Loading...
1/*
2 * linux/drivers/cpufreq/cpufreq.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7 *
8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9 * Added handling for CPU hotplug
10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11 * Fix handling for CPU hotplug -- affected CPUs
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 */
17
18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20#include <linux/cpu.h>
21#include <linux/cpufreq.h>
22#include <linux/delay.h>
23#include <linux/device.h>
24#include <linux/init.h>
25#include <linux/kernel_stat.h>
26#include <linux/module.h>
27#include <linux/mutex.h>
28#include <linux/slab.h>
29#include <linux/suspend.h>
30#include <linux/tick.h>
31#include <trace/events/power.h>
32
33/**
34 * The "cpufreq driver" - the arch- or hardware-dependent low
35 * level driver of CPUFreq support, and its spinlock. This lock
36 * also protects the cpufreq_cpu_data array.
37 */
38static struct cpufreq_driver *cpufreq_driver;
39static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
40static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data_fallback);
41static DEFINE_RWLOCK(cpufreq_driver_lock);
42DEFINE_MUTEX(cpufreq_governor_lock);
43static LIST_HEAD(cpufreq_policy_list);
44
45/* This one keeps track of the previously set governor of a removed CPU */
46static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor);
47
48/* Flag to suspend/resume CPUFreq governors */
49static bool cpufreq_suspended;
50
51static inline bool has_target(void)
52{
53 return cpufreq_driver->target_index || cpufreq_driver->target;
54}
55
56/*
57 * rwsem to guarantee that cpufreq driver module doesn't unload during critical
58 * sections
59 */
60static DECLARE_RWSEM(cpufreq_rwsem);
61
62/* internal prototypes */
63static int __cpufreq_governor(struct cpufreq_policy *policy,
64 unsigned int event);
65static unsigned int __cpufreq_get(unsigned int cpu);
66static void handle_update(struct work_struct *work);
67
68/**
69 * Two notifier lists: the "policy" list is involved in the
70 * validation process for a new CPU frequency policy; the
71 * "transition" list for kernel code that needs to handle
72 * changes to devices when the CPU clock speed changes.
73 * The mutex locks both lists.
74 */
75static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
76static struct srcu_notifier_head cpufreq_transition_notifier_list;
77
78static bool init_cpufreq_transition_notifier_list_called;
79static int __init init_cpufreq_transition_notifier_list(void)
80{
81 srcu_init_notifier_head(&cpufreq_transition_notifier_list);
82 init_cpufreq_transition_notifier_list_called = true;
83 return 0;
84}
85pure_initcall(init_cpufreq_transition_notifier_list);
86
87static int off __read_mostly;
88static int cpufreq_disabled(void)
89{
90 return off;
91}
92void disable_cpufreq(void)
93{
94 off = 1;
95}
96static LIST_HEAD(cpufreq_governor_list);
97static DEFINE_MUTEX(cpufreq_governor_mutex);
98
99bool have_governor_per_policy(void)
100{
101 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
102}
103EXPORT_SYMBOL_GPL(have_governor_per_policy);
104
105struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
106{
107 if (have_governor_per_policy())
108 return &policy->kobj;
109 else
110 return cpufreq_global_kobject;
111}
112EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
113
114static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
115{
116 u64 idle_time;
117 u64 cur_wall_time;
118 u64 busy_time;
119
120 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
121
122 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
123 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
124 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
125 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
126 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
127 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
128
129 idle_time = cur_wall_time - busy_time;
130 if (wall)
131 *wall = cputime_to_usecs(cur_wall_time);
132
133 return cputime_to_usecs(idle_time);
134}
135
136u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
137{
138 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
139
140 if (idle_time == -1ULL)
141 return get_cpu_idle_time_jiffy(cpu, wall);
142 else if (!io_busy)
143 idle_time += get_cpu_iowait_time_us(cpu, wall);
144
145 return idle_time;
146}
147EXPORT_SYMBOL_GPL(get_cpu_idle_time);
148
149/*
150 * This is a generic cpufreq init() routine which can be used by cpufreq
151 * drivers of SMP systems. It will do following:
152 * - validate & show freq table passed
153 * - set policies transition latency
154 * - policy->cpus with all possible CPUs
155 */
156int cpufreq_generic_init(struct cpufreq_policy *policy,
157 struct cpufreq_frequency_table *table,
158 unsigned int transition_latency)
159{
160 int ret;
161
162 ret = cpufreq_table_validate_and_show(policy, table);
163 if (ret) {
164 pr_err("%s: invalid frequency table: %d\n", __func__, ret);
165 return ret;
166 }
167
168 policy->cpuinfo.transition_latency = transition_latency;
169
170 /*
171 * The driver only supports the SMP configuartion where all processors
172 * share the clock and voltage and clock.
173 */
174 cpumask_setall(policy->cpus);
175
176 return 0;
177}
178EXPORT_SYMBOL_GPL(cpufreq_generic_init);
179
180unsigned int cpufreq_generic_get(unsigned int cpu)
181{
182 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
183
184 if (!policy || IS_ERR(policy->clk)) {
185 pr_err("%s: No %s associated to cpu: %d\n",
186 __func__, policy ? "clk" : "policy", cpu);
187 return 0;
188 }
189
190 return clk_get_rate(policy->clk) / 1000;
191}
192EXPORT_SYMBOL_GPL(cpufreq_generic_get);
193
194/* Only for cpufreq core internal use */
195struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
196{
197 return per_cpu(cpufreq_cpu_data, cpu);
198}
199
200struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
201{
202 struct cpufreq_policy *policy = NULL;
203 unsigned long flags;
204
205 if (cpufreq_disabled() || (cpu >= nr_cpu_ids))
206 return NULL;
207
208 if (!down_read_trylock(&cpufreq_rwsem))
209 return NULL;
210
211 /* get the cpufreq driver */
212 read_lock_irqsave(&cpufreq_driver_lock, flags);
213
214 if (cpufreq_driver) {
215 /* get the CPU */
216 policy = per_cpu(cpufreq_cpu_data, cpu);
217 if (policy)
218 kobject_get(&policy->kobj);
219 }
220
221 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
222
223 if (!policy)
224 up_read(&cpufreq_rwsem);
225
226 return policy;
227}
228EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
229
230void cpufreq_cpu_put(struct cpufreq_policy *policy)
231{
232 if (cpufreq_disabled())
233 return;
234
235 kobject_put(&policy->kobj);
236 up_read(&cpufreq_rwsem);
237}
238EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
239
240/*********************************************************************
241 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
242 *********************************************************************/
243
244/**
245 * adjust_jiffies - adjust the system "loops_per_jiffy"
246 *
247 * This function alters the system "loops_per_jiffy" for the clock
248 * speed change. Note that loops_per_jiffy cannot be updated on SMP
249 * systems as each CPU might be scaled differently. So, use the arch
250 * per-CPU loops_per_jiffy value wherever possible.
251 */
252#ifndef CONFIG_SMP
253static unsigned long l_p_j_ref;
254static unsigned int l_p_j_ref_freq;
255
256static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
257{
258 if (ci->flags & CPUFREQ_CONST_LOOPS)
259 return;
260
261 if (!l_p_j_ref_freq) {
262 l_p_j_ref = loops_per_jiffy;
263 l_p_j_ref_freq = ci->old;
264 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
265 l_p_j_ref, l_p_j_ref_freq);
266 }
267 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
268 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
269 ci->new);
270 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
271 loops_per_jiffy, ci->new);
272 }
273}
274#else
275static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
276{
277 return;
278}
279#endif
280
281static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
282 struct cpufreq_freqs *freqs, unsigned int state)
283{
284 BUG_ON(irqs_disabled());
285
286 if (cpufreq_disabled())
287 return;
288
289 freqs->flags = cpufreq_driver->flags;
290 pr_debug("notification %u of frequency transition to %u kHz\n",
291 state, freqs->new);
292
293 switch (state) {
294
295 case CPUFREQ_PRECHANGE:
296 /* detect if the driver reported a value as "old frequency"
297 * which is not equal to what the cpufreq core thinks is
298 * "old frequency".
299 */
300 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
301 if ((policy) && (policy->cpu == freqs->cpu) &&
302 (policy->cur) && (policy->cur != freqs->old)) {
303 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
304 freqs->old, policy->cur);
305 freqs->old = policy->cur;
306 }
307 }
308 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
309 CPUFREQ_PRECHANGE, freqs);
310 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
311 break;
312
313 case CPUFREQ_POSTCHANGE:
314 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
315 pr_debug("FREQ: %lu - CPU: %lu\n",
316 (unsigned long)freqs->new, (unsigned long)freqs->cpu);
317 trace_cpu_frequency(freqs->new, freqs->cpu);
318 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
319 CPUFREQ_POSTCHANGE, freqs);
320 if (likely(policy) && likely(policy->cpu == freqs->cpu))
321 policy->cur = freqs->new;
322 break;
323 }
324}
325
326/**
327 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
328 * on frequency transition.
329 *
330 * This function calls the transition notifiers and the "adjust_jiffies"
331 * function. It is called twice on all CPU frequency changes that have
332 * external effects.
333 */
334static void cpufreq_notify_transition(struct cpufreq_policy *policy,
335 struct cpufreq_freqs *freqs, unsigned int state)
336{
337 for_each_cpu(freqs->cpu, policy->cpus)
338 __cpufreq_notify_transition(policy, freqs, state);
339}
340
341/* Do post notifications when there are chances that transition has failed */
342static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
343 struct cpufreq_freqs *freqs, int transition_failed)
344{
345 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
346 if (!transition_failed)
347 return;
348
349 swap(freqs->old, freqs->new);
350 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
351 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
352}
353
354void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
355 struct cpufreq_freqs *freqs)
356{
357wait:
358 wait_event(policy->transition_wait, !policy->transition_ongoing);
359
360 spin_lock(&policy->transition_lock);
361
362 if (unlikely(policy->transition_ongoing)) {
363 spin_unlock(&policy->transition_lock);
364 goto wait;
365 }
366
367 policy->transition_ongoing = true;
368
369 spin_unlock(&policy->transition_lock);
370
371 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
372}
373EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
374
375void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
376 struct cpufreq_freqs *freqs, int transition_failed)
377{
378 if (unlikely(WARN_ON(!policy->transition_ongoing)))
379 return;
380
381 cpufreq_notify_post_transition(policy, freqs, transition_failed);
382
383 policy->transition_ongoing = false;
384
385 wake_up(&policy->transition_wait);
386}
387EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
388
389
390/*********************************************************************
391 * SYSFS INTERFACE *
392 *********************************************************************/
393static ssize_t show_boost(struct kobject *kobj,
394 struct attribute *attr, char *buf)
395{
396 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
397}
398
399static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
400 const char *buf, size_t count)
401{
402 int ret, enable;
403
404 ret = sscanf(buf, "%d", &enable);
405 if (ret != 1 || enable < 0 || enable > 1)
406 return -EINVAL;
407
408 if (cpufreq_boost_trigger_state(enable)) {
409 pr_err("%s: Cannot %s BOOST!\n",
410 __func__, enable ? "enable" : "disable");
411 return -EINVAL;
412 }
413
414 pr_debug("%s: cpufreq BOOST %s\n",
415 __func__, enable ? "enabled" : "disabled");
416
417 return count;
418}
419define_one_global_rw(boost);
420
421static struct cpufreq_governor *__find_governor(const char *str_governor)
422{
423 struct cpufreq_governor *t;
424
425 list_for_each_entry(t, &cpufreq_governor_list, governor_list)
426 if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN))
427 return t;
428
429 return NULL;
430}
431
432/**
433 * cpufreq_parse_governor - parse a governor string
434 */
435static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
436 struct cpufreq_governor **governor)
437{
438 int err = -EINVAL;
439
440 if (!cpufreq_driver)
441 goto out;
442
443 if (cpufreq_driver->setpolicy) {
444 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
445 *policy = CPUFREQ_POLICY_PERFORMANCE;
446 err = 0;
447 } else if (!strnicmp(str_governor, "powersave",
448 CPUFREQ_NAME_LEN)) {
449 *policy = CPUFREQ_POLICY_POWERSAVE;
450 err = 0;
451 }
452 } else if (has_target()) {
453 struct cpufreq_governor *t;
454
455 mutex_lock(&cpufreq_governor_mutex);
456
457 t = __find_governor(str_governor);
458
459 if (t == NULL) {
460 int ret;
461
462 mutex_unlock(&cpufreq_governor_mutex);
463 ret = request_module("cpufreq_%s", str_governor);
464 mutex_lock(&cpufreq_governor_mutex);
465
466 if (ret == 0)
467 t = __find_governor(str_governor);
468 }
469
470 if (t != NULL) {
471 *governor = t;
472 err = 0;
473 }
474
475 mutex_unlock(&cpufreq_governor_mutex);
476 }
477out:
478 return err;
479}
480
481/**
482 * cpufreq_per_cpu_attr_read() / show_##file_name() -
483 * print out cpufreq information
484 *
485 * Write out information from cpufreq_driver->policy[cpu]; object must be
486 * "unsigned int".
487 */
488
489#define show_one(file_name, object) \
490static ssize_t show_##file_name \
491(struct cpufreq_policy *policy, char *buf) \
492{ \
493 return sprintf(buf, "%u\n", policy->object); \
494}
495
496show_one(cpuinfo_min_freq, cpuinfo.min_freq);
497show_one(cpuinfo_max_freq, cpuinfo.max_freq);
498show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
499show_one(scaling_min_freq, min);
500show_one(scaling_max_freq, max);
501show_one(scaling_cur_freq, cur);
502
503static int cpufreq_set_policy(struct cpufreq_policy *policy,
504 struct cpufreq_policy *new_policy);
505
506/**
507 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
508 */
509#define store_one(file_name, object) \
510static ssize_t store_##file_name \
511(struct cpufreq_policy *policy, const char *buf, size_t count) \
512{ \
513 int ret; \
514 struct cpufreq_policy new_policy; \
515 \
516 ret = cpufreq_get_policy(&new_policy, policy->cpu); \
517 if (ret) \
518 return -EINVAL; \
519 \
520 ret = sscanf(buf, "%u", &new_policy.object); \
521 if (ret != 1) \
522 return -EINVAL; \
523 \
524 ret = cpufreq_set_policy(policy, &new_policy); \
525 policy->user_policy.object = policy->object; \
526 \
527 return ret ? ret : count; \
528}
529
530store_one(scaling_min_freq, min);
531store_one(scaling_max_freq, max);
532
533/**
534 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
535 */
536static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
537 char *buf)
538{
539 unsigned int cur_freq = __cpufreq_get(policy->cpu);
540 if (!cur_freq)
541 return sprintf(buf, "<unknown>");
542 return sprintf(buf, "%u\n", cur_freq);
543}
544
545/**
546 * show_scaling_governor - show the current policy for the specified CPU
547 */
548static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
549{
550 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
551 return sprintf(buf, "powersave\n");
552 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
553 return sprintf(buf, "performance\n");
554 else if (policy->governor)
555 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
556 policy->governor->name);
557 return -EINVAL;
558}
559
560/**
561 * store_scaling_governor - store policy for the specified CPU
562 */
563static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
564 const char *buf, size_t count)
565{
566 int ret;
567 char str_governor[16];
568 struct cpufreq_policy new_policy;
569
570 ret = cpufreq_get_policy(&new_policy, policy->cpu);
571 if (ret)
572 return ret;
573
574 ret = sscanf(buf, "%15s", str_governor);
575 if (ret != 1)
576 return -EINVAL;
577
578 if (cpufreq_parse_governor(str_governor, &new_policy.policy,
579 &new_policy.governor))
580 return -EINVAL;
581
582 ret = cpufreq_set_policy(policy, &new_policy);
583
584 policy->user_policy.policy = policy->policy;
585 policy->user_policy.governor = policy->governor;
586
587 if (ret)
588 return ret;
589 else
590 return count;
591}
592
593/**
594 * show_scaling_driver - show the cpufreq driver currently loaded
595 */
596static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
597{
598 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
599}
600
601/**
602 * show_scaling_available_governors - show the available CPUfreq governors
603 */
604static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
605 char *buf)
606{
607 ssize_t i = 0;
608 struct cpufreq_governor *t;
609
610 if (!has_target()) {
611 i += sprintf(buf, "performance powersave");
612 goto out;
613 }
614
615 list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
616 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
617 - (CPUFREQ_NAME_LEN + 2)))
618 goto out;
619 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
620 }
621out:
622 i += sprintf(&buf[i], "\n");
623 return i;
624}
625
626ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
627{
628 ssize_t i = 0;
629 unsigned int cpu;
630
631 for_each_cpu(cpu, mask) {
632 if (i)
633 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
634 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
635 if (i >= (PAGE_SIZE - 5))
636 break;
637 }
638 i += sprintf(&buf[i], "\n");
639 return i;
640}
641EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
642
643/**
644 * show_related_cpus - show the CPUs affected by each transition even if
645 * hw coordination is in use
646 */
647static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
648{
649 return cpufreq_show_cpus(policy->related_cpus, buf);
650}
651
652/**
653 * show_affected_cpus - show the CPUs affected by each transition
654 */
655static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
656{
657 return cpufreq_show_cpus(policy->cpus, buf);
658}
659
660static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
661 const char *buf, size_t count)
662{
663 unsigned int freq = 0;
664 unsigned int ret;
665
666 if (!policy->governor || !policy->governor->store_setspeed)
667 return -EINVAL;
668
669 ret = sscanf(buf, "%u", &freq);
670 if (ret != 1)
671 return -EINVAL;
672
673 policy->governor->store_setspeed(policy, freq);
674
675 return count;
676}
677
678static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
679{
680 if (!policy->governor || !policy->governor->show_setspeed)
681 return sprintf(buf, "<unsupported>\n");
682
683 return policy->governor->show_setspeed(policy, buf);
684}
685
686/**
687 * show_bios_limit - show the current cpufreq HW/BIOS limitation
688 */
689static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
690{
691 unsigned int limit;
692 int ret;
693 if (cpufreq_driver->bios_limit) {
694 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
695 if (!ret)
696 return sprintf(buf, "%u\n", limit);
697 }
698 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
699}
700
701cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
702cpufreq_freq_attr_ro(cpuinfo_min_freq);
703cpufreq_freq_attr_ro(cpuinfo_max_freq);
704cpufreq_freq_attr_ro(cpuinfo_transition_latency);
705cpufreq_freq_attr_ro(scaling_available_governors);
706cpufreq_freq_attr_ro(scaling_driver);
707cpufreq_freq_attr_ro(scaling_cur_freq);
708cpufreq_freq_attr_ro(bios_limit);
