Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 *  HID support for Linux
   3 *
   4 *  Copyright (c) 1999 Andreas Gal
   5 *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
   6 *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
   7 *  Copyright (c) 2006-2012 Jiri Kosina
   8 */
   9
  10/*
  11 * This program is free software; you can redistribute it and/or modify it
  12 * under the terms of the GNU General Public License as published by the Free
  13 * Software Foundation; either version 2 of the License, or (at your option)
  14 * any later version.
  15 */
  16
  17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  18
  19#include <linux/module.h>
  20#include <linux/slab.h>
  21#include <linux/init.h>
  22#include <linux/kernel.h>
  23#include <linux/list.h>
  24#include <linux/mm.h>
  25#include <linux/spinlock.h>
  26#include <asm/unaligned.h>
  27#include <asm/byteorder.h>
  28#include <linux/input.h>
  29#include <linux/wait.h>
  30#include <linux/vmalloc.h>
  31#include <linux/sched.h>
  32#include <linux/semaphore.h>
  33
  34#include <linux/hid.h>
  35#include <linux/hiddev.h>
  36#include <linux/hid-debug.h>
  37#include <linux/hidraw.h>
  38
  39#include "hid-ids.h"
  40
  41/*
  42 * Version Information
  43 */
  44
  45#define DRIVER_DESC "HID core driver"
  46#define DRIVER_LICENSE "GPL"
  47
  48int hid_debug = 0;
  49module_param_named(debug, hid_debug, int, 0600);
  50MODULE_PARM_DESC(debug, "toggle HID debugging messages");
  51EXPORT_SYMBOL_GPL(hid_debug);
  52
  53static int hid_ignore_special_drivers = 0;
  54module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
  55MODULE_PARM_DESC(debug, "Ignore any special drivers and handle all devices by generic driver");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  56
  57/*
  58 * Register a new report for a device.
  59 */
  60
  61struct hid_report *hid_register_report(struct hid_device *device, unsigned type, unsigned id)
 
 
  62{
  63	struct hid_report_enum *report_enum = device->report_enum + type;
  64	struct hid_report *report;
  65
  66	if (id >= HID_MAX_IDS)
  67		return NULL;
  68	if (report_enum->report_id_hash[id])
  69		return report_enum->report_id_hash[id];
  70
  71	report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
  72	if (!report)
  73		return NULL;
  74
  75	if (id != 0)
  76		report_enum->numbered = 1;
  77
  78	report->id = id;
  79	report->type = type;
  80	report->size = 0;
  81	report->device = device;
 
  82	report_enum->report_id_hash[id] = report;
  83
  84	list_add_tail(&report->list, &report_enum->report_list);
 
  85
  86	return report;
  87}
  88EXPORT_SYMBOL_GPL(hid_register_report);
  89
  90/*
  91 * Register a new field for this report.
  92 */
  93
  94static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
  95{
  96	struct hid_field *field;
  97
  98	if (report->maxfield == HID_MAX_FIELDS) {
  99		hid_err(report->device, "too many fields in report\n");
 100		return NULL;
 101	}
 102
 103	field = kzalloc((sizeof(struct hid_field) +
 104			 usages * sizeof(struct hid_usage) +
 105			 values * sizeof(unsigned)), GFP_KERNEL);
 106	if (!field)
 107		return NULL;
 108
 109	field->index = report->maxfield++;
 110	report->field[field->index] = field;
 111	field->usage = (struct hid_usage *)(field + 1);
 112	field->value = (s32 *)(field->usage + usages);
 
 
 113	field->report = report;
 114
 115	return field;
 116}
 117
 118/*
 119 * Open a collection. The type/usage is pushed on the stack.
 120 */
 121
 122static int open_collection(struct hid_parser *parser, unsigned type)
 123{
 124	struct hid_collection *collection;
 125	unsigned usage;
 
 126
 127	usage = parser->local.usage[0];
 128
 129	if (parser->collection_stack_ptr == HID_COLLECTION_STACK_SIZE) {
 130		hid_err(parser->device, "collection stack overflow\n");
 131		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 132	}
 133
 134	if (parser->device->maxcollection == parser->device->collection_size) {
 135		collection = kmalloc(sizeof(struct hid_collection) *
 136				parser->device->collection_size * 2, GFP_KERNEL);
 
 
 
 137		if (collection == NULL) {
 138			hid_err(parser->device, "failed to reallocate collection array\n");
 139			return -ENOMEM;
 140		}
 141		memcpy(collection, parser->device->collection,
 142			sizeof(struct hid_collection) *
 143			parser->device->collection_size);
 144		memset(collection + parser->device->collection_size, 0,
 145			sizeof(struct hid_collection) *
 146			parser->device->collection_size);
 147		kfree(parser->device->collection);
 148		parser->device->collection = collection;
 149		parser->device->collection_size *= 2;
 150	}
 151
 152	parser->collection_stack[parser->collection_stack_ptr++] =
 153		parser->device->maxcollection;
 154
 155	collection = parser->device->collection +
 156		parser->device->maxcollection++;
 157	collection->type = type;
 158	collection->usage = usage;
 159	collection->level = parser->collection_stack_ptr - 1;
 
 
 160
 161	if (type == HID_COLLECTION_APPLICATION)
 162		parser->device->maxapplication++;
 163
 164	return 0;
 165}
 166
 167/*
 168 * Close a collection.
 169 */
 170
 171static int close_collection(struct hid_parser *parser)
 172{
 173	if (!parser->collection_stack_ptr) {
 174		hid_err(parser->device, "collection stack underflow\n");
 175		return -EINVAL;
 176	}
 177	parser->collection_stack_ptr--;
 178	return 0;
 179}
 180
 181/*
 182 * Climb up the stack, search for the specified collection type
 183 * and return the usage.
 184 */
 185
 186static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
 187{
 188	struct hid_collection *collection = parser->device->collection;
 189	int n;
 190
 191	for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
 192		unsigned index = parser->collection_stack[n];
 193		if (collection[index].type == type)
 194			return collection[index].usage;
 195	}
 196	return 0; /* we know nothing about this usage type */
 197}
 198
 199/*
 
 
 
 
 
 
 
 
 
 
 
 
 200 * Add a usage to the temporary parser table.
 201 */
 202
 203static int hid_add_usage(struct hid_parser *parser, unsigned usage)
 204{
 205	if (parser->local.usage_index >= HID_MAX_USAGES) {
 206		hid_err(parser->device, "usage index exceeded\n");
 207		return -1;
 208	}
 209	parser->local.usage[parser->local.usage_index] = usage;
 
 
 
 
 
 
 
 
 
 210	parser->local.collection_index[parser->local.usage_index] =
 211		parser->collection_stack_ptr ?
 212		parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
 213	parser->local.usage_index++;
 214	return 0;
 215}
 216
 217/*
 218 * Register a new field for this report.
 219 */
 220
 221static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
 222{
 223	struct hid_report *report;
 224	struct hid_field *field;
 225	unsigned usages;
 226	unsigned offset;
 227	unsigned i;
 
 
 228
 229	report = hid_register_report(parser->device, report_type, parser->global.report_id);
 
 
 
 230	if (!report) {
 231		hid_err(parser->device, "hid_register_report failed\n");
 232		return -1;
 233	}
 234
 235	/* Handle both signed and unsigned cases properly */
 236	if ((parser->global.logical_minimum < 0 &&
 237		parser->global.logical_maximum <
 238		parser->global.logical_minimum) ||
 239		(parser->global.logical_minimum >= 0 &&
 240		(__u32)parser->global.logical_maximum <
 241		(__u32)parser->global.logical_minimum)) {
 242		dbg_hid("logical range invalid 0x%x 0x%x\n",
 243			parser->global.logical_minimum,
 244			parser->global.logical_maximum);
 245		return -1;
 246	}
 247
 248	offset = report->size;
 249	report->size += parser->global.report_size * parser->global.report_count;
 250
 
 
 
 
 
 
 
 
 
 251	if (!parser->local.usage_index) /* Ignore padding fields */
 252		return 0;
 253
 254	usages = max_t(unsigned, parser->local.usage_index,
 255				 parser->global.report_count);
 256
 257	field = hid_register_field(report, usages, parser->global.report_count);
 258	if (!field)
 259		return 0;
 260
 261	field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
 262	field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
 263	field->application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
 264
 265	for (i = 0; i < usages; i++) {
 266		unsigned j = i;
 267		/* Duplicate the last usage we parsed if we have excess values */
 268		if (i >= parser->local.usage_index)
 269			j = parser->local.usage_index - 1;
 270		field->usage[i].hid = parser->local.usage[j];
 271		field->usage[i].collection_index =
 272			parser->local.collection_index[j];
 273		field->usage[i].usage_index = i;
 
 274	}
 275
 276	field->maxusage = usages;
 277	field->flags = flags;
 278	field->report_offset = offset;
 279	field->report_type = report_type;
 280	field->report_size = parser->global.report_size;
 281	field->report_count = parser->global.report_count;
 282	field->logical_minimum = parser->global.logical_minimum;
 283	field->logical_maximum = parser->global.logical_maximum;
 284	field->physical_minimum = parser->global.physical_minimum;
 285	field->physical_maximum = parser->global.physical_maximum;
 286	field->unit_exponent = parser->global.unit_exponent;
 287	field->unit = parser->global.unit;
 288
 289	return 0;
 290}
 291
 292/*
 293 * Read data value from item.
 294 */
 295
 296static u32 item_udata(struct hid_item *item)
 297{
 298	switch (item->size) {
 299	case 1: return item->data.u8;
 300	case 2: return item->data.u16;
 301	case 4: return item->data.u32;
 302	}
 303	return 0;
 304}
 305
 306static s32 item_sdata(struct hid_item *item)
 307{
 308	switch (item->size) {
 309	case 1: return item->data.s8;
 310	case 2: return item->data.s16;
 311	case 4: return item->data.s32;
 312	}
 313	return 0;
 314}
 315
 316/*
 317 * Process a global item.
 318 */
 319
 320static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
 321{
 322	__s32 raw_value;
 323	switch (item->tag) {
 324	case HID_GLOBAL_ITEM_TAG_PUSH:
 325
 326		if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
 327			hid_err(parser->device, "global environment stack overflow\n");
 328			return -1;
 329		}
 330
 331		memcpy(parser->global_stack + parser->global_stack_ptr++,
 332			&parser->global, sizeof(struct hid_global));
 333		return 0;
 334
 335	case HID_GLOBAL_ITEM_TAG_POP:
 336
 337		if (!parser->global_stack_ptr) {
 338			hid_err(parser->device, "global environment stack underflow\n");
 339			return -1;
 340		}
 341
 342		memcpy(&parser->global, parser->global_stack +
 343			--parser->global_stack_ptr, sizeof(struct hid_global));
 344		return 0;
 345
 346	case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
 347		parser->global.usage_page = item_udata(item);
 348		return 0;
 349
 350	case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
 351		parser->global.logical_minimum = item_sdata(item);
 352		return 0;
 353
 354	case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
 355		if (parser->global.logical_minimum < 0)
 356			parser->global.logical_maximum = item_sdata(item);
 357		else
 358			parser->global.logical_maximum = item_udata(item);
 359		return 0;
 360
 361	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
 362		parser->global.physical_minimum = item_sdata(item);
 363		return 0;
 364
 365	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
 366		if (parser->global.physical_minimum < 0)
 367			parser->global.physical_maximum = item_sdata(item);
 368		else
 369			parser->global.physical_maximum = item_udata(item);
 370		return 0;
 371
 372	case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
 373		/* Many devices provide unit exponent as a two's complement
 374		 * nibble due to the common misunderstanding of HID
 375		 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
 376		 * both this and the standard encoding. */
 377		raw_value = item_sdata(item);
 378		if (!(raw_value & 0xfffffff0))
 379			parser->global.unit_exponent = hid_snto32(raw_value, 4);
 380		else
 381			parser->global.unit_exponent = raw_value;
 382		return 0;
 383
 384	case HID_GLOBAL_ITEM_TAG_UNIT:
 385		parser->global.unit = item_udata(item);
 386		return 0;
 387
 388	case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
 389		parser->global.report_size = item_udata(item);
 390		if (parser->global.report_size > 128) {
 391			hid_err(parser->device, "invalid report_size %d\n",
 392					parser->global.report_size);
 393			return -1;
 394		}
 395		return 0;
 396
 397	case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
 398		parser->global.report_count = item_udata(item);
 399		if (parser->global.report_count > HID_MAX_USAGES) {
 400			hid_err(parser->device, "invalid report_count %d\n",
 401					parser->global.report_count);
 402			return -1;
 403		}
 404		return 0;
 405
 406	case HID_GLOBAL_ITEM_TAG_REPORT_ID:
 407		parser->global.report_id = item_udata(item);
 408		if (parser->global.report_id == 0 ||
 409		    parser->global.report_id >= HID_MAX_IDS) {
 410			hid_err(parser->device, "report_id %u is invalid\n",
 411				parser->global.report_id);
 412			return -1;
 413		}
 414		return 0;
 415
 416	default:
 417		hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
 418		return -1;
 419	}
 420}
 421
 422/*
 423 * Process a local item.
 424 */
 425
 426static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
 427{
 428	__u32 data;
 429	unsigned n;
 
 430
 431	data = item_udata(item);
 432
 433	switch (item->tag) {
 434	case HID_LOCAL_ITEM_TAG_DELIMITER:
 435
 436		if (data) {
 437			/*
 438			 * We treat items before the first delimiter
 439			 * as global to all usage sets (branch 0).
 440			 * In the moment we process only these global
 441			 * items and the first delimiter set.
 442			 */
 443			if (parser->local.delimiter_depth != 0) {
 444				hid_err(parser->device, "nested delimiters\n");
 445				return -1;
 446			}
 447			parser->local.delimiter_depth++;
 448			parser->local.delimiter_branch++;
 449		} else {
 450			if (parser->local.delimiter_depth < 1) {
 451				hid_err(parser->device, "bogus close delimiter\n");
 452				return -1;
 453			}
 454			parser->local.delimiter_depth--;
 455		}
 456		return 0;
 457
 458	case HID_LOCAL_ITEM_TAG_USAGE:
 459
 460		if (parser->local.delimiter_branch > 1) {
 461			dbg_hid("alternative usage ignored\n");
 462			return 0;
 463		}
 464
 465		if (item->size <= 2)
 466			data = (parser->global.usage_page << 16) + data;
 467
 468		return hid_add_usage(parser, data);
 469
 470	case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
 471
 472		if (parser->local.delimiter_branch > 1) {
 473			dbg_hid("alternative usage ignored\n");
 474			return 0;
 475		}
 476
 477		if (item->size <= 2)
 478			data = (parser->global.usage_page << 16) + data;
 479
 480		parser->local.usage_minimum = data;
 481		return 0;
 482
 483	case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
 484
 485		if (parser->local.delimiter_branch > 1) {
 486			dbg_hid("alternative usage ignored\n");
 487			return 0;
 488		}
 489
 490		if (item->size <= 2)
 491			data = (parser->global.usage_page << 16) + data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 492
 493		for (n = parser->local.usage_minimum; n <= data; n++)
 494			if (hid_add_usage(parser, n)) {
 495				dbg_hid("hid_add_usage failed\n");
 496				return -1;
 497			}
 498		return 0;
 499
 500	default:
 501
 502		dbg_hid("unknown local item tag 0x%x\n", item->tag);
 503		return 0;
 504	}
 505	return 0;
 506}
 507
 508/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 509 * Process a main item.
 510 */
 511
 512static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
 513{
 514	__u32 data;
 515	int ret;
 516
 
 
 517	data = item_udata(item);
 518
 519	switch (item->tag) {
 520	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
 521		ret = open_collection(parser, data & 0xff);
 522		break;
 523	case HID_MAIN_ITEM_TAG_END_COLLECTION:
 524		ret = close_collection(parser);
 525		break;
 526	case HID_MAIN_ITEM_TAG_INPUT:
 527		ret = hid_add_field(parser, HID_INPUT_REPORT, data);
 528		break;
 529	case HID_MAIN_ITEM_TAG_OUTPUT:
 530		ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
 531		break;
 532	case HID_MAIN_ITEM_TAG_FEATURE:
 533		ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
 534		break;
 535	default:
 536		hid_err(parser->device, "unknown main item tag 0x%x\n", item->tag);
 537		ret = 0;
 538	}
 539
 540	memset(&parser->local, 0, sizeof(parser->local));	/* Reset the local parser environment */
 541
 542	return ret;
 543}
 544
 545/*
 546 * Process a reserved item.
 547 */
 548
 549static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
 550{
 551	dbg_hid("reserved item type, tag 0x%x\n", item->tag);
 552	return 0;
 553}
 554
 555/*
 556 * Free a report and all registered fields. The field->usage and
 557 * field->value table's are allocated behind the field, so we need
 558 * only to free(field) itself.
 559 */
 560
 561static void hid_free_report(struct hid_report *report)
 562{
 563	unsigned n;
 564
 
 
 565	for (n = 0; n < report->maxfield; n++)
 566		kfree(report->field[n]);
 567	kfree(report);
 568}
 569
 570/*
 571 * Close report. This function returns the device
 572 * state to the point prior to hid_open_report().
 573 */
 574static void hid_close_report(struct hid_device *device)
 575{
 576	unsigned i, j;
 577
 578	for (i = 0; i < HID_REPORT_TYPES; i++) {
 579		struct hid_report_enum *report_enum = device->report_enum + i;
 580
 581		for (j = 0; j < HID_MAX_IDS; j++) {
 582			struct hid_report *report = report_enum->report_id_hash[j];
 583			if (report)
 584				hid_free_report(report);
 585		}
 586		memset(report_enum, 0, sizeof(*report_enum));
 587		INIT_LIST_HEAD(&report_enum->report_list);
 588	}
 589
 590	kfree(device->rdesc);
 
 
 
 
 
 
 
 591	device->rdesc = NULL;
 592	device->rsize = 0;
 593
 594	kfree(device->collection);
 595	device->collection = NULL;
 596	device->collection_size = 0;
 597	device->maxcollection = 0;
 598	device->maxapplication = 0;
 599
 600	device->status &= ~HID_STAT_PARSED;
 601}
 602
 
 
 
 
 
 
 
 
 603/*
 604 * Free a device structure, all reports, and all fields.
 605 */
 606
 607static void hid_device_release(struct device *dev)
 608{
 609	struct hid_device *hid = container_of(dev, struct hid_device, dev);
 610
 611	hid_close_report(hid);
 
 612	kfree(hid->dev_rdesc);
 613	kfree(hid);
 614}
 615
 
 
 
 
 
 
 
 616/*
 617 * Fetch a report description item from the data stream. We support long
 618 * items, though they are not used yet.
 619 */
 620
 621static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
 622{
 623	u8 b;
 624
 625	if ((end - start) <= 0)
 626		return NULL;
 627
 628	b = *start++;
 629
 630	item->type = (b >> 2) & 3;
 631	item->tag  = (b >> 4) & 15;
 632
 633	if (item->tag == HID_ITEM_TAG_LONG) {
 634
 635		item->format = HID_ITEM_FORMAT_LONG;
 636
 637		if ((end - start) < 2)
 638			return NULL;
 639
 640		item->size = *start++;
 641		item->tag  = *start++;
 642
 643		if ((end - start) < item->size)
 644			return NULL;
 645
 646		item->data.longdata = start;
 647		start += item->size;
 648		return start;
 649	}
 650
 651	item->format = HID_ITEM_FORMAT_SHORT;
 652	item->size = b & 3;
 
 
 
 653
 654	switch (item->size) {
 655	case 0:
 656		return start;
 657
 658	case 1:
 659		if ((end - start) < 1)
 660			return NULL;
 661		item->data.u8 = *start++;
 662		return start;
 663
 664	case 2:
 665		if ((end - start) < 2)
 666			return NULL;
 667		item->data.u16 = get_unaligned_le16(start);
 668		start = (__u8 *)((__le16 *)start + 1);
 669		return start;
 670
 671	case 3:
 672		item->size++;
 673		if ((end - start) < 4)
 674			return NULL;
 675		item->data.u32 = get_unaligned_le32(start);
 676		start = (__u8 *)((__le32 *)start + 1);
 677		return start;
 678	}
 679
 680	return NULL;
 681}
 682
 683static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
 684{
 685	struct hid_device *hid = parser->device;
 686
 687	if (usage == HID_DG_CONTACTID)
 688		hid->group = HID_GROUP_MULTITOUCH;
 689}
 690
 691static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
 692{
 693	if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
 694	    parser->global.report_size == 8)
 695		parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
 
 
 
 
 696}
 697
 698static void hid_scan_collection(struct hid_parser *parser, unsigned type)
 699{
 700	struct hid_device *hid = parser->device;
 
 701
 702	if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
 703	    type == HID_COLLECTION_PHYSICAL)
 
 704		hid->group = HID_GROUP_SENSOR_HUB;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 705}
 706
 707static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
 708{
 709	__u32 data;
 710	int i;
 711
 
 
 712	data = item_udata(item);
 713
 714	switch (item->tag) {
 715	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
 716		hid_scan_collection(parser, data & 0xff);
 717		break;
 718	case HID_MAIN_ITEM_TAG_END_COLLECTION:
 719		break;
 720	case HID_MAIN_ITEM_TAG_INPUT:
 721		/* ignore constant inputs, they will be ignored by hid-input */
 722		if (data & HID_MAIN_ITEM_CONSTANT)
 723			break;
 724		for (i = 0; i < parser->local.usage_index; i++)
 725			hid_scan_input_usage(parser, parser->local.usage[i]);
 726		break;
 727	case HID_MAIN_ITEM_TAG_OUTPUT:
 728		break;
 729	case HID_MAIN_ITEM_TAG_FEATURE:
 730		for (i = 0; i < parser->local.usage_index; i++)
 731			hid_scan_feature_usage(parser, parser->local.usage[i]);
 732		break;
 733	}
 734
 735	/* Reset the local parser environment */
 736	memset(&parser->local, 0, sizeof(parser->local));
 737
 738	return 0;
 739}
 740
 741/*
 742 * Scan a report descriptor before the device is added to the bus.
 743 * Sets device groups and other properties that determine what driver
 744 * to load.
 745 */
 746static int hid_scan_report(struct hid_device *hid)
 747{
 748	struct hid_parser *parser;
 749	struct hid_item item;
 750	__u8 *start = hid->dev_rdesc;
 751	__u8 *end = start + hid->dev_rsize;
 752	static int (*dispatch_type[])(struct hid_parser *parser,
 753				      struct hid_item *item) = {
 754		hid_scan_main,
 755		hid_parser_global,
 756		hid_parser_local,
 757		hid_parser_reserved
 758	};
 759
 760	parser = vzalloc(sizeof(struct hid_parser));
 761	if (!parser)
 762		return -ENOMEM;
 763
 764	parser->device = hid;
 765	hid->group = HID_GROUP_GENERIC;
 766
 767	/*
 768	 * The parsing is simpler than the one in hid_open_report() as we should
 769	 * be robust against hid errors. Those errors will be raised by
 770	 * hid_open_report() anyway.
 771	 */
 772	while ((start = fetch_item(start, end, &item)) != NULL)
 773		dispatch_type[item.type](parser, &item);
 774
 775	/*
 776	 * Handle special flags set during scanning.
 777	 */
 778	if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
 779	    (hid->group == HID_GROUP_MULTITOUCH))
 780		hid->group = HID_GROUP_MULTITOUCH_WIN_8;
 781
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 782	vfree(parser);
 783	return 0;
 784}
 785
 786/**
 787 * hid_parse_report - parse device report
 788 *
 789 * @device: hid device
 790 * @start: report start
 791 * @size: report size
 792 *
 793 * Allocate the device report as read by the bus driver. This function should
 794 * only be called from parse() in ll drivers.
 795 */
 796int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
 797{
 798	hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
 799	if (!hid->dev_rdesc)
 800		return -ENOMEM;
 801	hid->dev_rsize = size;
 802	return 0;
 803}
 804EXPORT_SYMBOL_GPL(hid_parse_report);
 805
 806static const char * const hid_report_names[] = {
 807	"HID_INPUT_REPORT",
 808	"HID_OUTPUT_REPORT",
 809	"HID_FEATURE_REPORT",
 810};
 811/**
 812 * hid_validate_values - validate existing device report's value indexes
 813 *
 814 * @device: hid device
 815 * @type: which report type to examine
 816 * @id: which report ID to examine (0 for first)
 817 * @field_index: which report field to examine
 818 * @report_counts: expected number of values
 819 *
 820 * Validate the number of values in a given field of a given report, after
 821 * parsing.
 822 */
 823struct hid_report *hid_validate_values(struct hid_device *hid,
 824				       unsigned int type, unsigned int id,
 825				       unsigned int field_index,
 826				       unsigned int report_counts)
 827{
 828	struct hid_report *report;
 829
 830	if (type > HID_FEATURE_REPORT) {
 831		hid_err(hid, "invalid HID report type %u\n", type);
 832		return NULL;
 833	}
 834
 835	if (id >= HID_MAX_IDS) {
 836		hid_err(hid, "invalid HID report id %u\n", id);
 837		return NULL;
 838	}
 839
 840	/*
 841	 * Explicitly not using hid_get_report() here since it depends on
 842	 * ->numbered being checked, which may not always be the case when
 843	 * drivers go to access report values.
 844	 */
 845	report = hid->report_enum[type].report_id_hash[id];
 
