Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 * blkfront.c
   3 *
   4 * XenLinux virtual block device driver.
   5 *
   6 * Copyright (c) 2003-2004, Keir Fraser & Steve Hand
   7 * Modifications by Mark A. Williamson are (c) Intel Research Cambridge
   8 * Copyright (c) 2004, Christian Limpach
   9 * Copyright (c) 2004, Andrew Warfield
  10 * Copyright (c) 2005, Christopher Clark
  11 * Copyright (c) 2005, XenSource Ltd
  12 *
  13 * This program is free software; you can redistribute it and/or
  14 * modify it under the terms of the GNU General Public License version 2
  15 * as published by the Free Software Foundation; or, when distributed
  16 * separately from the Linux kernel or incorporated into other
  17 * software packages, subject to the following license:
  18 *
  19 * Permission is hereby granted, free of charge, to any person obtaining a copy
  20 * of this source file (the "Software"), to deal in the Software without
  21 * restriction, including without limitation the rights to use, copy, modify,
  22 * merge, publish, distribute, sublicense, and/or sell copies of the Software,
  23 * and to permit persons to whom the Software is furnished to do so, subject to
  24 * the following conditions:
  25 *
  26 * The above copyright notice and this permission notice shall be included in
  27 * all copies or substantial portions of the Software.
  28 *
  29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  30 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  31 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  32 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  33 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  34 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  35 * IN THE SOFTWARE.
  36 */
  37
  38#include <linux/interrupt.h>
  39#include <linux/blkdev.h>
 
  40#include <linux/hdreg.h>
  41#include <linux/cdrom.h>
  42#include <linux/module.h>
  43#include <linux/slab.h>
 
  44#include <linux/mutex.h>
  45#include <linux/scatterlist.h>
  46#include <linux/bitmap.h>
  47#include <linux/list.h>
 
 
  48
  49#include <xen/xen.h>
  50#include <xen/xenbus.h>
  51#include <xen/grant_table.h>
  52#include <xen/events.h>
  53#include <xen/page.h>
  54#include <xen/platform_pci.h>
  55
  56#include <xen/interface/grant_table.h>
  57#include <xen/interface/io/blkif.h>
  58#include <xen/interface/io/protocols.h>
  59
  60#include <asm/xen/hypervisor.h>
  61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  62enum blkif_state {
  63	BLKIF_STATE_DISCONNECTED,
  64	BLKIF_STATE_CONNECTED,
  65	BLKIF_STATE_SUSPENDED,
 
  66};
  67
  68struct grant {
  69	grant_ref_t gref;
  70	unsigned long pfn;
  71	struct list_head node;
  72};
  73
 
 
 
 
 
 
 
 
  74struct blk_shadow {
  75	struct blkif_request req;
  76	struct request *request;
  77	struct grant **grants_used;
  78	struct grant **indirect_grants;
  79	struct scatterlist *sg;
 
 
 
 
 
 
 
 
 
  80};
  81
  82struct split_bio {
  83	struct bio *bio;
  84	atomic_t pending;
  85	int err;
  86};
  87
 
 
 
 
 
  88static DEFINE_MUTEX(blkfront_mutex);
  89static const struct block_device_operations xlvbd_block_fops;
 
 
  90
  91/*
  92 * Maximum number of segments in indirect requests, the actual value used by
  93 * the frontend driver is the minimum of this value and the value provided
  94 * by the backend driver.
  95 */
  96
  97static unsigned int xen_blkif_max_segments = 32;
  98module_param_named(max, xen_blkif_max_segments, int, S_IRUGO);
  99MODULE_PARM_DESC(max, "Maximum amount of segments in indirect requests (default is 32)");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 100
 101#define BLK_RING_SIZE __CONST_RING_SIZE(blkif, PAGE_SIZE)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 102
 103/*
 104 * We have one of these per vbd, whether ide, scsi or 'other'.  They
 105 * hang in private_data off the gendisk structure. We may end up
 106 * putting all kinds of interesting stuff here :-)
 107 */
 108struct blkfront_info
 109{
 110	spinlock_t io_lock;
 111	struct mutex mutex;
 112	struct xenbus_device *xbdev;
 113	struct gendisk *gd;
 
 
 
 114	int vdevice;
 115	blkif_vdev_t handle;
 116	enum blkif_state connected;
 117	int ring_ref;
 118	struct blkif_front_ring ring;
 119	unsigned int evtchn, irq;
 120	struct request_queue *rq;
 121	struct work_struct work;
 122	struct gnttab_free_callback callback;
 123	struct blk_shadow shadow[BLK_RING_SIZE];
 124	struct list_head grants;
 125	struct list_head indirect_pages;
 126	unsigned int persistent_gnts_c;
 127	unsigned long shadow_free;
 128	unsigned int feature_flush;
 129	unsigned int flush_op;
 130	unsigned int feature_discard:1;
 131	unsigned int feature_secdiscard:1;
 
 
 
 
 
 132	unsigned int discard_granularity;
 133	unsigned int discard_alignment;
 134	unsigned int feature_persistent:1;
 135	unsigned int max_indirect_segments;
 136	int is_ready;
 
 
 
 
 
 
 
 
 137};
 138
 139static unsigned int nr_minors;
 140static unsigned long *minors;
 141static DEFINE_SPINLOCK(minor_lock);
 142
 143#define MAXIMUM_OUTSTANDING_BLOCK_REQS \
 144	(BLKIF_MAX_SEGMENTS_PER_REQUEST * BLK_RING_SIZE)
 145#define GRANT_INVALID_REF	0
 146
 147#define PARTS_PER_DISK		16
 148#define PARTS_PER_EXT_DISK      256
 149
 150#define BLKIF_MAJOR(dev) ((dev)>>8)
 151#define BLKIF_MINOR(dev) ((dev) & 0xff)
 152
 153#define EXT_SHIFT 28
 154#define EXTENDED (1<<EXT_SHIFT)
 155#define VDEV_IS_EXTENDED(dev) ((dev)&(EXTENDED))
 156#define BLKIF_MINOR_EXT(dev) ((dev)&(~EXTENDED))
 157#define EMULATED_HD_DISK_MINOR_OFFSET (0)
 158#define EMULATED_HD_DISK_NAME_OFFSET (EMULATED_HD_DISK_MINOR_OFFSET / 256)
 159#define EMULATED_SD_DISK_MINOR_OFFSET (0)
 160#define EMULATED_SD_DISK_NAME_OFFSET (EMULATED_SD_DISK_MINOR_OFFSET / 256)
 161
 162#define DEV_NAME	"xvd"	/* name in /dev */
 163
 164#define SEGS_PER_INDIRECT_FRAME \
 165	(PAGE_SIZE/sizeof(struct blkif_request_segment))
 166#define INDIRECT_GREFS(_segs) \
 167	((_segs + SEGS_PER_INDIRECT_FRAME - 1)/SEGS_PER_INDIRECT_FRAME)
 168
 169static int blkfront_setup_indirect(struct blkfront_info *info);
 170
 171static int get_id_from_freelist(struct blkfront_info *info)
 172{
 173	unsigned long free = info->shadow_free;
 174	BUG_ON(free >= BLK_RING_SIZE);
 175	info->shadow_free = info->shadow[free].req.u.rw.id;
 176	info->shadow[free].req.u.rw.id = 0x0fffffee; /* debug */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 177	return free;
 178}
 179
 180static int add_id_to_freelist(struct blkfront_info *info,
 181			       unsigned long id)
 182{
 183	if (info->shadow[id].req.u.rw.id != id)
 184		return -EINVAL;
 185	if (info->shadow[id].request == NULL)
 186		return -EINVAL;
 187	info->shadow[id].req.u.rw.id  = info->shadow_free;
 188	info->shadow[id].request = NULL;
 189	info->shadow_free = id;
 190	return 0;
 191}
 192
 193static int fill_grant_buffer(struct blkfront_info *info, int num)
 194{
 
 195	struct page *granted_page;
 196	struct grant *gnt_list_entry, *n;
 197	int i = 0;
 198
 199	while(i < num) {
 200		gnt_list_entry = kzalloc(sizeof(struct grant), GFP_NOIO);
 201		if (!gnt_list_entry)
 202			goto out_of_memory;
 203
 204		if (info->feature_persistent) {
 205			granted_page = alloc_page(GFP_NOIO);
 206			if (!granted_page) {
 207				kfree(gnt_list_entry);
 208				goto out_of_memory;
 209			}
 210			gnt_list_entry->pfn = page_to_pfn(granted_page);
 211		}
 212
 213		gnt_list_entry->gref = GRANT_INVALID_REF;
 214		list_add(&gnt_list_entry->node, &info->grants);
 215		i++;
 216	}
 217
 218	return 0;
 219
 220out_of_memory:
 221	list_for_each_entry_safe(gnt_list_entry, n,
 222	                         &info->grants, node) {
 223		list_del(&gnt_list_entry->node);
 224		if (info->feature_persistent)
 225			__free_page(pfn_to_page(gnt_list_entry->pfn));
 226		kfree(gnt_list_entry);
 227		i--;
 228	}
 229	BUG_ON(i != 0);
 230	return -ENOMEM;
 231}
 232
 233static struct grant *get_grant(grant_ref_t *gref_head,
 234                               unsigned long pfn,
 235                               struct blkfront_info *info)
 236{
 237	struct grant *gnt_list_entry;
 238	unsigned long buffer_mfn;
 239
 240	BUG_ON(list_empty(&info->grants));
 241	gnt_list_entry = list_first_entry(&info->grants, struct grant,
 242	                                  node);
 243	list_del(&gnt_list_entry->node);
 244
 245	if (gnt_list_entry->gref != GRANT_INVALID_REF) {
 246		info->persistent_gnts_c--;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 247		return gnt_list_entry;
 
 
 
 
 
 
 
 
 
 
 
 248	}
 249
 
 
 
 
 
 
 
 
 
 
 
 
 250	/* Assign a gref to this page */
 251	gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
 252	BUG_ON(gnt_list_entry->gref == -ENOSPC);
 253	if (!info->feature_persistent) {
 254		BUG_ON(!pfn);
 255		gnt_list_entry->pfn = pfn;
 256	}
 257	buffer_mfn = pfn_to_mfn(gnt_list_entry->pfn);
 258	gnttab_grant_foreign_access_ref(gnt_list_entry->gref,
 259	                                info->xbdev->otherend_id,
 260	                                buffer_mfn, 0);
 
 
 
 
 261	return gnt_list_entry;
 262}
 263
 264static const char *op_name(int op)
 265{
 266	static const char *const names[] = {
 267		[BLKIF_OP_READ] = "read",
 268		[BLKIF_OP_WRITE] = "write",
 269		[BLKIF_OP_WRITE_BARRIER] = "barrier",
 270		[BLKIF_OP_FLUSH_DISKCACHE] = "flush",
 271		[BLKIF_OP_DISCARD] = "discard" };
 272
 273	if (op < 0 || op >= ARRAY_SIZE(names))
 274		return "unknown";
 275
 276	if (!names[op])
 277		return "reserved";
 278
 279	return names[op];
 280}
 281static int xlbd_reserve_minors(unsigned int minor, unsigned int nr)
 282{
 283	unsigned int end = minor + nr;
 284	int rc;
 285
 286	if (end > nr_minors) {
 287		unsigned long *bitmap, *old;
 288
 289		bitmap = kcalloc(BITS_TO_LONGS(end), sizeof(*bitmap),
 290				 GFP_KERNEL);
 291		if (bitmap == NULL)
 292			return -ENOMEM;
 293
 294		spin_lock(&minor_lock);
 295		if (end > nr_minors) {
 296			old = minors;
 297			memcpy(bitmap, minors,
 298			       BITS_TO_LONGS(nr_minors) * sizeof(*bitmap));
 299			minors = bitmap;
 300			nr_minors = BITS_TO_LONGS(end) * BITS_PER_LONG;
 301		} else
 302			old = bitmap;
 303		spin_unlock(&minor_lock);
 304		kfree(old);
 305	}
 306
 307	spin_lock(&minor_lock);
 308	if (find_next_bit(minors, end, minor) >= end) {
 309		bitmap_set(minors, minor, nr);
 310		rc = 0;
 311	} else
 312		rc = -EBUSY;
 313	spin_unlock(&minor_lock);
 314
 315	return rc;
 316}
 317
 318static void xlbd_release_minors(unsigned int minor, unsigned int nr)
 319{
 320	unsigned int end = minor + nr;
 321
 322	BUG_ON(end > nr_minors);
 323	spin_lock(&minor_lock);
 324	bitmap_clear(minors,  minor, nr);
 325	spin_unlock(&minor_lock);
 326}
 327
 328static void blkif_restart_queue_callback(void *arg)
 329{
 330	struct blkfront_info *info = (struct blkfront_info *)arg;
 331	schedule_work(&info->work);
 332}
 333
 334static int blkif_getgeo(struct block_device *bd, struct hd_geometry *hg)
 335{
 336	/* We don't have real geometry info, but let's at least return
 337	   values consistent with the size of the device */
 338	sector_t nsect = get_capacity(bd->bd_disk);
 339	sector_t cylinders = nsect;
 340
 341	hg->heads = 0xff;
 342	hg->sectors = 0x3f;
 343	sector_div(cylinders, hg->heads * hg->sectors);
 344	hg->cylinders = cylinders;
 345	if ((sector_t)(hg->cylinders + 1) * hg->heads * hg->sectors < nsect)
 346		hg->cylinders = 0xffff;
 347	return 0;
 348}
 349
 350static int blkif_ioctl(struct block_device *bdev, fmode_t mode,
 351		       unsigned command, unsigned long argument)
 352{
 353	struct blkfront_info *info = bdev->bd_disk->private_data;
 354	int i;
 355
 356	dev_dbg(&info->xbdev->dev, "command: 0x%x, argument: 0x%lx\n",
 357		command, (long)argument);
 358
 359	switch (command) {
 360	case CDROMMULTISESSION:
 361		dev_dbg(&info->xbdev->dev, "FIXME: support multisession CDs later\n");
 362		for (i = 0; i < sizeof(struct cdrom_multisession); i++)
 363			if (put_user(0, (char __user *)(argument + i)))
 364				return -EFAULT;
 365		return 0;
 366
 367	case CDROM_GET_CAPABILITY: {
 368		struct gendisk *gd = info->gd;
 369		if (gd->flags & GENHD_FL_CD)
 370			return 0;
 371		return -EINVAL;
 372	}
 
 373
 374	default:
 375		/*printk(KERN_ALERT "ioctl %08x not supported by Xen blkdev\n",
 376		  command);*/
 377		return -EINVAL; /* same return as native Linux */
 378	}
 379
 380	return 0;
 
 
 
 
 
 
 
 
 
 
 381}
 382
 383/*
 384 * Generate a Xen blkfront IO request from a blk layer request.  Reads
 385 * and writes are handled as expected.
 386 *
 387 * @req: a request struct
 388 */
 389static int blkif_queue_request(struct request *req)
 390{
 391	struct blkfront_info *info = req->rq_disk->private_data;
 392	struct blkif_request *ring_req;
 393	unsigned long id;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 394	unsigned int fsect, lsect;
 395	int i, ref, n;
 396	struct blkif_request_segment *segments = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 397
 398	/*
 399	 * Used to store if we are able to queue the request by just using
 400	 * existing persistent grants, or if we have to get new grants,
 401	 * as there are not sufficiently many free.
 402	 */
 403	bool new_persistent_gnts;
 404	grant_ref_t gref_head;
 405	struct grant *gnt_list_entry = NULL;
 406	struct scatterlist *sg;
 407	int nseg, max_grefs;
 408
 409	if (unlikely(info->connected != BLKIF_STATE_CONNECTED))
 410		return 1;
 411
 412	max_grefs = req->nr_phys_segments;
 413	if (max_grefs > BLKIF_MAX_SEGMENTS_PER_REQUEST)
 414		/*
 415		 * If we are using indirect segments we need to account
 416		 * for the indirect grefs used in the request.
 417		 */
 418		max_grefs += INDIRECT_GREFS(req->nr_phys_segments);
 
 
 
