1650 if (mmc_card_sd(card))
1651 cmd.opcode = SD_ERASE_WR_BLK_START;
1652 else
1653 cmd.opcode = MMC_ERASE_GROUP_START;
1654 cmd.arg = from;
1655 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1656
1657 if (mmc_card_ult_capacity(card)) {
1658 cmd.ext_addr = from >> 32;
1659 cmd.has_ext_addr = true;
1660 }
1661
1662 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1663 if (err) {
1664 pr_err("mmc_erase: group start error %d, "
1665 "status %#x\n", err, cmd.resp[0]);
1666 err = -EIO;
1667 goto out;
1668 }
1669
1670 memset(&cmd, 0, sizeof(struct mmc_command));
1671 if (mmc_card_sd(card))
1672 cmd.opcode = SD_ERASE_WR_BLK_END;
1673 else
1674 cmd.opcode = MMC_ERASE_GROUP_END;
1675 cmd.arg = to;
1676 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1677
1678 if (mmc_card_ult_capacity(card)) {
1679 cmd.ext_addr = to >> 32;
1680 cmd.has_ext_addr = true;
1681 }
1682
1683 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1684 if (err) {
1685 pr_err("mmc_erase: group end error %d, status %#x\n",
1686 err, cmd.resp[0]);
1687 err = -EIO;
1688 goto out;
1689 }
1690
1691 memset(&cmd, 0, sizeof(struct mmc_command));
1692 cmd.opcode = MMC_ERASE;
1693 cmd.arg = arg;
1694 busy_timeout = mmc_erase_timeout(card, arg, qty);
1695 use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout);
1696
1697 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1698 if (err) {
1699 pr_err("mmc_erase: erase error %d, status %#x\n",
1700 err, cmd.resp[0]);
1701 err = -EIO;
1702 goto out;
1703 }
1704
1705 if (mmc_host_is_spi(card->host))
1706 goto out;
1707
1708 /*
1709 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1710 * shall be avoided.
1711 */
1712 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1713 goto out;
1714
1715 /* Let's poll to find out when the erase operation completes. */
1716 err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE);
1717
1718out:
1719 mmc_retune_release(card->host);
1720 return err;
1721}
1722
1723static unsigned int mmc_align_erase_size(struct mmc_card *card,
1724 sector_t *from,
1725 sector_t *to,
1726 unsigned int nr)
1727{
1728 sector_t from_new = *from;
1729 unsigned int nr_new = nr, rem;
1730
1731 /*
1732 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1733 * to align the erase size efficiently.
1734 */
1735 if (is_power_of_2(card->erase_size)) {
1736 sector_t temp = from_new;
1737
1738 from_new = round_up(temp, card->erase_size);
1739 rem = from_new - temp;
1740
1741 if (nr_new > rem)
1742 nr_new -= rem;
1743 else
1744 return 0;
1745
1746 nr_new = round_down(nr_new, card->erase_size);
1747 } else {
1748 rem = mmc_sector_mod(from_new, card->erase_size);
1749 if (rem) {
1750 rem = card->erase_size - rem;
1751 from_new += rem;
1752 if (nr_new > rem)
1753 nr_new -= rem;
1754 else
1755 return 0;
1756 }
1757
1758 rem = nr_new % card->erase_size;
1759 if (rem)
1760 nr_new -= rem;
1761 }
1762
1763 if (nr_new == 0)
1764 return 0;
1765
1766 *to = from_new + nr_new;
1767 *from = from_new;
1768
1769 return nr_new;
1770}
1771
1772/**
1773 * mmc_erase - erase sectors.
1774 * @card: card to erase
1775 * @from: first sector to erase
1776 * @nr: number of sectors to erase
1777 * @arg: erase command argument
1778 *
1779 * Caller must claim host before calling this function.