 
 
 
 
 
 
 
 
 
 846	if (!report) {
 847		hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
 848		return NULL;
 849	}
 850	if (report->maxfield <= field_index) {
 851		hid_err(hid, "not enough fields in %s %u\n",
 852			hid_report_names[type], id);
 853		return NULL;
 854	}
 855	if (report->field[field_index]->report_count < report_counts) {
 856		hid_err(hid, "not enough values in %s %u field %u\n",
 857			hid_report_names[type], id, field_index);
 858		return NULL;
 859	}
 860	return report;
 861}
 862EXPORT_SYMBOL_GPL(hid_validate_values);
 863
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 864/**
 865 * hid_open_report - open a driver-specific device report
 866 *
 867 * @device: hid device
 868 *
 869 * Parse a report description into a hid_device structure. Reports are
 870 * enumerated, fields are attached to these reports.
 871 * 0 returned on success, otherwise nonzero error value.
 872 *
 873 * This function (or the equivalent hid_parse() macro) should only be
 874 * called from probe() in drivers, before starting the device.
 875 */
 876int hid_open_report(struct hid_device *device)
 877{
 878	struct hid_parser *parser;
 879	struct hid_item item;
 880	unsigned int size;
 881	__u8 *start;
 882	__u8 *buf;
 883	__u8 *end;
 884	int ret;
 
 885	static int (*dispatch_type[])(struct hid_parser *parser,
 886				      struct hid_item *item) = {
 887		hid_parser_main,
 888		hid_parser_global,
 889		hid_parser_local,
 890		hid_parser_reserved
 891	};
 892
 893	if (WARN_ON(device->status & HID_STAT_PARSED))
 894		return -EBUSY;
 895
 896	start = device->dev_rdesc;
 897	if (WARN_ON(!start))
 898		return -ENODEV;
 899	size = device->dev_rsize;
 900
 901	buf = kmemdup(start, size, GFP_KERNEL);
 902	if (buf == NULL)
 903		return -ENOMEM;
 
 
 
 
 
 
 
 904
 905	if (device->driver->report_fixup)
 906		start = device->driver->report_fixup(device, buf, &size);
 907	else
 908		start = buf;
 909
 910	start = kmemdup(start, size, GFP_KERNEL);
 911	kfree(buf);
 912	if (start == NULL)
 913		return -ENOMEM;
 
 
 
 
 
 
 914
 915	device->rdesc = start;
 916	device->rsize = size;
 917
 918	parser = vzalloc(sizeof(struct hid_parser));
 919	if (!parser) {
 920		ret = -ENOMEM;
 921		goto err;
 922	}
 923
 924	parser->device = device;
 925
 926	end = start + size;
 927
 928	device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
 929				     sizeof(struct hid_collection), GFP_KERNEL);
 930	if (!device->collection) {
 931		ret = -ENOMEM;
 932		goto err;
 933	}
 934	device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
 
 
 935
 936	ret = -EINVAL;
 937	while ((start = fetch_item(start, end, &item)) != NULL) {
 
 938
 939		if (item.format != HID_ITEM_FORMAT_SHORT) {
 940			hid_err(device, "unexpected long global item\n");
 941			goto err;
 942		}
 943
 944		if (dispatch_type[item.type](parser, &item)) {
 945			hid_err(device, "item %u %u %u %u parsing failed\n",
 946				item.format, (unsigned)item.size,
 947				(unsigned)item.type, (unsigned)item.tag);
 948			goto err;
 949		}
 950
 951		if (start == end) {
 952			if (parser->collection_stack_ptr) {
 953				hid_err(device, "unbalanced collection at end of report description\n");
 954				goto err;
 955			}
 956			if (parser->local.delimiter_depth) {
 957				hid_err(device, "unbalanced delimiter at end of report description\n");
 958				goto err;
 959			}
 
 
 
 
 
 
 
 
 960			vfree(parser);
 961			device->status |= HID_STAT_PARSED;
 
 962			return 0;
 963		}
 964	}
 965
 966	hid_err(device, "item fetching failed at offset %d\n", (int)(end - start));
 
 967err:
 
 
 968	vfree(parser);
 969	hid_close_report(device);
 970	return ret;
 971}
 972EXPORT_SYMBOL_GPL(hid_open_report);
 973
 974/*
 975 * Convert a signed n-bit integer to signed 32-bit integer. Common
 976 * cases are done through the compiler, the screwed things has to be
 977 * done by hand.
 978 */
 979
 980static s32 snto32(__u32 value, unsigned n)
 981{
 982	switch (n) {
 983	case 8:  return ((__s8)value);
 984	case 16: return ((__s16)value);
 985	case 32: return ((__s32)value);
 986	}
 987	return value & (1 << (n - 1)) ? value | (-1 << n) : value;
 988}
 989
 990s32 hid_snto32(__u32 value, unsigned n)
 991{
 992	return snto32(value, n);
 993}
 994EXPORT_SYMBOL_GPL(hid_snto32);
 995
 996/*
 997 * Convert a signed 32-bit integer to a signed n-bit integer.
 998 */
 999
1000static u32 s32ton(__s32 value, unsigned n)
1001{
1002	s32 a = value >> (n - 1);
1003	if (a && a != -1)
1004		return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1005	return value & ((1 << n) - 1);
1006}
1007
1008/*
1009 * Extract/implement a data field from/to a little endian report (bit array).
1010 *
1011 * Code sort-of follows HID spec:
1012 *     http://www.usb.org/developers/devclass_docs/HID1_11.pdf
1013 *
1014 * While the USB HID spec allows unlimited length bit fields in "report
1015 * descriptors", most devices never use more than 16 bits.
1016 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1017 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1018 */
1019
1020static __u32 extract(const struct hid_device *hid, __u8 *report,
1021		     unsigned offset, unsigned n)
1022{
1023	u64 x;
 
 
 
 
 
1024
1025	if (n > 32)
1026		hid_warn(hid, "extract() called with n (%d) > 32! (%s)\n",
1027			 n, current->comm);
 
 
 
 
 
 
 
 
1028
1029	report += offset >> 3;  /* adjust byte index */
1030	offset &= 7;            /* now only need bit offset into one byte */
1031	x = get_unaligned_le64(report);
1032	x = (x >> offset) & ((1ULL << n) - 1);  /* extract bit field */
1033	return (u32) x;
 
 
 
 
 
1034}
 
1035
1036/*
1037 * "implement" : set bits in a little endian bit stream.
1038 * Same concepts as "extract" (see comments above).
1039 * The data mangled in the bit stream remains in little endian
1040 * order the whole time. It make more sense to talk about
1041 * endianness of register values by considering a register
1042 * a "cached" copy of the little endiad bit stream.
1043 */
1044static void implement(const struct hid_device *hid, __u8 *report,
1045		      unsigned offset, unsigned n, __u32 value)
1046{
1047	u64 x;
1048	u64 m = (1ULL << n) - 1;
 
1049
1050	if (n > 32)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1051		hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1052			 __func__, n, current->comm);
 
 
 
1053
1054	if (value > m)
1055		hid_warn(hid, "%s() called with too large value %d! (%s)\n",
1056			 __func__, value, current->comm);
1057	WARN_ON(value > m);
1058	value &= m;
1059
1060	report += offset >> 3;
1061	offset &= 7;
1062
1063	x = get_unaligned_le64(report);
1064	x &= ~(m << offset);
1065	x |= ((u64)value) << offset;
1066	put_unaligned_le64(x, report);
1067}
1068
1069/*
1070 * Search an array for a value.
1071 */
1072
1073static int search(__s32 *array, __s32 value, unsigned n)
1074{
1075	while (n--) {
1076		if (*array++ == value)
1077			return 0;
1078	}
1079	return -1;
1080}
1081
1082/**
1083 * hid_match_report - check if driver's raw_event should be called
1084 *
1085 * @hid: hid device
1086 * @report_type: type to match against
1087 *
1088 * compare hid->driver->report_table->report_type to report->type
1089 */
1090static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1091{
1092	const struct hid_report_id *id = hid->driver->report_table;
1093
1094	if (!id) /* NULL means all */
1095		return 1;
1096
1097	for (; id->report_type != HID_TERMINATOR; id++)
1098		if (id->report_type == HID_ANY_ID ||
1099				id->report_type == report->type)
1100			return 1;
1101	return 0;
1102}
1103
1104/**
1105 * hid_match_usage - check if driver's event should be called
1106 *
1107 * @hid: hid device
1108 * @usage: usage to match against
1109 *
1110 * compare hid->driver->usage_table->usage_{type,code} to
1111 * usage->usage_{type,code}
1112 */
1113static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1114{
1115	const struct hid_usage_id *id = hid->driver->usage_table;
1116
1117	if (!id) /* NULL means all */
1118		return 1;
1119
1120	for (; id->usage_type != HID_ANY_ID - 1; id++)
1121		if ((id->usage_hid == HID_ANY_ID ||
1122				id->usage_hid == usage->hid) &&
1123				(id->usage_type == HID_ANY_ID ||
1124				id->usage_type == usage->type) &&
1125				(id->usage_code == HID_ANY_ID ||
1126				 id->usage_code == usage->code))
1127			return 1;
1128	return 0;
1129}
1130
1131static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1132		struct hid_usage *usage, __s32 value, int interrupt)
1133{
1134	struct hid_driver *hdrv = hid->driver;
1135	int ret;
1136
1137	if (!list_empty(&hid->debug_list))
1138		hid_dump_input(hid, usage, value);
1139
1140	if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1141		ret = hdrv->event(hid, field, usage, value);
1142		if (ret != 0) {
1143			if (ret < 0)
1144				hid_err(hid, "%s's event failed with %d\n",
1145						hdrv->name, ret);
1146			return;
1147		}
1148	}
1149
1150	if (hid->claimed & HID_CLAIMED_INPUT)
1151		hidinput_hid_event(hid, field, usage, value);
1152	if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1153		hid->hiddev_hid_event(hid, field, usage, value);
1154}
1155
1156/*
1157 * Analyse a received field, and fetch the data from it. The field
1158 * content is stored for next report processing (we do differential
1159 * reporting to the layer).
1160 */
 
 
 
 
1161
1162static void hid_input_field(struct hid_device *hid, struct hid_field *field,
1163			    __u8 *data, int interrupt)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1164{
1165	unsigned n;
1166	unsigned count = field->report_count;
1167	unsigned offset = field->report_offset;
1168	unsigned size = field->report_size;
1169	__s32 min = field->logical_minimum;
1170	__s32 max = field->logical_maximum;
1171	__s32 *value;
1172
1173	value = kmalloc(sizeof(__s32) * count, GFP_ATOMIC);
1174	if (!value)
1175		return;
1176
1177	for (n = 0; n < count; n++) {
1178
1179		value[n] = min < 0 ?
1180			snto32(extract(hid, data, offset + n * size, size),
1181			       size) :
1182			extract(hid, data, offset + n * size, size);
1183
1184		/* Ignore report if ErrorRollOver */
1185		if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1186		    value[n] >= min && value[n] <= max &&
1187		    field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
1188			goto exit;
 
 
1189	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1190
1191	for (n = 0; n < count; n++) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1192
1193		if (HID_MAIN_ITEM_VARIABLE & field->flags) {
1194			hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
1195			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1196		}
 
 
 
 
1197
1198		if (field->value[n] >= min && field->value[n] <= max
1199			&& field->usage[field->value[n] - min].hid
1200			&& search(value, field->value[n], count))
1201				hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
1202
1203		if (value[n] >= min && value[n] <= max
1204			&& field->usage[value[n] - min].hid
1205			&& search(field->value, value[n], count))
1206				hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
1207	}
 
1208
1209	memcpy(field->value, value, count * sizeof(__s32));
1210exit:
1211	kfree(value);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1212}
1213
1214/*
1215 * Output the field into the report.
1216 */
1217
1218static void hid_output_field(const struct hid_device *hid,
1219			     struct hid_field *field, __u8 *data)
1220{
1221	unsigned count = field->report_count;
1222	unsigned offset = field->report_offset;
1223	unsigned size = field->report_size;
1224	unsigned n;
1225
1226	for (n = 0; n < count; n++) {
1227		if (field->logical_minimum < 0)	/* signed values */
1228			implement(hid, data, offset + n * size, size,
1229				  s32ton(field->value[n], size));
1230		else				/* unsigned values */
1231			implement(hid, data, offset + n * size, size,
1232				  field->value[n]);
1233	}
1234}
1235
1236/*
 
 
 
 
 
 
 
 
 
 
 
1237 * Create a report. 'data' has to be allocated using
1238 * hid_alloc_report_buf() so that it has proper size.
1239 */
1240
1241void hid_output_report(struct hid_report *report, __u8 *data)
1242{
1243	unsigned n;
1244
1245	if (report->id > 0)
1246		*data++ = report->id;
1247
1248	memset(data, 0, ((report->size - 1) >> 3) + 1);
1249	for (n = 0; n < report->maxfield; n++)
1250		hid_output_field(report->device, report->field[n], data);
1251}
1252EXPORT_SYMBOL_GPL(hid_output_report);
1253
1254static int hid_report_len(struct hid_report *report)
1255{
1256	/* equivalent to DIV_ROUND_UP(report->size, 8) + !!(report->id > 0) */
1257	return ((report->size - 1) >> 3) + 1 + (report->id > 0);
1258}
1259
1260/*
1261 * Allocator for buffer that is going to be passed to hid_output_report()
1262 */
1263u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1264{
1265	/*
1266	 * 7 extra bytes are necessary to achieve proper functionality
1267	 * of implement() working on 8 byte chunks
1268	 */
1269
1270	int len = hid_report_len(report) + 7;
1271
1272	return kmalloc(len, flags);
1273}
1274EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1275
1276/*
1277 * Set a field value. The report this field belongs to has to be
1278 * created and transferred to the device, to set this value in the
1279 * device.
1280 */
1281
1282int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1283{
1284	unsigned size;
1285
1286	if (!field)
1287		return -1;
1288
1289	size = field->report_size;
1290
1291	hid_dump_input(field->report->device, field->usage + offset, value);
1292
1293	if (offset >= field->report_count) {
1294		hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1295				offset, field->report_count);
1296		return -1;
1297	}
1298	if (field->logical_minimum < 0) {
1299		if (value != snto32(s32ton(value, size), size)) {
1300			hid_err(field->report->device, "value %d is out of range\n", value);
1301			return -1;
1302		}
1303	}
1304	field->value[offset] = value;
1305	return 0;
1306}
1307EXPORT_SYMBOL_GPL(hid_set_field);
1308
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1309static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1310		const u8 *data)
1311{
1312	struct hid_report *report;
1313	unsigned int n = 0;	/* Normally report number is 0 */
1314
1315	/* Device uses numbered reports, data[0] is report number */
1316	if (report_enum->numbered)
1317		n = *data;
1318
1319	report = report_enum->report_id_hash[n];
1320	if (report == NULL)
1321		dbg_hid("undefined report_id %u received\n", n);
1322
1323	return report;
1324}
1325
1326/*
1327 * Implement a generic .request() callback, using .raw_request()
1328 * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1329 */
1330void __hid_request(struct hid_device *hid, struct hid_report *report,
1331		int reqtype)
1332{
1333	char *buf;
1334	int ret;
1335	int len;
1336
1337	buf = hid_alloc_report_buf(report, GFP_KERNEL);
1338	if (!buf)
1339		return;
1340
1341	len = hid_report_len(report);
1342
1343	if (reqtype == HID_REQ_SET_REPORT)
1344		hid_output_report(report, buf);
1345
1346	ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1347					  report->type, reqtype);
1348	if (ret < 0) {
1349		dbg_hid("unable to complete request: %d\n", ret);
1350		goto out;
1351	}
1352
1353	if (reqtype == HID_REQ_GET_REPORT)
1354		hid_input_report(hid, report->type, buf, ret, 0);
1355
 
 
1356out:
1357	kfree(buf);
 
1358}
1359EXPORT_SYMBOL_GPL(__hid_request);
1360
1361int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, int size,
1362		int interrupt)
1363{
1364	struct hid_report_enum *report_enum = hid->report_enum + type;
1365	struct hid_report *report;
1366	struct hid_driver *hdrv;
1367	unsigned int a;
1368	int rsize, csize = size;
1369	u8 *cdata = data;
1370	int ret = 0;
1371
1372	report = hid_get_report(report_enum, data);
1373	if (!report)
1374		goto out;
1375
1376	if (report_enum->numbered) {
1377		cdata++;
1378		csize--;
1379	}
1380
1381	rsize = ((report->size - 1) >> 3) + 1;
1382
1383	if (rsize > HID_MAX_BUFFER_SIZE)
1384		rsize = HID_MAX_BUFFER_SIZE;
 
 
 
 
 
1385
1386	if (csize < rsize) {
1387		dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1388				csize, rsize);
1389		memset(cdata + csize, 0, rsize - csize);
1390	}
1391
1392	if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1393		hid->hiddev_report_event(hid, report);
1394	if (hid->claimed & HID_CLAIMED_HIDRAW) {
1395		ret = hidraw_report_event(hid, data, size);
1396		if (ret)
1397			goto out;
1398	}
1399
1400	if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
1401		for (a = 0; a < report->maxfield; a++)
1402			hid_input_field(hid, report->field[a], cdata, interrupt);
1403		hdrv = hid->driver;
1404		if (hdrv && hdrv->report)
1405			hdrv->report(hid, report);
1406	}
1407
1408	if (hid->claimed & HID_CLAIMED_INPUT)
1409		hidinput_report_event(hid, report);
1410out:
1411	return ret;
1412}
1413EXPORT_SYMBOL_GPL(hid_report_raw_event);
1414
1415/**
1416 * hid_input_report - report data from lower layer (usb, bt...)
1417 *
1418 * @hid: hid device
1419 * @type: HID report type (HID_*_REPORT)
1420 * @data: report contents
1421 * @size: size of data parameter
1422 * @interrupt: distinguish between interrupt and control transfers
1423 *
1424 * This is data entry for lower layers.
1425 */
1426int hid_input_report(struct hid_device *hid, int type, u8 *data, int size, int interrupt)
1427{
1428	struct hid_report_enum *report_enum;
1429	struct hid_driver *hdrv;
1430	struct hid_report *report;
1431	int ret = 0;
1432
1433	if (!hid)
1434		return -ENODEV;
1435
1436	if (down_trylock(&hid->driver_input_lock))
 
 
 
 
1437		return -EBUSY;
 
1438
1439	if (!hid->driver) {
1440		ret = -ENODEV;
1441		goto unlock;
1442	}
1443	report_enum = hid->report_enum + type;
1444	hdrv = hid->driver;
1445
 
 
 
 
 
 
1446	if (!size) {
1447		dbg_hid("empty report\n");
1448		ret = -1;
1449		goto unlock;
1450	}
1451
1452	/* Avoid unnecessary overhead if debugfs is disabled */
1453	if (!list_empty(&hid->debug_list))
1454		hid_dump_report(hid, type, data, size);
1455
1456	report = hid_get_report(report_enum, data);
1457
1458	if (!report) {
1459		ret = -1;
1460		goto unlock;
1461	}
1462
1463	if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
1464		ret = hdrv->raw_event(hid, report, data, size);
1465		if (ret < 0)
1466			goto unlock;
1467	}
1468
1469	ret = hid_report_raw_event(hid, type, data, size, interrupt);
1470
1471unlock:
1472	up(&hid->driver_input_lock);
 
1473	return ret;
1474}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1475EXPORT_SYMBOL_GPL(hid_input_report);
1476
1477static bool hid_match_one_id(struct hid_device *hdev,
1478		const struct hid_device_id *id)
1479{
1480	return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
1481		(id->group == HID_GROUP_ANY || id->group == hdev->group) &&
1482		(id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
1483		(id->product == HID_ANY_ID || id->product == hdev->product);
1484}
1485
1486const struct hid_device_id *hid_match_id(struct hid_device *hdev,
1487		const struct hid_device_id *id)
1488{
1489	for (; id->bus; id++)
1490		if (hid_match_one_id(hdev, id))
1491			return id;
1492
1493	return NULL;
1494}
 
1495
1496static const struct hid_device_id hid_hiddev_list[] = {
1497	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
1498	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
1499	{ }
1500};
1501
1502static bool hid_hiddev(struct hid_device *hdev)
1503{
1504	return !!hid_match_id(hdev, hid_hiddev_list);
1505}
1506
1507
1508static ssize_t
1509read_report_descriptor(struct file *filp, struct kobject *kobj,
1510		struct bin_attribute *attr,
1511		char *buf, loff_t off, size_t count)
1512{
1513	struct device *dev = container_of(kobj, struct device, kobj);
1514	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
1515
1516	if (off >= hdev->rsize)
1517		return 0;
1518
1519	if (off + count > hdev->rsize)
1520		count = hdev->rsize - off;
1521
1522	memcpy(buf, hdev->rdesc + off, count);
1523
1524	return count;
1525}
1526
 
 
 
 
 
 
 
 
 
1527static struct bin_attribute dev_bin_attr_report_desc = {
1528	.attr = { .name = "report_descriptor", .mode = 0444 },
1529	.read = read_report_descriptor,
1530	.size = HID_MAX_DESCRIPTOR_SIZE,
1531};
1532
 
 
 
 
 
1533int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
1534{
1535	static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
1536		"Joystick", "Gamepad", "Keyboard", "Keypad",
1537		"Multi-Axis Controller"
1538	};
1539	const char *type, *bus;
1540	char buf[64];
1541	unsigned int i;
1542	int len;
1543	int ret;
1544
 
 
 
 
1545	if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
1546		connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
1547	if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
1548		connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
1549	if (hdev->bus != BUS_USB)
1550		connect_mask &= ~HID_CONNECT_HIDDEV;
1551	if (hid_hiddev(hdev))
1552		connect_mask |= HID_CONNECT_HIDDEV_FORCE;
1553
1554	if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
1555				connect_mask & HID_CONNECT_HIDINPUT_FORCE))
1556		hdev->claimed |= HID_CLAIMED_INPUT;
1557
1558	if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
1559			!hdev->hiddev_connect(hdev,
1560				connect_mask & HID_CONNECT_HIDDEV_FORCE))
1561		hdev->claimed |= HID_CLAIMED_HIDDEV;
1562	if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
1563		hdev->claimed |= HID_CLAIMED_HIDRAW;
1564
 
 
 
1565	/* Drivers with the ->raw_event callback set are not required to connect
1566	 * to any other listener. */
1567	if (!hdev->claimed && !hdev->driver->raw_event) {
1568		hid_err(hdev, "device has no listeners, quitting\n");
1569		return -ENODEV;
1570	}
1571
 
 
1572	if ((hdev->claimed & HID_CLAIMED_INPUT) &&
1573			(connect_mask & HID_CONNECT_FF) && hdev->ff_init)
1574		hdev->ff_init(hdev);
1575
1576	len = 0;
1577	if (hdev->claimed & HID_CLAIMED_INPUT)
1578		len += sprintf(buf + len, "input");
1579	if (hdev->claimed & HID_CLAIMED_HIDDEV)
1580		len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
1581				hdev->minor);
1582	if (hdev->claimed & HID_CLAIMED_HIDRAW)
1583		len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
1584				((struct hidraw *)hdev->hidraw)->minor);
1585
1586	type = "Device";
1587	for (i = 0; i < hdev->maxcollection; i++) {
1588		struct hid_collection *col = &hdev->collection[i];
1589		if (col->type == HID_COLLECTION_APPLICATION &&
1590		   (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
1591		   (col->usage & 0xffff) < ARRAY_SIZE(types)) {
1592			type = types[col->usage & 0xffff];
1593			break;
1594		}
1595	}
1596
1597	switch (hdev->bus) {
1598	case BUS_USB:
1599		bus = "USB";
1600		break;
1601	case BUS_BLUETOOTH:
1602		bus = "BLUETOOTH";
1603		break;
 
 
 
 
 
 
 
 
 
 
1604	default:
1605		bus = "<UNKNOWN>";
1606	}
1607
1608	ret = device_create_bin_file(&hdev->dev, &dev_bin_attr_report_desc);
1609	if (ret)
1610		hid_warn(hdev,
1611			 "can't create sysfs report descriptor attribute err: %d\n", ret);
1612
1613	hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
1614		 buf, bus, hdev->version >> 8, hdev->version & 0xff,
1615		 type, hdev->name, hdev->phys);
1616
1617	return 0;
1618}
1619EXPORT_SYMBOL_GPL(hid_connect);
1620
1621void hid_disconnect(struct hid_device *hdev)
1622{
1623	device_remove_bin_file(&hdev->dev, &dev_bin_attr_report_desc);
1624	if (hdev->claimed & HID_CLAIMED_INPUT)
1625		hidinput_disconnect(hdev);
1626	if (hdev->claimed & HID_CLAIMED_HIDDEV)
1627		hdev->hiddev_disconnect(hdev);
1628	if (hdev->claimed & HID_CLAIMED_HIDRAW)
1629		hidraw_disconnect(hdev);
 
 
 
1630}
1631EXPORT_SYMBOL_GPL(hid_disconnect);
1632
1633/*
1634 * A list of devices for which there is a specialized driver on HID bus.
 
