Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
  1/*
  2 * TI EDMA DMA engine driver
  3 *
  4 * Copyright 2012 Texas Instruments
  5 *
  6 * This program is free software; you can redistribute it and/or
  7 * modify it under the terms of the GNU General Public License as
  8 * published by the Free Software Foundation version 2.
  9 *
 10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 11 * kind, whether express or implied; without even the implied warranty
 12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 13 * GNU General Public License for more details.
 14 */
 15
 16#include <linux/dmaengine.h>
 17#include <linux/dma-mapping.h>
 18#include <linux/err.h>
 19#include <linux/init.h>
 20#include <linux/interrupt.h>
 21#include <linux/list.h>
 22#include <linux/module.h>
 23#include <linux/platform_device.h>
 24#include <linux/slab.h>
 25#include <linux/spinlock.h>
 26
 27#include <linux/platform_data/edma.h>
 28
 29#include "dmaengine.h"
 30#include "virt-dma.h"
 31
 32/*
 33 * This will go away when the private EDMA API is folded
 34 * into this driver and the platform device(s) are
 35 * instantiated in the arch code. We can only get away
 36 * with this simplification because DA8XX may not be built
 37 * in the same kernel image with other DaVinci parts. This
 38 * avoids having to sprinkle dmaengine driver platform devices
 39 * and data throughout all the existing board files.
 40 */
 41#ifdef CONFIG_ARCH_DAVINCI_DA8XX
 42#define EDMA_CTLRS	2
 43#define EDMA_CHANS	32
 44#else
 45#define EDMA_CTLRS	1
 46#define EDMA_CHANS	64
 47#endif /* CONFIG_ARCH_DAVINCI_DA8XX */
 48
 49/*
 50 * Max of 20 segments per channel to conserve PaRAM slots
 51 * Also note that MAX_NR_SG should be atleast the no.of periods
 52 * that are required for ASoC, otherwise DMA prep calls will
 53 * fail. Today davinci-pcm is the only user of this driver and
 54 * requires atleast 17 slots, so we setup the default to 20.
 55 */
 56#define MAX_NR_SG		20
 57#define EDMA_MAX_SLOTS		MAX_NR_SG
 58#define EDMA_DESCRIPTORS	16
 59
 60struct edma_desc {
 61	struct virt_dma_desc		vdesc;
 62	struct list_head		node;
 63	int				cyclic;
 64	int				absync;
 65	int				pset_nr;
 66	int				processed;
 67	struct edmacc_param		pset[0];
 68};
 69
 70struct edma_cc;
 71
 72struct edma_chan {
 73	struct virt_dma_chan		vchan;
 74	struct list_head		node;
 75	struct edma_desc		*edesc;
 76	struct edma_cc			*ecc;
 77	int				ch_num;
 78	bool				alloced;
 79	int				slot[EDMA_MAX_SLOTS];
 80	int				missed;
 81	struct dma_slave_config		cfg;
 82};
 83
 84struct edma_cc {
 85	int				ctlr;
 86	struct dma_device		dma_slave;
 87	struct edma_chan		slave_chans[EDMA_CHANS];
 88	int				num_slave_chans;
 89	int				dummy_slot;
 90};
 91
 92static inline struct edma_cc *to_edma_cc(struct dma_device *d)
 93{
 94	return container_of(d, struct edma_cc, dma_slave);
 95}
 96
 97static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
 98{
 99	return container_of(c, struct edma_chan, vchan.chan);
100}
101
102static inline struct edma_desc
103*to_edma_desc(struct dma_async_tx_descriptor *tx)
104{
105	return container_of(tx, struct edma_desc, vdesc.tx);
106}
107
108static void edma_desc_free(struct virt_dma_desc *vdesc)
109{
110	kfree(container_of(vdesc, struct edma_desc, vdesc));
111}
112
113/* Dispatch a queued descriptor to the controller (caller holds lock) */
114static void edma_execute(struct edma_chan *echan)
115{
116	struct virt_dma_desc *vdesc;
117	struct edma_desc *edesc;
118	struct device *dev = echan->vchan.chan.device->dev;
119	int i, j, left, nslots;
120
121	/* If either we processed all psets or we're still not started */
122	if (!echan->edesc ||
123	    echan->edesc->pset_nr == echan->edesc->processed) {
124		/* Get next vdesc */
125		vdesc = vchan_next_desc(&echan->vchan);
126		if (!vdesc) {
127			echan->edesc = NULL;
128			return;
129		}
130		list_del(&vdesc->node);