 
 419
 420	/* Check if we have enough grants to allocate a requests */
 421	if (info->persistent_gnts_c < max_grefs) {
 422		new_persistent_gnts = 1;
 423		if (gnttab_alloc_grant_references(
 424		    max_grefs - info->persistent_gnts_c,
 425		    &gref_head) < 0) {
 426			gnttab_request_free_callback(
 427				&info->callback,
 428				blkif_restart_queue_callback,
 429				info,
 430				max_grefs);
 431			return 1;
 432		}
 433	} else
 434		new_persistent_gnts = 0;
 435
 436	/* Fill out a communications ring structure. */
 437	ring_req = RING_GET_REQUEST(&info->ring, info->ring.req_prod_pvt);
 438	id = get_id_from_freelist(info);
 439	info->shadow[id].request = req;
 440
 441	if (unlikely(req->cmd_flags & (REQ_DISCARD | REQ_SECURE))) {
 442		ring_req->operation = BLKIF_OP_DISCARD;
 443		ring_req->u.discard.nr_sectors = blk_rq_sectors(req);
 444		ring_req->u.discard.id = id;
 445		ring_req->u.discard.sector_number = (blkif_sector_t)blk_rq_pos(req);
 446		if ((req->cmd_flags & REQ_SECURE) && info->feature_secdiscard)
 447			ring_req->u.discard.flag = BLKIF_DISCARD_SECURE;
 448		else
 449			ring_req->u.discard.flag = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 450	} else {
 451		BUG_ON(info->max_indirect_segments == 0 &&
 452		       req->nr_phys_segments > BLKIF_MAX_SEGMENTS_PER_REQUEST);
 453		BUG_ON(info->max_indirect_segments &&
 454		       req->nr_phys_segments > info->max_indirect_segments);
 455		nseg = blk_rq_map_sg(req->q, req, info->shadow[id].sg);
 456		ring_req->u.rw.id = id;
 457		if (nseg > BLKIF_MAX_SEGMENTS_PER_REQUEST) {
 458			/*
 459			 * The indirect operation can only be a BLKIF_OP_READ or
 460			 * BLKIF_OP_WRITE
 
 
 
 
 
 
 
 
 461			 */
 462			BUG_ON(req->cmd_flags & (REQ_FLUSH | REQ_FUA));
 463			ring_req->operation = BLKIF_OP_INDIRECT;
 464			ring_req->u.indirect.indirect_op = rq_data_dir(req) ?
 465				BLKIF_OP_WRITE : BLKIF_OP_READ;
 466			ring_req->u.indirect.sector_number = (blkif_sector_t)blk_rq_pos(req);
 467			ring_req->u.indirect.handle = info->handle;
 468			ring_req->u.indirect.nr_segments = nseg;
 469		} else {
 470			ring_req->u.rw.sector_number = (blkif_sector_t)blk_rq_pos(req);
 471			ring_req->u.rw.handle = info->handle;
 472			ring_req->operation = rq_data_dir(req) ?
 473				BLKIF_OP_WRITE : BLKIF_OP_READ;
 474			if (req->cmd_flags & (REQ_FLUSH | REQ_FUA)) {
 475				/*
 476				 * Ideally we can do an unordered flush-to-disk. In case the
 477				 * backend onlysupports barriers, use that. A barrier request
 478				 * a superset of FUA, so we can implement it the same
 479				 * way.  (It's also a FLUSH+FUA, since it is
 480				 * guaranteed ordered WRT previous writes.)
 481				 */
 482				ring_req->operation = info->flush_op;
 483			}
 484			ring_req->u.rw.nr_segments = nseg;
 485		}
 486		for_each_sg(info->shadow[id].sg, sg, nseg, i) {
 487			fsect = sg->offset >> 9;
 488			lsect = fsect + (sg->length >> 9) - 1;
 489
 490			if ((ring_req->operation == BLKIF_OP_INDIRECT) &&
 491			    (i % SEGS_PER_INDIRECT_FRAME == 0)) {
 492				unsigned long uninitialized_var(pfn);
 493
 494				if (segments)
 495					kunmap_atomic(segments);
 496
 497				n = i / SEGS_PER_INDIRECT_FRAME;
 498				if (!info->feature_persistent) {
 499					struct page *indirect_page;
 
 
 500
 501					/* Fetch a pre-allocated page to use for indirect grefs */
 502					BUG_ON(list_empty(&info->indirect_pages));
 503					indirect_page = list_first_entry(&info->indirect_pages,
 504					                                 struct page, lru);
 505					list_del(&indirect_page->lru);
 506					pfn = page_to_pfn(indirect_page);
 507				}
 508				gnt_list_entry = get_grant(&gref_head, pfn, info);
 509				info->shadow[id].indirect_grants[n] = gnt_list_entry;
 510				segments = kmap_atomic(pfn_to_page(gnt_list_entry->pfn));
 511				ring_req->u.indirect.indirect_grefs[n] = gnt_list_entry->gref;
 512			}
 513
 514			gnt_list_entry = get_grant(&gref_head, page_to_pfn(sg_page(sg)), info);
 515			ref = gnt_list_entry->gref;
 
 
 
 516
 517			info->shadow[id].grants_used[i] = gnt_list_entry;
 
 518
 519			if (rq_data_dir(req) && info->feature_persistent) {
 520				char *bvec_data;
 521				void *shared_data;
 522
 523				BUG_ON(sg->offset + sg->length > PAGE_SIZE);
 
 524
 525				shared_data = kmap_atomic(pfn_to_page(gnt_list_entry->pfn));
 526				bvec_data = kmap_atomic(sg_page(sg));
 
 
 527
 528				/*
 529				 * this does not wipe data stored outside the
 530				 * range sg->offset..sg->offset+sg->length.
 531				 * Therefore, blkback *could* see data from
 532				 * previous requests. This is OK as long as
 533				 * persistent grants are shared with just one
 534				 * domain. It may need refactoring if this
 535				 * changes
 536				 */
 537				memcpy(shared_data + sg->offset,
 538				       bvec_data   + sg->offset,
 539				       sg->length);
 540
 541				kunmap_atomic(bvec_data);
 542				kunmap_atomic(shared_data);
 543			}
 544			if (ring_req->operation != BLKIF_OP_INDIRECT) {
 545				ring_req->u.rw.seg[i] =
 546						(struct blkif_request_segment) {
 547							.gref       = ref,
 548							.first_sect = fsect,
 549							.last_sect  = lsect };
 550			} else {
 551				n = i % SEGS_PER_INDIRECT_FRAME;
 552				segments[n] =
 553					(struct blkif_request_segment) {
 554							.gref       = ref,
 555							.first_sect = fsect,
 556							.last_sect  = lsect };
 557			}
 558		}
 559		if (segments)
 560			kunmap_atomic(segments);
 561	}
 
 
 562
 563	info->ring.req_prod_pvt++;
 564
 565	/* Keep a private copy so we can reissue requests when recovering. */
 566	info->shadow[id].req = *ring_req;
 
 
 
 567
 568	if (new_persistent_gnts)
 569		gnttab_free_grant_references(gref_head);
 570
 571	return 0;
 572}
 573
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 574
 575static inline void flush_requests(struct blkfront_info *info)
 576{
 577	int notify;
 578
 579	RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&info->ring, notify);
 580
 581	if (notify)
 582		notify_remote_via_irq(info->irq);
 583}
 584
 585/*
 586 * do_blkif_request
 587 *  read a block; request is in a request queue
 588 */
 589static void do_blkif_request(struct request_queue *rq)
 590{
 591	struct blkfront_info *info = NULL;
 592	struct request *req;
 593	int queued;
 594
 595	pr_debug("Entered do_blkif_request\n");
 596
 597	queued = 0;
 598
 599	while ((req = blk_peek_request(rq)) != NULL) {
 600		info = req->rq_disk->private_data;
 601
 602		if (RING_FULL(&info->ring))
 603			goto wait;
 604
 605		blk_start_request(req);
 
 
 
 
 
 
 
 
 
 
 
 606
 607		if ((req->cmd_type != REQ_TYPE_FS) ||
 608		    ((req->cmd_flags & (REQ_FLUSH | REQ_FUA)) &&
 609		    !info->flush_op)) {
 610			__blk_end_request_all(req, -EIO);
 611			continue;
 612		}
 613
 614		pr_debug("do_blk_req %p: cmd %p, sec %lx, "
 615			 "(%u/%u) buffer:%p [%s]\n",
 616			 req, req->cmd, (unsigned long)blk_rq_pos(req),
 617			 blk_rq_cur_sectors(req), blk_rq_sectors(req),
 618			 req->buffer, rq_data_dir(req) ? "write" : "read");
 619
 620		if (blkif_queue_request(req)) {
 621			blk_requeue_request(rq, req);
 622wait:
 623			/* Avoid pointless unplugs. */
 624			blk_stop_queue(rq);
 625			break;
 626		}
 627
 628		queued++;
 629	}
 630
 631	if (queued != 0)
 632		flush_requests(info);
 
 
 
 633}
 634
 635static int xlvbd_init_blk_queue(struct gendisk *gd, u16 sector_size,
 636				unsigned int physical_sector_size,
 637				unsigned int segments)
 638{
 639	struct request_queue *rq;
 640	struct blkfront_info *info = gd->private_data;
 641
 642	rq = blk_init_queue(do_blkif_request, &info->io_lock);
 643	if (rq == NULL)
 644		return -1;
 
 645
 646	queue_flag_set_unlocked(QUEUE_FLAG_VIRT, rq);
 
 
 
 
 647
 648	if (info->feature_discard) {
 649		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, rq);
 650		blk_queue_max_discard_sectors(rq, get_capacity(gd));
 651		rq->limits.discard_granularity = info->discard_granularity;
 652		rq->limits.discard_alignment = info->discard_alignment;
 653		if (info->feature_secdiscard)
 654			queue_flag_set_unlocked(QUEUE_FLAG_SECDISCARD, rq);
 
 
 
 
 
 
 655	}
 656
 657	/* Hard sector size and max sectors impersonate the equiv. hardware. */
 658	blk_queue_logical_block_size(rq, sector_size);
 659	blk_queue_physical_block_size(rq, physical_sector_size);
 660	blk_queue_max_hw_sectors(rq, (segments * PAGE_SIZE) / 512);
 661
 662	/* Each segment in a request is up to an aligned page in size. */
 663	blk_queue_segment_boundary(rq, PAGE_SIZE - 1);
 664	blk_queue_max_segment_size(rq, PAGE_SIZE);
 665
 666	/* Ensure a merged request will fit in a single I/O ring slot. */
 667	blk_queue_max_segments(rq, segments);
 668
 669	/* Make sure buffer addresses are sector-aligned. */
 670	blk_queue_dma_alignment(rq, 511);
 671
 672	/* Make sure we don't use bounce buffers. */
 673	blk_queue_bounce_limit(rq, BLK_BOUNCE_ANY);
 674
 675	gd->queue = rq;
 676
 677	return 0;
 678}
 679
 
 
 
 
 
 
 
 
 
 680
 681static void xlvbd_flush(struct blkfront_info *info)
 682{
 683	blk_queue_flush(info->rq, info->feature_flush);
 684	printk(KERN_INFO "blkfront: %s: %s: %s %s %s %s %s\n",
 685	       info->gd->disk_name,
 686	       info->flush_op == BLKIF_OP_WRITE_BARRIER ?
 687		"barrier" : (info->flush_op == BLKIF_OP_FLUSH_DISKCACHE ?
 688		"flush diskcache" : "barrier or flush"),
 689	       info->feature_flush ? "enabled;" : "disabled;",
 690	       "persistent grants:",
 691	       info->feature_persistent ? "enabled;" : "disabled;",
 692	       "indirect descriptors:",
 693	       info->max_indirect_segments ? "enabled;" : "disabled;");
 694}
 695
 696static int xen_translate_vdev(int vdevice, int *minor, unsigned int *offset)
 697{
 698	int major;
 699	major = BLKIF_MAJOR(vdevice);
 700	*minor = BLKIF_MINOR(vdevice);
 701	switch (major) {
 702		case XEN_IDE0_MAJOR:
 703			*offset = (*minor / 64) + EMULATED_HD_DISK_NAME_OFFSET;
 704			*minor = ((*minor / 64) * PARTS_PER_DISK) +
 705				EMULATED_HD_DISK_MINOR_OFFSET;
 706			break;
 707		case XEN_IDE1_MAJOR:
 708			*offset = (*minor / 64) + 2 + EMULATED_HD_DISK_NAME_OFFSET;
 709			*minor = (((*minor / 64) + 2) * PARTS_PER_DISK) +
 710				EMULATED_HD_DISK_MINOR_OFFSET;
 711			break;
 712		case XEN_SCSI_DISK0_MAJOR:
 713			*offset = (*minor / PARTS_PER_DISK) + EMULATED_SD_DISK_NAME_OFFSET;
 714			*minor = *minor + EMULATED_SD_DISK_MINOR_OFFSET;
 715			break;
 716		case XEN_SCSI_DISK1_MAJOR:
 717		case XEN_SCSI_DISK2_MAJOR:
 718		case XEN_SCSI_DISK3_MAJOR:
 719		case XEN_SCSI_DISK4_MAJOR:
 720		case XEN_SCSI_DISK5_MAJOR:
 721		case XEN_SCSI_DISK6_MAJOR:
 722		case XEN_SCSI_DISK7_MAJOR:
 723			*offset = (*minor / PARTS_PER_DISK) + 
 724				((major - XEN_SCSI_DISK1_MAJOR + 1) * 16) +
 725				EMULATED_SD_DISK_NAME_OFFSET;
 726			*minor = *minor +
 727				((major - XEN_SCSI_DISK1_MAJOR + 1) * 16 * PARTS_PER_DISK) +
 728				EMULATED_SD_DISK_MINOR_OFFSET;
 729			break;
 730		case XEN_SCSI_DISK8_MAJOR:
 731		case XEN_SCSI_DISK9_MAJOR:
 732		case XEN_SCSI_DISK10_MAJOR:
 733		case XEN_SCSI_DISK11_MAJOR:
 734		case XEN_SCSI_DISK12_MAJOR:
 735		case XEN_SCSI_DISK13_MAJOR:
 736		case XEN_SCSI_DISK14_MAJOR:
 737		case XEN_SCSI_DISK15_MAJOR:
 738			*offset = (*minor / PARTS_PER_DISK) + 
 739				((major - XEN_SCSI_DISK8_MAJOR + 8) * 16) +
 740				EMULATED_SD_DISK_NAME_OFFSET;
 741			*minor = *minor +
 742				((major - XEN_SCSI_DISK8_MAJOR + 8) * 16 * PARTS_PER_DISK) +
 743				EMULATED_SD_DISK_MINOR_OFFSET;
 744			break;
 745		case XENVBD_MAJOR:
 746			*offset = *minor / PARTS_PER_DISK;
 747			break;
 748		default:
 749			printk(KERN_WARNING "blkfront: your disk configuration is "
 750					"incorrect, please use an xvd device instead\n");
 751			return -ENODEV;
 752	}
 753	return 0;
 754}
 755
 756static char *encode_disk_name(char *ptr, unsigned int n)
 757{
 758	if (n >= 26)
 759		ptr = encode_disk_name(ptr, n / 26 - 1);
 760	*ptr = 'a' + n % 26;
 761	return ptr + 1;
 762}
 763
 764static int xlvbd_alloc_gendisk(blkif_sector_t capacity,
 765			       struct blkfront_info *info,
 766			       u16 vdisk_info, u16 sector_size,
 767			       unsigned int physical_sector_size)
 768{
 
 769	struct gendisk *gd;
 770	int nr_minors = 1;
 771	int err;
 772	unsigned int offset;
 773	int minor;
 774	int nr_parts;
 775	char *ptr;
 776
 777	BUG_ON(info->gd != NULL);
 778	BUG_ON(info->rq != NULL);
 779
 780	if ((info->vdevice>>EXT_SHIFT) > 1) {
 781		/* this is above the extended range; something is wrong */
 782		printk(KERN_WARNING "blkfront: vdevice 0x%x is above the extended range; ignoring\n", info->vdevice);
 783		return -ENODEV;
 784	}
 785
 786	if (!VDEV_IS_EXTENDED(info->vdevice)) {
 787		err = xen_translate_vdev(info->vdevice, &minor, &offset);
 788		if (err)
 789			return err;		
 790 		nr_parts = PARTS_PER_DISK;
 791	} else {
 792		minor = BLKIF_MINOR_EXT(info->vdevice);
 793		nr_parts = PARTS_PER_EXT_DISK;
 794		offset = minor / nr_parts;
 795		if (xen_hvm_domain() && offset < EMULATED_HD_DISK_NAME_OFFSET + 4)
 796			printk(KERN_WARNING "blkfront: vdevice 0x%x might conflict with "
 797					"emulated IDE disks,\n\t choose an xvd device name"
 798					"from xvde on\n", info->vdevice);
 799	}
 800	if (minor >> MINORBITS) {
 801		pr_warn("blkfront: %#x's minor (%#x) out of range; ignoring\n",
 802			info->vdevice, minor);
 803		return -ENODEV;
 804	}
 805
 806	if ((minor % nr_parts) == 0)
 807		nr_minors = nr_parts;
 808
 809	err = xlbd_reserve_minors(minor, nr_minors);
 810	if (err)
 811		goto out;
 812	err = -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 813
 814	gd = alloc_disk(nr_minors);
 815	if (gd == NULL)
 816		goto release;
 
 
 