 
1635 *
1636 * Please note that for multitouch devices (driven by hid-multitouch driver),
1637 * there is a proper autodetection and autoloading in place (based on presence
1638 * of HID_DG_CONTACTID), so those devices don't need to be added to this list,
1639 * as we are doing the right thing in hid_scan_usage().
1640 *
1641 * Autodetection for (USB) HID sensor hubs exists too. If a collection of type
1642 * physical is found inside a usage page of type sensor, hid-sensor-hub will be
1643 * used as a driver. See hid_scan_report().
1644 */
1645static const struct hid_device_id hid_have_special_driver[] = {
1646	{ HID_USB_DEVICE(USB_VENDOR_ID_A4TECH, USB_DEVICE_ID_A4TECH_WCP32PU) },
1647	{ HID_USB_DEVICE(USB_VENDOR_ID_A4TECH, USB_DEVICE_ID_A4TECH_X5_005D) },
1648	{ HID_USB_DEVICE(USB_VENDOR_ID_A4TECH, USB_DEVICE_ID_A4TECH_RP_649) },
1649	{ HID_USB_DEVICE(USB_VENDOR_ID_ACRUX, 0x0802) },
1650	{ HID_USB_DEVICE(USB_VENDOR_ID_ACRUX, 0xf705) },
1651	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_MIGHTYMOUSE) },
1652	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_MAGICMOUSE) },
1653	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_MAGICTRACKPAD) },
1654	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_ANSI) },
1655	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_ISO) },
1656	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_ANSI) },
1657	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_ISO) },
1658	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_JIS) },
1659	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_ANSI) },
1660	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_ISO) },
1661	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_JIS) },
1662	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_ANSI) },
1663	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_ISO) },
1664	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_JIS) },
1665	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_MINI_ANSI) },
1666	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_MINI_ISO) },
1667	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_MINI_JIS) },
1668	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_ANSI) },
1669	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_ISO) },
1670	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_JIS) },
1671	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_ANSI) },
1672	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_ISO) },
1673	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_JIS) },
1674	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_IRCONTROL) },
1675	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_IRCONTROL2) },
1676	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_IRCONTROL3) },
1677	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_IRCONTROL4) },
1678	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_IRCONTROL5) },
1679	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_ANSI) },
1680	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_ISO) },
1681	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_JIS) },
1682	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ANSI) },
1683	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ISO) },
1684	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_JIS) },
1685	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_ANSI) },
1686	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_ISO) },
1687	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_JIS) },
1688	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_ANSI) },
1689	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_ISO) },
1690	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_JIS) },
1691	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_ANSI) },
1692	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_ISO) },
1693	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_JIS) },
1694	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_ANSI) },
1695	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_ISO) },
1696	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_JIS) },
1697	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_ANSI) },
1698	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_ISO) },
1699	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_JIS) },
1700	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5A_ANSI) },
1701	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5A_ISO) },
1702	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5A_JIS) },
1703	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_REVB_ANSI) },
1704	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_REVB_ISO) },
1705	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_REVB_JIS) },
1706	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6_ANSI) },
1707	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6_ISO) },
1708	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6_JIS) },
1709	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6A_ANSI) },
1710	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6A_ISO) },
1711	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6A_JIS) },
1712	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7_ANSI) },
1713	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7_ISO) },
1714	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7_JIS) },
1715	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7A_ANSI) },
1716	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7A_ISO) },
1717	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7A_JIS) },
1718	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING8_ANSI) },
1719	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING8_ISO) },
1720	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING8_JIS) },
1721	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2009_ANSI) },
1722	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2009_ISO) },
1723	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2009_JIS) },
1724	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2011_ANSI) },
1725	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2011_ISO) },
1726	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2011_JIS) },
1727	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_TP_ONLY) },
1728	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER1_TP_ONLY) },
1729	{ HID_USB_DEVICE(USB_VENDOR_ID_AUREAL, USB_DEVICE_ID_AUREAL_W01RN) },
1730	{ HID_USB_DEVICE(USB_VENDOR_ID_BELKIN, USB_DEVICE_ID_FLIP_KVM) },
1731	{ HID_USB_DEVICE(USB_VENDOR_ID_BTC, USB_DEVICE_ID_BTC_EMPREX_REMOTE) },
1732	{ HID_USB_DEVICE(USB_VENDOR_ID_BTC, USB_DEVICE_ID_BTC_EMPREX_REMOTE_2) },
1733	{ HID_USB_DEVICE(USB_VENDOR_ID_CHERRY, USB_DEVICE_ID_CHERRY_CYMOTION) },
1734	{ HID_USB_DEVICE(USB_VENDOR_ID_CHERRY, USB_DEVICE_ID_CHERRY_CYMOTION_SOLAR) },
1735	{ HID_USB_DEVICE(USB_VENDOR_ID_CHICONY, USB_DEVICE_ID_CHICONY_TACTICAL_PAD) },
1736	{ HID_USB_DEVICE(USB_VENDOR_ID_CHICONY, USB_DEVICE_ID_CHICONY_WIRELESS) },
1737	{ HID_USB_DEVICE(USB_VENDOR_ID_CHICONY, USB_DEVICE_ID_CHICONY_WIRELESS2) },
1738	{ HID_USB_DEVICE(USB_VENDOR_ID_CHICONY, USB_DEVICE_ID_CHICONY_AK1D) },
1739	{ HID_USB_DEVICE(USB_VENDOR_ID_CREATIVELABS, USB_DEVICE_ID_PRODIKEYS_PCMIDI) },
1740	{ HID_USB_DEVICE(USB_VENDOR_ID_CYGNAL, USB_DEVICE_ID_CYGNAL_CP2112) },
1741	{ HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_BARCODE_1) },
1742	{ HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_BARCODE_2) },
1743	{ HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_BARCODE_3) },
1744	{ HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_BARCODE_4) },
1745	{ HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_MOUSE) },
1746	{ HID_USB_DEVICE(USB_VENDOR_ID_DRAGONRISE, 0x0006) },
1747	{ HID_USB_DEVICE(USB_VENDOR_ID_DRAGONRISE, 0x0011) },
1748	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_ELECOM, USB_DEVICE_ID_ELECOM_BM084) },
1749	{ HID_USB_DEVICE(USB_VENDOR_ID_ELO, 0x0009) },
1750	{ HID_USB_DEVICE(USB_VENDOR_ID_ELO, 0x0030) },
1751	{ HID_USB_DEVICE(USB_VENDOR_ID_EMS, USB_DEVICE_ID_EMS_TRIO_LINKER_PLUS_II) },
1752	{ HID_USB_DEVICE(USB_VENDOR_ID_EZKEY, USB_DEVICE_ID_BTC_8193) },
1753	{ HID_USB_DEVICE(USB_VENDOR_ID_GAMERON, USB_DEVICE_ID_GAMERON_DUAL_PSX_ADAPTOR) },
1754	{ HID_USB_DEVICE(USB_VENDOR_ID_GAMERON, USB_DEVICE_ID_GAMERON_DUAL_PCS_ADAPTOR) },
1755	{ HID_USB_DEVICE(USB_VENDOR_ID_GREENASIA, 0x0003) },
1756	{ HID_USB_DEVICE(USB_VENDOR_ID_GREENASIA, 0x0012) },
1757	{ HID_USB_DEVICE(USB_VENDOR_ID_GYRATION, USB_DEVICE_ID_GYRATION_REMOTE) },
1758	{ HID_USB_DEVICE(USB_VENDOR_ID_GYRATION, USB_DEVICE_ID_GYRATION_REMOTE_2) },
1759	{ HID_USB_DEVICE(USB_VENDOR_ID_GYRATION, USB_DEVICE_ID_GYRATION_REMOTE_3) },
1760	{ HID_USB_DEVICE(USB_VENDOR_ID_HOLTEK, USB_DEVICE_ID_HOLTEK_ON_LINE_GRIP) },
1761	{ HID_USB_DEVICE(USB_VENDOR_ID_HOLTEK_ALT, USB_DEVICE_ID_HOLTEK_ALT_KEYBOARD) },
1762	{ HID_USB_DEVICE(USB_VENDOR_ID_HOLTEK_ALT, USB_DEVICE_ID_HOLTEK_ALT_MOUSE_A04A) },
1763	{ HID_USB_DEVICE(USB_VENDOR_ID_HOLTEK_ALT, USB_DEVICE_ID_HOLTEK_ALT_MOUSE_A067) },
1764	{ HID_USB_DEVICE(USB_VENDOR_ID_HOLTEK_ALT, USB_DEVICE_ID_HOLTEK_ALT_MOUSE_A070) },
1765	{ HID_USB_DEVICE(USB_VENDOR_ID_HOLTEK_ALT, USB_DEVICE_ID_HOLTEK_ALT_MOUSE_A072) },
1766	{ HID_USB_DEVICE(USB_VENDOR_ID_HOLTEK_ALT, USB_DEVICE_ID_HOLTEK_ALT_MOUSE_A081) },
1767	{ HID_USB_DEVICE(USB_VENDOR_ID_HUION, USB_DEVICE_ID_HUION_580) },
1768	{ HID_USB_DEVICE(USB_VENDOR_ID_JESS2, USB_DEVICE_ID_JESS2_COLOR_RUMBLE_PAD) },
1769	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_ION, USB_DEVICE_ID_ICADE) },
1770	{ HID_USB_DEVICE(USB_VENDOR_ID_KENSINGTON, USB_DEVICE_ID_KS_SLIMBLADE) },
1771	{ HID_USB_DEVICE(USB_VENDOR_ID_KEYTOUCH, USB_DEVICE_ID_KEYTOUCH_IEC) },
1772	{ HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_GENIUS_GILA_GAMING_MOUSE) },
1773	{ HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_GENIUS_MANTICORE) },
1774	{ HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_GENIUS_GX_IMPERATOR) },
1775	{ HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_KYE_ERGO_525V) },
1776	{ HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_KYE_EASYPEN_I405X) },
1777	{ HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_KYE_MOUSEPEN_I608X) },
1778	{ HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_KYE_EASYPEN_M610X) },
1779	{ HID_USB_DEVICE(USB_VENDOR_ID_LABTEC, USB_DEVICE_ID_LABTEC_WIRELESS_KEYBOARD) },
1780	{ HID_USB_DEVICE(USB_VENDOR_ID_LCPOWER, USB_DEVICE_ID_LCPOWER_LC1000 ) },
1781#if IS_ENABLED(CONFIG_HID_LENOVO_TPKBD)
1782	{ HID_USB_DEVICE(USB_VENDOR_ID_LENOVO, USB_DEVICE_ID_LENOVO_TPKBD) },
1783#endif
1784	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_MX3000_RECEIVER) },
1785	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_S510_RECEIVER) },
1786	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_S510_RECEIVER_2) },
1787	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RECEIVER) },
1788	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_HARMONY_PS3) },
1789	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_DINOVO_DESKTOP) },
1790	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_DINOVO_EDGE) },
1791	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_DINOVO_MINI) },
1792	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_ELITE_KBD) },
1793	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_CORDLESS_DESKTOP_LX500) },
1794	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_EXTREME_3D) },
1795	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_WHEEL) },
1796	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RUMBLEPAD_CORD) },
1797	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RUMBLEPAD) },
1798	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RUMBLEPAD2_2) },
1799	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_WINGMAN_F3D) },
1800	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_WINGMAN_FFG ) },
1801	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_FORCE3D_PRO) },
1802	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_FLIGHT_SYSTEM_G940) },
1803	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_MOMO_WHEEL) },
1804	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_MOMO_WHEEL2) },
1805	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_VIBRATION_WHEEL) },
1806	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_DFP_WHEEL) },
1807	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_DFGT_WHEEL) },
1808	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G25_WHEEL) },
1809	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G27_WHEEL) },
1810#if IS_ENABLED(CONFIG_HID_LOGITECH_DJ)
1811	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_UNIFYING_RECEIVER) },
1812	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_UNIFYING_RECEIVER_2) },
1813#endif
1814	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_WII_WHEEL) },
1815	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RUMBLEPAD2) },
1816	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_SPACETRAVELLER) },
1817	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_SPACENAVIGATOR) },
1818	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICOLCD) },
1819	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICOLCD_BOOTLOADER) },
1820	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_COMFORT_MOUSE_4500) },
1821	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_SIDEWINDER_GV) },
1822	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_NE4K) },
1823	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_NE4K_JP) },
1824	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_LK6K) },
1825	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_PRESENTER_8K_USB) },
1826	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_DIGITAL_MEDIA_3K) },
1827	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_WIRELESS_OPTICAL_DESKTOP_3_0) },
1828	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_OFFICE_KB) },
1829	{ HID_USB_DEVICE(USB_VENDOR_ID_MONTEREY, USB_DEVICE_ID_GENIUS_KB29E) },
1830	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN) },
1831	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_1) },
1832	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_2) },
1833	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_3) },
1834	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_4) },
1835	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_5) },
1836	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_6) },
1837	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_7) },
1838	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_8) },
1839	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_9) },
1840	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_10) },
1841	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_11) },
1842	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_12) },
1843	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_13) },
1844	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_14) },
1845	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_15) },
1846	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_16) },
1847	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_17) },
1848	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_18) },
1849	{ HID_USB_DEVICE(USB_VENDOR_ID_ORTEK, USB_DEVICE_ID_ORTEK_PKB1700) },
1850	{ HID_USB_DEVICE(USB_VENDOR_ID_ORTEK, USB_DEVICE_ID_ORTEK_WKB2000) },
1851	{ HID_USB_DEVICE(USB_VENDOR_ID_PETALYNX, USB_DEVICE_ID_PETALYNX_MAXTER_REMOTE) },
1852	{ HID_USB_DEVICE(USB_VENDOR_ID_PRIMAX, USB_DEVICE_ID_PRIMAX_KEYBOARD) },
1853#if IS_ENABLED(CONFIG_HID_ROCCAT)
1854	{ HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_ARVO) },
1855	{ HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_ISKU) },
1856	{ HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_ISKUFX) },
1857	{ HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_KONE) },
1858	{ HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_KONEPLUS) },
1859	{ HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_KONEPURE) },
1860	{ HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_KONEPURE_OPTICAL) },
1861	{ HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_KONEXTD) },
1862	{ HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_KOVAPLUS) },
1863	{ HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_LUA) },
1864	{ HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_PYRA_WIRED) },
1865	{ HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_PYRA_WIRELESS) },
1866	{ HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_RYOS_MK) },
1867	{ HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_RYOS_MK_GLOW) },
1868	{ HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_RYOS_MK_PRO) },
1869	{ HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_SAVU) },
1870#endif
1871	{ HID_USB_DEVICE(USB_VENDOR_ID_SAITEK, USB_DEVICE_ID_SAITEK_PS1000) },
1872	{ HID_USB_DEVICE(USB_VENDOR_ID_SAMSUNG, USB_DEVICE_ID_SAMSUNG_IR_REMOTE) },
1873	{ HID_USB_DEVICE(USB_VENDOR_ID_SAMSUNG, USB_DEVICE_ID_SAMSUNG_WIRELESS_KBD_MOUSE) },
1874	{ HID_USB_DEVICE(USB_VENDOR_ID_SKYCABLE, USB_DEVICE_ID_SKYCABLE_WIRELESS_PRESENTER) },
1875	{ HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_BUZZ_CONTROLLER) },
1876	{ HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_WIRELESS_BUZZ_CONTROLLER) },
1877	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS3_BDREMOTE) },
1878	{ HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS3_CONTROLLER) },
1879	{ HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_NAVIGATION_CONTROLLER) },
1880	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS3_CONTROLLER) },
1881	{ HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER) },
1882	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER) },
1883	{ HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_VAIO_VGX_MOUSE) },
1884	{ HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_VAIO_VGP_MOUSE) },
1885	{ HID_USB_DEVICE(USB_VENDOR_ID_STEELSERIES, USB_DEVICE_ID_STEELSERIES_SRWS1) },
1886	{ HID_USB_DEVICE(USB_VENDOR_ID_SUNPLUS, USB_DEVICE_ID_SUNPLUS_WDESKTOP) },
1887	{ HID_USB_DEVICE(USB_VENDOR_ID_THINGM, USB_DEVICE_ID_BLINK1) },
1888	{ HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb300) },
1889	{ HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb304) },
1890	{ HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb323) },
1891	{ HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb324) },
1892	{ HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb651) },
1893	{ HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb653) },
1894	{ HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb654) },
1895	{ HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb65a) },
1896	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_TIVO, USB_DEVICE_ID_TIVO_SLIDE_BT) },
1897	{ HID_USB_DEVICE(USB_VENDOR_ID_TIVO, USB_DEVICE_ID_TIVO_SLIDE) },
1898	{ HID_USB_DEVICE(USB_VENDOR_ID_TOPSEED, USB_DEVICE_ID_TOPSEED_CYBERLINK) },
1899	{ HID_USB_DEVICE(USB_VENDOR_ID_TOPSEED2, USB_DEVICE_ID_TOPSEED2_RF_COMBO) },
1900	{ HID_USB_DEVICE(USB_VENDOR_ID_TWINHAN, USB_DEVICE_ID_TWINHAN_IR_REMOTE) },
1901	{ HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_PF1209) },
1902	{ HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_WP4030U) },
1903	{ HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_WP5540U) },
1904	{ HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_WP8060U) },
1905	{ HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_WP1062) },
1906	{ HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_WIRELESS_TABLET_TWHL850) },
1907	{ HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_TWHA60) },
1908	{ HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_SMARTJOY_PLUS) },
1909	{ HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_SUPER_JOY_BOX_3) },
1910	{ HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_DUAL_USB_JOYPAD) },
1911	{ HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP_LTD, USB_DEVICE_ID_SUPER_JOY_BOX_3_PRO) },
1912	{ HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP_LTD, USB_DEVICE_ID_SUPER_DUAL_BOX_PRO) },
1913	{ HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP_LTD, USB_DEVICE_ID_SUPER_JOY_BOX_5_PRO) },
1914	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_GRAPHIRE_BLUETOOTH) },
1915	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS4_BLUETOOTH) },
1916	{ HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_SLIM_TABLET_5_8_INCH) },
1917	{ HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_SLIM_TABLET_12_1_INCH) },
1918	{ HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_Q_PAD) },
1919	{ HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_PID_0038) },
1920	{ HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_MEDIA_TABLET_10_6_INCH) },
1921	{ HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_MEDIA_TABLET_14_1_INCH) },
1922	{ HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_SIRIUS_BATTERY_FREE_TABLET) },
1923	{ HID_USB_DEVICE(USB_VENDOR_ID_X_TENSIONS, USB_DEVICE_ID_SPEEDLINK_VAD_CEZANNE) },
1924	{ HID_USB_DEVICE(USB_VENDOR_ID_XIN_MO, USB_DEVICE_ID_XIN_MO_DUAL_ARCADE) },
1925	{ HID_USB_DEVICE(USB_VENDOR_ID_ZEROPLUS, 0x0005) },
1926	{ HID_USB_DEVICE(USB_VENDOR_ID_ZEROPLUS, 0x0030) },
1927	{ HID_USB_DEVICE(USB_VENDOR_ID_ZYDACRON, USB_DEVICE_ID_ZYDACRON_REMOTE_CONTROL) },
1928
1929	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_PRESENTER_8K_BT) },
1930	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_NINTENDO, USB_DEVICE_ID_NINTENDO_WIIMOTE) },
1931	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_NINTENDO, USB_DEVICE_ID_NINTENDO_WIIMOTE2) },
1932	{ }
1933};
1934
1935struct hid_dynid {
1936	struct list_head list;
1937	struct hid_device_id id;
1938};
1939
1940/**
1941 * store_new_id - add a new HID device ID to this driver and re-probe devices
1942 * @driver: target device driver
1943 * @buf: buffer for scanning device ID data
1944 * @count: input size
1945 *
1946 * Adds a new dynamic hid device ID to this driver,
1947 * and causes the driver to probe for all devices again.
1948 */
1949static ssize_t store_new_id(struct device_driver *drv, const char *buf,
1950		size_t count)
1951{
1952	struct hid_driver *hdrv = container_of(drv, struct hid_driver, driver);
1953	struct hid_dynid *dynid;
1954	__u32 bus, vendor, product;
1955	unsigned long driver_data = 0;
1956	int ret;
1957
1958	ret = sscanf(buf, "%x %x %x %lx",
1959			&bus, &vendor, &product, &driver_data);
1960	if (ret < 3)
1961		return -EINVAL;
1962
1963	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
1964	if (!dynid)
1965		return -ENOMEM;
1966
1967	dynid->id.bus = bus;
1968	dynid->id.group = HID_GROUP_ANY;
1969	dynid->id.vendor = vendor;
1970	dynid->id.product = product;
1971	dynid->id.driver_data = driver_data;
1972
1973	spin_lock(&hdrv->dyn_lock);
1974	list_add_tail(&dynid->list, &hdrv->dyn_list);
1975	spin_unlock(&hdrv->dyn_lock);
1976
1977	ret = driver_attach(&hdrv->driver);
1978
1979	return ret ? : count;
1980}
1981static DRIVER_ATTR(new_id, S_IWUSR, NULL, store_new_id);
 
 
 
 
 
 
1982
1983static void hid_free_dynids(struct hid_driver *hdrv)
1984{
1985	struct hid_dynid *dynid, *n;
1986
1987	spin_lock(&hdrv->dyn_lock);
1988	list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
1989		list_del(&dynid->list);
1990		kfree(dynid);
1991	}
1992	spin_unlock(&hdrv->dyn_lock);
1993}
1994
1995static const struct hid_device_id *hid_match_device(struct hid_device *hdev,
1996		struct hid_driver *hdrv)
1997{
1998	struct hid_dynid *dynid;
1999
2000	spin_lock(&hdrv->dyn_lock);
2001	list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2002		if (hid_match_one_id(hdev, &dynid->id)) {
2003			spin_unlock(&hdrv->dyn_lock);
2004			return &dynid->id;
2005		}
2006	}
2007	spin_unlock(&hdrv->dyn_lock);
2008
2009	return hid_match_id(hdev, hdrv->id_table);
2010}
 
2011
2012static int hid_bus_match(struct device *dev, struct device_driver *drv)
2013{
2014	struct hid_driver *hdrv = container_of(drv, struct hid_driver, driver);
2015	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2016
2017	return hid_match_device(hdev, hdrv) != NULL;
2018}
2019
2020static int hid_device_probe(struct device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2021{
2022	struct hid_driver *hdrv = container_of(dev->driver,
2023			struct hid_driver, driver);
2024	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2025	const struct hid_device_id *id;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2026	int ret = 0;
2027
2028	if (down_interruptible(&hdev->driver_lock))
2029		return -EINTR;
2030	if (down_interruptible(&hdev->driver_input_lock)) {
2031		ret = -EINTR;
2032		goto unlock_driver_lock;
2033	}
2034	hdev->io_started = false;
 
2035
2036	if (!hdev->driver) {
2037		id = hid_match_device(hdev, hdrv);
2038		if (id == NULL) {
2039			ret = -ENODEV;
2040			goto unlock;
2041		}
2042
2043		hdev->driver = hdrv;
2044		if (hdrv->probe) {
2045			ret = hdrv->probe(hdev, id);
2046		} else { /* default probe */
2047			ret = hid_open_report(hdev);
2048			if (!ret)
2049				ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2050		}
2051		if (ret) {
2052			hid_close_report(hdev);
2053			hdev->driver = NULL;
2054		}
2055	}
2056unlock:
2057	if (!hdev->io_started)
2058		up(&hdev->driver_input_lock);
2059unlock_driver_lock:
2060	up(&hdev->driver_lock);
2061	return ret;
2062}
2063
2064static int hid_device_remove(struct device *dev)
2065{
2066	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2067	struct hid_driver *hdrv;
2068	int ret = 0;
2069
2070	if (down_interruptible(&hdev->driver_lock))
2071		return -EINTR;
2072	if (down_interruptible(&hdev->driver_input_lock)) {
2073		ret = -EINTR;
2074		goto unlock_driver_lock;
2075	}
2076	hdev->io_started = false;
2077
2078	hdrv = hdev->driver;
2079	if (hdrv) {
2080		if (hdrv->remove)
2081			hdrv->remove(hdev);
2082		else /* default remove */
2083			hid_hw_stop(hdev);
 