131		echan->edesc = to_edma_desc(&vdesc->tx);
132	}
133
134	edesc = echan->edesc;
135
136	/* Find out how many left */
137	left = edesc->pset_nr - edesc->processed;
138	nslots = min(MAX_NR_SG, left);
139
140	/* Write descriptor PaRAM set(s) */
141	for (i = 0; i < nslots; i++) {
142		j = i + edesc->processed;
143		edma_write_slot(echan->slot[i], &edesc->pset[j]);
144		dev_dbg(echan->vchan.chan.device->dev,
145			"\n pset[%d]:\n"
146			"  chnum\t%d\n"
147			"  slot\t%d\n"
148			"  opt\t%08x\n"
149			"  src\t%08x\n"
150			"  dst\t%08x\n"
151			"  abcnt\t%08x\n"
152			"  ccnt\t%08x\n"
153			"  bidx\t%08x\n"
154			"  cidx\t%08x\n"
155			"  lkrld\t%08x\n",
156			j, echan->ch_num, echan->slot[i],
157			edesc->pset[j].opt,
158			edesc->pset[j].src,
159			edesc->pset[j].dst,
160			edesc->pset[j].a_b_cnt,
161			edesc->pset[j].ccnt,
162			edesc->pset[j].src_dst_bidx,
163			edesc->pset[j].src_dst_cidx,
164			edesc->pset[j].link_bcntrld);
165		/* Link to the previous slot if not the last set */
166		if (i != (nslots - 1))
167			edma_link(echan->slot[i], echan->slot[i+1]);
168	}
169
170	edesc->processed += nslots;
171
172	/*
173	 * If this is either the last set in a set of SG-list transactions
174	 * then setup a link to the dummy slot, this results in all future
175	 * events being absorbed and that's OK because we're done
176	 */
177	if (edesc->processed == edesc->pset_nr) {
178		if (edesc->cyclic)
179			edma_link(echan->slot[nslots-1], echan->slot[1]);
180		else
181			edma_link(echan->slot[nslots-1],
182				  echan->ecc->dummy_slot);
183	}
184
185	if (edesc->processed <= MAX_NR_SG) {
186		dev_dbg(dev, "first transfer starting %d\n", echan->ch_num);
187		edma_start(echan->ch_num);
188	} else {
189		dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
190			echan->ch_num, edesc->processed);
191		edma_resume(echan->ch_num);
192	}
193
194	/*
195	 * This happens due to setup times between intermediate transfers
196	 * in long SG lists which have to be broken up into transfers of
197	 * MAX_NR_SG
198	 */
199	if (echan->missed) {
200		dev_dbg(dev, "missed event in execute detected\n");
201		edma_clean_channel(echan->ch_num);
202		edma_stop(echan->ch_num);
203		edma_start(echan->ch_num);
204		edma_trigger_channel(echan->ch_num);
205		echan->missed = 0;
206	}
207}
208
209static int edma_terminate_all(struct edma_chan *echan)
210{
211	unsigned long flags;
212	LIST_HEAD(head);
213
214	spin_lock_irqsave(&echan->vchan.lock, flags);
215
216	/*
217	 * Stop DMA activity: we assume the callback will not be called
218	 * after edma_dma() returns (even if it does, it will see
219	 * echan->edesc is NULL and exit.)
220	 */
221	if (echan->edesc) {
222		echan->edesc = NULL;
223		edma_stop(echan->ch_num);
224	}
225
226	vchan_get_all_descriptors(&echan->vchan, &head);
227	spin_unlock_irqrestore(&echan->vchan.lock, flags);
228	vchan_dma_desc_free_list(&echan->vchan, &head);
229
230	return 0;
231}
232
233static int edma_slave_config(struct edma_chan *echan,
234	struct dma_slave_config *cfg)
235{
236	if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
237	    cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
238		return -EINVAL;
239
240	memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
241
242	return 0;
243}
244
245static int edma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
246			unsigned long arg)
247{
248	int ret = 0;
249	struct dma_slave_config *config;
250	struct edma_chan *echan = to_edma_chan(chan);
251
252	switch (cmd) {
253	case DMA_TERMINATE_ALL:
254		edma_terminate_all(echan);
255		break;
256	case DMA_SLAVE_CONFIG:
257		config = (struct dma_slave_config *)arg;
258		ret = edma_slave_config(echan, config);
259		break;
260	default:
261		ret = -ENOSYS;
262	}
263
264	return ret;
265}
266
267/*
268 * A PaRAM set configuration abstraction used by other modes
269 * @chan: Channel who's PaRAM set we're configuring
270 * @pset: PaRAM set to initialize and setup.