709cpufreq_freq_attr_ro(related_cpus);
710cpufreq_freq_attr_ro(affected_cpus);
711cpufreq_freq_attr_rw(scaling_min_freq);
712cpufreq_freq_attr_rw(scaling_max_freq);
713cpufreq_freq_attr_rw(scaling_governor);
714cpufreq_freq_attr_rw(scaling_setspeed);
715
716static struct attribute *default_attrs[] = {
717 &cpuinfo_min_freq.attr,
718 &cpuinfo_max_freq.attr,
719 &cpuinfo_transition_latency.attr,
720 &scaling_min_freq.attr,
721 &scaling_max_freq.attr,
722 &affected_cpus.attr,
723 &related_cpus.attr,
724 &scaling_governor.attr,
725 &scaling_driver.attr,
726 &scaling_available_governors.attr,
727 &scaling_setspeed.attr,
728 NULL
729};
730
731#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
732#define to_attr(a) container_of(a, struct freq_attr, attr)
733
734static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
735{
736 struct cpufreq_policy *policy = to_policy(kobj);
737 struct freq_attr *fattr = to_attr(attr);
738 ssize_t ret;
739
740 if (!down_read_trylock(&cpufreq_rwsem))
741 return -EINVAL;
742
743 down_read(&policy->rwsem);
744
745 if (fattr->show)
746 ret = fattr->show(policy, buf);
747 else
748 ret = -EIO;
749
750 up_read(&policy->rwsem);
751 up_read(&cpufreq_rwsem);
752
753 return ret;
754}
755
756static ssize_t store(struct kobject *kobj, struct attribute *attr,
757 const char *buf, size_t count)
758{
759 struct cpufreq_policy *policy = to_policy(kobj);
760 struct freq_attr *fattr = to_attr(attr);
761 ssize_t ret = -EINVAL;
762
763 get_online_cpus();
764
765 if (!cpu_online(policy->cpu))
766 goto unlock;
767
768 if (!down_read_trylock(&cpufreq_rwsem))
769 goto unlock;
770
771 down_write(&policy->rwsem);
772
773 if (fattr->store)
774 ret = fattr->store(policy, buf, count);
775 else
776 ret = -EIO;
777
778 up_write(&policy->rwsem);
779
780 up_read(&cpufreq_rwsem);
781unlock:
782 put_online_cpus();
783
784 return ret;
785}
786
787static void cpufreq_sysfs_release(struct kobject *kobj)
788{
789 struct cpufreq_policy *policy = to_policy(kobj);
790 pr_debug("last reference is dropped\n");
791 complete(&policy->kobj_unregister);
792}
793
794static const struct sysfs_ops sysfs_ops = {
795 .show = show,
796 .store = store,
797};
798
799static struct kobj_type ktype_cpufreq = {
800 .sysfs_ops = &sysfs_ops,
801 .default_attrs = default_attrs,
802 .release = cpufreq_sysfs_release,
803};
804
805struct kobject *cpufreq_global_kobject;
806EXPORT_SYMBOL(cpufreq_global_kobject);
807
808static int cpufreq_global_kobject_usage;
809
810int cpufreq_get_global_kobject(void)
811{
812 if (!cpufreq_global_kobject_usage++)
813 return kobject_add(cpufreq_global_kobject,
814 &cpu_subsys.dev_root->kobj, "%s", "cpufreq");
815
816 return 0;
817}
818EXPORT_SYMBOL(cpufreq_get_global_kobject);
819
820void cpufreq_put_global_kobject(void)
821{
822 if (!--cpufreq_global_kobject_usage)
823 kobject_del(cpufreq_global_kobject);
824}
825EXPORT_SYMBOL(cpufreq_put_global_kobject);
826
827int cpufreq_sysfs_create_file(const struct attribute *attr)
828{
829 int ret = cpufreq_get_global_kobject();
830
831 if (!ret) {
832 ret = sysfs_create_file(cpufreq_global_kobject, attr);
833 if (ret)
834 cpufreq_put_global_kobject();
835 }
836
837 return ret;
838}
839EXPORT_SYMBOL(cpufreq_sysfs_create_file);
840
841void cpufreq_sysfs_remove_file(const struct attribute *attr)
842{
843 sysfs_remove_file(cpufreq_global_kobject, attr);
844 cpufreq_put_global_kobject();
845}
846EXPORT_SYMBOL(cpufreq_sysfs_remove_file);
847
848/* symlink affected CPUs */
849static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy)
850{
851 unsigned int j;
852 int ret = 0;
853
854 for_each_cpu(j, policy->cpus) {
855 struct device *cpu_dev;
856
857 if (j == policy->cpu)
858 continue;
859
860 pr_debug("Adding link for CPU: %u\n", j);
861 cpu_dev = get_cpu_device(j);
862 ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
863 "cpufreq");
864 if (ret)
865 break;
866 }
867 return ret;
868}
869
870static int cpufreq_add_dev_interface(struct cpufreq_policy *policy,
871 struct device *dev)
872{
873 struct freq_attr **drv_attr;
874 int ret = 0;
875
876 /* prepare interface data */
877 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
878 &dev->kobj, "cpufreq");
879 if (ret)
880 return ret;
881
882 /* set up files for this cpu device */
883 drv_attr = cpufreq_driver->attr;
884 while ((drv_attr) && (*drv_attr)) {
885 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
886 if (ret)
887 goto err_out_kobj_put;
888 drv_attr++;
889 }
890 if (cpufreq_driver->get) {
891 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
892 if (ret)
893 goto err_out_kobj_put;
894 }
895 if (has_target()) {
896 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
897 if (ret)
898 goto err_out_kobj_put;
899 }
900 if (cpufreq_driver->bios_limit) {
901 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
902 if (ret)
903 goto err_out_kobj_put;
904 }
905
906 ret = cpufreq_add_dev_symlink(policy);
907 if (ret)
908 goto err_out_kobj_put;
909
910 return ret;
911
912err_out_kobj_put:
913 kobject_put(&policy->kobj);
914 wait_for_completion(&policy->kobj_unregister);
915 return ret;
916}
917
918static void cpufreq_init_policy(struct cpufreq_policy *policy)
919{
920 struct cpufreq_governor *gov = NULL;
921 struct cpufreq_policy new_policy;
922 int ret = 0;
923
924 memcpy(&new_policy, policy, sizeof(*policy));
925
926 /* Update governor of new_policy to the governor used before hotplug */
927 gov = __find_governor(per_cpu(cpufreq_cpu_governor, policy->cpu));
928 if (gov)
929 pr_debug("Restoring governor %s for cpu %d\n",
930 policy->governor->name, policy->cpu);
931 else
932 gov = CPUFREQ_DEFAULT_GOVERNOR;
933
934 new_policy.governor = gov;
935
936 /* Use the default policy if its valid. */
937 if (cpufreq_driver->setpolicy)
938 cpufreq_parse_governor(gov->name, &new_policy.policy, NULL);
939
940 /* set default policy */
941 ret = cpufreq_set_policy(policy, &new_policy);
942 if (ret) {
943 pr_debug("setting policy failed\n");
944 if (cpufreq_driver->exit)
945 cpufreq_driver->exit(policy);
946 }
947}
948
949#ifdef CONFIG_HOTPLUG_CPU
950static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy,
951 unsigned int cpu, struct device *dev)
952{
953 int ret = 0;
954 unsigned long flags;
955
956 if (has_target()) {
957 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
958 if (ret) {
959 pr_err("%s: Failed to stop governor\n", __func__);
960 return ret;
961 }
962 }
963
964 down_write(&policy->rwsem);
965
966 write_lock_irqsave(&cpufreq_driver_lock, flags);
967
968 cpumask_set_cpu(cpu, policy->cpus);
969 per_cpu(cpufreq_cpu_data, cpu) = policy;
970 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
971
972 up_write(&policy->rwsem);
973
974 if (has_target()) {
975 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
976 if (!ret)
977 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
978
979 if (ret) {
980 pr_err("%s: Failed to start governor\n", __func__);
981 return ret;
982 }
983 }
984
985 return sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq");
986}
987#endif
988
989static struct cpufreq_policy *cpufreq_policy_restore(unsigned int cpu)
990{
991 struct cpufreq_policy *policy;
992 unsigned long flags;
993
994 read_lock_irqsave(&cpufreq_driver_lock, flags);
995
996 policy = per_cpu(cpufreq_cpu_data_fallback, cpu);
997
998 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
999
1000 policy->governor = NULL;
1001
1002 return policy;
1003}
1004
1005static struct cpufreq_policy *cpufreq_policy_alloc(void)
1006{
1007 struct cpufreq_policy *policy;
1008
1009 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1010 if (!policy)
1011 return NULL;
1012
1013 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1014 goto err_free_policy;
1015
1016 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1017 goto err_free_cpumask;
1018
1019 INIT_LIST_HEAD(&policy->policy_list);
1020 init_rwsem(&policy->rwsem);
1021 spin_lock_init(&policy->transition_lock);
1022 init_waitqueue_head(&policy->transition_wait);
1023
1024 return policy;
1025
1026err_free_cpumask:
1027 free_cpumask_var(policy->cpus);
1028err_free_policy:
1029 kfree(policy);
1030
1031 return NULL;
1032}
1033
1034static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1035{
1036 struct kobject *kobj;
1037 struct completion *cmp;
1038
1039 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1040 CPUFREQ_REMOVE_POLICY, policy);
1041
1042 down_read(&policy->rwsem);
1043 kobj = &policy->kobj;
1044 cmp = &policy->kobj_unregister;
1045 up_read(&policy->rwsem);
1046 kobject_put(kobj);
1047
1048 /*
1049 * We need to make sure that the underlying kobj is
1050 * actually not referenced anymore by anybody before we
1051 * proceed with unloading.
1052 */
1053 pr_debug("waiting for dropping of refcount\n");
1054 wait_for_completion(cmp);
1055 pr_debug("wait complete\n");
1056}
1057
1058static void cpufreq_policy_free(struct cpufreq_policy *policy)
1059{
1060 free_cpumask_var(policy->related_cpus);
1061 free_cpumask_var(policy->cpus);
1062 kfree(policy);
1063}
1064
1065static void update_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1066{
1067 if (WARN_ON(cpu == policy->cpu))
1068 return;
1069
1070 down_write(&policy->rwsem);
1071
1072 policy->last_cpu = policy->cpu;
1073 policy->cpu = cpu;
1074
1075 up_write(&policy->rwsem);
1076
1077 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1078 CPUFREQ_UPDATE_POLICY_CPU, policy);
1079}
1080
1081static int __cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1082{
1083 unsigned int j, cpu = dev->id;
1084 int ret = -ENOMEM;
1085 struct cpufreq_policy *policy;
1086 unsigned long flags;
1087 bool recover_policy = cpufreq_suspended;
1088#ifdef CONFIG_HOTPLUG_CPU
1089 struct cpufreq_policy *tpolicy;
1090#endif
1091
1092 if (cpu_is_offline(cpu))
1093 return 0;
1094
1095 pr_debug("adding CPU %u\n", cpu);
1096
1097#ifdef CONFIG_SMP
1098 /* check whether a different CPU already registered this
1099 * CPU because it is in the same boat. */
1100 policy = cpufreq_cpu_get(cpu);
1101 if (unlikely(policy)) {
1102 cpufreq_cpu_put(policy);
1103 return 0;
1104 }
1105#endif
1106
1107 if (!down_read_trylock(&cpufreq_rwsem))
1108 return 0;
1109
1110#ifdef CONFIG_HOTPLUG_CPU
1111 /* Check if this cpu was hot-unplugged earlier and has siblings */
1112 read_lock_irqsave(&cpufreq_driver_lock, flags);
1113 list_for_each_entry(tpolicy, &cpufreq_policy_list, policy_list) {
1114 if (cpumask_test_cpu(cpu, tpolicy->related_cpus)) {
1115 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1116 ret = cpufreq_add_policy_cpu(tpolicy, cpu, dev);
1117 up_read(&cpufreq_rwsem);
1118 return ret;
1119 }
1120 }
1121 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1122#endif
1123
1124 /*
1125 * Restore the saved policy when doing light-weight init and fall back
1126 * to the full init if that fails.
1127 */
1128 policy = recover_policy ? cpufreq_policy_restore(cpu) : NULL;
1129 if (!policy) {
1130 recover_policy = false;
1131 policy = cpufreq_policy_alloc();
1132 if (!policy)
1133 goto nomem_out;
1134 }
1135
1136 /*
1137 * In the resume path, since we restore a saved policy, the assignment
1138 * to policy->cpu is like an update of the existing policy, rather than
1139 * the creation of a brand new one. So we need to perform this update
1140 * by invoking update_policy_cpu().
1141 */
1142 if (recover_policy && cpu != policy->cpu)
1143 update_policy_cpu(policy, cpu);
1144 else
1145 policy->cpu = cpu;
1146
1147 cpumask_copy(policy->cpus, cpumask_of(cpu));
1148
1149 init_completion(&policy->kobj_unregister);
1150 INIT_WORK(&policy->update, handle_update);
1151
1152 /* call driver. From then on the cpufreq must be able
1153 * to accept all calls to ->verify and ->setpolicy for this CPU
1154 */
1155 ret = cpufreq_driver->init(policy);
1156 if (ret) {
1157 pr_debug("initialization failed\n");
1158 goto err_set_policy_cpu;
1159 }
1160
1161 /* related cpus should atleast have policy->cpus */
1162 cpumask_or(policy->related_cpus, policy->related_cpus, policy->cpus);
1163
1164 /*
1165 * affected cpus must always be the one, which are online. We aren't
1166 * managing offline cpus here.
1167 */
1168 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1169
1170 if (!recover_policy) {
1171 policy->user_policy.min = policy->min;
1172 policy->user_policy.max = policy->max;
1173 }
1174
1175 down_write(&policy->rwsem);
1176 write_lock_irqsave(&cpufreq_driver_lock, flags);
1177 for_each_cpu(j, policy->cpus)
1178 per_cpu(cpufreq_cpu_data, j) = policy;
1179 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1180
1181 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1182 policy->cur = cpufreq_driver->get(policy->cpu);
1183 if (!policy->cur) {
1184 pr_err("%s: ->get() failed\n", __func__);
1185 goto err_get_freq;
1186 }
1187 }
1188
1189 /*
1190 * Sometimes boot loaders set CPU frequency to a value outside of
1191 * frequency table present with cpufreq core. In such cases CPU might be
1192 * unstable if it has to run on that frequency for long duration of time
1193 * and so its better to set it to a frequency which is specified in
1194 * freq-table. This also makes cpufreq stats inconsistent as
1195 * cpufreq-stats would fail to register because current frequency of CPU
1196 * isn't found in freq-table.
1197 *
1198 * Because we don't want this change to effect boot process badly, we go
1199 * for the next freq which is >= policy->cur ('cur' must be set by now,
1200 * otherwise we will end up setting freq to lowest of the table as 'cur'
1201 * is initialized to zero).
1202 *
1203 * We are passing target-freq as "policy->cur - 1" otherwise
1204 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1205 * equal to target-freq.
1206 */
1207 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1208 && has_target()) {
1209 /* Are we running at unknown frequency ? */
1210 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1211 if (ret == -EINVAL) {
1212 /* Warn user and fix it */
1213 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1214 __func__, policy->cpu, policy->cur);
1215 ret = __cpufreq_driver_target(policy, policy->cur - 1,
1216 CPUFREQ_RELATION_L);
1217
1218 /*
1219 * Reaching here after boot in a few seconds may not
1220 * mean that system will remain stable at "unknown"
1221 * frequency for longer duration. Hence, a BUG_ON().
1222 */
1223 BUG_ON(ret);
1224 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1225 __func__, policy->cpu, policy->cur);
1226 }
1227 }
1228
1229 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1230 CPUFREQ_START, policy);
1231
1232 if (!recover_policy) {
1233 ret = cpufreq_add_dev_interface(policy, dev);
1234 if (ret)
1235 goto err_out_unregister;
1236 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1237 CPUFREQ_CREATE_POLICY, policy);
1238 }
1239
1240 write_lock_irqsave(&cpufreq_driver_lock, flags);
1241 list_add(&policy->policy_list, &cpufreq_policy_list);
1242 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1243
1244 cpufreq_init_policy(policy);
1245
1246 if (!recover_policy) {
1247 policy->user_policy.policy = policy->policy;
1248 policy->user_policy.governor = policy->governor;
1249 }
1250 up_write(&policy->rwsem);
1251
1252 kobject_uevent(&policy->kobj, KOBJ_ADD);
1253 up_read(&cpufreq_rwsem);
1254
1255 pr_debug("initialization complete\n");
1256
1257 return 0;
1258
1259err_out_unregister:
1260err_get_freq:
1261 write_lock_irqsave(&cpufreq_driver_lock, flags);
1262 for_each_cpu(j, policy->cpus)
1263 per_cpu(cpufreq_cpu_data, j) = NULL;
1264 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1265
1266 if (cpufreq_driver->exit)
1267 cpufreq_driver->exit(policy);
1268err_set_policy_cpu:
1269 if (recover_policy) {
1270 /* Do not leave stale fallback data behind. */
1271 per_cpu(cpufreq_cpu_data_fallback, cpu) = NULL;
1272 cpufreq_policy_put_kobj(policy);
1273 }
1274 cpufreq_policy_free(policy);
1275
1276nomem_out:
1277 up_read(&cpufreq_rwsem);
1278
1279 return ret;
1280}
1281
1282/**
1283 * cpufreq_add_dev - add a CPU device
1284 *
1285 * Adds the cpufreq interface for a CPU device.
1286 *
1287 * The Oracle says: try running cpufreq registration/unregistration concurrently
1288 * with with cpu hotplugging and all hell will break loose. Tried to clean this
1289 * mess up, but more thorough testing is needed. - Mathieu
1290 */
1291static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1292{
1293 return __cpufreq_add_dev(dev, sif);
1294}
1295
1296static int cpufreq_nominate_new_policy_cpu(struct cpufreq_policy *policy,
1297 unsigned int old_cpu)
1298{
1299 struct device *cpu_dev;
1300 int ret;
1301
1302 /* first sibling now owns the new sysfs dir */
1303 cpu_dev = get_cpu_device(cpumask_any_but(policy->cpus, old_cpu));
1304
1305 sysfs_remove_link(&cpu_dev->kobj, "cpufreq");
1306 ret = kobject_move(&policy->kobj, &cpu_dev->kobj);
1307 if (ret) {
1308 pr_err("%s: Failed to move kobj: %d\n", __func__, ret);
1309
1310 down_write(&policy->rwsem);
1311 cpumask_set_cpu(old_cpu, policy->cpus);
1312 up_write(&policy->rwsem);
1313
1314 ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
1315 "cpufreq");
1316
1317 return -EINVAL;
1318 }
1319
1320 return cpu_dev->id;
1321}
1322
1323static int __cpufreq_remove_dev_prepare(struct device *dev,
1324 struct subsys_interface *sif)
1325{
1326 unsigned int cpu = dev->id, cpus;
1327 int new_cpu, ret;
1328 unsigned long flags;
1329 struct cpufreq_policy *policy;
1330
1331 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1332
1333 write_lock_irqsave(&cpufreq_driver_lock, flags);
1334
1335 policy = per_cpu(cpufreq_cpu_data, cpu);
1336
1337 /* Save the policy somewhere when doing a light-weight tear-down */
1338 if (cpufreq_suspended)
1339 per_cpu(cpufreq_cpu_data_fallback, cpu) = policy;
1340
1341 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1342
1343 if (!policy) {
1344 pr_debug("%s: No cpu_data found\n", __func__);
1345 return -EINVAL;
1346 }
1347
1348 if (has_target()) {
1349 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1350 if (ret) {
1351 pr_err("%s: Failed to stop governor\n", __func__);
1352 return ret;
1353 }
1354 }
1355
1356 if (!cpufreq_driver->setpolicy)
1357 strncpy(per_cpu(cpufreq_cpu_governor, cpu),
1358 policy->governor->name, CPUFREQ_NAME_LEN);
1359
1360 down_read(&policy->rwsem);
1361 cpus = cpumask_weight(policy->cpus);
1362 up_read(&policy->rwsem);
1363
1364 if (cpu != policy->cpu) {
1365 sysfs_remove_link(&dev->kobj, "cpufreq");
1366 } else if (cpus > 1) {
1367 new_cpu = cpufreq_nominate_new_policy_cpu(policy, cpu);
1368 if (new_cpu >= 0) {
1369 update_policy_cpu(policy, new_cpu);
1370
1371 if (!cpufreq_suspended)
1372 pr_debug("%s: policy Kobject moved to cpu: %d from: %d\n",
1373 __func__, new_cpu, cpu);
1374 }
1375 } else if (cpufreq_driver->stop_cpu && cpufreq_driver->setpolicy) {
1376 cpufreq_driver->stop_cpu(policy);
1377 }
1378
1379 return 0;
1380}
1381
1382static int __cpufreq_remove_dev_finish(struct device *dev,
1383 struct subsys_interface *sif)
1384{
1385 unsigned int cpu = dev->id, cpus;
1386 int ret;
1387 unsigned long flags;
1388 struct cpufreq_policy *policy;
1389
1390 read_lock_irqsave(&cpufreq_driver_lock, flags);
1391 policy = per_cpu(cpufreq_cpu_data, cpu);
1392 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1393
1394 if (!policy) {
1395 pr_debug("%s: No cpu_data found\n", __func__);
1396 return -EINVAL;
1397 }
1398
1399 down_write(&policy->rwsem);
1400 cpus = cpumask_weight(policy->cpus);
1401
1402 if (cpus > 1)
1403 cpumask_clear_cpu(cpu, policy->cpus);
1404 up_write(&policy->rwsem);
1405
1406 /* If cpu is last user of policy, free policy */
1407 if (cpus == 1) {
1408 if (has_target()) {
1409 ret = __cpufreq_governor(policy,
1410 CPUFREQ_GOV_POLICY_EXIT);
1411 if (ret) {
1412 pr_err("%s: Failed to exit governor\n",
1413 __func__);
1414 return ret;
1415 }
1416 }
1417
1418 if (!cpufreq_suspended)
1419 cpufreq_policy_put_kobj(policy);
1420
1421 /*
1422 * Perform the ->exit() even during light-weight tear-down,
1423 * since this is a core component, and is essential for the
1424 * subsequent light-weight ->init() to succeed.