 
 
 
2084		hid_close_report(hdev);
2085		hdev->driver = NULL;
2086	}
2087
2088	if (!hdev->io_started)
2089		up(&hdev->driver_input_lock);
2090unlock_driver_lock:
2091	up(&hdev->driver_lock);
2092	return ret;
2093}
2094
2095static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2096			     char *buf)
2097{
2098	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2099	int len;
2100
2101	len = snprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2102		       hdev->bus, hdev->group, hdev->vendor, hdev->product);
2103
2104	return (len >= PAGE_SIZE) ? (PAGE_SIZE - 1) : len;
 
2105}
2106static DEVICE_ATTR_RO(modalias);
2107
2108static struct attribute *hid_dev_attrs[] = {
2109	&dev_attr_modalias.attr,
2110	NULL,
2111};
2112ATTRIBUTE_GROUPS(hid_dev);
 
 
 
 
 
 
 
 
2113
2114static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2115{
2116	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2117
2118	if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2119			hdev->bus, hdev->vendor, hdev->product))
2120		return -ENOMEM;
2121
2122	if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2123		return -ENOMEM;
2124
2125	if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2126		return -ENOMEM;
2127
2128	if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2129		return -ENOMEM;
2130
2131	if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2132			   hdev->bus, hdev->group, hdev->vendor, hdev->product))
2133		return -ENOMEM;
2134
2135	return 0;
2136}
2137
2138static struct bus_type hid_bus_type = {
2139	.name		= "hid",
2140	.dev_groups	= hid_dev_groups,
 
2141	.match		= hid_bus_match,
2142	.probe		= hid_device_probe,
2143	.remove		= hid_device_remove,
2144	.uevent		= hid_uevent,
2145};
2146
2147/* a list of devices that shouldn't be handled by HID core at all */
2148static const struct hid_device_id hid_ignore_list[] = {
2149	{ HID_USB_DEVICE(USB_VENDOR_ID_ACECAD, USB_DEVICE_ID_ACECAD_FLAIR) },
2150	{ HID_USB_DEVICE(USB_VENDOR_ID_ACECAD, USB_DEVICE_ID_ACECAD_302) },
2151	{ HID_USB_DEVICE(USB_VENDOR_ID_ADS_TECH, USB_DEVICE_ID_ADS_TECH_RADIO_SI470X) },
2152	{ HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_01) },
2153	{ HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_10) },
2154	{ HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_20) },
2155	{ HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_21) },
2156	{ HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_22) },
2157	{ HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_23) },
2158	{ HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_24) },
2159	{ HID_USB_DEVICE(USB_VENDOR_ID_AIRCABLE, USB_DEVICE_ID_AIRCABLE1) },
2160	{ HID_USB_DEVICE(USB_VENDOR_ID_ALCOR, USB_DEVICE_ID_ALCOR_USBRS232) },
2161	{ HID_USB_DEVICE(USB_VENDOR_ID_ASUSTEK, USB_DEVICE_ID_ASUSTEK_LCM)},
2162	{ HID_USB_DEVICE(USB_VENDOR_ID_ASUSTEK, USB_DEVICE_ID_ASUSTEK_LCM2)},
2163	{ HID_USB_DEVICE(USB_VENDOR_ID_AVERMEDIA, USB_DEVICE_ID_AVER_FM_MR800) },
2164	{ HID_USB_DEVICE(USB_VENDOR_ID_AXENTIA, USB_DEVICE_ID_AXENTIA_FM_RADIO) },
2165	{ HID_USB_DEVICE(USB_VENDOR_ID_BERKSHIRE, USB_DEVICE_ID_BERKSHIRE_PCWD) },
2166	{ HID_USB_DEVICE(USB_VENDOR_ID_CIDC, 0x0103) },
2167	{ HID_USB_DEVICE(USB_VENDOR_ID_CYGNAL, USB_DEVICE_ID_CYGNAL_RADIO_SI470X) },
2168	{ HID_USB_DEVICE(USB_VENDOR_ID_CYGNAL, USB_DEVICE_ID_CYGNAL_RADIO_SI4713) },
2169	{ HID_USB_DEVICE(USB_VENDOR_ID_CMEDIA, USB_DEVICE_ID_CM109) },
2170	{ HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_HIDCOM) },
2171	{ HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_ULTRAMOUSE) },
2172	{ HID_USB_DEVICE(USB_VENDOR_ID_DEALEXTREAME, USB_DEVICE_ID_DEALEXTREAME_RADIO_SI4701) },
2173	{ HID_USB_DEVICE(USB_VENDOR_ID_DELORME, USB_DEVICE_ID_DELORME_EARTHMATE) },
2174	{ HID_USB_DEVICE(USB_VENDOR_ID_DELORME, USB_DEVICE_ID_DELORME_EM_LT20) },
2175	{ HID_USB_DEVICE(USB_VENDOR_ID_DREAM_CHEEKY, 0x0004) },
2176	{ HID_USB_DEVICE(USB_VENDOR_ID_DREAM_CHEEKY, 0x000a) },
2177	{ HID_USB_DEVICE(USB_VENDOR_ID_ESSENTIAL_REALITY, USB_DEVICE_ID_ESSENTIAL_REALITY_P5) },
2178	{ HID_USB_DEVICE(USB_VENDOR_ID_ETT, USB_DEVICE_ID_TC5UH) },
2179	{ HID_USB_DEVICE(USB_VENDOR_ID_ETT, USB_DEVICE_ID_TC4UM) },
2180	{ HID_USB_DEVICE(USB_VENDOR_ID_GENERAL_TOUCH, 0x0001) },
2181	{ HID_USB_DEVICE(USB_VENDOR_ID_GENERAL_TOUCH, 0x0002) },
2182	{ HID_USB_DEVICE(USB_VENDOR_ID_GENERAL_TOUCH, 0x0004) },
2183	{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_4_PHIDGETSERVO_30) },
2184	{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_1_PHIDGETSERVO_30) },
2185	{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_0_0_4_IF_KIT) },
2186	{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_0_16_16_IF_KIT) },
2187	{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_8_8_8_IF_KIT) },
2188	{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_0_8_7_IF_KIT) },
2189	{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_0_8_8_IF_KIT) },
2190	{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_PHIDGET_MOTORCONTROL) },
2191	{ HID_USB_DEVICE(USB_VENDOR_ID_GOTOP, USB_DEVICE_ID_SUPER_Q2) },
2192	{ HID_USB_DEVICE(USB_VENDOR_ID_GOTOP, USB_DEVICE_ID_GOGOPEN) },
2193	{ HID_USB_DEVICE(USB_VENDOR_ID_GOTOP, USB_DEVICE_ID_PENPOWER) },
2194	{ HID_USB_DEVICE(USB_VENDOR_ID_GRETAGMACBETH, USB_DEVICE_ID_GRETAGMACBETH_HUEY) },
2195	{ HID_USB_DEVICE(USB_VENDOR_ID_GRIFFIN, USB_DEVICE_ID_POWERMATE) },
2196	{ HID_USB_DEVICE(USB_VENDOR_ID_GRIFFIN, USB_DEVICE_ID_SOUNDKNOB) },
2197	{ HID_USB_DEVICE(USB_VENDOR_ID_GRIFFIN, USB_DEVICE_ID_RADIOSHARK) },
2198	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_90) },
2199	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_100) },
2200	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_101) },
2201	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_103) },
2202	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_104) },
2203	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_105) },
2204	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_106) },
2205	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_107) },
2206	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_108) },
2207	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_200) },
2208	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_201) },
2209	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_202) },
2210	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_203) },
2211	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_204) },
2212	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_205) },
2213	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_206) },
2214	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_207) },
2215	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_300) },
2216	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_301) },
2217	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_302) },
2218	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_303) },
2219	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_304) },
2220	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_305) },
2221	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_306) },
2222	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_307) },
2223	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_308) },
2224	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_309) },
2225	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_400) },
2226	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_401) },
2227	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_402) },
2228	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_403) },
2229	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_404) },
2230	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_405) },
2231	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_500) },
2232	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_501) },
2233	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_502) },
2234	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_503) },
2235	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_504) },
2236	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1000) },
2237	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1001) },
2238	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1002) },
2239	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1003) },
2240	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1004) },
2241	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1005) },
2242	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1006) },
2243	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1007) },
2244	{ HID_USB_DEVICE(USB_VENDOR_ID_IMATION, USB_DEVICE_ID_DISC_STAKKA) },
2245	{ HID_USB_DEVICE(USB_VENDOR_ID_JABRA, USB_DEVICE_ID_JABRA_SPEAK_410) },
2246	{ HID_USB_DEVICE(USB_VENDOR_ID_JABRA, USB_DEVICE_ID_JABRA_SPEAK_510) },
2247	{ HID_USB_DEVICE(USB_VENDOR_ID_KBGEAR, USB_DEVICE_ID_KBGEAR_JAMSTUDIO) },
2248	{ HID_USB_DEVICE(USB_VENDOR_ID_KWORLD, USB_DEVICE_ID_KWORLD_RADIO_FM700) },
2249	{ HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_KYE_GPEN_560) },
2250	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_KYE, 0x0058) },
2251	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_CASSY) },
2252	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_CASSY2) },
2253	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_POCKETCASSY) },
2254	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_POCKETCASSY2) },
2255	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOBILECASSY) },
2256	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOBILECASSY2) },
2257	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYVOLTAGE) },
2258	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYCURRENT) },
2259	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYTIME) },
2260	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYTEMPERATURE) },
2261	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYPH) },
2262	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_JWM) },
2263	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_DMMP) },
2264	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_UMIP) },
2265	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_UMIC) },
2266	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_UMIB) },
2267	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_XRAY) },
2268	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_XRAY2) },
2269	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_VIDEOCOM) },
2270	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOTOR) },
2271	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_COM3LAB) },
2272	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_TELEPORT) },
2273	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_NETWORKANALYSER) },
2274	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_POWERCONTROL) },
2275	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MACHINETEST) },
2276	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOSTANALYSER) },
2277	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOSTANALYSER2) },
2278	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_ABSESP) },
2279	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_AUTODATABUS) },
2280	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MCT) },
2281	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_HYBRID) },
2282	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_HEATCONTROL) },
2283	{ HID_USB_DEVICE(USB_VENDOR_ID_MADCATZ, USB_DEVICE_ID_MADCATZ_BEATPAD) },
2284	{ HID_USB_DEVICE(USB_VENDOR_ID_MCC, USB_DEVICE_ID_MCC_PMD1024LS) },
2285	{ HID_USB_DEVICE(USB_VENDOR_ID_MCC, USB_DEVICE_ID_MCC_PMD1208LS) },
2286	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICKIT1) },
2287	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICKIT2) },
2288	{ HID_USB_DEVICE(USB_VENDOR_ID_NATIONAL_SEMICONDUCTOR, USB_DEVICE_ID_N_S_HARMONY) },
2289	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100) },
2290	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 20) },
2291	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 30) },
2292	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 100) },
2293	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 108) },
2294	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 118) },
2295	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 200) },
2296	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 300) },
2297	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 400) },
2298	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 500) },
2299	{ HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0001) },
2300	{ HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0002) },
2301	{ HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0003) },
2302	{ HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0004) },
2303	{ HID_USB_DEVICE(USB_VENDOR_ID_PHILIPS, USB_DEVICE_ID_PHILIPS_IEEE802154_DONGLE) },
2304	{ HID_USB_DEVICE(USB_VENDOR_ID_POWERCOM, USB_DEVICE_ID_POWERCOM_UPS) },
2305#if defined(CONFIG_MOUSE_SYNAPTICS_USB) || defined(CONFIG_MOUSE_SYNAPTICS_USB_MODULE)
2306	{ HID_USB_DEVICE(USB_VENDOR_ID_SYNAPTICS, USB_DEVICE_ID_SYNAPTICS_TP) },
2307	{ HID_USB_DEVICE(USB_VENDOR_ID_SYNAPTICS, USB_DEVICE_ID_SYNAPTICS_INT_TP) },
2308	{ HID_USB_DEVICE(USB_VENDOR_ID_SYNAPTICS, USB_DEVICE_ID_SYNAPTICS_CPAD) },
2309	{ HID_USB_DEVICE(USB_VENDOR_ID_SYNAPTICS, USB_DEVICE_ID_SYNAPTICS_STICK) },
2310	{ HID_USB_DEVICE(USB_VENDOR_ID_SYNAPTICS, USB_DEVICE_ID_SYNAPTICS_WP) },
2311	{ HID_USB_DEVICE(USB_VENDOR_ID_SYNAPTICS, USB_DEVICE_ID_SYNAPTICS_COMP_TP) },
2312	{ HID_USB_DEVICE(USB_VENDOR_ID_SYNAPTICS, USB_DEVICE_ID_SYNAPTICS_WTP) },
2313	{ HID_USB_DEVICE(USB_VENDOR_ID_SYNAPTICS, USB_DEVICE_ID_SYNAPTICS_DPAD) },
2314#endif
2315	{ HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_LABPRO) },
2316	{ HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_GOTEMP) },
2317	{ HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_SKIP) },
2318	{ HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_CYCLOPS) },
2319	{ HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_LCSPEC) },
2320	{ HID_USB_DEVICE(USB_VENDOR_ID_WACOM, HID_ANY_ID) },
2321	{ HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_4_PHIDGETSERVO_20) },
2322	{ HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_1_PHIDGETSERVO_20) },
2323	{ HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_8_8_4_IF_KIT) },
2324	{ HID_USB_DEVICE(USB_VENDOR_ID_YEALINK, USB_DEVICE_ID_YEALINK_P1K_P4K_B2K) },
2325	{ HID_USB_DEVICE(USB_VENDOR_ID_RISO_KAGAKU, USB_DEVICE_ID_RI_KA_WEBMAIL) },
2326	{ }
2327};
2328
2329/**
2330 * hid_mouse_ignore_list - mouse devices which should not be handled by the hid layer
2331 *
2332 * There are composite devices for which we want to ignore only a certain
2333 * interface. This is a list of devices for which only the mouse interface will
2334 * be ignored. This allows a dedicated driver to take care of the interface.
2335 */
2336static const struct hid_device_id hid_mouse_ignore_list[] = {
2337	/* appletouch driver */
2338	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_ANSI) },
2339	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_ISO) },
2340	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_ANSI) },
2341	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_ISO) },
2342	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_JIS) },
2343	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_ANSI) },
2344	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_ISO) },
2345	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_JIS) },
2346	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_ANSI) },
2347	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_ISO) },
2348	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_JIS) },
2349	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_ANSI) },
2350	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_ISO) },
2351	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_JIS) },
2352	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ANSI) },
2353	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ISO) },
2354	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_JIS) },
2355	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_ANSI) },
2356	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_ISO) },
2357	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_JIS) },
2358	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_ANSI) },
2359	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_ISO) },
2360	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_JIS) },
2361	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_ANSI) },
2362	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_ISO) },
2363	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_JIS) },
2364	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_ANSI) },
2365	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_ISO) },
2366	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_JIS) },
2367	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_ANSI) },
2368	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_ISO) },
2369	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_JIS) },
2370	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5A_ANSI) },
2371	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5A_ISO) },
2372	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5A_JIS) },
2373	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6_ANSI) },
2374	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6_ISO) },
2375	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6_JIS) },
2376	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6A_ANSI) },
2377	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6A_ISO) },
2378	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6A_JIS) },
2379	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7_ANSI) },
2380	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7_ISO) },
2381	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7_JIS) },
2382	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7A_ANSI) },
2383	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7A_ISO) },
2384	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7A_JIS) },
2385	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING8_ANSI) },
2386	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING8_ISO) },
2387	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING8_JIS) },
2388	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_TP_ONLY) },
2389	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER1_TP_ONLY) },
2390	{ }
2391};
2392
2393bool hid_ignore(struct hid_device *hdev)
2394{
2395	if (hdev->quirks & HID_QUIRK_NO_IGNORE)
2396		return false;
2397	if (hdev->quirks & HID_QUIRK_IGNORE)
2398		return true;
2399
2400	switch (hdev->vendor) {
2401	case USB_VENDOR_ID_CODEMERCS:
2402		/* ignore all Code Mercenaries IOWarrior devices */
2403		if (hdev->product >= USB_DEVICE_ID_CODEMERCS_IOW_FIRST &&
2404				hdev->product <= USB_DEVICE_ID_CODEMERCS_IOW_LAST)
2405			return true;
2406		break;
2407	case USB_VENDOR_ID_LOGITECH:
2408		if (hdev->product >= USB_DEVICE_ID_LOGITECH_HARMONY_FIRST &&
2409				hdev->product <= USB_DEVICE_ID_LOGITECH_HARMONY_LAST)
2410			return true;
2411		/*
2412		 * The Keene FM transmitter USB device has the same USB ID as
2413		 * the Logitech AudioHub Speaker, but it should ignore the hid.
2414		 * Check if the name is that of the Keene device.
2415		 * For reference: the name of the AudioHub is
2416		 * "HOLTEK  AudioHub Speaker".
2417		 */
2418		if (hdev->product == USB_DEVICE_ID_LOGITECH_AUDIOHUB &&
2419			!strcmp(hdev->name, "HOLTEK  B-LINK USB Audio  "))
2420				return true;
2421		break;
2422	case USB_VENDOR_ID_SOUNDGRAPH:
2423		if (hdev->product >= USB_DEVICE_ID_SOUNDGRAPH_IMON_FIRST &&
2424		    hdev->product <= USB_DEVICE_ID_SOUNDGRAPH_IMON_LAST)
2425			return true;
2426		break;
2427	case USB_VENDOR_ID_HANWANG:
2428		if (hdev->product >= USB_DEVICE_ID_HANWANG_TABLET_FIRST &&
2429		    hdev->product <= USB_DEVICE_ID_HANWANG_TABLET_LAST)
2430			return true;
2431		break;
2432	case USB_VENDOR_ID_JESS:
2433		if (hdev->product == USB_DEVICE_ID_JESS_YUREX &&
2434				hdev->type == HID_TYPE_USBNONE)
2435			return true;
2436		break;
2437	case USB_VENDOR_ID_VELLEMAN:
2438		/* These are not HID devices.  They are handled by comedi. */
2439		if ((hdev->product >= USB_DEVICE_ID_VELLEMAN_K8055_FIRST &&
2440		     hdev->product <= USB_DEVICE_ID_VELLEMAN_K8055_LAST) ||
2441		    (hdev->product >= USB_DEVICE_ID_VELLEMAN_K8061_FIRST &&
2442		     hdev->product <= USB_DEVICE_ID_VELLEMAN_K8061_LAST))
2443			return true;
2444		break;
2445	case USB_VENDOR_ID_ATMEL_V_USB:
2446		/* Masterkit MA901 usb radio based on Atmel tiny85 chip and
2447		 * it has the same USB ID as many Atmel V-USB devices. This
2448		 * usb radio is handled by radio-ma901.c driver so we want
2449		 * ignore the hid. Check the name, bus, product and ignore
2450		 * if we have MA901 usb radio.
2451		 */
2452		if (hdev->product == USB_DEVICE_ID_ATMEL_V_USB &&
2453			hdev->bus == BUS_USB &&
2454			strncmp(hdev->name, "www.masterkit.ru MA901", 22) == 0)
2455			return true;
2456		break;
2457	}
2458
2459	if (hdev->type == HID_TYPE_USBMOUSE &&
2460			hid_match_id(hdev, hid_mouse_ignore_list))
2461		return true;
2462
2463	return !!hid_match_id(hdev, hid_ignore_list);
2464}
2465EXPORT_SYMBOL_GPL(hid_ignore);
2466
2467int hid_add_device(struct hid_device *hdev)
2468{
2469	static atomic_t id = ATOMIC_INIT(0);
2470	int ret;
2471
2472	if (WARN_ON(hdev->status & HID_STAT_ADDED))
2473		return -EBUSY;
2474
 
 
2475	/* we need to kill them here, otherwise they will stay allocated to
2476	 * wait for coming driver */
2477	if (hid_ignore(hdev))
2478		return -ENODEV;
2479
2480	/*
2481	 * Check for the mandatory transport channel.
2482	 */
2483	 if (!hdev->ll_driver->raw_request) {
2484		hid_err(hdev, "transport driver missing .raw_request()\n");
2485		return -EINVAL;
2486	 }
2487
2488	/*
2489	 * Read the device report descriptor once and use as template
2490	 * for the driver-specific modifications.
2491	 */
2492	ret = hdev->ll_driver->parse(hdev);
2493	if (ret)
2494		return ret;
2495	if (!hdev->dev_rdesc)
2496		return -ENODEV;
2497
2498	/*
2499	 * Scan generic devices for group information
2500	 */
2501	if (hid_ignore_special_drivers ||
2502	    !hid_match_id(hdev, hid_have_special_driver)) {
 
 
2503		ret = hid_scan_report(hdev);
2504		if (ret)
2505			hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2506	}
2507
 
 
2508	/* XXX hack, any other cleaner solution after the driver core
2509	 * is converted to allow more than 20 bytes as the device name? */
2510	dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2511		     hdev->vendor, hdev->product, atomic_inc_return(&id));
2512
2513	hid_debug_register(hdev, dev_name(&hdev->dev));
2514	ret = device_add(&hdev->dev);
2515	if (!ret)
2516		hdev->status |= HID_STAT_ADDED;
2517	else
2518		hid_debug_unregister(hdev);
2519
2520	return ret;
2521}
2522EXPORT_SYMBOL_GPL(hid_add_device);
2523
2524/**
2525 * hid_allocate_device - allocate new hid device descriptor
2526 *
2527 * Allocate and initialize hid device, so that hid_destroy_device might be
2528 * used to free it.
2529 *
2530 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2531 * error value.
2532 */
2533struct hid_device *hid_allocate_device(void)
2534{
2535	struct hid_device *hdev;
2536	int ret = -ENOMEM;
2537
2538	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2539	if (hdev == NULL)
2540		return ERR_PTR(ret);
2541
2542	device_initialize(&hdev->dev);
2543	hdev->dev.release = hid_device_release;
2544	hdev->dev.bus = &hid_bus_type;
 
2545
2546	hid_close_report(hdev);
2547
2548	init_waitqueue_head(&hdev->debug_wait);
2549	INIT_LIST_HEAD(&hdev->debug_list);
2550	spin_lock_init(&hdev->debug_list_lock);
2551	sema_init(&hdev->driver_lock, 1);
2552	sema_init(&hdev->driver_input_lock, 1);
 
 
 
 
 
 
2553
2554	return hdev;
 
 
 
 
2555}
2556EXPORT_SYMBOL_GPL(hid_allocate_device);
2557
2558static void hid_remove_device(struct hid_device *hdev)
2559{
2560	if (hdev->status & HID_STAT_ADDED) {
2561		device_del(&hdev->dev);
2562		hid_debug_unregister(hdev);
2563		hdev->status &= ~HID_STAT_ADDED;
2564	}
 
2565	kfree(hdev->dev_rdesc);
2566	hdev->dev_rdesc = NULL;
2567	hdev->dev_rsize = 0;
 
2568}
2569
2570/**
2571 * hid_destroy_device - free previously allocated device
2572 *
2573 * @hdev: hid device
2574 *
2575 * If you allocate hid_device through hid_allocate_device, you should ever
2576 * free by this function.
2577 */
2578void hid_destroy_device(struct hid_device *hdev)
2579{
 
2580	hid_remove_device(hdev);
2581	put_device(&hdev->dev);
2582}
2583EXPORT_SYMBOL_GPL(hid_destroy_device);
2584
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2585int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2586		const char *mod_name)
2587{
2588	int ret;
2589
2590	hdrv->driver.name = hdrv->name;
2591	hdrv->driver.bus = &hid_bus_type;
2592	hdrv->driver.owner = owner;
2593	hdrv->driver.mod_name = mod_name;
2594
2595	INIT_LIST_HEAD(&hdrv->dyn_list);
2596	spin_lock_init(&hdrv->dyn_lock);
2597
2598	ret = driver_register(&hdrv->driver);
2599	if (ret)
2600		return ret;
2601
2602	ret = driver_create_file(&hdrv->driver, &driver_attr_new_id);
2603	if (ret)
2604		driver_unregister(&hdrv->driver);
2605
2606	return ret;
2607}
2608EXPORT_SYMBOL_GPL(__hid_register_driver);
2609
2610void hid_unregister_driver(struct hid_driver *hdrv)
2611{
2612	driver_remove_file(&hdrv->driver, &driver_attr_new_id);
2613	driver_unregister(&hdrv->driver);
2614	hid_free_dynids(hdrv);
 
