Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (c) 2011-2016 Synaptics Incorporated
  4 * Copyright (c) 2011 Unixphere
  5 */
  6
  7#include <linux/kernel.h>
  8#include <linux/module.h>
  9#include <linux/rmi.h>
 10#include <linux/slab.h>
 11#include <linux/spi/spi.h>
 12#include <linux/of.h>
 13#include "rmi_driver.h"
 14
 15#define RMI_SPI_DEFAULT_XFER_BUF_SIZE	64
 16
 17#define RMI_PAGE_SELECT_REGISTER	0x00FF
 18#define RMI_SPI_PAGE(addr)		(((addr) >> 8) & 0x80)
 19#define RMI_SPI_XFER_SIZE_LIMIT		255
 20
 21#define BUFFER_SIZE_INCREMENT 32
 22
 23enum rmi_spi_op {
 24	RMI_SPI_WRITE = 0,
 25	RMI_SPI_READ,
 26	RMI_SPI_V2_READ_UNIFIED,
 27	RMI_SPI_V2_READ_SPLIT,
 28	RMI_SPI_V2_WRITE,
 29};
 30
 31struct rmi_spi_cmd {
 32	enum rmi_spi_op op;
 33	u16 addr;
 34};
 35
 36struct rmi_spi_xport {
 37	struct rmi_transport_dev xport;
 38	struct spi_device *spi;
 39
 40	struct mutex page_mutex;
 41	int page;
 42
 43	u8 *rx_buf;
 44	u8 *tx_buf;
 45	int xfer_buf_size;
 46
 47	struct spi_transfer *rx_xfers;
 48	struct spi_transfer *tx_xfers;
 49	int rx_xfer_count;
 50	int tx_xfer_count;
 51};
 52
 53static int rmi_spi_manage_pools(struct rmi_spi_xport *rmi_spi, int len)
 54{
 55	struct spi_device *spi = rmi_spi->spi;
 56	int buf_size = rmi_spi->xfer_buf_size
 57		? rmi_spi->xfer_buf_size : RMI_SPI_DEFAULT_XFER_BUF_SIZE;
 58	struct spi_transfer *xfer_buf;
 59	void *buf;
 60	void *tmp;
 61
 62	while (buf_size < len)
 63		buf_size *= 2;
 64
 65	if (buf_size > RMI_SPI_XFER_SIZE_LIMIT)
 66		buf_size = RMI_SPI_XFER_SIZE_LIMIT;
 67
 68	tmp = rmi_spi->rx_buf;
 69	buf = devm_kcalloc(&spi->dev, buf_size, 2,
 70				GFP_KERNEL | GFP_DMA);
 71	if (!buf)
 72		return -ENOMEM;
 73
 74	rmi_spi->rx_buf = buf;
 75	rmi_spi->tx_buf = &rmi_spi->rx_buf[buf_size];
 76	rmi_spi->xfer_buf_size = buf_size;
 77
 78	if (tmp)
 79		devm_kfree(&spi->dev, tmp);
 80
 81	if (rmi_spi->xport.pdata.spi_data.read_delay_us)
 82		rmi_spi->rx_xfer_count = buf_size;
 83	else
 84		rmi_spi->rx_xfer_count = 1;
 85
 86	if (rmi_spi->xport.pdata.spi_data.write_delay_us)
 87		rmi_spi->tx_xfer_count = buf_size;
 88	else
 89		rmi_spi->tx_xfer_count = 1;
 90
 91	/*
 92	 * Allocate a pool of spi_transfer buffers for devices which need
 93	 * per byte delays.