1425 */
1426 if (cpufreq_driver->exit)
1427 cpufreq_driver->exit(policy);
1428
1429 /* Remove policy from list of active policies */
1430 write_lock_irqsave(&cpufreq_driver_lock, flags);
1431 list_del(&policy->policy_list);
1432 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1433
1434 if (!cpufreq_suspended)
1435 cpufreq_policy_free(policy);
1436 } else if (has_target()) {
1437 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
1438 if (!ret)
1439 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
1440
1441 if (ret) {
1442 pr_err("%s: Failed to start governor\n", __func__);
1443 return ret;
1444 }
1445 }
1446
1447 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1448 return 0;
1449}
1450
1451/**
1452 * cpufreq_remove_dev - remove a CPU device
1453 *
1454 * Removes the cpufreq interface for a CPU device.
1455 */
1456static int cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1457{
1458 unsigned int cpu = dev->id;
1459 int ret;
1460
1461 if (cpu_is_offline(cpu))
1462 return 0;
1463
1464 ret = __cpufreq_remove_dev_prepare(dev, sif);
1465
1466 if (!ret)
1467 ret = __cpufreq_remove_dev_finish(dev, sif);
1468
1469 return ret;
1470}
1471
1472static void handle_update(struct work_struct *work)
1473{
1474 struct cpufreq_policy *policy =
1475 container_of(work, struct cpufreq_policy, update);
1476 unsigned int cpu = policy->cpu;
1477 pr_debug("handle_update for cpu %u called\n", cpu);
1478 cpufreq_update_policy(cpu);
1479}
1480
1481/**
1482 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1483 * in deep trouble.
1484 * @cpu: cpu number
1485 * @old_freq: CPU frequency the kernel thinks the CPU runs at
1486 * @new_freq: CPU frequency the CPU actually runs at
1487 *
1488 * We adjust to current frequency first, and need to clean up later.
1489 * So either call to cpufreq_update_policy() or schedule handle_update()).
1490 */
1491static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1492 unsigned int new_freq)
1493{
1494 struct cpufreq_policy *policy;
1495 struct cpufreq_freqs freqs;
1496 unsigned long flags;
1497
1498 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1499 old_freq, new_freq);
1500
1501 freqs.old = old_freq;
1502 freqs.new = new_freq;
1503
1504 read_lock_irqsave(&cpufreq_driver_lock, flags);
1505 policy = per_cpu(cpufreq_cpu_data, cpu);
1506 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1507
1508 cpufreq_freq_transition_begin(policy, &freqs);
1509 cpufreq_freq_transition_end(policy, &freqs, 0);
1510}
1511
1512/**
1513 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1514 * @cpu: CPU number
1515 *
1516 * This is the last known freq, without actually getting it from the driver.
1517 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1518 */
1519unsigned int cpufreq_quick_get(unsigned int cpu)
1520{
1521 struct cpufreq_policy *policy;
1522 unsigned int ret_freq = 0;
1523
1524 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
1525 return cpufreq_driver->get(cpu);
1526
1527 policy = cpufreq_cpu_get(cpu);
1528 if (policy) {
1529 ret_freq = policy->cur;
1530 cpufreq_cpu_put(policy);
1531 }
1532
1533 return ret_freq;
1534}
1535EXPORT_SYMBOL(cpufreq_quick_get);
1536
1537/**
1538 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1539 * @cpu: CPU number
1540 *
1541 * Just return the max possible frequency for a given CPU.
1542 */
1543unsigned int cpufreq_quick_get_max(unsigned int cpu)
1544{
1545 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1546 unsigned int ret_freq = 0;
1547
1548 if (policy) {
1549 ret_freq = policy->max;
1550 cpufreq_cpu_put(policy);
1551 }
1552
1553 return ret_freq;
1554}
1555EXPORT_SYMBOL(cpufreq_quick_get_max);
1556
1557static unsigned int __cpufreq_get(unsigned int cpu)
1558{
1559 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1560 unsigned int ret_freq = 0;
1561
1562 if (!cpufreq_driver->get)
1563 return ret_freq;
1564
1565 ret_freq = cpufreq_driver->get(cpu);
1566
1567 if (ret_freq && policy->cur &&
1568 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1569 /* verify no discrepancy between actual and
1570 saved value exists */
1571 if (unlikely(ret_freq != policy->cur)) {
1572 cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1573 schedule_work(&policy->update);
1574 }
1575 }
1576
1577 return ret_freq;
1578}
1579
1580/**
1581 * cpufreq_get - get the current CPU frequency (in kHz)
1582 * @cpu: CPU number
1583 *
1584 * Get the CPU current (static) CPU frequency
1585 */
1586unsigned int cpufreq_get(unsigned int cpu)
1587{
1588 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1589 unsigned int ret_freq = 0;
1590
1591 if (policy) {
1592 down_read(&policy->rwsem);
1593 ret_freq = __cpufreq_get(cpu);
1594 up_read(&policy->rwsem);
1595
1596 cpufreq_cpu_put(policy);
1597 }
1598
1599 return ret_freq;
1600}
1601EXPORT_SYMBOL(cpufreq_get);
1602
1603static struct subsys_interface cpufreq_interface = {
1604 .name = "cpufreq",
1605 .subsys = &cpu_subsys,
1606 .add_dev = cpufreq_add_dev,
1607 .remove_dev = cpufreq_remove_dev,
1608};
1609
1610/*
1611 * In case platform wants some specific frequency to be configured
1612 * during suspend..
1613 */
1614int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1615{
1616 int ret;
1617
1618 if (!policy->suspend_freq) {
1619 pr_err("%s: suspend_freq can't be zero\n", __func__);
1620 return -EINVAL;
1621 }
1622
1623 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1624 policy->suspend_freq);
1625
1626 ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1627 CPUFREQ_RELATION_H);
1628 if (ret)
1629 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1630 __func__, policy->suspend_freq, ret);
1631
1632 return ret;
1633}
1634EXPORT_SYMBOL(cpufreq_generic_suspend);
1635
1636/**
1637 * cpufreq_suspend() - Suspend CPUFreq governors
1638 *
1639 * Called during system wide Suspend/Hibernate cycles for suspending governors
1640 * as some platforms can't change frequency after this point in suspend cycle.
1641 * Because some of the devices (like: i2c, regulators, etc) they use for
1642 * changing frequency are suspended quickly after this point.
1643 */
1644void cpufreq_suspend(void)
1645{
1646 struct cpufreq_policy *policy;
1647
1648 if (!cpufreq_driver)
1649 return;
1650
1651 if (!has_target())
1652 return;
1653
1654 pr_debug("%s: Suspending Governors\n", __func__);
1655
1656 list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
1657 if (__cpufreq_governor(policy, CPUFREQ_GOV_STOP))
1658 pr_err("%s: Failed to stop governor for policy: %p\n",
1659 __func__, policy);
1660 else if (cpufreq_driver->suspend
1661 && cpufreq_driver->suspend(policy))
1662 pr_err("%s: Failed to suspend driver: %p\n", __func__,
1663 policy);
1664 }
1665
1666 cpufreq_suspended = true;
1667}
1668
1669/**
1670 * cpufreq_resume() - Resume CPUFreq governors
1671 *
1672 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1673 * are suspended with cpufreq_suspend().
1674 */
1675void cpufreq_resume(void)
1676{
1677 struct cpufreq_policy *policy;
1678
1679 if (!cpufreq_driver)
1680 return;
1681
1682 if (!has_target())
1683 return;
1684
1685 pr_debug("%s: Resuming Governors\n", __func__);
1686
1687 cpufreq_suspended = false;
1688
1689 list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
1690 if (cpufreq_driver->resume && cpufreq_driver->resume(policy))
1691 pr_err("%s: Failed to resume driver: %p\n", __func__,
1692 policy);
1693 else if (__cpufreq_governor(policy, CPUFREQ_GOV_START)
1694 || __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS))
1695 pr_err("%s: Failed to start governor for policy: %p\n",
1696 __func__, policy);
1697
1698 /*
1699 * schedule call cpufreq_update_policy() for boot CPU, i.e. last
1700 * policy in list. It will verify that the current freq is in
1701 * sync with what we believe it to be.
1702 */
1703 if (list_is_last(&policy->policy_list, &cpufreq_policy_list))
1704 schedule_work(&policy->update);
1705 }
1706}
1707
1708/**
1709 * cpufreq_get_current_driver - return current driver's name
1710 *
1711 * Return the name string of the currently loaded cpufreq driver
1712 * or NULL, if none.
1713 */
1714const char *cpufreq_get_current_driver(void)
1715{
1716 if (cpufreq_driver)
1717 return cpufreq_driver->name;
1718
1719 return NULL;
1720}
1721EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1722
1723/*********************************************************************
1724 * NOTIFIER LISTS INTERFACE *
1725 *********************************************************************/
1726
1727/**
1728 * cpufreq_register_notifier - register a driver with cpufreq
1729 * @nb: notifier function to register
1730 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1731 *
1732 * Add a driver to one of two lists: either a list of drivers that
1733 * are notified about clock rate changes (once before and once after
1734 * the transition), or a list of drivers that are notified about
1735 * changes in cpufreq policy.
1736 *
1737 * This function may sleep, and has the same return conditions as
1738 * blocking_notifier_chain_register.
1739 */
1740int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1741{
1742 int ret;
1743
1744 if (cpufreq_disabled())
1745 return -EINVAL;
1746
1747 WARN_ON(!init_cpufreq_transition_notifier_list_called);
1748
1749 switch (list) {
1750 case CPUFREQ_TRANSITION_NOTIFIER:
1751 ret = srcu_notifier_chain_register(
1752 &cpufreq_transition_notifier_list, nb);
1753 break;
1754 case CPUFREQ_POLICY_NOTIFIER:
1755 ret = blocking_notifier_chain_register(
1756 &cpufreq_policy_notifier_list, nb);
1757 break;
1758 default:
1759 ret = -EINVAL;
1760 }
1761
1762 return ret;
1763}
1764EXPORT_SYMBOL(cpufreq_register_notifier);
1765
1766/**
1767 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1768 * @nb: notifier block to be unregistered
1769 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1770 *
1771 * Remove a driver from the CPU frequency notifier list.
1772 *
1773 * This function may sleep, and has the same return conditions as
1774 * blocking_notifier_chain_unregister.
1775 */
1776int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1777{
1778 int ret;
1779
1780 if (cpufreq_disabled())
1781 return -EINVAL;
1782
1783 switch (list) {
1784 case CPUFREQ_TRANSITION_NOTIFIER:
1785 ret = srcu_notifier_chain_unregister(
1786 &cpufreq_transition_notifier_list, nb);
1787 break;
1788 case CPUFREQ_POLICY_NOTIFIER:
1789 ret = blocking_notifier_chain_unregister(
1790 &cpufreq_policy_notifier_list, nb);
1791 break;
1792 default:
1793 ret = -EINVAL;
1794 }
1795
1796 return ret;
1797}
1798EXPORT_SYMBOL(cpufreq_unregister_notifier);
1799
1800
1801/*********************************************************************
1802 * GOVERNORS *
1803 *********************************************************************/
1804
1805int __cpufreq_driver_target(struct cpufreq_policy *policy,
1806 unsigned int target_freq,
1807 unsigned int relation)
1808{
1809 int retval = -EINVAL;
1810 unsigned int old_target_freq = target_freq;
1811
1812 if (cpufreq_disabled())
1813 return -ENODEV;
1814
1815 /* Make sure that target_freq is within supported range */
1816 if (target_freq > policy->max)
1817 target_freq = policy->max;
1818 if (target_freq < policy->min)
1819 target_freq = policy->min;
1820
1821 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1822 policy->cpu, target_freq, relation, old_target_freq);
1823
1824 /*
1825 * This might look like a redundant call as we are checking it again
1826 * after finding index. But it is left intentionally for cases where
1827 * exactly same freq is called again and so we can save on few function
1828 * calls.
1829 */
1830 if (target_freq == policy->cur)
1831 return 0;
1832
1833 if (cpufreq_driver->target)
1834 retval = cpufreq_driver->target(policy, target_freq, relation);
1835 else if (cpufreq_driver->target_index) {
1836 struct cpufreq_frequency_table *freq_table;
1837 struct cpufreq_freqs freqs;
1838 bool notify;
1839 int index;
1840
1841 freq_table = cpufreq_frequency_get_table(policy->cpu);
1842 if (unlikely(!freq_table)) {
1843 pr_err("%s: Unable to find freq_table\n", __func__);
1844 goto out;
1845 }
1846
1847 retval = cpufreq_frequency_table_target(policy, freq_table,
1848 target_freq, relation, &index);
1849 if (unlikely(retval)) {
1850 pr_err("%s: Unable to find matching freq\n", __func__);
1851 goto out;
1852 }
1853
1854 if (freq_table[index].frequency == policy->cur) {
1855 retval = 0;
1856 goto out;
1857 }
1858
1859 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1860
1861 if (notify) {
1862 freqs.old = policy->cur;
1863 freqs.new = freq_table[index].frequency;
1864 freqs.flags = 0;
1865
1866 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1867 __func__, policy->cpu, freqs.old, freqs.new);
1868
1869 cpufreq_freq_transition_begin(policy, &freqs);
1870 }
1871
1872 retval = cpufreq_driver->target_index(policy, index);
1873 if (retval)
1874 pr_err("%s: Failed to change cpu frequency: %d\n",
1875 __func__, retval);
1876
1877 if (notify)
1878 cpufreq_freq_transition_end(policy, &freqs, retval);
1879 }
1880
1881out:
1882 return retval;
1883}
1884EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1885
1886int cpufreq_driver_target(struct cpufreq_policy *policy,
1887 unsigned int target_freq,
1888 unsigned int relation)
1889{
1890 int ret = -EINVAL;
1891
1892 down_write(&policy->rwsem);
1893
1894 ret = __cpufreq_driver_target(policy, target_freq, relation);
1895
1896 up_write(&policy->rwsem);
1897
1898 return ret;
1899}
1900EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1901
1902/*
1903 * when "event" is CPUFREQ_GOV_LIMITS
1904 */
1905
1906static int __cpufreq_governor(struct cpufreq_policy *policy,
1907 unsigned int event)
1908{
1909 int ret;
1910
1911 /* Only must be defined when default governor is known to have latency
1912 restrictions, like e.g. conservative or ondemand.
1913 That this is the case is already ensured in Kconfig
1914 */
1915#ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1916 struct cpufreq_governor *gov = &cpufreq_gov_performance;
1917#else
1918 struct cpufreq_governor *gov = NULL;
1919#endif
1920
1921 /* Don't start any governor operations if we are entering suspend */
1922 if (cpufreq_suspended)
1923 return 0;
1924
1925 if (policy->governor->max_transition_latency &&
1926 policy->cpuinfo.transition_latency >
1927 policy->governor->max_transition_latency) {
1928 if (!gov)
1929 return -EINVAL;
1930 else {
1931 pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n",
1932 policy->governor->name, gov->name);
1933 policy->governor = gov;
1934 }
1935 }
1936
1937 if (event == CPUFREQ_GOV_POLICY_INIT)
1938 if (!try_module_get(policy->governor->owner))
1939 return -EINVAL;
1940
1941 pr_debug("__cpufreq_governor for CPU %u, event %u\n",
1942 policy->cpu, event);
1943
1944 mutex_lock(&cpufreq_governor_lock);
1945 if ((policy->governor_enabled && event == CPUFREQ_GOV_START)
1946 || (!policy->governor_enabled
1947 && (event == CPUFREQ_GOV_LIMITS || event == CPUFREQ_GOV_STOP))) {
1948 mutex_unlock(&cpufreq_governor_lock);
1949 return -EBUSY;
1950 }
1951
1952 if (event == CPUFREQ_GOV_STOP)
1953 policy->governor_enabled = false;
1954 else if (event == CPUFREQ_GOV_START)
1955 policy->governor_enabled = true;
1956
1957 mutex_unlock(&cpufreq_governor_lock);
1958
1959 ret = policy->governor->governor(policy, event);
1960
1961 if (!ret) {
1962 if (event == CPUFREQ_GOV_POLICY_INIT)
1963 policy->governor->initialized++;
1964 else if (event == CPUFREQ_GOV_POLICY_EXIT)
1965 policy->governor->initialized--;
1966 } else {
1967 /* Restore original values */
1968 mutex_lock(&cpufreq_governor_lock);
1969 if (event == CPUFREQ_GOV_STOP)
1970 policy->governor_enabled = true;
1971 else if (event == CPUFREQ_GOV_START)
1972 policy->governor_enabled = false;
1973 mutex_unlock(&cpufreq_governor_lock);
1974 }
1975
1976 if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) ||
1977 ((event == CPUFREQ_GOV_POLICY_EXIT) && !ret))
1978 module_put(policy->governor->owner);
1979
1980 return ret;
1981}
1982
1983int cpufreq_register_governor(struct cpufreq_governor *governor)
1984{
1985 int err;
1986
1987 if (!governor)
1988 return -EINVAL;
1989
1990 if (cpufreq_disabled())
1991 return -ENODEV;
1992
1993 mutex_lock(&cpufreq_governor_mutex);
1994
1995 governor->initialized = 0;
1996 err = -EBUSY;
1997 if (__find_governor(governor->name) == NULL) {
1998 err = 0;
1999 list_add(&governor->governor_list, &cpufreq_governor_list);
2000 }
2001
2002 mutex_unlock(&cpufreq_governor_mutex);
2003 return err;
2004}
2005EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2006
2007void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2008{
2009 int cpu;
2010
2011 if (!governor)
2012 return;
2013
2014 if (cpufreq_disabled())
2015 return;
2016
2017 for_each_present_cpu(cpu) {
2018 if (cpu_online(cpu))
2019 continue;
2020 if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name))
2021 strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0");
2022 }
2023
2024 mutex_lock(&cpufreq_governor_mutex);
2025 list_del(&governor->governor_list);
2026 mutex_unlock(&cpufreq_governor_mutex);
2027 return;
2028}
2029EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2030
2031
2032/*********************************************************************
2033 * POLICY INTERFACE *
2034 *********************************************************************/
2035
2036/**
2037 * cpufreq_get_policy - get the current cpufreq_policy
2038 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2039 * is written
2040 *
2041 * Reads the current cpufreq policy.
2042 */
2043int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2044{
2045 struct cpufreq_policy *cpu_policy;
2046 if (!policy)
2047 return -EINVAL;
2048
2049 cpu_policy = cpufreq_cpu_get(cpu);
2050 if (!cpu_policy)
2051 return -EINVAL;
2052
2053 memcpy(policy, cpu_policy, sizeof(*policy));
2054
2055 cpufreq_cpu_put(cpu_policy);
2056 return 0;
2057}
2058EXPORT_SYMBOL(cpufreq_get_policy);
2059
2060/*
2061 * policy : current policy.