 
2615}
2616EXPORT_SYMBOL_GPL(hid_unregister_driver);
2617
2618int hid_check_keys_pressed(struct hid_device *hid)
2619{
2620	struct hid_input *hidinput;
2621	int i;
2622
2623	if (!(hid->claimed & HID_CLAIMED_INPUT))
2624		return 0;
2625
2626	list_for_each_entry(hidinput, &hid->inputs, list) {
2627		for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2628			if (hidinput->input->key[i])
2629				return 1;
2630	}
2631
2632	return 0;
2633}
2634
2635EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2636
 
 
 
 
 
 
 
 
 
 
 
2637static int __init hid_init(void)
2638{
2639	int ret;
2640
2641	if (hid_debug)
2642		pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2643			"debugfs is now used for inspecting the device (report descriptor, reports)\n");
2644
2645	ret = bus_register(&hid_bus_type);
2646	if (ret) {
2647		pr_err("can't register hid bus\n");
2648		goto err;
2649	}
2650
 
 
 
 
2651	ret = hidraw_init();
2652	if (ret)
2653		goto err_bus;
2654
2655	hid_debug_init();
2656
2657	return 0;
2658err_bus:
2659	bus_unregister(&hid_bus_type);
2660err:
2661	return ret;
2662}
2663
2664static void __exit hid_exit(void)
2665{
 
 
 
2666	hid_debug_exit();
2667	hidraw_exit();
2668	bus_unregister(&hid_bus_type);
 
2669}
2670
2671module_init(hid_init);
2672module_exit(hid_exit);
2673
2674MODULE_AUTHOR("Andreas Gal");
2675MODULE_AUTHOR("Vojtech Pavlik");
2676MODULE_AUTHOR("Jiri Kosina");
2677MODULE_LICENSE(DRIVER_LICENSE);
2678
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  HID support for Linux
   4 *
   5 *  Copyright (c) 1999 Andreas Gal
   6 *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
   7 *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
   8 *  Copyright (c) 2006-2012 Jiri Kosina
   9 */
  10
  11/*
 
 
 
 
  12 */
  13
  14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  15
  16#include <linux/module.h>
  17#include <linux/slab.h>
  18#include <linux/init.h>
  19#include <linux/kernel.h>
  20#include <linux/list.h>
  21#include <linux/mm.h>
  22#include <linux/spinlock.h>
  23#include <linux/unaligned.h>
  24#include <asm/byteorder.h>
  25#include <linux/input.h>
  26#include <linux/wait.h>
  27#include <linux/vmalloc.h>
  28#include <linux/sched.h>
  29#include <linux/semaphore.h>
  30
  31#include <linux/hid.h>
  32#include <linux/hiddev.h>
  33#include <linux/hid-debug.h>
  34#include <linux/hidraw.h>
  35
  36#include "hid-ids.h"
  37
  38/*
  39 * Version Information
  40 */
  41
  42#define DRIVER_DESC "HID core driver"
 
 
 
 
 
 
  43
  44static int hid_ignore_special_drivers = 0;
  45module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
  46MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
  47
  48/*
  49 * Convert a signed n-bit integer to signed 32-bit integer.
  50 */
  51
  52static s32 snto32(__u32 value, unsigned int n)
  53{
  54	if (!value || !n)
  55		return 0;
  56
  57	if (n > 32)
  58		n = 32;
  59
  60	return sign_extend32(value, n - 1);
  61}
  62
  63/*
  64 * Convert a signed 32-bit integer to a signed n-bit integer.
  65 */
  66
  67static u32 s32ton(__s32 value, unsigned int n)
  68{
  69	s32 a = value >> (n - 1);
  70
  71	if (a && a != -1)
  72		return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
  73	return value & ((1 << n) - 1);
  74}
  75
  76/*
  77 * Register a new report for a device.
  78 */
  79
  80struct hid_report *hid_register_report(struct hid_device *device,
  81				       enum hid_report_type type, unsigned int id,
  82				       unsigned int application)
  83{
  84	struct hid_report_enum *report_enum = device->report_enum + type;
  85	struct hid_report *report;
  86
  87	if (id >= HID_MAX_IDS)
  88		return NULL;
  89	if (report_enum->report_id_hash[id])
  90		return report_enum->report_id_hash[id];
  91
  92	report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
  93	if (!report)
  94		return NULL;
  95
  96	if (id != 0)
  97		report_enum->numbered = 1;
  98
  99	report->id = id;
 100	report->type = type;
 101	report->size = 0;
 102	report->device = device;
 103	report->application = application;
 104	report_enum->report_id_hash[id] = report;
 105
 106	list_add_tail(&report->list, &report_enum->report_list);
 107	INIT_LIST_HEAD(&report->field_entry_list);
 108
 109	return report;
 110}
 111EXPORT_SYMBOL_GPL(hid_register_report);
 112
 113/*
 114 * Register a new field for this report.
 115 */
 116
 117static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages)
 118{
 119	struct hid_field *field;
 120
 121	if (report->maxfield == HID_MAX_FIELDS) {
 122		hid_err(report->device, "too many fields in report\n");
 123		return NULL;
 124	}
 125
 126	field = kvzalloc((sizeof(struct hid_field) +
 127			  usages * sizeof(struct hid_usage) +
 128			  3 * usages * sizeof(unsigned int)), GFP_KERNEL);
 129	if (!field)
 130		return NULL;
 131
 132	field->index = report->maxfield++;
 133	report->field[field->index] = field;
 134	field->usage = (struct hid_usage *)(field + 1);
 135	field->value = (s32 *)(field->usage + usages);
 136	field->new_value = (s32 *)(field->value + usages);
 137	field->usages_priorities = (s32 *)(field->new_value + usages);
 138	field->report = report;
 139
 140	return field;
 141}
 142
 143/*
 144 * Open a collection. The type/usage is pushed on the stack.
 145 */
 146
 147static int open_collection(struct hid_parser *parser, unsigned type)
 148{
 149	struct hid_collection *collection;
 150	unsigned usage;
 151	int collection_index;
 152
 153	usage = parser->local.usage[0];
 154
 155	if (parser->collection_stack_ptr == parser->collection_stack_size) {
 156		unsigned int *collection_stack;
 157		unsigned int new_size = parser->collection_stack_size +
 158					HID_COLLECTION_STACK_SIZE;
 159
 160		collection_stack = krealloc(parser->collection_stack,
 161					    new_size * sizeof(unsigned int),
 162					    GFP_KERNEL);
 163		if (!collection_stack)
 164			return -ENOMEM;
 165
 166		parser->collection_stack = collection_stack;
 167		parser->collection_stack_size = new_size;
 168	}
 169
 170	if (parser->device->maxcollection == parser->device->collection_size) {
 171		collection = kmalloc(
 172				array3_size(sizeof(struct hid_collection),
 173					    parser->device->collection_size,
 174					    2),
 175				GFP_KERNEL);
 176		if (collection == NULL) {
 177			hid_err(parser->device, "failed to reallocate collection array\n");
 178			return -ENOMEM;
 179		}
 180		memcpy(collection, parser->device->collection,
 181			sizeof(struct hid_collection) *
 182			parser->device->collection_size);
 183		memset(collection + parser->device->collection_size, 0,
 184			sizeof(struct hid_collection) *
 185			parser->device->collection_size);
 186		kfree(parser->device->collection);
 187		parser->device->collection = collection;
 188		parser->device->collection_size *= 2;
 189	}
 190
 191	parser->collection_stack[parser->collection_stack_ptr++] =
 192		parser->device->maxcollection;
 193
 194	collection_index = parser->device->maxcollection++;
 195	collection = parser->device->collection + collection_index;
 196	collection->type = type;
 197	collection->usage = usage;
 198	collection->level = parser->collection_stack_ptr - 1;
 199	collection->parent_idx = (collection->level == 0) ? -1 :
 200		parser->collection_stack[collection->level - 1];
 201
 202	if (type == HID_COLLECTION_APPLICATION)
 203		parser->device->maxapplication++;
 204
 205	return 0;
 206}
 207
 208/*
 209 * Close a collection.
 210 */
 211
 212static int close_collection(struct hid_parser *parser)
 213{
 214	if (!parser->collection_stack_ptr) {
 215		hid_err(parser->device, "collection stack underflow\n");
 216		return -EINVAL;
 217	}
 218	parser->collection_stack_ptr--;
 219	return 0;
 220}
 221
 222/*
 223 * Climb up the stack, search for the specified collection type
 224 * and return the usage.
 225 */
 226
 227static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
 228{
 229	struct hid_collection *collection = parser->device->collection;
 230	int n;
 231
 232	for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
 233		unsigned index = parser->collection_stack[n];
 234		if (collection[index].type == type)
 235			return collection[index].usage;
 236	}
 237	return 0; /* we know nothing about this usage type */
 238}
 239
 240/*
 241 * Concatenate usage which defines 16 bits or less with the
 242 * currently defined usage page to form a 32 bit usage
 243 */
 244
 245static void complete_usage(struct hid_parser *parser, unsigned int index)
 246{
 247	parser->local.usage[index] &= 0xFFFF;
 248	parser->local.usage[index] |=
 249		(parser->global.usage_page & 0xFFFF) << 16;
 250}
 251
 252/*
 253 * Add a usage to the temporary parser table.
 254 */
 255
 256static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
 257{
 258	if (parser->local.usage_index >= HID_MAX_USAGES) {
 259		hid_err(parser->device, "usage index exceeded\n");
 260		return -1;
 261	}
 262	parser->local.usage[parser->local.usage_index] = usage;
 263
 264	/*
 265	 * If Usage item only includes usage id, concatenate it with
 266	 * currently defined usage page
 267	 */
 268	if (size <= 2)
 269		complete_usage(parser, parser->local.usage_index);
 270
 271	parser->local.usage_size[parser->local.usage_index] = size;
 272	parser->local.collection_index[parser->local.usage_index] =
 273		parser->collection_stack_ptr ?
 274		parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
 275	parser->local.usage_index++;
 276	return 0;
 277}
 278
 279/*
 280 * Register a new field for this report.
 281 */
 282
 283static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
 284{
 285	struct hid_report *report;
 286	struct hid_field *field;
 287	unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
 288	unsigned int usages;
 289	unsigned int offset;
 290	unsigned int i;
 291	unsigned int application;
 292
 293	application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
 294
 295	report = hid_register_report(parser->device, report_type,
 296				     parser->global.report_id, application);
 297	if (!report) {
 298		hid_err(parser->device, "hid_register_report failed\n");
 299		return -1;
 300	}
 301
 302	/* Handle both signed and unsigned cases properly */
 303	if ((parser->global.logical_minimum < 0 &&
 304		parser->global.logical_maximum <
 305		parser->global.logical_minimum) ||
 306		(parser->global.logical_minimum >= 0 &&
 307		(__u32)parser->global.logical_maximum <
 308		(__u32)parser->global.logical_minimum)) {
 309		dbg_hid("logical range invalid 0x%x 0x%x\n",
 310			parser->global.logical_minimum,
 311			parser->global.logical_maximum);
 312		return -1;
 313	}
 314
 315	offset = report->size;
 316	report->size += parser->global.report_size * parser->global.report_count;
 317
 318	if (parser->device->ll_driver->max_buffer_size)
 319		max_buffer_size = parser->device->ll_driver->max_buffer_size;
 320
 321	/* Total size check: Allow for possible report index byte */
 322	if (report->size > (max_buffer_size - 1) << 3) {
 323		hid_err(parser->device, "report is too long\n");
 324		return -1;
 325	}
 326
 327	if (!parser->local.usage_index) /* Ignore padding fields */
 328		return 0;
 329
 330	usages = max_t(unsigned, parser->local.usage_index,
 331				 parser->global.report_count);
 332
 333	field = hid_register_field(report, usages);
 334	if (!field)
 335		return 0;
 336
 337	field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
 338	field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
 339	field->application = application;
 340
 341	for (i = 0; i < usages; i++) {
 342		unsigned j = i;
 343		/* Duplicate the last usage we parsed if we have excess values */
 344		if (i >= parser->local.usage_index)
 345			j = parser->local.usage_index - 1;
 346		field->usage[i].hid = parser->local.usage[j];
 347		field->usage[i].collection_index =
 348			parser->local.collection_index[j];
 349		field->usage[i].usage_index = i;
 350		field->usage[i].resolution_multiplier = 1;
 351	}
 352
 353	field->maxusage = usages;
 354	field->flags = flags;
 355	field->report_offset = offset;
 356	field->report_type = report_type;
 357	field->report_size = parser->global.report_size;
 358	field->report_count = parser->global.report_count;
 359	field->logical_minimum = parser->global.logical_minimum;
 360	field->logical_maximum = parser->global.logical_maximum;
 361	field->physical_minimum = parser->global.physical_minimum;
 362	field->physical_maximum = parser->global.physical_maximum;
 363	field->unit_exponent = parser->global.unit_exponent;
 364	field->unit = parser->global.unit;
 365
 366	return 0;
 367}
 368
 369/*
 370 * Read data value from item.
 371 */
 372
 373static u32 item_udata(struct hid_item *item)
 374{
 375	switch (item->size) {
 376	case 1: return item->data.u8;
 377	case 2: return item->data.u16;
 378	case 4: return item->data.u32;
 379	}
 380	return 0;
 381}
 382
 383static s32 item_sdata(struct hid_item *item)
 384{
 385	switch (item->size) {
 386	case 1: return item->data.s8;
 387	case 2: return item->data.s16;
 388	case 4: return item->data.s32;
 389	}
 390	return 0;
 391}
 392
 393/*
 394 * Process a global item.
 395 */
 396
 397static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
 398{
 399	__s32 raw_value;
 400	switch (item->tag) {
 401	case HID_GLOBAL_ITEM_TAG_PUSH:
 402
 403		if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
 404			hid_err(parser->device, "global environment stack overflow\n");
 405			return -1;
 406		}
 407
 408		memcpy(parser->global_stack + parser->global_stack_ptr++,
 409			&parser->global, sizeof(struct hid_global));
 410		return 0;
 411
 412	case HID_GLOBAL_ITEM_TAG_POP:
 413
 414		if (!parser->global_stack_ptr) {
 415			hid_err(parser->device, "global environment stack underflow\n");
 416			return -1;
 417		}
 418
 419		memcpy(&parser->global, parser->global_stack +
 420			--parser->global_stack_ptr, sizeof(struct hid_global));
 421		return 0;
 422
 423	case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
 424		parser->global.usage_page = item_udata(item);
 425		return 0;
 426
 427	case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
 428		parser->global.logical_minimum = item_sdata(item);
 429		return 0;
 430
 431	case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
 432		if (parser->global.logical_minimum < 0)
 433			parser->global.logical_maximum = item_sdata(item);
 434		else
 435			parser->global.logical_maximum = item_udata(item);
 436		return 0;
 437
 438	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
 439		parser->global.physical_minimum = item_sdata(item);
 440		return 0;
 441
 442	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
 443		if (parser->global.physical_minimum < 0)
 444			parser->global.physical_maximum = item_sdata(item);
 445		else
 446			parser->global.physical_maximum = item_udata(item);
 447		return 0;
 448
 449	case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
 450		/* Many devices provide unit exponent as a two's complement
 451		 * nibble due to the common misunderstanding of HID
 452		 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
 453		 * both this and the standard encoding. */
 454		raw_value = item_sdata(item);
 455		if (!(raw_value & 0xfffffff0))
 456			parser->global.unit_exponent = snto32(raw_value, 4);
 457		else
 458			parser->global.unit_exponent = raw_value;
 459		return 0;
 460
 461	case HID_GLOBAL_ITEM_TAG_UNIT:
 462		parser->global.unit = item_udata(item);
 463		return 0;
 464
 465	case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
 466		parser->global.report_size = item_udata(item);
 467		if (parser->global.report_size > 256) {
 468			hid_err(parser->device, "invalid report_size %d\n",
 469					parser->global.report_size);
 470			return -1;
 471		}
 472		return 0;
 473
 474	case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
 475		parser->global.report_count = item_udata(item);
 476		if (parser->global.report_count > HID_MAX_USAGES) {
 477			hid_err(parser->device, "invalid report_count %d\n",
 478					parser->global.report_count);
 479			return -1;
 480		}
 481		return 0;
 482
 483	case HID_GLOBAL_ITEM_TAG_REPORT_ID:
 484		parser->global.report_id = item_udata(item);
 485		if (parser->global.report_id == 0 ||
 486		    parser->global.report_id >= HID_MAX_IDS) {
 487			hid_err(parser->device, "report_id %u is invalid\n",
 488				parser->global.report_id);
 489			return -1;
 490		}
 491		return 0;
 492
 493	default:
 494		hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
 495		return -1;
 496	}
 497}
 498
 499/*
 500 * Process a local item.
 501 */
 502
 503static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
 504{
 505	__u32 data;
 506	unsigned n;
 507	__u32 count;
 508
 509	data = item_udata(item);
 510
 511	switch (item->tag) {
 512	case HID_LOCAL_ITEM_TAG_DELIMITER:
 513
 514		if (data) {
 515			/*
 516			 * We treat items before the first delimiter
 517			 * as global to all usage sets (branch 0).
 518			 * In the moment we process only these global
 519			 * items and the first delimiter set.
 520			 */
 521			if (parser->local.delimiter_depth != 0) {
 522				hid_err(parser->device, "nested delimiters\n");
 523				return -1;
 524			}
 525			parser->local.delimiter_depth++;
 526			parser->local.delimiter_branch++;
 527		} else {
 528			if (parser->local.delimiter_depth < 1) {
 529				hid_err(parser->device, "bogus close delimiter\n");
 530				return -1;
 531			}
 532			parser->local.delimiter_depth--;
 533		}
 534		return 0;
 535
 536	case HID_LOCAL_ITEM_TAG_USAGE:
 537
 538		if (parser->local.delimiter_branch > 1) {
 539			dbg_hid("alternative usage ignored\n");
 540			return 0;
 541		}
 542
 543		return hid_add_usage(parser, data, item->size);
 
 
 
 544
 545	case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
 546
 547		if (parser->local.delimiter_branch > 1) {
 548			dbg_hid("alternative usage ignored\n");
 549			return 0;
 550		}
 551
 
 
 
 552		parser->local.usage_minimum = data;
 553		return 0;
 554
 555	case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
 556
 557		if (parser->local.delimiter_branch > 1) {
 558			dbg_hid("alternative usage ignored\n");
 559			return 0;
 560		}
 561
 562		count = data - parser->local.usage_minimum;
 563		if (count + parser->local.usage_index >= HID_MAX_USAGES) {
 564			/*
 565			 * We do not warn if the name is not set, we are
 566			 * actually pre-scanning the device.
 567			 */
 568			if (dev_name(&parser->device->dev))
 569				hid_warn(parser->device,
 570					 "ignoring exceeding usage max\n");
 571			data = HID_MAX_USAGES - parser->local.usage_index +
 572				parser->local.usage_minimum - 1;
 573			if (data <= 0) {
 574				hid_err(parser->device,
 575					"no more usage index available\n");
 576				return -1;
 577			}
 578		}
 579
 580		for (n = parser->local.usage_minimum; n <= data; n++)
 581			if (hid_add_usage(parser, n, item->size)) {
 582				dbg_hid("hid_add_usage failed\n");
 583				return -1;
 584			}
 585		return 0;
 586
 587	default:
 588
 589		dbg_hid("unknown local item tag 0x%x\n", item->tag);
 590		return 0;
 591	}
 592	return 0;
 593}
 594
 595/*
 596 * Concatenate Usage Pages into Usages where relevant:
 597 * As per specification, 6.2.2.8: "When the parser encounters a main item it
 598 * concatenates the last declared Usage Page with a Usage to form a complete
 599 * usage value."
 600 */
 601
 602static void hid_concatenate_last_usage_page(struct hid_parser *parser)
 603{
 604	int i;
 605	unsigned int usage_page;
 606	unsigned int current_page;
 607
 608	if (!parser->local.usage_index)
 609		return;
 610
 611	usage_page = parser->global.usage_page;
 612
 613	/*
 614	 * Concatenate usage page again only if last declared Usage Page
 615	 * has not been already used in previous usages concatenation
 616	 */
 617	for (i = parser->local.usage_index - 1; i >= 0; i--) {
 618		if (parser->local.usage_size[i] > 2)
 619			/* Ignore extended usages */
 620			continue;
 621
 622		current_page = parser->local.usage[i] >> 16;
 623		if (current_page == usage_page)
 624			break;
 625
 626		complete_usage(parser, i);
 627	}
 628}
 629
 630/*
 631 * Process a main item.
 632 */
 633
 634static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
 635{
 636	__u32 data;
 637	int ret;
 638
 639	hid_concatenate_last_usage_page(parser);
 640
 641	data = item_udata(item);
 642
 643	switch (item->tag) {
 644	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
 645		ret = open_collection(parser, data & 0xff);
 646		break;
 647	case HID_MAIN_ITEM_TAG_END_COLLECTION:
 648		ret = close_collection(parser);
 649		break;
 650	case HID_MAIN_ITEM_TAG_INPUT:
 651		ret = hid_add_field(parser, HID_INPUT_REPORT, data);
 652		break;
 653	case HID_MAIN_ITEM_TAG_OUTPUT:
 654		ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
 655		break;
 656	case HID_MAIN_ITEM_TAG_FEATURE:
 657		ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
 658		break;
 659	default:
 660		hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
 661		ret = 0;
 662	}
 663
 664	memset(&parser->local, 0, sizeof(parser->local));	/* Reset the local parser environment */
 665
 666	return ret;
 667}
 668
 669/*
 670 * Process a reserved item.
 671 */
 672
 673static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
 674{
 675	dbg_hid("reserved item type, tag 0x%x\n", item->tag);
 676	return 0;
 677}
 678
 679/*
 680 * Free a report and all registered fields. The field->usage and
 681 * field->value table's are allocated behind the field, so we need
 682 * only to free(field) itself.
 683 */
 684
 685static void hid_free_report(struct hid_report *report)
 686{
 687	unsigned n;
 688
 689	kfree(report->field_entries);
 690
 691	for (n = 0; n < report->maxfield; n++)
 692		kvfree(report->field[n]);
 693	kfree(report);
 694}
 695
 696/*
 697 * Close report. This function returns the device
 698 * state to the point prior to hid_open_report().
 699 */
 700static void hid_close_report(struct hid_device *device)
 701{
 702	unsigned i, j;
 703
 704	for (i = 0; i < HID_REPORT_TYPES; i++) {
 705		struct hid_report_enum *report_enum = device->report_enum + i;
 706
 707		for (j = 0; j < HID_MAX_IDS; j++) {
 708			struct hid_report *report = report_enum->report_id_hash[j];
 709			if (report)
 710				hid_free_report(report);
 711		}
 712		memset(report_enum, 0, sizeof(*report_enum));
 713		INIT_LIST_HEAD(&report_enum->report_list);
 714	}
 715
 716	/*
 717	 * If the HID driver had a rdesc_fixup() callback, dev->rdesc
 718	 * will be allocated by hid-core and needs to be freed.
 719	 * Otherwise, it is either equal to dev_rdesc or bpf_rdesc, in
 720	 * which cases it'll be freed later on device removal or destroy.
 721	 */
 722	if (device->rdesc != device->dev_rdesc && device->rdesc != device->bpf_rdesc)
 723		kfree(device->rdesc);
 724	device->rdesc = NULL;
 725	device->rsize = 0;
 726
 727	kfree(device->collection);
 728	device->collection = NULL;
 729	device->collection_size = 0;
 730	device->maxcollection = 0;
 731	device->maxapplication = 0;
 732
 733	device->status &= ~HID_STAT_PARSED;
 734}
 735
 736static inline void hid_free_bpf_rdesc(struct hid_device *hdev)
 737{
 738	/* bpf_rdesc is either equal to dev_rdesc or allocated by call_hid_bpf_rdesc_fixup() */
 739	if (hdev->bpf_rdesc != hdev->dev_rdesc)
 740		kfree(hdev->bpf_rdesc);
 741	hdev->bpf_rdesc = NULL;
 742}
 743
 744/*
 745 * Free a device structure, all reports, and all fields.
 746 */
 747
 748void hiddev_free(struct kref *ref)
 749{
 750	struct hid_device *hid = container_of(ref, struct hid_device, ref);
 751
 752	hid_close_report(hid);
 753	hid_free_bpf_rdesc(hid);
 754	kfree(hid->dev_rdesc);
 755	kfree(hid);
 756}
 757
 758static void hid_device_release(struct device *dev)
 759{
 760	struct hid_device *hid = to_hid_device(dev);
 761
 762	kref_put(&hid->ref, hiddev_free);
 763}
 764
 765/*
 766 * Fetch a report description item from the data stream. We support long
 767 * items, though they are not used yet.
 768 */
 769
 770static const u8 *fetch_item(const __u8 *start, const __u8 *end, struct hid_item *item)
 771{
 772	u8 b;
 773
 774	if ((end - start) <= 0)
 775		return NULL;
 776
 777	b = *start++;
 778
 779	item->type = (b >> 2) & 3;
 780	item->tag  = (b >> 4) & 15;
 781
 782	if (item->tag == HID_ITEM_TAG_LONG) {
 783
 784		item->format = HID_ITEM_FORMAT_LONG;
 785
 786		if ((end - start) < 2)
 787			return NULL;
 788
 789		item->size = *start++;
 790		item->tag  = *start++;
 791
 792		if ((end - start) < item->size)
 793			return NULL;
 794
 795		item->data.longdata = start;
 796		start += item->size;
 797		return start;
 798	}
 799
 800	item->format = HID_ITEM_FORMAT_SHORT;
 801	item->size = BIT(b & 3) >> 1; /* 0, 1, 2, 3 -> 0, 1, 2, 4 */
 802
 803	if (end - start < item->size)
 804		return NULL;
 805
 806	switch (item->size) {
 807	case 0:
 808		break;
 809
 810	case 1:
 811		item->data.u8 = *start;
 812		break;
 