 817
 818	strcpy(gd->disk_name, DEV_NAME);
 819	ptr = encode_disk_name(gd->disk_name + sizeof(DEV_NAME) - 1, offset);
 820	BUG_ON(ptr >= gd->disk_name + DISK_NAME_LEN);
 821	if (nr_minors > 1)
 822		*ptr = 0;
 823	else
 824		snprintf(ptr, gd->disk_name + DISK_NAME_LEN - ptr,
 825			 "%d", minor & (nr_parts - 1));
 826
 827	gd->major = XENVBD_MAJOR;
 828	gd->first_minor = minor;
 
 829	gd->fops = &xlvbd_block_fops;
 830	gd->private_data = info;
 831	gd->driverfs_dev = &(info->xbdev->dev);
 832	set_capacity(gd, capacity);
 833
 834	if (xlvbd_init_blk_queue(gd, sector_size, physical_sector_size,
 835				 info->max_indirect_segments ? :
 836				 BLKIF_MAX_SEGMENTS_PER_REQUEST)) {
 837		del_gendisk(gd);
 838		goto release;
 839	}
 840
 841	info->rq = gd->queue;
 842	info->gd = gd;
 843
 844	xlvbd_flush(info);
 845
 846	if (vdisk_info & VDISK_READONLY)
 847		set_disk_ro(gd, 1);
 848
 849	if (vdisk_info & VDISK_REMOVABLE)
 850		gd->flags |= GENHD_FL_REMOVABLE;
 851
 852	if (vdisk_info & VDISK_CDROM)
 853		gd->flags |= GENHD_FL_CD;
 854
 855	return 0;
 856
 857 release:
 
 
 858	xlbd_release_minors(minor, nr_minors);
 859 out:
 860	return err;
 861}
 862
 863static void xlvbd_release_gendisk(struct blkfront_info *info)
 
 864{
 865	unsigned int minor, nr_minors;
 866	unsigned long flags;
 867
 868	if (info->rq == NULL)
 869		return;
 870
 871	spin_lock_irqsave(&info->io_lock, flags);
 872
 873	/* No more blkif_request(). */
 874	blk_stop_queue(info->rq);
 875
 876	/* No more gnttab callback work. */
 877	gnttab_cancel_free_callback(&info->callback);
 878	spin_unlock_irqrestore(&info->io_lock, flags);
 879
 880	/* Flush gnttab callback work. Must be done with no locks held. */
 881	flush_work(&info->work);
 882
 883	del_gendisk(info->gd);
 884
 885	minor = info->gd->first_minor;
 886	nr_minors = info->gd->minors;
 887	xlbd_release_minors(minor, nr_minors);
 888
 889	blk_cleanup_queue(info->rq);
 890	info->rq = NULL;
 891
 892	put_disk(info->gd);
 893	info->gd = NULL;
 894}
 895
 896static void kick_pending_request_queues(struct blkfront_info *info)
 897{
 898	if (!RING_FULL(&info->ring)) {
 899		/* Re-enable calldowns. */
 900		blk_start_queue(info->rq);
 901		/* Kick things off immediately. */
 902		do_blkif_request(info->rq);
 903	}
 904}
 905
 906static void blkif_restart_queue(struct work_struct *work)
 907{
 908	struct blkfront_info *info = container_of(work, struct blkfront_info, work);
 909
 910	spin_lock_irq(&info->io_lock);
 911	if (info->connected == BLKIF_STATE_CONNECTED)
 912		kick_pending_request_queues(info);
 913	spin_unlock_irq(&info->io_lock);
 914}
 915
 916static void blkif_free(struct blkfront_info *info, int suspend)
 917{
 918	struct grant *persistent_gnt;
 919	struct grant *n;
 920	int i, j, segs;
 921
 922	/* Prevent new requests being issued until we fix things up. */
 923	spin_lock_irq(&info->io_lock);
 924	info->connected = suspend ?
 925		BLKIF_STATE_SUSPENDED : BLKIF_STATE_DISCONNECTED;
 926	/* No more blkif_request(). */
 927	if (info->rq)
 928		blk_stop_queue(info->rq);
 929
 930	/* Remove all persistent grants */
 931	if (!list_empty(&info->grants)) {
 932		list_for_each_entry_safe(persistent_gnt, n,
 933		                         &info->grants, node) {
 934			list_del(&persistent_gnt->node);
 935			if (persistent_gnt->gref != GRANT_INVALID_REF) {
 936				gnttab_end_foreign_access(persistent_gnt->gref,
 937				                          0, 0UL);
 938				info->persistent_gnts_c--;
 939			}
 940			if (info->feature_persistent)
 941				__free_page(pfn_to_page(persistent_gnt->pfn));
 942			kfree(persistent_gnt);
 943		}
 944	}
 945	BUG_ON(info->persistent_gnts_c != 0);
 946
 947	/*
 948	 * Remove indirect pages, this only happens when using indirect
 949	 * descriptors but not persistent grants
 950	 */
 951	if (!list_empty(&info->indirect_pages)) {
 952		struct page *indirect_page, *n;
 953
 954		BUG_ON(info->feature_persistent);
 955		list_for_each_entry_safe(indirect_page, n, &info->indirect_pages, lru) {
 956			list_del(&indirect_page->lru);
 957			__free_page(indirect_page);
 958		}
 959	}
 960
 961	for (i = 0; i < BLK_RING_SIZE; i++) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 962		/*
 963		 * Clear persistent grants present in requests already
 964		 * on the shared ring
 965		 */
 966		if (!info->shadow[i].request)
 967			goto free_shadow;
 968
 969		segs = info->shadow[i].req.operation == BLKIF_OP_INDIRECT ?
 970		       info->shadow[i].req.u.indirect.nr_segments :
 971		       info->shadow[i].req.u.rw.nr_segments;
 972		for (j = 0; j < segs; j++) {
 973			persistent_gnt = info->shadow[i].grants_used[j];
 974			gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL);
 975			if (info->feature_persistent)
 976				__free_page(pfn_to_page(persistent_gnt->pfn));
 977			kfree(persistent_gnt);
 978		}
 979
 980		if (info->shadow[i].req.operation != BLKIF_OP_INDIRECT)
 981			/*
 982			 * If this is not an indirect operation don't try to
 983			 * free indirect segments
 984			 */
 985			goto free_shadow;
 986
 987		for (j = 0; j < INDIRECT_GREFS(segs); j++) {
 988			persistent_gnt = info->shadow[i].indirect_grants[j];
 989			gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL);
 990			__free_page(pfn_to_page(persistent_gnt->pfn));
 991			kfree(persistent_gnt);
 992		}
 993
 994free_shadow:
 995		kfree(info->shadow[i].grants_used);
 996		info->shadow[i].grants_used = NULL;
 997		kfree(info->shadow[i].indirect_grants);
 998		info->shadow[i].indirect_grants = NULL;
 999		kfree(info->shadow[i].sg);
1000		info->shadow[i].sg = NULL;
1001	}
1002
1003	/* No more gnttab callback work. */
1004	gnttab_cancel_free_callback(&info->callback);
1005	spin_unlock_irq(&info->io_lock);
1006
1007	/* Flush gnttab callback work. Must be done with no locks held. */
1008	flush_work(&info->work);
1009
1010	/* Free resources associated with old device channel. */
1011	if (info->ring_ref != GRANT_INVALID_REF) {
1012		gnttab_end_foreign_access(info->ring_ref, 0,
1013					  (unsigned long)info->ring.sring);
1014		info->ring_ref = GRANT_INVALID_REF;
1015		info->ring.sring = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1016	}
1017	if (info->irq)
1018		unbind_from_irqhandler(info->irq, info);
1019	info->evtchn = info->irq = 0;
1020
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1021}
1022
1023static void blkif_completion(struct blk_shadow *s, struct blkfront_info *info,
1024			     struct blkif_response *bret)
 
 
 
 
 
 
 
1025{
1026	int i = 0;
1027	struct scatterlist *sg;
1028	char *bvec_data;
1029	void *shared_data;
1030	int nseg;
 
 
 
1031
1032	nseg = s->req.operation == BLKIF_OP_INDIRECT ?
1033		s->req.u.indirect.nr_segments : s->req.u.rw.nr_segments;
1034
1035	if (bret->operation == BLKIF_OP_READ && info->feature_persistent) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1036		/*
1037		 * Copy the data received from the backend into the bvec.
1038		 * Since bv_offset can be different than 0, and bv_len different
1039		 * than PAGE_SIZE, we have to keep track of the current offset,
1040		 * to be sure we are copying the data from the right shared page.
1041		 */
1042		for_each_sg(s->sg, sg, nseg, i) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1043			BUG_ON(sg->offset + sg->length > PAGE_SIZE);
1044			shared_data = kmap_atomic(
1045				pfn_to_page(s->grants_used[i]->pfn));
1046			bvec_data = kmap_atomic(sg_page(sg));
1047			memcpy(bvec_data   + sg->offset,
1048			       shared_data + sg->offset,
1049			       sg->length);
1050			kunmap_atomic(bvec_data);
1051			kunmap_atomic(shared_data);
 
 
 
1052		}
1053	}
1054	/* Add the persistent grant into the list of free grants */
1055	for (i = 0; i < nseg; i++) {
1056		if (gnttab_query_foreign_access(s->grants_used[i]->gref)) {
1057			/*
1058			 * If the grant is still mapped by the backend (the
1059			 * backend has chosen to make this grant persistent)
1060			 * we add it at the head of the list, so it will be
1061			 * reused first.
1062			 */
1063			if (!info->feature_persistent)
1064				pr_alert_ratelimited("backed has not unmapped grant: %u\n",
1065						     s->grants_used[i]->gref);
1066			list_add(&s->grants_used[i]->node, &info->grants);
1067			info->persistent_gnts_c++;
 
 
1068		} else {
1069			/*
1070			 * If the grant is not mapped by the backend we end the
1071			 * foreign access and add it to the tail of the list,
1072			 * so it will not be picked again unless we run out of
1073			 * persistent grants.
1074			 */
1075			gnttab_end_foreign_access(s->grants_used[i]->gref, 0, 0UL);
1076			s->grants_used[i]->gref = GRANT_INVALID_REF;
1077			list_add_tail(&s->grants_used[i]->node, &info->grants);
1078		}
1079	}
1080	if (s->req.operation == BLKIF_OP_INDIRECT) {
1081		for (i = 0; i < INDIRECT_GREFS(nseg); i++) {
1082			if (gnttab_query_foreign_access(s->indirect_grants[i]->gref)) {
1083				if (!info->feature_persistent)
1084					pr_alert_ratelimited("backed has not unmapped grant: %u\n",
1085							     s->indirect_grants[i]->gref);
1086				list_add(&s->indirect_grants[i]->node, &info->grants);
1087				info->persistent_gnts_c++;
 
 
1088			} else {
1089				struct page *indirect_page;
1090
1091				gnttab_end_foreign_access(s->indirect_grants[i]->gref, 0, 0UL);
1092				/*
1093				 * Add the used indirect page back to the list of
1094				 * available pages for indirect grefs.
1095				 */
1096				indirect_page = pfn_to_page(s->indirect_grants[i]->pfn);
1097				list_add(&indirect_page->lru, &info->indirect_pages);
1098				s->indirect_grants[i]->gref = GRANT_INVALID_REF;
1099				list_add_tail(&s->indirect_grants[i]->node, &info->grants);
 
 
1100			}
1101		}
1102	}
 
 
1103}
1104
1105static irqreturn_t blkif_interrupt(int irq, void *dev_id)
1106{
1107	struct request *req;
1108	struct blkif_response *bret;
1109	RING_IDX i, rp;
1110	unsigned long flags;
1111	struct blkfront_info *info = (struct blkfront_info *)dev_id;
1112	int error;
1113
1114	spin_lock_irqsave(&info->io_lock, flags);
1115
1116	if (unlikely(info->connected != BLKIF_STATE_CONNECTED)) {
1117		spin_unlock_irqrestore(&info->io_lock, flags);
1118		return IRQ_HANDLED;
1119	}
1120
 
1121 again:
1122	rp = info->ring.sring->rsp_prod;
1123	rmb(); /* Ensure we see queued responses up to 'rp'. */
 
 
 
 
 
1124
1125	for (i = info->ring.rsp_cons; i != rp; i++) {
1126		unsigned long id;
 
 
 
 
 
 
1127
1128		bret = RING_GET_RESPONSE(&info->ring, i);
1129		id   = bret->id;
1130		/*
1131		 * The backend has messed up and given us an id that we would
1132		 * never have given to it (we stamp it up to BLK_RING_SIZE -
1133		 * look in get_id_from_freelist.
1134		 */
1135		if (id >= BLK_RING_SIZE) {
1136			WARN(1, "%s: response to %s has incorrect id (%ld)\n",
1137			     info->gd->disk_name, op_name(bret->operation), id);
1138			/* We can't safely get the 'struct request' as
1139			 * the id is busted. */
1140			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1141		}
1142		req  = info->shadow[id].request;
1143
1144		if (bret->operation != BLKIF_OP_DISCARD)
1145			blkif_completion(&info->shadow[id], info, bret);
1146
1147		if (add_id_to_freelist(info, id)) {
 
 
 
 
 
 
 
 
 
 
 
1148			WARN(1, "%s: response to %s (id %ld) couldn't be recycled!\n",
1149			     info->gd->disk_name, op_name(bret->operation), id);
1150			continue;
1151		}
1152
1153		error = (bret->status == BLKIF_RSP_OKAY) ? 0 : -EIO;
1154		switch (bret->operation) {
 
 
 
 
1155		case BLKIF_OP_DISCARD:
1156			if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) {
1157				struct request_queue *rq = info->rq;
1158				printk(KERN_WARNING "blkfront: %s: %s op failed\n",
1159					   info->gd->disk_name, op_name(bret->operation));
1160				error = -EOPNOTSUPP;
 
1161				info->feature_discard = 0;
1162				info->feature_secdiscard = 0;
1163				queue_flag_clear(QUEUE_FLAG_DISCARD, rq);
1164				queue_flag_clear(QUEUE_FLAG_SECDISCARD, rq);
1165			}
1166			__blk_end_request_all(req, error);
1167			break;
1168		case BLKIF_OP_FLUSH_DISKCACHE:
1169		case BLKIF_OP_WRITE_BARRIER:
1170			if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) {
1171				printk(KERN_WARNING "blkfront: %s: %s op failed\n",
1172				       info->gd->disk_name, op_name(bret->operation));
1173				error = -EOPNOTSUPP;
1174			}
1175			if (unlikely(bret->status == BLKIF_RSP_ERROR &&
1176				     info->shadow[id].req.u.rw.nr_segments == 0)) {
1177				printk(KERN_WARNING "blkfront: %s: empty %s op failed\n",
1178				       info->gd->disk_name, op_name(bret->operation));
1179				error = -EOPNOTSUPP;
1180			}
1181			if (unlikely(error)) {
1182				if (error == -EOPNOTSUPP)
1183					error = 0;
 
1184				info->feature_flush = 0;
1185				info->flush_op = 0;
1186				xlvbd_flush(info);
1187			}
1188			/* fall through */
1189		case BLKIF_OP_READ:
1190		case BLKIF_OP_WRITE:
1191			if (unlikely(bret->status != BLKIF_RSP_OKAY))
1192				dev_dbg(&info->xbdev->dev, "Bad return from blkdev data "
1193					"request: %x\n", bret->status);
 
1194
1195			__blk_end_request_all(req, error);
1196			break;
1197		default:
1198			BUG();
1199		}
 
 
 
1200	}
1201
1202	info->ring.rsp_cons = i;
1203
1204	if (i != info->ring.req_prod_pvt) {
1205		int more_to_do;
1206		RING_FINAL_CHECK_FOR_RESPONSES(&info->ring, more_to_do);
1207		if (more_to_do)
1208			goto again;
1209	} else
1210		info->ring.sring->rsp_event = i + 1;
 
 
1211
1212	kick_pending_request_queues(info);
1213
1214	spin_unlock_irqrestore(&info->io_lock, flags);
1215
1216	return IRQ_HANDLED;
 
 
 
 
 
 
 
 
 
 
1217}
1218
1219
1220static int setup_blkring(struct xenbus_device *dev,
1221			 struct blkfront_info *info)
1222{
1223	struct blkif_sring *sring;
1224	int err;
 
 
1225
1226	info->ring_ref = GRANT_INVALID_REF;
1227
1228	sring = (struct blkif_sring *)__get_free_page(GFP_NOIO | __GFP_HIGH);
1229	if (!sring) {
1230		xenbus_dev_fatal(dev, -ENOMEM, "allocating shared ring");
1231		return -ENOMEM;
1232	}
1233	SHARED_RING_INIT(sring);
1234	FRONT_RING_INIT(&info->ring, sring, PAGE_SIZE);
1235
1236	err = xenbus_grant_ring(dev, virt_to_mfn(info->ring.sring));
1237	if (err < 0) {
1238		free_page((unsigned long)sring);
1239		info->ring.sring = NULL;
1240		goto fail;
1241	}
1242	info->ring_ref = err;
1243
1244	err = xenbus_alloc_evtchn(dev, &info->evtchn);
 