2062 * new_policy: policy to be set.
2063 */
2064static int cpufreq_set_policy(struct cpufreq_policy *policy,
2065 struct cpufreq_policy *new_policy)
2066{
2067 struct cpufreq_governor *old_gov;
2068 int ret;
2069
2070 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2071 new_policy->cpu, new_policy->min, new_policy->max);
2072
2073 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2074
2075 if (new_policy->min > policy->max || new_policy->max < policy->min)
2076 return -EINVAL;
2077
2078 /* verify the cpu speed can be set within this limit */
2079 ret = cpufreq_driver->verify(new_policy);
2080 if (ret)
2081 return ret;
2082
2083 /* adjust if necessary - all reasons */
2084 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2085 CPUFREQ_ADJUST, new_policy);
2086
2087 /* adjust if necessary - hardware incompatibility*/
2088 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2089 CPUFREQ_INCOMPATIBLE, new_policy);
2090
2091 /*
2092 * verify the cpu speed can be set within this limit, which might be
2093 * different to the first one
2094 */
2095 ret = cpufreq_driver->verify(new_policy);
2096 if (ret)
2097 return ret;
2098
2099 /* notification of the new policy */
2100 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2101 CPUFREQ_NOTIFY, new_policy);
2102
2103 policy->min = new_policy->min;
2104 policy->max = new_policy->max;
2105
2106 pr_debug("new min and max freqs are %u - %u kHz\n",
2107 policy->min, policy->max);
2108
2109 if (cpufreq_driver->setpolicy) {
2110 policy->policy = new_policy->policy;
2111 pr_debug("setting range\n");
2112 return cpufreq_driver->setpolicy(new_policy);
2113 }
2114
2115 if (new_policy->governor == policy->governor)
2116 goto out;
2117
2118 pr_debug("governor switch\n");
2119
2120 /* save old, working values */
2121 old_gov = policy->governor;
2122 /* end old governor */
2123 if (old_gov) {
2124 __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
2125 up_write(&policy->rwsem);
2126 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2127 down_write(&policy->rwsem);
2128 }
2129
2130 /* start new governor */
2131 policy->governor = new_policy->governor;
2132 if (!__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT)) {
2133 if (!__cpufreq_governor(policy, CPUFREQ_GOV_START))
2134 goto out;
2135
2136 up_write(&policy->rwsem);
2137 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2138 down_write(&policy->rwsem);
2139 }
2140
2141 /* new governor failed, so re-start old one */
2142 pr_debug("starting governor %s failed\n", policy->governor->name);
2143 if (old_gov) {
2144 policy->governor = old_gov;
2145 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT);
2146 __cpufreq_governor(policy, CPUFREQ_GOV_START);
2147 }
2148
2149 return -EINVAL;
2150
2151 out:
2152 pr_debug("governor: change or update limits\n");
2153 return __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2154}
2155
2156/**
2157 * cpufreq_update_policy - re-evaluate an existing cpufreq policy
2158 * @cpu: CPU which shall be re-evaluated
2159 *
2160 * Useful for policy notifiers which have different necessities
2161 * at different times.
2162 */
2163int cpufreq_update_policy(unsigned int cpu)
2164{
2165 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2166 struct cpufreq_policy new_policy;
2167 int ret;
2168
2169 if (!policy) {
2170 ret = -ENODEV;
2171 goto no_policy;
2172 }
2173
2174 down_write(&policy->rwsem);
2175
2176 pr_debug("updating policy for CPU %u\n", cpu);
2177 memcpy(&new_policy, policy, sizeof(*policy));
2178 new_policy.min = policy->user_policy.min;
2179 new_policy.max = policy->user_policy.max;
2180 new_policy.policy = policy->user_policy.policy;
2181 new_policy.governor = policy->user_policy.governor;
2182
2183 /*
2184 * BIOS might change freq behind our back
2185 * -> ask driver for current freq and notify governors about a change
2186 */
2187 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2188 new_policy.cur = cpufreq_driver->get(cpu);
2189 if (WARN_ON(!new_policy.cur)) {
2190 ret = -EIO;
2191 goto no_policy;
2192 }
2193
2194 if (!policy->cur) {
2195 pr_debug("Driver did not initialize current freq\n");
2196 policy->cur = new_policy.cur;
2197 } else {
2198 if (policy->cur != new_policy.cur && has_target())
2199 cpufreq_out_of_sync(cpu, policy->cur,
2200 new_policy.cur);
2201 }
2202 }
2203
2204 ret = cpufreq_set_policy(policy, &new_policy);
2205
2206 up_write(&policy->rwsem);
2207
2208 cpufreq_cpu_put(policy);
2209no_policy:
2210 return ret;
2211}
2212EXPORT_SYMBOL(cpufreq_update_policy);
2213
2214static int cpufreq_cpu_callback(struct notifier_block *nfb,
2215 unsigned long action, void *hcpu)
2216{
2217 unsigned int cpu = (unsigned long)hcpu;
2218 struct device *dev;
2219
2220 dev = get_cpu_device(cpu);
2221 if (dev) {
2222 switch (action & ~CPU_TASKS_FROZEN) {
2223 case CPU_ONLINE:
2224 __cpufreq_add_dev(dev, NULL);
2225 break;
2226
2227 case CPU_DOWN_PREPARE:
2228 __cpufreq_remove_dev_prepare(dev, NULL);
2229 break;
2230
2231 case CPU_POST_DEAD:
2232 __cpufreq_remove_dev_finish(dev, NULL);
2233 break;
2234
2235 case CPU_DOWN_FAILED:
2236 __cpufreq_add_dev(dev, NULL);
2237 break;
2238 }
2239 }
2240 return NOTIFY_OK;
2241}
2242
2243static struct notifier_block __refdata cpufreq_cpu_notifier = {
2244 .notifier_call = cpufreq_cpu_callback,
2245};
2246
2247/*********************************************************************
2248 * BOOST *
2249 *********************************************************************/
2250static int cpufreq_boost_set_sw(int state)
2251{
2252 struct cpufreq_frequency_table *freq_table;
2253 struct cpufreq_policy *policy;
2254 int ret = -EINVAL;
2255
2256 list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
2257 freq_table = cpufreq_frequency_get_table(policy->cpu);
2258 if (freq_table) {
2259 ret = cpufreq_frequency_table_cpuinfo(policy,
2260 freq_table);
2261 if (ret) {
2262 pr_err("%s: Policy frequency update failed\n",
2263 __func__);
2264 break;
2265 }
2266 policy->user_policy.max = policy->max;
2267 __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2268 }
2269 }
2270
2271 return ret;
2272}
2273
2274int cpufreq_boost_trigger_state(int state)
2275{
2276 unsigned long flags;
2277 int ret = 0;
2278
2279 if (cpufreq_driver->boost_enabled == state)
2280 return 0;
2281
2282 write_lock_irqsave(&cpufreq_driver_lock, flags);
2283 cpufreq_driver->boost_enabled = state;
2284 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2285
2286 ret = cpufreq_driver->set_boost(state);
2287 if (ret) {
2288 write_lock_irqsave(&cpufreq_driver_lock, flags);
2289 cpufreq_driver->boost_enabled = !state;
2290 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2291
2292 pr_err("%s: Cannot %s BOOST\n",
2293 __func__, state ? "enable" : "disable");
2294 }
2295
2296 return ret;
2297}
2298
2299int cpufreq_boost_supported(void)
2300{
2301 if (likely(cpufreq_driver))
2302 return cpufreq_driver->boost_supported;
2303
2304 return 0;
2305}
2306EXPORT_SYMBOL_GPL(cpufreq_boost_supported);
2307
2308int cpufreq_boost_enabled(void)
2309{
2310 return cpufreq_driver->boost_enabled;
2311}
2312EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2313
2314/*********************************************************************
2315 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2316 *********************************************************************/
2317
2318/**
2319 * cpufreq_register_driver - register a CPU Frequency driver
2320 * @driver_data: A struct cpufreq_driver containing the values#
2321 * submitted by the CPU Frequency driver.
2322 *
2323 * Registers a CPU Frequency driver to this core code. This code
2324 * returns zero on success, -EBUSY when another driver got here first
2325 * (and isn't unregistered in the meantime).
2326 *
2327 */
2328int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2329{
2330 unsigned long flags;
2331 int ret;
2332
2333 if (cpufreq_disabled())
2334 return -ENODEV;
2335
2336 if (!driver_data || !driver_data->verify || !driver_data->init ||
2337 !(driver_data->setpolicy || driver_data->target_index ||
2338 driver_data->target) ||
2339 (driver_data->setpolicy && (driver_data->target_index ||
2340 driver_data->target)))
2341 return -EINVAL;
2342
2343 pr_debug("trying to register driver %s\n", driver_data->name);
2344
2345 if (driver_data->setpolicy)
2346 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2347
2348 write_lock_irqsave(&cpufreq_driver_lock, flags);
2349 if (cpufreq_driver) {
2350 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2351 return -EEXIST;
2352 }
2353 cpufreq_driver = driver_data;
2354 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2355
2356 if (cpufreq_boost_supported()) {
2357 /*
2358 * Check if driver provides function to enable boost -
2359 * if not, use cpufreq_boost_set_sw as default
2360 */
2361 if (!cpufreq_driver->set_boost)
2362 cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2363
2364 ret = cpufreq_sysfs_create_file(&boost.attr);
2365 if (ret) {
2366 pr_err("%s: cannot register global BOOST sysfs file\n",
2367 __func__);
2368 goto err_null_driver;
2369 }
2370 }
2371
2372 ret = subsys_interface_register(&cpufreq_interface);
2373 if (ret)
2374 goto err_boost_unreg;
2375
2376 if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) {
2377 int i;
2378 ret = -ENODEV;
2379
2380 /* check for at least one working CPU */
2381 for (i = 0; i < nr_cpu_ids; i++)
2382 if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
2383 ret = 0;
2384 break;
2385 }
2386
2387 /* if all ->init() calls failed, unregister */
2388 if (ret) {
2389 pr_debug("no CPU initialized for driver %s\n",
2390 driver_data->name);
2391 goto err_if_unreg;
2392 }
2393 }
2394
2395 register_hotcpu_notifier(&cpufreq_cpu_notifier);
2396 pr_debug("driver %s up and running\n", driver_data->name);
2397
2398 return 0;
2399err_if_unreg:
2400 subsys_interface_unregister(&cpufreq_interface);
2401err_boost_unreg:
2402 if (cpufreq_boost_supported())
2403 cpufreq_sysfs_remove_file(&boost.attr);
2404err_null_driver:
2405 write_lock_irqsave(&cpufreq_driver_lock, flags);
2406 cpufreq_driver = NULL;
2407 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2408 return ret;
2409}
2410EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2411
2412/**
2413 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2414 *
2415 * Unregister the current CPUFreq driver. Only call this if you have
2416 * the right to do so, i.e. if you have succeeded in initialising before!
2417 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2418 * currently not initialised.
2419 */
2420int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2421{
2422 unsigned long flags;
2423
2424 if (!cpufreq_driver || (driver != cpufreq_driver))
2425 return -EINVAL;
2426
2427 pr_debug("unregistering driver %s\n", driver->name);
2428
2429 subsys_interface_unregister(&cpufreq_interface);
2430 if (cpufreq_boost_supported())
2431 cpufreq_sysfs_remove_file(&boost.attr);
2432
2433 unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
2434
2435 down_write(&cpufreq_rwsem);
2436 write_lock_irqsave(&cpufreq_driver_lock, flags);
2437
2438 cpufreq_driver = NULL;
2439
2440 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2441 up_write(&cpufreq_rwsem);
2442
2443 return 0;
2444}
2445EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2446
2447static int __init cpufreq_core_init(void)
2448{
2449 if (cpufreq_disabled())
2450 return -ENODEV;
2451
2452 cpufreq_global_kobject = kobject_create();
2453 BUG_ON(!cpufreq_global_kobject);
2454
2455 return 0;
2456}
2457core_initcall(cpufreq_core_init);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/drivers/cpufreq/cpufreq.c
4 *
5 * Copyright (C) 2001 Russell King
6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8 *
9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10 * Added handling for CPU hotplug
11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12 * Fix handling for CPU hotplug -- affected CPUs
13 */
14
15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17#include <linux/cpu.h>
18#include <linux/cpufreq.h>
19#include <linux/cpu_cooling.h>
20#include <linux/delay.h>
21#include <linux/device.h>
22#include <linux/init.h>
23#include <linux/kernel_stat.h>
24#include <linux/module.h>
25#include <linux/mutex.h>
26#include <linux/pm_qos.h>
27#include <linux/slab.h>
28#include <linux/suspend.h>
29#include <linux/syscore_ops.h>
30#include <linux/tick.h>
31#include <linux/units.h>
32#include <trace/events/power.h>
33
34static LIST_HEAD(cpufreq_policy_list);
35
36/* Macros to iterate over CPU policies */
37#define for_each_suitable_policy(__policy, __active) \
38 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
39 if ((__active) == !policy_is_inactive(__policy))
40
41#define for_each_active_policy(__policy) \
42 for_each_suitable_policy(__policy, true)
43#define for_each_inactive_policy(__policy) \
44 for_each_suitable_policy(__policy, false)
45
46/* Iterate over governors */
47static LIST_HEAD(cpufreq_governor_list);
48#define for_each_governor(__governor) \
49 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
50
51static char default_governor[CPUFREQ_NAME_LEN];
52
53/*
54 * The "cpufreq driver" - the arch- or hardware-dependent low
55 * level driver of CPUFreq support, and its spinlock. This lock
56 * also protects the cpufreq_cpu_data array.
57 */
58static struct cpufreq_driver *cpufreq_driver;
59static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
60static DEFINE_RWLOCK(cpufreq_driver_lock);
61
62static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
63bool cpufreq_supports_freq_invariance(void)
64{
65 return static_branch_likely(&cpufreq_freq_invariance);
66}
67
68/* Flag to suspend/resume CPUFreq governors */
69static bool cpufreq_suspended;
70
71static inline bool has_target(void)
72{
73 return cpufreq_driver->target_index || cpufreq_driver->target;
74}
75
76bool has_target_index(void)
77{
78 return !!cpufreq_driver->target_index;
79}
80
81/* internal prototypes */
82static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
83static int cpufreq_init_governor(struct cpufreq_policy *policy);
84static void cpufreq_exit_governor(struct cpufreq_policy *policy);
85static void cpufreq_governor_limits(struct cpufreq_policy *policy);
86static int cpufreq_set_policy(struct cpufreq_policy *policy,
87 struct cpufreq_governor *new_gov,
88 unsigned int new_pol);
89static bool cpufreq_boost_supported(void);
90
91/*
92 * Two notifier lists: the "policy" list is involved in the
93 * validation process for a new CPU frequency policy; the
94 * "transition" list for kernel code that needs to handle
95 * changes to devices when the CPU clock speed changes.
96 * The mutex locks both lists.
97 */
98static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
99SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
100
101static int off __read_mostly;
102static int cpufreq_disabled(void)
103{
104 return off;
105}
106void disable_cpufreq(void)
107{
108 off = 1;
109}
110static DEFINE_MUTEX(cpufreq_governor_mutex);
111
112bool have_governor_per_policy(void)
113{
114 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
115}
116EXPORT_SYMBOL_GPL(have_governor_per_policy);
117
118static struct kobject *cpufreq_global_kobject;
119
120struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
121{
122 if (have_governor_per_policy())
123 return &policy->kobj;
124 else
125 return cpufreq_global_kobject;
126}
127EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
128
129static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
130{
131 struct kernel_cpustat kcpustat;
132 u64 cur_wall_time;
133 u64 idle_time;
134 u64 busy_time;
135
136 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
137
138 kcpustat_cpu_fetch(&kcpustat, cpu);
139
140 busy_time = kcpustat.cpustat[CPUTIME_USER];
141 busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
142 busy_time += kcpustat.cpustat[CPUTIME_IRQ];
143 busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
144 busy_time += kcpustat.cpustat[CPUTIME_STEAL];
145 busy_time += kcpustat.cpustat[CPUTIME_NICE];
146
147 idle_time = cur_wall_time - busy_time;
148 if (wall)
149 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
150
151 return div_u64(idle_time, NSEC_PER_USEC);
152}
153
154u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
155{
156 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
157
158 if (idle_time == -1ULL)
159 return get_cpu_idle_time_jiffy(cpu, wall);
160 else if (!io_busy)
161 idle_time += get_cpu_iowait_time_us(cpu, wall);
162
163 return idle_time;
164}
165EXPORT_SYMBOL_GPL(get_cpu_idle_time);
166
167/*
168 * This is a generic cpufreq init() routine which can be used by cpufreq
169 * drivers of SMP systems. It will do following:
170 * - validate & show freq table passed
171 * - set policies transition latency
172 * - policy->cpus with all possible CPUs
173 */
174void cpufreq_generic_init(struct cpufreq_policy *policy,
175 struct cpufreq_frequency_table *table,
176 unsigned int transition_latency)
177{
178 policy->freq_table = table;
179 policy->cpuinfo.transition_latency = transition_latency;
180
181 /*
182 * The driver only supports the SMP configuration where all processors
183 * share the clock and voltage and clock.
184 */
185 cpumask_setall(policy->cpus);
186}
187EXPORT_SYMBOL_GPL(cpufreq_generic_init);
188
189struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
190{
191 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
192
193 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
194}
195EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
196
197unsigned int cpufreq_generic_get(unsigned int cpu)
198{
199 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
200
201 if (!policy || IS_ERR(policy->clk)) {
202 pr_err("%s: No %s associated to cpu: %d\n",
203 __func__, policy ? "clk" : "policy", cpu);
204 return 0;
205 }
206
207 return clk_get_rate(policy->clk) / 1000;
208}
209EXPORT_SYMBOL_GPL(cpufreq_generic_get);
210
211/**
212 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
213 * @cpu: CPU to find the policy for.
214 *
215 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
216 * the kobject reference counter of that policy. Return a valid policy on
217 * success or NULL on failure.
218 *
219 * The policy returned by this function has to be released with the help of
220 * cpufreq_cpu_put() to balance its kobject reference counter properly.
221 */
222struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
223{
224 struct cpufreq_policy *policy = NULL;
225 unsigned long flags;
226
227 if (WARN_ON(cpu >= nr_cpu_ids))
228 return NULL;
229
230 /* get the cpufreq driver */
231 read_lock_irqsave(&cpufreq_driver_lock, flags);
232
233 if (cpufreq_driver) {
234 /* get the CPU */
235 policy = cpufreq_cpu_get_raw(cpu);
236 if (policy)
237 kobject_get(&policy->kobj);
238 }
239
240 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
241
242 return policy;
243}
244EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
245
246/**
247 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
248 * @policy: cpufreq policy returned by cpufreq_cpu_get().
249 */
250void cpufreq_cpu_put(struct cpufreq_policy *policy)
251{
252 kobject_put(&policy->kobj);
253}
254EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
255
256/**
257 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
258 * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
259 */
260void cpufreq_cpu_release(struct cpufreq_policy *policy)
261{
262 if (WARN_ON(!policy))
263 return;
264
265 lockdep_assert_held(&policy->rwsem);
266
267 up_write(&policy->rwsem);
268
269 cpufreq_cpu_put(policy);
270}
271
272/**
273 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
274 * @cpu: CPU to find the policy for.
275 *
276 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
277 * if the policy returned by it is not NULL, acquire its rwsem for writing.
278 * Return the policy if it is active or release it and return NULL otherwise.
279 *
280 * The policy returned by this function has to be released with the help of
281 * cpufreq_cpu_release() in order to release its rwsem and balance its usage
282 * counter properly.