 94	 */
 95	tmp = rmi_spi->rx_xfers;
 96	xfer_buf = devm_kcalloc(&spi->dev,
 97		rmi_spi->rx_xfer_count + rmi_spi->tx_xfer_count,
 98		sizeof(struct spi_transfer),
 99		GFP_KERNEL);
100	if (!xfer_buf)
101		return -ENOMEM;
102
103	rmi_spi->rx_xfers = xfer_buf;
104	rmi_spi->tx_xfers = &xfer_buf[rmi_spi->rx_xfer_count];
105
106	if (tmp)
107		devm_kfree(&spi->dev, tmp);
108
109	return 0;
110}
111
112static int rmi_spi_xfer(struct rmi_spi_xport *rmi_spi,
113			const struct rmi_spi_cmd *cmd, const u8 *tx_buf,
114			int tx_len, u8 *rx_buf, int rx_len)
115{
116	struct spi_device *spi = rmi_spi->spi;
117	struct rmi_device_platform_data_spi *spi_data =
118					&rmi_spi->xport.pdata.spi_data;
119	struct spi_message msg;
120	struct spi_transfer *xfer;
121	int ret = 0;
122	int len;
123	int cmd_len = 0;
124	int total_tx_len;
125	int i;
126	u16 addr = cmd->addr;
127
128	spi_message_init(&msg);
129
130	switch (cmd->op) {
131	case RMI_SPI_WRITE:
132	case RMI_SPI_READ:
133		cmd_len += 2;
134		break;
135	case RMI_SPI_V2_READ_UNIFIED:
136	case RMI_SPI_V2_READ_SPLIT:
137	case RMI_SPI_V2_WRITE:
138		cmd_len += 4;
139		break;
140	}
141
142	total_tx_len = cmd_len + tx_len;
143	len = max(total_tx_len, rx_len);
144
145	if (len > RMI_SPI_XFER_SIZE_LIMIT)
146		return -EINVAL;
147
148	if (rmi_spi->xfer_buf_size < len) {
149		ret = rmi_spi_manage_pools(rmi_spi, len);
150		if (ret < 0)
151			return ret;
152	}
153
154	if (addr == 0)
155		/*
156		 * SPI needs an address. Use 0x7FF if we want to keep
157		 * reading from the last position of the register pointer.
158		 */
159		addr = 0x7FF;
160
161	switch (cmd->op) {
162	case RMI_SPI_WRITE:
163		rmi_spi->tx_buf[0] = (addr >> 8);
164		rmi_spi->tx_buf[1] = addr & 0xFF;
165		break;
166	case RMI_SPI_READ:
167		rmi_spi->tx_buf[0] = (addr >> 8) | 0x80;
168		rmi_spi->tx_buf[1] = addr & 0xFF;
169		break;
170	case RMI_SPI_V2_READ_UNIFIED:
171		break;
172	case RMI_SPI_V2_READ_SPLIT:
173		break;
174	case RMI_SPI_V2_WRITE:
175		rmi_spi->tx_buf[0] = 0x40;
176		rmi_spi->tx_buf[1] = (addr >> 8) & 0xFF;
177		rmi_spi->tx_buf[2] = addr & 0xFF;
178		rmi_spi->tx_buf[3] = tx_len;
179		break;
180	}
181
182	if (tx_buf)
183		memcpy(&rmi_spi->tx_buf[cmd_len], tx_buf, tx_len);
184
185	if (rmi_spi->tx_xfer_count > 1) {
186		for (i = 0; i < total_tx_len; i++) {
187			xfer = &rmi_spi->tx_xfers[i];
188			memset(xfer, 0,	sizeof(struct spi_transfer));
189			xfer->tx_buf = &rmi_spi->tx_buf[i];
190			xfer->len = 1;
191			xfer->delay.value = spi_data->write_delay_us;
192			xfer->delay.unit = SPI_DELAY_UNIT_USECS;
193			spi_message_add_tail(xfer, &msg);
194		}
195	} else {
196		xfer = rmi_spi->tx_xfers;
197		memset(xfer, 0, sizeof(struct spi_transfer));
198		xfer->tx_buf = rmi_spi->tx_buf;
199		xfer->len = total_tx_len;
200		spi_message_add_tail(xfer, &msg);
201	}
202
203	rmi_dbg(RMI_DEBUG_XPORT, &spi->dev, "%s: cmd: %s tx_buf len: %d tx_buf: %*ph\n",