271 * @src_addr: Source address of the DMA
272 * @dst_addr: Destination address of the DMA
273 * @burst: In units of dev_width, how much to send
274 * @dev_width: How much is the dev_width
275 * @dma_length: Total length of the DMA transfer
276 * @direction: Direction of the transfer
277 */
278static int edma_config_pset(struct dma_chan *chan, struct edmacc_param *pset,
279	dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
280	enum dma_slave_buswidth dev_width, unsigned int dma_length,
281	enum dma_transfer_direction direction)
282{
283	struct edma_chan *echan = to_edma_chan(chan);
284	struct device *dev = chan->device->dev;
285	int acnt, bcnt, ccnt, cidx;
286	int src_bidx, dst_bidx, src_cidx, dst_cidx;
287	int absync;
288
289	acnt = dev_width;
290	/*
291	 * If the maxburst is equal to the fifo width, use
292	 * A-synced transfers. This allows for large contiguous
293	 * buffer transfers using only one PaRAM set.
294	 */
295	if (burst == 1) {
296		/*
297		 * For the A-sync case, bcnt and ccnt are the remainder
298		 * and quotient respectively of the division of:
299		 * (dma_length / acnt) by (SZ_64K -1). This is so
300		 * that in case bcnt over flows, we have ccnt to use.
301		 * Note: In A-sync tranfer only, bcntrld is used, but it
302		 * only applies for sg_dma_len(sg) >= SZ_64K.
303		 * In this case, the best way adopted is- bccnt for the
304		 * first frame will be the remainder below. Then for
305		 * every successive frame, bcnt will be SZ_64K-1. This
306		 * is assured as bcntrld = 0xffff in end of function.
307		 */
308		absync = false;
309		ccnt = dma_length / acnt / (SZ_64K - 1);
310		bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
311		/*
312		 * If bcnt is non-zero, we have a remainder and hence an
313		 * extra frame to transfer, so increment ccnt.
314		 */
315		if (bcnt)
316			ccnt++;
317		else
318			bcnt = SZ_64K - 1;
319		cidx = acnt;
320	} else {
321		/*
322		 * If maxburst is greater than the fifo address_width,
323		 * use AB-synced transfers where A count is the fifo
324		 * address_width and B count is the maxburst. In this
325		 * case, we are limited to transfers of C count frames
326		 * of (address_width * maxburst) where C count is limited
327		 * to SZ_64K-1. This places an upper bound on the length
328		 * of an SG segment that can be handled.
329		 */
330		absync = true;
331		bcnt = burst;
332		ccnt = dma_length / (acnt * bcnt);
333		if (ccnt > (SZ_64K - 1)) {
334			dev_err(dev, "Exceeded max SG segment size\n");
335			return -EINVAL;
336		}
337		cidx = acnt * bcnt;
338	}
339
340	if (direction == DMA_MEM_TO_DEV) {
341		src_bidx = acnt;
342		src_cidx = cidx;
343		dst_bidx = 0;
344		dst_cidx = 0;
345	} else if (direction == DMA_DEV_TO_MEM)  {
346		src_bidx = 0;
347		src_cidx = 0;
348		dst_bidx = acnt;
349		dst_cidx = cidx;
350	} else {
351		dev_err(dev, "%s: direction not implemented yet\n", __func__);
352		return -EINVAL;
353	}
354
355	pset->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
356	/* Configure A or AB synchronized transfers */
357	if (absync)
358		pset->opt |= SYNCDIM;
359
360	pset->src = src_addr;
361	pset->dst = dst_addr;
362
363	pset->src_dst_bidx = (dst_bidx << 16) | src_bidx;
364	pset->src_dst_cidx = (dst_cidx << 16) | src_cidx;
365
366	pset->a_b_cnt = bcnt << 16 | acnt;
367	pset->ccnt = ccnt;
368	/*
369	 * Only time when (bcntrld) auto reload is required is for
370	 * A-sync case, and in this case, a requirement of reload value
371	 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
372	 * and then later will be populated by edma_execute.