 
1245	if (err)
1246		goto fail;
1247
1248	err = bind_evtchn_to_irqhandler(info->evtchn, blkif_interrupt, 0,
1249					"blkif", info);
1250	if (err <= 0) {
1251		xenbus_dev_fatal(dev, err,
1252				 "bind_evtchn_to_irqhandler failed");
1253		goto fail;
1254	}
1255	info->irq = err;
1256
1257	return 0;
1258fail:
1259	blkif_free(info, 0);
1260	return err;
1261}
1262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1263
1264/* Common code used when first setting up, and when resuming. */
1265static int talk_to_blkback(struct xenbus_device *dev,
1266			   struct blkfront_info *info)
1267{
1268	const char *message = NULL;
1269	struct xenbus_transaction xbt;
1270	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1271
1272	/* Create shared ring, alloc event channel. */
1273	err = setup_blkring(dev, info);
1274	if (err)
1275		goto out;
 
 
 
 
 
 
 
1276
1277again:
1278	err = xenbus_transaction_start(&xbt);
1279	if (err) {
1280		xenbus_dev_fatal(dev, err, "starting transaction");
1281		goto destroy_blkring;
1282	}
1283
1284	err = xenbus_printf(xbt, dev->nodename,
1285			    "ring-ref", "%u", info->ring_ref);
1286	if (err) {
1287		message = "writing ring-ref";
1288		goto abort_transaction;
 
 
1289	}
1290	err = xenbus_printf(xbt, dev->nodename,
1291			    "event-channel", "%u", info->evtchn);
1292	if (err) {
1293		message = "writing event-channel";
1294		goto abort_transaction;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1295	}
1296	err = xenbus_printf(xbt, dev->nodename, "protocol", "%s",
1297			    XEN_IO_PROTO_ABI_NATIVE);
1298	if (err) {
1299		message = "writing protocol";
1300		goto abort_transaction;
1301	}
1302	err = xenbus_printf(xbt, dev->nodename,
1303			    "feature-persistent", "%u", 1);
 
1304	if (err)
1305		dev_warn(&dev->dev,
1306			 "writing persistent grants feature to xenbus");
1307
1308	err = xenbus_transaction_end(xbt, 0);
1309	if (err) {
1310		if (err == -EAGAIN)
1311			goto again;
1312		xenbus_dev_fatal(dev, err, "completing transaction");
1313		goto destroy_blkring;
1314	}
1315
 
 
 
 
 
 
 
1316	xenbus_switch_state(dev, XenbusStateInitialised);
1317
1318	return 0;
1319
1320 abort_transaction:
1321	xenbus_transaction_end(xbt, 1);
1322	if (message)
1323		xenbus_dev_fatal(dev, err, "%s", message);
1324 destroy_blkring:
1325	blkif_free(info, 0);
1326 out:
1327	return err;
1328}
1329
1330/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1331 * Entry point to this code when a new device is created.  Allocate the basic
1332 * structures and the ring buffer for communication with the backend, and
1333 * inform the backend of the appropriate details for those.  Switch to
1334 * Initialised state.
1335 */
1336static int blkfront_probe(struct xenbus_device *dev,
1337			  const struct xenbus_device_id *id)
1338{
1339	int err, vdevice, i;
1340	struct blkfront_info *info;
1341
1342	/* FIXME: Use dynamic device id if this is not set. */
1343	err = xenbus_scanf(XBT_NIL, dev->nodename,
1344			   "virtual-device", "%i", &vdevice);
1345	if (err != 1) {
1346		/* go looking in the extended area instead */
1347		err = xenbus_scanf(XBT_NIL, dev->nodename, "virtual-device-ext",
1348				   "%i", &vdevice);
1349		if (err != 1) {
1350			xenbus_dev_fatal(dev, err, "reading virtual-device");
1351			return err;
1352		}
1353	}
1354
1355	if (xen_hvm_domain()) {
1356		char *type;
1357		int len;
1358		/* no unplug has been done: do not hook devices != xen vbds */
1359		if (xen_has_pv_and_legacy_disk_devices()) {
1360			int major;
1361
1362			if (!VDEV_IS_EXTENDED(vdevice))
1363				major = BLKIF_MAJOR(vdevice);
1364			else
1365				major = XENVBD_MAJOR;
1366
1367			if (major != XENVBD_MAJOR) {
1368				printk(KERN_INFO
1369						"%s: HVM does not support vbd %d as xen block device\n",
1370						__FUNCTION__, vdevice);
1371				return -ENODEV;
1372			}
1373		}
1374		/* do not create a PV cdrom device if we are an HVM guest */
1375		type = xenbus_read(XBT_NIL, dev->nodename, "device-type", &len);
1376		if (IS_ERR(type))
1377			return -ENODEV;
1378		if (strncmp(type, "cdrom", 5) == 0) {
1379			kfree(type);
1380			return -ENODEV;
1381		}
1382		kfree(type);
1383	}
1384	info = kzalloc(sizeof(*info), GFP_KERNEL);
1385	if (!info) {
1386		xenbus_dev_fatal(dev, -ENOMEM, "allocating info structure");
1387		return -ENOMEM;
1388	}
1389
1390	mutex_init(&info->mutex);
1391	spin_lock_init(&info->io_lock);
1392	info->xbdev = dev;
 
 
1393	info->vdevice = vdevice;
1394	INIT_LIST_HEAD(&info->grants);
1395	INIT_LIST_HEAD(&info->indirect_pages);
1396	info->persistent_gnts_c = 0;
1397	info->connected = BLKIF_STATE_DISCONNECTED;
1398	INIT_WORK(&info->work, blkif_restart_queue);
1399
1400	for (i = 0; i < BLK_RING_SIZE; i++)
1401		info->shadow[i].req.u.rw.id = i+1;
1402	info->shadow[BLK_RING_SIZE-1].req.u.rw.id = 0x0fffffff;
1403
1404	/* Front end dir is a number, which is used as the id. */
1405	info->handle = simple_strtoul(strrchr(dev->nodename, '/')+1, NULL, 0);
1406	dev_set_drvdata(&dev->dev, info);
1407
1408	err = talk_to_blkback(dev, info);
1409	if (err) {
1410		kfree(info);
1411		dev_set_drvdata(&dev->dev, NULL);
1412		return err;
1413	}
1414
1415	return 0;
1416}
1417
1418static void split_bio_end(struct bio *bio, int error)
1419{
1420	struct split_bio *split_bio = bio->bi_private;
1421
1422	if (error)
1423		split_bio->err = error;
1424
1425	if (atomic_dec_and_test(&split_bio->pending)) {
1426		split_bio->bio->bi_phys_segments = 0;
1427		bio_endio(split_bio->bio, split_bio->err);
1428		kfree(split_bio);
1429	}
1430	bio_put(bio);
1431}
1432
1433static int blkif_recover(struct blkfront_info *info)
1434{
1435	int i;
 
1436	struct request *req, *n;
1437	struct blk_shadow *copy;
1438	int rc;
1439	struct bio *bio, *cloned_bio;
1440	struct bio_list bio_list, merge_bio;
1441	unsigned int segs, offset;
1442	int pending, size;
1443	struct split_bio *split_bio;
1444	struct list_head requests;
1445
1446	/* Stage 1: Make a safe copy of the shadow state. */
1447	copy = kmemdup(info->shadow, sizeof(info->shadow),
1448		       GFP_NOIO | __GFP_REPEAT | __GFP_HIGH);
1449	if (!copy)
1450		return -ENOMEM;
1451
1452	/* Stage 2: Set up free list. */
1453	memset(&info->shadow, 0, sizeof(info->shadow));
1454	for (i = 0; i < BLK_RING_SIZE; i++)
1455		info->shadow[i].req.u.rw.id = i+1;
1456	info->shadow_free = info->ring.req_prod_pvt;
1457	info->shadow[BLK_RING_SIZE-1].req.u.rw.id = 0x0fffffff;
1458
1459	rc = blkfront_setup_indirect(info);
1460	if (rc) {
1461		kfree(copy);
1462		return rc;
1463	}
1464
1465	segs = info->max_indirect_segments ? : BLKIF_MAX_SEGMENTS_PER_REQUEST;
1466	blk_queue_max_segments(info->rq, segs);
1467	bio_list_init(&bio_list);
1468	INIT_LIST_HEAD(&requests);
1469	for (i = 0; i < BLK_RING_SIZE; i++) {
1470		/* Not in use? */
1471		if (!copy[i].request)
1472			continue;
1473
1474		/*
1475		 * Get the bios in the request so we can re-queue them.
1476		 */
1477		if (copy[i].request->cmd_flags &
1478		    (REQ_FLUSH | REQ_FUA | REQ_DISCARD | REQ_SECURE)) {
1479			/*
1480			 * Flush operations don't contain bios, so
1481			 * we need to requeue the whole request
1482			 */
1483			list_add(&copy[i].request->queuelist, &requests);
1484			continue;
1485		}
1486		merge_bio.head = copy[i].request->bio;
1487		merge_bio.tail = copy[i].request->biotail;
1488		bio_list_merge(&bio_list, &merge_bio);
1489		copy[i].request->bio = NULL;
1490		blk_put_request(copy[i].request);
1491	}
1492
1493	kfree(copy);
1494
1495	/*
1496	 * Empty the queue, this is important because we might have
1497	 * requests in the queue with more segments than what we
1498	 * can handle now.
1499	 */
1500	spin_lock_irq(&info->io_lock);
1501	while ((req = blk_fetch_request(info->rq)) != NULL) {
1502		if (req->cmd_flags &
1503		    (REQ_FLUSH | REQ_FUA | REQ_DISCARD | REQ_SECURE)) {
1504			list_add(&req->queuelist, &requests);
1505			continue;
1506		}
1507		merge_bio.head = req->bio;
1508		merge_bio.tail = req->biotail;
1509		bio_list_merge(&bio_list, &merge_bio);
1510		req->bio = NULL;
1511		if (req->cmd_flags & (REQ_FLUSH | REQ_FUA))
1512			pr_alert("diskcache flush request found!\n");
1513		__blk_put_request(info->rq, req);
1514	}
1515	spin_unlock_irq(&info->io_lock);
1516
1517	xenbus_switch_state(info->xbdev, XenbusStateConnected);
1518
1519	spin_lock_irq(&info->io_lock);
1520
1521	/* Now safe for us to use the shared ring */
1522	info->connected = BLKIF_STATE_CONNECTED;
1523
1524	/* Kick any other new requests queued since we resumed */
1525	kick_pending_request_queues(info);
 
 
1526
1527	list_for_each_entry_safe(req, n, &requests, queuelist) {
1528		/* Requeue pending requests (flush or discard) */
1529		list_del_init(&req->queuelist);
1530		BUG_ON(req->nr_phys_segments > segs);
1531		blk_requeue_request(info->rq, req);
 
 
1532	}
1533	spin_unlock_irq(&info->io_lock);
 
1534
1535	while ((bio = bio_list_pop(&bio_list)) != NULL) {
1536		/* Traverse the list of pending bios and re-queue them */
1537		if (bio_segments(bio) > segs) {
1538			/*
1539			 * This bio has more segments than what we can
1540			 * handle, we have to split it.
1541			 */
1542			pending = (bio_segments(bio) + segs - 1) / segs;
1543			split_bio = kzalloc(sizeof(*split_bio), GFP_NOIO);
1544			BUG_ON(split_bio == NULL);
1545			atomic_set(&split_bio->pending, pending);
1546			split_bio->bio = bio;
1547			for (i = 0; i < pending; i++) {
1548				offset = (i * segs * PAGE_SIZE) >> 9;
1549				size = min((unsigned int)(segs * PAGE_SIZE) >> 9,
1550					   (unsigned int)bio_sectors(bio) - offset);
1551				cloned_bio = bio_clone(bio, GFP_NOIO);
1552				BUG_ON(cloned_bio == NULL);
1553				bio_trim(cloned_bio, offset, size);
1554				cloned_bio->bi_private = split_bio;
1555				cloned_bio->bi_end_io = split_bio_end;
1556				submit_bio(cloned_bio->bi_rw, cloned_bio);
1557			}
1558			/*
1559			 * Now we have to wait for all those smaller bios to
1560			 * end, so we can also end the "parent" bio.
1561			 */
1562			continue;
1563		}
1564		/* We don't need to split this bio */
1565		submit_bio(bio->bi_rw, bio);
1566	}
1567
1568	return 0;
1569}
1570
1571/**
1572 * We are reconnecting to the backend, due to a suspend/resume, or a backend
1573 * driver restart.  We tear down our blkif structure and recreate it, but
1574 * leave the device-layer structures intact so that this is transparent to the
1575 * rest of the kernel.
1576 */
1577static int blkfront_resume(struct xenbus_device *dev)
1578{
1579	struct blkfront_info *info = dev_get_drvdata(&dev->dev);
1580	int err;
 
 
1581
1582	dev_dbg(&dev->dev, "blkfront_resume: %s\n", dev->nodename);
1583
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1584	blkif_free(info, info->connected == BLKIF_STATE_CONNECTED);
1585
1586	err = talk_to_blkback(dev, info);
 
 
1587
1588	/*
1589	 * We have to wait for the backend to switch to
1590	 * connected state, since we want to read which
1591	 * features it supports.
1592	 */
1593
1594	return err;
1595}
1596
1597static void
1598blkfront_closing(struct blkfront_info *info)
1599{
1600	struct xenbus_device *xbdev = info->xbdev;
1601	struct block_device *bdev = NULL;
1602
1603	mutex_lock(&info->mutex);
1604
1605	if (xbdev->state == XenbusStateClosing) {
1606		mutex_unlock(&info->mutex);
1607		return;
1608	}
1609
1610	if (info->gd)
1611		bdev = bdget_disk(info->gd, 0);
1612
1613	mutex_unlock(&info->mutex);
1614
1615	if (!bdev) {
1616		xenbus_frontend_closed(xbdev);
1617		return;
1618	}
1619
1620	mutex_lock(&bdev->bd_mutex);
 
 
1621
1622	if (bdev->bd_openers) {
1623		xenbus_dev_error(xbdev, -EBUSY,
1624				 "Device in use; refusing to close");
1625		xenbus_switch_state(xbdev, XenbusStateClosing);
1626	} else {
1627		xlvbd_release_gendisk(info);
1628		xenbus_frontend_closed(xbdev);
1629	}
1630
1631	mutex_unlock(&bdev->bd_mutex);
1632	bdput(bdev);
1633}
1634
1635static void blkfront_setup_discard(struct blkfront_info *info)
1636{
1637	int err;
1638	char *type;
1639	unsigned int discard_granularity;
1640	unsigned int discard_alignment;
1641	unsigned int discard_secure;
1642
1643	type = xenbus_read(XBT_NIL, info->xbdev->otherend, "type", NULL);
1644	if (IS_ERR(type))
1645		return;
1646
1647	info->feature_secdiscard = 0;
1648	if (strncmp(type, "phy", 3) == 0) {
1649		err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
1650			"discard-granularity", "%u", &discard_granularity,
1651			"discard-alignment", "%u", &discard_alignment,
1652			NULL);
1653		if (!err) {
1654			info->feature_discard = 1;
1655			info->discard_granularity = discard_granularity;
1656			info->discard_alignment = discard_alignment;
1657		}
1658		err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
1659			    "discard-secure", "%d", &discard_secure,
1660			    NULL);
1661		if (!err)
1662			info->feature_secdiscard = discard_secure;
1663
1664	} else if (strncmp(type, "file", 4) == 0)
1665		info->feature_discard = 1;
1666
1667	kfree(type);
1668}
1669
1670static int blkfront_setup_indirect(struct blkfront_info *info)
1671{
1672	unsigned int indirect_segments, segs;
1673	int err, i;
 
1674
1675	err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
1676			    "feature-max-indirect-segments", "%u", &indirect_segments,
1677			    NULL);
1678	if (err) {
1679		info->max_indirect_segments = 0;
1680		segs = BLKIF_MAX_SEGMENTS_PER_REQUEST;
1681	} else {
1682		info->max_indirect_segments = min(indirect_segments,
1683						  xen_blkif_max_segments);
1684		segs = info->max_indirect_segments;
 
 
 
1685	}
 
 
 
1686
1687	err = fill_grant_buffer(info, (segs + INDIRECT_GREFS(segs)) * BLK_RING_SIZE);
 
1688	if (err)
1689		goto out_of_memory;
1690
1691	if (!info->feature_persistent && info->max_indirect_segments) {
1692		/*
1693		 * We are using indirect descriptors but not persistent
1694		 * grants, we need to allocate a set of pages that can be
1695		 * used for mapping indirect grefs
1696		 */
1697		int num = INDIRECT_GREFS(segs) * BLK_RING_SIZE;
1698
1699		BUG_ON(!list_empty(&info->indirect_pages));
1700		for (i = 0; i < num; i++) {
1701			struct page *indirect_page = alloc_page(GFP_NOIO);
 
