Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 *  linux/drivers/cpufreq/cpufreq.c
   3 *
   4 *  Copyright (C) 2001 Russell King
   5 *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
   6 *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
   7 *
   8 *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
   9 *	Added handling for CPU hotplug
  10 *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
  11 *	Fix handling for CPU hotplug -- affected CPUs
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License version 2 as
  15 * published by the Free Software Foundation.
  16 */
  17
  18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  19
  20#include <linux/cpu.h>
  21#include <linux/cpufreq.h>
 
  22#include <linux/delay.h>
  23#include <linux/device.h>
  24#include <linux/init.h>
  25#include <linux/kernel_stat.h>
  26#include <linux/module.h>
  27#include <linux/mutex.h>
 
  28#include <linux/slab.h>
  29#include <linux/suspend.h>
 
  30#include <linux/tick.h>
 
  31#include <trace/events/power.h>
  32
  33/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  34 * The "cpufreq driver" - the arch- or hardware-dependent low
  35 * level driver of CPUFreq support, and its spinlock. This lock
  36 * also protects the cpufreq_cpu_data array.
  37 */
  38static struct cpufreq_driver *cpufreq_driver;
  39static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
  40static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data_fallback);
  41static DEFINE_RWLOCK(cpufreq_driver_lock);
  42DEFINE_MUTEX(cpufreq_governor_lock);
  43static LIST_HEAD(cpufreq_policy_list);
  44
  45/* This one keeps track of the previously set governor of a removed CPU */
  46static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor);
 
 
 
  47
  48/* Flag to suspend/resume CPUFreq governors */
  49static bool cpufreq_suspended;
  50
  51static inline bool has_target(void)
  52{
  53	return cpufreq_driver->target_index || cpufreq_driver->target;
  54}
  55
  56/*
  57 * rwsem to guarantee that cpufreq driver module doesn't unload during critical
  58 * sections
  59 */
  60static DECLARE_RWSEM(cpufreq_rwsem);
  61
  62/* internal prototypes */
  63static int __cpufreq_governor(struct cpufreq_policy *policy,
  64		unsigned int event);
  65static unsigned int __cpufreq_get(unsigned int cpu);
  66static void handle_update(struct work_struct *work);
 
 
 
 
  67
  68/**
  69 * Two notifier lists: the "policy" list is involved in the
  70 * validation process for a new CPU frequency policy; the
  71 * "transition" list for kernel code that needs to handle
  72 * changes to devices when the CPU clock speed changes.
  73 * The mutex locks both lists.
  74 */
  75static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
  76static struct srcu_notifier_head cpufreq_transition_notifier_list;
  77
  78static bool init_cpufreq_transition_notifier_list_called;
  79static int __init init_cpufreq_transition_notifier_list(void)
  80{
  81	srcu_init_notifier_head(&cpufreq_transition_notifier_list);
  82	init_cpufreq_transition_notifier_list_called = true;
  83	return 0;
  84}
  85pure_initcall(init_cpufreq_transition_notifier_list);
  86
  87static int off __read_mostly;
  88static int cpufreq_disabled(void)
  89{
  90	return off;
  91}
  92void disable_cpufreq(void)
  93{
  94	off = 1;
  95}
  96static LIST_HEAD(cpufreq_governor_list);
  97static DEFINE_MUTEX(cpufreq_governor_mutex);
  98
  99bool have_governor_per_policy(void)
 100{
 101	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
 102}
 103EXPORT_SYMBOL_GPL(have_governor_per_policy);
 104
 
 
 105struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
 106{
 107	if (have_governor_per_policy())
 108		return &policy->kobj;
 109	else
 110		return cpufreq_global_kobject;
 111}
 112EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
 113
 114static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
 115{
 116	u64 idle_time;
 117	u64 cur_wall_time;
 
 118	u64 busy_time;
 119
 120	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
 121
 122	busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
 123	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
 124	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
 125	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
 126	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
 127	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
 
 
 128
 129	idle_time = cur_wall_time - busy_time;
 130	if (wall)
 131		*wall = cputime_to_usecs(cur_wall_time);
 132
 133	return cputime_to_usecs(idle_time);
 134}
 135
 136u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
 137{
 138	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
 139
 140	if (idle_time == -1ULL)
 141		return get_cpu_idle_time_jiffy(cpu, wall);
 142	else if (!io_busy)
 143		idle_time += get_cpu_iowait_time_us(cpu, wall);
 144
 145	return idle_time;
 146}
 147EXPORT_SYMBOL_GPL(get_cpu_idle_time);
 148
 149/*
 150 * This is a generic cpufreq init() routine which can be used by cpufreq
 151 * drivers of SMP systems. It will do following:
 152 * - validate & show freq table passed
 153 * - set policies transition latency
 154 * - policy->cpus with all possible CPUs
 155 */
 156int cpufreq_generic_init(struct cpufreq_policy *policy,
 157		struct cpufreq_frequency_table *table,
 158		unsigned int transition_latency)
 159{
 160	int ret;
 161
 162	ret = cpufreq_table_validate_and_show(policy, table);
 163	if (ret) {
 164		pr_err("%s: invalid frequency table: %d\n", __func__, ret);
 165		return ret;
 166	}
 167
 168	policy->cpuinfo.transition_latency = transition_latency;
 169
 170	/*
 171	 * The driver only supports the SMP configuartion where all processors
 172	 * share the clock and voltage and clock.
 173	 */
 174	cpumask_setall(policy->cpus);
 175
 176	return 0;
 177}
 178EXPORT_SYMBOL_GPL(cpufreq_generic_init);
 179
 180unsigned int cpufreq_generic_get(unsigned int cpu)
 181{
 182	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
 183
 
 
 
 
 
 
 
 
 184	if (!policy || IS_ERR(policy->clk)) {
 185		pr_err("%s: No %s associated to cpu: %d\n",
 186		       __func__, policy ? "clk" : "policy", cpu);
 187		return 0;
 188	}
 189
 190	return clk_get_rate(policy->clk) / 1000;
 191}
 192EXPORT_SYMBOL_GPL(cpufreq_generic_get);
 193
 194/* Only for cpufreq core internal use */
 195struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
 196{
 197	return per_cpu(cpufreq_cpu_data, cpu);
 198}
 199
 
 
 
 
 
 200struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
 201{
 202	struct cpufreq_policy *policy = NULL;
 203	unsigned long flags;
 204
 205	if (cpufreq_disabled() || (cpu >= nr_cpu_ids))
 206		return NULL;
 207
 208	if (!down_read_trylock(&cpufreq_rwsem))
 209		return NULL;
 210
 211	/* get the cpufreq driver */
 212	read_lock_irqsave(&cpufreq_driver_lock, flags);
 213
 214	if (cpufreq_driver) {
 215		/* get the CPU */
 216		policy = per_cpu(cpufreq_cpu_data, cpu);
 217		if (policy)
 218			kobject_get(&policy->kobj);
 219	}
 220
 221	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
 222
 223	if (!policy)
 224		up_read(&cpufreq_rwsem);
 225
 226	return policy;
 227}
 228EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
 229
 
 
 
 
 230void cpufreq_cpu_put(struct cpufreq_policy *policy)
 231{
 232	if (cpufreq_disabled())
 233		return;
 234
 235	kobject_put(&policy->kobj);
 236	up_read(&cpufreq_rwsem);
 237}
 238EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
 239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 240/*********************************************************************
 241 *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
 242 *********************************************************************/
 243
 244/**
 245 * adjust_jiffies - adjust the system "loops_per_jiffy"
 
 
 246 *
 247 * This function alters the system "loops_per_jiffy" for the clock
 248 * speed change. Note that loops_per_jiffy cannot be updated on SMP
 249 * systems as each CPU might be scaled differently. So, use the arch
 250 * per-CPU loops_per_jiffy value wherever possible.
 251 */
 252#ifndef CONFIG_SMP
 253static unsigned long l_p_j_ref;
 254static unsigned int l_p_j_ref_freq;
 255
 256static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 257{
 
 
 
 
 258	if (ci->flags & CPUFREQ_CONST_LOOPS)
 259		return;
 260
 261	if (!l_p_j_ref_freq) {
 262		l_p_j_ref = loops_per_jiffy;
 263		l_p_j_ref_freq = ci->old;
 264		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
 265			 l_p_j_ref, l_p_j_ref_freq);
 266	}
 267	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
 268		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
 269								ci->new);
 270		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
 271			 loops_per_jiffy, ci->new);
 272	}
 273}
 274#else
 275static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 276{
 277	return;
 278}
 279#endif
 
 280
 281static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
 282		struct cpufreq_freqs *freqs, unsigned int state)
 
 
 
 
 
 
 
 
 
 
 
 283{
 
 
 284	BUG_ON(irqs_disabled());
 285
 286	if (cpufreq_disabled())
 287		return;
 288
 
 289	freqs->flags = cpufreq_driver->flags;
 290	pr_debug("notification %u of frequency transition to %u kHz\n",
 291		 state, freqs->new);
 292
 293	switch (state) {
 294
 295	case CPUFREQ_PRECHANGE:
 296		/* detect if the driver reported a value as "old frequency"
 
 297		 * which is not equal to what the cpufreq core thinks is
 298		 * "old frequency".
 299		 */
 300		if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
 301			if ((policy) && (policy->cpu == freqs->cpu) &&
 302			    (policy->cur) && (policy->cur != freqs->old)) {
 303				pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
 304					 freqs->old, policy->cur);
 305				freqs->old = policy->cur;
 306			}
 307		}
 
 308		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 309				CPUFREQ_PRECHANGE, freqs);
 
 310		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
 311		break;
 312
 313	case CPUFREQ_POSTCHANGE:
 314		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
 315		pr_debug("FREQ: %lu - CPU: %lu\n",
 316			 (unsigned long)freqs->new, (unsigned long)freqs->cpu);
 317		trace_cpu_frequency(freqs->new, freqs->cpu);
 
 
 
 318		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 319				CPUFREQ_POSTCHANGE, freqs);
 320		if (likely(policy) && likely(policy->cpu == freqs->cpu))
 321			policy->cur = freqs->new;
 322		break;
 323	}
 324}
 325
 326/**
 327 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
 328 * on frequency transition.
 329 *
 330 * This function calls the transition notifiers and the "adjust_jiffies"
 331 * function. It is called twice on all CPU frequency changes that have
 332 * external effects.
 333 */
 334static void cpufreq_notify_transition(struct cpufreq_policy *policy,
 335		struct cpufreq_freqs *freqs, unsigned int state)
 336{
 337	for_each_cpu(freqs->cpu, policy->cpus)
 338		__cpufreq_notify_transition(policy, freqs, state);
 339}
 340
 341/* Do post notifications when there are chances that transition has failed */
 342static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
 343		struct cpufreq_freqs *freqs, int transition_failed)
 344{
 345	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 346	if (!transition_failed)
 347		return;
 348
 349	swap(freqs->old, freqs->new);
 350	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 351	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 352}
 353
 354void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
 355		struct cpufreq_freqs *freqs)
 356{
 
 
 
 
 
 
 
 
 
 
 
 
 357wait:
 358	wait_event(policy->transition_wait, !policy->transition_ongoing);
 359
 360	spin_lock(&policy->transition_lock);
 361
 362	if (unlikely(policy->transition_ongoing)) {
 363		spin_unlock(&policy->transition_lock);
 364		goto wait;
 365	}
 366
 367	policy->transition_ongoing = true;
 
 368
 369	spin_unlock(&policy->transition_lock);
 370
 371	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 372}
 373EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
 374
 375void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
 376		struct cpufreq_freqs *freqs, int transition_failed)
 377{
 378	if (unlikely(WARN_ON(!policy->transition_ongoing)))
 379		return;
 380
 381	cpufreq_notify_post_transition(policy, freqs, transition_failed);
 382
 
 
 
 
 
 383	policy->transition_ongoing = false;
 
 
 384
 385	wake_up(&policy->transition_wait);
 386}
 387EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
 388
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 389
 390/*********************************************************************
 391 *                          SYSFS INTERFACE                          *
 392 *********************************************************************/
 393static ssize_t show_boost(struct kobject *kobj,
 394				 struct attribute *attr, char *buf)
 395{
 396	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
 397}
 398
 399static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
 400				  const char *buf, size_t count)
 401{
 402	int ret, enable;
 403
 404	ret = sscanf(buf, "%d", &enable);
 405	if (ret != 1 || enable < 0 || enable > 1)
 406		return -EINVAL;
 407
 408	if (cpufreq_boost_trigger_state(enable)) {
 409		pr_err("%s: Cannot %s BOOST!\n",
 410		       __func__, enable ? "enable" : "disable");
 411		return -EINVAL;
 412	}
 413
 414	pr_debug("%s: cpufreq BOOST %s\n",
 415		 __func__, enable ? "enabled" : "disabled");
 416
 417	return count;
 418}
 419define_one_global_rw(boost);
 420
 421static struct cpufreq_governor *__find_governor(const char *str_governor)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 422{
 423	struct cpufreq_governor *t;
 424
 425	list_for_each_entry(t, &cpufreq_governor_list, governor_list)
 426		if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN))
 427			return t;
 428
 429	return NULL;
 430}
 431
 432/**
 433 * cpufreq_parse_governor - parse a governor string
 434 */
 435static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
 436				struct cpufreq_governor **governor)
 437{
 438	int err = -EINVAL;
 439
 440	if (!cpufreq_driver)
 441		goto out;
 
 
 442
 443	if (cpufreq_driver->setpolicy) {
 444		if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
 445			*policy = CPUFREQ_POLICY_PERFORMANCE;
 446			err = 0;
 447		} else if (!strnicmp(str_governor, "powersave",
 448						CPUFREQ_NAME_LEN)) {
 449			*policy = CPUFREQ_POLICY_POWERSAVE;
 450			err = 0;
 451		}
 452	} else if (has_target()) {
 453		struct cpufreq_governor *t;
 454
 455		mutex_lock(&cpufreq_governor_mutex);
 
 456
 457		t = __find_governor(str_governor);
 
 
 
 458
 459		if (t == NULL) {
 460			int ret;
 461
 462			mutex_unlock(&cpufreq_governor_mutex);
 463			ret = request_module("cpufreq_%s", str_governor);
 464			mutex_lock(&cpufreq_governor_mutex);
 465
 466			if (ret == 0)
 467				t = __find_governor(str_governor);
 468		}
 
 
 
 
 469
 470		if (t != NULL) {
 471			*governor = t;
 472			err = 0;
 473		}
 474
 475		mutex_unlock(&cpufreq_governor_mutex);
 476	}
 477out:
 478	return err;
 479}
 480
 481/**
 482 * cpufreq_per_cpu_attr_read() / show_##file_name() -
 483 * print out cpufreq information
 484 *
 485 * Write out information from cpufreq_driver->policy[cpu]; object must be
 486 * "unsigned int".
 487 */
 488
 489#define show_one(file_name, object)			\
 490static ssize_t show_##file_name				\
 491(struct cpufreq_policy *policy, char *buf)		\
 492{							\
 493	return sprintf(buf, "%u\n", policy->object);	\
 494}
 495
 496show_one(cpuinfo_min_freq, cpuinfo.min_freq);
 497show_one(cpuinfo_max_freq, cpuinfo.max_freq);
 498show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
 499show_one(scaling_min_freq, min);
 500show_one(scaling_max_freq, max);
 501show_one(scaling_cur_freq, cur);
 502
 503static int cpufreq_set_policy(struct cpufreq_policy *policy,
 504				struct cpufreq_policy *new_policy);
 
 
 505
 506/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 507 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
 508 */
 509#define store_one(file_name, object)			\
 510static ssize_t store_##file_name					\
 511(struct cpufreq_policy *policy, const char *buf, size_t count)		\
 512{									\
 
 513	int ret;							\
 514	struct cpufreq_policy new_policy;				\
 515									\
 516	ret = cpufreq_get_policy(&new_policy, policy->cpu);		\
 517	if (ret)							\
 518		return -EINVAL;						\
 519									\
 520	ret = sscanf(buf, "%u", &new_policy.object);			\
 521	if (ret != 1)							\
 522		return -EINVAL;						\
 523									\
 524	ret = cpufreq_set_policy(policy, &new_policy);		\
 525	policy->user_policy.object = policy->object;			\
 526									\
 527	return ret ? ret : count;					\
 528}
 529
 530store_one(scaling_min_freq, min);
 531store_one(scaling_max_freq, max);
 532
 533/**
 534 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
 535 */
 536static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
 537					char *buf)
 538{
 539	unsigned int cur_freq = __cpufreq_get(policy->cpu);
 540	if (!cur_freq)
 541		return sprintf(buf, "<unknown>");
 542	return sprintf(buf, "%u\n", cur_freq);
 
 
 543}
 544
 545/**
 546 * show_scaling_governor - show the current policy for the specified CPU
 547 */
 548static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
 549{
 550	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
 551		return sprintf(buf, "powersave\n");
 552	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
 553		return sprintf(buf, "performance\n");
 554	else if (policy->governor)
 555		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
 556				policy->governor->name);
 557	return -EINVAL;
 558}
 559
 560/**
 561 * store_scaling_governor - store policy for the specified CPU
 562 */
 563static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
 564					const char *buf, size_t count)
 565{
 
 566	int ret;
 567	char	str_governor[16];
 568	struct cpufreq_policy new_policy;
 569
 570	ret = cpufreq_get_policy(&new_policy, policy->cpu);
 571	if (ret)
 572		return ret;
 573
 574	ret = sscanf(buf, "%15s", str_governor);
 575	if (ret != 1)
 576		return -EINVAL;
 577
 578	if (cpufreq_parse_governor(str_governor, &new_policy.policy,
 579						&new_policy.governor))
 580		return -EINVAL;
 581
 582	ret = cpufreq_set_policy(policy, &new_policy);
 
 
 583
 584	policy->user_policy.policy = policy->policy;
 585	policy->user_policy.governor = policy->governor;
 
 586
 587	if (ret)
 588		return ret;
 589	else
 590		return count;
 
 
 
 
 
 
 
 591}
 592
 593/**
 594 * show_scaling_driver - show the cpufreq driver currently loaded
 595 */
 596static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
 597{
 598	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
 599}
 600
 601/**
 602 * show_scaling_available_governors - show the available CPUfreq governors
 603 */
 604static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
 605						char *buf)
 606{
 607	ssize_t i = 0;
 608	struct cpufreq_governor *t;
 609
 610	if (!has_target()) {
 611		i += sprintf(buf, "performance powersave");
 612		goto out;
 613	}
 614
 615	list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
 
 616		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
 617		    - (CPUFREQ_NAME_LEN + 2)))
 618			goto out;
 619		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
 620	}
 
 621out:
 622	i += sprintf(&buf[i], "\n");
 623	return i;
 624}
 625
 626ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
 627{
 628	ssize_t i = 0;
 629	unsigned int cpu;
 630
 631	for_each_cpu(cpu, mask) {
 632		if (i)
 633			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
 634		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
 635		if (i >= (PAGE_SIZE - 5))
 636			break;
 637	}
 638	i += sprintf(&buf[i], "\n");
 
 
 
 
 639	return i;
 640}
 641EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
 642
 643/**
 644 * show_related_cpus - show the CPUs affected by each transition even if
 645 * hw coordination is in use
 646 */
 647static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
 648{
 649	return cpufreq_show_cpus(policy->related_cpus, buf);
 650}
 651
 652/**
 653 * show_affected_cpus - show the CPUs affected by each transition
 654 */
 655static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
 656{
 657	return cpufreq_show_cpus(policy->cpus, buf);
 658}
 659
 660static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
 661					const char *buf, size_t count)
 662{
 663	unsigned int freq = 0;
 664	unsigned int ret;
 665
 666	if (!policy->governor || !policy->governor->store_setspeed)
 667		return -EINVAL;
 668
 669	ret = sscanf(buf, "%u", &freq);
 670	if (ret != 1)
 671		return -EINVAL;
 672
 673	policy->governor->store_setspeed(policy, freq);
 674
 675	return count;
 676}
 677
 678static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
 679{
 680	if (!policy->governor || !policy->governor->show_setspeed)
 681		return sprintf(buf, "<unsupported>\n");
 682
 683	return policy->governor->show_setspeed(policy, buf);
 684}
 685
 686/**
 687 * show_bios_limit - show the current cpufreq HW/BIOS limitation
 688 */
 689static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
 690{
 691	unsigned int limit;
 692	int ret;
 693	if (cpufreq_driver->bios_limit) {
 694		ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
 695		if (!ret)
 696			return sprintf(buf, "%u\n", limit);
 697	}
 698	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
 699}
 700
 701cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
 702cpufreq_freq_attr_ro(cpuinfo_min_freq);
 703cpufreq_freq_attr_ro(cpuinfo_max_freq);
 704cpufreq_freq_attr_ro(cpuinfo_transition_latency);
 705cpufreq_freq_attr_ro(scaling_available_governors);
 706cpufreq_freq_attr_ro(scaling_driver);
 707cpufreq_freq_attr_ro(scaling_cur_freq);
 708cpufreq_freq_attr_ro(bios_limit);
 709cpufreq_freq_attr_ro(related_cpus);
 710cpufreq_freq_attr_ro(affected_cpus);
 711cpufreq_freq_attr_rw(scaling_min_freq);
 712cpufreq_freq_attr_rw(scaling_max_freq);
 713cpufreq_freq_attr_rw(scaling_governor);
 714cpufreq_freq_attr_rw(scaling_setspeed);
 715
 716static struct attribute *default_attrs[] = {
 717	&cpuinfo_min_freq.attr,
 718	&cpuinfo_max_freq.attr,
 719	&cpuinfo_transition_latency.attr,
 720	&scaling_min_freq.attr,
 721	&scaling_max_freq.attr,
 722	&affected_cpus.attr,
 723	&related_cpus.attr,
 724	&scaling_governor.attr,
 725	&scaling_driver.attr,
 726	&scaling_available_governors.attr,
 727	&scaling_setspeed.attr,
 728	NULL
 729};
 