 
 813
 814	case 2:
 
 
 815		item->data.u16 = get_unaligned_le16(start);
 816		break;
 
 817
 818	case 4:
 
 
 
 819		item->data.u32 = get_unaligned_le32(start);
 820		break;
 
 821	}
 822
 823	return start + item->size;
 824}
 825
 826static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
 827{
 828	struct hid_device *hid = parser->device;
 829
 830	if (usage == HID_DG_CONTACTID)
 831		hid->group = HID_GROUP_MULTITOUCH;
 832}
 833
 834static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
 835{
 836	if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
 837	    parser->global.report_size == 8)
 838		parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
 839
 840	if (usage == 0xff0000c6 && parser->global.report_count == 1 &&
 841	    parser->global.report_size == 8)
 842		parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
 843}
 844
 845static void hid_scan_collection(struct hid_parser *parser, unsigned type)
 846{
 847	struct hid_device *hid = parser->device;
 848	int i;
 849
 850	if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
 851	    (type == HID_COLLECTION_PHYSICAL ||
 852	     type == HID_COLLECTION_APPLICATION))
 853		hid->group = HID_GROUP_SENSOR_HUB;
 854
 855	if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
 856	    hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
 857	    hid->group == HID_GROUP_MULTITOUCH)
 858		hid->group = HID_GROUP_GENERIC;
 859
 860	if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
 861		for (i = 0; i < parser->local.usage_index; i++)
 862			if (parser->local.usage[i] == HID_GD_POINTER)
 863				parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
 864
 865	if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
 866		parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
 867
 868	if ((parser->global.usage_page << 16) == HID_UP_GOOGLEVENDOR)
 869		for (i = 0; i < parser->local.usage_index; i++)
 870			if (parser->local.usage[i] ==
 871					(HID_UP_GOOGLEVENDOR | 0x0001))
 872				parser->device->group =
 873					HID_GROUP_VIVALDI;
 874}
 875
 876static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
 877{
 878	__u32 data;
 879	int i;
 880
 881	hid_concatenate_last_usage_page(parser);
 882
 883	data = item_udata(item);
 884
 885	switch (item->tag) {
 886	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
 887		hid_scan_collection(parser, data & 0xff);
 888		break;
 889	case HID_MAIN_ITEM_TAG_END_COLLECTION:
 890		break;
 891	case HID_MAIN_ITEM_TAG_INPUT:
 892		/* ignore constant inputs, they will be ignored by hid-input */
 893		if (data & HID_MAIN_ITEM_CONSTANT)
 894			break;
 895		for (i = 0; i < parser->local.usage_index; i++)
 896			hid_scan_input_usage(parser, parser->local.usage[i]);
 897		break;
 898	case HID_MAIN_ITEM_TAG_OUTPUT:
 899		break;
 900	case HID_MAIN_ITEM_TAG_FEATURE:
 901		for (i = 0; i < parser->local.usage_index; i++)
 902			hid_scan_feature_usage(parser, parser->local.usage[i]);
 903		break;
 904	}
 905
 906	/* Reset the local parser environment */
 907	memset(&parser->local, 0, sizeof(parser->local));
 908
 909	return 0;
 910}
 911
 912/*
 913 * Scan a report descriptor before the device is added to the bus.
 914 * Sets device groups and other properties that determine what driver
 915 * to load.
 916 */
 917static int hid_scan_report(struct hid_device *hid)
 918{
 919	struct hid_parser *parser;
 920	struct hid_item item;
 921	const __u8 *start = hid->dev_rdesc;
 922	const __u8 *end = start + hid->dev_rsize;
 923	static int (*dispatch_type[])(struct hid_parser *parser,
 924				      struct hid_item *item) = {
 925		hid_scan_main,
 926		hid_parser_global,
 927		hid_parser_local,
 928		hid_parser_reserved
 929	};
 930
 931	parser = vzalloc(sizeof(struct hid_parser));
 932	if (!parser)
 933		return -ENOMEM;
 934
 935	parser->device = hid;
 936	hid->group = HID_GROUP_GENERIC;
 937
 938	/*
 939	 * The parsing is simpler than the one in hid_open_report() as we should
 940	 * be robust against hid errors. Those errors will be raised by
 941	 * hid_open_report() anyway.
 942	 */
 943	while ((start = fetch_item(start, end, &item)) != NULL)
 944		dispatch_type[item.type](parser, &item);
 945
 946	/*
 947	 * Handle special flags set during scanning.
 948	 */
 949	if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
 950	    (hid->group == HID_GROUP_MULTITOUCH))
 951		hid->group = HID_GROUP_MULTITOUCH_WIN_8;
 952
 953	/*
 954	 * Vendor specific handlings
 955	 */
 956	switch (hid->vendor) {
 957	case USB_VENDOR_ID_WACOM:
 958		hid->group = HID_GROUP_WACOM;
 959		break;
 960	case USB_VENDOR_ID_SYNAPTICS:
 961		if (hid->group == HID_GROUP_GENERIC)
 962			if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
 963			    && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
 964				/*
 965				 * hid-rmi should take care of them,
 966				 * not hid-generic
 967				 */
 968				hid->group = HID_GROUP_RMI;
 969		break;
 970	}
 971
 972	kfree(parser->collection_stack);
 973	vfree(parser);
 974	return 0;
 975}
 976
 977/**
 978 * hid_parse_report - parse device report
 979 *
 980 * @hid: hid device
 981 * @start: report start
 982 * @size: report size
 983 *
 984 * Allocate the device report as read by the bus driver. This function should
 985 * only be called from parse() in ll drivers.
 986 */
 987int hid_parse_report(struct hid_device *hid, const __u8 *start, unsigned size)
 988{
 989	hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
 990	if (!hid->dev_rdesc)
 991		return -ENOMEM;
 992	hid->dev_rsize = size;
 993	return 0;
 994}
 995EXPORT_SYMBOL_GPL(hid_parse_report);
 996
 997static const char * const hid_report_names[] = {
 998	"HID_INPUT_REPORT",
 999	"HID_OUTPUT_REPORT",
1000	"HID_FEATURE_REPORT",
1001};
1002/**
1003 * hid_validate_values - validate existing device report's value indexes
1004 *
1005 * @hid: hid device
1006 * @type: which report type to examine
1007 * @id: which report ID to examine (0 for first)
1008 * @field_index: which report field to examine
1009 * @report_counts: expected number of values
1010 *
1011 * Validate the number of values in a given field of a given report, after
1012 * parsing.
1013 */
1014struct hid_report *hid_validate_values(struct hid_device *hid,
1015				       enum hid_report_type type, unsigned int id,
1016				       unsigned int field_index,
1017				       unsigned int report_counts)
1018{
1019	struct hid_report *report;
1020
1021	if (type > HID_FEATURE_REPORT) {
1022		hid_err(hid, "invalid HID report type %u\n", type);
1023		return NULL;
1024	}
1025
1026	if (id >= HID_MAX_IDS) {
1027		hid_err(hid, "invalid HID report id %u\n", id);
1028		return NULL;
1029	}
1030
1031	/*
1032	 * Explicitly not using hid_get_report() here since it depends on
1033	 * ->numbered being checked, which may not always be the case when
1034	 * drivers go to access report values.
1035	 */
1036	if (id == 0) {
1037		/*
1038		 * Validating on id 0 means we should examine the first
1039		 * report in the list.
1040		 */
1041		report = list_first_entry_or_null(
1042				&hid->report_enum[type].report_list,
1043				struct hid_report, list);
1044	} else {
1045		report = hid->report_enum[type].report_id_hash[id];
1046	}
1047	if (!report) {
1048		hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
1049		return NULL;
1050	}
1051	if (report->maxfield <= field_index) {
1052		hid_err(hid, "not enough fields in %s %u\n",
1053			hid_report_names[type], id);
1054		return NULL;
1055	}
1056	if (report->field[field_index]->report_count < report_counts) {
1057		hid_err(hid, "not enough values in %s %u field %u\n",
1058			hid_report_names[type], id, field_index);
1059		return NULL;
1060	}
1061	return report;
1062}
1063EXPORT_SYMBOL_GPL(hid_validate_values);
1064
1065static int hid_calculate_multiplier(struct hid_device *hid,
1066				     struct hid_field *multiplier)
1067{
1068	int m;
1069	__s32 v = *multiplier->value;
1070	__s32 lmin = multiplier->logical_minimum;
1071	__s32 lmax = multiplier->logical_maximum;
1072	__s32 pmin = multiplier->physical_minimum;
1073	__s32 pmax = multiplier->physical_maximum;
1074
1075	/*
1076	 * "Because OS implementations will generally divide the control's
1077	 * reported count by the Effective Resolution Multiplier, designers
1078	 * should take care not to establish a potential Effective
1079	 * Resolution Multiplier of zero."
1080	 * HID Usage Table, v1.12, Section 4.3.1, p31
1081	 */
1082	if (lmax - lmin == 0)
1083		return 1;
1084	/*
1085	 * Handling the unit exponent is left as an exercise to whoever
1086	 * finds a device where that exponent is not 0.
1087	 */
1088	m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
1089	if (unlikely(multiplier->unit_exponent != 0)) {
1090		hid_warn(hid,
1091			 "unsupported Resolution Multiplier unit exponent %d\n",
1092			 multiplier->unit_exponent);
1093	}
1094
1095	/* There are no devices with an effective multiplier > 255 */
1096	if (unlikely(m == 0 || m > 255 || m < -255)) {
1097		hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
1098		m = 1;
1099	}
1100
1101	return m;
1102}
1103
1104static void hid_apply_multiplier_to_field(struct hid_device *hid,
1105					  struct hid_field *field,
1106					  struct hid_collection *multiplier_collection,
1107					  int effective_multiplier)
1108{
1109	struct hid_collection *collection;
1110	struct hid_usage *usage;
1111	int i;
1112
1113	/*
1114	 * If multiplier_collection is NULL, the multiplier applies
1115	 * to all fields in the report.
1116	 * Otherwise, it is the Logical Collection the multiplier applies to
1117	 * but our field may be in a subcollection of that collection.
1118	 */
1119	for (i = 0; i < field->maxusage; i++) {
1120		usage = &field->usage[i];
1121
1122		collection = &hid->collection[usage->collection_index];
1123		while (collection->parent_idx != -1 &&
1124		       collection != multiplier_collection)
1125			collection = &hid->collection[collection->parent_idx];
1126
1127		if (collection->parent_idx != -1 ||
1128		    multiplier_collection == NULL)
1129			usage->resolution_multiplier = effective_multiplier;
1130
1131	}
1132}
1133
1134static void hid_apply_multiplier(struct hid_device *hid,
1135				 struct hid_field *multiplier)
1136{
1137	struct hid_report_enum *rep_enum;
1138	struct hid_report *rep;
1139	struct hid_field *field;
1140	struct hid_collection *multiplier_collection;
1141	int effective_multiplier;
1142	int i;
1143
1144	/*
1145	 * "The Resolution Multiplier control must be contained in the same
1146	 * Logical Collection as the control(s) to which it is to be applied.
1147	 * If no Resolution Multiplier is defined, then the Resolution
1148	 * Multiplier defaults to 1.  If more than one control exists in a
1149	 * Logical Collection, the Resolution Multiplier is associated with
1150	 * all controls in the collection. If no Logical Collection is
1151	 * defined, the Resolution Multiplier is associated with all
1152	 * controls in the report."
1153	 * HID Usage Table, v1.12, Section 4.3.1, p30
1154	 *
1155	 * Thus, search from the current collection upwards until we find a
1156	 * logical collection. Then search all fields for that same parent
1157	 * collection. Those are the fields the multiplier applies to.
1158	 *
1159	 * If we have more than one multiplier, it will overwrite the
1160	 * applicable fields later.
1161	 */
1162	multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1163	while (multiplier_collection->parent_idx != -1 &&
1164	       multiplier_collection->type != HID_COLLECTION_LOGICAL)
1165		multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1166	if (multiplier_collection->type != HID_COLLECTION_LOGICAL)
1167		multiplier_collection = NULL;
1168
1169	effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1170
1171	rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1172	list_for_each_entry(rep, &rep_enum->report_list, list) {
1173		for (i = 0; i < rep->maxfield; i++) {
1174			field = rep->field[i];
1175			hid_apply_multiplier_to_field(hid, field,
1176						      multiplier_collection,
1177						      effective_multiplier);
1178		}
1179	}
1180}
1181
1182/*
1183 * hid_setup_resolution_multiplier - set up all resolution multipliers
1184 *
1185 * @device: hid device
1186 *
1187 * Search for all Resolution Multiplier Feature Reports and apply their
1188 * value to all matching Input items. This only updates the internal struct
1189 * fields.
1190 *
1191 * The Resolution Multiplier is applied by the hardware. If the multiplier
1192 * is anything other than 1, the hardware will send pre-multiplied events
1193 * so that the same physical interaction generates an accumulated
1194 *	accumulated_value = value * * multiplier
1195 * This may be achieved by sending
1196 * - "value * multiplier" for each event, or
1197 * - "value" but "multiplier" times as frequently, or
1198 * - a combination of the above
1199 * The only guarantee is that the same physical interaction always generates
1200 * an accumulated 'value * multiplier'.
1201 *
1202 * This function must be called before any event processing and after
1203 * any SetRequest to the Resolution Multiplier.
1204 */
1205void hid_setup_resolution_multiplier(struct hid_device *hid)
1206{
1207	struct hid_report_enum *rep_enum;
1208	struct hid_report *rep;
1209	struct hid_usage *usage;
1210	int i, j;
1211
1212	rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1213	list_for_each_entry(rep, &rep_enum->report_list, list) {
1214		for (i = 0; i < rep->maxfield; i++) {
1215			/* Ignore if report count is out of bounds. */
1216			if (rep->field[i]->report_count < 1)
1217				continue;
1218
1219			for (j = 0; j < rep->field[i]->maxusage; j++) {
1220				usage = &rep->field[i]->usage[j];
1221				if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1222					hid_apply_multiplier(hid,
1223							     rep->field[i]);
1224			}
1225		}
1226	}
1227}
1228EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1229
1230/**
1231 * hid_open_report - open a driver-specific device report
1232 *
1233 * @device: hid device
1234 *
1235 * Parse a report description into a hid_device structure. Reports are
1236 * enumerated, fields are attached to these reports.
1237 * 0 returned on success, otherwise nonzero error value.
1238 *
1239 * This function (or the equivalent hid_parse() macro) should only be
1240 * called from probe() in drivers, before starting the device.
1241 */
1242int hid_open_report(struct hid_device *device)
1243{
1244	struct hid_parser *parser;
1245	struct hid_item item;
1246	unsigned int size;
1247	const __u8 *start;
1248	const __u8 *end;
1249	const __u8 *next;
1250	int ret;
1251	int i;
1252	static int (*dispatch_type[])(struct hid_parser *parser,
1253				      struct hid_item *item) = {
1254		hid_parser_main,
1255		hid_parser_global,
1256		hid_parser_local,
1257		hid_parser_reserved
1258	};
1259
1260	if (WARN_ON(device->status & HID_STAT_PARSED))
1261		return -EBUSY;
1262
1263	start = device->bpf_rdesc;
1264	if (WARN_ON(!start))
1265		return -ENODEV;
1266	size = device->bpf_rsize;
1267
1268	if (device->driver->report_fixup) {
1269		/*
1270		 * device->driver->report_fixup() needs to work
1271		 * on a copy of our report descriptor so it can
1272		 * change it.
1273		 */
1274		__u8 *buf = kmemdup(start, size, GFP_KERNEL);
1275
1276		if (buf == NULL)
1277			return -ENOMEM;
1278
 
1279		start = device->driver->report_fixup(device, buf, &size);
 
 
1280
1281		/*
1282		 * The second kmemdup is required in case report_fixup() returns
1283		 * a static read-only memory, but we have no idea if that memory
1284		 * needs to be cleaned up or not at the end.
1285		 */
1286		start = kmemdup(start, size, GFP_KERNEL);
1287		kfree(buf);
1288		if (start == NULL)
1289			return -ENOMEM;
1290	}
1291
1292	device->rdesc = start;
1293	device->rsize = size;
1294
1295	parser = vzalloc(sizeof(struct hid_parser));
1296	if (!parser) {
1297		ret = -ENOMEM;
1298		goto alloc_err;
1299	}
1300
1301	parser->device = device;
1302
1303	end = start + size;
1304
1305	device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1306				     sizeof(struct hid_collection), GFP_KERNEL);
1307	if (!device->collection) {
1308		ret = -ENOMEM;
1309		goto err;
1310	}
1311	device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1312	for (i = 0; i < HID_DEFAULT_NUM_COLLECTIONS; i++)
1313		device->collection[i].parent_idx = -1;
1314
1315	ret = -EINVAL;
1316	while ((next = fetch_item(start, end, &item)) != NULL) {
1317		start = next;
1318
1319		if (item.format != HID_ITEM_FORMAT_SHORT) {
1320			hid_err(device, "unexpected long global item\n");
1321			goto err;
1322		}
1323
1324		if (dispatch_type[item.type](parser, &item)) {
1325			hid_err(device, "item %u %u %u %u parsing failed\n",
1326				item.format, (unsigned)item.size,
1327				(unsigned)item.type, (unsigned)item.tag);
1328			goto err;
1329		}
1330
1331		if (start == end) {
1332			if (parser->collection_stack_ptr) {
1333				hid_err(device, "unbalanced collection at end of report description\n");
1334				goto err;
1335			}
1336			if (parser->local.delimiter_depth) {
1337				hid_err(device, "unbalanced delimiter at end of report description\n");
1338				goto err;
1339			}
1340
1341			/*
1342			 * fetch initial values in case the device's
1343			 * default multiplier isn't the recommended 1
1344			 */
1345			hid_setup_resolution_multiplier(device);
1346
1347			kfree(parser->collection_stack);
1348			vfree(parser);
1349			device->status |= HID_STAT_PARSED;
1350
1351			return 0;
1352		}
1353	}
1354
1355	hid_err(device, "item fetching failed at offset %u/%u\n",
1356		size - (unsigned int)(end - start), size);
1357err:
1358	kfree(parser->collection_stack);
1359alloc_err:
1360	vfree(parser);
1361	hid_close_report(device);
1362	return ret;
1363}
1364EXPORT_SYMBOL_GPL(hid_open_report);
1365
1366/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1367 * Extract/implement a data field from/to a little endian report (bit array).
1368 *
1369 * Code sort-of follows HID spec:
1370 *     http://www.usb.org/developers/hidpage/HID1_11.pdf
1371 *
1372 * While the USB HID spec allows unlimited length bit fields in "report
1373 * descriptors", most devices never use more than 16 bits.
1374 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1375 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1376 */
1377
1378static u32 __extract(u8 *report, unsigned offset, int n)
 
1379{
1380	unsigned int idx = offset / 8;
1381	unsigned int bit_nr = 0;
1382	unsigned int bit_shift = offset % 8;
1383	int bits_to_copy = 8 - bit_shift;
1384	u32 value = 0;
1385	u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1386
1387	while (n > 0) {
1388		value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1389		n -= bits_to_copy;
1390		bit_nr += bits_to_copy;
1391		bits_to_copy = 8;
1392		bit_shift = 0;
1393		idx++;
1394	}
1395
1396	return value & mask;
1397}
1398
1399u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1400			unsigned offset, unsigned n)
1401{
1402	if (n > 32) {
1403		hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n",
1404			      __func__, n, current->comm);
1405		n = 32;
1406	}
1407
1408	return __extract(report, offset, n);
1409}
1410EXPORT_SYMBOL_GPL(hid_field_extract);
1411
1412/*
1413 * "implement" : set bits in a little endian bit stream.
1414 * Same concepts as "extract" (see comments above).
1415 * The data mangled in the bit stream remains in little endian
1416 * order the whole time. It make more sense to talk about
1417 * endianness of register values by considering a register
1418 * a "cached" copy of the little endian bit stream.
1419 */
1420
1421static void __implement(u8 *report, unsigned offset, int n, u32 value)
1422{
1423	unsigned int idx = offset / 8;
1424	unsigned int bit_shift = offset % 8;
1425	int bits_to_set = 8 - bit_shift;
1426
1427	while (n - bits_to_set >= 0) {
1428		report[idx] &= ~(0xff << bit_shift);
1429		report[idx] |= value << bit_shift;
1430		value >>= bits_to_set;
1431		n -= bits_to_set;
1432		bits_to_set = 8;
1433		bit_shift = 0;
1434		idx++;
1435	}
1436
1437	/* last nibble */
1438	if (n) {
1439		u8 bit_mask = ((1U << n) - 1);
1440		report[idx] &= ~(bit_mask << bit_shift);
1441		report[idx] |= value << bit_shift;
1442	}
1443}
1444
1445static void implement(const struct hid_device *hid, u8 *report,
1446		      unsigned offset, unsigned n, u32 value)
1447{
1448	if (unlikely(n > 32)) {
1449		hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1450			 __func__, n, current->comm);
1451		n = 32;
1452	} else if (n < 32) {
1453		u32 m = (1U << n) - 1;
1454
1455		if (unlikely(value > m)) {
1456			hid_warn(hid,
1457				 "%s() called with too large value %d (n: %d)! (%s)\n",
1458				 __func__, value, n, current->comm);
1459			value &= m;
1460		}
1461	}
1462
1463	__implement(report, offset, n, value);
 
 
 
 
1464}
1465
1466/*
1467 * Search an array for a value.
1468 */
1469
1470static int search(__s32 *array, __s32 value, unsigned n)
1471{
1472	while (n--) {
1473		if (*array++ == value)
1474			return 0;
1475	}
1476	return -1;
1477}
1478
1479/**
1480 * hid_match_report - check if driver's raw_event should be called
1481 *
1482 * @hid: hid device
1483 * @report: hid report to match against
1484 *
1485 * compare hid->driver->report_table->report_type to report->type
1486 */
1487static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1488{
1489	const struct hid_report_id *id = hid->driver->report_table;
1490
1491	if (!id) /* NULL means all */
1492		return 1;
1493
1494	for (; id->report_type != HID_TERMINATOR; id++)
1495		if (id->report_type == HID_ANY_ID ||
1496				id->report_type == report->type)
1497			return 1;
1498	return 0;
1499}
1500
1501/**
1502 * hid_match_usage - check if driver's event should be called
1503 *
1504 * @hid: hid device
1505 * @usage: usage to match against
1506 *
1507 * compare hid->driver->usage_table->usage_{type,code} to
1508 * usage->usage_{type,code}
1509 */
1510static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1511{
1512	const struct hid_usage_id *id = hid->driver->usage_table;
1513
1514	if (!id) /* NULL means all */
1515		return 1;
1516
1517	for (; id->usage_type != HID_ANY_ID - 1; id++)
1518		if ((id->usage_hid == HID_ANY_ID ||
1519				id->usage_hid == usage->hid) &&
1520				(id->usage_type == HID_ANY_ID ||
1521				id->usage_type == usage->type) &&
1522				(id->usage_code == HID_ANY_ID ||
1523				 id->usage_code == usage->code))
1524			return 1;
1525	return 0;
1526}
1527
1528static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1529		struct hid_usage *usage, __s32 value, int interrupt)
1530{
1531	struct hid_driver *hdrv = hid->driver;
1532	int ret;
1533
1534	if (!list_empty(&hid->debug_list))
1535		hid_dump_input(hid, usage, value);
1536
1537	if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1538		ret = hdrv->event(hid, field, usage, value);
1539		if (ret != 0) {
1540			if (ret < 0)
1541				hid_err(hid, "%s's event failed with %d\n",
1542						hdrv->name, ret);
1543			return;
1544		}
1545	}
1546
1547	if (hid->claimed & HID_CLAIMED_INPUT)
1548		hidinput_hid_event(hid, field, usage, value);
1549	if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1550		hid->hiddev_hid_event(hid, field, usage, value);
1551}
1552
1553/*
1554 * Checks if the given value is valid within this field
 