1702			if (!indirect_page)
1703				goto out_of_memory;
1704			list_add(&indirect_page->lru, &info->indirect_pages);
1705		}
1706	}
1707
1708	for (i = 0; i < BLK_RING_SIZE; i++) {
1709		info->shadow[i].grants_used = kzalloc(
1710			sizeof(info->shadow[i].grants_used[0]) * segs,
1711			GFP_NOIO);
1712		info->shadow[i].sg = kzalloc(sizeof(info->shadow[i].sg[0]) * segs, GFP_NOIO);
 
 
 
1713		if (info->max_indirect_segments)
1714			info->shadow[i].indirect_grants = kzalloc(
1715				sizeof(info->shadow[i].indirect_grants[0]) *
1716				INDIRECT_GREFS(segs),
1717				GFP_NOIO);
1718		if ((info->shadow[i].grants_used == NULL) ||
1719			(info->shadow[i].sg == NULL) ||
1720		     (info->max_indirect_segments &&
1721		     (info->shadow[i].indirect_grants == NULL)))
1722			goto out_of_memory;
1723		sg_init_table(info->shadow[i].sg, segs);
1724	}
1725
 
1726
1727	return 0;
1728
1729out_of_memory:
1730	for (i = 0; i < BLK_RING_SIZE; i++) {
1731		kfree(info->shadow[i].grants_used);
1732		info->shadow[i].grants_used = NULL;
1733		kfree(info->shadow[i].sg);
1734		info->shadow[i].sg = NULL;
1735		kfree(info->shadow[i].indirect_grants);
1736		info->shadow[i].indirect_grants = NULL;
1737	}
1738	if (!list_empty(&info->indirect_pages)) {
1739		struct page *indirect_page, *n;
1740		list_for_each_entry_safe(indirect_page, n, &info->indirect_pages, lru) {
1741			list_del(&indirect_page->lru);
1742			__free_page(indirect_page);
1743		}
1744	}
 
 
 
1745	return -ENOMEM;
1746}
1747
1748/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1749 * Invoked when the backend is finally 'ready' (and has told produced
1750 * the details about the physical device - #sectors, size, etc).
1751 */
1752static void blkfront_connect(struct blkfront_info *info)
1753{
1754	unsigned long long sectors;
1755	unsigned long sector_size;
1756	unsigned int physical_sector_size;
1757	unsigned int binfo;
1758	int err;
1759	int barrier, flush, discard, persistent;
1760
1761	switch (info->connected) {
1762	case BLKIF_STATE_CONNECTED:
1763		/*
1764		 * Potentially, the back-end may be signalling
1765		 * a capacity change; update the capacity.
1766		 */
1767		err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
1768				   "sectors", "%Lu", &sectors);
1769		if (XENBUS_EXIST_ERR(err))
1770			return;
1771		printk(KERN_INFO "Setting capacity to %Lu\n",
1772		       sectors);
1773		set_capacity(info->gd, sectors);
1774		revalidate_disk(info->gd);
1775
1776		return;
1777	case BLKIF_STATE_SUSPENDED:
1778		/*
1779		 * If we are recovering from suspension, we need to wait
1780		 * for the backend to announce it's features before
1781		 * reconnecting, at least we need to know if the backend
1782		 * supports indirect descriptors, and how many.
1783		 */
1784		blkif_recover(info);
1785		return;
1786
1787	default:
1788		break;
1789	}
1790
1791	dev_dbg(&info->xbdev->dev, "%s:%s.\n",
1792		__func__, info->xbdev->otherend);
1793
1794	err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
1795			    "sectors", "%llu", &sectors,
1796			    "info", "%u", &binfo,
1797			    "sector-size", "%lu", &sector_size,
1798			    NULL);
1799	if (err) {
1800		xenbus_dev_fatal(info->xbdev, err,
1801				 "reading backend fields at %s",
1802				 info->xbdev->otherend);
1803		return;
1804	}
1805
1806	/*
1807	 * physcial-sector-size is a newer field, so old backends may not
1808	 * provide this. Assume physical sector size to be the same as
1809	 * sector_size in that case.
1810	 */
1811	err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
1812			   "physical-sector-size", "%u", &physical_sector_size);
1813	if (err != 1)
1814		physical_sector_size = sector_size;
1815
1816	info->feature_flush = 0;
1817	info->flush_op = 0;
1818
1819	err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
1820			    "feature-barrier", "%d", &barrier,
1821			    NULL);
1822
1823	/*
1824	 * If there's no "feature-barrier" defined, then it means
1825	 * we're dealing with a very old backend which writes
1826	 * synchronously; nothing to do.
1827	 *
1828	 * If there are barriers, then we use flush.
1829	 */
1830	if (!err && barrier) {
1831		info->feature_flush = REQ_FLUSH | REQ_FUA;
1832		info->flush_op = BLKIF_OP_WRITE_BARRIER;
1833	}
1834	/*
1835	 * And if there is "feature-flush-cache" use that above
1836	 * barriers.
1837	 */
1838	err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
1839			    "feature-flush-cache", "%d", &flush,
1840			    NULL);
1841
1842	if (!err && flush) {
1843		info->feature_flush = REQ_FLUSH;
1844		info->flush_op = BLKIF_OP_FLUSH_DISKCACHE;
1845	}
1846
1847	err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
1848			    "feature-discard", "%d", &discard,
1849			    NULL);
1850
1851	if (!err && discard)
1852		blkfront_setup_discard(info);
1853
1854	err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
1855			    "feature-persistent", "%u", &persistent,
1856			    NULL);
1857	if (err)
1858		info->feature_persistent = 0;
1859	else
1860		info->feature_persistent = persistent;
1861
1862	err = blkfront_setup_indirect(info);
1863	if (err) {
1864		xenbus_dev_fatal(info->xbdev, err, "setup_indirect at %s",
1865				 info->xbdev->otherend);
1866		return;
1867	}
1868
1869	err = xlvbd_alloc_gendisk(sectors, info, binfo, sector_size,
1870				  physical_sector_size);
1871	if (err) {
1872		xenbus_dev_fatal(info->xbdev, err, "xlvbd_add at %s",
1873				 info->xbdev->otherend);
1874		return;
1875	}
1876
1877	xenbus_switch_state(info->xbdev, XenbusStateConnected);
1878
1879	/* Kick pending requests. */
1880	spin_lock_irq(&info->io_lock);
1881	info->connected = BLKIF_STATE_CONNECTED;
1882	kick_pending_request_queues(info);
1883	spin_unlock_irq(&info->io_lock);
1884
1885	add_disk(info->gd);
 
 
 
 
 
 
1886
1887	info->is_ready = 1;
 
 
 
 
 
1888}
1889
1890/**
1891 * Callback received when the backend's state changes.
1892 */
1893static void blkback_changed(struct xenbus_device *dev,
1894			    enum xenbus_state backend_state)
1895{
1896	struct blkfront_info *info = dev_get_drvdata(&dev->dev);
1897
1898	dev_dbg(&dev->dev, "blkfront:blkback_changed to state %d.\n", backend_state);
1899
1900	switch (backend_state) {
1901	case XenbusStateInitialising:
1902	case XenbusStateInitWait:
 
 
 
 
 
 
1903	case XenbusStateInitialised:
1904	case XenbusStateReconfiguring:
1905	case XenbusStateReconfigured:
1906	case XenbusStateUnknown:
1907		break;
1908
1909	case XenbusStateConnected:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1910		blkfront_connect(info);
1911		break;
1912
1913	case XenbusStateClosed:
1914		if (dev->state == XenbusStateClosed)
1915			break;
1916		/* Missed the backend's Closing state -- fallthrough */
1917	case XenbusStateClosing:
1918		blkfront_closing(info);
1919		break;
1920	}
1921}
1922
1923static int blkfront_remove(struct xenbus_device *xbdev)
1924{
1925	struct blkfront_info *info = dev_get_drvdata(&xbdev->dev);
1926	struct block_device *bdev = NULL;
1927	struct gendisk *disk;
1928
1929	dev_dbg(&xbdev->dev, "%s removed", xbdev->nodename);
1930
1931	blkif_free(info, 0);
1932
1933	mutex_lock(&info->mutex);
1934
1935	disk = info->gd;
1936	if (disk)
1937		bdev = bdget_disk(disk, 0);
1938
1939	info->xbdev = NULL;
1940	mutex_unlock(&info->mutex);
1941
1942	if (!bdev) {
1943		kfree(info);
1944		return 0;
1945	}
1946
1947	/*
1948	 * The xbdev was removed before we reached the Closed
1949	 * state. See if it's safe to remove the disk. If the bdev
1950	 * isn't closed yet, we let release take care of it.
1951	 */
1952
1953	mutex_lock(&bdev->bd_mutex);
1954	info = disk->private_data;
1955
1956	dev_warn(disk_to_dev(disk),
1957		 "%s was hot-unplugged, %d stale handles\n",
1958		 xbdev->nodename, bdev->bd_openers);
1959
1960	if (info && !bdev->bd_openers) {
1961		xlvbd_release_gendisk(info);
1962		disk->private_data = NULL;
1963		kfree(info);
 
1964	}
1965
1966	mutex_unlock(&bdev->bd_mutex);
1967	bdput(bdev);
1968
1969	return 0;
1970}
1971
1972static int blkfront_is_ready(struct xenbus_device *dev)
1973{
1974	struct blkfront_info *info = dev_get_drvdata(&dev->dev);
1975
1976	return info->is_ready && info->xbdev;
1977}
1978
1979static int blkif_open(struct block_device *bdev, fmode_t mode)
1980{
1981	struct gendisk *disk = bdev->bd_disk;
1982	struct blkfront_info *info;
1983	int err = 0;
 
 
1984
1985	mutex_lock(&blkfront_mutex);
1986
1987	info = disk->private_data;
1988	if (!info) {
1989		/* xbdev gone */
1990		err = -ERESTARTSYS;
1991		goto out;
1992	}
1993
1994	mutex_lock(&info->mutex);
 
 
 
 
 
 
 
1995
1996	if (!info->gd)
1997		/* xbdev is closed */
1998		err = -ERESTARTSYS;
 
 
1999
2000	mutex_unlock(&info->mutex);
 
 
2001
2002out:
2003	mutex_unlock(&blkfront_mutex);
2004	return err;
2005}
2006
2007static void blkif_release(struct gendisk *disk, fmode_t mode)
2008{
2009	struct blkfront_info *info = disk->private_data;
2010	struct block_device *bdev;
2011	struct xenbus_device *xbdev;
2012
2013	mutex_lock(&blkfront_mutex);
 
 
 
 
 
 
 
 
 
 
2014
2015	bdev = bdget_disk(disk, 0);
2016
2017	if (!bdev) {
2018		WARN(1, "Block device %s yanked out from us!\n", disk->disk_name);
2019		goto out_mutex;
2020	}
2021	if (bdev->bd_openers)
2022		goto out;
 
 
 
 
2023
2024	/*
2025	 * Check if we have been instructed to close. We will have
2026	 * deferred this request, because the bdev was still open.
 
 
2027	 */
2028
2029	mutex_lock(&info->mutex);
2030	xbdev = info->xbdev;
2031
2032	if (xbdev && xbdev->state == XenbusStateClosing) {
2033		/* pending switch to state closed */
2034		dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n");
2035		xlvbd_release_gendisk(info);
2036		xenbus_frontend_closed(info->xbdev);
2037 	}
2038
2039	mutex_unlock(&info->mutex);
2040
2041	if (!xbdev) {
2042		/* sudden device removal */
2043		dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n");
2044		xlvbd_release_gendisk(info);
2045		disk->private_data = NULL;
2046		kfree(info);
2047	}
2048
2049out:
2050	bdput(bdev);
2051out_mutex:
2052	mutex_unlock(&blkfront_mutex);
2053}
2054
2055static const struct block_device_operations xlvbd_block_fops =
2056{
2057	.owner = THIS_MODULE,
2058	.open = blkif_open,
2059	.release = blkif_release,
2060	.getgeo = blkif_getgeo,
2061	.ioctl = blkif_ioctl,
2062};
2063
 
 
 
 
 
 
 
 
2064
2065static const struct xenbus_device_id blkfront_ids[] = {
2066	{ "vbd" },
2067	{ "" }
2068};
2069
2070static DEFINE_XENBUS_DRIVER(blkfront, ,
2071	.probe = blkfront_probe,
2072	.remove = blkfront_remove,
2073	.resume = blkfront_resume,
2074	.otherend_changed = blkback_changed,
2075	.is_ready = blkfront_is_ready,
2076);
2077
2078static int __init xlblk_init(void)
2079{
2080	int ret;
 
2081
2082	if (!xen_domain())
2083		return -ENODEV;
2084
2085	if (!xen_has_pv_disk_devices())
2086		return -ENODEV;
2087
2088	if (register_blkdev(XENVBD_MAJOR, DEV_NAME)) {
2089		printk(KERN_WARNING "xen_blk: can't get major %d with name %s\n",
2090		       XENVBD_MAJOR, DEV_NAME);
2091		return -ENODEV;
2092	}
2093
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2094	ret = xenbus_register_frontend(&blkfront_driver);
2095	if (ret) {
2096		unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2097		return ret;
2098	}
2099
2100	return 0;
2101}
2102module_init(xlblk_init);
2103
2104
2105static void __exit xlblk_exit(void)
2106{
 
 
2107	xenbus_unregister_driver(&blkfront_driver);
2108	unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2109	kfree(minors);
2110}
2111module_exit(xlblk_exit);
2112
2113MODULE_DESCRIPTION("Xen virtual block device frontend");
2114MODULE_LICENSE("GPL");
2115MODULE_ALIAS_BLOCKDEV_MAJOR(XENVBD_MAJOR);
2116MODULE_ALIAS("xen:vbd");
2117MODULE_ALIAS("xenblk");
v6.13.7
   1/*
   2 * blkfront.c
   3 *
   4 * XenLinux virtual block device driver.
   5 *
   6 * Copyright (c) 2003-2004, Keir Fraser & Steve Hand
   7 * Modifications by Mark A. Williamson are (c) Intel Research Cambridge
   8 * Copyright (c) 2004, Christian Limpach
   9 * Copyright (c) 2004, Andrew Warfield
  10 * Copyright (c) 2005, Christopher Clark
  11 * Copyright (c) 2005, XenSource Ltd
  12 *
  13 * This program is free software; you can redistribute it and/or
  14 * modify it under the terms of the GNU General Public License version 2
  15 * as published by the Free Software Foundation; or, when distributed
  16 * separately from the Linux kernel or incorporated into other
  17 * software packages, subject to the following license:
  18 *
  19 * Permission is hereby granted, free of charge, to any person obtaining a copy
  20 * of this source file (the "Software"), to deal in the Software without
  21 * restriction, including without limitation the rights to use, copy, modify,
  22 * merge, publish, distribute, sublicense, and/or sell copies of the Software,
  23 * and to permit persons to whom the Software is furnished to do so, subject to
  24 * the following conditions:
  25 *
  26 * The above copyright notice and this permission notice shall be included in
  27 * all copies or substantial portions of the Software.
  28 *
  29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  30 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  31 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  32 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  33 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  34 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  35 * IN THE SOFTWARE.
  36 */
  37
  38#include <linux/interrupt.h>
  39#include <linux/blkdev.h>
  40#include <linux/blk-mq.h>
  41#include <linux/hdreg.h>
  42#include <linux/cdrom.h>
  43#include <linux/module.h>
  44#include <linux/slab.h>
  45#include <linux/major.h>
  46#include <linux/mutex.h>
  47#include <linux/scatterlist.h>
  48#include <linux/bitmap.h>
  49#include <linux/list.h>
  50#include <linux/workqueue.h>
  51#include <linux/sched/mm.h>
  52
  53#include <xen/xen.h>
  54#include <xen/xenbus.h>
  55#include <xen/grant_table.h>
  56#include <xen/events.h>
  57#include <xen/page.h>
  58#include <xen/platform_pci.h>
  59
  60#include <xen/interface/grant_table.h>
  61#include <xen/interface/io/blkif.h>
  62#include <xen/interface/io/protocols.h>
  63
  64#include <asm/xen/hypervisor.h>
  65
  66/*
  67 * The minimal size of segment supported by the block framework is PAGE_SIZE.
  68 * When Linux is using a different page size than Xen, it may not be possible
  69 * to put all the data in a single segment.
  70 * This can happen when the backend doesn't support indirect descriptor and
  71 * therefore the maximum amount of data that a request can carry is
  72 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE = 44KB
  73 *
  74 * Note that we only support one extra request. So the Linux page size
  75 * should be <= ( 2 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) =
  76 * 88KB.
  77 */
  78#define HAS_EXTRA_REQ (BLKIF_MAX_SEGMENTS_PER_REQUEST < XEN_PFN_PER_PAGE)
  79
  80enum blkif_state {
  81	BLKIF_STATE_DISCONNECTED,
  82	BLKIF_STATE_CONNECTED,
  83	BLKIF_STATE_SUSPENDED,
  84	BLKIF_STATE_ERROR,
  85};
  86
  87struct grant {
  88	grant_ref_t gref;
  89	struct page *page;
  90	struct list_head node;
  91};
  92
  93enum blk_req_status {
  94	REQ_PROCESSING,
  95	REQ_WAITING,
  96	REQ_DONE,
  97	REQ_ERROR,
  98	REQ_EOPNOTSUPP,
  99};
 100
 101struct blk_shadow {
 102	struct blkif_request req;
 103	struct request *request;
 104	struct grant **grants_used;
 105	struct grant **indirect_grants;
 106	struct scatterlist *sg;
 107	unsigned int num_sg;
 108	enum blk_req_status status;
 109
 110	#define NO_ASSOCIATED_ID ~0UL
 111	/*
 112	 * Id of the sibling if we ever need 2 requests when handling a
 113	 * block I/O request
 114	 */
 115	unsigned long associated_id;
 116};
 117
 118struct blkif_req {
 119	blk_status_t	error;
 