 730
 731#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
 732#define to_attr(a) container_of(a, struct freq_attr, attr)
 733
 734static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
 735{
 736	struct cpufreq_policy *policy = to_policy(kobj);
 737	struct freq_attr *fattr = to_attr(attr);
 738	ssize_t ret;
 739
 740	if (!down_read_trylock(&cpufreq_rwsem))
 741		return -EINVAL;
 742
 743	down_read(&policy->rwsem);
 744
 745	if (fattr->show)
 746		ret = fattr->show(policy, buf);
 747	else
 748		ret = -EIO;
 749
 750	up_read(&policy->rwsem);
 751	up_read(&cpufreq_rwsem);
 752
 753	return ret;
 754}
 755
 756static ssize_t store(struct kobject *kobj, struct attribute *attr,
 757		     const char *buf, size_t count)
 758{
 759	struct cpufreq_policy *policy = to_policy(kobj);
 760	struct freq_attr *fattr = to_attr(attr);
 761	ssize_t ret = -EINVAL;
 762
 763	get_online_cpus();
 764
 765	if (!cpu_online(policy->cpu))
 766		goto unlock;
 767
 768	if (!down_read_trylock(&cpufreq_rwsem))
 769		goto unlock;
 770
 771	down_write(&policy->rwsem);
 772
 773	if (fattr->store)
 774		ret = fattr->store(policy, buf, count);
 775	else
 776		ret = -EIO;
 777
 778	up_write(&policy->rwsem);
 779
 780	up_read(&cpufreq_rwsem);
 781unlock:
 782	put_online_cpus();
 783
 784	return ret;
 785}
 786
 787static void cpufreq_sysfs_release(struct kobject *kobj)
 788{
 789	struct cpufreq_policy *policy = to_policy(kobj);
 790	pr_debug("last reference is dropped\n");
 791	complete(&policy->kobj_unregister);
 792}
 793
 794static const struct sysfs_ops sysfs_ops = {
 795	.show	= show,
 796	.store	= store,
 797};
 798
 799static struct kobj_type ktype_cpufreq = {
 800	.sysfs_ops	= &sysfs_ops,
 801	.default_attrs	= default_attrs,
 802	.release	= cpufreq_sysfs_release,
 803};
 804
 805struct kobject *cpufreq_global_kobject;
 806EXPORT_SYMBOL(cpufreq_global_kobject);
 807
 808static int cpufreq_global_kobject_usage;
 809
 810int cpufreq_get_global_kobject(void)
 811{
 812	if (!cpufreq_global_kobject_usage++)
 813		return kobject_add(cpufreq_global_kobject,
 814				&cpu_subsys.dev_root->kobj, "%s", "cpufreq");
 815
 816	return 0;
 817}
 818EXPORT_SYMBOL(cpufreq_get_global_kobject);
 819
 820void cpufreq_put_global_kobject(void)
 821{
 822	if (!--cpufreq_global_kobject_usage)
 823		kobject_del(cpufreq_global_kobject);
 824}
 825EXPORT_SYMBOL(cpufreq_put_global_kobject);
 826
 827int cpufreq_sysfs_create_file(const struct attribute *attr)
 828{
 829	int ret = cpufreq_get_global_kobject();
 830
 831	if (!ret) {
 832		ret = sysfs_create_file(cpufreq_global_kobject, attr);
 833		if (ret)
 834			cpufreq_put_global_kobject();
 835	}
 836
 837	return ret;
 838}
 839EXPORT_SYMBOL(cpufreq_sysfs_create_file);
 840
 841void cpufreq_sysfs_remove_file(const struct attribute *attr)
 842{
 843	sysfs_remove_file(cpufreq_global_kobject, attr);
 844	cpufreq_put_global_kobject();
 845}
 846EXPORT_SYMBOL(cpufreq_sysfs_remove_file);
 847
 848/* symlink affected CPUs */
 849static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy)
 850{
 851	unsigned int j;
 852	int ret = 0;
 853
 854	for_each_cpu(j, policy->cpus) {
 855		struct device *cpu_dev;
 856
 857		if (j == policy->cpu)
 858			continue;
 859
 860		pr_debug("Adding link for CPU: %u\n", j);
 861		cpu_dev = get_cpu_device(j);
 862		ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
 863					"cpufreq");
 864		if (ret)
 865			break;
 866	}
 867	return ret;
 868}
 869
 870static int cpufreq_add_dev_interface(struct cpufreq_policy *policy,
 871				     struct device *dev)
 872{
 873	struct freq_attr **drv_attr;
 874	int ret = 0;
 875
 876	/* prepare interface data */
 877	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
 878				   &dev->kobj, "cpufreq");
 879	if (ret)
 880		return ret;
 881
 882	/* set up files for this cpu device */
 883	drv_attr = cpufreq_driver->attr;
 884	while ((drv_attr) && (*drv_attr)) {
 885		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
 886		if (ret)
 887			goto err_out_kobj_put;
 888		drv_attr++;
 889	}
 890	if (cpufreq_driver->get) {
 891		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
 892		if (ret)
 893			goto err_out_kobj_put;
 894	}
 895	if (has_target()) {
 896		ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
 897		if (ret)
 898			goto err_out_kobj_put;
 899	}
 
 
 
 
 
 900	if (cpufreq_driver->bios_limit) {
 901		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
 902		if (ret)
 903			goto err_out_kobj_put;
 904	}
 905
 906	ret = cpufreq_add_dev_symlink(policy);
 907	if (ret)
 908		goto err_out_kobj_put;
 909
 910	return ret;
 911
 912err_out_kobj_put:
 913	kobject_put(&policy->kobj);
 914	wait_for_completion(&policy->kobj_unregister);
 915	return ret;
 916}
 917
 918static void cpufreq_init_policy(struct cpufreq_policy *policy)
 919{
 920	struct cpufreq_governor *gov = NULL;
 921	struct cpufreq_policy new_policy;
 922	int ret = 0;
 923
 924	memcpy(&new_policy, policy, sizeof(*policy));
 925
 926	/* Update governor of new_policy to the governor used before hotplug */
 927	gov = __find_governor(per_cpu(cpufreq_cpu_governor, policy->cpu));
 928	if (gov)
 929		pr_debug("Restoring governor %s for cpu %d\n",
 930				policy->governor->name, policy->cpu);
 931	else
 932		gov = CPUFREQ_DEFAULT_GOVERNOR;
 
 
 933
 934	new_policy.governor = gov;
 
 
 
 935
 936	/* Use the default policy if its valid. */
 937	if (cpufreq_driver->setpolicy)
 938		cpufreq_parse_governor(gov->name, &new_policy.policy, NULL);
 939
 940	/* set default policy */
 941	ret = cpufreq_set_policy(policy, &new_policy);
 942	if (ret) {
 943		pr_debug("setting policy failed\n");
 944		if (cpufreq_driver->exit)
 945			cpufreq_driver->exit(policy);
 
 
 
 
 
 
 
 
 
 
 946	}
 
 
 
 
 
 
 947}
 948
 949#ifdef CONFIG_HOTPLUG_CPU
 950static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy,
 951				  unsigned int cpu, struct device *dev)
 952{
 953	int ret = 0;
 954	unsigned long flags;
 955
 956	if (has_target()) {
 957		ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
 958		if (ret) {
 959			pr_err("%s: Failed to stop governor\n", __func__);
 960			return ret;
 961		}
 962	}
 963
 964	down_write(&policy->rwsem);
 965
 966	write_lock_irqsave(&cpufreq_driver_lock, flags);
 967
 968	cpumask_set_cpu(cpu, policy->cpus);
 969	per_cpu(cpufreq_cpu_data, cpu) = policy;
 970	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
 971
 
 
 
 
 
 972	up_write(&policy->rwsem);
 
 
 973
 974	if (has_target()) {
 975		ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
 976		if (!ret)
 977			ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
 978
 979		if (ret) {
 980			pr_err("%s: Failed to start governor\n", __func__);
 981			return ret;
 982		}
 983	}
 
 
 
 
 
 
 
 984
 985	return sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq");
 
 
 
 986}
 987#endif
 988
 989static struct cpufreq_policy *cpufreq_policy_restore(unsigned int cpu)
 
 990{
 991	struct cpufreq_policy *policy;
 992	unsigned long flags;
 993
 994	read_lock_irqsave(&cpufreq_driver_lock, flags);
 
 
 995
 996	policy = per_cpu(cpufreq_cpu_data_fallback, cpu);
 
 
 
 997
 998	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 
 999
1000	policy->governor = NULL;
 
 
 
1001
1002	return policy;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1003}
1004
1005static struct cpufreq_policy *cpufreq_policy_alloc(void)
1006{
1007	struct cpufreq_policy *policy;
 
 
 
 
 
1008
1009	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1010	if (!policy)
1011		return NULL;
1012
1013	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1014		goto err_free_policy;
1015
1016	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1017		goto err_free_cpumask;
1018
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1019	INIT_LIST_HEAD(&policy->policy_list);
1020	init_rwsem(&policy->rwsem);
1021	spin_lock_init(&policy->transition_lock);
1022	init_waitqueue_head(&policy->transition_wait);
 
1023
 
1024	return policy;
1025
 
 
 
 
 
 
 
 
 
1026err_free_cpumask:
1027	free_cpumask_var(policy->cpus);
1028err_free_policy:
1029	kfree(policy);
1030
1031	return NULL;
1032}
1033
1034static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1035{
1036	struct kobject *kobj;
1037	struct completion *cmp;
1038
1039	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1040			CPUFREQ_REMOVE_POLICY, policy);
1041
1042	down_read(&policy->rwsem);
1043	kobj = &policy->kobj;
1044	cmp = &policy->kobj_unregister;
1045	up_read(&policy->rwsem);
1046	kobject_put(kobj);
1047
1048	/*
1049	 * We need to make sure that the underlying kobj is
1050	 * actually not referenced anymore by anybody before we
1051	 * proceed with unloading.
1052	 */
1053	pr_debug("waiting for dropping of refcount\n");
1054	wait_for_completion(cmp);
1055	pr_debug("wait complete\n");
1056}
1057
1058static void cpufreq_policy_free(struct cpufreq_policy *policy)
1059{
1060	free_cpumask_var(policy->related_cpus);
1061	free_cpumask_var(policy->cpus);
1062	kfree(policy);
1063}
1064
1065static void update_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1066{
1067	if (WARN_ON(cpu == policy->cpu))
1068		return;
1069
1070	down_write(&policy->rwsem);
 
 
 
1071
1072	policy->last_cpu = policy->cpu;
1073	policy->cpu = cpu;
1074
1075	up_write(&policy->rwsem);
 
 
 
 
 
 
 
 
 
1076
1077	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1078			CPUFREQ_UPDATE_POLICY_CPU, policy);
 
 
 
 
 
 
1079}
1080
1081static int __cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1082{
1083	unsigned int j, cpu = dev->id;
1084	int ret = -ENOMEM;
1085	struct cpufreq_policy *policy;
 
1086	unsigned long flags;
1087	bool recover_policy = cpufreq_suspended;
1088#ifdef CONFIG_HOTPLUG_CPU
1089	struct cpufreq_policy *tpolicy;
1090#endif
1091
1092	if (cpu_is_offline(cpu))
1093		return 0;
1094
1095	pr_debug("adding CPU %u\n", cpu);
 
 
 
 
 
1096
1097#ifdef CONFIG_SMP
1098	/* check whether a different CPU already registered this
1099	 * CPU because it is in the same boat. */
1100	policy = cpufreq_cpu_get(cpu);
1101	if (unlikely(policy)) {
1102		cpufreq_cpu_put(policy);
1103		return 0;
 
 
 
 
1104	}
1105#endif
1106
1107	if (!down_read_trylock(&cpufreq_rwsem))
1108		return 0;
 
1109
1110#ifdef CONFIG_HOTPLUG_CPU
1111	/* Check if this cpu was hot-unplugged earlier and has siblings */
1112	read_lock_irqsave(&cpufreq_driver_lock, flags);
1113	list_for_each_entry(tpolicy, &cpufreq_policy_list, policy_list) {
1114		if (cpumask_test_cpu(cpu, tpolicy->related_cpus)) {
1115			read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1116			ret = cpufreq_add_policy_cpu(tpolicy, cpu, dev);
1117			up_read(&cpufreq_rwsem);
1118			return ret;
1119		}
1120	}
1121	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1122#endif
1123
1124	/*
1125	 * Restore the saved policy when doing light-weight init and fall back
1126	 * to the full init if that fails.
1127	 */
1128	policy = recover_policy ? cpufreq_policy_restore(cpu) : NULL;
1129	if (!policy) {
1130		recover_policy = false;
1131		policy = cpufreq_policy_alloc();
1132		if (!policy)
1133			goto nomem_out;
1134	}
1135
1136	/*
1137	 * In the resume path, since we restore a saved policy, the assignment
1138	 * to policy->cpu is like an update of the existing policy, rather than
1139	 * the creation of a brand new one. So we need to perform this update
1140	 * by invoking update_policy_cpu().
1141	 */
1142	if (recover_policy && cpu != policy->cpu)
1143		update_policy_cpu(policy, cpu);
1144	else
1145		policy->cpu = cpu;
1146
1147	cpumask_copy(policy->cpus, cpumask_of(cpu));
 
 
1148
1149	init_completion(&policy->kobj_unregister);
1150	INIT_WORK(&policy->update, handle_update);
 
 
 
 
 
 
1151
1152	/* call driver. From then on the cpufreq must be able
1153	 * to accept all calls to ->verify and ->setpolicy for this CPU
1154	 */
1155	ret = cpufreq_driver->init(policy);
1156	if (ret) {
1157		pr_debug("initialization failed\n");
1158		goto err_set_policy_cpu;
1159	}
1160
1161	/* related cpus should atleast have policy->cpus */
1162	cpumask_or(policy->related_cpus, policy->related_cpus, policy->cpus);
1163
1164	/*
1165	 * affected cpus must always be the one, which are online. We aren't
1166	 * managing offline cpus here.
1167	 */
1168	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1169
1170	if (!recover_policy) {
1171		policy->user_policy.min = policy->min;
1172		policy->user_policy.max = policy->max;
1173	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1174
1175	down_write(&policy->rwsem);
1176	write_lock_irqsave(&cpufreq_driver_lock, flags);
1177	for_each_cpu(j, policy->cpus)
1178		per_cpu(cpufreq_cpu_data, j) = policy;
1179	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
1180
1181	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1182		policy->cur = cpufreq_driver->get(policy->cpu);
1183		if (!policy->cur) {
 
1184			pr_err("%s: ->get() failed\n", __func__);
1185			goto err_get_freq;
1186		}
1187	}
1188
1189	/*
1190	 * Sometimes boot loaders set CPU frequency to a value outside of
1191	 * frequency table present with cpufreq core. In such cases CPU might be
1192	 * unstable if it has to run on that frequency for long duration of time
1193	 * and so its better to set it to a frequency which is specified in
1194	 * freq-table. This also makes cpufreq stats inconsistent as
1195	 * cpufreq-stats would fail to register because current frequency of CPU
1196	 * isn't found in freq-table.
1197	 *
1198	 * Because we don't want this change to effect boot process badly, we go
1199	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1200	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1201	 * is initialized to zero).
1202	 *
1203	 * We are passing target-freq as "policy->cur - 1" otherwise
1204	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1205	 * equal to target-freq.
1206	 */
1207	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1208	    && has_target()) {
 
 
1209		/* Are we running at unknown frequency ? */
1210		ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1211		if (ret == -EINVAL) {
1212			/* Warn user and fix it */
1213			pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1214				__func__, policy->cpu, policy->cur);
1215			ret = __cpufreq_driver_target(policy, policy->cur - 1,
1216				CPUFREQ_RELATION_L);
1217
1218			/*
1219			 * Reaching here after boot in a few seconds may not
1220			 * mean that system will remain stable at "unknown"
1221			 * frequency for longer duration. Hence, a BUG_ON().
1222			 */
1223			BUG_ON(ret);
1224			pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1225				__func__, policy->cpu, policy->cur);
1226		}
1227	}
1228
1229	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1230				     CPUFREQ_START, policy);
1231
1232	if (!recover_policy) {
1233		ret = cpufreq_add_dev_interface(policy, dev);
1234		if (ret)
1235			goto err_out_unregister;
1236		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1237				CPUFREQ_CREATE_POLICY, policy);
1238	}
1239
1240	write_lock_irqsave(&cpufreq_driver_lock, flags);
1241	list_add(&policy->policy_list, &cpufreq_policy_list);
1242	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1243
1244	cpufreq_init_policy(policy);
 
 
1245
1246	if (!recover_policy) {
1247		policy->user_policy.policy = policy->policy;
1248		policy->user_policy.governor = policy->governor;
 
 
 
 
 
 
 
 
 
1249	}
 
 
 
 
 
 
 
 
1250	up_write(&policy->rwsem);
1251
1252	kobject_uevent(&policy->kobj, KOBJ_ADD);
1253	up_read(&cpufreq_rwsem);
 
 
 
 
 
 
 
1254
1255	pr_debug("initialization complete\n");
1256
1257	return 0;
1258
1259err_out_unregister:
1260err_get_freq:
1261	write_lock_irqsave(&cpufreq_driver_lock, flags);
1262	for_each_cpu(j, policy->cpus)
1263		per_cpu(cpufreq_cpu_data, j) = NULL;
1264	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
1265
 
1266	if (cpufreq_driver->exit)
1267		cpufreq_driver->exit(policy);
1268err_set_policy_cpu:
1269	if (recover_policy) {
1270		/* Do not leave stale fallback data behind. */
1271		per_cpu(cpufreq_cpu_data_fallback, cpu) = NULL;
1272		cpufreq_policy_put_kobj(policy);
1273	}
1274	cpufreq_policy_free(policy);
1275
1276nomem_out:
1277	up_read(&cpufreq_rwsem);
 
1278
 
1279	return ret;
1280}
1281
1282/**
1283 * cpufreq_add_dev - add a CPU device
1284 *
1285 * Adds the cpufreq interface for a CPU device.
1286 *
1287 * The Oracle says: try running cpufreq registration/unregistration concurrently
1288 * with with cpu hotplugging and all hell will break loose. Tried to clean this
1289 * mess up, but more thorough testing is needed. - Mathieu
1290 */
1291static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1292{
1293	return __cpufreq_add_dev(dev, sif);
1294}
1295
1296static int cpufreq_nominate_new_policy_cpu(struct cpufreq_policy *policy,
1297					   unsigned int old_cpu)
1298{
1299	struct device *cpu_dev;
1300	int ret;
1301
1302	/* first sibling now owns the new sysfs dir */
1303	cpu_dev = get_cpu_device(cpumask_any_but(policy->cpus, old_cpu));
1304
1305	sysfs_remove_link(&cpu_dev->kobj, "cpufreq");
1306	ret = kobject_move(&policy->kobj, &cpu_dev->kobj);
1307	if (ret) {
1308		pr_err("%s: Failed to move kobj: %d\n", __func__, ret);
1309
1310		down_write(&policy->rwsem);
1311		cpumask_set_cpu(old_cpu, policy->cpus);
1312		up_write(&policy->rwsem);
1313
1314		ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
1315					"cpufreq");
1316
1317		return -EINVAL;
1318	}
1319
1320	return cpu_dev->id;
 
 
 
 
 
1321}
1322
1323static int __cpufreq_remove_dev_prepare(struct device *dev,
1324					struct subsys_interface *sif)
1325{
1326	unsigned int cpu = dev->id, cpus;
1327	int new_cpu, ret;
1328	unsigned long flags;
1329	struct cpufreq_policy *policy;
1330
1331	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1332
1333	write_lock_irqsave(&cpufreq_driver_lock, flags);
1334
1335	policy = per_cpu(cpufreq_cpu_data, cpu);
1336
1337	/* Save the policy somewhere when doing a light-weight tear-down */
1338	if (cpufreq_suspended)
1339		per_cpu(cpufreq_cpu_data_fallback, cpu) = policy;
1340
1341	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1342
1343	if (!policy) {
1344		pr_debug("%s: No cpu_data found\n", __func__);
1345		return -EINVAL;
1346	}
1347
1348	if (has_target()) {
1349		ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1350		if (ret) {
1351			pr_err("%s: Failed to stop governor\n", __func__);
1352			return ret;
1353		}
 