 
1555 */
1556static inline int hid_array_value_is_valid(struct hid_field *field,
1557					   __s32 value)
1558{
1559	__s32 min = field->logical_minimum;
1560
1561	/*
1562	 * Value needs to be between logical min and max, and
1563	 * (value - min) is used as an index in the usage array.
1564	 * This array is of size field->maxusage
1565	 */
1566	return value >= min &&
1567	       value <= field->logical_maximum &&
1568	       value - min < field->maxusage;
1569}
1570
1571/*
1572 * Fetch the field from the data. The field content is stored for next
1573 * report processing (we do differential reporting to the layer).
1574 */
1575static void hid_input_fetch_field(struct hid_device *hid,
1576				  struct hid_field *field,
1577				  __u8 *data)
1578{
1579	unsigned n;
1580	unsigned count = field->report_count;
1581	unsigned offset = field->report_offset;
1582	unsigned size = field->report_size;
1583	__s32 min = field->logical_minimum;
 
1584	__s32 *value;
1585
1586	value = field->new_value;
1587	memset(value, 0, count * sizeof(__s32));
1588	field->ignored = false;
1589
1590	for (n = 0; n < count; n++) {
1591
1592		value[n] = min < 0 ?
1593			snto32(hid_field_extract(hid, data, offset + n * size,
1594			       size), size) :
1595			hid_field_extract(hid, data, offset + n * size, size);
1596
1597		/* Ignore report if ErrorRollOver */
1598		if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1599		    hid_array_value_is_valid(field, value[n]) &&
1600		    field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) {
1601			field->ignored = true;
1602			return;
1603		}
1604	}
1605}
1606
1607/*
1608 * Process a received variable field.
1609 */
1610
1611static void hid_input_var_field(struct hid_device *hid,
1612				struct hid_field *field,
1613				int interrupt)
1614{
1615	unsigned int count = field->report_count;
1616	__s32 *value = field->new_value;
1617	unsigned int n;
1618
1619	for (n = 0; n < count; n++)
1620		hid_process_event(hid,
1621				  field,
1622				  &field->usage[n],
1623				  value[n],
1624				  interrupt);
1625
1626	memcpy(field->value, value, count * sizeof(__s32));
1627}
1628
1629/*
1630 * Process a received array field. The field content is stored for
1631 * next report processing (we do differential reporting to the layer).
1632 */
1633
1634static void hid_input_array_field(struct hid_device *hid,
1635				  struct hid_field *field,
1636				  int interrupt)
1637{
1638	unsigned int n;
1639	unsigned int count = field->report_count;
1640	__s32 min = field->logical_minimum;
1641	__s32 *value;
1642
1643	value = field->new_value;
1644
1645	/* ErrorRollOver */
1646	if (field->ignored)
1647		return;
1648
1649	for (n = 0; n < count; n++) {
1650		if (hid_array_value_is_valid(field, field->value[n]) &&
1651		    search(value, field->value[n], count))
1652			hid_process_event(hid,
1653					  field,
1654					  &field->usage[field->value[n] - min],
1655					  0,
1656					  interrupt);
1657
1658		if (hid_array_value_is_valid(field, value[n]) &&
1659		    search(field->value, value[n], count))
1660			hid_process_event(hid,
1661					  field,
1662					  &field->usage[value[n] - min],
1663					  1,
1664					  interrupt);
1665	}
1666
1667	memcpy(field->value, value, count * sizeof(__s32));
1668}
1669
1670/*
1671 * Analyse a received report, and fetch the data from it. The field
1672 * content is stored for next report processing (we do differential
1673 * reporting to the layer).
1674 */
1675static void hid_process_report(struct hid_device *hid,
1676			       struct hid_report *report,
1677			       __u8 *data,
1678			       int interrupt)
1679{
1680	unsigned int a;
1681	struct hid_field_entry *entry;
1682	struct hid_field *field;
1683
1684	/* first retrieve all incoming values in data */
1685	for (a = 0; a < report->maxfield; a++)
1686		hid_input_fetch_field(hid, report->field[a], data);
1687
1688	if (!list_empty(&report->field_entry_list)) {
1689		/* INPUT_REPORT, we have a priority list of fields */
1690		list_for_each_entry(entry,
1691				    &report->field_entry_list,
1692				    list) {
1693			field = entry->field;
1694
1695			if (field->flags & HID_MAIN_ITEM_VARIABLE)
1696				hid_process_event(hid,
1697						  field,
1698						  &field->usage[entry->index],
1699						  field->new_value[entry->index],
1700						  interrupt);
1701			else
1702				hid_input_array_field(hid, field, interrupt);
1703		}
1704
1705		/* we need to do the memcpy at the end for var items */
1706		for (a = 0; a < report->maxfield; a++) {
1707			field = report->field[a];
1708
1709			if (field->flags & HID_MAIN_ITEM_VARIABLE)
1710				memcpy(field->value, field->new_value,
1711				       field->report_count * sizeof(__s32));
1712		}
1713	} else {
1714		/* FEATURE_REPORT, regular processing */
1715		for (a = 0; a < report->maxfield; a++) {
1716			field = report->field[a];
1717
1718			if (field->flags & HID_MAIN_ITEM_VARIABLE)
1719				hid_input_var_field(hid, field, interrupt);
1720			else
1721				hid_input_array_field(hid, field, interrupt);
1722		}
 
 
 
 
1723	}
1724}
1725
1726/*
1727 * Insert a given usage_index in a field in the list
1728 * of processed usages in the report.
1729 *
1730 * The elements of lower priority score are processed
1731 * first.
1732 */
1733static void __hid_insert_field_entry(struct hid_device *hid,
1734				     struct hid_report *report,
1735				     struct hid_field_entry *entry,
1736				     struct hid_field *field,
1737				     unsigned int usage_index)
1738{
1739	struct hid_field_entry *next;
1740
1741	entry->field = field;
1742	entry->index = usage_index;
1743	entry->priority = field->usages_priorities[usage_index];
1744
1745	/* insert the element at the correct position */
1746	list_for_each_entry(next,
1747			    &report->field_entry_list,
1748			    list) {
1749		/*
1750		 * the priority of our element is strictly higher
1751		 * than the next one, insert it before
1752		 */
1753		if (entry->priority > next->priority) {
1754			list_add_tail(&entry->list, &next->list);
1755			return;
1756		}
1757	}
1758
1759	/* lowest priority score: insert at the end */
1760	list_add_tail(&entry->list, &report->field_entry_list);
1761}
1762
1763static void hid_report_process_ordering(struct hid_device *hid,
1764					struct hid_report *report)
1765{
1766	struct hid_field *field;
1767	struct hid_field_entry *entries;
1768	unsigned int a, u, usages;
1769	unsigned int count = 0;
1770
1771	/* count the number of individual fields in the report */
1772	for (a = 0; a < report->maxfield; a++) {
1773		field = report->field[a];
1774
1775		if (field->flags & HID_MAIN_ITEM_VARIABLE)
1776			count += field->report_count;
1777		else
1778			count++;
1779	}
1780
1781	/* allocate the memory to process the fields */
1782	entries = kcalloc(count, sizeof(*entries), GFP_KERNEL);
1783	if (!entries)
1784		return;
1785
1786	report->field_entries = entries;
1787
1788	/*
1789	 * walk through all fields in the report and
1790	 * store them by priority order in report->field_entry_list
1791	 *
1792	 * - Var elements are individualized (field + usage_index)
1793	 * - Arrays are taken as one, we can not chose an order for them
1794	 */
1795	usages = 0;
1796	for (a = 0; a < report->maxfield; a++) {
1797		field = report->field[a];
1798
1799		if (field->flags & HID_MAIN_ITEM_VARIABLE) {
1800			for (u = 0; u < field->report_count; u++) {
1801				__hid_insert_field_entry(hid, report,
1802							 &entries[usages],
1803							 field, u);
1804				usages++;
1805			}
1806		} else {
1807			__hid_insert_field_entry(hid, report, &entries[usages],
1808						 field, 0);
1809			usages++;
1810		}
1811	}
1812}
1813
1814static void hid_process_ordering(struct hid_device *hid)
1815{
1816	struct hid_report *report;
1817	struct hid_report_enum *report_enum = &hid->report_enum[HID_INPUT_REPORT];
1818
1819	list_for_each_entry(report, &report_enum->report_list, list)
1820		hid_report_process_ordering(hid, report);
1821}
1822
1823/*
1824 * Output the field into the report.
1825 */
1826
1827static void hid_output_field(const struct hid_device *hid,
1828			     struct hid_field *field, __u8 *data)
1829{
1830	unsigned count = field->report_count;
1831	unsigned offset = field->report_offset;
1832	unsigned size = field->report_size;
1833	unsigned n;
1834
1835	for (n = 0; n < count; n++) {
1836		if (field->logical_minimum < 0)	/* signed values */
1837			implement(hid, data, offset + n * size, size,
1838				  s32ton(field->value[n], size));
1839		else				/* unsigned values */
1840			implement(hid, data, offset + n * size, size,
1841				  field->value[n]);
1842	}
1843}
1844
1845/*
1846 * Compute the size of a report.
1847 */
1848static size_t hid_compute_report_size(struct hid_report *report)
1849{
1850	if (report->size)
1851		return ((report->size - 1) >> 3) + 1;
1852
1853	return 0;
1854}
1855
1856/*
1857 * Create a report. 'data' has to be allocated using
1858 * hid_alloc_report_buf() so that it has proper size.
1859 */
1860
1861void hid_output_report(struct hid_report *report, __u8 *data)
1862{
1863	unsigned n;
1864
1865	if (report->id > 0)
1866		*data++ = report->id;
1867
1868	memset(data, 0, hid_compute_report_size(report));
1869	for (n = 0; n < report->maxfield; n++)
1870		hid_output_field(report->device, report->field[n], data);
1871}
1872EXPORT_SYMBOL_GPL(hid_output_report);
1873
 
 
 
 
 
 
1874/*
1875 * Allocator for buffer that is going to be passed to hid_output_report()
1876 */
1877u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1878{
1879	/*
1880	 * 7 extra bytes are necessary to achieve proper functionality
1881	 * of implement() working on 8 byte chunks
1882	 */
1883
1884	u32 len = hid_report_len(report) + 7;
1885
1886	return kzalloc(len, flags);
1887}
1888EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1889
1890/*
1891 * Set a field value. The report this field belongs to has to be
1892 * created and transferred to the device, to set this value in the
1893 * device.
1894 */
1895
1896int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1897{
1898	unsigned size;
1899
1900	if (!field)
1901		return -1;
1902
1903	size = field->report_size;
1904
1905	hid_dump_input(field->report->device, field->usage + offset, value);
1906
1907	if (offset >= field->report_count) {
1908		hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1909				offset, field->report_count);
1910		return -1;
1911	}
1912	if (field->logical_minimum < 0) {
1913		if (value != snto32(s32ton(value, size), size)) {
1914			hid_err(field->report->device, "value %d is out of range\n", value);
1915			return -1;
1916		}
1917	}
1918	field->value[offset] = value;
1919	return 0;
1920}
1921EXPORT_SYMBOL_GPL(hid_set_field);
1922
1923struct hid_field *hid_find_field(struct hid_device *hdev, unsigned int report_type,
1924				 unsigned int application, unsigned int usage)
1925{
1926	struct list_head *report_list = &hdev->report_enum[report_type].report_list;
1927	struct hid_report *report;
1928	int i, j;
1929
1930	list_for_each_entry(report, report_list, list) {
1931		if (report->application != application)
1932			continue;
1933
1934		for (i = 0; i < report->maxfield; i++) {
1935			struct hid_field *field = report->field[i];
1936
1937			for (j = 0; j < field->maxusage; j++) {
1938				if (field->usage[j].hid == usage)
1939					return field;
1940			}
1941		}
1942	}
1943
1944	return NULL;
1945}
1946EXPORT_SYMBOL_GPL(hid_find_field);
1947
1948static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1949		const u8 *data)
1950{
1951	struct hid_report *report;
1952	unsigned int n = 0;	/* Normally report number is 0 */
1953
1954	/* Device uses numbered reports, data[0] is report number */
1955	if (report_enum->numbered)
1956		n = *data;
1957
1958	report = report_enum->report_id_hash[n];
1959	if (report == NULL)
1960		dbg_hid("undefined report_id %u received\n", n);
1961
1962	return report;
1963}
1964
1965/*
1966 * Implement a generic .request() callback, using .raw_request()
1967 * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1968 */
1969int __hid_request(struct hid_device *hid, struct hid_report *report,
1970		enum hid_class_request reqtype)
1971{
1972	char *buf;
1973	int ret;
1974	u32 len;
1975
1976	buf = hid_alloc_report_buf(report, GFP_KERNEL);
1977	if (!buf)
1978		return -ENOMEM;
1979
1980	len = hid_report_len(report);
1981
1982	if (reqtype == HID_REQ_SET_REPORT)
1983		hid_output_report(report, buf);
1984
1985	ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1986					  report->type, reqtype);
1987	if (ret < 0) {
1988		dbg_hid("unable to complete request: %d\n", ret);
1989		goto out;
1990	}
1991
1992	if (reqtype == HID_REQ_GET_REPORT)
1993		hid_input_report(hid, report->type, buf, ret, 0);
1994
1995	ret = 0;
1996
1997out:
1998	kfree(buf);
1999	return ret;
2000}
2001EXPORT_SYMBOL_GPL(__hid_request);
2002
2003int hid_report_raw_event(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
2004			 int interrupt)
2005{
2006	struct hid_report_enum *report_enum = hid->report_enum + type;
2007	struct hid_report *report;
2008	struct hid_driver *hdrv;
2009	int max_buffer_size = HID_MAX_BUFFER_SIZE;
2010	u32 rsize, csize = size;
2011	u8 *cdata = data;
2012	int ret = 0;
2013
2014	report = hid_get_report(report_enum, data);
2015	if (!report)
2016		goto out;
2017
2018	if (report_enum->numbered) {
2019		cdata++;
2020		csize--;
2021	}
2022
2023	rsize = hid_compute_report_size(report);
2024
2025	if (hid->ll_driver->max_buffer_size)
2026		max_buffer_size = hid->ll_driver->max_buffer_size;
2027
2028	if (report_enum->numbered && rsize >= max_buffer_size)
2029		rsize = max_buffer_size - 1;
2030	else if (rsize > max_buffer_size)
2031		rsize = max_buffer_size;
2032
2033	if (csize < rsize) {
2034		dbg_hid("report %d is too short, (%d < %d)\n", report->id,
2035				csize, rsize);
2036		memset(cdata + csize, 0, rsize - csize);
2037	}
2038
2039	if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
2040		hid->hiddev_report_event(hid, report);
2041	if (hid->claimed & HID_CLAIMED_HIDRAW) {
2042		ret = hidraw_report_event(hid, data, size);
2043		if (ret)
2044			goto out;
2045	}
2046
2047	if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
2048		hid_process_report(hid, report, cdata, interrupt);
 
2049		hdrv = hid->driver;
2050		if (hdrv && hdrv->report)
2051			hdrv->report(hid, report);
2052	}
2053
2054	if (hid->claimed & HID_CLAIMED_INPUT)
2055		hidinput_report_event(hid, report);
2056out:
2057	return ret;
2058}
2059EXPORT_SYMBOL_GPL(hid_report_raw_event);
2060
2061
2062static int __hid_input_report(struct hid_device *hid, enum hid_report_type type,
2063			      u8 *data, u32 size, int interrupt, u64 source, bool from_bpf,
2064			      bool lock_already_taken)
 
 
 
 
 
 
 