283 */
284struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
285{
286 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
287
288 if (!policy)
289 return NULL;
290
291 down_write(&policy->rwsem);
292
293 if (policy_is_inactive(policy)) {
294 cpufreq_cpu_release(policy);
295 return NULL;
296 }
297
298 return policy;
299}
300
301/*********************************************************************
302 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
303 *********************************************************************/
304
305/**
306 * adjust_jiffies - Adjust the system "loops_per_jiffy".
307 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
308 * @ci: Frequency change information.
309 *
310 * This function alters the system "loops_per_jiffy" for the clock
311 * speed change. Note that loops_per_jiffy cannot be updated on SMP
312 * systems as each CPU might be scaled differently. So, use the arch
313 * per-CPU loops_per_jiffy value wherever possible.
314 */
315static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
316{
317#ifndef CONFIG_SMP
318 static unsigned long l_p_j_ref;
319 static unsigned int l_p_j_ref_freq;
320
321 if (ci->flags & CPUFREQ_CONST_LOOPS)
322 return;
323
324 if (!l_p_j_ref_freq) {
325 l_p_j_ref = loops_per_jiffy;
326 l_p_j_ref_freq = ci->old;
327 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
328 l_p_j_ref, l_p_j_ref_freq);
329 }
330 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
331 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
332 ci->new);
333 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
334 loops_per_jiffy, ci->new);
335 }
336#endif
337}
338
339/**
340 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
341 * @policy: cpufreq policy to enable fast frequency switching for.
342 * @freqs: contain details of the frequency update.
343 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
344 *
345 * This function calls the transition notifiers and adjust_jiffies().
346 *
347 * It is called twice on all CPU frequency changes that have external effects.
348 */
349static void cpufreq_notify_transition(struct cpufreq_policy *policy,
350 struct cpufreq_freqs *freqs,
351 unsigned int state)
352{
353 int cpu;
354
355 BUG_ON(irqs_disabled());
356
357 if (cpufreq_disabled())
358 return;
359
360 freqs->policy = policy;
361 freqs->flags = cpufreq_driver->flags;
362 pr_debug("notification %u of frequency transition to %u kHz\n",
363 state, freqs->new);
364
365 switch (state) {
366 case CPUFREQ_PRECHANGE:
367 /*
368 * Detect if the driver reported a value as "old frequency"
369 * which is not equal to what the cpufreq core thinks is
370 * "old frequency".
371 */
372 if (policy->cur && policy->cur != freqs->old) {
373 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
374 freqs->old, policy->cur);
375 freqs->old = policy->cur;
376 }
377
378 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
379 CPUFREQ_PRECHANGE, freqs);
380
381 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
382 break;
383
384 case CPUFREQ_POSTCHANGE:
385 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
386 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
387 cpumask_pr_args(policy->cpus));
388
389 for_each_cpu(cpu, policy->cpus)
390 trace_cpu_frequency(freqs->new, cpu);
391
392 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
393 CPUFREQ_POSTCHANGE, freqs);
394
395 cpufreq_stats_record_transition(policy, freqs->new);
396 policy->cur = freqs->new;
397 }
398}
399
400/* Do post notifications when there are chances that transition has failed */
401static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
402 struct cpufreq_freqs *freqs, int transition_failed)
403{
404 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
405 if (!transition_failed)
406 return;
407
408 swap(freqs->old, freqs->new);
409 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
410 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
411}
412
413void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
414 struct cpufreq_freqs *freqs)
415{
416
417 /*
418 * Catch double invocations of _begin() which lead to self-deadlock.
419 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
420 * doesn't invoke _begin() on their behalf, and hence the chances of
421 * double invocations are very low. Moreover, there are scenarios
422 * where these checks can emit false-positive warnings in these
423 * drivers; so we avoid that by skipping them altogether.
424 */
425 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
426 && current == policy->transition_task);
427
428wait:
429 wait_event(policy->transition_wait, !policy->transition_ongoing);
430
431 spin_lock(&policy->transition_lock);
432
433 if (unlikely(policy->transition_ongoing)) {
434 spin_unlock(&policy->transition_lock);
435 goto wait;
436 }
437
438 policy->transition_ongoing = true;
439 policy->transition_task = current;
440
441 spin_unlock(&policy->transition_lock);
442
443 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
444}
445EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
446
447void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
448 struct cpufreq_freqs *freqs, int transition_failed)
449{
450 if (WARN_ON(!policy->transition_ongoing))
451 return;
452
453 cpufreq_notify_post_transition(policy, freqs, transition_failed);
454
455 arch_set_freq_scale(policy->related_cpus,
456 policy->cur,
457 arch_scale_freq_ref(policy->cpu));
458
459 spin_lock(&policy->transition_lock);
460 policy->transition_ongoing = false;
461 policy->transition_task = NULL;
462 spin_unlock(&policy->transition_lock);
463
464 wake_up(&policy->transition_wait);
465}
466EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
467
468/*
469 * Fast frequency switching status count. Positive means "enabled", negative
470 * means "disabled" and 0 means "not decided yet".
471 */
472static int cpufreq_fast_switch_count;
473static DEFINE_MUTEX(cpufreq_fast_switch_lock);
474
475static void cpufreq_list_transition_notifiers(void)
476{
477 struct notifier_block *nb;
478
479 pr_info("Registered transition notifiers:\n");
480
481 mutex_lock(&cpufreq_transition_notifier_list.mutex);
482
483 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
484 pr_info("%pS\n", nb->notifier_call);
485
486 mutex_unlock(&cpufreq_transition_notifier_list.mutex);
487}
488
489/**
490 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
491 * @policy: cpufreq policy to enable fast frequency switching for.
492 *
493 * Try to enable fast frequency switching for @policy.
494 *
495 * The attempt will fail if there is at least one transition notifier registered
496 * at this point, as fast frequency switching is quite fundamentally at odds
497 * with transition notifiers. Thus if successful, it will make registration of
498 * transition notifiers fail going forward.
499 */
500void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
501{
502 lockdep_assert_held(&policy->rwsem);
503
504 if (!policy->fast_switch_possible)
505 return;
506
507 mutex_lock(&cpufreq_fast_switch_lock);
508 if (cpufreq_fast_switch_count >= 0) {
509 cpufreq_fast_switch_count++;
510 policy->fast_switch_enabled = true;
511 } else {
512 pr_warn("CPU%u: Fast frequency switching not enabled\n",
513 policy->cpu);
514 cpufreq_list_transition_notifiers();
515 }
516 mutex_unlock(&cpufreq_fast_switch_lock);
517}
518EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
519
520/**
521 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
522 * @policy: cpufreq policy to disable fast frequency switching for.
523 */
524void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
525{
526 mutex_lock(&cpufreq_fast_switch_lock);
527 if (policy->fast_switch_enabled) {
528 policy->fast_switch_enabled = false;
529 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
530 cpufreq_fast_switch_count--;
531 }
532 mutex_unlock(&cpufreq_fast_switch_lock);
533}
534EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
535
536static unsigned int __resolve_freq(struct cpufreq_policy *policy,
537 unsigned int target_freq, unsigned int relation)
538{
539 unsigned int idx;
540
541 target_freq = clamp_val(target_freq, policy->min, policy->max);
542
543 if (!policy->freq_table)
544 return target_freq;
545
546 idx = cpufreq_frequency_table_target(policy, target_freq, relation);
547 policy->cached_resolved_idx = idx;
548 policy->cached_target_freq = target_freq;
549 return policy->freq_table[idx].frequency;
550}
551
552/**
553 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
554 * one.
555 * @policy: associated policy to interrogate
556 * @target_freq: target frequency to resolve.
557 *
558 * The target to driver frequency mapping is cached in the policy.
559 *
560 * Return: Lowest driver-supported frequency greater than or equal to the
561 * given target_freq, subject to policy (min/max) and driver limitations.
562 */
563unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
564 unsigned int target_freq)
565{
566 return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE);
567}
568EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
569
570unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
571{
572 unsigned int latency;
573
574 if (policy->transition_delay_us)
575 return policy->transition_delay_us;
576
577 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
578 if (latency)
579 /* Give a 50% breathing room between updates */
580 return latency + (latency >> 1);
581
582 return USEC_PER_MSEC;
583}
584EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
585
586/*********************************************************************
587 * SYSFS INTERFACE *
588 *********************************************************************/
589static ssize_t show_boost(struct kobject *kobj,
590 struct kobj_attribute *attr, char *buf)
591{
592 return sysfs_emit(buf, "%d\n", cpufreq_driver->boost_enabled);
593}
594
595static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
596 const char *buf, size_t count)
597{
598 bool enable;
599
600 if (kstrtobool(buf, &enable))
601 return -EINVAL;
602
603 if (cpufreq_boost_trigger_state(enable)) {
604 pr_err("%s: Cannot %s BOOST!\n",
605 __func__, enable ? "enable" : "disable");
606 return -EINVAL;
607 }
608
609 pr_debug("%s: cpufreq BOOST %s\n",
610 __func__, enable ? "enabled" : "disabled");
611
612 return count;
613}
614define_one_global_rw(boost);
615
616static ssize_t show_local_boost(struct cpufreq_policy *policy, char *buf)
617{
618 return sysfs_emit(buf, "%d\n", policy->boost_enabled);
619}
620
621static ssize_t store_local_boost(struct cpufreq_policy *policy,
622 const char *buf, size_t count)
623{
624 int ret;
625 bool enable;
626
627 if (kstrtobool(buf, &enable))
628 return -EINVAL;
629
630 if (!cpufreq_driver->boost_enabled)
631 return -EINVAL;
632
633 if (policy->boost_enabled == enable)
634 return count;
635
636 policy->boost_enabled = enable;
637
638 cpus_read_lock();
639 ret = cpufreq_driver->set_boost(policy, enable);
640 cpus_read_unlock();
641
642 if (ret) {
643 policy->boost_enabled = !policy->boost_enabled;
644 return ret;
645 }
646
647 return count;
648}
649
650static struct freq_attr local_boost = __ATTR(boost, 0644, show_local_boost, store_local_boost);
651
652static struct cpufreq_governor *find_governor(const char *str_governor)
653{
654 struct cpufreq_governor *t;
655
656 for_each_governor(t)
657 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
658 return t;
659
660 return NULL;
661}
662
663static struct cpufreq_governor *get_governor(const char *str_governor)
664{
665 struct cpufreq_governor *t;
666
667 mutex_lock(&cpufreq_governor_mutex);
668 t = find_governor(str_governor);
669 if (!t)
670 goto unlock;
671
672 if (!try_module_get(t->owner))
673 t = NULL;
674
675unlock:
676 mutex_unlock(&cpufreq_governor_mutex);
677
678 return t;
679}
680
681static unsigned int cpufreq_parse_policy(char *str_governor)
682{
683 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
684 return CPUFREQ_POLICY_PERFORMANCE;
685
686 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
687 return CPUFREQ_POLICY_POWERSAVE;
688
689 return CPUFREQ_POLICY_UNKNOWN;
690}
691
692/**
693 * cpufreq_parse_governor - parse a governor string only for has_target()
694 * @str_governor: Governor name.
695 */
696static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
697{
698 struct cpufreq_governor *t;
699
700 t = get_governor(str_governor);
701 if (t)
702 return t;
703
704 if (request_module("cpufreq_%s", str_governor))
705 return NULL;
706
707 return get_governor(str_governor);
708}
709
710/*
711 * cpufreq_per_cpu_attr_read() / show_##file_name() -
712 * print out cpufreq information
713 *
714 * Write out information from cpufreq_driver->policy[cpu]; object must be
715 * "unsigned int".
716 */
717
718#define show_one(file_name, object) \
719static ssize_t show_##file_name \
720(struct cpufreq_policy *policy, char *buf) \
721{ \
722 return sysfs_emit(buf, "%u\n", policy->object); \
723}
724
725show_one(cpuinfo_min_freq, cpuinfo.min_freq);
726show_one(cpuinfo_max_freq, cpuinfo.max_freq);
727show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
728show_one(scaling_min_freq, min);
729show_one(scaling_max_freq, max);
730
731__weak unsigned int arch_freq_get_on_cpu(int cpu)
732{
733 return 0;
734}
735
736static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
737{
738 ssize_t ret;
739 unsigned int freq;
740
741 freq = arch_freq_get_on_cpu(policy->cpu);
742 if (freq)
743 ret = sysfs_emit(buf, "%u\n", freq);
744 else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
745 ret = sysfs_emit(buf, "%u\n", cpufreq_driver->get(policy->cpu));
746 else
747 ret = sysfs_emit(buf, "%u\n", policy->cur);
748 return ret;
749}
750
751/*
752 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
753 */
754#define store_one(file_name, object) \
755static ssize_t store_##file_name \
756(struct cpufreq_policy *policy, const char *buf, size_t count) \
757{ \
758 unsigned long val; \
759 int ret; \
760 \
761 ret = kstrtoul(buf, 0, &val); \
762 if (ret) \
763 return ret; \
764 \
765 ret = freq_qos_update_request(policy->object##_freq_req, val);\
766 return ret >= 0 ? count : ret; \
767}
768
769store_one(scaling_min_freq, min);
770store_one(scaling_max_freq, max);
771
772/*
773 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
774 */
775static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
776 char *buf)
777{
778 unsigned int cur_freq = __cpufreq_get(policy);
779
780 if (cur_freq)
781 return sysfs_emit(buf, "%u\n", cur_freq);
782
783 return sysfs_emit(buf, "<unknown>\n");
784}
785
786/*
787 * show_scaling_governor - show the current policy for the specified CPU
788 */
789static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
790{
791 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
792 return sysfs_emit(buf, "powersave\n");
793 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
794 return sysfs_emit(buf, "performance\n");
795 else if (policy->governor)
796 return sysfs_emit(buf, "%s\n", policy->governor->name);
797 return -EINVAL;
798}
799
800/*
801 * store_scaling_governor - store policy for the specified CPU
802 */
803static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
804 const char *buf, size_t count)
805{
806 char str_governor[16];
807 int ret;
808
809 ret = sscanf(buf, "%15s", str_governor);
810 if (ret != 1)
811 return -EINVAL;
812
813 if (cpufreq_driver->setpolicy) {
814 unsigned int new_pol;
815
816 new_pol = cpufreq_parse_policy(str_governor);
817 if (!new_pol)
818 return -EINVAL;
819
820 ret = cpufreq_set_policy(policy, NULL, new_pol);
821 } else {
822 struct cpufreq_governor *new_gov;
823
824 new_gov = cpufreq_parse_governor(str_governor);
825 if (!new_gov)
826 return -EINVAL;
827
828 ret = cpufreq_set_policy(policy, new_gov,
829 CPUFREQ_POLICY_UNKNOWN);
830
831 module_put(new_gov->owner);
832 }
833
834 return ret ? ret : count;
835}
836
837/*
838 * show_scaling_driver - show the cpufreq driver currently loaded
839 */
840static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
841{
842 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
843}
844
845/*
846 * show_scaling_available_governors - show the available CPUfreq governors
847 */
848static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
849 char *buf)
850{
851 ssize_t i = 0;
852 struct cpufreq_governor *t;
853
854 if (!has_target()) {
855 i += sysfs_emit(buf, "performance powersave");
856 goto out;
857 }
858
859 mutex_lock(&cpufreq_governor_mutex);
860 for_each_governor(t) {
861 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
862 - (CPUFREQ_NAME_LEN + 2)))
863 break;
864 i += sysfs_emit_at(buf, i, "%s ", t->name);
865 }
866 mutex_unlock(&cpufreq_governor_mutex);
867out:
868 i += sysfs_emit_at(buf, i, "\n");
869 return i;
870}
871
872ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
873{
874 ssize_t i = 0;
875 unsigned int cpu;
876
877 for_each_cpu(cpu, mask) {
878 i += sysfs_emit_at(buf, i, "%u ", cpu);
879 if (i >= (PAGE_SIZE - 5))
880 break;
881 }
882
883 /* Remove the extra space at the end */
884 i--;
885
886 i += sysfs_emit_at(buf, i, "\n");
887 return i;
888}
889EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
890
891/*
892 * show_related_cpus - show the CPUs affected by each transition even if
893 * hw coordination is in use
894 */
895static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
896{
897 return cpufreq_show_cpus(policy->related_cpus, buf);
898}
899
900/*
901 * show_affected_cpus - show the CPUs affected by each transition
902 */
903static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
904{
905 return cpufreq_show_cpus(policy->cpus, buf);
906}
907
908static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
909 const char *buf, size_t count)
910{
911 unsigned int freq = 0;
912 unsigned int ret;
913
914 if (!policy->governor || !policy->governor->store_setspeed)
915 return -EINVAL;
916
917 ret = sscanf(buf, "%u", &freq);
918 if (ret != 1)
919 return -EINVAL;
920
921 policy->governor->store_setspeed(policy, freq);
922
923 return count;
924}
925
926static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
927{
928 if (!policy->governor || !policy->governor->show_setspeed)
929 return sysfs_emit(buf, "<unsupported>\n");
930
931 return policy->governor->show_setspeed(policy, buf);
932}
933
934/*
935 * show_bios_limit - show the current cpufreq HW/BIOS limitation
936 */
937static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
938{
939 unsigned int limit;
940 int ret;
941 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
942 if (!ret)
943 return sysfs_emit(buf, "%u\n", limit);
944 return sysfs_emit(buf, "%u\n", policy->cpuinfo.max_freq);
945}
946
947cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
948cpufreq_freq_attr_ro(cpuinfo_min_freq);
949cpufreq_freq_attr_ro(cpuinfo_max_freq);
950cpufreq_freq_attr_ro(cpuinfo_transition_latency);
951cpufreq_freq_attr_ro(scaling_available_governors);
952cpufreq_freq_attr_ro(scaling_driver);
953cpufreq_freq_attr_ro(scaling_cur_freq);
954cpufreq_freq_attr_ro(bios_limit);
955cpufreq_freq_attr_ro(related_cpus);
956cpufreq_freq_attr_ro(affected_cpus);
957cpufreq_freq_attr_rw(scaling_min_freq);
958cpufreq_freq_attr_rw(scaling_max_freq);
959cpufreq_freq_attr_rw(scaling_governor);
960cpufreq_freq_attr_rw(scaling_setspeed);
961
962static struct attribute *cpufreq_attrs[] = {
963 &cpuinfo_min_freq.attr,
964 &cpuinfo_max_freq.attr,
965 &cpuinfo_transition_latency.attr,
966 &scaling_min_freq.attr,
967 &scaling_max_freq.attr,
968 &affected_cpus.attr,
969 &related_cpus.attr,
970 &scaling_governor.attr,
971 &scaling_driver.attr,
972 &scaling_available_governors.attr,
973 &scaling_setspeed.attr,
974 NULL
975};
976ATTRIBUTE_GROUPS(cpufreq);
977
978#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
979#define to_attr(a) container_of(a, struct freq_attr, attr)
980
981static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
982{
983 struct cpufreq_policy *policy = to_policy(kobj);
984 struct freq_attr *fattr = to_attr(attr);
985 ssize_t ret = -EBUSY;
986
987 if (!fattr->show)
988 return -EIO;
989
990 down_read(&policy->rwsem);
991 if (likely(!policy_is_inactive(policy)))
992 ret = fattr->show(policy, buf);
993 up_read(&policy->rwsem);
994
995 return ret;
996}
997
998static ssize_t store(struct kobject *kobj, struct attribute *attr,
999 const char *buf, size_t count)
1000{
1001 struct cpufreq_policy *policy = to_policy(kobj);
1002 struct freq_attr *fattr = to_attr(attr);
1003 ssize_t ret = -EBUSY;
1004
1005 if (!fattr->store)
1006 return -EIO;
1007
1008 down_write(&policy->rwsem);
1009 if (likely(!policy_is_inactive(policy)))
1010 ret = fattr->store(policy, buf, count);
1011 up_write(&policy->rwsem);
1012
1013 return ret;
1014}
1015
1016static void cpufreq_sysfs_release(struct kobject *kobj)
1017{
1018 struct cpufreq_policy *policy = to_policy(kobj);
1019 pr_debug("last reference is dropped\n");
1020 complete(&policy->kobj_unregister);
1021}
1022
1023static const struct sysfs_ops sysfs_ops = {
1024 .show = show,
1025 .store = store,
1026};
1027
1028static const struct kobj_type ktype_cpufreq = {
1029 .sysfs_ops = &sysfs_ops,
1030 .default_groups = cpufreq_groups,
1031 .release = cpufreq_sysfs_release,
1032};
1033
1034static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1035 struct device *dev)
1036{
1037 if (unlikely(!dev))
1038 return;
1039
1040 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1041 return;
1042
1043 dev_dbg(dev, "%s: Adding symlink\n", __func__);
1044 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1045 dev_err(dev, "cpufreq symlink creation failed\n");
1046}
1047
1048static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu,
1049 struct device *dev)
1050{
1051 dev_dbg(dev, "%s: Removing symlink\n", __func__);
1052 sysfs_remove_link(&dev->kobj, "cpufreq");
1053 cpumask_clear_cpu(cpu, policy->real_cpus);
1054}
1055
1056static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1057{
1058 struct freq_attr **drv_attr;
1059 int ret = 0;
1060
1061 /* set up files for this cpu device */
1062 drv_attr = cpufreq_driver->attr;
1063 while (drv_attr && *drv_attr) {
1064 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1065 if (ret)
1066 return ret;
1067 drv_attr++;
1068 }
1069 if (cpufreq_driver->get) {
1070 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1071 if (ret)
1072 return ret;
1073 }
1074
1075 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1076 if (ret)
1077 return ret;
1078
1079 if (cpufreq_driver->bios_limit) {
1080 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1081 if (ret)
1082 return ret;
1083 }
1084
1085 if (cpufreq_boost_supported()) {
1086 ret = sysfs_create_file(&policy->kobj, &local_boost.attr);
1087 if (ret)
1088 return ret;
1089 }
1090
1091 return 0;
1092}
1093
1094static int cpufreq_init_policy(struct cpufreq_policy *policy)
1095{
1096 struct cpufreq_governor *gov = NULL;
1097 unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1098 int ret;
1099
1100 if (has_target()) {
1101 /* Update policy governor to the one used before hotplug. */
1102 gov = get_governor(policy->last_governor);
1103 if (gov) {
1104 pr_debug("Restoring governor %s for cpu %d\n",
1105 gov->name, policy->cpu);
1106 } else {
1107 gov = get_governor(default_governor);
1108 }
1109
1110 if (!gov) {
1111 gov = cpufreq_default_governor();
1112 __module_get(gov->owner);
1113 }
1114
1115 } else {
1116
1117 /* Use the default policy if there is no last_policy. */
1118 if (policy->last_policy) {
1119 pol = policy->last_policy;
1120 } else {
1121 pol = cpufreq_parse_policy(default_governor);
1122 /*
1123 * In case the default governor is neither "performance"
1124 * nor "powersave", fall back to the initial policy
1125 * value set by the driver.