204		__func__, cmd->op == RMI_SPI_WRITE ? "WRITE" : "READ",
205		total_tx_len, total_tx_len, rmi_spi->tx_buf);
206
207	if (rx_buf) {
208		if (rmi_spi->rx_xfer_count > 1) {
209			for (i = 0; i < rx_len; i++) {
210				xfer = &rmi_spi->rx_xfers[i];
211				memset(xfer, 0, sizeof(struct spi_transfer));
212				xfer->rx_buf = &rmi_spi->rx_buf[i];
213				xfer->len = 1;
214				xfer->delay.value = spi_data->read_delay_us;
215				xfer->delay.unit = SPI_DELAY_UNIT_USECS;
216				spi_message_add_tail(xfer, &msg);
217			}
218		} else {
219			xfer = rmi_spi->rx_xfers;
220			memset(xfer, 0, sizeof(struct spi_transfer));
221			xfer->rx_buf = rmi_spi->rx_buf;
222			xfer->len = rx_len;
223			spi_message_add_tail(xfer, &msg);
224		}
225	}
226
227	ret = spi_sync(spi, &msg);
228	if (ret < 0) {
229		dev_err(&spi->dev, "spi xfer failed: %d\n", ret);
230		return ret;
231	}
232
233	if (rx_buf) {
234		memcpy(rx_buf, rmi_spi->rx_buf, rx_len);
235		rmi_dbg(RMI_DEBUG_XPORT, &spi->dev, "%s: (%d) %*ph\n",
236			__func__, rx_len, rx_len, rx_buf);
237	}
238
239	return 0;
240}
241
242/*
243 * rmi_set_page - Set RMI page
244 * @xport: The pointer to the rmi_transport_dev struct
245 * @page: The new page address.
246 *
247 * RMI devices have 16-bit addressing, but some of the transport
248 * implementations (like SMBus) only have 8-bit addressing. So RMI implements
249 * a page address at 0xff of every page so we can reliable page addresses
250 * every 256 registers.
251 *
252 * The page_mutex lock must be held when this function is entered.
253 *
254 * Returns zero on success, non-zero on failure.
255 */
256static int rmi_set_page(struct rmi_spi_xport *rmi_spi, u8 page)
257{
258	struct rmi_spi_cmd cmd;
259	int ret;
260
261	cmd.op = RMI_SPI_WRITE;
262	cmd.addr = RMI_PAGE_SELECT_REGISTER;
263
264	ret = rmi_spi_xfer(rmi_spi, &cmd, &page, 1, NULL, 0);
265
266	if (ret)
267		rmi_spi->page = page;
268
269	return ret;
270}
271
272static int rmi_spi_write_block(struct rmi_transport_dev *xport, u16 addr,
273			       const void *buf, size_t len)
274{
275	struct rmi_spi_xport *rmi_spi =
276		container_of(xport, struct rmi_spi_xport, xport);
277	struct rmi_spi_cmd cmd;
278	int ret;
279
280	mutex_lock(&rmi_spi->page_mutex);
281
282	if (RMI_SPI_PAGE(addr) != rmi_spi->page) {
283		ret = rmi_set_page(rmi_spi, RMI_SPI_PAGE(addr));
284		if (ret)
285			goto exit;
286	}
287
288	cmd.op = RMI_SPI_WRITE;
289	cmd.addr = addr;
290
291	ret = rmi_spi_xfer(rmi_spi, &cmd, buf, len, NULL, 0);
292
293exit:
294	mutex_unlock(&rmi_spi->page_mutex);
295	return ret;
296}
297
298static int rmi_spi_read_block(struct rmi_transport_dev *xport, u16 addr,
299			      void *buf, size_t len)
300{
301	struct rmi_spi_xport *rmi_spi =
302		container_of(xport, struct rmi_spi_xport, xport);
303	struct rmi_spi_cmd cmd;
304	int ret;
305
306	mutex_lock(&rmi_spi->page_mutex);
307
308	if (RMI_SPI_PAGE(addr) != rmi_spi->page) {