373	 */
374	pset->link_bcntrld = 0xffffffff;
375	return absync;
376}
377
378static struct dma_async_tx_descriptor *edma_prep_slave_sg(
379	struct dma_chan *chan, struct scatterlist *sgl,
380	unsigned int sg_len, enum dma_transfer_direction direction,
381	unsigned long tx_flags, void *context)
382{
383	struct edma_chan *echan = to_edma_chan(chan);
384	struct device *dev = chan->device->dev;
385	struct edma_desc *edesc;
386	dma_addr_t src_addr = 0, dst_addr = 0;
387	enum dma_slave_buswidth dev_width;
388	u32 burst;
389	struct scatterlist *sg;
390	int i, nslots, ret;
391
392	if (unlikely(!echan || !sgl || !sg_len))
393		return NULL;
394
395	if (direction == DMA_DEV_TO_MEM) {
396		src_addr = echan->cfg.src_addr;
397		dev_width = echan->cfg.src_addr_width;
398		burst = echan->cfg.src_maxburst;
399	} else if (direction == DMA_MEM_TO_DEV) {
400		dst_addr = echan->cfg.dst_addr;
401		dev_width = echan->cfg.dst_addr_width;
402		burst = echan->cfg.dst_maxburst;
403	} else {
404		dev_err(dev, "%s: bad direction?\n", __func__);
405		return NULL;
406	}
407
408	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
409		dev_err(dev, "Undefined slave buswidth\n");
410		return NULL;
411	}
412
413	edesc = kzalloc(sizeof(*edesc) + sg_len *
414		sizeof(edesc->pset[0]), GFP_ATOMIC);
415	if (!edesc) {
416		dev_dbg(dev, "Failed to allocate a descriptor\n");
417		return NULL;
418	}
419
420	edesc->pset_nr = sg_len;
421
422	/* Allocate a PaRAM slot, if needed */
423	nslots = min_t(unsigned, MAX_NR_SG, sg_len);
424
425	for (i = 0; i < nslots; i++) {
426		if (echan->slot[i] < 0) {
427			echan->slot[i] =
428				edma_alloc_slot(EDMA_CTLR(echan->ch_num),
429						EDMA_SLOT_ANY);
430			if (echan->slot[i] < 0) {
431				kfree(edesc);
432				dev_err(dev, "Failed to allocate slot\n");
433				return NULL;
434			}
435		}
436	}
437
438	/* Configure PaRAM sets for each SG */
439	for_each_sg(sgl, sg, sg_len, i) {
440		/* Get address for each SG */
441		if (direction == DMA_DEV_TO_MEM)
442			dst_addr = sg_dma_address(sg);
443		else
444			src_addr = sg_dma_address(sg);
445
446		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
447				       dst_addr, burst, dev_width,
448				       sg_dma_len(sg), direction);
449		if (ret < 0) {
450			kfree(edesc);
451			return NULL;
452		}
453
454		edesc->absync = ret;
455
456		/* If this is the last in a current SG set of transactions,
457		   enable interrupts so that next set is processed */
458		if (!((i+1) % MAX_NR_SG))
459			edesc->pset[i].opt |= TCINTEN;
460
461		/* If this is the last set, enable completion interrupt flag */
462		if (i == sg_len - 1)
463			edesc->pset[i].opt |= TCINTEN;
464	}
465
466	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
467}
468
469static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
470	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
471	size_t period_len, enum dma_transfer_direction direction,
472	unsigned long tx_flags, void *context)
473{
474	struct edma_chan *echan = to_edma_chan(chan);
475	struct device *dev = chan->device->dev;
476	struct edma_desc *edesc;
477	dma_addr_t src_addr, dst_addr;
478	enum dma_slave_buswidth dev_width;
479	u32 burst;
480	int i, ret, nslots;
481
482	if (unlikely(!echan || !buf_len || !period_len))
483		return NULL;