 
1354	}
1355
1356	if (!cpufreq_driver->setpolicy)
1357		strncpy(per_cpu(cpufreq_cpu_governor, cpu),
1358			policy->governor->name, CPUFREQ_NAME_LEN);
 
 
1359
1360	down_read(&policy->rwsem);
1361	cpus = cpumask_weight(policy->cpus);
1362	up_read(&policy->rwsem);
1363
1364	if (cpu != policy->cpu) {
1365		sysfs_remove_link(&dev->kobj, "cpufreq");
1366	} else if (cpus > 1) {
1367		new_cpu = cpufreq_nominate_new_policy_cpu(policy, cpu);
1368		if (new_cpu >= 0) {
1369			update_policy_cpu(policy, new_cpu);
1370
1371			if (!cpufreq_suspended)
1372				pr_debug("%s: policy Kobject moved to cpu: %d from: %d\n",
1373					 __func__, new_cpu, cpu);
1374		}
1375	} else if (cpufreq_driver->stop_cpu && cpufreq_driver->setpolicy) {
1376		cpufreq_driver->stop_cpu(policy);
1377	}
1378
1379	return 0;
 
 
 
1380}
1381
1382static int __cpufreq_remove_dev_finish(struct device *dev,
1383				       struct subsys_interface *sif)
1384{
1385	unsigned int cpu = dev->id, cpus;
1386	int ret;
1387	unsigned long flags;
1388	struct cpufreq_policy *policy;
1389
1390	read_lock_irqsave(&cpufreq_driver_lock, flags);
1391	policy = per_cpu(cpufreq_cpu_data, cpu);
1392	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1393
 
1394	if (!policy) {
1395		pr_debug("%s: No cpu_data found\n", __func__);
1396		return -EINVAL;
1397	}
1398
1399	down_write(&policy->rwsem);
1400	cpus = cpumask_weight(policy->cpus);
1401
1402	if (cpus > 1)
1403		cpumask_clear_cpu(cpu, policy->cpus);
1404	up_write(&policy->rwsem);
1405
1406	/* If cpu is last user of policy, free policy */
1407	if (cpus == 1) {
1408		if (has_target()) {
1409			ret = __cpufreq_governor(policy,
1410					CPUFREQ_GOV_POLICY_EXIT);
1411			if (ret) {
1412				pr_err("%s: Failed to exit governor\n",
1413				       __func__);
1414				return ret;
1415			}
1416		}
1417
1418		if (!cpufreq_suspended)
1419			cpufreq_policy_put_kobj(policy);
1420
1421		/*
1422		 * Perform the ->exit() even during light-weight tear-down,
1423		 * since this is a core component, and is essential for the
1424		 * subsequent light-weight ->init() to succeed.
1425		 */
1426		if (cpufreq_driver->exit)
1427			cpufreq_driver->exit(policy);
1428
1429		/* Remove policy from list of active policies */
1430		write_lock_irqsave(&cpufreq_driver_lock, flags);
1431		list_del(&policy->policy_list);
1432		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1433
1434		if (!cpufreq_suspended)
1435			cpufreq_policy_free(policy);
1436	} else if (has_target()) {
1437		ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
1438		if (!ret)
1439			ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
1440
1441		if (ret) {
1442			pr_err("%s: Failed to start governor\n", __func__);
1443			return ret;
1444		}
1445	}
1446
1447	per_cpu(cpufreq_cpu_data, cpu) = NULL;
1448	return 0;
1449}
1450
1451/**
1452 * cpufreq_remove_dev - remove a CPU device
1453 *
1454 * Removes the cpufreq interface for a CPU device.
1455 */
1456static int cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1457{
1458	unsigned int cpu = dev->id;
1459	int ret;
1460
1461	if (cpu_is_offline(cpu))
1462		return 0;
1463
1464	ret = __cpufreq_remove_dev_prepare(dev, sif);
1465
1466	if (!ret)
1467		ret = __cpufreq_remove_dev_finish(dev, sif);
1468
1469	return ret;
1470}
1471
1472static void handle_update(struct work_struct *work)
1473{
1474	struct cpufreq_policy *policy =
1475		container_of(work, struct cpufreq_policy, update);
1476	unsigned int cpu = policy->cpu;
1477	pr_debug("handle_update for cpu %u called\n", cpu);
1478	cpufreq_update_policy(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1479}
1480
1481/**
1482 *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1483 *	in deep trouble.
1484 *	@cpu: cpu number
1485 *	@old_freq: CPU frequency the kernel thinks the CPU runs at
1486 *	@new_freq: CPU frequency the CPU actually runs at
1487 *
1488 *	We adjust to current frequency first, and need to clean up later.
1489 *	So either call to cpufreq_update_policy() or schedule handle_update()).
1490 */
1491static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1492				unsigned int new_freq)
1493{
1494	struct cpufreq_policy *policy;
1495	struct cpufreq_freqs freqs;
1496	unsigned long flags;
1497
1498	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1499		 old_freq, new_freq);
1500
1501	freqs.old = old_freq;
1502	freqs.new = new_freq;
1503
1504	read_lock_irqsave(&cpufreq_driver_lock, flags);
1505	policy = per_cpu(cpufreq_cpu_data, cpu);
1506	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1507
1508	cpufreq_freq_transition_begin(policy, &freqs);
1509	cpufreq_freq_transition_end(policy, &freqs, 0);
1510}
1511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1512/**
1513 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1514 * @cpu: CPU number
1515 *
1516 * This is the last known freq, without actually getting it from the driver.
1517 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1518 */
1519unsigned int cpufreq_quick_get(unsigned int cpu)
1520{
1521	struct cpufreq_policy *policy;
1522	unsigned int ret_freq = 0;
 
 
 
1523
1524	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
1525		return cpufreq_driver->get(cpu);
 
 
 
 
 
1526
1527	policy = cpufreq_cpu_get(cpu);
1528	if (policy) {
1529		ret_freq = policy->cur;
1530		cpufreq_cpu_put(policy);
1531	}
1532
1533	return ret_freq;
1534}
1535EXPORT_SYMBOL(cpufreq_quick_get);
1536
1537/**
1538 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1539 * @cpu: CPU number
1540 *
1541 * Just return the max possible frequency for a given CPU.
1542 */
1543unsigned int cpufreq_quick_get_max(unsigned int cpu)
1544{
1545	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1546	unsigned int ret_freq = 0;
1547
1548	if (policy) {
1549		ret_freq = policy->max;
1550		cpufreq_cpu_put(policy);
1551	}
1552
1553	return ret_freq;
1554}
1555EXPORT_SYMBOL(cpufreq_quick_get_max);
1556
1557static unsigned int __cpufreq_get(unsigned int cpu)
 
 
 
 
 
 
1558{
1559	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1560	unsigned int ret_freq = 0;
1561
1562	if (!cpufreq_driver->get)
1563		return ret_freq;
1564
1565	ret_freq = cpufreq_driver->get(cpu);
1566
1567	if (ret_freq && policy->cur &&
1568		!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1569		/* verify no discrepancy between actual and
1570					saved value exists */
1571		if (unlikely(ret_freq != policy->cur)) {
1572			cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1573			schedule_work(&policy->update);
1574		}
1575	}
1576
1577	return ret_freq;
1578}
 
 
 
 
 
 
 
 
 
1579
1580/**
1581 * cpufreq_get - get the current CPU frequency (in kHz)
1582 * @cpu: CPU number
1583 *
1584 * Get the CPU current (static) CPU frequency
1585 */
1586unsigned int cpufreq_get(unsigned int cpu)
1587{
1588	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1589	unsigned int ret_freq = 0;
1590
1591	if (policy) {
1592		down_read(&policy->rwsem);
1593		ret_freq = __cpufreq_get(cpu);
 
1594		up_read(&policy->rwsem);
1595
1596		cpufreq_cpu_put(policy);
1597	}
1598
1599	return ret_freq;
1600}
1601EXPORT_SYMBOL(cpufreq_get);
1602
1603static struct subsys_interface cpufreq_interface = {
1604	.name		= "cpufreq",
1605	.subsys		= &cpu_subsys,
1606	.add_dev	= cpufreq_add_dev,
1607	.remove_dev	= cpufreq_remove_dev,
1608};
1609
1610/*
1611 * In case platform wants some specific frequency to be configured
1612 * during suspend..
1613 */
1614int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1615{
1616	int ret;
1617
1618	if (!policy->suspend_freq) {
1619		pr_err("%s: suspend_freq can't be zero\n", __func__);
1620		return -EINVAL;
1621	}
1622
1623	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1624			policy->suspend_freq);
1625
1626	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1627			CPUFREQ_RELATION_H);
1628	if (ret)
1629		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1630				__func__, policy->suspend_freq, ret);
1631
1632	return ret;
1633}
1634EXPORT_SYMBOL(cpufreq_generic_suspend);
1635
1636/**
1637 * cpufreq_suspend() - Suspend CPUFreq governors
1638 *
1639 * Called during system wide Suspend/Hibernate cycles for suspending governors
1640 * as some platforms can't change frequency after this point in suspend cycle.
1641 * Because some of the devices (like: i2c, regulators, etc) they use for
1642 * changing frequency are suspended quickly after this point.
1643 */
1644void cpufreq_suspend(void)
1645{
1646	struct cpufreq_policy *policy;
1647
1648	if (!cpufreq_driver)
1649		return;
1650
1651	if (!has_target())
1652		return;
1653
1654	pr_debug("%s: Suspending Governors\n", __func__);
1655
1656	list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
1657		if (__cpufreq_governor(policy, CPUFREQ_GOV_STOP))
1658			pr_err("%s: Failed to stop governor for policy: %p\n",
1659				__func__, policy);
1660		else if (cpufreq_driver->suspend
1661		    && cpufreq_driver->suspend(policy))
1662			pr_err("%s: Failed to suspend driver: %p\n", __func__,
1663				policy);
 
 
1664	}
1665
 
1666	cpufreq_suspended = true;
1667}
1668
1669/**
1670 * cpufreq_resume() - Resume CPUFreq governors
1671 *
1672 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1673 * are suspended with cpufreq_suspend().
1674 */
1675void cpufreq_resume(void)
1676{
1677	struct cpufreq_policy *policy;
 
1678
1679	if (!cpufreq_driver)
1680		return;
1681
1682	if (!has_target())
1683		return;
1684
1685	pr_debug("%s: Resuming Governors\n", __func__);
1686
1687	cpufreq_suspended = false;
1688
1689	list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
1690		if (cpufreq_driver->resume && cpufreq_driver->resume(policy))
1691			pr_err("%s: Failed to resume driver: %p\n", __func__,
1692				policy);
1693		else if (__cpufreq_governor(policy, CPUFREQ_GOV_START)
1694		    || __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS))
1695			pr_err("%s: Failed to start governor for policy: %p\n",
1696				__func__, policy);
1697
1698		/*
1699		 * schedule call cpufreq_update_policy() for boot CPU, i.e. last
1700		 * policy in list. It will verify that the current freq is in
1701		 * sync with what we believe it to be.
1702		 */
1703		if (list_is_last(&policy->policy_list, &cpufreq_policy_list))
1704			schedule_work(&policy->update);
 
 
 
 
 
 
 
 
1705	}
1706}
1707
1708/**
1709 *	cpufreq_get_current_driver - return current driver's name
 
1710 *
1711 *	Return the name string of the currently loaded cpufreq driver
1712 *	or NULL, if none.
 
 
 
 
 
 
 
 
 
 
 
1713 */
1714const char *cpufreq_get_current_driver(void)
1715{
1716	if (cpufreq_driver)
1717		return cpufreq_driver->name;
1718
1719	return NULL;
1720}
1721EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1723/*********************************************************************
1724 *                     NOTIFIER LISTS INTERFACE                      *
1725 *********************************************************************/
1726
1727/**
1728 *	cpufreq_register_notifier - register a driver with cpufreq
1729 *	@nb: notifier function to register
1730 *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1731 *
1732 *	Add a driver to one of two lists: either a list of drivers that
1733 *      are notified about clock rate changes (once before and once after
1734 *      the transition), or a list of drivers that are notified about
1735 *      changes in cpufreq policy.
1736 *
1737 *	This function may sleep, and has the same return conditions as
1738 *	blocking_notifier_chain_register.
1739 */
1740int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1741{
1742	int ret;
1743
1744	if (cpufreq_disabled())
1745		return -EINVAL;
1746
1747	WARN_ON(!init_cpufreq_transition_notifier_list_called);
1748
1749	switch (list) {
1750	case CPUFREQ_TRANSITION_NOTIFIER:
 
 
 
 
 
 
1751		ret = srcu_notifier_chain_register(
1752				&cpufreq_transition_notifier_list, nb);
 
 
 
 
1753		break;
1754	case CPUFREQ_POLICY_NOTIFIER:
1755		ret = blocking_notifier_chain_register(
1756				&cpufreq_policy_notifier_list, nb);
1757		break;
1758	default:
1759		ret = -EINVAL;
1760	}
1761
1762	return ret;
1763}
1764EXPORT_SYMBOL(cpufreq_register_notifier);
1765
1766/**
1767 *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1768 *	@nb: notifier block to be unregistered
1769 *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1770 *
1771 *	Remove a driver from the CPU frequency notifier list.
1772 *
1773 *	This function may sleep, and has the same return conditions as
1774 *	blocking_notifier_chain_unregister.
1775 */
1776int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1777{
1778	int ret;
1779
1780	if (cpufreq_disabled())
1781		return -EINVAL;
1782
1783	switch (list) {
1784	case CPUFREQ_TRANSITION_NOTIFIER:
 
 
1785		ret = srcu_notifier_chain_unregister(
1786				&cpufreq_transition_notifier_list, nb);
 
 
 
 
1787		break;
1788	case CPUFREQ_POLICY_NOTIFIER:
1789		ret = blocking_notifier_chain_unregister(
1790				&cpufreq_policy_notifier_list, nb);
1791		break;
1792	default:
1793		ret = -EINVAL;
1794	}
1795
1796	return ret;
1797}
1798EXPORT_SYMBOL(cpufreq_unregister_notifier);
1799
1800
1801/*********************************************************************
1802 *                              GOVERNORS                            *
1803 *********************************************************************/
1804
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1805int __cpufreq_driver_target(struct cpufreq_policy *policy,
1806			    unsigned int target_freq,
1807			    unsigned int relation)
1808{
1809	int retval = -EINVAL;
1810	unsigned int old_target_freq = target_freq;
1811
1812	if (cpufreq_disabled())
1813		return -ENODEV;
1814
1815	/* Make sure that target_freq is within supported range */
1816	if (target_freq > policy->max)
1817		target_freq = policy->max;
1818	if (target_freq < policy->min)
1819		target_freq = policy->min;
1820
1821	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1822		 policy->cpu, target_freq, relation, old_target_freq);
1823
1824	/*
1825	 * This might look like a redundant call as we are checking it again
1826	 * after finding index. But it is left intentionally for cases where
1827	 * exactly same freq is called again and so we can save on few function
1828	 * calls.
1829	 */
1830	if (target_freq == policy->cur)
 
1831		return 0;
1832
1833	if (cpufreq_driver->target)
1834		retval = cpufreq_driver->target(policy, target_freq, relation);
1835	else if (cpufreq_driver->target_index) {
1836		struct cpufreq_frequency_table *freq_table;
1837		struct cpufreq_freqs freqs;
1838		bool notify;
1839		int index;
1840
1841		freq_table = cpufreq_frequency_get_table(policy->cpu);
1842		if (unlikely(!freq_table)) {
1843			pr_err("%s: Unable to find freq_table\n", __func__);
1844			goto out;
1845		}
1846
1847		retval = cpufreq_frequency_table_target(policy, freq_table,
1848				target_freq, relation, &index);
1849		if (unlikely(retval)) {
1850			pr_err("%s: Unable to find matching freq\n", __func__);
1851			goto out;
1852		}
1853
1854		if (freq_table[index].frequency == policy->cur) {
1855			retval = 0;
1856			goto out;
1857		}
1858
1859		notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1860
1861		if (notify) {
1862			freqs.old = policy->cur;
1863			freqs.new = freq_table[index].frequency;
1864			freqs.flags = 0;
1865
1866			pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1867				 __func__, policy->cpu, freqs.old, freqs.new);
1868
1869			cpufreq_freq_transition_begin(policy, &freqs);
1870		}
1871
1872		retval = cpufreq_driver->target_index(policy, index);
1873		if (retval)
1874			pr_err("%s: Failed to change cpu frequency: %d\n",
1875			       __func__, retval);
1876
1877		if (notify)
1878			cpufreq_freq_transition_end(policy, &freqs, retval);
1879	}
1880
1881out:
1882	return retval;
 
 
1883}
1884EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1885
1886int cpufreq_driver_target(struct cpufreq_policy *policy,
1887			  unsigned int target_freq,
1888			  unsigned int relation)
1889{
1890	int ret = -EINVAL;
1891
1892	down_write(&policy->rwsem);
1893
1894	ret = __cpufreq_driver_target(policy, target_freq, relation);
1895
1896	up_write(&policy->rwsem);
1897
1898	return ret;
1899}
1900EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1901
1902/*
1903 * when "event" is CPUFREQ_GOV_LIMITS
1904 */
 
1905
1906static int __cpufreq_governor(struct cpufreq_policy *policy,
1907					unsigned int event)
1908{
1909	int ret;
1910
1911	/* Only must be defined when default governor is known to have latency
1912	   restrictions, like e.g. conservative or ondemand.
1913	   That this is the case is already ensured in Kconfig
1914	*/
1915#ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1916	struct cpufreq_governor *gov = &cpufreq_gov_performance;
1917#else
1918	struct cpufreq_governor *gov = NULL;
1919#endif
1920
1921	/* Don't start any governor operations if we are entering suspend */
1922	if (cpufreq_suspended)
1923		return 0;
 
 
 
 
 
 
1924
1925	if (policy->governor->max_transition_latency &&
1926	    policy->cpuinfo.transition_latency >
1927	    policy->governor->max_transition_latency) {
1928		if (!gov)
1929			return -EINVAL;
1930		else {
1931			pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n",
1932				policy->governor->name, gov->name);
1933			policy->governor = gov;
 
 
1934		}
1935	}
1936
1937	if (event == CPUFREQ_GOV_POLICY_INIT)
1938		if (!try_module_get(policy->governor->owner))
1939			return -EINVAL;
1940
1941	pr_debug("__cpufreq_governor for CPU %u, event %u\n",
1942		 policy->cpu, event);
1943
1944	mutex_lock(&cpufreq_governor_lock);
1945	if ((policy->governor_enabled && event == CPUFREQ_GOV_START)
1946	    || (!policy->governor_enabled
1947	    && (event == CPUFREQ_GOV_LIMITS || event == CPUFREQ_GOV_STOP))) {
1948		mutex_unlock(&cpufreq_governor_lock);
1949		return -EBUSY;
1950	}
1951
1952	if (event == CPUFREQ_GOV_STOP)
1953		policy->governor_enabled = false;
1954	else if (event == CPUFREQ_GOV_START)
1955		policy->governor_enabled = true;
1956
1957	mutex_unlock(&cpufreq_governor_lock);
 
1958
1959	ret = policy->governor->governor(policy, event);
 
 
 
1960
1961	if (!ret) {
1962		if (event == CPUFREQ_GOV_POLICY_INIT)
1963			policy->governor->initialized++;
1964		else if (event == CPUFREQ_GOV_POLICY_EXIT)
1965			policy->governor->initialized--;
1966	} else {
1967		/* Restore original values */
1968		mutex_lock(&cpufreq_governor_lock);
1969		if (event == CPUFREQ_GOV_STOP)
1970			policy->governor_enabled = true;
1971		else if (event == CPUFREQ_GOV_START)
1972			policy->governor_enabled = false;
1973		mutex_unlock(&cpufreq_governor_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1974	}
1975
1976	if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) ||
1977			((event == CPUFREQ_GOV_POLICY_EXIT) && !ret))
1978		module_put(policy->governor->owner);
1979
1980	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1981}
1982
1983int cpufreq_register_governor(struct cpufreq_governor *governor)
1984{
1985	int err;
1986
1987	if (!governor)
1988		return -EINVAL;
1989
1990	if (cpufreq_disabled())
1991		return -ENODEV;
1992
1993	mutex_lock(&cpufreq_governor_mutex);
1994
1995	governor->initialized = 0;
1996	err = -EBUSY;
1997	if (__find_governor(governor->name) == NULL) {
1998		err = 0;
1999		list_add(&governor->governor_list, &cpufreq_governor_list);
2000	}
2001
2002	mutex_unlock(&cpufreq_governor_mutex);
2003	return err;
2004}
2005EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2006
2007void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2008{
2009	int cpu;
 
2010
2011	if (!governor)
2012		return;
2013
2014	if (cpufreq_disabled())
2015		return;
2016
2017	for_each_present_cpu(cpu) {
2018		if (cpu_online(cpu))
2019			continue;
2020		if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name))
2021			strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0");
 