309		ret = rmi_set_page(rmi_spi, RMI_SPI_PAGE(addr));
310		if (ret)
311			goto exit;
312	}
313
314	cmd.op = RMI_SPI_READ;
315	cmd.addr = addr;
316
317	ret = rmi_spi_xfer(rmi_spi, &cmd, NULL, 0, buf, len);
318
319exit:
320	mutex_unlock(&rmi_spi->page_mutex);
321	return ret;
322}
323
324static const struct rmi_transport_ops rmi_spi_ops = {
325	.write_block	= rmi_spi_write_block,
326	.read_block	= rmi_spi_read_block,
327};
328
329#ifdef CONFIG_OF
330static int rmi_spi_of_probe(struct spi_device *spi,
331			struct rmi_device_platform_data *pdata)
332{
333	struct device *dev = &spi->dev;
334	int retval;
335
336	retval = rmi_of_property_read_u32(dev,
337			&pdata->spi_data.read_delay_us,
338			"spi-rx-delay-us", 1);
339	if (retval)
340		return retval;
341
342	retval = rmi_of_property_read_u32(dev,
343			&pdata->spi_data.write_delay_us,
344			"spi-tx-delay-us", 1);
345	if (retval)
346		return retval;
347
348	return 0;
349}
350
351static const struct of_device_id rmi_spi_of_match[] = {
352	{ .compatible = "syna,rmi4-spi" },
353	{},
354};
355MODULE_DEVICE_TABLE(of, rmi_spi_of_match);
356#else
357static inline int rmi_spi_of_probe(struct spi_device *spi,
358				struct rmi_device_platform_data *pdata)
359{
360	return -ENODEV;
361}
362#endif
363
364static void rmi_spi_unregister_transport(void *data)
365{
366	struct rmi_spi_xport *rmi_spi = data;
367
368	rmi_unregister_transport_device(&rmi_spi->xport);
369}
370
371static int rmi_spi_probe(struct spi_device *spi)
372{
373	struct rmi_spi_xport *rmi_spi;
374	struct rmi_device_platform_data *pdata;
375	struct rmi_device_platform_data *spi_pdata = spi->dev.platform_data;
376	int error;
377
378	if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX)
379		return -EINVAL;
380
381	rmi_spi = devm_kzalloc(&spi->dev, sizeof(struct rmi_spi_xport),
382			GFP_KERNEL);
383	if (!rmi_spi)
384		return -ENOMEM;
385
386	pdata = &rmi_spi->xport.pdata;
387
388	if (spi->dev.of_node) {
389		error = rmi_spi_of_probe(spi, pdata);
390		if (error)
391			return error;
392	} else if (spi_pdata) {
393		*pdata = *spi_pdata;
394	}
395
396	if (pdata->spi_data.bits_per_word)
397		spi->bits_per_word = pdata->spi_data.bits_per_word;
398
399	if (pdata->spi_data.mode)
400		spi->mode = pdata->spi_data.mode;
401
402	error = spi_setup(spi);
403	if (error < 0) {
404		dev_err(&spi->dev, "spi_setup failed!\n");
405		return error;
406	}
407
408	pdata->irq = spi->irq;
409
410	rmi_spi->spi = spi;
411	mutex_init(&rmi_spi->page_mutex);
412
413	rmi_spi->xport.dev = &spi->dev;
414	rmi_spi->xport.proto_name = "spi";
415	rmi_spi->xport.ops = &rmi_spi_ops;
416
417	spi_set_drvdata(spi, rmi_spi);
418
419	error = rmi_spi_manage_pools(rmi_spi, RMI_SPI_DEFAULT_XFER_BUF_SIZE);
420	if (error)
421		return error;
422
423	/*
424	 * Setting the page to zero will (a) make sure the PSR is in a
425	 * known state, and (b) make sure we can talk to the device.