 
 120};
 121
 122static inline struct blkif_req *blkif_req(struct request *rq)
 123{
 124	return blk_mq_rq_to_pdu(rq);
 125}
 126
 127static DEFINE_MUTEX(blkfront_mutex);
 128static const struct block_device_operations xlvbd_block_fops;
 129static struct delayed_work blkfront_work;
 130static LIST_HEAD(info_list);
 131
 132/*
 133 * Maximum number of segments in indirect requests, the actual value used by
 134 * the frontend driver is the minimum of this value and the value provided
 135 * by the backend driver.
 136 */
 137
 138static unsigned int xen_blkif_max_segments = 32;
 139module_param_named(max_indirect_segments, xen_blkif_max_segments, uint, 0444);
 140MODULE_PARM_DESC(max_indirect_segments,
 141		 "Maximum amount of segments in indirect requests (default is 32)");
 142
 143static unsigned int xen_blkif_max_queues = 4;
 144module_param_named(max_queues, xen_blkif_max_queues, uint, 0444);
 145MODULE_PARM_DESC(max_queues, "Maximum number of hardware queues/rings used per virtual disk");
 146
 147/*
 148 * Maximum order of pages to be used for the shared ring between front and
 149 * backend, 4KB page granularity is used.
 150 */
 151static unsigned int xen_blkif_max_ring_order;
 152module_param_named(max_ring_page_order, xen_blkif_max_ring_order, int, 0444);
 153MODULE_PARM_DESC(max_ring_page_order, "Maximum order of pages to be used for the shared ring");
 154
 155static bool __read_mostly xen_blkif_trusted = true;
 156module_param_named(trusted, xen_blkif_trusted, bool, 0644);
 157MODULE_PARM_DESC(trusted, "Is the backend trusted");
 158
 159#define BLK_RING_SIZE(info)	\
 160	__CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * (info)->nr_ring_pages)
 161
 162/*
 163 * ring-ref%u i=(-1UL) would take 11 characters + 'ring-ref' is 8, so 19
 164 * characters are enough. Define to 20 to keep consistent with backend.
 165 */
 166#define RINGREF_NAME_LEN (20)
 167/*
 168 * queue-%u would take 7 + 10(UINT_MAX) = 17 characters.
 169 */
 170#define QUEUE_NAME_LEN (17)
 171
 172/*
 173 *  Per-ring info.
 174 *  Every blkfront device can associate with one or more blkfront_ring_info,
 175 *  depending on how many hardware queues/rings to be used.
 176 */
 177struct blkfront_ring_info {
 178	/* Lock to protect data in every ring buffer. */
 179	spinlock_t ring_lock;
 180	struct blkif_front_ring ring;
 181	unsigned int ring_ref[XENBUS_MAX_RING_GRANTS];
 182	unsigned int evtchn, irq;
 183	struct work_struct work;
 184	struct gnttab_free_callback callback;
 185	struct list_head indirect_pages;
 186	struct list_head grants;
 187	unsigned int persistent_gnts_c;
 188	unsigned long shadow_free;
 189	struct blkfront_info *dev_info;
 190	struct blk_shadow shadow[];
 191};
 192
 193/*
 194 * We have one of these per vbd, whether ide, scsi or 'other'.  They
 195 * hang in private_data off the gendisk structure. We may end up
 196 * putting all kinds of interesting stuff here :-)
 197 */
 198struct blkfront_info
 199{
 
 200	struct mutex mutex;
 201	struct xenbus_device *xbdev;
 202	struct gendisk *gd;
 203	u16 sector_size;
 204	unsigned int physical_sector_size;
 205	unsigned long vdisk_info;
 206	int vdevice;
 207	blkif_vdev_t handle;
 208	enum blkif_state connected;
 209	/* Number of pages per ring buffer. */
 210	unsigned int nr_ring_pages;
 
 211	struct request_queue *rq;
 212	unsigned int feature_flush:1;
 213	unsigned int feature_fua:1;
 
 
 
 
 
 
 
 214	unsigned int feature_discard:1;
 215	unsigned int feature_secdiscard:1;
 216	/* Connect-time cached feature_persistent parameter */
 217	unsigned int feature_persistent_parm:1;
 218	/* Persistent grants feature negotiation result */
 219	unsigned int feature_persistent:1;
 220	unsigned int bounce:1;
 221	unsigned int discard_granularity;
 222	unsigned int discard_alignment;
 223	/* Number of 4KB segments handled */
 224	unsigned int max_indirect_segments;
 225	int is_ready;
 226	struct blk_mq_tag_set tag_set;
 227	struct blkfront_ring_info *rinfo;
 228	unsigned int nr_rings;
 229	unsigned int rinfo_size;
 230	/* Save uncomplete reqs and bios for migration. */
 231	struct list_head requests;
 232	struct bio_list bio_list;
 233	struct list_head info_list;
 234};
 235
 236static unsigned int nr_minors;
 237static unsigned long *minors;
 238static DEFINE_SPINLOCK(minor_lock);
 239
 
 
 
 
 240#define PARTS_PER_DISK		16
 241#define PARTS_PER_EXT_DISK      256
 242
 243#define BLKIF_MAJOR(dev) ((dev)>>8)
 244#define BLKIF_MINOR(dev) ((dev) & 0xff)
 245
 246#define EXT_SHIFT 28
 247#define EXTENDED (1<<EXT_SHIFT)
 248#define VDEV_IS_EXTENDED(dev) ((dev)&(EXTENDED))
 249#define BLKIF_MINOR_EXT(dev) ((dev)&(~EXTENDED))
 250#define EMULATED_HD_DISK_MINOR_OFFSET (0)
 251#define EMULATED_HD_DISK_NAME_OFFSET (EMULATED_HD_DISK_MINOR_OFFSET / 256)
 252#define EMULATED_SD_DISK_MINOR_OFFSET (0)
 253#define EMULATED_SD_DISK_NAME_OFFSET (EMULATED_SD_DISK_MINOR_OFFSET / 256)
 254
 255#define DEV_NAME	"xvd"	/* name in /dev */
 256
 257/*
 258 * Grants are always the same size as a Xen page (i.e 4KB).
 259 * A physical segment is always the same size as a Linux page.
 260 * Number of grants per physical segment
 261 */
 262#define GRANTS_PER_PSEG	(PAGE_SIZE / XEN_PAGE_SIZE)
 263
 264#define GRANTS_PER_INDIRECT_FRAME \
 265	(XEN_PAGE_SIZE / sizeof(struct blkif_request_segment))
 266
 267#define INDIRECT_GREFS(_grants)		\
 268	DIV_ROUND_UP(_grants, GRANTS_PER_INDIRECT_FRAME)
 269
 270static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo);
 271static void blkfront_gather_backend_features(struct blkfront_info *info);
 272static int negotiate_mq(struct blkfront_info *info);
 273
 274#define for_each_rinfo(info, ptr, idx)				\
 275	for ((ptr) = (info)->rinfo, (idx) = 0;			\
 276	     (idx) < (info)->nr_rings;				\
 277	     (idx)++, (ptr) = (void *)(ptr) + (info)->rinfo_size)
 278
 279static inline struct blkfront_ring_info *
 280get_rinfo(const struct blkfront_info *info, unsigned int i)
 281{
 282	BUG_ON(i >= info->nr_rings);
 283	return (void *)info->rinfo + i * info->rinfo_size;
 284}
 285
 286static int get_id_from_freelist(struct blkfront_ring_info *rinfo)
 287{
 288	unsigned long free = rinfo->shadow_free;
 289
 290	BUG_ON(free >= BLK_RING_SIZE(rinfo->dev_info));
 291	rinfo->shadow_free = rinfo->shadow[free].req.u.rw.id;
 292	rinfo->shadow[free].req.u.rw.id = 0x0fffffee; /* debug */
 293	return free;
 294}
 295
 296static int add_id_to_freelist(struct blkfront_ring_info *rinfo,
 297			      unsigned long id)
 298{
 299	if (rinfo->shadow[id].req.u.rw.id != id)
 300		return -EINVAL;
 301	if (rinfo->shadow[id].request == NULL)
 302		return -EINVAL;
 303	rinfo->shadow[id].req.u.rw.id  = rinfo->shadow_free;
 304	rinfo->shadow[id].request = NULL;
 305	rinfo->shadow_free = id;
 306	return 0;
 307}
 308
 309static int fill_grant_buffer(struct blkfront_ring_info *rinfo, int num)
 310{
 311	struct blkfront_info *info = rinfo->dev_info;
 312	struct page *granted_page;
 313	struct grant *gnt_list_entry, *n;
 314	int i = 0;
 315
 316	while (i < num) {
 317		gnt_list_entry = kzalloc(sizeof(struct grant), GFP_NOIO);
 318		if (!gnt_list_entry)
 319			goto out_of_memory;
 320
 321		if (info->bounce) {
 322			granted_page = alloc_page(GFP_NOIO | __GFP_ZERO);
 323			if (!granted_page) {
 324				kfree(gnt_list_entry);
 325				goto out_of_memory;
 326			}
 327			gnt_list_entry->page = granted_page;
 328		}
 329
 330		gnt_list_entry->gref = INVALID_GRANT_REF;
 331		list_add(&gnt_list_entry->node, &rinfo->grants);
 332		i++;
 333	}
 334
 335	return 0;
 336
 337out_of_memory:
 338	list_for_each_entry_safe(gnt_list_entry, n,
 339	                         &rinfo->grants, node) {
 340		list_del(&gnt_list_entry->node);
 341		if (info->bounce)
 342			__free_page(gnt_list_entry->page);
 343		kfree(gnt_list_entry);
 344		i--;
 345	}
 346	BUG_ON(i != 0);
 347	return -ENOMEM;
 348}
 349
 350static struct grant *get_free_grant(struct blkfront_ring_info *rinfo)
 
 
 351{
 352	struct grant *gnt_list_entry;
 
 353
 354	BUG_ON(list_empty(&rinfo->grants));
 355	gnt_list_entry = list_first_entry(&rinfo->grants, struct grant,
 356					  node);
 357	list_del(&gnt_list_entry->node);
 358
 359	if (gnt_list_entry->gref != INVALID_GRANT_REF)
 360		rinfo->persistent_gnts_c--;
 361
 362	return gnt_list_entry;
 363}
 364
 365static inline void grant_foreign_access(const struct grant *gnt_list_entry,
 366					const struct blkfront_info *info)
 367{
 368	gnttab_page_grant_foreign_access_ref_one(gnt_list_entry->gref,
 369						 info->xbdev->otherend_id,
 370						 gnt_list_entry->page,
 371						 0);
 372}
 373
 374static struct grant *get_grant(grant_ref_t *gref_head,
 375			       unsigned long gfn,
 376			       struct blkfront_ring_info *rinfo)
 377{
 378	struct grant *gnt_list_entry = get_free_grant(rinfo);
 379	struct blkfront_info *info = rinfo->dev_info;
 380
 381	if (gnt_list_entry->gref != INVALID_GRANT_REF)
 382		return gnt_list_entry;
 383
 384	/* Assign a gref to this page */
 385	gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
 386	BUG_ON(gnt_list_entry->gref == -ENOSPC);
 387	if (info->bounce)
 388		grant_foreign_access(gnt_list_entry, info);
 389	else {
 390		/* Grant access to the GFN passed by the caller */
 391		gnttab_grant_foreign_access_ref(gnt_list_entry->gref,
 392						info->xbdev->otherend_id,
 393						gfn, 0);
 394	}
 395
 396	return gnt_list_entry;
 397}
 398
 399static struct grant *get_indirect_grant(grant_ref_t *gref_head,
 400					struct blkfront_ring_info *rinfo)
 401{
 402	struct grant *gnt_list_entry = get_free_grant(rinfo);
 403	struct blkfront_info *info = rinfo->dev_info;
 404
 405	if (gnt_list_entry->gref != INVALID_GRANT_REF)
 406		return gnt_list_entry;
 407
 408	/* Assign a gref to this page */
 409	gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
 410	BUG_ON(gnt_list_entry->gref == -ENOSPC);
 411	if (!info->bounce) {
 412		struct page *indirect_page;
 413
 414		/* Fetch a pre-allocated page to use for indirect grefs */
 415		BUG_ON(list_empty(&rinfo->indirect_pages));
 416		indirect_page = list_first_entry(&rinfo->indirect_pages,
 417						 struct page, lru);
 418		list_del(&indirect_page->lru);
 419		gnt_list_entry->page = indirect_page;
 420	}
 421	grant_foreign_access(gnt_list_entry, info);
 422
 423	return gnt_list_entry;
 424}
 425
 426static const char *op_name(int op)
 427{
 428	static const char *const names[] = {
 429		[BLKIF_OP_READ] = "read",
 430		[BLKIF_OP_WRITE] = "write",
 431		[BLKIF_OP_WRITE_BARRIER] = "barrier",
 432		[BLKIF_OP_FLUSH_DISKCACHE] = "flush",
 433		[BLKIF_OP_DISCARD] = "discard" };
 434
 435	if (op < 0 || op >= ARRAY_SIZE(names))
 436		return "unknown";
 437
 438	if (!names[op])
 439		return "reserved";
 440
 441	return names[op];
 442}
 443static int xlbd_reserve_minors(unsigned int minor, unsigned int nr)
 444{
 445	unsigned int end = minor + nr;
 446	int rc;
 447
 448	if (end > nr_minors) {
 449		unsigned long *bitmap, *old;
 450
 451		bitmap = kcalloc(BITS_TO_LONGS(end), sizeof(*bitmap),
 452				 GFP_KERNEL);
 453		if (bitmap == NULL)
 454			return -ENOMEM;
 455
 456		spin_lock(&minor_lock);
 457		if (end > nr_minors) {
 458			old = minors;
 459			memcpy(bitmap, minors,
 460			       BITS_TO_LONGS(nr_minors) * sizeof(*bitmap));
 461			minors = bitmap;
 462			nr_minors = BITS_TO_LONGS(end) * BITS_PER_LONG;
 463		} else
 464			old = bitmap;
 465		spin_unlock(&minor_lock);
 466		kfree(old);
 467	}
 468
 469	spin_lock(&minor_lock);
 470	if (find_next_bit(minors, end, minor) >= end) {
 471		bitmap_set(minors, minor, nr);
 472		rc = 0;
 473	} else
 474		rc = -EBUSY;
 475	spin_unlock(&minor_lock);
 476
 477	return rc;
 478}
 479
 480static void xlbd_release_minors(unsigned int minor, unsigned int nr)
 481{
 482	unsigned int end = minor + nr;
 483
 484	BUG_ON(end > nr_minors);
 485	spin_lock(&minor_lock);
 486	bitmap_clear(minors,  minor, nr);
 487	spin_unlock(&minor_lock);
 488}
 489
 490static void blkif_restart_queue_callback(void *arg)
 491{
 492	struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)arg;
 493	schedule_work(&rinfo->work);
 494}
 495
 496static int blkif_getgeo(struct block_device *bd, struct hd_geometry *hg)
 497{
 498	/* We don't have real geometry info, but let's at least return
 499	   values consistent with the size of the device */
 500	sector_t nsect = get_capacity(bd->bd_disk);
 501	sector_t cylinders = nsect;
 502
 503	hg->heads = 0xff;
 504	hg->sectors = 0x3f;
 505	sector_div(cylinders, hg->heads * hg->sectors);
 506	hg->cylinders = cylinders;
 507	if ((sector_t)(hg->cylinders + 1) * hg->heads * hg->sectors < nsect)
 508		hg->cylinders = 0xffff;
 509	return 0;
 510}
 511
 512static int blkif_ioctl(struct block_device *bdev, blk_mode_t mode,
 513		       unsigned command, unsigned long argument)
 514{
 515	struct blkfront_info *info = bdev->bd_disk->private_data;
 516	int i;
 517
 