 
2022	}
 
2023
2024	mutex_lock(&cpufreq_governor_mutex);
2025	list_del(&governor->governor_list);
2026	mutex_unlock(&cpufreq_governor_mutex);
2027	return;
2028}
2029EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2030
2031
2032/*********************************************************************
2033 *                          POLICY INTERFACE                         *
2034 *********************************************************************/
2035
2036/**
2037 * cpufreq_get_policy - get the current cpufreq_policy
2038 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2039 *	is written
 
2040 *
2041 * Reads the current cpufreq policy.
2042 */
2043int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2044{
2045	struct cpufreq_policy *cpu_policy;
2046	if (!policy)
2047		return -EINVAL;
2048
2049	cpu_policy = cpufreq_cpu_get(cpu);
2050	if (!cpu_policy)
2051		return -EINVAL;
2052
2053	memcpy(policy, cpu_policy, sizeof(*policy));
2054
2055	cpufreq_cpu_put(cpu_policy);
2056	return 0;
2057}
2058EXPORT_SYMBOL(cpufreq_get_policy);
2059
2060/*
2061 * policy : current policy.
2062 * new_policy: policy to be set.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2063 */
2064static int cpufreq_set_policy(struct cpufreq_policy *policy,
2065				struct cpufreq_policy *new_policy)
 
2066{
 
2067	struct cpufreq_governor *old_gov;
2068	int ret;
2069
2070	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2071		 new_policy->cpu, new_policy->min, new_policy->max);
2072
2073	memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
 
 
 
 
 
2074
2075	if (new_policy->min > policy->max || new_policy->max < policy->min)
2076		return -EINVAL;
2077
2078	/* verify the cpu speed can be set within this limit */
2079	ret = cpufreq_driver->verify(new_policy);
 
 
 
2080	if (ret)
2081		return ret;
2082
2083	/* adjust if necessary - all reasons */
2084	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2085			CPUFREQ_ADJUST, new_policy);
2086
2087	/* adjust if necessary - hardware incompatibility*/
2088	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2089			CPUFREQ_INCOMPATIBLE, new_policy);
2090
2091	/*
2092	 * verify the cpu speed can be set within this limit, which might be
2093	 * different to the first one
 
2094	 */
2095	ret = cpufreq_driver->verify(new_policy);
2096	if (ret)
2097		return ret;
 
 
2098
2099	/* notification of the new policy */
2100	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2101			CPUFREQ_NOTIFY, new_policy);
2102
2103	policy->min = new_policy->min;
2104	policy->max = new_policy->max;
2105
2106	pr_debug("new min and max freqs are %u - %u kHz\n",
2107		 policy->min, policy->max);
2108
2109	if (cpufreq_driver->setpolicy) {
2110		policy->policy = new_policy->policy;
2111		pr_debug("setting range\n");
2112		return cpufreq_driver->setpolicy(new_policy);
2113	}
2114
2115	if (new_policy->governor == policy->governor)
2116		goto out;
 
 
 
2117
2118	pr_debug("governor switch\n");
2119
2120	/* save old, working values */
2121	old_gov = policy->governor;
2122	/* end old governor */
2123	if (old_gov) {
2124		__cpufreq_governor(policy, CPUFREQ_GOV_STOP);
2125		up_write(&policy->rwsem);
2126		__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2127		down_write(&policy->rwsem);
2128	}
2129
2130	/* start new governor */
2131	policy->governor = new_policy->governor;
2132	if (!__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT)) {
2133		if (!__cpufreq_governor(policy, CPUFREQ_GOV_START))
2134			goto out;
2135
2136		up_write(&policy->rwsem);
2137		__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2138		down_write(&policy->rwsem);
 
2139	}
2140
2141	/* new governor failed, so re-start old one */
2142	pr_debug("starting governor %s failed\n", policy->governor->name);
2143	if (old_gov) {
2144		policy->governor = old_gov;
2145		__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT);
2146		__cpufreq_governor(policy, CPUFREQ_GOV_START);
 
 
2147	}
2148
2149	return -EINVAL;
2150
2151 out:
2152	pr_debug("governor: change or update limits\n");
2153	return __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2154}
2155
2156/**
2157 *	cpufreq_update_policy - re-evaluate an existing cpufreq policy
2158 *	@cpu: CPU which shall be re-evaluated
2159 *
2160 *	Useful for policy notifiers which have different necessities
2161 *	at different times.
 
 
2162 */
2163int cpufreq_update_policy(unsigned int cpu)
2164{
2165	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2166	struct cpufreq_policy new_policy;
2167	int ret;
2168
2169	if (!policy) {
2170		ret = -ENODEV;
2171		goto no_policy;
2172	}
2173
2174	down_write(&policy->rwsem);
2175
2176	pr_debug("updating policy for CPU %u\n", cpu);
2177	memcpy(&new_policy, policy, sizeof(*policy));
2178	new_policy.min = policy->user_policy.min;
2179	new_policy.max = policy->user_policy.max;
2180	new_policy.policy = policy->user_policy.policy;
2181	new_policy.governor = policy->user_policy.governor;
2182
2183	/*
2184	 * BIOS might change freq behind our back
2185	 * -> ask driver for current freq and notify governors about a change
2186	 */
2187	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2188		new_policy.cur = cpufreq_driver->get(cpu);
2189		if (WARN_ON(!new_policy.cur)) {
2190			ret = -EIO;
2191			goto no_policy;
2192		}
2193
2194		if (!policy->cur) {
2195			pr_debug("Driver did not initialize current freq\n");
2196			policy->cur = new_policy.cur;
2197		} else {
2198			if (policy->cur != new_policy.cur && has_target())
2199				cpufreq_out_of_sync(cpu, policy->cur,
2200								new_policy.cur);
2201		}
2202	}
2203
2204	ret = cpufreq_set_policy(policy, &new_policy);
2205
2206	up_write(&policy->rwsem);
2207
2208	cpufreq_cpu_put(policy);
2209no_policy:
2210	return ret;
2211}
2212EXPORT_SYMBOL(cpufreq_update_policy);
2213
2214static int cpufreq_cpu_callback(struct notifier_block *nfb,
2215					unsigned long action, void *hcpu)
 
 
 
 
 
 
2216{
2217	unsigned int cpu = (unsigned long)hcpu;
2218	struct device *dev;
2219
2220	dev = get_cpu_device(cpu);
2221	if (dev) {
2222		switch (action & ~CPU_TASKS_FROZEN) {
2223		case CPU_ONLINE:
2224			__cpufreq_add_dev(dev, NULL);
2225			break;
2226
2227		case CPU_DOWN_PREPARE:
2228			__cpufreq_remove_dev_prepare(dev, NULL);
2229			break;
2230
2231		case CPU_POST_DEAD:
2232			__cpufreq_remove_dev_finish(dev, NULL);
2233			break;
2234
2235		case CPU_DOWN_FAILED:
2236			__cpufreq_add_dev(dev, NULL);
2237			break;
2238		}
2239	}
2240	return NOTIFY_OK;
2241}
2242
2243static struct notifier_block __refdata cpufreq_cpu_notifier = {
2244	.notifier_call = cpufreq_cpu_callback,
2245};
2246
2247/*********************************************************************
2248 *               BOOST						     *
2249 *********************************************************************/
2250static int cpufreq_boost_set_sw(int state)
2251{
2252	struct cpufreq_frequency_table *freq_table;
2253	struct cpufreq_policy *policy;
2254	int ret = -EINVAL;
2255
2256	list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
2257		freq_table = cpufreq_frequency_get_table(policy->cpu);
2258		if (freq_table) {
2259			ret = cpufreq_frequency_table_cpuinfo(policy,
2260							freq_table);
2261			if (ret) {
2262				pr_err("%s: Policy frequency update failed\n",
2263				       __func__);
2264				break;
2265			}
2266			policy->user_policy.max = policy->max;
2267			__cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2268		}
2269	}
2270
2271	return ret;
 
 
 
 
2272}
2273
2274int cpufreq_boost_trigger_state(int state)
2275{
 
2276	unsigned long flags;
2277	int ret = 0;
2278
2279	if (cpufreq_driver->boost_enabled == state)
2280		return 0;
2281
2282	write_lock_irqsave(&cpufreq_driver_lock, flags);
2283	cpufreq_driver->boost_enabled = state;
2284	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2285
2286	ret = cpufreq_driver->set_boost(state);
2287	if (ret) {
2288		write_lock_irqsave(&cpufreq_driver_lock, flags);
2289		cpufreq_driver->boost_enabled = !state;
2290		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2291
2292		pr_err("%s: Cannot %s BOOST\n",
2293		       __func__, state ? "enable" : "disable");
2294	}
 
 
 
 
 
 
 
 
 
 
 
 
 
2295
2296	return ret;
2297}
2298
2299int cpufreq_boost_supported(void)
2300{
2301	if (likely(cpufreq_driver))
2302		return cpufreq_driver->boost_supported;
2303
2304	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2305}
2306EXPORT_SYMBOL_GPL(cpufreq_boost_supported);
2307
2308int cpufreq_boost_enabled(void)
2309{
2310	return cpufreq_driver->boost_enabled;
2311}
2312EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2313
2314/*********************************************************************
2315 *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2316 *********************************************************************/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2317
2318/**
2319 * cpufreq_register_driver - register a CPU Frequency driver
2320 * @driver_data: A struct cpufreq_driver containing the values#
2321 * submitted by the CPU Frequency driver.
2322 *
2323 * Registers a CPU Frequency driver to this core code. This code
2324 * returns zero on success, -EBUSY when another driver got here first
2325 * (and isn't unregistered in the meantime).
2326 *
2327 */
2328int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2329{
2330	unsigned long flags;
2331	int ret;
2332
2333	if (cpufreq_disabled())
2334		return -ENODEV;
2335
 
 
 
 
 
 
 
2336	if (!driver_data || !driver_data->verify || !driver_data->init ||
2337	    !(driver_data->setpolicy || driver_data->target_index ||
2338		    driver_data->target) ||
2339	     (driver_data->setpolicy && (driver_data->target_index ||
2340		    driver_data->target)))
 
 
 
2341		return -EINVAL;
2342
2343	pr_debug("trying to register driver %s\n", driver_data->name);
2344
2345	if (driver_data->setpolicy)
2346		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2347
2348	write_lock_irqsave(&cpufreq_driver_lock, flags);
2349	if (cpufreq_driver) {
2350		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2351		return -EEXIST;
 
2352	}
2353	cpufreq_driver = driver_data;
2354	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2355
2356	if (cpufreq_boost_supported()) {
2357		/*
2358		 * Check if driver provides function to enable boost -
2359		 * if not, use cpufreq_boost_set_sw as default
2360		 */
2361		if (!cpufreq_driver->set_boost)
2362			cpufreq_driver->set_boost = cpufreq_boost_set_sw;
 
2363
2364		ret = cpufreq_sysfs_create_file(&boost.attr);
2365		if (ret) {
2366			pr_err("%s: cannot register global BOOST sysfs file\n",
2367			       __func__);
 
 
2368			goto err_null_driver;
2369		}
2370	}
2371
2372	ret = subsys_interface_register(&cpufreq_interface);
2373	if (ret)
2374		goto err_boost_unreg;
2375
2376	if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) {
2377		int i;
2378		ret = -ENODEV;
2379
2380		/* check for at least one working CPU */
2381		for (i = 0; i < nr_cpu_ids; i++)
2382			if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
2383				ret = 0;
2384				break;
2385			}
2386
2387		/* if all ->init() calls failed, unregister */
2388		if (ret) {
2389			pr_debug("no CPU initialized for driver %s\n",
2390				 driver_data->name);
2391			goto err_if_unreg;
2392		}
2393	}
2394
2395	register_hotcpu_notifier(&cpufreq_cpu_notifier);
 
 
 
 
 
 
 
 
2396	pr_debug("driver %s up and running\n", driver_data->name);
 
2397
2398	return 0;
2399err_if_unreg:
2400	subsys_interface_unregister(&cpufreq_interface);
2401err_boost_unreg:
2402	if (cpufreq_boost_supported())
2403		cpufreq_sysfs_remove_file(&boost.attr);
2404err_null_driver:
2405	write_lock_irqsave(&cpufreq_driver_lock, flags);
2406	cpufreq_driver = NULL;
2407	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 
2408	return ret;
2409}
2410EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2411
2412/**
2413 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2414 *
2415 * Unregister the current CPUFreq driver. Only call this if you have
2416 * the right to do so, i.e. if you have succeeded in initialising before!
2417 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2418 * currently not initialised.
2419 */
2420int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2421{
2422	unsigned long flags;
2423
2424	if (!cpufreq_driver || (driver != cpufreq_driver))
2425		return -EINVAL;
2426
2427	pr_debug("unregistering driver %s\n", driver->name);
2428
 
 
2429	subsys_interface_unregister(&cpufreq_interface);
2430	if (cpufreq_boost_supported())
2431		cpufreq_sysfs_remove_file(&boost.attr);
 
2432
2433	unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
2434
2435	down_write(&cpufreq_rwsem);
2436	write_lock_irqsave(&cpufreq_driver_lock, flags);
2437
2438	cpufreq_driver = NULL;
2439
2440	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2441	up_write(&cpufreq_rwsem);
2442
2443	return 0;
2444}
2445EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2446
2447static int __init cpufreq_core_init(void)
2448{
 
 
 
2449	if (cpufreq_disabled())
2450		return -ENODEV;
2451
2452	cpufreq_global_kobject = kobject_create();
 
 
 
 
2453	BUG_ON(!cpufreq_global_kobject);
2454
 
 
 
2455	return 0;
2456}
 
 
2457core_initcall(cpufreq_core_init);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/cpufreq/cpufreq.c
   4 *
   5 *  Copyright (C) 2001 Russell King
   6 *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
   7 *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
   8 *
   9 *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
  10 *	Added handling for CPU hotplug
  11 *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
  12 *	Fix handling for CPU hotplug -- affected CPUs
 
 
 
 
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/cpu.h>
  18#include <linux/cpufreq.h>
  19#include <linux/cpu_cooling.h>
  20#include <linux/delay.h>
  21#include <linux/device.h>
  22#include <linux/init.h>
  23#include <linux/kernel_stat.h>
  24#include <linux/module.h>
  25#include <linux/mutex.h>
  26#include <linux/pm_qos.h>
  27#include <linux/slab.h>
  28#include <linux/suspend.h>
  29#include <linux/syscore_ops.h>
  30#include <linux/tick.h>
  31#include <linux/units.h>
  32#include <trace/events/power.h>
  33
  34static LIST_HEAD(cpufreq_policy_list);
  35
  36/* Macros to iterate over CPU policies */
  37#define for_each_suitable_policy(__policy, __active)			 \
  38	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
  39		if ((__active) == !policy_is_inactive(__policy))
  40
  41#define for_each_active_policy(__policy)		\
  42	for_each_suitable_policy(__policy, true)
  43#define for_each_inactive_policy(__policy)		\
  44	for_each_suitable_policy(__policy, false)
  45
  46/* Iterate over governors */
  47static LIST_HEAD(cpufreq_governor_list);
  48#define for_each_governor(__governor)				\
  49	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
  50
  51static char default_governor[CPUFREQ_NAME_LEN];
  52
  53/*
  54 * The "cpufreq driver" - the arch- or hardware-dependent low
  55 * level driver of CPUFreq support, and its spinlock. This lock
  56 * also protects the cpufreq_cpu_data array.
  57 */
  58static struct cpufreq_driver *cpufreq_driver;
  59static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
 
  60static DEFINE_RWLOCK(cpufreq_driver_lock);
 
 
  61
  62static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
  63bool cpufreq_supports_freq_invariance(void)
  64{
  65	return static_branch_likely(&cpufreq_freq_invariance);
  66}
  67
  68/* Flag to suspend/resume CPUFreq governors */
  69static bool cpufreq_suspended;
  70
  71static inline bool has_target(void)
  72{
  73	return cpufreq_driver->target_index || cpufreq_driver->target;
  74}
  75
  76bool has_target_index(void)
  77{
  78	return !!cpufreq_driver->target_index;
  79}
 
  80
  81/* internal prototypes */
  82static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
  83static int cpufreq_init_governor(struct cpufreq_policy *policy);
  84static void cpufreq_exit_governor(struct cpufreq_policy *policy);
  85static void cpufreq_governor_limits(struct cpufreq_policy *policy);
  86static int cpufreq_set_policy(struct cpufreq_policy *policy,
  87			      struct cpufreq_governor *new_gov,
  88			      unsigned int new_pol);
  89static bool cpufreq_boost_supported(void);
  90
  91/*
  92 * Two notifier lists: the "policy" list is involved in the
  93 * validation process for a new CPU frequency policy; the
  94 * "transition" list for kernel code that needs to handle
  95 * changes to devices when the CPU clock speed changes.
  96 * The mutex locks both lists.
  97 */
  98static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
  99SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
 
 
 
 
 
 
 
 
 
 100
 101static int off __read_mostly;
 102static int cpufreq_disabled(void)
 103{
 104	return off;
 105}
 106void disable_cpufreq(void)
 107{
 108	off = 1;
 109}
 
 110static DEFINE_MUTEX(cpufreq_governor_mutex);
 111
 112bool have_governor_per_policy(void)
 113{
 114	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
 115}
 116EXPORT_SYMBOL_GPL(have_governor_per_policy);
 117
 118static struct kobject *cpufreq_global_kobject;
 119
 120struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
 121{
 122	if (have_governor_per_policy())
 123		return &policy->kobj;
 124	else
 125		return cpufreq_global_kobject;
 126}
 127EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
 128
 129static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
 130{
 131	struct kernel_cpustat kcpustat;
 132	u64 cur_wall_time;
 133	u64 idle_time;
 134	u64 busy_time;
 135
 136	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
 137
 138	kcpustat_cpu_fetch(&kcpustat, cpu);
 139
 140	busy_time = kcpustat.cpustat[CPUTIME_USER];
 141	busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
 142	busy_time += kcpustat.cpustat[CPUTIME_IRQ];
 143	busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
 144	busy_time += kcpustat.cpustat[CPUTIME_STEAL];
 145	busy_time += kcpustat.cpustat[CPUTIME_NICE];
 146
 147	idle_time = cur_wall_time - busy_time;
 148	if (wall)
 149		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
 150
 151	return div_u64(idle_time, NSEC_PER_USEC);
 152}
 153
 154u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
 155{
 156	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
 157
 158	if (idle_time == -1ULL)
 159		return get_cpu_idle_time_jiffy(cpu, wall);
 160	else if (!io_busy)
 161		idle_time += get_cpu_iowait_time_us(cpu, wall);
 162
 163	return idle_time;
 164}
 165EXPORT_SYMBOL_GPL(get_cpu_idle_time);
 166
 167/*
 168 * This is a generic cpufreq init() routine which can be used by cpufreq
 169 * drivers of SMP systems. It will do following:
 170 * - validate & show freq table passed
 171 * - set policies transition latency
 172 * - policy->cpus with all possible CPUs
 173 */
 174void cpufreq_generic_init(struct cpufreq_policy *policy,
 175		struct cpufreq_frequency_table *table,
 176		unsigned int transition_latency)
 177{
 178	policy->freq_table = table;
 
 
 
 
 
 
 
 179	policy->cpuinfo.transition_latency = transition_latency;
 180
 181	/*
 182	 * The driver only supports the SMP configuration where all processors
 183	 * share the clock and voltage and clock.
 184	 */
 185	cpumask_setall(policy->cpus);
 
 
 186}
 187EXPORT_SYMBOL_GPL(cpufreq_generic_init);
 188
 189struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
 190{
 191	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
 192
 193	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
 194}
 195EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
 196
 197unsigned int cpufreq_generic_get(unsigned int cpu)
 198{
 199	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
 200
 201	if (!policy || IS_ERR(policy->clk)) {
 202		pr_err("%s: No %s associated to cpu: %d\n",
 203		       __func__, policy ? "clk" : "policy", cpu);
 204		return 0;
 205	}
 206
 207	return clk_get_rate(policy->clk) / 1000;
 208}
 209EXPORT_SYMBOL_GPL(cpufreq_generic_get);
 210
 211/**
 212 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
 213 * @cpu: CPU to find the policy for.
 214 *
 215 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
 216 * the kobject reference counter of that policy.  Return a valid policy on
 217 * success or NULL on failure.
 218 *
 219 * The policy returned by this function has to be released with the help of
 220 * cpufreq_cpu_put() to balance its kobject reference counter properly.
 221 */
 222struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
 223{
 224	struct cpufreq_policy *policy = NULL;
 225	unsigned long flags;
 226
 227	if (WARN_ON(cpu >= nr_cpu_ids))
 
 
 
 228		return NULL;
 229
 230	/* get the cpufreq driver */
 231	read_lock_irqsave(&cpufreq_driver_lock, flags);
 232
 233	if (cpufreq_driver) {
 234		/* get the CPU */
 235		policy = cpufreq_cpu_get_raw(cpu);
 236		if (policy)
 237			kobject_get(&policy->kobj);
 238	}
 239
 240	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
 241
 