1126 */
1127 if (pol == CPUFREQ_POLICY_UNKNOWN)
1128 pol = policy->policy;
1129 }
1130 if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1131 pol != CPUFREQ_POLICY_POWERSAVE)
1132 return -ENODATA;
1133 }
1134
1135 ret = cpufreq_set_policy(policy, gov, pol);
1136 if (gov)
1137 module_put(gov->owner);
1138
1139 return ret;
1140}
1141
1142static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1143{
1144 int ret = 0;
1145
1146 /* Has this CPU been taken care of already? */
1147 if (cpumask_test_cpu(cpu, policy->cpus))
1148 return 0;
1149
1150 down_write(&policy->rwsem);
1151 if (has_target())
1152 cpufreq_stop_governor(policy);
1153
1154 cpumask_set_cpu(cpu, policy->cpus);
1155
1156 if (has_target()) {
1157 ret = cpufreq_start_governor(policy);
1158 if (ret)
1159 pr_err("%s: Failed to start governor\n", __func__);
1160 }
1161 up_write(&policy->rwsem);
1162 return ret;
1163}
1164
1165void refresh_frequency_limits(struct cpufreq_policy *policy)
1166{
1167 if (!policy_is_inactive(policy)) {
1168 pr_debug("updating policy for CPU %u\n", policy->cpu);
1169
1170 cpufreq_set_policy(policy, policy->governor, policy->policy);
1171 }
1172}
1173EXPORT_SYMBOL(refresh_frequency_limits);
1174
1175static void handle_update(struct work_struct *work)
1176{
1177 struct cpufreq_policy *policy =
1178 container_of(work, struct cpufreq_policy, update);
1179
1180 pr_debug("handle_update for cpu %u called\n", policy->cpu);
1181 down_write(&policy->rwsem);
1182 refresh_frequency_limits(policy);
1183 up_write(&policy->rwsem);
1184}
1185
1186static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1187 void *data)
1188{
1189 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1190
1191 schedule_work(&policy->update);
1192 return 0;
1193}
1194
1195static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1196 void *data)
1197{
1198 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1199
1200 schedule_work(&policy->update);
1201 return 0;
1202}
1203
1204static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1205{
1206 struct kobject *kobj;
1207 struct completion *cmp;
1208
1209 down_write(&policy->rwsem);
1210 cpufreq_stats_free_table(policy);
1211 kobj = &policy->kobj;
1212 cmp = &policy->kobj_unregister;
1213 up_write(&policy->rwsem);
1214 kobject_put(kobj);
1215
1216 /*
1217 * We need to make sure that the underlying kobj is
1218 * actually not referenced anymore by anybody before we
1219 * proceed with unloading.
1220 */
1221 pr_debug("waiting for dropping of refcount\n");
1222 wait_for_completion(cmp);
1223 pr_debug("wait complete\n");
1224}
1225
1226static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1227{
1228 struct cpufreq_policy *policy;
1229 struct device *dev = get_cpu_device(cpu);
1230 int ret;
1231
1232 if (!dev)
1233 return NULL;
1234
1235 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1236 if (!policy)
1237 return NULL;
1238
1239 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1240 goto err_free_policy;
1241
1242 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1243 goto err_free_cpumask;
1244
1245 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1246 goto err_free_rcpumask;
1247
1248 init_completion(&policy->kobj_unregister);
1249 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1250 cpufreq_global_kobject, "policy%u", cpu);
1251 if (ret) {
1252 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1253 /*
1254 * The entire policy object will be freed below, but the extra
1255 * memory allocated for the kobject name needs to be freed by
1256 * releasing the kobject.
1257 */
1258 kobject_put(&policy->kobj);
1259 goto err_free_real_cpus;
1260 }
1261
1262 freq_constraints_init(&policy->constraints);
1263
1264 policy->nb_min.notifier_call = cpufreq_notifier_min;
1265 policy->nb_max.notifier_call = cpufreq_notifier_max;
1266
1267 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1268 &policy->nb_min);
1269 if (ret) {
1270 dev_err(dev, "Failed to register MIN QoS notifier: %d (CPU%u)\n",
1271 ret, cpu);
1272 goto err_kobj_remove;
1273 }
1274
1275 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1276 &policy->nb_max);
1277 if (ret) {
1278 dev_err(dev, "Failed to register MAX QoS notifier: %d (CPU%u)\n",
1279 ret, cpu);
1280 goto err_min_qos_notifier;
1281 }
1282
1283 INIT_LIST_HEAD(&policy->policy_list);
1284 init_rwsem(&policy->rwsem);
1285 spin_lock_init(&policy->transition_lock);
1286 init_waitqueue_head(&policy->transition_wait);
1287 INIT_WORK(&policy->update, handle_update);
1288
1289 policy->cpu = cpu;
1290 return policy;
1291
1292err_min_qos_notifier:
1293 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1294 &policy->nb_min);
1295err_kobj_remove:
1296 cpufreq_policy_put_kobj(policy);
1297err_free_real_cpus:
1298 free_cpumask_var(policy->real_cpus);
1299err_free_rcpumask:
1300 free_cpumask_var(policy->related_cpus);
1301err_free_cpumask:
1302 free_cpumask_var(policy->cpus);
1303err_free_policy:
1304 kfree(policy);
1305
1306 return NULL;
1307}
1308
1309static void cpufreq_policy_free(struct cpufreq_policy *policy)
1310{
1311 unsigned long flags;
1312 int cpu;
1313
1314 /*
1315 * The callers must ensure the policy is inactive by now, to avoid any
1316 * races with show()/store() callbacks.
1317 */
1318 if (unlikely(!policy_is_inactive(policy)))
1319 pr_warn("%s: Freeing active policy\n", __func__);
1320
1321 /* Remove policy from list */
1322 write_lock_irqsave(&cpufreq_driver_lock, flags);
1323 list_del(&policy->policy_list);
1324
1325 for_each_cpu(cpu, policy->related_cpus)
1326 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1327 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1328
1329 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1330 &policy->nb_max);
1331 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1332 &policy->nb_min);
1333
1334 /* Cancel any pending policy->update work before freeing the policy. */
1335 cancel_work_sync(&policy->update);
1336
1337 if (policy->max_freq_req) {
1338 /*
1339 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY
1340 * notification, since CPUFREQ_CREATE_POLICY notification was
1341 * sent after adding max_freq_req earlier.
1342 */
1343 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1344 CPUFREQ_REMOVE_POLICY, policy);
1345 freq_qos_remove_request(policy->max_freq_req);
1346 }
1347
1348 freq_qos_remove_request(policy->min_freq_req);
1349 kfree(policy->min_freq_req);
1350
1351 cpufreq_policy_put_kobj(policy);
1352 free_cpumask_var(policy->real_cpus);
1353 free_cpumask_var(policy->related_cpus);
1354 free_cpumask_var(policy->cpus);
1355 kfree(policy);
1356}
1357
1358static int cpufreq_online(unsigned int cpu)
1359{
1360 struct cpufreq_policy *policy;
1361 bool new_policy;
1362 unsigned long flags;
1363 unsigned int j;
1364 int ret;
1365
1366 pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1367
1368 /* Check if this CPU already has a policy to manage it */
1369 policy = per_cpu(cpufreq_cpu_data, cpu);
1370 if (policy) {
1371 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1372 if (!policy_is_inactive(policy))
1373 return cpufreq_add_policy_cpu(policy, cpu);
1374
1375 /* This is the only online CPU for the policy. Start over. */
1376 new_policy = false;
1377 down_write(&policy->rwsem);
1378 policy->cpu = cpu;
1379 policy->governor = NULL;
1380 } else {
1381 new_policy = true;
1382 policy = cpufreq_policy_alloc(cpu);
1383 if (!policy)
1384 return -ENOMEM;
1385 down_write(&policy->rwsem);
1386 }
1387
1388 if (!new_policy && cpufreq_driver->online) {
1389 /* Recover policy->cpus using related_cpus */
1390 cpumask_copy(policy->cpus, policy->related_cpus);
1391
1392 ret = cpufreq_driver->online(policy);
1393 if (ret) {
1394 pr_debug("%s: %d: initialization failed\n", __func__,
1395 __LINE__);
1396 goto out_exit_policy;
1397 }
1398 } else {
1399 cpumask_copy(policy->cpus, cpumask_of(cpu));
1400
1401 /*
1402 * Call driver. From then on the cpufreq must be able
1403 * to accept all calls to ->verify and ->setpolicy for this CPU.
1404 */
1405 ret = cpufreq_driver->init(policy);
1406 if (ret) {
1407 pr_debug("%s: %d: initialization failed\n", __func__,
1408 __LINE__);
1409 goto out_free_policy;
1410 }
1411
1412 /* Let the per-policy boost flag mirror the cpufreq_driver boost during init */
1413 if (cpufreq_boost_enabled() && policy_has_boost_freq(policy))
1414 policy->boost_enabled = true;
1415
1416 /*
1417 * The initialization has succeeded and the policy is online.
1418 * If there is a problem with its frequency table, take it
1419 * offline and drop it.
1420 */
1421 ret = cpufreq_table_validate_and_sort(policy);
1422 if (ret)
1423 goto out_offline_policy;
1424
1425 /* related_cpus should at least include policy->cpus. */
1426 cpumask_copy(policy->related_cpus, policy->cpus);
1427 }
1428
1429 /*
1430 * affected cpus must always be the one, which are online. We aren't
1431 * managing offline cpus here.
1432 */
1433 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1434
1435 if (new_policy) {
1436 for_each_cpu(j, policy->related_cpus) {
1437 per_cpu(cpufreq_cpu_data, j) = policy;
1438 add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1439 }
1440
1441 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1442 GFP_KERNEL);
1443 if (!policy->min_freq_req) {
1444 ret = -ENOMEM;
1445 goto out_destroy_policy;
1446 }
1447
1448 ret = freq_qos_add_request(&policy->constraints,
1449 policy->min_freq_req, FREQ_QOS_MIN,
1450 FREQ_QOS_MIN_DEFAULT_VALUE);
1451 if (ret < 0) {
1452 /*
1453 * So we don't call freq_qos_remove_request() for an
1454 * uninitialized request.
1455 */
1456 kfree(policy->min_freq_req);
1457 policy->min_freq_req = NULL;
1458 goto out_destroy_policy;
1459 }
1460
1461 /*
1462 * This must be initialized right here to avoid calling
1463 * freq_qos_remove_request() on uninitialized request in case
1464 * of errors.
1465 */
1466 policy->max_freq_req = policy->min_freq_req + 1;
1467
1468 ret = freq_qos_add_request(&policy->constraints,
1469 policy->max_freq_req, FREQ_QOS_MAX,
1470 FREQ_QOS_MAX_DEFAULT_VALUE);
1471 if (ret < 0) {
1472 policy->max_freq_req = NULL;
1473 goto out_destroy_policy;
1474 }
1475
1476 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1477 CPUFREQ_CREATE_POLICY, policy);
1478 }
1479
1480 if (cpufreq_driver->get && has_target()) {
1481 policy->cur = cpufreq_driver->get(policy->cpu);
1482 if (!policy->cur) {
1483 ret = -EIO;
1484 pr_err("%s: ->get() failed\n", __func__);
1485 goto out_destroy_policy;
1486 }
1487 }
1488
1489 /*
1490 * Sometimes boot loaders set CPU frequency to a value outside of
1491 * frequency table present with cpufreq core. In such cases CPU might be
1492 * unstable if it has to run on that frequency for long duration of time
1493 * and so its better to set it to a frequency which is specified in
1494 * freq-table. This also makes cpufreq stats inconsistent as
1495 * cpufreq-stats would fail to register because current frequency of CPU
1496 * isn't found in freq-table.
1497 *
1498 * Because we don't want this change to effect boot process badly, we go
1499 * for the next freq which is >= policy->cur ('cur' must be set by now,
1500 * otherwise we will end up setting freq to lowest of the table as 'cur'
1501 * is initialized to zero).
1502 *
1503 * We are passing target-freq as "policy->cur - 1" otherwise
1504 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1505 * equal to target-freq.
1506 */
1507 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1508 && has_target()) {
1509 unsigned int old_freq = policy->cur;
1510
1511 /* Are we running at unknown frequency ? */
1512 ret = cpufreq_frequency_table_get_index(policy, old_freq);
1513 if (ret == -EINVAL) {
1514 ret = __cpufreq_driver_target(policy, old_freq - 1,
1515 CPUFREQ_RELATION_L);
1516
1517 /*
1518 * Reaching here after boot in a few seconds may not
1519 * mean that system will remain stable at "unknown"
1520 * frequency for longer duration. Hence, a BUG_ON().
1521 */
1522 BUG_ON(ret);
1523 pr_info("%s: CPU%d: Running at unlisted initial frequency: %u kHz, changing to: %u kHz\n",
1524 __func__, policy->cpu, old_freq, policy->cur);
1525 }
1526 }
1527
1528 if (new_policy) {
1529 ret = cpufreq_add_dev_interface(policy);
1530 if (ret)
1531 goto out_destroy_policy;
1532
1533 cpufreq_stats_create_table(policy);
1534
1535 write_lock_irqsave(&cpufreq_driver_lock, flags);
1536 list_add(&policy->policy_list, &cpufreq_policy_list);
1537 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1538
1539 /*
1540 * Register with the energy model before
1541 * sugov_eas_rebuild_sd() is called, which will result
1542 * in rebuilding of the sched domains, which should only be done
1543 * once the energy model is properly initialized for the policy
1544 * first.
1545 *
1546 * Also, this should be called before the policy is registered
1547 * with cooling framework.
1548 */
1549 if (cpufreq_driver->register_em)
1550 cpufreq_driver->register_em(policy);
1551 }
1552
1553 ret = cpufreq_init_policy(policy);
1554 if (ret) {
1555 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1556 __func__, cpu, ret);
1557 goto out_destroy_policy;
1558 }
1559
1560 up_write(&policy->rwsem);
1561
1562 kobject_uevent(&policy->kobj, KOBJ_ADD);
1563
1564 /* Callback for handling stuff after policy is ready */
1565 if (cpufreq_driver->ready)
1566 cpufreq_driver->ready(policy);
1567
1568 /* Register cpufreq cooling only for a new policy */
1569 if (new_policy && cpufreq_thermal_control_enabled(cpufreq_driver))
1570 policy->cdev = of_cpufreq_cooling_register(policy);
1571
1572 pr_debug("initialization complete\n");
1573
1574 return 0;
1575
1576out_destroy_policy:
1577 for_each_cpu(j, policy->real_cpus)
1578 remove_cpu_dev_symlink(policy, j, get_cpu_device(j));
1579
1580out_offline_policy:
1581 if (cpufreq_driver->offline)
1582 cpufreq_driver->offline(policy);
1583
1584out_exit_policy:
1585 if (cpufreq_driver->exit)
1586 cpufreq_driver->exit(policy);
1587
1588out_free_policy:
1589 cpumask_clear(policy->cpus);
1590 up_write(&policy->rwsem);
1591
1592 cpufreq_policy_free(policy);
1593 return ret;
1594}
1595
1596/**
1597 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1598 * @dev: CPU device.
1599 * @sif: Subsystem interface structure pointer (not used)
1600 */
1601static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1602{
1603 struct cpufreq_policy *policy;
1604 unsigned cpu = dev->id;
1605 int ret;
1606
1607 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1608
1609 if (cpu_online(cpu)) {
1610 ret = cpufreq_online(cpu);
1611 if (ret)
1612 return ret;
1613 }
1614
1615 /* Create sysfs link on CPU registration */
1616 policy = per_cpu(cpufreq_cpu_data, cpu);
1617 if (policy)
1618 add_cpu_dev_symlink(policy, cpu, dev);
1619
1620 return 0;
1621}
1622
1623static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
1624{
1625 int ret;
1626
1627 if (has_target())
1628 cpufreq_stop_governor(policy);
1629
1630 cpumask_clear_cpu(cpu, policy->cpus);
1631
1632 if (!policy_is_inactive(policy)) {
1633 /* Nominate a new CPU if necessary. */
1634 if (cpu == policy->cpu)
1635 policy->cpu = cpumask_any(policy->cpus);
1636
1637 /* Start the governor again for the active policy. */
1638 if (has_target()) {
1639 ret = cpufreq_start_governor(policy);
1640 if (ret)
1641 pr_err("%s: Failed to start governor\n", __func__);
1642 }
1643
1644 return;
1645 }
1646
1647 if (has_target())
1648 strscpy(policy->last_governor, policy->governor->name,
1649 CPUFREQ_NAME_LEN);
1650 else
1651 policy->last_policy = policy->policy;
1652
1653 if (has_target())
1654 cpufreq_exit_governor(policy);
1655
1656 /*
1657 * Perform the ->offline() during light-weight tear-down, as
1658 * that allows fast recovery when the CPU comes back.