484
485	if (direction == DMA_DEV_TO_MEM) {
486		src_addr = echan->cfg.src_addr;
487		dst_addr = buf_addr;
488		dev_width = echan->cfg.src_addr_width;
489		burst = echan->cfg.src_maxburst;
490	} else if (direction == DMA_MEM_TO_DEV) {
491		src_addr = buf_addr;
492		dst_addr = echan->cfg.dst_addr;
493		dev_width = echan->cfg.dst_addr_width;
494		burst = echan->cfg.dst_maxburst;
495	} else {
496		dev_err(dev, "%s: bad direction?\n", __func__);
497		return NULL;
498	}
499
500	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
501		dev_err(dev, "Undefined slave buswidth\n");
502		return NULL;
503	}
504
505	if (unlikely(buf_len % period_len)) {
506		dev_err(dev, "Period should be multiple of Buffer length\n");
507		return NULL;
508	}
509
510	nslots = (buf_len / period_len) + 1;
511
512	/*
513	 * Cyclic DMA users such as audio cannot tolerate delays introduced
514	 * by cases where the number of periods is more than the maximum
515	 * number of SGs the EDMA driver can handle at a time. For DMA types
516	 * such as Slave SGs, such delays are tolerable and synchronized,
517	 * but the synchronization is difficult to achieve with Cyclic and
518	 * cannot be guaranteed, so we error out early.
519	 */
520	if (nslots > MAX_NR_SG)
521		return NULL;
522
523	edesc = kzalloc(sizeof(*edesc) + nslots *
524		sizeof(edesc->pset[0]), GFP_ATOMIC);
525	if (!edesc) {
526		dev_dbg(dev, "Failed to allocate a descriptor\n");
527		return NULL;
528	}
529
530	edesc->cyclic = 1;
531	edesc->pset_nr = nslots;
532
533	dev_dbg(dev, "%s: nslots=%d\n", __func__, nslots);
534	dev_dbg(dev, "%s: period_len=%d\n", __func__, period_len);
535	dev_dbg(dev, "%s: buf_len=%d\n", __func__, buf_len);
536
537	for (i = 0; i < nslots; i++) {
538		/* Allocate a PaRAM slot, if needed */
539		if (echan->slot[i] < 0) {
540			echan->slot[i] =
541				edma_alloc_slot(EDMA_CTLR(echan->ch_num),
542						EDMA_SLOT_ANY);
543			if (echan->slot[i] < 0) {
544				kfree(edesc);
545				dev_err(dev, "Failed to allocate slot\n");
546				return NULL;
547			}
548		}
549
550		if (i == nslots - 1) {
551			memcpy(&edesc->pset[i], &edesc->pset[0],
552			       sizeof(edesc->pset[0]));
553			break;
554		}
555
556		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
557				       dst_addr, burst, dev_width, period_len,
558				       direction);
559		if (ret < 0) {
560			kfree(edesc);
561			return NULL;
562		}
563
564		if (direction == DMA_DEV_TO_MEM)
565			dst_addr += period_len;
566		else
567			src_addr += period_len;
568
569		dev_dbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
570		dev_dbg(dev,
571			"\n pset[%d]:\n"
572			"  chnum\t%d\n"
573			"  slot\t%d\n"
574			"  opt\t%08x\n"
575			"  src\t%08x\n"
576			"  dst\t%08x\n"
577			"  abcnt\t%08x\n"
578			"  ccnt\t%08x\n"
579			"  bidx\t%08x\n"
580			"  cidx\t%08x\n"
581			"  lkrld\t%08x\n",
582			i, echan->ch_num, echan->slot[i],
583			edesc->pset[i].opt,
584			edesc->pset[i].src,
585			edesc->pset[i].dst,
586			edesc->pset[i].a_b_cnt,
587			edesc->pset[i].ccnt,
588			edesc->pset[i].src_dst_bidx,
589			edesc->pset[i].src_dst_cidx,
590			edesc->pset[i].link_bcntrld);
591
592		edesc->absync = ret;
593
594		/*
595		 * Enable interrupts for every period because callback
596		 * has to be called for every period.