 
 
 242	return policy;
 243}
 244EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
 245
 246/**
 247 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
 248 * @policy: cpufreq policy returned by cpufreq_cpu_get().
 249 */
 250void cpufreq_cpu_put(struct cpufreq_policy *policy)
 251{
 
 
 
 252	kobject_put(&policy->kobj);
 
 253}
 254EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
 255
 256/**
 257 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
 258 * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
 259 */
 260void cpufreq_cpu_release(struct cpufreq_policy *policy)
 261{
 262	if (WARN_ON(!policy))
 263		return;
 264
 265	lockdep_assert_held(&policy->rwsem);
 266
 267	up_write(&policy->rwsem);
 268
 269	cpufreq_cpu_put(policy);
 270}
 271
 272/**
 273 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
 274 * @cpu: CPU to find the policy for.
 275 *
 276 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
 277 * if the policy returned by it is not NULL, acquire its rwsem for writing.
 278 * Return the policy if it is active or release it and return NULL otherwise.
 279 *
 280 * The policy returned by this function has to be released with the help of
 281 * cpufreq_cpu_release() in order to release its rwsem and balance its usage
 282 * counter properly.
 283 */
 284struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
 285{
 286	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
 287
 288	if (!policy)
 289		return NULL;
 290
 291	down_write(&policy->rwsem);
 292
 293	if (policy_is_inactive(policy)) {
 294		cpufreq_cpu_release(policy);
 295		return NULL;
 296	}
 297
 298	return policy;
 299}
 300
 301/*********************************************************************
 302 *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
 303 *********************************************************************/
 304
 305/**
 306 * adjust_jiffies - Adjust the system "loops_per_jiffy".
 307 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
 308 * @ci: Frequency change information.
 309 *
 310 * This function alters the system "loops_per_jiffy" for the clock
 311 * speed change. Note that loops_per_jiffy cannot be updated on SMP
 312 * systems as each CPU might be scaled differently. So, use the arch
 313 * per-CPU loops_per_jiffy value wherever possible.
 314 */
 
 
 
 
 315static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 316{
 317#ifndef CONFIG_SMP
 318	static unsigned long l_p_j_ref;
 319	static unsigned int l_p_j_ref_freq;
 320
 321	if (ci->flags & CPUFREQ_CONST_LOOPS)
 322		return;
 323
 324	if (!l_p_j_ref_freq) {
 325		l_p_j_ref = loops_per_jiffy;
 326		l_p_j_ref_freq = ci->old;
 327		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
 328			 l_p_j_ref, l_p_j_ref_freq);
 329	}
 330	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
 331		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
 332								ci->new);
 333		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
 334			 loops_per_jiffy, ci->new);
 335	}
 
 
 
 
 
 
 336#endif
 337}
 338
 339/**
 340 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
 341 * @policy: cpufreq policy to enable fast frequency switching for.
 342 * @freqs: contain details of the frequency update.
 343 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
 344 *
 345 * This function calls the transition notifiers and adjust_jiffies().
 346 *
 347 * It is called twice on all CPU frequency changes that have external effects.
 348 */
 349static void cpufreq_notify_transition(struct cpufreq_policy *policy,
 350				      struct cpufreq_freqs *freqs,
 351				      unsigned int state)
 352{
 353	int cpu;
 354
 355	BUG_ON(irqs_disabled());
 356
 357	if (cpufreq_disabled())
 358		return;
 359
 360	freqs->policy = policy;
 361	freqs->flags = cpufreq_driver->flags;
 362	pr_debug("notification %u of frequency transition to %u kHz\n",
 363		 state, freqs->new);
 364
 365	switch (state) {
 
 366	case CPUFREQ_PRECHANGE:
 367		/*
 368		 * Detect if the driver reported a value as "old frequency"
 369		 * which is not equal to what the cpufreq core thinks is
 370		 * "old frequency".
 371		 */
 372		if (policy->cur && policy->cur != freqs->old) {
 373			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
 374				 freqs->old, policy->cur);
 375			freqs->old = policy->cur;
 
 
 
 376		}
 377
 378		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 379					 CPUFREQ_PRECHANGE, freqs);
 380
 381		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
 382		break;
 383
 384	case CPUFREQ_POSTCHANGE:
 385		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
 386		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
 387			 cpumask_pr_args(policy->cpus));
 388
 389		for_each_cpu(cpu, policy->cpus)
 390			trace_cpu_frequency(freqs->new, cpu);
 391
 392		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 393					 CPUFREQ_POSTCHANGE, freqs);
 
 
 
 
 
 394
 395		cpufreq_stats_record_transition(policy, freqs->new);
 396		policy->cur = freqs->new;
 397	}
 
 
 
 
 
 
 
 
 
 
 398}
 399
 400/* Do post notifications when there are chances that transition has failed */
 401static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
 402		struct cpufreq_freqs *freqs, int transition_failed)
 403{
 404	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 405	if (!transition_failed)
 406		return;
 407
 408	swap(freqs->old, freqs->new);
 409	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 410	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 411}
 412
 413void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
 414		struct cpufreq_freqs *freqs)
 415{
 416
 417	/*
 418	 * Catch double invocations of _begin() which lead to self-deadlock.
 419	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
 420	 * doesn't invoke _begin() on their behalf, and hence the chances of
 421	 * double invocations are very low. Moreover, there are scenarios
 422	 * where these checks can emit false-positive warnings in these
 423	 * drivers; so we avoid that by skipping them altogether.
 424	 */
 425	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
 426				&& current == policy->transition_task);
 427
 428wait:
 429	wait_event(policy->transition_wait, !policy->transition_ongoing);
 430
 431	spin_lock(&policy->transition_lock);
 432
 433	if (unlikely(policy->transition_ongoing)) {
 434		spin_unlock(&policy->transition_lock);
 435		goto wait;
 436	}
 437
 438	policy->transition_ongoing = true;
 439	policy->transition_task = current;
 440
 441	spin_unlock(&policy->transition_lock);
 442
 443	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 444}
 445EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
 446
 447void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
 448		struct cpufreq_freqs *freqs, int transition_failed)
 449{
 450	if (WARN_ON(!policy->transition_ongoing))
 451		return;
 452
 453	cpufreq_notify_post_transition(policy, freqs, transition_failed);
 454
 455	arch_set_freq_scale(policy->related_cpus,
 456			    policy->cur,
 457			    arch_scale_freq_ref(policy->cpu));
 458
 459	spin_lock(&policy->transition_lock);
 460	policy->transition_ongoing = false;
 461	policy->transition_task = NULL;
 462	spin_unlock(&policy->transition_lock);
 463
 464	wake_up(&policy->transition_wait);
 465}
 466EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
 467
 468/*
 469 * Fast frequency switching status count.  Positive means "enabled", negative
 470 * means "disabled" and 0 means "not decided yet".
 471 */
 472static int cpufreq_fast_switch_count;
 473static DEFINE_MUTEX(cpufreq_fast_switch_lock);
 474
 475static void cpufreq_list_transition_notifiers(void)
 476{
 477	struct notifier_block *nb;
 478
 479	pr_info("Registered transition notifiers:\n");
 480
 481	mutex_lock(&cpufreq_transition_notifier_list.mutex);
 482
 483	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
 484		pr_info("%pS\n", nb->notifier_call);
 485
 486	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
 487}
 488
 489/**
 490 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
 491 * @policy: cpufreq policy to enable fast frequency switching for.
 492 *
 493 * Try to enable fast frequency switching for @policy.
 494 *
 495 * The attempt will fail if there is at least one transition notifier registered
 496 * at this point, as fast frequency switching is quite fundamentally at odds
 497 * with transition notifiers.  Thus if successful, it will make registration of
 498 * transition notifiers fail going forward.
 499 */
 500void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
 501{
 502	lockdep_assert_held(&policy->rwsem);
 503
 504	if (!policy->fast_switch_possible)
 505		return;
 506
 507	mutex_lock(&cpufreq_fast_switch_lock);
 508	if (cpufreq_fast_switch_count >= 0) {
 509		cpufreq_fast_switch_count++;
 510		policy->fast_switch_enabled = true;
 511	} else {
 512		pr_warn("CPU%u: Fast frequency switching not enabled\n",
 513			policy->cpu);
 514		cpufreq_list_transition_notifiers();
 515	}
 516	mutex_unlock(&cpufreq_fast_switch_lock);
 517}
 518EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
 519
 520/**
 521 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
 522 * @policy: cpufreq policy to disable fast frequency switching for.
 523 */
 524void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
 525{
 526	mutex_lock(&cpufreq_fast_switch_lock);
 527	if (policy->fast_switch_enabled) {
 528		policy->fast_switch_enabled = false;
 529		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
 530			cpufreq_fast_switch_count--;
 531	}
 532	mutex_unlock(&cpufreq_fast_switch_lock);
 533}
 534EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
 535
 536static unsigned int __resolve_freq(struct cpufreq_policy *policy,
 537		unsigned int target_freq, unsigned int relation)
 538{
 539	unsigned int idx;
 540
 541	target_freq = clamp_val(target_freq, policy->min, policy->max);
 542
 543	if (!policy->freq_table)
 544		return target_freq;
 545
 546	idx = cpufreq_frequency_table_target(policy, target_freq, relation);
 547	policy->cached_resolved_idx = idx;
 548	policy->cached_target_freq = target_freq;
 549	return policy->freq_table[idx].frequency;
 550}
 551
 552/**
 553 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
 554 * one.
 555 * @policy: associated policy to interrogate
 556 * @target_freq: target frequency to resolve.
 557 *
 558 * The target to driver frequency mapping is cached in the policy.
 559 *
 560 * Return: Lowest driver-supported frequency greater than or equal to the
 561 * given target_freq, subject to policy (min/max) and driver limitations.
 562 */
 563unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
 564					 unsigned int target_freq)
 565{
 566	return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE);
 567}
 568EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
 569
 570unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
 571{
 572	unsigned int latency;
 573
 574	if (policy->transition_delay_us)
 575		return policy->transition_delay_us;
 576
 577	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
 578	if (latency)
 579		/* Give a 50% breathing room between updates */
 580		return latency + (latency >> 1);
 581
 582	return USEC_PER_MSEC;
 583}
 584EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
 585
 586/*********************************************************************
 587 *                          SYSFS INTERFACE                          *
 588 *********************************************************************/
 589static ssize_t show_boost(struct kobject *kobj,
 590			  struct kobj_attribute *attr, char *buf)
 591{
 592	return sysfs_emit(buf, "%d\n", cpufreq_driver->boost_enabled);
 593}
 594
 595static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
 596			   const char *buf, size_t count)
 597{
 598	bool enable;
 599
 600	if (kstrtobool(buf, &enable))
 
 601		return -EINVAL;
 602
 603	if (cpufreq_boost_trigger_state(enable)) {
 604		pr_err("%s: Cannot %s BOOST!\n",
 605		       __func__, enable ? "enable" : "disable");
 606		return -EINVAL;
 607	}
 608
 609	pr_debug("%s: cpufreq BOOST %s\n",
 610		 __func__, enable ? "enabled" : "disabled");
 611
 612	return count;
 613}
 614define_one_global_rw(boost);
 615
 616static ssize_t show_local_boost(struct cpufreq_policy *policy, char *buf)
 617{
 618	return sysfs_emit(buf, "%d\n", policy->boost_enabled);
 619}
 620
 621static ssize_t store_local_boost(struct cpufreq_policy *policy,
 622				 const char *buf, size_t count)
 623{
 624	int ret;
 625	bool enable;
 626
 627	if (kstrtobool(buf, &enable))
 628		return -EINVAL;
 629
 630	if (!cpufreq_driver->boost_enabled)
 631		return -EINVAL;
 632
 633	if (policy->boost_enabled == enable)
 634		return count;
 635
 636	policy->boost_enabled = enable;
 637
 638	cpus_read_lock();
 639	ret = cpufreq_driver->set_boost(policy, enable);
 640	cpus_read_unlock();
 641
 642	if (ret) {
 643		policy->boost_enabled = !policy->boost_enabled;
 644		return ret;
 645	}
 646
 647	return count;
 648}
 649
 650static struct freq_attr local_boost = __ATTR(boost, 0644, show_local_boost, store_local_boost);
 651
 652static struct cpufreq_governor *find_governor(const char *str_governor)
 653{
 654	struct cpufreq_governor *t;
 655
 656	for_each_governor(t)
 657		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
 658			return t;
 659
 660	return NULL;
 661}
 662
 663static struct cpufreq_governor *get_governor(const char *str_governor)
 
 
 
 
 664{
 665	struct cpufreq_governor *t;
 666
 667	mutex_lock(&cpufreq_governor_mutex);
 668	t = find_governor(str_governor);
 669	if (!t)
 670		goto unlock;
 671
 672	if (!try_module_get(t->owner))
 673		t = NULL;
 674
 675unlock:
 676	mutex_unlock(&cpufreq_governor_mutex);
 
 
 
 
 
 
 677
 678	return t;
 679}
 680
 681static unsigned int cpufreq_parse_policy(char *str_governor)
 682{
 683	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
 684		return CPUFREQ_POLICY_PERFORMANCE;
 685
 686	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
 687		return CPUFREQ_POLICY_POWERSAVE;
 688
 689	return CPUFREQ_POLICY_UNKNOWN;
 690}
 
 691
 692/**
 693 * cpufreq_parse_governor - parse a governor string only for has_target()
 694 * @str_governor: Governor name.
 695 */
 696static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
 697{
 698	struct cpufreq_governor *t;
 699
 700	t = get_governor(str_governor);
 701	if (t)
 702		return t;
 
 703
 704	if (request_module("cpufreq_%s", str_governor))
 705		return NULL;
 706
 707	return get_governor(str_governor);
 708}
 709
 710/*
 711 * cpufreq_per_cpu_attr_read() / show_##file_name() -
 712 * print out cpufreq information
 713 *
 714 * Write out information from cpufreq_driver->policy[cpu]; object must be
 715 * "unsigned int".
 716 */
 717
 718#define show_one(file_name, object)			\
 719static ssize_t show_##file_name				\
 720(struct cpufreq_policy *policy, char *buf)		\
 721{							\
 722	return sysfs_emit(buf, "%u\n", policy->object);	\
 723}
 724
 725show_one(cpuinfo_min_freq, cpuinfo.min_freq);
 726show_one(cpuinfo_max_freq, cpuinfo.max_freq);
 727show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
 728show_one(scaling_min_freq, min);
 729show_one(scaling_max_freq, max);
 
 730
 731__weak unsigned int arch_freq_get_on_cpu(int cpu)
 732{
 733	return 0;
 734}
 735
 736static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
 737{
 738	ssize_t ret;
 739	unsigned int freq;
 740
 741	freq = arch_freq_get_on_cpu(policy->cpu);
 742	if (freq)
 743		ret = sysfs_emit(buf, "%u\n", freq);
 744	else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
 745		ret = sysfs_emit(buf, "%u\n", cpufreq_driver->get(policy->cpu));
 746	else
 747		ret = sysfs_emit(buf, "%u\n", policy->cur);
 748	return ret;
 749}
 750
 751/*
 752 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
 753 */
 754#define store_one(file_name, object)			\
 755static ssize_t store_##file_name					\
 756(struct cpufreq_policy *policy, const char *buf, size_t count)		\
 757{									\
 758	unsigned long val;						\
 759	int ret;							\
 
 760									\
 761	ret = kstrtoul(buf, 0, &val);					\
 762	if (ret)							\
 763		return ret;						\
 
 
 
 
 764									\
 765	ret = freq_qos_update_request(policy->object##_freq_req, val);\
 766	return ret >= 0 ? count : ret;					\
 
 
 767}
 768
 769store_one(scaling_min_freq, min);
 770store_one(scaling_max_freq, max);
 771
 772/*
 773 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
 774 */
 775static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
 776					char *buf)
 777{
 778	unsigned int cur_freq = __cpufreq_get(policy);
 779
 780	if (cur_freq)
 781		return sysfs_emit(buf, "%u\n", cur_freq);
 782
 783	return sysfs_emit(buf, "<unknown>\n");
 784}
 785
 786/*
 787 * show_scaling_governor - show the current policy for the specified CPU
 788 */
 789static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
 790{
 791	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
 792		return sysfs_emit(buf, "powersave\n");
 793	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
 794		return sysfs_emit(buf, "performance\n");
 795	else if (policy->governor)
 796		return sysfs_emit(buf, "%s\n", policy->governor->name);
 
 797	return -EINVAL;
 798}
 799
 800/*
 801 * store_scaling_governor - store policy for the specified CPU
 802 */
 803static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
 804					const char *buf, size_t count)
 805{
 806	char str_governor[16];
 807	int ret;
 
 
 
 
 
 
 808
 809	ret = sscanf(buf, "%15s", str_governor);
 810	if (ret != 1)
 811		return -EINVAL;
 812
 813	if (cpufreq_driver->setpolicy) {
 814		unsigned int new_pol;
 
 815
 816		new_pol = cpufreq_parse_policy(str_governor);
 817		if (!new_pol)
 818			return -EINVAL;
 819
 820		ret = cpufreq_set_policy(policy, NULL, new_pol);
 821	} else {
 822		struct cpufreq_governor *new_gov;
 823
 824		new_gov = cpufreq_parse_governor(str_governor);
 825		if (!new_gov)
 826			return -EINVAL;
 827
 828		ret = cpufreq_set_policy(policy, new_gov,
 829					 CPUFREQ_POLICY_UNKNOWN);
 830
 831		module_put(new_gov->owner);
 832	}
 833
 834	return ret ? ret : count;
 835}
 836
 837/*
 838 * show_scaling_driver - show the cpufreq driver currently loaded
 839 */
 840static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
 841{
 842	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
 843}
 844
 845/*
 846 * show_scaling_available_governors - show the available CPUfreq governors
 847 */
 848static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
 849						char *buf)
 850{
 851	ssize_t i = 0;
 852	struct cpufreq_governor *t;
 853
 854	if (!has_target()) {
 855		i += sysfs_emit(buf, "performance powersave");
 856		goto out;
 857	}
 858
 859	mutex_lock(&cpufreq_governor_mutex);
 860	for_each_governor(t) {
 861		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
 862		    - (CPUFREQ_NAME_LEN + 2)))
 863			break;
 864		i += sysfs_emit_at(buf, i, "%s ", t->name);
 865	}
 866	mutex_unlock(&cpufreq_governor_mutex);
 867out:
 868	i += sysfs_emit_at(buf, i, "\n");
 869	return i;
 870}
 871
 872ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
 873{
 874	ssize_t i = 0;
 875	unsigned int cpu;
 876
 877	for_each_cpu(cpu, mask) {
 878		i += sysfs_emit_at(buf, i, "%u ", cpu);
 
 
 879		if (i >= (PAGE_SIZE - 5))
 880			break;
 881	}
 882
 883	/* Remove the extra space at the end */
 884	i--;
 885
 886	i += sysfs_emit_at(buf, i, "\n");
 887	return i;
 888}
 889EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
 890
 891/*
 892 * show_related_cpus - show the CPUs affected by each transition even if
 893 * hw coordination is in use
 894 */
 895static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
 896{
 897	return cpufreq_show_cpus(policy->related_cpus, buf);
 898}
 899
 900/*
 901 * show_affected_cpus - show the CPUs affected by each transition
 902 */
 903static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
 904{
 905	return cpufreq_show_cpus(policy->cpus, buf);
 906}
 907
 908static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
 909					const char *buf, size_t count)
 910{
 911	unsigned int freq = 0;
 912	unsigned int ret;
 913
 914	if (!policy->governor || !policy->governor->store_setspeed)
 915		return -EINVAL;
 916
 917	ret = sscanf(buf, "%u", &freq);
 918	if (ret != 1)
 919		return -EINVAL;
 920
 921	policy->governor->store_setspeed(policy, freq);
 922
 923	return count;
 924}
 925
 926static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
 927{
 928	if (!policy->governor || !policy->governor->show_setspeed)
 929		return sysfs_emit(buf, "<unsupported>\n");
 930
 931	return policy->governor->show_setspeed(policy, buf);
 932}
 933
 934/*
 935 * show_bios_limit - show the current cpufreq HW/BIOS limitation
 936 */
 937static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
 938{
 939	unsigned int limit;
 940	int ret;
 941	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
 942	if (!ret)
 943		return sysfs_emit(buf, "%u\n", limit);
 944	return sysfs_emit(buf, "%u\n", policy->cpuinfo.max_freq);
 