1780 */
1781int mmc_erase(struct mmc_card *card, sector_t from, unsigned int nr,
1782 unsigned int arg)
1783{
1784 unsigned int rem;
1785 sector_t to = from + nr;
1786
1787 int err;
1788
1789 if (!(card->csd.cmdclass & CCC_ERASE))
1790 return -EOPNOTSUPP;
1791
1792 if (!card->erase_size)
1793 return -EOPNOTSUPP;
1794
1795 if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1796 return -EOPNOTSUPP;
1797
1798 if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1799 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1800 return -EOPNOTSUPP;
1801
1802 if (mmc_card_mmc(card) && is_trim_arg(arg) &&
1803 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1804 return -EOPNOTSUPP;
1805
1806 if (arg == MMC_SECURE_ERASE_ARG) {
1807 if (mmc_sector_mod(from, card->erase_size) || nr % card->erase_size)
1808 return -EINVAL;
1809 }
1810
1811 if (arg == MMC_ERASE_ARG)
1812 nr = mmc_align_erase_size(card, &from, &to, nr);
1813
1814 if (nr == 0)
1815 return 0;
1816
1817 if (to <= from)
1818 return -EINVAL;
1819
1820 /* 'from' and 'to' are inclusive */
1821 to -= 1;
1822
1823 /*
1824 * Special case where only one erase-group fits in the timeout budget:
1825 * If the region crosses an erase-group boundary on this particular
1826 * case, we will be trimming more than one erase-group which, does not
1827 * fit in the timeout budget of the controller, so we need to split it
1828 * and call mmc_do_erase() twice if necessary. This special case is
1829 * identified by the card->eg_boundary flag.
1830 */
1831 rem = card->erase_size - mmc_sector_mod(from, card->erase_size);
1832 if ((arg & MMC_TRIM_OR_DISCARD_ARGS) && card->eg_boundary && nr > rem) {
1833 err = mmc_do_erase(card, from, from + rem - 1, arg);
1834 from += rem;
1835 if ((err) || (to <= from))
1836 return err;
1837 }
1838
1839 return mmc_do_erase(card, from, to, arg);
1840}
1841EXPORT_SYMBOL(mmc_erase);
1842
1843int mmc_can_erase(struct mmc_card *card)
1844{
1845 if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
1846 return 1;
1847 return 0;
1848}
1849EXPORT_SYMBOL(mmc_can_erase);
1850
1851int mmc_can_trim(struct mmc_card *card)
1852{
1853 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1854 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1855 return 1;
1856 return 0;
1857}
1858EXPORT_SYMBOL(mmc_can_trim);
1859
1860int mmc_can_discard(struct mmc_card *card)
1861{
1862 /*
1863 * As there's no way to detect the discard support bit at v4.5
1864 * use the s/w feature support filed.
1865 */
1866 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1867 return 1;
1868 return 0;
1869}
1870EXPORT_SYMBOL(mmc_can_discard);
1871
1872int mmc_can_sanitize(struct mmc_card *card)
1873{
1874 if (!mmc_can_trim(card) && !mmc_can_erase(card))
1875 return 0;
1876 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1877 return 1;
1878 return 0;
1879}
1880
1881int mmc_can_secure_erase_trim(struct mmc_card *card)
1882{
1883 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1884 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1885 return 1;
1886 return 0;
1887}
1888EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1889
1890int mmc_erase_group_aligned(struct mmc_card *card, sector_t from,
1891 unsigned int nr)
1892{
1893 if (!card->erase_size)
1894 return 0;
1895 if (mmc_sector_mod(from, card->erase_size) || nr % card->erase_size)
1896 return 0;
1897 return 1;
1898}
1899EXPORT_SYMBOL(mmc_erase_group_aligned);
1900
1901static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1902 unsigned int arg)
1903{
1904 struct mmc_host *host = card->host;
1905 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1906 unsigned int last_timeout = 0;
1907 unsigned int max_busy_timeout = host->max_busy_timeout ?