 
2065{
2066	struct hid_report_enum *report_enum;
2067	struct hid_driver *hdrv;
2068	struct hid_report *report;
2069	int ret = 0;
2070
2071	if (!hid)
2072		return -ENODEV;
2073
2074	ret = down_trylock(&hid->driver_input_lock);
2075	if (lock_already_taken && !ret) {
2076		up(&hid->driver_input_lock);
2077		return -EINVAL;
2078	} else if (!lock_already_taken && ret) {
2079		return -EBUSY;
2080	}
2081
2082	if (!hid->driver) {
2083		ret = -ENODEV;
2084		goto unlock;
2085	}
2086	report_enum = hid->report_enum + type;
2087	hdrv = hid->driver;
2088
2089	data = dispatch_hid_bpf_device_event(hid, type, data, &size, interrupt, source, from_bpf);
2090	if (IS_ERR(data)) {
2091		ret = PTR_ERR(data);
2092		goto unlock;
2093	}
2094
2095	if (!size) {
2096		dbg_hid("empty report\n");
2097		ret = -1;
2098		goto unlock;
2099	}
2100
2101	/* Avoid unnecessary overhead if debugfs is disabled */
2102	if (!list_empty(&hid->debug_list))
2103		hid_dump_report(hid, type, data, size);
2104
2105	report = hid_get_report(report_enum, data);
2106
2107	if (!report) {
2108		ret = -1;
2109		goto unlock;
2110	}
2111
2112	if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
2113		ret = hdrv->raw_event(hid, report, data, size);
2114		if (ret < 0)
2115			goto unlock;
2116	}
2117
2118	ret = hid_report_raw_event(hid, type, data, size, interrupt);
2119
2120unlock:
2121	if (!lock_already_taken)
2122		up(&hid->driver_input_lock);
2123	return ret;
2124}
2125
2126/**
2127 * hid_input_report - report data from lower layer (usb, bt...)
2128 *
2129 * @hid: hid device
2130 * @type: HID report type (HID_*_REPORT)
2131 * @data: report contents
2132 * @size: size of data parameter
2133 * @interrupt: distinguish between interrupt and control transfers
2134 *
2135 * This is data entry for lower layers.
2136 */
2137int hid_input_report(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
2138		     int interrupt)
2139{
2140	return __hid_input_report(hid, type, data, size, interrupt, 0,
2141				  false, /* from_bpf */
2142				  false /* lock_already_taken */);
2143}
2144EXPORT_SYMBOL_GPL(hid_input_report);
2145
2146bool hid_match_one_id(const struct hid_device *hdev,
2147		      const struct hid_device_id *id)
2148{
2149	return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
2150		(id->group == HID_GROUP_ANY || id->group == hdev->group) &&
2151		(id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
2152		(id->product == HID_ANY_ID || id->product == hdev->product);
2153}
2154
2155const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
2156		const struct hid_device_id *id)
2157{
2158	for (; id->bus; id++)
2159		if (hid_match_one_id(hdev, id))
2160			return id;
2161
2162	return NULL;
2163}
2164EXPORT_SYMBOL_GPL(hid_match_id);
2165
2166static const struct hid_device_id hid_hiddev_list[] = {
2167	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
2168	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
2169	{ }
2170};
2171
2172static bool hid_hiddev(struct hid_device *hdev)
2173{
2174	return !!hid_match_id(hdev, hid_hiddev_list);
2175}
2176
2177
2178static ssize_t
2179read_report_descriptor(struct file *filp, struct kobject *kobj,
2180		struct bin_attribute *attr,
2181		char *buf, loff_t off, size_t count)
2182{
2183	struct device *dev = kobj_to_dev(kobj);
2184	struct hid_device *hdev = to_hid_device(dev);
2185
2186	if (off >= hdev->rsize)
2187		return 0;
2188
2189	if (off + count > hdev->rsize)
2190		count = hdev->rsize - off;
2191
2192	memcpy(buf, hdev->rdesc + off, count);
2193
2194	return count;
2195}
2196
2197static ssize_t
2198show_country(struct device *dev, struct device_attribute *attr,
2199		char *buf)
2200{
2201	struct hid_device *hdev = to_hid_device(dev);
2202
2203	return sprintf(buf, "%02x\n", hdev->country & 0xff);
2204}
2205
2206static struct bin_attribute dev_bin_attr_report_desc = {
2207	.attr = { .name = "report_descriptor", .mode = 0444 },
2208	.read = read_report_descriptor,
2209	.size = HID_MAX_DESCRIPTOR_SIZE,
2210};
2211
2212static const struct device_attribute dev_attr_country = {
2213	.attr = { .name = "country", .mode = 0444 },
2214	.show = show_country,
2215};
2216
2217int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
2218{
2219	static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
2220		"Joystick", "Gamepad", "Keyboard", "Keypad",
2221		"Multi-Axis Controller"
2222	};
2223	const char *type, *bus;
2224	char buf[64] = "";
2225	unsigned int i;
2226	int len;
2227	int ret;
2228
2229	ret = hid_bpf_connect_device(hdev);
2230	if (ret)
2231		return ret;
2232
2233	if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
2234		connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
2235	if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
2236		connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
2237	if (hdev->bus != BUS_USB)
2238		connect_mask &= ~HID_CONNECT_HIDDEV;
2239	if (hid_hiddev(hdev))
2240		connect_mask |= HID_CONNECT_HIDDEV_FORCE;
2241
2242	if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
2243				connect_mask & HID_CONNECT_HIDINPUT_FORCE))
2244		hdev->claimed |= HID_CLAIMED_INPUT;
2245
2246	if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
2247			!hdev->hiddev_connect(hdev,
2248				connect_mask & HID_CONNECT_HIDDEV_FORCE))
2249		hdev->claimed |= HID_CLAIMED_HIDDEV;
2250	if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
2251		hdev->claimed |= HID_CLAIMED_HIDRAW;
2252
2253	if (connect_mask & HID_CONNECT_DRIVER)
2254		hdev->claimed |= HID_CLAIMED_DRIVER;
2255
2256	/* Drivers with the ->raw_event callback set are not required to connect
2257	 * to any other listener. */
2258	if (!hdev->claimed && !hdev->driver->raw_event) {
2259		hid_err(hdev, "device has no listeners, quitting\n");
2260		return -ENODEV;
2261	}
2262
2263	hid_process_ordering(hdev);
2264
2265	if ((hdev->claimed & HID_CLAIMED_INPUT) &&
2266			(connect_mask & HID_CONNECT_FF) && hdev->ff_init)
2267		hdev->ff_init(hdev);
2268
2269	len = 0;
2270	if (hdev->claimed & HID_CLAIMED_INPUT)
2271		len += sprintf(buf + len, "input");
2272	if (hdev->claimed & HID_CLAIMED_HIDDEV)
2273		len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
2274				((struct hiddev *)hdev->hiddev)->minor);
2275	if (hdev->claimed & HID_CLAIMED_HIDRAW)
2276		len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
2277				((struct hidraw *)hdev->hidraw)->minor);
2278
2279	type = "Device";
2280	for (i = 0; i < hdev->maxcollection; i++) {
2281		struct hid_collection *col = &hdev->collection[i];
2282		if (col->type == HID_COLLECTION_APPLICATION &&
2283		   (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
2284		   (col->usage & 0xffff) < ARRAY_SIZE(types)) {
2285			type = types[col->usage & 0xffff];
2286			break;
2287		}
2288	}
2289
2290	switch (hdev->bus) {
2291	case BUS_USB:
2292		bus = "USB";
2293		break;
2294	case BUS_BLUETOOTH:
2295		bus = "BLUETOOTH";
2296		break;
2297	case BUS_I2C:
2298		bus = "I2C";
2299		break;
2300	case BUS_VIRTUAL:
2301		bus = "VIRTUAL";
2302		break;
2303	case BUS_INTEL_ISHTP:
2304	case BUS_AMD_SFH:
2305		bus = "SENSOR HUB";
2306		break;
2307	default:
2308		bus = "<UNKNOWN>";
2309	}
2310
2311	ret = device_create_file(&hdev->dev, &dev_attr_country);
2312	if (ret)
2313		hid_warn(hdev,
2314			 "can't create sysfs country code attribute err: %d\n", ret);
2315
2316	hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
2317		 buf, bus, hdev->version >> 8, hdev->version & 0xff,
2318		 type, hdev->name, hdev->phys);
2319
2320	return 0;
2321}
2322EXPORT_SYMBOL_GPL(hid_connect);
2323
2324void hid_disconnect(struct hid_device *hdev)
2325{
2326	device_remove_file(&hdev->dev, &dev_attr_country);
2327	if (hdev->claimed & HID_CLAIMED_INPUT)
2328		hidinput_disconnect(hdev);
2329	if (hdev->claimed & HID_CLAIMED_HIDDEV)
2330		hdev->hiddev_disconnect(hdev);
2331	if (hdev->claimed & HID_CLAIMED_HIDRAW)
2332		hidraw_disconnect(hdev);
2333	hdev->claimed = 0;
2334
2335	hid_bpf_disconnect_device(hdev);
2336}
2337EXPORT_SYMBOL_GPL(hid_disconnect);
2338
2339/**
2340 * hid_hw_start - start underlying HW
2341 * @hdev: hid device
2342 * @connect_mask: which outputs to connect, see HID_CONNECT_*
2343 *
2344 * Call this in probe function *after* hid_parse. This will setup HW
2345 * buffers and start the device (if not defeirred to device open).
2346 * hid_hw_stop must be called if this was successful.
2347 */
2348int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
2349{
2350	int error;
2351
2352	error = hdev->ll_driver->start(hdev);
2353	if (error)
2354		return error;
2355
2356	if (connect_mask) {
2357		error = hid_connect(hdev, connect_mask);
2358		if (error) {
2359			hdev->ll_driver->stop(hdev);
2360			return error;
2361		}
2362	}
2363
2364	return 0;
2365}
2366EXPORT_SYMBOL_GPL(hid_hw_start);
2367
2368/**
2369 * hid_hw_stop - stop underlying HW
2370 * @hdev: hid device
2371 *
2372 * This is usually called from remove function or from probe when something
2373 * failed and hid_hw_start was called already.
2374 */
2375void hid_hw_stop(struct hid_device *hdev)
2376{
2377	hid_disconnect(hdev);
2378	hdev->ll_driver->stop(hdev);
2379}
2380EXPORT_SYMBOL_GPL(hid_hw_stop);
2381
2382/**
2383 * hid_hw_open - signal underlying HW to start delivering events
2384 * @hdev: hid device
2385 *
2386 * Tell underlying HW to start delivering events from the device.
2387 * This function should be called sometime after successful call
2388 * to hid_hw_start().
2389 */
2390int hid_hw_open(struct hid_device *hdev)
2391{
2392	int ret;
2393
2394	ret = mutex_lock_killable(&hdev->ll_open_lock);
2395	if (ret)
2396		return ret;
2397
2398	if (!hdev->ll_open_count++) {
2399		ret = hdev->ll_driver->open(hdev);
2400		if (ret)
2401			hdev->ll_open_count--;
2402	}
2403
2404	mutex_unlock(&hdev->ll_open_lock);
2405	return ret;
2406}
2407EXPORT_SYMBOL_GPL(hid_hw_open);
2408
2409/**
2410 * hid_hw_close - signal underlaying HW to stop delivering events
2411 *
2412 * @hdev: hid device
2413 *
2414 * This function indicates that we are not interested in the events
2415 * from this device anymore. Delivery of events may or may not stop,
2416 * depending on the number of users still outstanding.
2417 */
2418void hid_hw_close(struct hid_device *hdev)
2419{
2420	mutex_lock(&hdev->ll_open_lock);
2421	if (!--hdev->ll_open_count)
2422		hdev->ll_driver->close(hdev);
2423	mutex_unlock(&hdev->ll_open_lock);
2424}
2425EXPORT_SYMBOL_GPL(hid_hw_close);
2426
2427/**
2428 * hid_hw_request - send report request to device
2429 *
2430 * @hdev: hid device
2431 * @report: report to send
2432 * @reqtype: hid request type
2433 */
2434void hid_hw_request(struct hid_device *hdev,
2435		    struct hid_report *report, enum hid_class_request reqtype)
2436{
2437	if (hdev->ll_driver->request)
2438		return hdev->ll_driver->request(hdev, report, reqtype);
2439
2440	__hid_request(hdev, report, reqtype);
2441}
2442EXPORT_SYMBOL_GPL(hid_hw_request);
2443
2444int __hid_hw_raw_request(struct hid_device *hdev,
2445			 unsigned char reportnum, __u8 *buf,
2446			 size_t len, enum hid_report_type rtype,
2447			 enum hid_class_request reqtype,
2448			 u64 source, bool from_bpf)
2449{
2450	unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
2451	int ret;
2452
2453	if (hdev->ll_driver->max_buffer_size)
2454		max_buffer_size = hdev->ll_driver->max_buffer_size;
2455
2456	if (len < 1 || len > max_buffer_size || !buf)
2457		return -EINVAL;
2458
2459	ret = dispatch_hid_bpf_raw_requests(hdev, reportnum, buf, len, rtype,
2460					    reqtype, source, from_bpf);
2461	if (ret)
2462		return ret;
2463
2464	return hdev->ll_driver->raw_request(hdev, reportnum, buf, len,
2465					    rtype, reqtype);
2466}
2467
2468/**
2469 * hid_hw_raw_request - send report request to device
2470 *
2471 * @hdev: hid device
2472 * @reportnum: report ID
2473 * @buf: in/out data to transfer
2474 * @len: length of buf
2475 * @rtype: HID report type
2476 * @reqtype: HID_REQ_GET_REPORT or HID_REQ_SET_REPORT
2477 *
2478 * Return: count of data transferred, negative if error
2479 *
2480 * Same behavior as hid_hw_request, but with raw buffers instead.
2481 */
2482int hid_hw_raw_request(struct hid_device *hdev,
2483		       unsigned char reportnum, __u8 *buf,
2484		       size_t len, enum hid_report_type rtype, enum hid_class_request reqtype)
2485{
2486	return __hid_hw_raw_request(hdev, reportnum, buf, len, rtype, reqtype, 0, false);
2487}
2488EXPORT_SYMBOL_GPL(hid_hw_raw_request);
2489
2490int __hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len, u64 source,
2491			   bool from_bpf)
2492{
2493	unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
2494	int ret;
2495
2496	if (hdev->ll_driver->max_buffer_size)
2497		max_buffer_size = hdev->ll_driver->max_buffer_size;
2498
2499	if (len < 1 || len > max_buffer_size || !buf)
2500		return -EINVAL;
2501
2502	ret = dispatch_hid_bpf_output_report(hdev, buf, len, source, from_bpf);
2503	if (ret)
2504		return ret;
2505
2506	if (hdev->ll_driver->output_report)
2507		return hdev->ll_driver->output_report(hdev, buf, len);
2508
2509	return -ENOSYS;
2510}
2511
2512/**
2513 * hid_hw_output_report - send output report to device
2514 *
2515 * @hdev: hid device
2516 * @buf: raw data to transfer
2517 * @len: length of buf
2518 *
2519 * Return: count of data transferred, negative if error
2520 */
2521int hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len)
2522{
2523	return __hid_hw_output_report(hdev, buf, len, 0, false);
2524}
2525EXPORT_SYMBOL_GPL(hid_hw_output_report);
2526
2527#ifdef CONFIG_PM
2528int hid_driver_suspend(struct hid_device *hdev, pm_message_t state)
2529{
2530	if (hdev->driver && hdev->driver->suspend)
2531		return hdev->driver->suspend(hdev, state);
2532
2533	return 0;
2534}
2535EXPORT_SYMBOL_GPL(hid_driver_suspend);
2536
2537int hid_driver_reset_resume(struct hid_device *hdev)
2538{
2539	if (hdev->driver && hdev->driver->reset_resume)
2540		return hdev->driver->reset_resume(hdev);
2541
2542	return 0;
2543}
2544EXPORT_SYMBOL_GPL(hid_driver_reset_resume);
2545
2546int hid_driver_resume(struct hid_device *hdev)
2547{
2548	if (hdev->driver && hdev->driver->resume)
2549		return hdev->driver->resume(hdev);
2550
2551	return 0;
2552}
2553EXPORT_SYMBOL_GPL(hid_driver_resume);
2554#endif /* CONFIG_PM */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2555
2556struct hid_dynid {
2557	struct list_head list;
2558	struct hid_device_id id;
2559};
2560
2561/**
2562 * new_id_store - add a new HID device ID to this driver and re-probe devices
2563 * @drv: target device driver
2564 * @buf: buffer for scanning device ID data
2565 * @count: input size
2566 *
2567 * Adds a new dynamic hid device ID to this driver,
2568 * and causes the driver to probe for all devices again.
2569 */
2570static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2571		size_t count)
2572{
2573	struct hid_driver *hdrv = to_hid_driver(drv);
2574	struct hid_dynid *dynid;
2575	__u32 bus, vendor, product;
2576	unsigned long driver_data = 0;
2577	int ret;
2578
2579	ret = sscanf(buf, "%x %x %x %lx",
2580			&bus, &vendor, &product, &driver_data);
2581	if (ret < 3)
2582		return -EINVAL;
2583
2584	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2585	if (!dynid)
2586		return -ENOMEM;
2587
2588	dynid->id.bus = bus;
2589	dynid->id.group = HID_GROUP_ANY;
2590	dynid->id.vendor = vendor;
2591	dynid->id.product = product;
2592	dynid->id.driver_data = driver_data;
2593
2594	spin_lock(&hdrv->dyn_lock);
2595	list_add_tail(&dynid->list, &hdrv->dyn_list);
2596	spin_unlock(&hdrv->dyn_lock);
2597
2598	ret = driver_attach(&hdrv->driver);
2599
2600	return ret ? : count;
2601}
2602static DRIVER_ATTR_WO(new_id);
2603
2604static struct attribute *hid_drv_attrs[] = {
2605	&driver_attr_new_id.attr,
2606	NULL,
2607};
2608ATTRIBUTE_GROUPS(hid_drv);
2609
2610static void hid_free_dynids(struct hid_driver *hdrv)
2611{
2612	struct hid_dynid *dynid, *n;
2613
2614	spin_lock(&hdrv->dyn_lock);
2615	list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2616		list_del(&dynid->list);
2617		kfree(dynid);
2618	}
2619	spin_unlock(&hdrv->dyn_lock);
2620}
2621
2622const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2623					     struct hid_driver *hdrv)
2624{
2625	struct hid_dynid *dynid;
2626
2627	spin_lock(&hdrv->dyn_lock);
2628	list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2629		if (hid_match_one_id(hdev, &dynid->id)) {
2630			spin_unlock(&hdrv->dyn_lock);
2631			return &dynid->id;
2632		}
2633	}
2634	spin_unlock(&hdrv->dyn_lock);
2635
2636	return hid_match_id(hdev, hdrv->id_table);
2637}
2638EXPORT_SYMBOL_GPL(hid_match_device);
2639
2640static int hid_bus_match(struct device *dev, const struct device_driver *drv)
2641{
2642	struct hid_driver *hdrv = to_hid_driver(drv);
2643	struct hid_device *hdev = to_hid_device(dev);
2644
2645	return hid_match_device(hdev, hdrv) != NULL;
2646}
2647
2648/**
2649 * hid_compare_device_paths - check if both devices share the same path
2650 * @hdev_a: hid device
2651 * @hdev_b: hid device
2652 * @separator: char to use as separator
2653 *
2654 * Check if two devices share the same path up to the last occurrence of
2655 * the separator char. Both paths must exist (i.e., zero-length paths
2656 * don't match).
2657 */
2658bool hid_compare_device_paths(struct hid_device *hdev_a,
2659			      struct hid_device *hdev_b, char separator)
2660{
2661	int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2662	int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2663
2664	if (n1 != n2 || n1 <= 0 || n2 <= 0)
2665		return false;
2666
2667	return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2668}
2669EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2670
2671static bool hid_check_device_match(struct hid_device *hdev,
2672				   struct hid_driver *hdrv,
2673				   const struct hid_device_id **id)
2674{
2675	*id = hid_match_device(hdev, hdrv);
2676	if (!*id)
2677		return false;
2678
2679	if (hdrv->match)
2680		return hdrv->match(hdev, hid_ignore_special_drivers);
2681
2682	/*
2683	 * hid-generic implements .match(), so we must be dealing with a
2684	 * different HID driver here, and can simply check if
2685	 * hid_ignore_special_drivers or HID_QUIRK_IGNORE_SPECIAL_DRIVER
2686	 * are set or not.
2687	 */
2688	return !hid_ignore_special_drivers && !(hdev->quirks & HID_QUIRK_IGNORE_SPECIAL_DRIVER);
2689}
2690
2691static int __hid_device_probe(struct hid_device *hdev, struct hid_driver *hdrv)
2692{
 
 
 
2693	const struct hid_device_id *id;
2694	int ret;
2695
2696	if (!hdev->bpf_rsize) {
2697		/* in case a bpf program gets detached, we need to free the old one */
2698		hid_free_bpf_rdesc(hdev);
2699
2700		/* keep this around so we know we called it once */
2701		hdev->bpf_rsize = hdev->dev_rsize;
2702
2703		/* call_hid_bpf_rdesc_fixup will always return a valid pointer */
2704		hdev->bpf_rdesc = call_hid_bpf_rdesc_fixup(hdev, hdev->dev_rdesc,
2705							   &hdev->bpf_rsize);
2706	}
2707
2708	if (!hid_check_device_match(hdev, hdrv, &id))
2709		return -ENODEV;
2710
2711	hdev->devres_group_id = devres_open_group(&hdev->dev, NULL, GFP_KERNEL);
2712	if (!hdev->devres_group_id)
2713		return -ENOMEM;
2714
2715	/* reset the quirks that has been previously set */
2716	hdev->quirks = hid_lookup_quirk(hdev);
2717	hdev->driver = hdrv;
2718
2719	if (hdrv->probe) {
2720		ret = hdrv->probe(hdev, id);
2721	} else { /* default probe */
2722		ret = hid_open_report(hdev);
2723		if (!ret)
2724			ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2725	}
2726
2727	/*
2728	 * Note that we are not closing the devres group opened above so
2729	 * even resources that were attached to the device after probe is
2730	 * run are released when hid_device_remove() is executed. This is
2731	 * needed as some drivers would allocate additional resources,
2732	 * for example when updating firmware.
2733	 */
2734
2735	if (ret) {
2736		devres_release_group(&hdev->dev, hdev->devres_group_id);
2737		hid_close_report(hdev);
2738		hdev->driver = NULL;
2739	}
2740
2741	return ret;
2742}
2743
2744static int hid_device_probe(struct device *dev)
2745{
2746	struct hid_device *hdev = to_hid_device(dev);
2747	struct hid_driver *hdrv = to_hid_driver(dev->driver);
2748	int ret = 0;
2749
2750	if (down_interruptible(&hdev->driver_input_lock))
2751		return -EINTR;
2752
 
 
 
2753	hdev->io_started = false;
2754	clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2755
2756	if (!hdev->driver)
2757		ret = __hid_device_probe(hdev, hdrv);
 
 
 
 
2758
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2759	if (!hdev->io_started)
2760		up(&hdev->driver_input_lock);
2761
 
2762	return ret;
2763}
2764
2765static void hid_device_remove(struct device *dev)
2766{
2767	struct hid_device *hdev = to_hid_device(dev);
2768	struct hid_driver *hdrv;
 
2769
2770	down(&hdev->driver_input_lock);
 
 
 
 
 
2771	hdev->io_started = false;
2772
2773	hdrv = hdev->driver;
2774	if (hdrv) {
2775		if (hdrv->remove)
2776			hdrv->remove(hdev);
2777		else /* default remove */
2778			hid_hw_stop(hdev);
2779
2780		/* Release all devres resources allocated by the driver */
2781		devres_release_group(&hdev->dev, hdev->devres_group_id);
2782
2783		hid_close_report(hdev);
2784		hdev->driver = NULL;
2785	}
2786
2787	if (!hdev->io_started)
2788		up(&hdev->driver_input_lock);
 
 
 
2789}
2790
2791static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2792			     char *buf)
2793{
2794	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
 
 
 
 
2795
2796	return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2797			 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2798}
2799static DEVICE_ATTR_RO(modalias);
2800
2801static struct attribute *hid_dev_attrs[] = {
2802	&dev_attr_modalias.attr,
2803	NULL,
2804};
2805static struct bin_attribute *hid_dev_bin_attrs[] = {
2806	&dev_bin_attr_report_desc,
2807	NULL
2808};
2809static const struct attribute_group hid_dev_group = {
2810	.attrs = hid_dev_attrs,
2811	.bin_attrs = hid_dev_bin_attrs,
2812};
2813__ATTRIBUTE_GROUPS(hid_dev);
2814
2815static int hid_uevent(const struct device *dev, struct kobj_uevent_env *env)
2816{
2817	const struct hid_device *hdev = to_hid_device(dev);
2818
2819	if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2820			hdev->bus, hdev->vendor, hdev->product))
2821		return -ENOMEM;
2822
2823	if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2824		return -ENOMEM;
2825
2826	if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2827		return -ENOMEM;
2828
2829	if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2830		return -ENOMEM;
2831
2832	if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2833			   hdev->bus, hdev->group, hdev->vendor, hdev->product))
2834		return -ENOMEM;
2835
2836	return 0;
2837}
2838
2839const struct bus_type hid_bus_type = {
2840	.name		= "hid",
2841	.dev_groups	= hid_dev_groups,
2842	.drv_groups	= hid_drv_groups,
2843	.match		= hid_bus_match,
2844	.probe		= hid_device_probe,
2845	.remove		= hid_device_remove,
2846	.uevent		= hid_uevent,
2847};
2848EXPORT_SYMBOL(hid_bus_type);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2849
2850int hid_add_device(struct hid_device *hdev)
2851{
2852	static atomic_t id = ATOMIC_INIT(0);
2853	int ret;
2854
2855	if (WARN_ON(hdev->status & HID_STAT_ADDED))
2856		return -EBUSY;
2857
2858	hdev->quirks = hid_lookup_quirk(hdev);
2859
2860	/* we need to kill them here, otherwise they will stay allocated to
2861	 * wait for coming driver */
2862	if (hid_ignore(hdev))
2863		return -ENODEV;
2864
2865	/*
2866	 * Check for the mandatory transport channel.
2867	 */
2868	 if (!hdev->ll_driver->raw_request) {
2869		hid_err(hdev, "transport driver missing .raw_request()\n");
2870		return -EINVAL;
2871	 }
2872
2873	/*
2874	 * Read the device report descriptor once and use as template
2875	 * for the driver-specific modifications.
2876	 */
2877	ret = hdev->ll_driver->parse(hdev);
2878	if (ret)
2879		return ret;
2880	if (!hdev->dev_rdesc)
2881		return -ENODEV;
2882
2883	/*
2884	 * Scan generic devices for group information
2885	 */
2886	if (hid_ignore_special_drivers) {
2887		hdev->group = HID_GROUP_GENERIC;
2888	} else if (!hdev->group &&
2889		   !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2890		ret = hid_scan_report(hdev);
2891		if (ret)
2892			hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2893	}
2894
2895	hdev->id = atomic_inc_return(&id);
2896
2897	/* XXX hack, any other cleaner solution after the driver core
2898	 * is converted to allow more than 20 bytes as the device name? */
2899	dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2900		     hdev->vendor, hdev->product, hdev->id);
2901
2902	hid_debug_register(hdev, dev_name(&hdev->dev));
2903	ret = device_add(&hdev->dev);
2904	if (!ret)
2905		hdev->status |= HID_STAT_ADDED;
2906	else
2907		hid_debug_unregister(hdev);
2908
2909	return ret;
2910}
2911EXPORT_SYMBOL_GPL(hid_add_device);
2912
2913/**
2914 * hid_allocate_device - allocate new hid device descriptor
2915 *
2916 * Allocate and initialize hid device, so that hid_destroy_device might be
2917 * used to free it.
2918 *
2919 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2920 * error value.
2921 */
2922struct hid_device *hid_allocate_device(void)
2923{
2924	struct hid_device *hdev;
2925	int ret = -ENOMEM;
2926
2927	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2928	if (hdev == NULL)
2929		return ERR_PTR(ret);
2930
2931	device_initialize(&hdev->dev);
2932	hdev->dev.release = hid_device_release;
2933	hdev->dev.bus = &hid_bus_type;
2934	device_enable_async_suspend(&hdev->dev);
2935
2936	hid_close_report(hdev);
2937
2938	init_waitqueue_head(&hdev->debug_wait);
2939	INIT_LIST_HEAD(&hdev->debug_list);
2940	spin_lock_init(&hdev->debug_list_lock);
 
2941	sema_init(&hdev->driver_input_lock, 1);
2942	mutex_init(&hdev->ll_open_lock);
2943	kref_init(&hdev->ref);
2944
2945	ret = hid_bpf_device_init(hdev);
2946	if (ret)
2947		goto out_err;
2948
2949	return hdev;
2950
2951out_err:
2952	hid_destroy_device(hdev);
2953	return ERR_PTR(ret);
2954}
2955EXPORT_SYMBOL_GPL(hid_allocate_device);
2956
2957static void hid_remove_device(struct hid_device *hdev)
2958{
2959	if (hdev->status & HID_STAT_ADDED) {
2960		device_del(&hdev->dev);
2961		hid_debug_unregister(hdev);
2962		hdev->status &= ~HID_STAT_ADDED;
2963	}
2964	hid_free_bpf_rdesc(hdev);
2965	kfree(hdev->dev_rdesc);
2966	hdev->dev_rdesc = NULL;
2967	hdev->dev_rsize = 0;
2968	hdev->bpf_rsize = 0;
2969}
2970
2971/**
2972 * hid_destroy_device - free previously allocated device
2973 *
2974 * @hdev: hid device
2975 *
2976 * If you allocate hid_device through hid_allocate_device, you should ever
2977 * free by this function.
2978 */
2979void hid_destroy_device(struct hid_device *hdev)
2980{
2981	hid_bpf_destroy_device(hdev);
2982	hid_remove_device(hdev);
2983	put_device(&hdev->dev);
2984}
2985EXPORT_SYMBOL_GPL(hid_destroy_device);
2986
2987
2988static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2989{
2990	struct hid_driver *hdrv = data;
2991	struct hid_device *hdev = to_hid_device(dev);
2992
2993	if (hdev->driver == hdrv &&
2994	    !hdrv->match(hdev, hid_ignore_special_drivers) &&
2995	    !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2996		return device_reprobe(dev);
2997
2998	return 0;
2999}
3000
3001static int __hid_bus_driver_added(struct device_driver *drv, void *data)
3002{
3003	struct hid_driver *hdrv = to_hid_driver(drv);
3004
3005	if (hdrv->match) {
3006		bus_for_each_dev(&hid_bus_type, NULL, hdrv,
3007				 __hid_bus_reprobe_drivers);
3008	}
3009
3010	return 0;
3011}
3012
3013static int __bus_removed_driver(struct device_driver *drv, void *data)
3014{
3015	return bus_rescan_devices(&hid_bus_type);
3016}
3017
3018int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
3019		const char *mod_name)
3020{
3021	int ret;
3022
3023	hdrv->driver.name = hdrv->name;
3024	hdrv->driver.bus = &hid_bus_type;
3025	hdrv->driver.owner = owner;
3026	hdrv->driver.mod_name = mod_name;
3027
3028	INIT_LIST_HEAD(&hdrv->dyn_list);
3029	spin_lock_init(&hdrv->dyn_lock);
3030
3031	ret = driver_register(&hdrv->driver);
 
 
3032
3033	if (ret == 0)
3034		bus_for_each_drv(&hid_bus_type, NULL, NULL,
3035				 __hid_bus_driver_added);
3036
3037	return ret;
3038}
3039EXPORT_SYMBOL_GPL(__hid_register_driver);
3040
3041void hid_unregister_driver(struct hid_driver *hdrv)
3042{
 
3043	driver_unregister(&hdrv->driver);
3044	hid_free_dynids(hdrv);
3045
3046	bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
3047}
3048EXPORT_SYMBOL_GPL(hid_unregister_driver);
3049
3050int hid_check_keys_pressed(struct hid_device *hid)
3051{
3052	struct hid_input *hidinput;
3053	int i;
3054
3055	if (!(hid->claimed & HID_CLAIMED_INPUT))
3056		return 0;
3057
3058	list_for_each_entry(hidinput, &hid->inputs, list) {
3059		for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
3060			if (hidinput->input->key[i])
3061				return 1;
3062	}
3063
3064	return 0;
3065}
 
3066EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
3067
3068#ifdef CONFIG_HID_BPF
3069static const struct hid_ops __hid_ops = {
3070	.hid_get_report = hid_get_report,
3071	.hid_hw_raw_request = __hid_hw_raw_request,
3072	.hid_hw_output_report = __hid_hw_output_report,
3073	.hid_input_report = __hid_input_report,
3074	.owner = THIS_MODULE,
3075	.bus_type = &hid_bus_type,
3076};
3077#endif
3078
3079static int __init hid_init(void)
3080{
3081	int ret;
3082
 
 
 
 
3083	ret = bus_register(&hid_bus_type);
3084	if (ret) {
3085		pr_err("can't register hid bus\n");
3086		goto err;
3087	}
3088
3089#ifdef CONFIG_HID_BPF
3090	hid_ops = &__hid_ops;
3091#endif
3092
3093	ret = hidraw_init();
3094	if (ret)
3095		goto err_bus;
3096
3097	hid_debug_init();
3098
3099	return 0;
3100err_bus:
3101	bus_unregister(&hid_bus_type);
3102err:
3103	return ret;
3104}
3105
3106static void __exit hid_exit(void)
3107{
3108#ifdef CONFIG_HID_BPF
3109	hid_ops = NULL;
3110#endif
3111	hid_debug_exit();
3112	hidraw_exit();
3113	bus_unregister(&hid_bus_type);
3114	hid_quirks_exit(HID_BUS_ANY);
3115}
3116
3117module_init(hid_init);
3118module_exit(hid_exit);
3119
3120MODULE_AUTHOR("Andreas Gal");
3121MODULE_AUTHOR("Vojtech Pavlik");
3122MODULE_AUTHOR("Jiri Kosina");
3123MODULE_DESCRIPTION("HID support for Linux");
3124MODULE_LICENSE("GPL");