 
 945}
 946
 947cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
 948cpufreq_freq_attr_ro(cpuinfo_min_freq);
 949cpufreq_freq_attr_ro(cpuinfo_max_freq);
 950cpufreq_freq_attr_ro(cpuinfo_transition_latency);
 951cpufreq_freq_attr_ro(scaling_available_governors);
 952cpufreq_freq_attr_ro(scaling_driver);
 953cpufreq_freq_attr_ro(scaling_cur_freq);
 954cpufreq_freq_attr_ro(bios_limit);
 955cpufreq_freq_attr_ro(related_cpus);
 956cpufreq_freq_attr_ro(affected_cpus);
 957cpufreq_freq_attr_rw(scaling_min_freq);
 958cpufreq_freq_attr_rw(scaling_max_freq);
 959cpufreq_freq_attr_rw(scaling_governor);
 960cpufreq_freq_attr_rw(scaling_setspeed);
 961
 962static struct attribute *cpufreq_attrs[] = {
 963	&cpuinfo_min_freq.attr,
 964	&cpuinfo_max_freq.attr,
 965	&cpuinfo_transition_latency.attr,
 966	&scaling_min_freq.attr,
 967	&scaling_max_freq.attr,
 968	&affected_cpus.attr,
 969	&related_cpus.attr,
 970	&scaling_governor.attr,
 971	&scaling_driver.attr,
 972	&scaling_available_governors.attr,
 973	&scaling_setspeed.attr,
 974	NULL
 975};
 976ATTRIBUTE_GROUPS(cpufreq);
 977
 978#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
 979#define to_attr(a) container_of(a, struct freq_attr, attr)
 980
 981static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
 982{
 983	struct cpufreq_policy *policy = to_policy(kobj);
 984	struct freq_attr *fattr = to_attr(attr);
 985	ssize_t ret = -EBUSY;
 986
 987	if (!fattr->show)
 988		return -EIO;
 989
 990	down_read(&policy->rwsem);
 991	if (likely(!policy_is_inactive(policy)))
 
 992		ret = fattr->show(policy, buf);
 
 
 
 993	up_read(&policy->rwsem);
 
 994
 995	return ret;
 996}
 997
 998static ssize_t store(struct kobject *kobj, struct attribute *attr,
 999		     const char *buf, size_t count)
1000{
1001	struct cpufreq_policy *policy = to_policy(kobj);
1002	struct freq_attr *fattr = to_attr(attr);
1003	ssize_t ret = -EBUSY;
1004
1005	if (!fattr->store)
1006		return -EIO;
 
 
 
 
 
1007
1008	down_write(&policy->rwsem);
1009	if (likely(!policy_is_inactive(policy)))
 
1010		ret = fattr->store(policy, buf, count);
 
 
 
1011	up_write(&policy->rwsem);
1012
 
 
 
 
1013	return ret;
1014}
1015
1016static void cpufreq_sysfs_release(struct kobject *kobj)
1017{
1018	struct cpufreq_policy *policy = to_policy(kobj);
1019	pr_debug("last reference is dropped\n");
1020	complete(&policy->kobj_unregister);
1021}
1022
1023static const struct sysfs_ops sysfs_ops = {
1024	.show	= show,
1025	.store	= store,
1026};
1027
1028static const struct kobj_type ktype_cpufreq = {
1029	.sysfs_ops	= &sysfs_ops,
1030	.default_groups	= cpufreq_groups,
1031	.release	= cpufreq_sysfs_release,
1032};
1033
1034static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1035				struct device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1036{
1037	if (unlikely(!dev))
1038		return;
 
 
 
 
 
 
 
 
 
 
 
 
1039
1040	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1041		return;
 
1042
1043	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1044	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1045		dev_err(dev, "cpufreq symlink creation failed\n");
 
1046}
 
1047
1048static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu,
1049				   struct device *dev)
1050{
1051	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1052	sysfs_remove_link(&dev->kobj, "cpufreq");
1053	cpumask_clear_cpu(cpu, policy->real_cpus);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1054}
1055
1056static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
 
1057{
1058	struct freq_attr **drv_attr;
1059	int ret = 0;
1060
 
 
 
 
 
 
1061	/* set up files for this cpu device */
1062	drv_attr = cpufreq_driver->attr;
1063	while (drv_attr && *drv_attr) {
1064		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1065		if (ret)
1066			return ret;
1067		drv_attr++;
1068	}
1069	if (cpufreq_driver->get) {
1070		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1071		if (ret)
1072			return ret;
 
 
 
 
 
1073	}
1074
1075	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1076	if (ret)
1077		return ret;
1078
1079	if (cpufreq_driver->bios_limit) {
1080		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1081		if (ret)
1082			return ret;
1083	}
1084
1085	if (cpufreq_boost_supported()) {
1086		ret = sysfs_create_file(&policy->kobj, &local_boost.attr);
1087		if (ret)
1088			return ret;
1089	}
1090
1091	return 0;
 
 
 
1092}
1093
1094static int cpufreq_init_policy(struct cpufreq_policy *policy)
1095{
1096	struct cpufreq_governor *gov = NULL;
1097	unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1098	int ret;
 
 
1099
1100	if (has_target()) {
1101		/* Update policy governor to the one used before hotplug. */
1102		gov = get_governor(policy->last_governor);
1103		if (gov) {
1104			pr_debug("Restoring governor %s for cpu %d\n",
1105				 gov->name, policy->cpu);
1106		} else {
1107			gov = get_governor(default_governor);
1108		}
1109
1110		if (!gov) {
1111			gov = cpufreq_default_governor();
1112			__module_get(gov->owner);
1113		}
1114
1115	} else {
 
 
1116
1117		/* Use the default policy if there is no last_policy. */
1118		if (policy->last_policy) {
1119			pol = policy->last_policy;
1120		} else {
1121			pol = cpufreq_parse_policy(default_governor);
1122			/*
1123			 * In case the default governor is neither "performance"
1124			 * nor "powersave", fall back to the initial policy
1125			 * value set by the driver.
1126			 */
1127			if (pol == CPUFREQ_POLICY_UNKNOWN)
1128				pol = policy->policy;
1129		}
1130		if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1131		    pol != CPUFREQ_POLICY_POWERSAVE)
1132			return -ENODATA;
1133	}
1134
1135	ret = cpufreq_set_policy(policy, gov, pol);
1136	if (gov)
1137		module_put(gov->owner);
1138
1139	return ret;
1140}
1141
1142static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
 
 
1143{
1144	int ret = 0;
 
1145
1146	/* Has this CPU been taken care of already? */
1147	if (cpumask_test_cpu(cpu, policy->cpus))
1148		return 0;
 
 
 
 
1149
1150	down_write(&policy->rwsem);
1151	if (has_target())
1152		cpufreq_stop_governor(policy);
1153
1154	cpumask_set_cpu(cpu, policy->cpus);
 
 
1155
1156	if (has_target()) {
1157		ret = cpufreq_start_governor(policy);
1158		if (ret)
1159			pr_err("%s: Failed to start governor\n", __func__);
1160	}
1161	up_write(&policy->rwsem);
1162	return ret;
1163}
1164
1165void refresh_frequency_limits(struct cpufreq_policy *policy)
1166{
1167	if (!policy_is_inactive(policy)) {
1168		pr_debug("updating policy for CPU %u\n", policy->cpu);
1169
1170		cpufreq_set_policy(policy, policy->governor, policy->policy);
 
 
 
1171	}
1172}
1173EXPORT_SYMBOL(refresh_frequency_limits);
1174
1175static void handle_update(struct work_struct *work)
1176{
1177	struct cpufreq_policy *policy =
1178		container_of(work, struct cpufreq_policy, update);
1179
1180	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1181	down_write(&policy->rwsem);
1182	refresh_frequency_limits(policy);
1183	up_write(&policy->rwsem);
1184}
 
1185
1186static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1187				void *data)
1188{
1189	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
 
1190
1191	schedule_work(&policy->update);
1192	return 0;
1193}
1194
1195static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1196				void *data)
1197{
1198	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1199
1200	schedule_work(&policy->update);
1201	return 0;
1202}
1203
1204static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1205{
1206	struct kobject *kobj;
1207	struct completion *cmp;
1208
1209	down_write(&policy->rwsem);
1210	cpufreq_stats_free_table(policy);
1211	kobj = &policy->kobj;
1212	cmp = &policy->kobj_unregister;
1213	up_write(&policy->rwsem);
1214	kobject_put(kobj);
1215
1216	/*
1217	 * We need to make sure that the underlying kobj is
1218	 * actually not referenced anymore by anybody before we
1219	 * proceed with unloading.
1220	 */
1221	pr_debug("waiting for dropping of refcount\n");
1222	wait_for_completion(cmp);
1223	pr_debug("wait complete\n");
1224}
1225
1226static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1227{
1228	struct cpufreq_policy *policy;
1229	struct device *dev = get_cpu_device(cpu);
1230	int ret;
1231
1232	if (!dev)
1233		return NULL;
1234
1235	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1236	if (!policy)
1237		return NULL;
1238
1239	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1240		goto err_free_policy;
1241
1242	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1243		goto err_free_cpumask;
1244
1245	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1246		goto err_free_rcpumask;
1247
1248	init_completion(&policy->kobj_unregister);
1249	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1250				   cpufreq_global_kobject, "policy%u", cpu);
1251	if (ret) {
1252		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1253		/*
1254		 * The entire policy object will be freed below, but the extra
1255		 * memory allocated for the kobject name needs to be freed by
1256		 * releasing the kobject.
1257		 */
1258		kobject_put(&policy->kobj);
1259		goto err_free_real_cpus;
1260	}
1261
1262	freq_constraints_init(&policy->constraints);
1263
1264	policy->nb_min.notifier_call = cpufreq_notifier_min;
1265	policy->nb_max.notifier_call = cpufreq_notifier_max;
1266
1267	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1268				    &policy->nb_min);
1269	if (ret) {
1270		dev_err(dev, "Failed to register MIN QoS notifier: %d (CPU%u)\n",
1271			ret, cpu);
1272		goto err_kobj_remove;
1273	}
1274
1275	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1276				    &policy->nb_max);
1277	if (ret) {
1278		dev_err(dev, "Failed to register MAX QoS notifier: %d (CPU%u)\n",
1279			ret, cpu);
1280		goto err_min_qos_notifier;
1281	}
1282
1283	INIT_LIST_HEAD(&policy->policy_list);
1284	init_rwsem(&policy->rwsem);
1285	spin_lock_init(&policy->transition_lock);
1286	init_waitqueue_head(&policy->transition_wait);
1287	INIT_WORK(&policy->update, handle_update);
1288
1289	policy->cpu = cpu;
1290	return policy;
1291
1292err_min_qos_notifier:
1293	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1294				 &policy->nb_min);
1295err_kobj_remove:
1296	cpufreq_policy_put_kobj(policy);
1297err_free_real_cpus:
1298	free_cpumask_var(policy->real_cpus);
1299err_free_rcpumask:
1300	free_cpumask_var(policy->related_cpus);
1301err_free_cpumask:
1302	free_cpumask_var(policy->cpus);
1303err_free_policy:
1304	kfree(policy);
1305
1306	return NULL;
1307}
1308
1309static void cpufreq_policy_free(struct cpufreq_policy *policy)
1310{
1311	unsigned long flags;
1312	int cpu;
 
 
 
 
 
 
 
 
 
1313
1314	/*
1315	 * The callers must ensure the policy is inactive by now, to avoid any
1316	 * races with show()/store() callbacks.
 
1317	 */
1318	if (unlikely(!policy_is_inactive(policy)))
1319		pr_warn("%s: Freeing active policy\n", __func__);
 
 
1320
1321	/* Remove policy from list */
1322	write_lock_irqsave(&cpufreq_driver_lock, flags);
1323	list_del(&policy->policy_list);
 
 
 
1324
1325	for_each_cpu(cpu, policy->related_cpus)
1326		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1327	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
1328
1329	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1330				 &policy->nb_max);
1331	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1332				 &policy->nb_min);
1333
1334	/* Cancel any pending policy->update work before freeing the policy. */
1335	cancel_work_sync(&policy->update);
1336
1337	if (policy->max_freq_req) {
1338		/*
1339		 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY
1340		 * notification, since CPUFREQ_CREATE_POLICY notification was
1341		 * sent after adding max_freq_req earlier.
1342		 */
1343		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1344					     CPUFREQ_REMOVE_POLICY, policy);
1345		freq_qos_remove_request(policy->max_freq_req);
1346	}
1347
1348	freq_qos_remove_request(policy->min_freq_req);
1349	kfree(policy->min_freq_req);
1350
1351	cpufreq_policy_put_kobj(policy);
1352	free_cpumask_var(policy->real_cpus);
1353	free_cpumask_var(policy->related_cpus);
1354	free_cpumask_var(policy->cpus);
1355	kfree(policy);
1356}
1357
1358static int cpufreq_online(unsigned int cpu)
1359{
 
 
1360	struct cpufreq_policy *policy;
1361	bool new_policy;
1362	unsigned long flags;
1363	unsigned int j;
1364	int ret;
 
 
1365
1366	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
 
1367
1368	/* Check if this CPU already has a policy to manage it */
1369	policy = per_cpu(cpufreq_cpu_data, cpu);
1370	if (policy) {
1371		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1372		if (!policy_is_inactive(policy))
1373			return cpufreq_add_policy_cpu(policy, cpu);
1374
1375		/* This is the only online CPU for the policy.  Start over. */
1376		new_policy = false;
1377		down_write(&policy->rwsem);
1378		policy->cpu = cpu;
1379		policy->governor = NULL;
1380	} else {
1381		new_policy = true;
1382		policy = cpufreq_policy_alloc(cpu);
1383		if (!policy)
1384			return -ENOMEM;
1385		down_write(&policy->rwsem);
1386	}
 
1387
1388	if (!new_policy && cpufreq_driver->online) {
1389		/* Recover policy->cpus using related_cpus */
1390		cpumask_copy(policy->cpus, policy->related_cpus);
1391
1392		ret = cpufreq_driver->online(policy);
1393		if (ret) {
1394			pr_debug("%s: %d: initialization failed\n", __func__,
1395				 __LINE__);
1396			goto out_exit_policy;
 
 
 
 
1397		}
1398	} else {
1399		cpumask_copy(policy->cpus, cpumask_of(cpu));
 
 
 
 
 
 
 
 
 
 
 
 
 
1400
1401		/*
1402		 * Call driver. From then on the cpufreq must be able
1403		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1404		 */
1405		ret = cpufreq_driver->init(policy);
1406		if (ret) {
1407			pr_debug("%s: %d: initialization failed\n", __func__,
1408				 __LINE__);
1409			goto out_free_policy;
1410		}
1411
1412		/* Let the per-policy boost flag mirror the cpufreq_driver boost during init */
1413		if (cpufreq_boost_enabled() && policy_has_boost_freq(policy))
1414			policy->boost_enabled = true;
1415
1416		/*
1417		 * The initialization has succeeded and the policy is online.
1418		 * If there is a problem with its frequency table, take it
1419		 * offline and drop it.
1420		 */
1421		ret = cpufreq_table_validate_and_sort(policy);
1422		if (ret)
1423			goto out_offline_policy;
1424
1425		/* related_cpus should at least include policy->cpus. */
1426		cpumask_copy(policy->related_cpus, policy->cpus);
 
 
 
 
 
1427	}
1428
 
 
 
1429	/*
1430	 * affected cpus must always be the one, which are online. We aren't
1431	 * managing offline cpus here.
1432	 */
1433	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1434
1435	if (new_policy) {
1436		for_each_cpu(j, policy->related_cpus) {
1437			per_cpu(cpufreq_cpu_data, j) = policy;
1438			add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1439		}
1440
1441		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1442					       GFP_KERNEL);
1443		if (!policy->min_freq_req) {
1444			ret = -ENOMEM;
1445			goto out_destroy_policy;
1446		}
1447
1448		ret = freq_qos_add_request(&policy->constraints,
1449					   policy->min_freq_req, FREQ_QOS_MIN,
1450					   FREQ_QOS_MIN_DEFAULT_VALUE);
1451		if (ret < 0) {
1452			/*
1453			 * So we don't call freq_qos_remove_request() for an
1454			 * uninitialized request.
1455			 */
1456			kfree(policy->min_freq_req);
1457			policy->min_freq_req = NULL;
1458			goto out_destroy_policy;
1459		}
1460
1461		/*
1462		 * This must be initialized right here to avoid calling
1463		 * freq_qos_remove_request() on uninitialized request in case
1464		 * of errors.
1465		 */
1466		policy->max_freq_req = policy->min_freq_req + 1;
1467
1468		ret = freq_qos_add_request(&policy->constraints,
1469					   policy->max_freq_req, FREQ_QOS_MAX,
1470					   FREQ_QOS_MAX_DEFAULT_VALUE);
1471		if (ret < 0) {
1472			policy->max_freq_req = NULL;
1473			goto out_destroy_policy;
1474		}
1475
1476		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1477				CPUFREQ_CREATE_POLICY, policy);
1478	}
1479
1480	if (cpufreq_driver->get && has_target()) {
1481		policy->cur = cpufreq_driver->get(policy->cpu);
1482		if (!policy->cur) {
1483			ret = -EIO;
1484			pr_err("%s: ->get() failed\n", __func__);
1485			goto out_destroy_policy;
1486		}
1487	}
1488
1489	/*
1490	 * Sometimes boot loaders set CPU frequency to a value outside of
1491	 * frequency table present with cpufreq core. In such cases CPU might be
1492	 * unstable if it has to run on that frequency for long duration of time
1493	 * and so its better to set it to a frequency which is specified in
1494	 * freq-table. This also makes cpufreq stats inconsistent as
1495	 * cpufreq-stats would fail to register because current frequency of CPU
1496	 * isn't found in freq-table.
1497	 *
1498	 * Because we don't want this change to effect boot process badly, we go
1499	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1500	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1501	 * is initialized to zero).
1502	 *
1503	 * We are passing target-freq as "policy->cur - 1" otherwise
1504	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1505	 * equal to target-freq.
1506	 */
1507	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1508	    && has_target()) {
1509		unsigned int old_freq = policy->cur;
1510
1511		/* Are we running at unknown frequency ? */
1512		ret = cpufreq_frequency_table_get_index(policy, old_freq);
1513		if (ret == -EINVAL) {
1514			ret = __cpufreq_driver_target(policy, old_freq - 1,
1515						      CPUFREQ_RELATION_L);
 
 
 
1516
1517			/*
1518			 * Reaching here after boot in a few seconds may not
1519			 * mean that system will remain stable at "unknown"
1520			 * frequency for longer duration. Hence, a BUG_ON().
1521			 */
1522			BUG_ON(ret);
1523			pr_info("%s: CPU%d: Running at unlisted initial frequency: %u kHz, changing to: %u kHz\n",
1524				__func__, policy->cpu, old_freq, policy->cur);
1525		}
1526	}
1527
1528	if (new_policy) {
1529		ret = cpufreq_add_dev_interface(policy);
 
 
 
1530		if (ret)
1531			goto out_destroy_policy;
 
 
 
1532
1533		cpufreq_stats_create_table(policy);
 
 
1534
1535		write_lock_irqsave(&cpufreq_driver_lock, flags);
1536		list_add(&policy->policy_list, &cpufreq_policy_list);
1537		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1538
1539		/*
1540		 * Register with the energy model before
1541		 * sugov_eas_rebuild_sd() is called, which will result
1542		 * in rebuilding of the sched domains, which should only be done
1543		 * once the energy model is properly initialized for the policy
1544		 * first.
1545		 *
1546		 * Also, this should be called before the policy is registered
1547		 * with cooling framework.
1548		 */
1549		if (cpufreq_driver->register_em)
1550			cpufreq_driver->register_em(policy);
1551	}
1552
1553	ret = cpufreq_init_policy(policy);
1554	if (ret) {
1555		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1556		       __func__, cpu, ret);
1557		goto out_destroy_policy;
1558	}
1559
1560	up_write(&policy->rwsem);
1561
1562	kobject_uevent(&policy->kobj, KOBJ_ADD);
1563
1564	/* Callback for handling stuff after policy is ready */
1565	if (cpufreq_driver->ready)
1566		cpufreq_driver->ready(policy);
1567
1568	/* Register cpufreq cooling only for a new policy */
1569	if (new_policy && cpufreq_thermal_control_enabled(cpufreq_driver))
1570		policy->cdev = of_cpufreq_cooling_register(policy);
1571
1572	pr_debug("initialization complete\n");
1573
1574	return 0;
1575
1576out_destroy_policy:
1577	for_each_cpu(j, policy->real_cpus)
1578		remove_cpu_dev_symlink(policy, j, get_cpu_device(j));
1579
1580out_offline_policy:
1581	if (cpufreq_driver->offline)
1582		cpufreq_driver->offline(policy);
1583
1584out_exit_policy:
1585	if (cpufreq_driver->exit)
1586		cpufreq_driver->exit(policy);
 
 
 
 
 
 
 
1587
1588out_free_policy:
1589	cpumask_clear(policy->cpus);
1590	up_write(&policy->rwsem);
1591
1592	cpufreq_policy_free(policy);
1593	return ret;
1594}
1595
1596/**
1597 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1598 * @dev: CPU device.
1599 * @sif: Subsystem interface structure pointer (not used)
 
 
 
 
1600 */
1601static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1602{
1603	struct cpufreq_policy *policy;
1604	unsigned cpu = dev->id;
 
 
 
 
 
1605	int ret;
1606
1607	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
 
 
 
 
 
 
 
 
 