 
 
 518	switch (command) {
 519	case CDROMMULTISESSION:
 
 520		for (i = 0; i < sizeof(struct cdrom_multisession); i++)
 521			if (put_user(0, (char __user *)(argument + i)))
 522				return -EFAULT;
 523		return 0;
 524	case CDROM_GET_CAPABILITY:
 525		if (!(info->vdisk_info & VDISK_CDROM))
 526			return -EINVAL;
 527		return 0;
 528	default:
 529		return -EINVAL;
 530	}
 531}
 532
 533static unsigned long blkif_ring_get_request(struct blkfront_ring_info *rinfo,
 534					    struct request *req,
 535					    struct blkif_request **ring_req)
 536{
 537	unsigned long id;
 538
 539	*ring_req = RING_GET_REQUEST(&rinfo->ring, rinfo->ring.req_prod_pvt);
 540	rinfo->ring.req_prod_pvt++;
 541
 542	id = get_id_from_freelist(rinfo);
 543	rinfo->shadow[id].request = req;
 544	rinfo->shadow[id].status = REQ_PROCESSING;
 545	rinfo->shadow[id].associated_id = NO_ASSOCIATED_ID;
 546
 547	rinfo->shadow[id].req.u.rw.id = id;
 548
 549	return id;
 550}
 551
 552static int blkif_queue_discard_req(struct request *req, struct blkfront_ring_info *rinfo)
 
 
 
 
 
 
 553{
 554	struct blkfront_info *info = rinfo->dev_info;
 555	struct blkif_request *ring_req, *final_ring_req;
 556	unsigned long id;
 557
 558	/* Fill out a communications ring structure. */
 559	id = blkif_ring_get_request(rinfo, req, &final_ring_req);
 560	ring_req = &rinfo->shadow[id].req;
 561
 562	ring_req->operation = BLKIF_OP_DISCARD;
 563	ring_req->u.discard.nr_sectors = blk_rq_sectors(req);
 564	ring_req->u.discard.id = id;
 565	ring_req->u.discard.sector_number = (blkif_sector_t)blk_rq_pos(req);
 566	if (req_op(req) == REQ_OP_SECURE_ERASE && info->feature_secdiscard)
 567		ring_req->u.discard.flag = BLKIF_DISCARD_SECURE;
 568	else
 569		ring_req->u.discard.flag = 0;
 570
 571	/* Copy the request to the ring page. */
 572	*final_ring_req = *ring_req;
 573	rinfo->shadow[id].status = REQ_WAITING;
 574
 575	return 0;
 576}
 577
 578struct setup_rw_req {
 579	unsigned int grant_idx;
 580	struct blkif_request_segment *segments;
 581	struct blkfront_ring_info *rinfo;
 582	struct blkif_request *ring_req;
 583	grant_ref_t gref_head;
 584	unsigned int id;
 585	/* Only used when persistent grant is used and it's a write request */
 586	bool need_copy;
 587	unsigned int bvec_off;
 588	char *bvec_data;
 589
 590	bool require_extra_req;
 591	struct blkif_request *extra_ring_req;
 592};
 593
 594static void blkif_setup_rw_req_grant(unsigned long gfn, unsigned int offset,
 595				     unsigned int len, void *data)
 596{
 597	struct setup_rw_req *setup = data;
 598	int n, ref;
 599	struct grant *gnt_list_entry;
 600	unsigned int fsect, lsect;
 601	/* Convenient aliases */
 602	unsigned int grant_idx = setup->grant_idx;
 603	struct blkif_request *ring_req = setup->ring_req;
 604	struct blkfront_ring_info *rinfo = setup->rinfo;
 605	/*
 606	 * We always use the shadow of the first request to store the list
 607	 * of grant associated to the block I/O request. This made the
 608	 * completion more easy to handle even if the block I/O request is
 609	 * split.
 610	 */
 611	struct blk_shadow *shadow = &rinfo->shadow[setup->id];
 612
 613	if (unlikely(setup->require_extra_req &&
 614		     grant_idx >= BLKIF_MAX_SEGMENTS_PER_REQUEST)) {
 615		/*
 616		 * We are using the second request, setup grant_idx
 617		 * to be the index of the segment array.
 618		 */
 619		grant_idx -= BLKIF_MAX_SEGMENTS_PER_REQUEST;
 620		ring_req = setup->extra_ring_req;
 621	}
 622
 623	if ((ring_req->operation == BLKIF_OP_INDIRECT) &&
 624	    (grant_idx % GRANTS_PER_INDIRECT_FRAME == 0)) {
 625		if (setup->segments)
 626			kunmap_atomic(setup->segments);
 627
 628		n = grant_idx / GRANTS_PER_INDIRECT_FRAME;
 629		gnt_list_entry = get_indirect_grant(&setup->gref_head, rinfo);
 630		shadow->indirect_grants[n] = gnt_list_entry;
 631		setup->segments = kmap_atomic(gnt_list_entry->page);
 632		ring_req->u.indirect.indirect_grefs[n] = gnt_list_entry->gref;
 633	}
 634
 635	gnt_list_entry = get_grant(&setup->gref_head, gfn, rinfo);
 636	ref = gnt_list_entry->gref;
 637	/*
 638	 * All the grants are stored in the shadow of the first
 639	 * request. Therefore we have to use the global index.
 640	 */
 641	shadow->grants_used[setup->grant_idx] = gnt_list_entry;
 642
 643	if (setup->need_copy) {
 644		void *shared_data;
 645
 646		shared_data = kmap_atomic(gnt_list_entry->page);
 647		/*
 648		 * this does not wipe data stored outside the
 649		 * range sg->offset..sg->offset+sg->length.
 650		 * Therefore, blkback *could* see data from
 651		 * previous requests. This is OK as long as
 652		 * persistent grants are shared with just one
 653		 * domain. It may need refactoring if this
 654		 * changes
 655		 */
 656		memcpy(shared_data + offset,
 657		       setup->bvec_data + setup->bvec_off,
 658		       len);
 659
 660		kunmap_atomic(shared_data);
 661		setup->bvec_off += len;
 662	}
 663
 664	fsect = offset >> 9;
 665	lsect = fsect + (len >> 9) - 1;
 666	if (ring_req->operation != BLKIF_OP_INDIRECT) {
 667		ring_req->u.rw.seg[grant_idx] =
 668			(struct blkif_request_segment) {
 669				.gref       = ref,
 670				.first_sect = fsect,
 671				.last_sect  = lsect };
 672	} else {
 673		setup->segments[grant_idx % GRANTS_PER_INDIRECT_FRAME] =
 674			(struct blkif_request_segment) {
 675				.gref       = ref,
 676				.first_sect = fsect,
 677				.last_sect  = lsect };
 678	}
 679
 680	(setup->grant_idx)++;
 681}
 682
 683static void blkif_setup_extra_req(struct blkif_request *first,
 684				  struct blkif_request *second)
 685{
 686	uint16_t nr_segments = first->u.rw.nr_segments;
 687
 688	/*
 689	 * The second request is only present when the first request uses
 690	 * all its segments. It's always the continuity of the first one.
 691	 */
 692	first->u.rw.nr_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
 693
 694	second->u.rw.nr_segments = nr_segments - BLKIF_MAX_SEGMENTS_PER_REQUEST;
 695	second->u.rw.sector_number = first->u.rw.sector_number +
 696		(BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) / 512;
 697
 698	second->u.rw.handle = first->u.rw.handle;
 699	second->operation = first->operation;
 700}
 701
 702static int blkif_queue_rw_req(struct request *req, struct blkfront_ring_info *rinfo)
 703{
 704	struct blkfront_info *info = rinfo->dev_info;
 705	struct blkif_request *ring_req, *extra_ring_req = NULL;
 706	struct blkif_request *final_ring_req, *final_extra_ring_req = NULL;
 707	unsigned long id, extra_id = NO_ASSOCIATED_ID;
 708	bool require_extra_req = false;
 709	int i;
 710	struct setup_rw_req setup = {
 711		.grant_idx = 0,
 712		.segments = NULL,
 713		.rinfo = rinfo,
 714		.need_copy = rq_data_dir(req) && info->bounce,
 715	};
 716
 717	/*
 718	 * Used to store if we are able to queue the request by just using
 719	 * existing persistent grants, or if we have to get new grants,
 720	 * as there are not sufficiently many free.
 721	 */
 722	bool new_persistent_gnts = false;
 
 
 723	struct scatterlist *sg;
 724	int num_sg, max_grefs, num_grant;
 725
 726	max_grefs = req->nr_phys_segments * GRANTS_PER_PSEG;
 
 
 
 727	if (max_grefs > BLKIF_MAX_SEGMENTS_PER_REQUEST)
 728		/*
 729		 * If we are using indirect segments we need to account
 730		 * for the indirect grefs used in the request.
 731		 */
 732		max_grefs += INDIRECT_GREFS(max_grefs);
 733
 734	/* Check if we have enough persistent grants to allocate a requests */
 735	if (rinfo->persistent_gnts_c < max_grefs) {
 736		new_persistent_gnts = true;
 737
 
 
 
 738		if (gnttab_alloc_grant_references(
 739		    max_grefs - rinfo->persistent_gnts_c,
 740		    &setup.gref_head) < 0) {
 741			gnttab_request_free_callback(
 742				&rinfo->callback,
 743				blkif_restart_queue_callback,
 744				rinfo,
 745				max_grefs - rinfo->persistent_gnts_c);
 746			return 1;
 747		}
 748	}
 
 749
 750	/* Fill out a communications ring structure. */
 751	id = blkif_ring_get_request(rinfo, req, &final_ring_req);
 752	ring_req = &rinfo->shadow[id].req;
 753
 754	num_sg = blk_rq_map_sg(req->q, req, rinfo->shadow[id].sg);
 755	num_grant = 0;
 756	/* Calculate the number of grant used */
 757	for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i)
 758	       num_grant += gnttab_count_grant(sg->offset, sg->length);
 759
 760	require_extra_req = info->max_indirect_segments == 0 &&
 761		num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST;
 762	BUG_ON(!HAS_EXTRA_REQ && require_extra_req);
 763
 764	rinfo->shadow[id].num_sg = num_sg;
 765	if (num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST &&
 766	    likely(!require_extra_req)) {
 767		/*
 768		 * The indirect operation can only be a BLKIF_OP_READ or
 769		 * BLKIF_OP_WRITE
 770		 */
 771		BUG_ON(req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA);
 772		ring_req->operation = BLKIF_OP_INDIRECT;
 773		ring_req->u.indirect.indirect_op = rq_data_dir(req) ?
 774			BLKIF_OP_WRITE : BLKIF_OP_READ;
 775		ring_req->u.indirect.sector_number = (blkif_sector_t)blk_rq_pos(req);
 776		ring_req->u.indirect.handle = info->handle;
 777		ring_req->u.indirect.nr_segments = num_grant;
 778	} else {
 779		ring_req->u.rw.sector_number = (blkif_sector_t)blk_rq_pos(req);
 780		ring_req->u.rw.handle = info->handle;
 781		ring_req->operation = rq_data_dir(req) ?
 782			BLKIF_OP_WRITE : BLKIF_OP_READ;
 783		if (req_op(req) == REQ_OP_FLUSH ||
 784		    (req_op(req) == REQ_OP_WRITE && (req->cmd_flags & REQ_FUA))) {
 
 785			/*
 786			 * Ideally we can do an unordered flush-to-disk.
 787			 * In case the backend onlysupports barriers, use that.
 788			 * A barrier request a superset of FUA, so we can
 789			 * implement it the same way.  (It's also a FLUSH+FUA,
 790			 * since it is guaranteed ordered WRT previous writes.)
 791			 *
 792			 * Note that can end up here with a FUA write and the
 793			 * flags cleared.  This happens when the flag was
 794			 * run-time disabled after a failing I/O, and we'll
 795			 * simplify submit it as a normal write.
 796			 */
 797			if (info->feature_flush && info->feature_fua)
 798				ring_req->operation =
 799					BLKIF_OP_WRITE_BARRIER;
 800			else if (info->feature_flush)
 801				ring_req->operation =
 802					BLKIF_OP_FLUSH_DISKCACHE;
 803		}
 804		ring_req->u.rw.nr_segments = num_grant;
 805		if (unlikely(require_extra_req)) {
 806			extra_id = blkif_ring_get_request(rinfo, req,
 807							  &final_extra_ring_req);
 808			extra_ring_req = &rinfo->shadow[extra_id].req;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 809
 810			/*
 811			 * Only the first request contains the scatter-gather
 812			 * list.
 813			 */
 814			rinfo->shadow[extra_id].num_sg = 0;
 815
 816			blkif_setup_extra_req(ring_req, extra_ring_req);
 
 
 
 
 
 
 
 
 
 
 
 817
 818			/* Link the 2 requests together */
 819			rinfo->shadow[extra_id].associated_id = id;
 820			rinfo->shadow[id].associated_id = extra_id;
 821		}
 822	}
 823
 824	setup.ring_req = ring_req;
 825	setup.id = id;
 826
 827	setup.require_extra_req = require_extra_req;
 828	if (unlikely(require_extra_req))
 829		setup.extra_ring_req = extra_ring_req;
 830
 831	for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) {
 832		BUG_ON(sg->offset + sg->length > PAGE_SIZE);
 833
 834		if (setup.need_copy) {
 835			setup.bvec_off = sg->offset;
 836			setup.bvec_data = kmap_atomic(sg_page(sg));
 837		}
 838
 839		gnttab_foreach_grant_in_range(sg_page(sg),
 840					      sg->offset,
 841					      sg->length,
 842					      blkif_setup_rw_req_grant,
 843					      &setup);
 
 
 
 
 
 
 
 844
 845		if (setup.need_copy)
 846			kunmap_atomic(setup.bvec_data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 847	}
 848	if (setup.segments)
 849		kunmap_atomic(setup.segments);
 850
 851	/* Copy request(s) to the ring page. */
 852	*final_ring_req = *ring_req;
 853	rinfo->shadow[id].status = REQ_WAITING;
 854	if (unlikely(require_extra_req)) {
 855		*final_extra_ring_req = *extra_ring_req;
 856		rinfo->shadow[extra_id].status = REQ_WAITING;
 857	}
 858
 859	if (new_persistent_gnts)
 860		gnttab_free_grant_references(setup.gref_head);
 861
 862	return 0;
 863}
 864
 865/*
 866 * Generate a Xen blkfront IO request from a blk layer request.  Reads
 867 * and writes are handled as expected.
 868 *
 869 * @req: a request struct
 870 */
 871static int blkif_queue_request(struct request *req, struct blkfront_ring_info *rinfo)
 872{
 873	if (unlikely(rinfo->dev_info->connected != BLKIF_STATE_CONNECTED))
 874		return 1;
 875
 876	if (unlikely(req_op(req) == REQ_OP_DISCARD ||
 877		     req_op(req) == REQ_OP_SECURE_ERASE))
 878		return blkif_queue_discard_req(req, rinfo);
 879	else
 880		return blkif_queue_rw_req(req, rinfo);
 881}
 882
 883static inline void flush_requests(struct blkfront_ring_info *rinfo)
 884{
 885	int notify;
 886
 887	RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rinfo->ring, notify);
 888
 889	if (notify)
 890		notify_remote_via_irq(rinfo->irq);
 891}
 892
 893static blk_status_t blkif_queue_rq(struct blk_mq_hw_ctx *hctx,
 894			  const struct blk_mq_queue_data *qd)
 
 
 
 895{
 896	unsigned long flags;
 897	int qid = hctx->queue_num;
 898	struct blkfront_info *info = hctx->queue->queuedata;
 899	struct blkfront_ring_info *rinfo = NULL;
 900
 901	rinfo = get_rinfo(info, qid);
 902	blk_mq_start_request(qd->rq);
 903	spin_lock_irqsave(&rinfo->ring_lock, flags);
 
 
 
 
 
 904
 905	/*
 906	 * Check if the backend actually supports flushes.
 907	 *
 908	 * While the block layer won't send us flushes if we don't claim to
 909	 * support them, the Xen protocol allows the backend to revoke support
 910	 * at any time.  That is of course a really bad idea and dangerous, but
 911	 * has been allowed for 10+ years.  In that case we simply clear the
 912	 * flags, and directly return here for an empty flush and ignore the
 913	 * FUA flag later on.
 914	 */
 915	if (unlikely(req_op(qd->rq) == REQ_OP_FLUSH && !info->feature_flush))
 916		goto complete;
 917
 918	if (RING_FULL(&rinfo->ring))
 919		goto out_busy;
 920	if (blkif_queue_request(qd->rq, rinfo))
 921		goto out_busy;
 