1908 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1909
1910 if (card->erase_shift) {
1911 max_qty = UINT_MAX >> card->erase_shift;
1912 min_qty = card->pref_erase >> card->erase_shift;
1913 } else if (mmc_card_sd(card)) {
1914 max_qty = UINT_MAX;
1915 min_qty = card->pref_erase;
1916 } else {
1917 max_qty = UINT_MAX / card->erase_size;
1918 min_qty = card->pref_erase / card->erase_size;
1919 }
1920
1921 /*
1922 * We should not only use 'host->max_busy_timeout' as the limitation
1923 * when deciding the max discard sectors. We should set a balance value
1924 * to improve the erase speed, and it can not get too long timeout at
1925 * the same time.
1926 *
1927 * Here we set 'card->pref_erase' as the minimal discard sectors no
1928 * matter what size of 'host->max_busy_timeout', but if the
1929 * 'host->max_busy_timeout' is large enough for more discard sectors,
1930 * then we can continue to increase the max discard sectors until we
1931 * get a balance value. In cases when the 'host->max_busy_timeout'
1932 * isn't specified, use the default max erase timeout.
1933 */
1934 do {
1935 y = 0;
1936 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1937 timeout = mmc_erase_timeout(card, arg, qty + x);
1938
1939 if (qty + x > min_qty && timeout > max_busy_timeout)
1940 break;
1941
1942 if (timeout < last_timeout)
1943 break;
1944 last_timeout = timeout;
1945 y = x;
1946 }
1947 qty += y;
1948 } while (y);
1949
1950 if (!qty)
1951 return 0;
1952
1953 /*
1954 * When specifying a sector range to trim, chances are we might cross
1955 * an erase-group boundary even if the amount of sectors is less than
1956 * one erase-group.
1957 * If we can only fit one erase-group in the controller timeout budget,
1958 * we have to care that erase-group boundaries are not crossed by a
1959 * single trim operation. We flag that special case with "eg_boundary".
1960 * In all other cases we can just decrement qty and pretend that we
1961 * always touch (qty + 1) erase-groups as a simple optimization.
1962 */
1963 if (qty == 1)
1964 card->eg_boundary = 1;
1965 else
1966 qty--;
1967
1968 /* Convert qty to sectors */
1969 if (card->erase_shift)
1970 max_discard = qty << card->erase_shift;
1971 else if (mmc_card_sd(card))
1972 max_discard = qty + 1;
1973 else
1974 max_discard = qty * card->erase_size;
1975
1976 return max_discard;
1977}
1978
1979unsigned int mmc_calc_max_discard(struct mmc_card *card)
1980{
1981 struct mmc_host *host = card->host;
1982 unsigned int max_discard, max_trim;
1983
1984 /*
1985 * Without erase_group_def set, MMC erase timeout depends on clock
1986 * frequence which can change. In that case, the best choice is
1987 * just the preferred erase size.
1988 */
1989 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1990 return card->pref_erase;
1991
1992 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1993 if (mmc_can_trim(card)) {
1994 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1995 if (max_trim < max_discard || max_discard == 0)
1996 max_discard = max_trim;
1997 } else if (max_discard < card->erase_size) {
1998 max_discard = 0;
1999 }
2000 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2001 mmc_hostname(host), max_discard, host->max_busy_timeout ?
2002 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2003 return max_discard;
2004}
2005EXPORT_SYMBOL(mmc_calc_max_discard);
2006
2007bool mmc_card_is_blockaddr(struct mmc_card *card)
2008{
2009 return card ? mmc_card_blockaddr(card) : false;
2010}
2011EXPORT_SYMBOL(mmc_card_is_blockaddr);
2012
2013int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2014{
2015 struct mmc_command cmd = {};
2016
2017 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2018 mmc_card_hs400(card) || mmc_card_hs400es(card))
2019 return 0;
2020
2021 cmd.opcode = MMC_SET_BLOCKLEN;
2022 cmd.arg = blocklen;
2023 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2024 return mmc_wait_for_cmd(card->host, &cmd, 5);
2025}
2026EXPORT_SYMBOL(mmc_set_blocklen);
2027
2028static void mmc_hw_reset_for_init(struct mmc_host *host)
2029{
2030 mmc_pwrseq_reset(host);
2031
2032 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->card_hw_reset)
2033 return;
2034 host->ops->card_hw_reset(host);
2035}
2036
2037/**
2038 * mmc_hw_reset - reset the card in hardware
2039 * @card: card to be reset
2040 *
2041 * Hard reset the card. This function is only for upper layers, like the
2042 * block layer or card drivers. You cannot use it in host drivers (struct
2043 * mmc_card might be gone then).