 
1608
1609	if (cpu_online(cpu)) {
1610		ret = cpufreq_online(cpu);
1611		if (ret)
1612			return ret;
1613	}
1614
1615	/* Create sysfs link on CPU registration */
1616	policy = per_cpu(cpufreq_cpu_data, cpu);
1617	if (policy)
1618		add_cpu_dev_symlink(policy, cpu, dev);
1619
1620	return 0;
1621}
1622
1623static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
 
1624{
1625	int ret;
 
 
 
 
 
 
 
 
 
1626
1627	if (has_target())
1628		cpufreq_stop_governor(policy);
 
1629
1630	cpumask_clear_cpu(cpu, policy->cpus);
1631
1632	if (!policy_is_inactive(policy)) {
1633		/* Nominate a new CPU if necessary. */
1634		if (cpu == policy->cpu)
1635			policy->cpu = cpumask_any(policy->cpus);
1636
1637		/* Start the governor again for the active policy. */
1638		if (has_target()) {
1639			ret = cpufreq_start_governor(policy);
1640			if (ret)
1641				pr_err("%s: Failed to start governor\n", __func__);
1642		}
1643
1644		return;
1645	}
1646
1647	if (has_target())
1648		strscpy(policy->last_governor, policy->governor->name,
1649			CPUFREQ_NAME_LEN);
1650	else
1651		policy->last_policy = policy->policy;
1652
1653	if (has_target())
1654		cpufreq_exit_governor(policy);
 
1655
1656	/*
1657	 * Perform the ->offline() during light-weight tear-down, as
1658	 * that allows fast recovery when the CPU comes back.
1659	 */
1660	if (cpufreq_driver->offline) {
1661		cpufreq_driver->offline(policy);
1662		return;
 
 
 
 
 
 
1663	}
1664
1665	if (cpufreq_driver->exit)
1666		cpufreq_driver->exit(policy);
1667
1668	policy->freq_table = NULL;
1669}
1670
1671static int cpufreq_offline(unsigned int cpu)
 
1672{
 
 
 
1673	struct cpufreq_policy *policy;
1674
1675	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
 
 
1676
1677	policy = cpufreq_cpu_get_raw(cpu);
1678	if (!policy) {
1679		pr_debug("%s: No cpu_data found\n", __func__);
1680		return 0;
1681	}
1682
1683	down_write(&policy->rwsem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1684
1685	__cpufreq_offline(cpu, policy);
 
 
 
 
 
 
 
 
 
 
1686
1687	up_write(&policy->rwsem);
 
 
 
 
 
 
1688	return 0;
1689}
1690
1691/*
1692 * cpufreq_remove_dev - remove a CPU device
1693 *
1694 * Removes the cpufreq interface for a CPU device.
1695 */
1696static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1697{
1698	unsigned int cpu = dev->id;
1699	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1700
1701	if (!policy)
1702		return;
1703
1704	down_write(&policy->rwsem);
1705
1706	if (cpu_online(cpu))
1707		__cpufreq_offline(cpu, policy);
1708
1709	remove_cpu_dev_symlink(policy, cpu, dev);
 
1710
1711	if (!cpumask_empty(policy->real_cpus)) {
1712		up_write(&policy->rwsem);
1713		return;
1714	}
1715
1716	/*
1717	 * Unregister cpufreq cooling once all the CPUs of the policy are
1718	 * removed.
1719	 */
1720	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1721		cpufreq_cooling_unregister(policy->cdev);
1722		policy->cdev = NULL;
1723	}
1724
1725	/* We did light-weight exit earlier, do full tear down now */
1726	if (cpufreq_driver->offline && cpufreq_driver->exit)
1727		cpufreq_driver->exit(policy);
1728
1729	up_write(&policy->rwsem);
1730
1731	cpufreq_policy_free(policy);
1732}
1733
1734/**
1735 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1736 * @policy: Policy managing CPUs.
1737 * @new_freq: New CPU frequency.
 
 
1738 *
1739 * Adjust to the current frequency first and clean up later by either calling
1740 * cpufreq_update_policy(), or scheduling handle_update().
1741 */
1742static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1743				unsigned int new_freq)
1744{
 
1745	struct cpufreq_freqs freqs;
 
1746
1747	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1748		 policy->cur, new_freq);
1749
1750	freqs.old = policy->cur;
1751	freqs.new = new_freq;
1752
 
 
 
 
1753	cpufreq_freq_transition_begin(policy, &freqs);
1754	cpufreq_freq_transition_end(policy, &freqs, 0);
1755}
1756
1757static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1758{
1759	unsigned int new_freq;
1760
1761	new_freq = cpufreq_driver->get(policy->cpu);
1762	if (!new_freq)
1763		return 0;
1764
1765	/*
1766	 * If fast frequency switching is used with the given policy, the check
1767	 * against policy->cur is pointless, so skip it in that case.
1768	 */
1769	if (policy->fast_switch_enabled || !has_target())
1770		return new_freq;
1771
1772	if (policy->cur != new_freq) {
1773		/*
1774		 * For some platforms, the frequency returned by hardware may be
1775		 * slightly different from what is provided in the frequency
1776		 * table, for example hardware may return 499 MHz instead of 500
1777		 * MHz. In such cases it is better to avoid getting into
1778		 * unnecessary frequency updates.
1779		 */
1780		if (abs(policy->cur - new_freq) < KHZ_PER_MHZ)
1781			return policy->cur;
1782
1783		cpufreq_out_of_sync(policy, new_freq);
1784		if (update)
1785			schedule_work(&policy->update);
1786	}
1787
1788	return new_freq;
1789}
1790
1791/**
1792 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1793 * @cpu: CPU number
1794 *
1795 * This is the last known freq, without actually getting it from the driver.
1796 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1797 */
1798unsigned int cpufreq_quick_get(unsigned int cpu)
1799{
1800	struct cpufreq_policy *policy;
1801	unsigned int ret_freq = 0;
1802	unsigned long flags;
1803
1804	read_lock_irqsave(&cpufreq_driver_lock, flags);
1805
1806	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1807		ret_freq = cpufreq_driver->get(cpu);
1808		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1809		return ret_freq;
1810	}
1811
1812	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1813
1814	policy = cpufreq_cpu_get(cpu);
1815	if (policy) {
1816		ret_freq = policy->cur;
1817		cpufreq_cpu_put(policy);
1818	}
1819
1820	return ret_freq;
1821}
1822EXPORT_SYMBOL(cpufreq_quick_get);
1823
1824/**
1825 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1826 * @cpu: CPU number
1827 *
1828 * Just return the max possible frequency for a given CPU.
1829 */
1830unsigned int cpufreq_quick_get_max(unsigned int cpu)
1831{
1832	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1833	unsigned int ret_freq = 0;
1834
1835	if (policy) {
1836		ret_freq = policy->max;
1837		cpufreq_cpu_put(policy);
1838	}
1839
1840	return ret_freq;
1841}
1842EXPORT_SYMBOL(cpufreq_quick_get_max);
1843
1844/**
1845 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1846 * @cpu: CPU number
1847 *
1848 * The default return value is the max_freq field of cpuinfo.
1849 */
1850__weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1851{
1852	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1853	unsigned int ret_freq = 0;
1854
1855	if (policy) {
1856		ret_freq = policy->cpuinfo.max_freq;
1857		cpufreq_cpu_put(policy);
 
 
 
 
 
 
 
 
 
 
1858	}
1859
1860	return ret_freq;
1861}
1862EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1863
1864static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1865{
1866	if (unlikely(policy_is_inactive(policy)))
1867		return 0;
1868
1869	return cpufreq_verify_current_freq(policy, true);
1870}
1871
1872/**
1873 * cpufreq_get - get the current CPU frequency (in kHz)
1874 * @cpu: CPU number
1875 *
1876 * Get the CPU current (static) CPU frequency
1877 */
1878unsigned int cpufreq_get(unsigned int cpu)
1879{
1880	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1881	unsigned int ret_freq = 0;
1882
1883	if (policy) {
1884		down_read(&policy->rwsem);
1885		if (cpufreq_driver->get)
1886			ret_freq = __cpufreq_get(policy);
1887		up_read(&policy->rwsem);
1888
1889		cpufreq_cpu_put(policy);
1890	}
1891
1892	return ret_freq;
1893}
1894EXPORT_SYMBOL(cpufreq_get);
1895
1896static struct subsys_interface cpufreq_interface = {
1897	.name		= "cpufreq",
1898	.subsys		= &cpu_subsys,
1899	.add_dev	= cpufreq_add_dev,
1900	.remove_dev	= cpufreq_remove_dev,
1901};
1902
1903/*
1904 * In case platform wants some specific frequency to be configured
1905 * during suspend..
1906 */
1907int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1908{
1909	int ret;
1910
1911	if (!policy->suspend_freq) {
1912		pr_debug("%s: suspend_freq not defined\n", __func__);
1913		return 0;
1914	}
1915
1916	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1917			policy->suspend_freq);
1918
1919	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1920			CPUFREQ_RELATION_H);
1921	if (ret)
1922		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1923				__func__, policy->suspend_freq, ret);
1924
1925	return ret;
1926}
1927EXPORT_SYMBOL(cpufreq_generic_suspend);
1928
1929/**
1930 * cpufreq_suspend() - Suspend CPUFreq governors.
1931 *
1932 * Called during system wide Suspend/Hibernate cycles for suspending governors
1933 * as some platforms can't change frequency after this point in suspend cycle.
1934 * Because some of the devices (like: i2c, regulators, etc) they use for
1935 * changing frequency are suspended quickly after this point.
1936 */
1937void cpufreq_suspend(void)
1938{
1939	struct cpufreq_policy *policy;
1940
1941	if (!cpufreq_driver)
1942		return;
1943
1944	if (!has_target() && !cpufreq_driver->suspend)
1945		goto suspend;
1946
1947	pr_debug("%s: Suspending Governors\n", __func__);
1948
1949	for_each_active_policy(policy) {
1950		if (has_target()) {
1951			down_write(&policy->rwsem);
1952			cpufreq_stop_governor(policy);
1953			up_write(&policy->rwsem);
1954		}
1955
1956		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1957			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1958				cpufreq_driver->name);
1959	}
1960
1961suspend:
1962	cpufreq_suspended = true;
1963}
1964
1965/**
1966 * cpufreq_resume() - Resume CPUFreq governors.
1967 *
1968 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1969 * are suspended with cpufreq_suspend().
1970 */
1971void cpufreq_resume(void)
1972{
1973	struct cpufreq_policy *policy;
1974	int ret;
1975
1976	if (!cpufreq_driver)
1977		return;
1978
1979	if (unlikely(!cpufreq_suspended))
1980		return;
1981
 
 
1982	cpufreq_suspended = false;
1983
1984	if (!has_target() && !cpufreq_driver->resume)
1985		return;
 
 
 
 
 
 
1986
1987	pr_debug("%s: Resuming Governors\n", __func__);
1988
1989	for_each_active_policy(policy) {
1990		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1991			pr_err("%s: Failed to resume driver: %s\n", __func__,
1992				cpufreq_driver->name);
1993		} else if (has_target()) {
1994			down_write(&policy->rwsem);
1995			ret = cpufreq_start_governor(policy);
1996			up_write(&policy->rwsem);
1997
1998			if (ret)
1999				pr_err("%s: Failed to start governor for CPU%u's policy\n",
2000				       __func__, policy->cpu);
2001		}
2002	}
2003}
2004
2005/**
2006 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
2007 * @flags: Flags to test against the current cpufreq driver's flags.
2008 *
2009 * Assumes that the driver is there, so callers must ensure that this is the
2010 * case.
2011 */
2012bool cpufreq_driver_test_flags(u16 flags)
2013{
2014	return !!(cpufreq_driver->flags & flags);
2015}
2016
2017/**
2018 * cpufreq_get_current_driver - Return the current driver's name.
2019 *
2020 * Return the name string of the currently registered cpufreq driver or NULL if
2021 * none.
2022 */
2023const char *cpufreq_get_current_driver(void)
2024{
2025	if (cpufreq_driver)
2026		return cpufreq_driver->name;
2027
2028	return NULL;
2029}
2030EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
2031
2032/**
2033 * cpufreq_get_driver_data - Return current driver data.
2034 *
2035 * Return the private data of the currently registered cpufreq driver, or NULL
2036 * if no cpufreq driver has been registered.
2037 */
2038void *cpufreq_get_driver_data(void)
2039{
2040	if (cpufreq_driver)
2041		return cpufreq_driver->driver_data;
2042
2043	return NULL;
2044}
2045EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
2046
2047/*********************************************************************
2048 *                     NOTIFIER LISTS INTERFACE                      *
2049 *********************************************************************/
2050
2051/**
2052 * cpufreq_register_notifier - Register a notifier with cpufreq.
2053 * @nb: notifier function to register.
2054 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2055 *
2056 * Add a notifier to one of two lists: either a list of notifiers that run on
2057 * clock rate changes (once before and once after every transition), or a list
2058 * of notifiers that ron on cpufreq policy changes.
 
2059 *
2060 * This function may sleep and it has the same return values as
2061 * blocking_notifier_chain_register().
2062 */
2063int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
2064{
2065	int ret;
2066
2067	if (cpufreq_disabled())
2068		return -EINVAL;
2069
 
 
2070	switch (list) {
2071	case CPUFREQ_TRANSITION_NOTIFIER:
2072		mutex_lock(&cpufreq_fast_switch_lock);
2073
2074		if (cpufreq_fast_switch_count > 0) {
2075			mutex_unlock(&cpufreq_fast_switch_lock);
2076			return -EBUSY;
2077		}
2078		ret = srcu_notifier_chain_register(
2079				&cpufreq_transition_notifier_list, nb);
2080		if (!ret)
2081			cpufreq_fast_switch_count--;
2082
2083		mutex_unlock(&cpufreq_fast_switch_lock);
2084		break;
2085	case CPUFREQ_POLICY_NOTIFIER:
2086		ret = blocking_notifier_chain_register(
2087				&cpufreq_policy_notifier_list, nb);
2088		break;
2089	default:
2090		ret = -EINVAL;
2091	}
2092
2093	return ret;
2094}
2095EXPORT_SYMBOL(cpufreq_register_notifier);
2096
2097/**
2098 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2099 * @nb: notifier block to be unregistered.
2100 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2101 *
2102 * Remove a notifier from one of the cpufreq notifier lists.
2103 *
2104 * This function may sleep and it has the same return values as
2105 * blocking_notifier_chain_unregister().
2106 */
2107int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2108{
2109	int ret;
2110
2111	if (cpufreq_disabled())
2112		return -EINVAL;
2113
2114	switch (list) {
2115	case CPUFREQ_TRANSITION_NOTIFIER:
2116		mutex_lock(&cpufreq_fast_switch_lock);
2117
2118		ret = srcu_notifier_chain_unregister(
2119				&cpufreq_transition_notifier_list, nb);
2120		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2121			cpufreq_fast_switch_count++;
2122
2123		mutex_unlock(&cpufreq_fast_switch_lock);
2124		break;
2125	case CPUFREQ_POLICY_NOTIFIER:
2126		ret = blocking_notifier_chain_unregister(
2127				&cpufreq_policy_notifier_list, nb);
2128		break;
2129	default:
2130		ret = -EINVAL;
2131	}
2132
2133	return ret;
2134}
2135EXPORT_SYMBOL(cpufreq_unregister_notifier);
2136
2137
2138/*********************************************************************
2139 *                              GOVERNORS                            *
2140 *********************************************************************/
2141
2142/**
2143 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2144 * @policy: cpufreq policy to switch the frequency for.
2145 * @target_freq: New frequency to set (may be approximate).
2146 *
2147 * Carry out a fast frequency switch without sleeping.
2148 *
2149 * The driver's ->fast_switch() callback invoked by this function must be
2150 * suitable for being called from within RCU-sched read-side critical sections
2151 * and it is expected to select the minimum available frequency greater than or
2152 * equal to @target_freq (CPUFREQ_RELATION_L).
2153 *
2154 * This function must not be called if policy->fast_switch_enabled is unset.
2155 *
2156 * Governors calling this function must guarantee that it will never be invoked
2157 * twice in parallel for the same policy and that it will never be called in
2158 * parallel with either ->target() or ->target_index() for the same policy.
2159 *
2160 * Returns the actual frequency set for the CPU.
2161 *
2162 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2163 * error condition, the hardware configuration must be preserved.
2164 */
2165unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2166					unsigned int target_freq)
2167{
2168	unsigned int freq;
2169	int cpu;
2170
2171	target_freq = clamp_val(target_freq, policy->min, policy->max);
2172	freq = cpufreq_driver->fast_switch(policy, target_freq);
2173
2174	if (!freq)
2175		return 0;
2176
2177	policy->cur = freq;
2178	arch_set_freq_scale(policy->related_cpus, freq,
2179			    arch_scale_freq_ref(policy->cpu));
2180	cpufreq_stats_record_transition(policy, freq);
2181
2182	if (trace_cpu_frequency_enabled()) {
2183		for_each_cpu(cpu, policy->cpus)
2184			trace_cpu_frequency(freq, cpu);
2185	}
2186
2187	return freq;
2188}
2189EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2190
2191/**
2192 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2193 * @cpu: Target CPU.
2194 * @min_perf: Minimum (required) performance level (units of @capacity).
2195 * @target_perf: Target (desired) performance level (units of @capacity).
2196 * @capacity: Capacity of the target CPU.
2197 *
2198 * Carry out a fast performance level switch of @cpu without sleeping.
2199 *
2200 * The driver's ->adjust_perf() callback invoked by this function must be
2201 * suitable for being called from within RCU-sched read-side critical sections
2202 * and it is expected to select a suitable performance level equal to or above
2203 * @min_perf and preferably equal to or below @target_perf.
2204 *
2205 * This function must not be called if policy->fast_switch_enabled is unset.
2206 *
2207 * Governors calling this function must guarantee that it will never be invoked
2208 * twice in parallel for the same CPU and that it will never be called in
2209 * parallel with either ->target() or ->target_index() or ->fast_switch() for
2210 * the same CPU.
2211 */
2212void cpufreq_driver_adjust_perf(unsigned int cpu,
2213				 unsigned long min_perf,
2214				 unsigned long target_perf,
2215				 unsigned long capacity)
2216{
2217	cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2218}
2219
2220/**
2221 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2222 *
2223 * Return 'true' if the ->adjust_perf callback is present for the
2224 * current driver or 'false' otherwise.
2225 */
2226bool cpufreq_driver_has_adjust_perf(void)
2227{
2228	return !!cpufreq_driver->adjust_perf;
2229}
2230
2231/* Must set freqs->new to intermediate frequency */
2232static int __target_intermediate(struct cpufreq_policy *policy,
2233				 struct cpufreq_freqs *freqs, int index)
2234{
2235	int ret;
2236
2237	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2238
2239	/* We don't need to switch to intermediate freq */
2240	if (!freqs->new)
2241		return 0;
2242
2243	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2244		 __func__, policy->cpu, freqs->old, freqs->new);
2245
2246	cpufreq_freq_transition_begin(policy, freqs);
2247	ret = cpufreq_driver->target_intermediate(policy, index);
2248	cpufreq_freq_transition_end(policy, freqs, ret);
2249
2250	if (ret)
2251		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2252		       __func__, ret);
2253
2254	return ret;
2255}
2256
2257static int __target_index(struct cpufreq_policy *policy, int index)
2258{
2259	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2260	unsigned int restore_freq, intermediate_freq = 0;
2261	unsigned int newfreq = policy->freq_table[index].frequency;
2262	int retval = -EINVAL;
2263	bool notify;
2264
2265	if (newfreq == policy->cur)
2266		return 0;
2267
2268	/* Save last value to restore later on errors */
2269	restore_freq = policy->cur;
2270
2271	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2272	if (notify) {
2273		/* Handle switching to intermediate frequency */
2274		if (cpufreq_driver->get_intermediate) {
2275			retval = __target_intermediate(policy, &freqs, index);
2276			if (retval)
2277				return retval;
2278
2279			intermediate_freq = freqs.new;
2280			/* Set old freq to intermediate */
2281			if (intermediate_freq)
2282				freqs.old = freqs.new;
2283		}
2284
2285		freqs.new = newfreq;
2286		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2287			 __func__, policy->cpu, freqs.old, freqs.new);
2288
2289		cpufreq_freq_transition_begin(policy, &freqs);
2290	}
2291
2292	retval = cpufreq_driver->target_index(policy, index);
2293	if (retval)
2294		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2295		       retval);
2296
2297	if (notify) {
2298		cpufreq_freq_transition_end(policy, &freqs, retval);
2299
2300		/*
2301		 * Failed after setting to intermediate freq? Driver should have
2302		 * reverted back to initial frequency and so should we. Check
2303		 * here for intermediate_freq instead of get_intermediate, in
2304		 * case we haven't switched to intermediate freq at all.
2305		 */
2306		if (unlikely(retval && intermediate_freq)) {
2307			freqs.old = intermediate_freq;
2308			freqs.new = restore_freq;
2309			cpufreq_freq_transition_begin(policy, &freqs);
2310			cpufreq_freq_transition_end(policy, &freqs, 0);
2311		}
2312	}
2313
2314	return retval;
2315}
2316
2317int __cpufreq_driver_target(struct cpufreq_policy *policy,
2318			    unsigned int target_freq,
2319			    unsigned int relation)
2320{
 