597		 */
598		edesc->pset[i].opt |= TCINTEN;
599	}
600
601	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
602}
603
604static void edma_callback(unsigned ch_num, u16 ch_status, void *data)
605{
606	struct edma_chan *echan = data;
607	struct device *dev = echan->vchan.chan.device->dev;
608	struct edma_desc *edesc;
609	unsigned long flags;
610	struct edmacc_param p;
611
612	edesc = echan->edesc;
613
614	/* Pause the channel for non-cyclic */
615	if (!edesc || (edesc && !edesc->cyclic))
616		edma_pause(echan->ch_num);
617
618	switch (ch_status) {
619	case EDMA_DMA_COMPLETE:
620		spin_lock_irqsave(&echan->vchan.lock, flags);
621
622		if (edesc) {
623			if (edesc->cyclic) {
624				vchan_cyclic_callback(&edesc->vdesc);
625			} else if (edesc->processed == edesc->pset_nr) {
626				dev_dbg(dev, "Transfer complete, stopping channel %d\n", ch_num);
627				edma_stop(echan->ch_num);
628				vchan_cookie_complete(&edesc->vdesc);
629				edma_execute(echan);
630			} else {
631				dev_dbg(dev, "Intermediate transfer complete on channel %d\n", ch_num);
632				edma_execute(echan);
633			}
634		}
635
636		spin_unlock_irqrestore(&echan->vchan.lock, flags);
637
638		break;
639	case EDMA_DMA_CC_ERROR:
640		spin_lock_irqsave(&echan->vchan.lock, flags);
641
642		edma_read_slot(EDMA_CHAN_SLOT(echan->slot[0]), &p);
643
644		/*
645		 * Issue later based on missed flag which will be sure
646		 * to happen as:
647		 * (1) we finished transmitting an intermediate slot and
648		 *     edma_execute is coming up.
649		 * (2) or we finished current transfer and issue will
650		 *     call edma_execute.
651		 *
652		 * Important note: issuing can be dangerous here and
653		 * lead to some nasty recursion when we are in a NULL
654		 * slot. So we avoid doing so and set the missed flag.
655		 */
656		if (p.a_b_cnt == 0 && p.ccnt == 0) {
657			dev_dbg(dev, "Error occurred, looks like slot is null, just setting miss\n");
658			echan->missed = 1;
659		} else {
660			/*
661			 * The slot is already programmed but the event got
662			 * missed, so its safe to issue it here.
663			 */
664			dev_dbg(dev, "Error occurred but slot is non-null, TRIGGERING\n");
665			edma_clean_channel(echan->ch_num);
666			edma_stop(echan->ch_num);
667			edma_start(echan->ch_num);
668			edma_trigger_channel(echan->ch_num);
669		}
670
671		spin_unlock_irqrestore(&echan->vchan.lock, flags);
672
673		break;
674	default:
675		break;
676	}
677}
678
679/* Alloc channel resources */
680static int edma_alloc_chan_resources(struct dma_chan *chan)
681{
682	struct edma_chan *echan = to_edma_chan(chan);
683	struct device *dev = chan->device->dev;
684	int ret;
685	int a_ch_num;
686	LIST_HEAD(descs);
687
688	a_ch_num = edma_alloc_channel(echan->ch_num, edma_callback,
689					chan, EVENTQ_DEFAULT);
690
691	if (a_ch_num < 0) {
692		ret = -ENODEV;
693		goto err_no_chan;
694	}
695
696	if (a_ch_num != echan->ch_num) {
697		dev_err(dev, "failed to allocate requested channel %u:%u\n",
698			EDMA_CTLR(echan->ch_num),
699			EDMA_CHAN_SLOT(echan->ch_num));
700		ret = -ENODEV;
701		goto err_wrong_chan;
702	}
703
704	echan->alloced = true;
705	echan->slot[0] = echan->ch_num;
706
707	dev_dbg(dev, "allocated channel for %u:%u\n",
708		EDMA_CTLR(echan->ch_num), EDMA_CHAN_SLOT(echan->ch_num));
709
710	return 0;
711
712err_wrong_chan:
713	edma_free_channel(a_ch_num);
714err_no_chan:
715	return ret;