1659 */
1660 if (cpufreq_driver->offline) {
1661 cpufreq_driver->offline(policy);
1662 return;
1663 }
1664
1665 if (cpufreq_driver->exit)
1666 cpufreq_driver->exit(policy);
1667
1668 policy->freq_table = NULL;
1669}
1670
1671static int cpufreq_offline(unsigned int cpu)
1672{
1673 struct cpufreq_policy *policy;
1674
1675 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1676
1677 policy = cpufreq_cpu_get_raw(cpu);
1678 if (!policy) {
1679 pr_debug("%s: No cpu_data found\n", __func__);
1680 return 0;
1681 }
1682
1683 down_write(&policy->rwsem);
1684
1685 __cpufreq_offline(cpu, policy);
1686
1687 up_write(&policy->rwsem);
1688 return 0;
1689}
1690
1691/*
1692 * cpufreq_remove_dev - remove a CPU device
1693 *
1694 * Removes the cpufreq interface for a CPU device.
1695 */
1696static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1697{
1698 unsigned int cpu = dev->id;
1699 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1700
1701 if (!policy)
1702 return;
1703
1704 down_write(&policy->rwsem);
1705
1706 if (cpu_online(cpu))
1707 __cpufreq_offline(cpu, policy);
1708
1709 remove_cpu_dev_symlink(policy, cpu, dev);
1710
1711 if (!cpumask_empty(policy->real_cpus)) {
1712 up_write(&policy->rwsem);
1713 return;
1714 }
1715
1716 /*
1717 * Unregister cpufreq cooling once all the CPUs of the policy are
1718 * removed.
1719 */
1720 if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1721 cpufreq_cooling_unregister(policy->cdev);
1722 policy->cdev = NULL;
1723 }
1724
1725 /* We did light-weight exit earlier, do full tear down now */
1726 if (cpufreq_driver->offline && cpufreq_driver->exit)
1727 cpufreq_driver->exit(policy);
1728
1729 up_write(&policy->rwsem);
1730
1731 cpufreq_policy_free(policy);
1732}
1733
1734/**
1735 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1736 * @policy: Policy managing CPUs.
1737 * @new_freq: New CPU frequency.
1738 *
1739 * Adjust to the current frequency first and clean up later by either calling
1740 * cpufreq_update_policy(), or scheduling handle_update().
1741 */
1742static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1743 unsigned int new_freq)
1744{
1745 struct cpufreq_freqs freqs;
1746
1747 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1748 policy->cur, new_freq);
1749
1750 freqs.old = policy->cur;
1751 freqs.new = new_freq;
1752
1753 cpufreq_freq_transition_begin(policy, &freqs);
1754 cpufreq_freq_transition_end(policy, &freqs, 0);
1755}
1756
1757static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1758{
1759 unsigned int new_freq;
1760
1761 new_freq = cpufreq_driver->get(policy->cpu);
1762 if (!new_freq)
1763 return 0;
1764
1765 /*
1766 * If fast frequency switching is used with the given policy, the check
1767 * against policy->cur is pointless, so skip it in that case.
1768 */
1769 if (policy->fast_switch_enabled || !has_target())
1770 return new_freq;
1771
1772 if (policy->cur != new_freq) {
1773 /*
1774 * For some platforms, the frequency returned by hardware may be
1775 * slightly different from what is provided in the frequency
1776 * table, for example hardware may return 499 MHz instead of 500
1777 * MHz. In such cases it is better to avoid getting into
1778 * unnecessary frequency updates.
1779 */
1780 if (abs(policy->cur - new_freq) < KHZ_PER_MHZ)
1781 return policy->cur;
1782
1783 cpufreq_out_of_sync(policy, new_freq);
1784 if (update)
1785 schedule_work(&policy->update);
1786 }
1787
1788 return new_freq;
1789}
1790
1791/**
1792 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1793 * @cpu: CPU number
1794 *
1795 * This is the last known freq, without actually getting it from the driver.
1796 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1797 */
1798unsigned int cpufreq_quick_get(unsigned int cpu)
1799{
1800 struct cpufreq_policy *policy;
1801 unsigned int ret_freq = 0;
1802 unsigned long flags;
1803
1804 read_lock_irqsave(&cpufreq_driver_lock, flags);
1805
1806 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1807 ret_freq = cpufreq_driver->get(cpu);
1808 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1809 return ret_freq;
1810 }
1811
1812 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1813
1814 policy = cpufreq_cpu_get(cpu);
1815 if (policy) {
1816 ret_freq = policy->cur;
1817 cpufreq_cpu_put(policy);
1818 }
1819
1820 return ret_freq;
1821}
1822EXPORT_SYMBOL(cpufreq_quick_get);
1823
1824/**
1825 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1826 * @cpu: CPU number
1827 *
1828 * Just return the max possible frequency for a given CPU.
1829 */
1830unsigned int cpufreq_quick_get_max(unsigned int cpu)
1831{
1832 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1833 unsigned int ret_freq = 0;
1834
1835 if (policy) {
1836 ret_freq = policy->max;
1837 cpufreq_cpu_put(policy);
1838 }
1839
1840 return ret_freq;
1841}
1842EXPORT_SYMBOL(cpufreq_quick_get_max);
1843
1844/**
1845 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1846 * @cpu: CPU number
1847 *
1848 * The default return value is the max_freq field of cpuinfo.
1849 */
1850__weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1851{
1852 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1853 unsigned int ret_freq = 0;
1854
1855 if (policy) {
1856 ret_freq = policy->cpuinfo.max_freq;
1857 cpufreq_cpu_put(policy);
1858 }
1859
1860 return ret_freq;
1861}
1862EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1863
1864static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1865{
1866 if (unlikely(policy_is_inactive(policy)))
1867 return 0;
1868
1869 return cpufreq_verify_current_freq(policy, true);
1870}
1871
1872/**
1873 * cpufreq_get - get the current CPU frequency (in kHz)
1874 * @cpu: CPU number
1875 *
1876 * Get the CPU current (static) CPU frequency
1877 */
1878unsigned int cpufreq_get(unsigned int cpu)
1879{
1880 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1881 unsigned int ret_freq = 0;
1882
1883 if (policy) {
1884 down_read(&policy->rwsem);
1885 if (cpufreq_driver->get)
1886 ret_freq = __cpufreq_get(policy);
1887 up_read(&policy->rwsem);
1888
1889 cpufreq_cpu_put(policy);
1890 }
1891
1892 return ret_freq;
1893}
1894EXPORT_SYMBOL(cpufreq_get);
1895
1896static struct subsys_interface cpufreq_interface = {
1897 .name = "cpufreq",
1898 .subsys = &cpu_subsys,
1899 .add_dev = cpufreq_add_dev,
1900 .remove_dev = cpufreq_remove_dev,
1901};
1902
1903/*
1904 * In case platform wants some specific frequency to be configured
1905 * during suspend..
1906 */
1907int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1908{
1909 int ret;
1910
1911 if (!policy->suspend_freq) {
1912 pr_debug("%s: suspend_freq not defined\n", __func__);
1913 return 0;
1914 }
1915
1916 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1917 policy->suspend_freq);
1918
1919 ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1920 CPUFREQ_RELATION_H);
1921 if (ret)
1922 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1923 __func__, policy->suspend_freq, ret);
1924
1925 return ret;
1926}
1927EXPORT_SYMBOL(cpufreq_generic_suspend);
1928
1929/**
1930 * cpufreq_suspend() - Suspend CPUFreq governors.
1931 *
1932 * Called during system wide Suspend/Hibernate cycles for suspending governors
1933 * as some platforms can't change frequency after this point in suspend cycle.
1934 * Because some of the devices (like: i2c, regulators, etc) they use for
1935 * changing frequency are suspended quickly after this point.
1936 */
1937void cpufreq_suspend(void)
1938{
1939 struct cpufreq_policy *policy;
1940
1941 if (!cpufreq_driver)
1942 return;
1943
1944 if (!has_target() && !cpufreq_driver->suspend)
1945 goto suspend;
1946
1947 pr_debug("%s: Suspending Governors\n", __func__);
1948
1949 for_each_active_policy(policy) {
1950 if (has_target()) {
1951 down_write(&policy->rwsem);
1952 cpufreq_stop_governor(policy);
1953 up_write(&policy->rwsem);
1954 }
1955
1956 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1957 pr_err("%s: Failed to suspend driver: %s\n", __func__,
1958 cpufreq_driver->name);
1959 }
1960
1961suspend:
1962 cpufreq_suspended = true;
1963}
1964
1965/**
1966 * cpufreq_resume() - Resume CPUFreq governors.
1967 *
1968 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1969 * are suspended with cpufreq_suspend().
1970 */
1971void cpufreq_resume(void)
1972{
1973 struct cpufreq_policy *policy;
1974 int ret;
1975
1976 if (!cpufreq_driver)
1977 return;
1978
1979 if (unlikely(!cpufreq_suspended))
1980 return;
1981
1982 cpufreq_suspended = false;
1983
1984 if (!has_target() && !cpufreq_driver->resume)
1985 return;
1986
1987 pr_debug("%s: Resuming Governors\n", __func__);
1988
1989 for_each_active_policy(policy) {
1990 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1991 pr_err("%s: Failed to resume driver: %s\n", __func__,
1992 cpufreq_driver->name);
1993 } else if (has_target()) {
1994 down_write(&policy->rwsem);
1995 ret = cpufreq_start_governor(policy);
1996 up_write(&policy->rwsem);
1997
1998 if (ret)
1999 pr_err("%s: Failed to start governor for CPU%u's policy\n",
2000 __func__, policy->cpu);
2001 }
2002 }
2003}
2004
2005/**
2006 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
2007 * @flags: Flags to test against the current cpufreq driver's flags.
2008 *
2009 * Assumes that the driver is there, so callers must ensure that this is the
2010 * case.
2011 */
2012bool cpufreq_driver_test_flags(u16 flags)
2013{
2014 return !!(cpufreq_driver->flags & flags);
2015}
2016
2017/**
2018 * cpufreq_get_current_driver - Return the current driver's name.
2019 *
2020 * Return the name string of the currently registered cpufreq driver or NULL if
2021 * none.
2022 */
2023const char *cpufreq_get_current_driver(void)
2024{
2025 if (cpufreq_driver)
2026 return cpufreq_driver->name;
2027
2028 return NULL;
2029}
2030EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
2031
2032/**
2033 * cpufreq_get_driver_data - Return current driver data.
2034 *
2035 * Return the private data of the currently registered cpufreq driver, or NULL
2036 * if no cpufreq driver has been registered.
2037 */
2038void *cpufreq_get_driver_data(void)
2039{
2040 if (cpufreq_driver)
2041 return cpufreq_driver->driver_data;
2042
2043 return NULL;
2044}
2045EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
2046
2047/*********************************************************************
2048 * NOTIFIER LISTS INTERFACE *
2049 *********************************************************************/
2050
2051/**
2052 * cpufreq_register_notifier - Register a notifier with cpufreq.
2053 * @nb: notifier function to register.
2054 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2055 *
2056 * Add a notifier to one of two lists: either a list of notifiers that run on
2057 * clock rate changes (once before and once after every transition), or a list
2058 * of notifiers that ron on cpufreq policy changes.
2059 *
2060 * This function may sleep and it has the same return values as
2061 * blocking_notifier_chain_register().
2062 */
2063int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
2064{
2065 int ret;
2066
2067 if (cpufreq_disabled())
2068 return -EINVAL;
2069
2070 switch (list) {
2071 case CPUFREQ_TRANSITION_NOTIFIER:
2072 mutex_lock(&cpufreq_fast_switch_lock);
2073
2074 if (cpufreq_fast_switch_count > 0) {
2075 mutex_unlock(&cpufreq_fast_switch_lock);
2076 return -EBUSY;
2077 }
2078 ret = srcu_notifier_chain_register(
2079 &cpufreq_transition_notifier_list, nb);
2080 if (!ret)
2081 cpufreq_fast_switch_count--;
2082
2083 mutex_unlock(&cpufreq_fast_switch_lock);
2084 break;
2085 case CPUFREQ_POLICY_NOTIFIER:
2086 ret = blocking_notifier_chain_register(
2087 &cpufreq_policy_notifier_list, nb);
2088 break;
2089 default:
2090 ret = -EINVAL;
2091 }
2092
2093 return ret;
2094}
2095EXPORT_SYMBOL(cpufreq_register_notifier);
2096
2097/**
2098 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2099 * @nb: notifier block to be unregistered.
2100 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2101 *
2102 * Remove a notifier from one of the cpufreq notifier lists.
2103 *
2104 * This function may sleep and it has the same return values as
2105 * blocking_notifier_chain_unregister().
2106 */
2107int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2108{
2109 int ret;
2110
2111 if (cpufreq_disabled())
2112 return -EINVAL;
2113
2114 switch (list) {
2115 case CPUFREQ_TRANSITION_NOTIFIER:
2116 mutex_lock(&cpufreq_fast_switch_lock);
2117
2118 ret = srcu_notifier_chain_unregister(
2119 &cpufreq_transition_notifier_list, nb);
2120 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2121 cpufreq_fast_switch_count++;
2122
2123 mutex_unlock(&cpufreq_fast_switch_lock);
2124 break;
2125 case CPUFREQ_POLICY_NOTIFIER:
2126 ret = blocking_notifier_chain_unregister(
2127 &cpufreq_policy_notifier_list, nb);
2128 break;
2129 default:
2130 ret = -EINVAL;
2131 }
2132
2133 return ret;
2134}
2135EXPORT_SYMBOL(cpufreq_unregister_notifier);
2136
2137
2138/*********************************************************************
2139 * GOVERNORS *
2140 *********************************************************************/
2141
2142/**
2143 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2144 * @policy: cpufreq policy to switch the frequency for.
2145 * @target_freq: New frequency to set (may be approximate).
2146 *
2147 * Carry out a fast frequency switch without sleeping.
2148 *
2149 * The driver's ->fast_switch() callback invoked by this function must be
2150 * suitable for being called from within RCU-sched read-side critical sections
2151 * and it is expected to select the minimum available frequency greater than or
2152 * equal to @target_freq (CPUFREQ_RELATION_L).
2153 *
2154 * This function must not be called if policy->fast_switch_enabled is unset.
2155 *
2156 * Governors calling this function must guarantee that it will never be invoked
2157 * twice in parallel for the same policy and that it will never be called in
2158 * parallel with either ->target() or ->target_index() for the same policy.
2159 *
2160 * Returns the actual frequency set for the CPU.
2161 *
2162 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2163 * error condition, the hardware configuration must be preserved.
2164 */
2165unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2166 unsigned int target_freq)
2167{
2168 unsigned int freq;
2169 int cpu;
2170
2171 target_freq = clamp_val(target_freq, policy->min, policy->max);
2172 freq = cpufreq_driver->fast_switch(policy, target_freq);
2173
2174 if (!freq)
2175 return 0;
2176
2177 policy->cur = freq;
2178 arch_set_freq_scale(policy->related_cpus, freq,
2179 arch_scale_freq_ref(policy->cpu));
2180 cpufreq_stats_record_transition(policy, freq);
2181
2182 if (trace_cpu_frequency_enabled()) {
2183 for_each_cpu(cpu, policy->cpus)
2184 trace_cpu_frequency(freq, cpu);
2185 }
2186
2187 return freq;
2188}
2189EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2190
2191/**
2192 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2193 * @cpu: Target CPU.
2194 * @min_perf: Minimum (required) performance level (units of @capacity).
2195 * @target_perf: Target (desired) performance level (units of @capacity).
2196 * @capacity: Capacity of the target CPU.
2197 *
2198 * Carry out a fast performance level switch of @cpu without sleeping.
2199 *
2200 * The driver's ->adjust_perf() callback invoked by this function must be
2201 * suitable for being called from within RCU-sched read-side critical sections
2202 * and it is expected to select a suitable performance level equal to or above
2203 * @min_perf and preferably equal to or below @target_perf.
2204 *
2205 * This function must not be called if policy->fast_switch_enabled is unset.
2206 *
2207 * Governors calling this function must guarantee that it will never be invoked
2208 * twice in parallel for the same CPU and that it will never be called in
2209 * parallel with either ->target() or ->target_index() or ->fast_switch() for
2210 * the same CPU.
2211 */
2212void cpufreq_driver_adjust_perf(unsigned int cpu,
2213 unsigned long min_perf,
2214 unsigned long target_perf,
2215 unsigned long capacity)
2216{
2217 cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2218}
2219
2220/**
2221 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2222 *
2223 * Return 'true' if the ->adjust_perf callback is present for the
2224 * current driver or 'false' otherwise.
2225 */
2226bool cpufreq_driver_has_adjust_perf(void)
2227{
2228 return !!cpufreq_driver->adjust_perf;
2229}
2230
2231/* Must set freqs->new to intermediate frequency */
2232static int __target_intermediate(struct cpufreq_policy *policy,
2233 struct cpufreq_freqs *freqs, int index)
2234{
2235 int ret;
2236
2237 freqs->new = cpufreq_driver->get_intermediate(policy, index);
2238
2239 /* We don't need to switch to intermediate freq */
2240 if (!freqs->new)
2241 return 0;
2242
2243 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2244 __func__, policy->cpu, freqs->old, freqs->new);
2245
2246 cpufreq_freq_transition_begin(policy, freqs);
2247 ret = cpufreq_driver->target_intermediate(policy, index);
2248 cpufreq_freq_transition_end(policy, freqs, ret);
2249
2250 if (ret)
2251 pr_err("%s: Failed to change to intermediate frequency: %d\n",
2252 __func__, ret);
2253
2254 return ret;
2255}
2256
2257static int __target_index(struct cpufreq_policy *policy, int index)
2258{
2259 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2260 unsigned int restore_freq, intermediate_freq = 0;
2261 unsigned int newfreq = policy->freq_table[index].frequency;
2262 int retval = -EINVAL;
2263 bool notify;
2264
2265 if (newfreq == policy->cur)
2266 return 0;
2267
2268 /* Save last value to restore later on errors */
2269 restore_freq = policy->cur;
2270
2271 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2272 if (notify) {
2273 /* Handle switching to intermediate frequency */
2274 if (cpufreq_driver->get_intermediate) {
2275 retval = __target_intermediate(policy, &freqs, index);
2276 if (retval)
2277 return retval;
2278
2279 intermediate_freq = freqs.new;
2280 /* Set old freq to intermediate */
2281 if (intermediate_freq)
2282 freqs.old = freqs.new;
2283 }
2284
2285 freqs.new = newfreq;
2286 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2287 __func__, policy->cpu, freqs.old, freqs.new);
2288
2289 cpufreq_freq_transition_begin(policy, &freqs);
2290 }
2291
2292 retval = cpufreq_driver->target_index(policy, index);
2293 if (retval)
2294 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2295 retval);
2296
2297 if (notify) {
2298 cpufreq_freq_transition_end(policy, &freqs, retval);
2299
2300 /*
2301 * Failed after setting to intermediate freq? Driver should have
2302 * reverted back to initial frequency and so should we. Check
2303 * here for intermediate_freq instead of get_intermediate, in
2304 * case we haven't switched to intermediate freq at all.
2305 */
2306 if (unlikely(retval && intermediate_freq)) {
2307 freqs.old = intermediate_freq;
2308 freqs.new = restore_freq;
2309 cpufreq_freq_transition_begin(policy, &freqs);
2310 cpufreq_freq_transition_end(policy, &freqs, 0);
2311 }
2312 }
2313
2314 return retval;
2315}
2316
2317int __cpufreq_driver_target(struct cpufreq_policy *policy,
2318 unsigned int target_freq,
2319 unsigned int relation)
2320{
2321 unsigned int old_target_freq = target_freq;
2322
2323 if (cpufreq_disabled())
2324 return -ENODEV;
2325
2326 target_freq = __resolve_freq(policy, target_freq, relation);
2327
2328 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2329 policy->cpu, target_freq, relation, old_target_freq);
2330
2331 /*
2332 * This might look like a redundant call as we are checking it again
2333 * after finding index. But it is left intentionally for cases where
2334 * exactly same freq is called again and so we can save on few function
2335 * calls.