2321	unsigned int old_target_freq = target_freq;
2322
2323	if (cpufreq_disabled())
2324		return -ENODEV;
2325
2326	target_freq = __resolve_freq(policy, target_freq, relation);
 
 
 
 
2327
2328	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2329		 policy->cpu, target_freq, relation, old_target_freq);
2330
2331	/*
2332	 * This might look like a redundant call as we are checking it again
2333	 * after finding index. But it is left intentionally for cases where
2334	 * exactly same freq is called again and so we can save on few function
2335	 * calls.
2336	 */
2337	if (target_freq == policy->cur &&
2338	    !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2339		return 0;
2340
2341	if (cpufreq_driver->target) {
2342		/*
2343		 * If the driver hasn't setup a single inefficient frequency,
2344		 * it's unlikely it knows how to decode CPUFREQ_RELATION_E.
2345		 */
2346		if (!policy->efficiencies_available)
2347			relation &= ~CPUFREQ_RELATION_E;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2348
2349		return cpufreq_driver->target(policy, target_freq, relation);
 
2350	}
2351
2352	if (!cpufreq_driver->target_index)
2353		return -EINVAL;
2354
2355	return __target_index(policy, policy->cached_resolved_idx);
2356}
2357EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2358
2359int cpufreq_driver_target(struct cpufreq_policy *policy,
2360			  unsigned int target_freq,
2361			  unsigned int relation)
2362{
2363	int ret;
2364
2365	down_write(&policy->rwsem);
2366
2367	ret = __cpufreq_driver_target(policy, target_freq, relation);
2368
2369	up_write(&policy->rwsem);
2370
2371	return ret;
2372}
2373EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2374
2375__weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2376{
2377	return NULL;
2378}
2379
2380static int cpufreq_init_governor(struct cpufreq_policy *policy)
 
2381{
2382	int ret;
2383
 
 
 
 
 
 
 
 
 
 
2384	/* Don't start any governor operations if we are entering suspend */
2385	if (cpufreq_suspended)
2386		return 0;
2387	/*
2388	 * Governor might not be initiated here if ACPI _PPC changed
2389	 * notification happened, so check it.
2390	 */
2391	if (!policy->governor)
2392		return -EINVAL;
2393
2394	/* Platform doesn't want dynamic frequency switching ? */
2395	if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2396	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2397		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2398
2399		if (gov) {
2400			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2401				policy->governor->name, gov->name);
2402			policy->governor = gov;
2403		} else {
2404			return -EINVAL;
2405		}
2406	}
2407
2408	if (!try_module_get(policy->governor->owner))
2409		return -EINVAL;
 
2410
2411	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
 
2412
2413	if (policy->governor->init) {
2414		ret = policy->governor->init(policy);
2415		if (ret) {
2416			module_put(policy->governor->owner);
2417			return ret;
2418		}
2419	}
2420
2421	policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
 
 
 
2422
2423	return 0;
2424}
2425
2426static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2427{
2428	if (cpufreq_suspended || !policy->governor)
2429		return;
2430
2431	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2432
2433	if (policy->governor->exit)
2434		policy->governor->exit(policy);
2435
2436	module_put(policy->governor->owner);
2437}
2438
2439int cpufreq_start_governor(struct cpufreq_policy *policy)
2440{
2441	int ret;
2442
2443	if (cpufreq_suspended)
2444		return 0;
2445
2446	if (!policy->governor)
2447		return -EINVAL;
2448
2449	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2450
2451	if (cpufreq_driver->get)
2452		cpufreq_verify_current_freq(policy, false);
2453
2454	if (policy->governor->start) {
2455		ret = policy->governor->start(policy);
2456		if (ret)
2457			return ret;
2458	}
2459
2460	if (policy->governor->limits)
2461		policy->governor->limits(policy);
 
2462
2463	return 0;
2464}
2465
2466void cpufreq_stop_governor(struct cpufreq_policy *policy)
2467{
2468	if (cpufreq_suspended || !policy->governor)
2469		return;
2470
2471	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2472
2473	if (policy->governor->stop)
2474		policy->governor->stop(policy);
2475}
2476
2477static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2478{
2479	if (cpufreq_suspended || !policy->governor)
2480		return;
2481
2482	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2483
2484	if (policy->governor->limits)
2485		policy->governor->limits(policy);
2486}
2487
2488int cpufreq_register_governor(struct cpufreq_governor *governor)
2489{
2490	int err;
2491
2492	if (!governor)
2493		return -EINVAL;
2494
2495	if (cpufreq_disabled())
2496		return -ENODEV;
2497
2498	mutex_lock(&cpufreq_governor_mutex);
2499
 
2500	err = -EBUSY;
2501	if (!find_governor(governor->name)) {
2502		err = 0;
2503		list_add(&governor->governor_list, &cpufreq_governor_list);
2504	}
2505
2506	mutex_unlock(&cpufreq_governor_mutex);
2507	return err;
2508}
2509EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2510
2511void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2512{
2513	struct cpufreq_policy *policy;
2514	unsigned long flags;
2515
2516	if (!governor)
2517		return;
2518
2519	if (cpufreq_disabled())
2520		return;
2521
2522	/* clear last_governor for all inactive policies */
2523	read_lock_irqsave(&cpufreq_driver_lock, flags);
2524	for_each_inactive_policy(policy) {
2525		if (!strcmp(policy->last_governor, governor->name)) {
2526			policy->governor = NULL;
2527			strcpy(policy->last_governor, "\0");
2528		}
2529	}
2530	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2531
2532	mutex_lock(&cpufreq_governor_mutex);
2533	list_del(&governor->governor_list);
2534	mutex_unlock(&cpufreq_governor_mutex);
 
2535}
2536EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2537
2538
2539/*********************************************************************
2540 *                          POLICY INTERFACE                         *
2541 *********************************************************************/
2542
2543/**
2544 * cpufreq_get_policy - get the current cpufreq_policy
2545 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2546 *	is written
2547 * @cpu: CPU to find the policy for
2548 *
2549 * Reads the current cpufreq policy.
2550 */
2551int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2552{
2553	struct cpufreq_policy *cpu_policy;
2554	if (!policy)
2555		return -EINVAL;
2556
2557	cpu_policy = cpufreq_cpu_get(cpu);
2558	if (!cpu_policy)
2559		return -EINVAL;
2560
2561	memcpy(policy, cpu_policy, sizeof(*policy));
2562
2563	cpufreq_cpu_put(cpu_policy);
2564	return 0;
2565}
2566EXPORT_SYMBOL(cpufreq_get_policy);
2567
2568DEFINE_PER_CPU(unsigned long, cpufreq_pressure);
2569
2570/**
2571 * cpufreq_update_pressure() - Update cpufreq pressure for CPUs
2572 * @policy: cpufreq policy of the CPUs.
2573 *
2574 * Update the value of cpufreq pressure for all @cpus in the policy.
2575 */
2576static void cpufreq_update_pressure(struct cpufreq_policy *policy)
2577{
2578	unsigned long max_capacity, capped_freq, pressure;
2579	u32 max_freq;
2580	int cpu;
2581
2582	cpu = cpumask_first(policy->related_cpus);
2583	max_freq = arch_scale_freq_ref(cpu);
2584	capped_freq = policy->max;
2585
2586	/*
2587	 * Handle properly the boost frequencies, which should simply clean
2588	 * the cpufreq pressure value.
2589	 */
2590	if (max_freq <= capped_freq) {
2591		pressure = 0;
2592	} else {
2593		max_capacity = arch_scale_cpu_capacity(cpu);
2594		pressure = max_capacity -
2595			   mult_frac(max_capacity, capped_freq, max_freq);
2596	}
2597
2598	for_each_cpu(cpu, policy->related_cpus)
2599		WRITE_ONCE(per_cpu(cpufreq_pressure, cpu), pressure);
2600}
2601
2602/**
2603 * cpufreq_set_policy - Modify cpufreq policy parameters.
2604 * @policy: Policy object to modify.
2605 * @new_gov: Policy governor pointer.
2606 * @new_pol: Policy value (for drivers with built-in governors).
2607 *
2608 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2609 * limits to be set for the policy, update @policy with the verified limits
2610 * values and either invoke the driver's ->setpolicy() callback (if present) or
2611 * carry out a governor update for @policy.  That is, run the current governor's
2612 * ->limits() callback (if @new_gov points to the same object as the one in
2613 * @policy) or replace the governor for @policy with @new_gov.
2614 *
2615 * The cpuinfo part of @policy is not updated by this function.
2616 */
2617static int cpufreq_set_policy(struct cpufreq_policy *policy,
2618			      struct cpufreq_governor *new_gov,
2619			      unsigned int new_pol)
2620{
2621	struct cpufreq_policy_data new_data;
2622	struct cpufreq_governor *old_gov;
2623	int ret;
2624
2625	memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2626	new_data.freq_table = policy->freq_table;
2627	new_data.cpu = policy->cpu;
2628	/*
2629	 * PM QoS framework collects all the requests from users and provide us
2630	 * the final aggregated value here.
2631	 */
2632	new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2633	new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2634
2635	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2636		 new_data.cpu, new_data.min, new_data.max);
2637
2638	/*
2639	 * Verify that the CPU speed can be set within these limits and make sure
2640	 * that min <= max.
2641	 */
2642	ret = cpufreq_driver->verify(&new_data);
2643	if (ret)
2644		return ret;
2645
 
 
 
 
 
 
 
 
2646	/*
2647	 * Resolve policy min/max to available frequencies. It ensures
2648	 * no frequency resolution will neither overshoot the requested maximum
2649	 * nor undershoot the requested minimum.
2650	 */
2651	policy->min = new_data.min;
2652	policy->max = new_data.max;
2653	policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L);
2654	policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H);
2655	trace_cpu_frequency_limits(policy);
2656
2657	cpufreq_update_pressure(policy);
 
 
2658
2659	policy->cached_target_freq = UINT_MAX;
 
2660
2661	pr_debug("new min and max freqs are %u - %u kHz\n",
2662		 policy->min, policy->max);
2663
2664	if (cpufreq_driver->setpolicy) {
2665		policy->policy = new_pol;
2666		pr_debug("setting range\n");
2667		return cpufreq_driver->setpolicy(policy);
2668	}
2669
2670	if (new_gov == policy->governor) {
2671		pr_debug("governor limits update\n");
2672		cpufreq_governor_limits(policy);
2673		return 0;
2674	}
2675
2676	pr_debug("governor switch\n");
2677
2678	/* save old, working values */
2679	old_gov = policy->governor;
2680	/* end old governor */
2681	if (old_gov) {
2682		cpufreq_stop_governor(policy);
2683		cpufreq_exit_governor(policy);
 
 
2684	}
2685
2686	/* start new governor */
2687	policy->governor = new_gov;
2688	ret = cpufreq_init_governor(policy);
2689	if (!ret) {
2690		ret = cpufreq_start_governor(policy);
2691		if (!ret) {
2692			pr_debug("governor change\n");
2693			return 0;
2694		}
2695		cpufreq_exit_governor(policy);
2696	}
2697
2698	/* new governor failed, so re-start old one */
2699	pr_debug("starting governor %s failed\n", policy->governor->name);
2700	if (old_gov) {
2701		policy->governor = old_gov;
2702		if (cpufreq_init_governor(policy))
2703			policy->governor = NULL;
2704		else
2705			cpufreq_start_governor(policy);
2706	}
2707
2708	return ret;
 
 
 
 
2709}
2710
2711/**
2712 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2713 * @cpu: CPU to re-evaluate the policy for.
2714 *
2715 * Update the current frequency for the cpufreq policy of @cpu and use
2716 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2717 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2718 * for the policy in question, among other things.
2719 */
2720void cpufreq_update_policy(unsigned int cpu)
2721{
2722	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
 
 
 
 
 
 
 
 
 
2723
2724	if (!policy)
2725		return;
 
 
 
 
2726
2727	/*
2728	 * BIOS might change freq behind our back
2729	 * -> ask driver for current freq and notify governors about a change
2730	 */
2731	if (cpufreq_driver->get && has_target() &&
2732	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2733		goto unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
2734
2735	refresh_frequency_limits(policy);
2736
2737unlock:
2738	cpufreq_cpu_release(policy);
 
 
 
2739}
2740EXPORT_SYMBOL(cpufreq_update_policy);
2741
2742/**
2743 * cpufreq_update_limits - Update policy limits for a given CPU.
2744 * @cpu: CPU to update the policy limits for.
2745 *
2746 * Invoke the driver's ->update_limits callback if present or call
2747 * cpufreq_update_policy() for @cpu.
2748 */
2749void cpufreq_update_limits(unsigned int cpu)
2750{
2751	if (cpufreq_driver->update_limits)
2752		cpufreq_driver->update_limits(cpu);
2753	else
2754		cpufreq_update_policy(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2755}
2756EXPORT_SYMBOL_GPL(cpufreq_update_limits);
 
 
 
2757
2758/*********************************************************************
2759 *               BOOST						     *
2760 *********************************************************************/
2761static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2762{
2763	int ret;
 
 
2764
2765	if (!policy->freq_table)
2766		return -ENXIO;
2767
2768	ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2769	if (ret) {
2770		pr_err("%s: Policy frequency update failed\n", __func__);
2771		return ret;
 
 
 
 
 
 
2772	}
2773
2774	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2775	if (ret < 0)
2776		return ret;
2777
2778	return 0;
2779}
2780
2781int cpufreq_boost_trigger_state(int state)
2782{
2783	struct cpufreq_policy *policy;
2784	unsigned long flags;
2785	int ret = 0;
2786
2787	if (cpufreq_driver->boost_enabled == state)
2788		return 0;
2789
2790	write_lock_irqsave(&cpufreq_driver_lock, flags);
2791	cpufreq_driver->boost_enabled = state;
2792	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2793
2794	cpus_read_lock();
2795	for_each_active_policy(policy) {
2796		policy->boost_enabled = state;
2797		ret = cpufreq_driver->set_boost(policy, state);
2798		if (ret) {
2799			policy->boost_enabled = !policy->boost_enabled;
2800			goto err_reset_state;
2801		}
2802	}
2803	cpus_read_unlock();
2804
2805	return 0;
2806
2807err_reset_state:
2808	cpus_read_unlock();
2809
2810	write_lock_irqsave(&cpufreq_driver_lock, flags);
2811	cpufreq_driver->boost_enabled = !state;
2812	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2813
2814	pr_err("%s: Cannot %s BOOST\n",
2815	       __func__, state ? "enable" : "disable");
2816
2817	return ret;
2818}
2819
2820static bool cpufreq_boost_supported(void)
2821{
2822	return cpufreq_driver->set_boost;
2823}
2824
2825static int create_boost_sysfs_file(void)
2826{
2827	int ret;
2828
2829	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2830	if (ret)
2831		pr_err("%s: cannot register global BOOST sysfs file\n",
2832		       __func__);
2833
2834	return ret;
2835}
2836
2837static void remove_boost_sysfs_file(void)
2838{
2839	if (cpufreq_boost_supported())
2840		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2841}
2842
2843int cpufreq_enable_boost_support(void)
2844{
2845	if (!cpufreq_driver)
2846		return -EINVAL;
2847
2848	if (cpufreq_boost_supported())
2849		return 0;
2850
2851	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2852
2853	/* This will get removed on driver unregister */
2854	return create_boost_sysfs_file();
2855}
2856EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2857
2858bool cpufreq_boost_enabled(void)
2859{
2860	return cpufreq_driver->boost_enabled;
2861}
2862EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2863
2864/*********************************************************************
2865 *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2866 *********************************************************************/
2867static enum cpuhp_state hp_online;
2868
2869static int cpuhp_cpufreq_online(unsigned int cpu)
2870{
2871	cpufreq_online(cpu);
2872
2873	return 0;
2874}
2875
2876static int cpuhp_cpufreq_offline(unsigned int cpu)
2877{
2878	cpufreq_offline(cpu);
2879
2880	return 0;
2881}
2882
2883/**
2884 * cpufreq_register_driver - register a CPU Frequency driver
2885 * @driver_data: A struct cpufreq_driver containing the values#
2886 * submitted by the CPU Frequency driver.
2887 *
2888 * Registers a CPU Frequency driver to this core code. This code
2889 * returns zero on success, -EEXIST when another driver got here first
2890 * (and isn't unregistered in the meantime).
2891 *
2892 */
2893int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2894{
2895	unsigned long flags;
2896	int ret;
2897
2898	if (cpufreq_disabled())
2899		return -ENODEV;
2900
2901	/*
2902	 * The cpufreq core depends heavily on the availability of device
2903	 * structure, make sure they are available before proceeding further.
2904	 */
2905	if (!get_cpu_device(0))
2906		return -EPROBE_DEFER;
2907
2908	if (!driver_data || !driver_data->verify || !driver_data->init ||
2909	    !(driver_data->setpolicy || driver_data->target_index ||
2910		    driver_data->target) ||
2911	     (driver_data->setpolicy && (driver_data->target_index ||
2912		    driver_data->target)) ||
2913	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2914	     (!driver_data->online != !driver_data->offline) ||
2915		 (driver_data->adjust_perf && !driver_data->fast_switch))
2916		return -EINVAL;
2917
2918	pr_debug("trying to register driver %s\n", driver_data->name);
2919
2920	/* Protect against concurrent CPU online/offline. */
2921	cpus_read_lock();
2922
2923	write_lock_irqsave(&cpufreq_driver_lock, flags);
2924	if (cpufreq_driver) {
2925		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2926		ret = -EEXIST;
2927		goto out;
2928	}
2929	cpufreq_driver = driver_data;
2930	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2931
2932	/*
2933	 * Mark support for the scheduler's frequency invariance engine for
2934	 * drivers that implement target(), target_index() or fast_switch().
2935	 */
2936	if (!cpufreq_driver->setpolicy) {
2937		static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2938		pr_debug("supports frequency invariance");
2939	}
2940
2941	if (driver_data->setpolicy)
2942		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2943
2944	if (cpufreq_boost_supported()) {
2945		ret = create_boost_sysfs_file();
2946		if (ret)
2947			goto err_null_driver;
 
2948	}
2949
2950	ret = subsys_interface_register(&cpufreq_interface);
2951	if (ret)
2952		goto err_boost_unreg;
2953
2954	if (unlikely(list_empty(&cpufreq_policy_list))) {
 
 
 
 
 
 
 
 
 
 
2955		/* if all ->init() calls failed, unregister */
2956		ret = -ENODEV;
2957		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2958			 driver_data->name);
2959		goto err_if_unreg;
 
2960	}
2961
2962	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2963						   "cpufreq:online",
2964						   cpuhp_cpufreq_online,
2965						   cpuhp_cpufreq_offline);
2966	if (ret < 0)
2967		goto err_if_unreg;
2968	hp_online = ret;
2969	ret = 0;
2970
2971	pr_debug("driver %s up and running\n", driver_data->name);
2972	goto out;
2973
 
2974err_if_unreg:
2975	subsys_interface_unregister(&cpufreq_interface);
2976err_boost_unreg:
2977	remove_boost_sysfs_file();
 
2978err_null_driver:
2979	write_lock_irqsave(&cpufreq_driver_lock, flags);
2980	cpufreq_driver = NULL;
2981	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2982out:
2983	cpus_read_unlock();
2984	return ret;
2985}
2986EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2987
2988/*
2989 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2990 *
2991 * Unregister the current CPUFreq driver. Only call this if you have
2992 * the right to do so, i.e. if you have succeeded in initialising before!
2993 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2994 * currently not initialised.
2995 */
2996void cpufreq_unregister_driver(struct cpufreq_driver *driver)
2997{
2998	unsigned long flags;
2999
3000	if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver)))
3001		return;
3002
3003	pr_debug("unregistering driver %s\n", driver->name);
3004
3005	/* Protect against concurrent cpu hotplug */
3006	cpus_read_lock();
3007	subsys_interface_unregister(&cpufreq_interface);
3008	remove_boost_sysfs_file();
3009	static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
3010	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
3011
 
 
 
3012	write_lock_irqsave(&cpufreq_driver_lock, flags);
3013
3014	cpufreq_driver = NULL;
3015
3016	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
3017	cpus_read_unlock();
 
 
3018}
3019EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
3020
3021static int __init cpufreq_core_init(void)
3022{
3023	struct cpufreq_governor *gov = cpufreq_default_governor();
3024	struct device *dev_root;
3025
3026	if (cpufreq_disabled())
3027		return -ENODEV;
3028
3029	dev_root = bus_get_dev_root(&cpu_subsys);
3030	if (dev_root) {
3031		cpufreq_global_kobject = kobject_create_and_add("cpufreq", &dev_root->kobj);
3032		put_device(dev_root);
3033	}
3034	BUG_ON(!cpufreq_global_kobject);
3035
3036	if (!strlen(default_governor))
3037		strscpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
3038
3039	return 0;
3040}
3041module_param(off, int, 0444);
3042module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
3043core_initcall(cpufreq_core_init);