2044 *
2045 * Return: 0 on success, -errno on failure
2046 */
2047int mmc_hw_reset(struct mmc_card *card)
2048{
2049 struct mmc_host *host = card->host;
2050 int ret;
2051
2052 ret = host->bus_ops->hw_reset(host);
2053 if (ret < 0)
2054 pr_warn("%s: tried to HW reset card, got error %d\n",
2055 mmc_hostname(host), ret);
2056
2057 return ret;
2058}
2059EXPORT_SYMBOL(mmc_hw_reset);
2060
2061int mmc_sw_reset(struct mmc_card *card)
2062{
2063 struct mmc_host *host = card->host;
2064 int ret;
2065
2066 if (!host->bus_ops->sw_reset)
2067 return -EOPNOTSUPP;
2068
2069 ret = host->bus_ops->sw_reset(host);
2070 if (ret)
2071 pr_warn("%s: tried to SW reset card, got error %d\n",
2072 mmc_hostname(host), ret);
2073
2074 return ret;
2075}
2076EXPORT_SYMBOL(mmc_sw_reset);
2077
2078static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2079{
2080 host->f_init = freq;
2081
2082 pr_debug("%s: %s: trying to init card at %u Hz\n",
2083 mmc_hostname(host), __func__, host->f_init);
2084
2085 mmc_power_up(host, host->ocr_avail);
2086
2087 /*
2088 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2089 * do a hardware reset if possible.
2090 */
2091 mmc_hw_reset_for_init(host);
2092
2093 /*
2094 * sdio_reset sends CMD52 to reset card. Since we do not know
2095 * if the card is being re-initialized, just send it. CMD52
2096 * should be ignored by SD/eMMC cards.
2097 * Skip it if we already know that we do not support SDIO commands
2098 */
2099 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2100 sdio_reset(host);
2101
2102 mmc_go_idle(host);
2103
2104 if (!(host->caps2 & MMC_CAP2_NO_SD)) {
2105 if (mmc_send_if_cond_pcie(host, host->ocr_avail))
2106 goto out;
2107 if (mmc_card_sd_express(host))
2108 return 0;
2109 }
2110
2111 /* Order's important: probe SDIO, then SD, then MMC */
2112 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2113 if (!mmc_attach_sdio(host))
2114 return 0;
2115
2116 if (!(host->caps2 & MMC_CAP2_NO_SD))
2117 if (!mmc_attach_sd(host))
2118 return 0;
2119
2120 if (!(host->caps2 & MMC_CAP2_NO_MMC))
2121 if (!mmc_attach_mmc(host))
2122 return 0;
2123
2124out:
2125 mmc_power_off(host);
2126 return -EIO;
2127}
2128
2129int _mmc_detect_card_removed(struct mmc_host *host)
2130{
2131 int ret;
2132
2133 if (!host->card || mmc_card_removed(host->card))
2134 return 1;
2135
2136 ret = host->bus_ops->alive(host);
2137
2138 /*
2139 * Card detect status and alive check may be out of sync if card is
2140 * removed slowly, when card detect switch changes while card/slot
2141 * pads are still contacted in hardware (refer to "SD Card Mechanical
2142 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2143 * detect work 200ms later for this case.
2144 */
2145 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2146 mmc_detect_change(host, msecs_to_jiffies(200));
2147 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2148 }
2149
2150 if (ret) {
2151 mmc_card_set_removed(host->card);
2152 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2153 }
2154
2155 return ret;
2156}
2157
2158int mmc_detect_card_removed(struct mmc_host *host)
2159{
2160 struct mmc_card *card = host->card;
2161 int ret;
2162
2163 WARN_ON(!host->claimed);
2164
2165 if (!card)
2166 return 1;
2167
2168 if (!mmc_card_is_removable(host))
2169 return 0;
2170
2171 ret = mmc_card_removed(card);
2172 /*
2173 * The card will be considered unchanged unless we have been asked to
2174 * detect a change or host requires polling to provide card detection.