426	 */
427	error = rmi_set_page(rmi_spi, 0);
428	if (error) {
429		dev_err(&spi->dev, "Failed to set page select to 0.\n");
430		return error;
431	}
432
433	dev_info(&spi->dev, "registering SPI-connected sensor\n");
434
435	error = rmi_register_transport_device(&rmi_spi->xport);
436	if (error) {
437		dev_err(&spi->dev, "failed to register sensor: %d\n", error);
438		return error;
439	}
440
441	error = devm_add_action_or_reset(&spi->dev,
442					  rmi_spi_unregister_transport,
443					  rmi_spi);
444	if (error)
445		return error;
446
447	return 0;
448}
449
450static int rmi_spi_suspend(struct device *dev)
451{
452	struct spi_device *spi = to_spi_device(dev);
453	struct rmi_spi_xport *rmi_spi = spi_get_drvdata(spi);
454	int ret;
455
456	ret = rmi_driver_suspend(rmi_spi->xport.rmi_dev, true);
457	if (ret)
458		dev_warn(dev, "Failed to resume device: %d\n", ret);
459
460	return ret;
461}
462
463static int rmi_spi_resume(struct device *dev)
464{
465	struct spi_device *spi = to_spi_device(dev);
466	struct rmi_spi_xport *rmi_spi = spi_get_drvdata(spi);
467	int ret;
468
469	ret = rmi_driver_resume(rmi_spi->xport.rmi_dev, true);
470	if (ret)
471		dev_warn(dev, "Failed to resume device: %d\n", ret);
472
473	return ret;
474}
475
476static int rmi_spi_runtime_suspend(struct device *dev)
477{
478	struct spi_device *spi = to_spi_device(dev);
479	struct rmi_spi_xport *rmi_spi = spi_get_drvdata(spi);
480	int ret;
481
482	ret = rmi_driver_suspend(rmi_spi->xport.rmi_dev, false);
483	if (ret)
484		dev_warn(dev, "Failed to resume device: %d\n", ret);
485
486	return 0;
487}
488
489static int rmi_spi_runtime_resume(struct device *dev)
490{
491	struct spi_device *spi = to_spi_device(dev);
492	struct rmi_spi_xport *rmi_spi = spi_get_drvdata(spi);
493	int ret;
494
495	ret = rmi_driver_resume(rmi_spi->xport.rmi_dev, false);
496	if (ret)
497		dev_warn(dev, "Failed to resume device: %d\n", ret);
498
499	return 0;
500}
501
502static const struct dev_pm_ops rmi_spi_pm = {
503	SYSTEM_SLEEP_PM_OPS(rmi_spi_suspend, rmi_spi_resume)
504	RUNTIME_PM_OPS(rmi_spi_runtime_suspend, rmi_spi_runtime_resume, NULL)
505};
506
507static const struct spi_device_id rmi_id[] = {
508	{ "rmi4-spi", 0 },
509	{ }
510};
511MODULE_DEVICE_TABLE(spi, rmi_id);
512
513static struct spi_driver rmi_spi_driver = {
514	.driver = {
515		.name	= "rmi4_spi",
516		.pm	= pm_ptr(&rmi_spi_pm),
517		.of_match_table = of_match_ptr(rmi_spi_of_match),
518	},
519	.id_table	= rmi_id,
520	.probe		= rmi_spi_probe,
521};
522
523module_spi_driver(rmi_spi_driver);
524
525MODULE_AUTHOR("Christopher Heiny <cheiny@synaptics.com>");
526MODULE_AUTHOR("Andrew Duggan <aduggan@synaptics.com>");
527MODULE_DESCRIPTION("RMI SPI driver");
528MODULE_LICENSE("GPL");