2336 */
2337 if (target_freq == policy->cur &&
2338 !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2339 return 0;
2340
2341 if (cpufreq_driver->target) {
2342 /*
2343 * If the driver hasn't setup a single inefficient frequency,
2344 * it's unlikely it knows how to decode CPUFREQ_RELATION_E.
2345 */
2346 if (!policy->efficiencies_available)
2347 relation &= ~CPUFREQ_RELATION_E;
2348
2349 return cpufreq_driver->target(policy, target_freq, relation);
2350 }
2351
2352 if (!cpufreq_driver->target_index)
2353 return -EINVAL;
2354
2355 return __target_index(policy, policy->cached_resolved_idx);
2356}
2357EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2358
2359int cpufreq_driver_target(struct cpufreq_policy *policy,
2360 unsigned int target_freq,
2361 unsigned int relation)
2362{
2363 int ret;
2364
2365 down_write(&policy->rwsem);
2366
2367 ret = __cpufreq_driver_target(policy, target_freq, relation);
2368
2369 up_write(&policy->rwsem);
2370
2371 return ret;
2372}
2373EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2374
2375__weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2376{
2377 return NULL;
2378}
2379
2380static int cpufreq_init_governor(struct cpufreq_policy *policy)
2381{
2382 int ret;
2383
2384 /* Don't start any governor operations if we are entering suspend */
2385 if (cpufreq_suspended)
2386 return 0;
2387 /*
2388 * Governor might not be initiated here if ACPI _PPC changed
2389 * notification happened, so check it.
2390 */
2391 if (!policy->governor)
2392 return -EINVAL;
2393
2394 /* Platform doesn't want dynamic frequency switching ? */
2395 if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2396 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2397 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2398
2399 if (gov) {
2400 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2401 policy->governor->name, gov->name);
2402 policy->governor = gov;
2403 } else {
2404 return -EINVAL;
2405 }
2406 }
2407
2408 if (!try_module_get(policy->governor->owner))
2409 return -EINVAL;
2410
2411 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2412
2413 if (policy->governor->init) {
2414 ret = policy->governor->init(policy);
2415 if (ret) {
2416 module_put(policy->governor->owner);
2417 return ret;
2418 }
2419 }
2420
2421 policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2422
2423 return 0;
2424}
2425
2426static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2427{
2428 if (cpufreq_suspended || !policy->governor)
2429 return;
2430
2431 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2432
2433 if (policy->governor->exit)
2434 policy->governor->exit(policy);
2435
2436 module_put(policy->governor->owner);
2437}
2438
2439int cpufreq_start_governor(struct cpufreq_policy *policy)
2440{
2441 int ret;
2442
2443 if (cpufreq_suspended)
2444 return 0;
2445
2446 if (!policy->governor)
2447 return -EINVAL;
2448
2449 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2450
2451 if (cpufreq_driver->get)
2452 cpufreq_verify_current_freq(policy, false);
2453
2454 if (policy->governor->start) {
2455 ret = policy->governor->start(policy);
2456 if (ret)
2457 return ret;
2458 }
2459
2460 if (policy->governor->limits)
2461 policy->governor->limits(policy);
2462
2463 return 0;
2464}
2465
2466void cpufreq_stop_governor(struct cpufreq_policy *policy)
2467{
2468 if (cpufreq_suspended || !policy->governor)
2469 return;
2470
2471 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2472
2473 if (policy->governor->stop)
2474 policy->governor->stop(policy);
2475}
2476
2477static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2478{
2479 if (cpufreq_suspended || !policy->governor)
2480 return;
2481
2482 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2483
2484 if (policy->governor->limits)
2485 policy->governor->limits(policy);
2486}
2487
2488int cpufreq_register_governor(struct cpufreq_governor *governor)
2489{
2490 int err;
2491
2492 if (!governor)
2493 return -EINVAL;
2494
2495 if (cpufreq_disabled())
2496 return -ENODEV;
2497
2498 mutex_lock(&cpufreq_governor_mutex);
2499
2500 err = -EBUSY;
2501 if (!find_governor(governor->name)) {
2502 err = 0;
2503 list_add(&governor->governor_list, &cpufreq_governor_list);
2504 }
2505
2506 mutex_unlock(&cpufreq_governor_mutex);
2507 return err;
2508}
2509EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2510
2511void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2512{
2513 struct cpufreq_policy *policy;
2514 unsigned long flags;
2515
2516 if (!governor)
2517 return;
2518
2519 if (cpufreq_disabled())
2520 return;
2521
2522 /* clear last_governor for all inactive policies */
2523 read_lock_irqsave(&cpufreq_driver_lock, flags);
2524 for_each_inactive_policy(policy) {
2525 if (!strcmp(policy->last_governor, governor->name)) {
2526 policy->governor = NULL;
2527 strcpy(policy->last_governor, "\0");
2528 }
2529 }
2530 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2531
2532 mutex_lock(&cpufreq_governor_mutex);
2533 list_del(&governor->governor_list);
2534 mutex_unlock(&cpufreq_governor_mutex);
2535}
2536EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2537
2538
2539/*********************************************************************
2540 * POLICY INTERFACE *
2541 *********************************************************************/
2542
2543/**
2544 * cpufreq_get_policy - get the current cpufreq_policy
2545 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2546 * is written
2547 * @cpu: CPU to find the policy for
2548 *
2549 * Reads the current cpufreq policy.
2550 */
2551int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2552{
2553 struct cpufreq_policy *cpu_policy;
2554 if (!policy)
2555 return -EINVAL;
2556
2557 cpu_policy = cpufreq_cpu_get(cpu);
2558 if (!cpu_policy)
2559 return -EINVAL;
2560
2561 memcpy(policy, cpu_policy, sizeof(*policy));
2562
2563 cpufreq_cpu_put(cpu_policy);
2564 return 0;
2565}
2566EXPORT_SYMBOL(cpufreq_get_policy);
2567
2568DEFINE_PER_CPU(unsigned long, cpufreq_pressure);
2569
2570/**
2571 * cpufreq_update_pressure() - Update cpufreq pressure for CPUs
2572 * @policy: cpufreq policy of the CPUs.
2573 *
2574 * Update the value of cpufreq pressure for all @cpus in the policy.
2575 */
2576static void cpufreq_update_pressure(struct cpufreq_policy *policy)
2577{
2578 unsigned long max_capacity, capped_freq, pressure;
2579 u32 max_freq;
2580 int cpu;
2581
2582 cpu = cpumask_first(policy->related_cpus);
2583 max_freq = arch_scale_freq_ref(cpu);
2584 capped_freq = policy->max;
2585
2586 /*
2587 * Handle properly the boost frequencies, which should simply clean
2588 * the cpufreq pressure value.
2589 */
2590 if (max_freq <= capped_freq) {
2591 pressure = 0;
2592 } else {
2593 max_capacity = arch_scale_cpu_capacity(cpu);
2594 pressure = max_capacity -
2595 mult_frac(max_capacity, capped_freq, max_freq);
2596 }
2597
2598 for_each_cpu(cpu, policy->related_cpus)
2599 WRITE_ONCE(per_cpu(cpufreq_pressure, cpu), pressure);
2600}
2601
2602/**
2603 * cpufreq_set_policy - Modify cpufreq policy parameters.
2604 * @policy: Policy object to modify.
2605 * @new_gov: Policy governor pointer.
2606 * @new_pol: Policy value (for drivers with built-in governors).
2607 *
2608 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2609 * limits to be set for the policy, update @policy with the verified limits
2610 * values and either invoke the driver's ->setpolicy() callback (if present) or
2611 * carry out a governor update for @policy. That is, run the current governor's
2612 * ->limits() callback (if @new_gov points to the same object as the one in
2613 * @policy) or replace the governor for @policy with @new_gov.
2614 *
2615 * The cpuinfo part of @policy is not updated by this function.
2616 */
2617static int cpufreq_set_policy(struct cpufreq_policy *policy,
2618 struct cpufreq_governor *new_gov,
2619 unsigned int new_pol)
2620{
2621 struct cpufreq_policy_data new_data;
2622 struct cpufreq_governor *old_gov;
2623 int ret;
2624
2625 memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2626 new_data.freq_table = policy->freq_table;
2627 new_data.cpu = policy->cpu;
2628 /*
2629 * PM QoS framework collects all the requests from users and provide us
2630 * the final aggregated value here.
2631 */
2632 new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2633 new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2634
2635 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2636 new_data.cpu, new_data.min, new_data.max);
2637
2638 /*
2639 * Verify that the CPU speed can be set within these limits and make sure
2640 * that min <= max.
2641 */
2642 ret = cpufreq_driver->verify(&new_data);
2643 if (ret)
2644 return ret;
2645
2646 /*
2647 * Resolve policy min/max to available frequencies. It ensures
2648 * no frequency resolution will neither overshoot the requested maximum
2649 * nor undershoot the requested minimum.
2650 */
2651 policy->min = new_data.min;
2652 policy->max = new_data.max;
2653 policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L);
2654 policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H);
2655 trace_cpu_frequency_limits(policy);
2656
2657 cpufreq_update_pressure(policy);
2658
2659 policy->cached_target_freq = UINT_MAX;
2660
2661 pr_debug("new min and max freqs are %u - %u kHz\n",
2662 policy->min, policy->max);
2663
2664 if (cpufreq_driver->setpolicy) {
2665 policy->policy = new_pol;
2666 pr_debug("setting range\n");
2667 return cpufreq_driver->setpolicy(policy);
2668 }
2669
2670 if (new_gov == policy->governor) {
2671 pr_debug("governor limits update\n");
2672 cpufreq_governor_limits(policy);
2673 return 0;
2674 }
2675
2676 pr_debug("governor switch\n");
2677
2678 /* save old, working values */
2679 old_gov = policy->governor;
2680 /* end old governor */
2681 if (old_gov) {
2682 cpufreq_stop_governor(policy);
2683 cpufreq_exit_governor(policy);
2684 }
2685
2686 /* start new governor */
2687 policy->governor = new_gov;
2688 ret = cpufreq_init_governor(policy);
2689 if (!ret) {
2690 ret = cpufreq_start_governor(policy);
2691 if (!ret) {
2692 pr_debug("governor change\n");
2693 return 0;
2694 }
2695 cpufreq_exit_governor(policy);
2696 }
2697
2698 /* new governor failed, so re-start old one */
2699 pr_debug("starting governor %s failed\n", policy->governor->name);
2700 if (old_gov) {
2701 policy->governor = old_gov;
2702 if (cpufreq_init_governor(policy))
2703 policy->governor = NULL;
2704 else
2705 cpufreq_start_governor(policy);
2706 }
2707
2708 return ret;
2709}
2710
2711/**
2712 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2713 * @cpu: CPU to re-evaluate the policy for.
2714 *
2715 * Update the current frequency for the cpufreq policy of @cpu and use
2716 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2717 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2718 * for the policy in question, among other things.
2719 */
2720void cpufreq_update_policy(unsigned int cpu)
2721{
2722 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2723
2724 if (!policy)
2725 return;
2726
2727 /*
2728 * BIOS might change freq behind our back
2729 * -> ask driver for current freq and notify governors about a change
2730 */
2731 if (cpufreq_driver->get && has_target() &&
2732 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2733 goto unlock;
2734
2735 refresh_frequency_limits(policy);
2736
2737unlock:
2738 cpufreq_cpu_release(policy);
2739}
2740EXPORT_SYMBOL(cpufreq_update_policy);
2741
2742/**
2743 * cpufreq_update_limits - Update policy limits for a given CPU.
2744 * @cpu: CPU to update the policy limits for.
2745 *
2746 * Invoke the driver's ->update_limits callback if present or call
2747 * cpufreq_update_policy() for @cpu.
2748 */
2749void cpufreq_update_limits(unsigned int cpu)
2750{
2751 if (cpufreq_driver->update_limits)
2752 cpufreq_driver->update_limits(cpu);
2753 else
2754 cpufreq_update_policy(cpu);
2755}
2756EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2757
2758/*********************************************************************
2759 * BOOST *
2760 *********************************************************************/
2761static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2762{
2763 int ret;
2764
2765 if (!policy->freq_table)
2766 return -ENXIO;
2767
2768 ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2769 if (ret) {
2770 pr_err("%s: Policy frequency update failed\n", __func__);
2771 return ret;
2772 }
2773
2774 ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2775 if (ret < 0)
2776 return ret;
2777
2778 return 0;
2779}
2780
2781int cpufreq_boost_trigger_state(int state)
2782{
2783 struct cpufreq_policy *policy;
2784 unsigned long flags;
2785 int ret = 0;
2786
2787 if (cpufreq_driver->boost_enabled == state)
2788 return 0;
2789
2790 write_lock_irqsave(&cpufreq_driver_lock, flags);
2791 cpufreq_driver->boost_enabled = state;
2792 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2793
2794 cpus_read_lock();
2795 for_each_active_policy(policy) {
2796 policy->boost_enabled = state;
2797 ret = cpufreq_driver->set_boost(policy, state);
2798 if (ret) {
2799 policy->boost_enabled = !policy->boost_enabled;
2800 goto err_reset_state;
2801 }
2802 }
2803 cpus_read_unlock();
2804
2805 return 0;
2806
2807err_reset_state:
2808 cpus_read_unlock();
2809
2810 write_lock_irqsave(&cpufreq_driver_lock, flags);
2811 cpufreq_driver->boost_enabled = !state;
2812 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2813
2814 pr_err("%s: Cannot %s BOOST\n",
2815 __func__, state ? "enable" : "disable");
2816
2817 return ret;
2818}
2819
2820static bool cpufreq_boost_supported(void)
2821{
2822 return cpufreq_driver->set_boost;
2823}
2824
2825static int create_boost_sysfs_file(void)
2826{
2827 int ret;
2828
2829 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2830 if (ret)
2831 pr_err("%s: cannot register global BOOST sysfs file\n",
2832 __func__);
2833
2834 return ret;
2835}
2836
2837static void remove_boost_sysfs_file(void)
2838{
2839 if (cpufreq_boost_supported())
2840 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2841}
2842
2843int cpufreq_enable_boost_support(void)
2844{
2845 if (!cpufreq_driver)
2846 return -EINVAL;
2847
2848 if (cpufreq_boost_supported())
2849 return 0;
2850
2851 cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2852
2853 /* This will get removed on driver unregister */
2854 return create_boost_sysfs_file();
2855}
2856EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2857
2858bool cpufreq_boost_enabled(void)
2859{
2860 return cpufreq_driver->boost_enabled;
2861}
2862EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2863
2864/*********************************************************************
2865 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2866 *********************************************************************/
2867static enum cpuhp_state hp_online;
2868
2869static int cpuhp_cpufreq_online(unsigned int cpu)
2870{
2871 cpufreq_online(cpu);
2872
2873 return 0;
2874}
2875
2876static int cpuhp_cpufreq_offline(unsigned int cpu)
2877{
2878 cpufreq_offline(cpu);
2879
2880 return 0;
2881}
2882
2883/**
2884 * cpufreq_register_driver - register a CPU Frequency driver
2885 * @driver_data: A struct cpufreq_driver containing the values#
2886 * submitted by the CPU Frequency driver.
2887 *
2888 * Registers a CPU Frequency driver to this core code. This code
2889 * returns zero on success, -EEXIST when another driver got here first
2890 * (and isn't unregistered in the meantime).
2891 *
2892 */
2893int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2894{
2895 unsigned long flags;
2896 int ret;
2897
2898 if (cpufreq_disabled())
2899 return -ENODEV;
2900
2901 /*
2902 * The cpufreq core depends heavily on the availability of device
2903 * structure, make sure they are available before proceeding further.
2904 */
2905 if (!get_cpu_device(0))
2906 return -EPROBE_DEFER;
2907
2908 if (!driver_data || !driver_data->verify || !driver_data->init ||
2909 !(driver_data->setpolicy || driver_data->target_index ||
2910 driver_data->target) ||
2911 (driver_data->setpolicy && (driver_data->target_index ||
2912 driver_data->target)) ||
2913 (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2914 (!driver_data->online != !driver_data->offline) ||
2915 (driver_data->adjust_perf && !driver_data->fast_switch))
2916 return -EINVAL;
2917
2918 pr_debug("trying to register driver %s\n", driver_data->name);
2919
2920 /* Protect against concurrent CPU online/offline. */
2921 cpus_read_lock();
2922
2923 write_lock_irqsave(&cpufreq_driver_lock, flags);
2924 if (cpufreq_driver) {
2925 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2926 ret = -EEXIST;
2927 goto out;
2928 }
2929 cpufreq_driver = driver_data;
2930 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2931
2932 /*
2933 * Mark support for the scheduler's frequency invariance engine for
2934 * drivers that implement target(), target_index() or fast_switch().
2935 */
2936 if (!cpufreq_driver->setpolicy) {
2937 static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2938 pr_debug("supports frequency invariance");
2939 }
2940
2941 if (driver_data->setpolicy)
2942 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2943
2944 if (cpufreq_boost_supported()) {
2945 ret = create_boost_sysfs_file();
2946 if (ret)
2947 goto err_null_driver;
2948 }
2949
2950 ret = subsys_interface_register(&cpufreq_interface);
2951 if (ret)
2952 goto err_boost_unreg;
2953
2954 if (unlikely(list_empty(&cpufreq_policy_list))) {
2955 /* if all ->init() calls failed, unregister */
2956 ret = -ENODEV;
2957 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2958 driver_data->name);
2959 goto err_if_unreg;
2960 }
2961
2962 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2963 "cpufreq:online",
2964 cpuhp_cpufreq_online,
2965 cpuhp_cpufreq_offline);
2966 if (ret < 0)
2967 goto err_if_unreg;
2968 hp_online = ret;
2969 ret = 0;
2970
2971 pr_debug("driver %s up and running\n", driver_data->name);
2972 goto out;
2973
2974err_if_unreg:
2975 subsys_interface_unregister(&cpufreq_interface);
2976err_boost_unreg:
2977 remove_boost_sysfs_file();
2978err_null_driver:
2979 write_lock_irqsave(&cpufreq_driver_lock, flags);
2980 cpufreq_driver = NULL;
2981 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2982out:
2983 cpus_read_unlock();
2984 return ret;
2985}
2986EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2987
2988/*
2989 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2990 *
2991 * Unregister the current CPUFreq driver. Only call this if you have
2992 * the right to do so, i.e. if you have succeeded in initialising before!
2993 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2994 * currently not initialised.
2995 */
2996void cpufreq_unregister_driver(struct cpufreq_driver *driver)
2997{
2998 unsigned long flags;
2999
3000 if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver)))
3001 return;
3002
3003 pr_debug("unregistering driver %s\n", driver->name);
3004
3005 /* Protect against concurrent cpu hotplug */
3006 cpus_read_lock();
3007 subsys_interface_unregister(&cpufreq_interface);
3008 remove_boost_sysfs_file();
3009 static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
3010 cpuhp_remove_state_nocalls_cpuslocked(hp_online);
3011
3012 write_lock_irqsave(&cpufreq_driver_lock, flags);
3013
3014 cpufreq_driver = NULL;
3015
3016 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
3017 cpus_read_unlock();
3018}
3019EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
3020
3021static int __init cpufreq_core_init(void)
3022{
3023 struct cpufreq_governor *gov = cpufreq_default_governor();
3024 struct device *dev_root;
3025
3026 if (cpufreq_disabled())
3027 return -ENODEV;
3028
3029 dev_root = bus_get_dev_root(&cpu_subsys);
3030 if (dev_root) {
3031 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &dev_root->kobj);
3032 put_device(dev_root);
3033 }
3034 BUG_ON(!cpufreq_global_kobject);
3035
3036 if (!strlen(default_governor))
3037 strscpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
3038
3039 return 0;
3040}
3041module_param(off, int, 0444);
3042module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
3043core_initcall(cpufreq_core_init);