716}
717
718/* Free channel resources */
719static void edma_free_chan_resources(struct dma_chan *chan)
720{
721	struct edma_chan *echan = to_edma_chan(chan);
722	struct device *dev = chan->device->dev;
723	int i;
724
725	/* Terminate transfers */
726	edma_stop(echan->ch_num);
727
728	vchan_free_chan_resources(&echan->vchan);
729
730	/* Free EDMA PaRAM slots */
731	for (i = 1; i < EDMA_MAX_SLOTS; i++) {
732		if (echan->slot[i] >= 0) {
733			edma_free_slot(echan->slot[i]);
734			echan->slot[i] = -1;
735		}
736	}
737
738	/* Free EDMA channel */
739	if (echan->alloced) {
740		edma_free_channel(echan->ch_num);
741		echan->alloced = false;
742	}
743
744	dev_dbg(dev, "freeing channel for %u\n", echan->ch_num);
745}
746
747/* Send pending descriptor to hardware */
748static void edma_issue_pending(struct dma_chan *chan)
749{
750	struct edma_chan *echan = to_edma_chan(chan);
751	unsigned long flags;
752
753	spin_lock_irqsave(&echan->vchan.lock, flags);
754	if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
755		edma_execute(echan);
756	spin_unlock_irqrestore(&echan->vchan.lock, flags);
757}
758
759static size_t edma_desc_size(struct edma_desc *edesc)
760{
761	int i;
762	size_t size;
763
764	if (edesc->absync)
765		for (size = i = 0; i < edesc->pset_nr; i++)
766			size += (edesc->pset[i].a_b_cnt & 0xffff) *
767				(edesc->pset[i].a_b_cnt >> 16) *
768				 edesc->pset[i].ccnt;
769	else
770		size = (edesc->pset[0].a_b_cnt & 0xffff) *
771			(edesc->pset[0].a_b_cnt >> 16) +
772			(edesc->pset[0].a_b_cnt & 0xffff) *
773			(SZ_64K - 1) * edesc->pset[0].ccnt;
774
775	return size;
776}
777
778/* Check request completion status */
779static enum dma_status edma_tx_status(struct dma_chan *chan,
780				      dma_cookie_t cookie,
781				      struct dma_tx_state *txstate)
782{
783	struct edma_chan *echan = to_edma_chan(chan);
784	struct virt_dma_desc *vdesc;
785	enum dma_status ret;
786	unsigned long flags;
787
788	ret = dma_cookie_status(chan, cookie, txstate);
789	if (ret == DMA_COMPLETE || !txstate)
790		return ret;
791
792	spin_lock_irqsave(&echan->vchan.lock, flags);
793	vdesc = vchan_find_desc(&echan->vchan, cookie);
794	if (vdesc) {
795		txstate->residue = edma_desc_size(to_edma_desc(&vdesc->tx));
796	} else if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) {
797		struct edma_desc *edesc = echan->edesc;
798		txstate->residue = edma_desc_size(edesc);
799	}
800	spin_unlock_irqrestore(&echan->vchan.lock, flags);
801
802	return ret;
803}
804
805static void __init edma_chan_init(struct edma_cc *ecc,
806				  struct dma_device *dma,
807				  struct edma_chan *echans)
808{
809	int i, j;
810
811	for (i = 0; i < EDMA_CHANS; i++) {
812		struct edma_chan *echan = &echans[i];
813		echan->ch_num = EDMA_CTLR_CHAN(ecc->ctlr, i);
814		echan->ecc = ecc;
815		echan->vchan.desc_free = edma_desc_free;
816
817		vchan_init(&echan->vchan, dma);
818
819		INIT_LIST_HEAD(&echan->node);
820		for (j = 0; j < EDMA_MAX_SLOTS; j++)
821			echan->slot[j] = -1;
822	}
823}
824
825static void edma_dma_init(struct edma_cc *ecc, struct dma_device *dma,
826			  struct device *dev)
827{
828	dma->device_prep_slave_sg = edma_prep_slave_sg;
829	dma->device_prep_dma_cyclic = edma_prep_dma_cyclic;
830	dma->device_alloc_chan_resources = edma_alloc_chan_resources;
831	dma->device_free_chan_resources = edma_free_chan_resources;
832	dma->device_issue_pending = edma_issue_pending;