2175 */
2176 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2177 return ret;
2178
2179 host->detect_change = 0;
2180 if (!ret) {
2181 ret = _mmc_detect_card_removed(host);
2182 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2183 /*
2184 * Schedule a detect work as soon as possible to let a
2185 * rescan handle the card removal.
2186 */
2187 cancel_delayed_work(&host->detect);
2188 _mmc_detect_change(host, 0, false);
2189 }
2190 }
2191
2192 return ret;
2193}
2194EXPORT_SYMBOL(mmc_detect_card_removed);
2195
2196int mmc_card_alternative_gpt_sector(struct mmc_card *card, sector_t *gpt_sector)
2197{
2198 unsigned int boot_sectors_num;
2199
2200 if ((!(card->host->caps2 & MMC_CAP2_ALT_GPT_TEGRA)))
2201 return -EOPNOTSUPP;
2202
2203 /* filter out unrelated cards */
2204 if (card->ext_csd.rev < 3 ||
2205 !mmc_card_mmc(card) ||
2206 !mmc_card_is_blockaddr(card) ||
2207 mmc_card_is_removable(card->host))
2208 return -ENOENT;
2209
2210 /*
2211 * eMMC storage has two special boot partitions in addition to the
2212 * main one. NVIDIA's bootloader linearizes eMMC boot0->boot1->main
2213 * accesses, this means that the partition table addresses are shifted
2214 * by the size of boot partitions. In accordance with the eMMC
2215 * specification, the boot partition size is calculated as follows:
2216 *
2217 * boot partition size = 128K byte x BOOT_SIZE_MULT
2218 *
2219 * Calculate number of sectors occupied by the both boot partitions.
2220 */
2221 boot_sectors_num = card->ext_csd.raw_boot_mult * SZ_128K /
2222 SZ_512 * MMC_NUM_BOOT_PARTITION;
2223
2224 /* Defined by NVIDIA and used by Android devices. */
2225 *gpt_sector = card->ext_csd.sectors - boot_sectors_num - 1;
2226
2227 return 0;
2228}
2229EXPORT_SYMBOL(mmc_card_alternative_gpt_sector);
2230
2231void mmc_rescan(struct work_struct *work)
2232{
2233 struct mmc_host *host =
2234 container_of(work, struct mmc_host, detect.work);
2235 int i;
2236
2237 if (host->rescan_disable)
2238 return;
2239
2240 /* If there is a non-removable card registered, only scan once */
2241 if (!mmc_card_is_removable(host) && host->rescan_entered)
2242 return;
2243 host->rescan_entered = 1;
2244
2245 if (host->trigger_card_event && host->ops->card_event) {
2246 mmc_claim_host(host);
2247 host->ops->card_event(host);
2248 mmc_release_host(host);
2249 host->trigger_card_event = false;
2250 }
2251
2252 /* Verify a registered card to be functional, else remove it. */
2253 if (host->bus_ops)
2254 host->bus_ops->detect(host);
2255
2256 host->detect_change = 0;
2257
2258 /* if there still is a card present, stop here */
2259 if (host->bus_ops != NULL)
2260 goto out;
2261
2262 mmc_claim_host(host);
2263 if (mmc_card_is_removable(host) && host->ops->get_cd &&
2264 host->ops->get_cd(host) == 0) {
2265 mmc_power_off(host);
2266 mmc_release_host(host);
2267 goto out;
2268 }
2269
2270 /* If an SD express card is present, then leave it as is. */
2271 if (mmc_card_sd_express(host)) {
2272 mmc_release_host(host);
2273 goto out;
2274 }
2275
2276 /*
2277 * Ideally we should favor initialization of legacy SD cards and defer
2278 * UHS-II enumeration. However, it seems like cards doesn't reliably
2279 * announce their support for UHS-II in the response to the ACMD41,
2280 * while initializing the legacy SD interface. Therefore, let's start
2281 * with UHS-II for now.