833	dma->device_tx_status = edma_tx_status;
834	dma->device_control = edma_control;
835	dma->dev = dev;
836
837	INIT_LIST_HEAD(&dma->channels);
838}
839
840static int edma_probe(struct platform_device *pdev)
841{
842	struct edma_cc *ecc;
843	int ret;
844
845	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
846	if (ret)
847		return ret;
848
849	ecc = devm_kzalloc(&pdev->dev, sizeof(*ecc), GFP_KERNEL);
850	if (!ecc) {
851		dev_err(&pdev->dev, "Can't allocate controller\n");
852		return -ENOMEM;
853	}
854
855	ecc->ctlr = pdev->id;
856	ecc->dummy_slot = edma_alloc_slot(ecc->ctlr, EDMA_SLOT_ANY);
857	if (ecc->dummy_slot < 0) {
858		dev_err(&pdev->dev, "Can't allocate PaRAM dummy slot\n");
859		return -EIO;
860	}
861
862	dma_cap_zero(ecc->dma_slave.cap_mask);
863	dma_cap_set(DMA_SLAVE, ecc->dma_slave.cap_mask);
864
865	edma_dma_init(ecc, &ecc->dma_slave, &pdev->dev);
866
867	edma_chan_init(ecc, &ecc->dma_slave, ecc->slave_chans);
868
869	ret = dma_async_device_register(&ecc->dma_slave);
870	if (ret)
871		goto err_reg1;
872
873	platform_set_drvdata(pdev, ecc);
874
875	dev_info(&pdev->dev, "TI EDMA DMA engine driver\n");
876
877	return 0;
878
879err_reg1:
880	edma_free_slot(ecc->dummy_slot);
881	return ret;
882}
883
884static int edma_remove(struct platform_device *pdev)
885{
886	struct device *dev = &pdev->dev;
887	struct edma_cc *ecc = dev_get_drvdata(dev);
888
889	dma_async_device_unregister(&ecc->dma_slave);
890	edma_free_slot(ecc->dummy_slot);
891
892	return 0;
893}
894
895static struct platform_driver edma_driver = {
896	.probe		= edma_probe,
897	.remove		= edma_remove,
898	.driver = {
899		.name = "edma-dma-engine",
900		.owner = THIS_MODULE,
901	},
902};
903
904bool edma_filter_fn(struct dma_chan *chan, void *param)
905{
906	if (chan->device->dev->driver == &edma_driver.driver) {
907		struct edma_chan *echan = to_edma_chan(chan);
908		unsigned ch_req = *(unsigned *)param;
909		return ch_req == echan->ch_num;
910	}
911	return false;
912}
913EXPORT_SYMBOL(edma_filter_fn);
914
915static struct platform_device *pdev0, *pdev1;
916
917static const struct platform_device_info edma_dev_info0 = {
918	.name = "edma-dma-engine",
919	.id = 0,
920	.dma_mask = DMA_BIT_MASK(32),
921};
922
923static const struct platform_device_info edma_dev_info1 = {
924	.name = "edma-dma-engine",
925	.id = 1,
926	.dma_mask = DMA_BIT_MASK(32),
927};
928
929static int edma_init(void)
930{
931	int ret = platform_driver_register(&edma_driver);
932
933	if (ret == 0) {
934		pdev0 = platform_device_register_full(&edma_dev_info0);
935		if (IS_ERR(pdev0)) {
936			platform_driver_unregister(&edma_driver);
937			ret = PTR_ERR(pdev0);
938			goto out;
939		}
940	}
941
942	if (EDMA_CTLRS == 2) {
943		pdev1 = platform_device_register_full(&edma_dev_info1);
944		if (IS_ERR(pdev1)) {
945			platform_driver_unregister(&edma_driver);
946			platform_device_unregister(pdev0);
947			ret = PTR_ERR(pdev1);
948		}
949	}
950
951out:
952	return ret;
953}
954subsys_initcall(edma_init);
955
956static void __exit edma_exit(void)
957{
958	platform_device_unregister(pdev0);
959	if (pdev1)
960		platform_device_unregister(pdev1);
961	platform_driver_unregister(&edma_driver);
962}
963module_exit(edma_exit);
964
965MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
966MODULE_DESCRIPTION("TI EDMA DMA engine driver");
967MODULE_LICENSE("GPL v2");