2282 */
2283 if (!mmc_attach_sd_uhs2(host)) {
2284 mmc_release_host(host);
2285 goto out;
2286 }
2287
2288 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2289 unsigned int freq = freqs[i];
2290 if (freq > host->f_max) {
2291 if (i + 1 < ARRAY_SIZE(freqs))
2292 continue;
2293 freq = host->f_max;
2294 }
2295 if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2296 break;
2297 if (freqs[i] <= host->f_min)
2298 break;
2299 }
2300
2301 /* A non-removable card should have been detected by now. */
2302 if (!mmc_card_is_removable(host) && !host->bus_ops)
2303 pr_info("%s: Failed to initialize a non-removable card",
2304 mmc_hostname(host));
2305
2306 /*
2307 * Ignore the command timeout errors observed during
2308 * the card init as those are excepted.
2309 */
2310 host->err_stats[MMC_ERR_CMD_TIMEOUT] = 0;
2311 mmc_release_host(host);
2312
2313 out:
2314 if (host->caps & MMC_CAP_NEEDS_POLL)
2315 mmc_schedule_delayed_work(&host->detect, HZ);
2316}
2317
2318void mmc_start_host(struct mmc_host *host)
2319{
2320 bool power_up = !(host->caps2 &
2321 (MMC_CAP2_NO_PRESCAN_POWERUP | MMC_CAP2_SD_UHS2));
2322
2323 host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2324 host->rescan_disable = 0;
2325
2326 if (power_up) {
2327 mmc_claim_host(host);
2328 mmc_power_up(host, host->ocr_avail);
2329 mmc_release_host(host);
2330 }
2331
2332 mmc_gpiod_request_cd_irq(host);
2333 _mmc_detect_change(host, 0, false);
2334}
2335
2336void __mmc_stop_host(struct mmc_host *host)
2337{
2338 if (host->rescan_disable)
2339 return;
2340
2341 if (host->slot.cd_irq >= 0) {
2342 mmc_gpio_set_cd_wake(host, false);
2343 disable_irq(host->slot.cd_irq);
2344 }
2345
2346 host->rescan_disable = 1;
2347 cancel_delayed_work_sync(&host->detect);
2348}
2349
2350void mmc_stop_host(struct mmc_host *host)
2351{
2352 __mmc_stop_host(host);
2353
2354 /* clear pm flags now and let card drivers set them as needed */
2355 host->pm_flags = 0;
2356
2357 if (host->bus_ops) {
2358 /* Calling bus_ops->remove() with a claimed host can deadlock */
2359 host->bus_ops->remove(host);
2360 mmc_claim_host(host);
2361 mmc_detach_bus(host);
2362 mmc_power_off(host);
2363 mmc_release_host(host);
2364 return;
2365 }
2366
2367 mmc_claim_host(host);
2368 mmc_power_off(host);
2369 mmc_release_host(host);
2370}
2371
2372static int __init mmc_init(void)
2373{
2374 int ret;
2375
2376 ret = mmc_register_bus();
2377 if (ret)
2378 return ret;
2379
2380 ret = mmc_register_host_class();
2381 if (ret)
2382 goto unregister_bus;
2383
2384 ret = sdio_register_bus();
2385 if (ret)
2386 goto unregister_host_class;
2387
2388 return 0;
2389
2390unregister_host_class:
2391 mmc_unregister_host_class();
2392unregister_bus:
2393 mmc_unregister_bus();
2394 return ret;
2395}
2396
2397static void __exit mmc_exit(void)
2398{
2399 sdio_unregister_bus();
2400 mmc_unregister_host_class();
2401 mmc_unregister_bus();
2402}
2403
2404subsys_initcall(mmc_init);
2405module_exit(mmc_exit);
2406
2407MODULE_DESCRIPTION("MMC core driver");
2408MODULE_LICENSE("GPL");