 
 922
 923	flush_requests(rinfo);
 924	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
 925	return BLK_STS_OK;
 
 
 
 
 
 
 
 
 
 
 926
 927out_busy:
 928	blk_mq_stop_hw_queue(hctx);
 929	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
 930	return BLK_STS_DEV_RESOURCE;
 931complete:
 932	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
 933	blk_mq_end_request(qd->rq, BLK_STS_OK);
 934	return BLK_STS_OK;
 935}
 936
 937static void blkif_complete_rq(struct request *rq)
 
 
 938{
 939	blk_mq_end_request(rq, blkif_req(rq)->error);
 940}
 941
 942static const struct blk_mq_ops blkfront_mq_ops = {
 943	.queue_rq = blkif_queue_rq,
 944	.complete = blkif_complete_rq,
 945};
 946
 947static void blkif_set_queue_limits(const struct blkfront_info *info,
 948		struct queue_limits *lim)
 949{
 950	unsigned int segments = info->max_indirect_segments ? :
 951				BLKIF_MAX_SEGMENTS_PER_REQUEST;
 952
 953	if (info->feature_discard) {
 954		lim->max_hw_discard_sectors = UINT_MAX;
 955		if (info->discard_granularity)
 956			lim->discard_granularity = info->discard_granularity;
 957		lim->discard_alignment = info->discard_alignment;
 958		if (info->feature_secdiscard)
 959			lim->max_secure_erase_sectors = UINT_MAX;
 960	}
 961
 962	if (info->feature_flush) {
 963		lim->features |= BLK_FEAT_WRITE_CACHE;
 964		if (info->feature_fua)
 965			lim->features |= BLK_FEAT_FUA;
 966	}
 967
 968	/* Hard sector size and max sectors impersonate the equiv. hardware. */
 969	lim->logical_block_size = info->sector_size;
 970	lim->physical_block_size = info->physical_sector_size;
 971	lim->max_hw_sectors = (segments * XEN_PAGE_SIZE) / 512;
 972
 973	/* Each segment in a request is up to an aligned page in size. */
 974	lim->seg_boundary_mask = PAGE_SIZE - 1;
 975	lim->max_segment_size = PAGE_SIZE;
 976
 977	/* Ensure a merged request will fit in a single I/O ring slot. */
 978	lim->max_segments = segments / GRANTS_PER_PSEG;
 979
 980	/* Make sure buffer addresses are sector-aligned. */
 981	lim->dma_alignment = 511;
 
 
 
 
 
 
 
 982}
 983
 984static const char *flush_info(struct blkfront_info *info)
 985{
 986	if (info->feature_flush && info->feature_fua)
 987		return "barrier: enabled;";
 988	else if (info->feature_flush)
 989		return "flush diskcache: enabled;";
 990	else
 991		return "barrier or flush: disabled;";
 992}
 993
 994static void xlvbd_flush(struct blkfront_info *info)
 995{
 996	pr_info("blkfront: %s: %s %s %s %s %s %s %s\n",
 997		info->gd->disk_name, flush_info(info),
 998		"persistent grants:", info->feature_persistent ?
 999		"enabled;" : "disabled;", "indirect descriptors:",
1000		info->max_indirect_segments ? "enabled;" : "disabled;",
1001		"bounce buffer:", info->bounce ? "enabled" : "disabled;");
 
 
 
 
 
1002}
1003
1004static int xen_translate_vdev(int vdevice, int *minor, unsigned int *offset)
1005{
1006	int major;
1007	major = BLKIF_MAJOR(vdevice);
1008	*minor = BLKIF_MINOR(vdevice);
1009	switch (major) {
1010		case XEN_IDE0_MAJOR:
1011			*offset = (*minor / 64) + EMULATED_HD_DISK_NAME_OFFSET;
1012			*minor = ((*minor / 64) * PARTS_PER_DISK) +
1013				EMULATED_HD_DISK_MINOR_OFFSET;
1014			break;
1015		case XEN_IDE1_MAJOR:
1016			*offset = (*minor / 64) + 2 + EMULATED_HD_DISK_NAME_OFFSET;
1017			*minor = (((*minor / 64) + 2) * PARTS_PER_DISK) +
1018				EMULATED_HD_DISK_MINOR_OFFSET;
1019			break;
1020		case XEN_SCSI_DISK0_MAJOR:
1021			*offset = (*minor / PARTS_PER_DISK) + EMULATED_SD_DISK_NAME_OFFSET;
1022			*minor = *minor + EMULATED_SD_DISK_MINOR_OFFSET;
1023			break;
1024		case XEN_SCSI_DISK1_MAJOR:
1025		case XEN_SCSI_DISK2_MAJOR:
1026		case XEN_SCSI_DISK3_MAJOR:
1027		case XEN_SCSI_DISK4_MAJOR:
1028		case XEN_SCSI_DISK5_MAJOR:
1029		case XEN_SCSI_DISK6_MAJOR:
1030		case XEN_SCSI_DISK7_MAJOR:
1031			*offset = (*minor / PARTS_PER_DISK) + 
1032				((major - XEN_SCSI_DISK1_MAJOR + 1) * 16) +
1033				EMULATED_SD_DISK_NAME_OFFSET;
1034			*minor = *minor +
1035				((major - XEN_SCSI_DISK1_MAJOR + 1) * 16 * PARTS_PER_DISK) +
1036				EMULATED_SD_DISK_MINOR_OFFSET;
1037			break;
1038		case XEN_SCSI_DISK8_MAJOR:
1039		case XEN_SCSI_DISK9_MAJOR:
1040		case XEN_SCSI_DISK10_MAJOR:
1041		case XEN_SCSI_DISK11_MAJOR:
1042		case XEN_SCSI_DISK12_MAJOR:
1043		case XEN_SCSI_DISK13_MAJOR:
1044		case XEN_SCSI_DISK14_MAJOR:
1045		case XEN_SCSI_DISK15_MAJOR:
1046			*offset = (*minor / PARTS_PER_DISK) + 
1047				((major - XEN_SCSI_DISK8_MAJOR + 8) * 16) +
1048				EMULATED_SD_DISK_NAME_OFFSET;
1049			*minor = *minor +
1050				((major - XEN_SCSI_DISK8_MAJOR + 8) * 16 * PARTS_PER_DISK) +
1051				EMULATED_SD_DISK_MINOR_OFFSET;
1052			break;
1053		case XENVBD_MAJOR:
1054			*offset = *minor / PARTS_PER_DISK;
1055			break;
1056		default:
1057			printk(KERN_WARNING "blkfront: your disk configuration is "
1058					"incorrect, please use an xvd device instead\n");
1059			return -ENODEV;
1060	}
1061	return 0;
1062}
1063
1064static char *encode_disk_name(char *ptr, unsigned int n)
1065{
1066	if (n >= 26)
1067		ptr = encode_disk_name(ptr, n / 26 - 1);
1068	*ptr = 'a' + n % 26;
1069	return ptr + 1;
1070}
1071
1072static int xlvbd_alloc_gendisk(blkif_sector_t capacity,
1073		struct blkfront_info *info)
 
 
1074{
1075	struct queue_limits lim = {};
1076	struct gendisk *gd;
1077	int nr_minors = 1;
1078	int err;
1079	unsigned int offset;
1080	int minor;
1081	int nr_parts;
1082	char *ptr;
1083
1084	BUG_ON(info->gd != NULL);
1085	BUG_ON(info->rq != NULL);
1086
1087	if ((info->vdevice>>EXT_SHIFT) > 1) {
1088		/* this is above the extended range; something is wrong */
1089		printk(KERN_WARNING "blkfront: vdevice 0x%x is above the extended range; ignoring\n", info->vdevice);
1090		return -ENODEV;
1091	}
1092
1093	if (!VDEV_IS_EXTENDED(info->vdevice)) {
1094		err = xen_translate_vdev(info->vdevice, &minor, &offset);
1095		if (err)
1096			return err;
1097		nr_parts = PARTS_PER_DISK;
1098	} else {
1099		minor = BLKIF_MINOR_EXT(info->vdevice);
1100		nr_parts = PARTS_PER_EXT_DISK;
1101		offset = minor / nr_parts;
1102		if (xen_hvm_domain() && offset < EMULATED_HD_DISK_NAME_OFFSET + 4)
1103			printk(KERN_WARNING "blkfront: vdevice 0x%x might conflict with "
1104					"emulated IDE disks,\n\t choose an xvd device name"
1105					"from xvde on\n", info->vdevice);
1106	}
1107	if (minor >> MINORBITS) {
1108		pr_warn("blkfront: %#x's minor (%#x) out of range; ignoring\n",
1109			info->vdevice, minor);
1110		return -ENODEV;
1111	}
1112
1113	if ((minor % nr_parts) == 0)
1114		nr_minors = nr_parts;
1115
1116	err = xlbd_reserve_minors(minor, nr_minors);
1117	if (err)
1118		return err;
1119
1120	memset(&info->tag_set, 0, sizeof(info->tag_set));
1121	info->tag_set.ops = &blkfront_mq_ops;
1122	info->tag_set.nr_hw_queues = info->nr_rings;
1123	if (HAS_EXTRA_REQ && info->max_indirect_segments == 0) {
1124		/*
1125		 * When indirect descriptior is not supported, the I/O request
1126		 * will be split between multiple request in the ring.
1127		 * To avoid problems when sending the request, divide by
1128		 * 2 the depth of the queue.
1129		 */
1130		info->tag_set.queue_depth =  BLK_RING_SIZE(info) / 2;
1131	} else
1132		info->tag_set.queue_depth = BLK_RING_SIZE(info);
1133	info->tag_set.numa_node = NUMA_NO_NODE;
1134	info->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1135	info->tag_set.cmd_size = sizeof(struct blkif_req);
1136	info->tag_set.driver_data = info;
1137
1138	err = blk_mq_alloc_tag_set(&info->tag_set);
1139	if (err)
1140		goto out_release_minors;
1141
1142	blkif_set_queue_limits(info, &lim);
1143	gd = blk_mq_alloc_disk(&info->tag_set, &lim, info);
1144	if (IS_ERR(gd)) {
1145		err = PTR_ERR(gd);
1146		goto out_free_tag_set;
1147	}
1148
1149	strcpy(gd->disk_name, DEV_NAME);
1150	ptr = encode_disk_name(gd->disk_name + sizeof(DEV_NAME) - 1, offset);
1151	BUG_ON(ptr >= gd->disk_name + DISK_NAME_LEN);
1152	if (nr_minors > 1)
1153		*ptr = 0;
1154	else
1155		snprintf(ptr, gd->disk_name + DISK_NAME_LEN - ptr,
1156			 "%d", minor & (nr_parts - 1));
1157
1158	gd->major = XENVBD_MAJOR;
1159	gd->first_minor = minor;
1160	gd->minors = nr_minors;
1161	gd->fops = &xlvbd_block_fops;
1162	gd->private_data = info;
 
1163	set_capacity(gd, capacity);
1164
 
 
 
 
 
 
 
1165	info->rq = gd->queue;
1166	info->gd = gd;
1167
1168	xlvbd_flush(info);
1169
1170	if (info->vdisk_info & VDISK_READONLY)
1171		set_disk_ro(gd, 1);
1172	if (info->vdisk_info & VDISK_REMOVABLE)
 
1173		gd->flags |= GENHD_FL_REMOVABLE;
1174
 
 
 
1175	return 0;
1176
1177out_free_tag_set:
1178	blk_mq_free_tag_set(&info->tag_set);
1179out_release_minors:
1180	xlbd_release_minors(minor, nr_minors);
 
1181	return err;
1182}
1183
1184/* Already hold rinfo->ring_lock. */
1185static inline void kick_pending_request_queues_locked(struct blkfront_ring_info *rinfo)
1186{
1187	if (!RING_FULL(&rinfo->ring))
1188		blk_mq_start_stopped_hw_queues(rinfo->dev_info->rq, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1189}
1190
1191static void kick_pending_request_queues(struct blkfront_ring_info *rinfo)
1192{
1193	unsigned long flags;
1194
1195	spin_lock_irqsave(&rinfo->ring_lock, flags);
1196	kick_pending_request_queues_locked(rinfo);
1197	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
 
1198}
1199
1200static void blkif_restart_queue(struct work_struct *work)
1201{
1202	struct blkfront_ring_info *rinfo = container_of(work, struct blkfront_ring_info, work);
1203
1204	if (rinfo->dev_info->connected == BLKIF_STATE_CONNECTED)
1205		kick_pending_request_queues(rinfo);
 
 
1206}
1207
1208static void blkif_free_ring(struct blkfront_ring_info *rinfo)
1209{
1210	struct grant *persistent_gnt, *n;
1211	struct blkfront_info *info = rinfo->dev_info;
1212	int i, j, segs;
1213
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1214	/*
1215	 * Remove indirect pages, this only happens when using indirect
1216	 * descriptors but not persistent grants
1217	 */
1218	if (!list_empty(&rinfo->indirect_pages)) {
1219		struct page *indirect_page, *n;
1220
1221		BUG_ON(info->bounce);
1222		list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
1223			list_del(&indirect_page->lru);
1224			__free_page(indirect_page);
1225		}
1226	}
1227
1228	/* Remove all persistent grants. */
1229	if (!list_empty(&rinfo->grants)) {
1230		list_for_each_entry_safe(persistent_gnt, n,
1231					 &rinfo->grants, node) {
1232			list_del(&persistent_gnt->node);
1233			if (persistent_gnt->gref != INVALID_GRANT_REF) {
1234				gnttab_end_foreign_access(persistent_gnt->gref,
1235							  NULL);
1236				rinfo->persistent_gnts_c--;
1237			}
1238			if (info->bounce)
1239				__free_page(persistent_gnt->page);
1240			kfree(persistent_gnt);
1241		}
1242	}
1243	BUG_ON(rinfo->persistent_gnts_c != 0);
1244
1245	for (i = 0; i < BLK_RING_SIZE(info); i++) {
1246		/*
1247		 * Clear persistent grants present in requests already
1248		 * on the shared ring
1249		 */
1250		if (!rinfo->shadow[i].request)
1251			goto free_shadow;
1252
1253		segs = rinfo->shadow[i].req.operation == BLKIF_OP_INDIRECT ?
1254		       rinfo->shadow[i].req.u.indirect.nr_segments :
1255		       rinfo->shadow[i].req.u.rw.nr_segments;
1256		for (j = 0; j < segs; j++) {
1257			persistent_gnt = rinfo->shadow[i].grants_used[j];
1258			gnttab_end_foreign_access(persistent_gnt->gref, NULL);
1259			if (info->bounce)
1260				__free_page(persistent_gnt->page);
1261			kfree(persistent_gnt);
1262		}
1263
1264		if (rinfo->shadow[i].req.operation != BLKIF_OP_INDIRECT)
1265			/*
1266			 * If this is not an indirect operation don't try to
1267			 * free indirect segments
1268			 */
1269			goto free_shadow;
1270
1271		for (j = 0; j < INDIRECT_GREFS(segs); j++) {
1272			persistent_gnt = rinfo->shadow[i].indirect_grants[j];
1273			gnttab_end_foreign_access(persistent_gnt->gref, NULL);
1274			__free_page(persistent_gnt->page);
1275			kfree(persistent_gnt);
1276		}
1277
1278free_shadow:
1279		kvfree(rinfo->shadow[i].grants_used);
1280		rinfo->shadow[i].grants_used = NULL;
1281		kvfree(rinfo->shadow[i].indirect_grants);
1282		rinfo->shadow[i].indirect_grants = NULL;
1283		kvfree(rinfo->shadow[i].sg);
1284		rinfo->shadow[i].sg = NULL;
1285	}
1286
1287	/* No more gnttab callback work. */
1288	gnttab_cancel_free_callback(&rinfo->callback);
 
1289
1290	/* Flush gnttab callback work. Must be done with no locks held. */
1291	flush_work(&rinfo->work);
1292
1293	/* Free resources associated with old device channel. */
1294	xenbus_teardown_ring((void **)&rinfo->ring.sring, info->nr_ring_pages,
1295			     rinfo->ring_ref);
1296
1297	if (rinfo->irq)
1298		unbind_from_irqhandler(rinfo->irq, rinfo);
1299	rinfo->evtchn = rinfo->irq = 0;
1300}
1301
1302static void blkif_free(struct blkfront_info *info, int suspend)
1303{
1304	unsigned int i;
1305	struct blkfront_ring_info *rinfo;
1306
1307	/* Prevent new requests being issued until we fix things up. */
1308	info->connected = suspend ?
1309		BLKIF_STATE_SUSPENDED : BLKIF_STATE_DISCONNECTED;
1310	/* No more blkif_request(). */
1311	if (info->rq)
1312		blk_mq_stop_hw_queues(info->rq);
1313
1314	for_each_rinfo(info, rinfo, i)
1315		blkif_free_ring(rinfo);
1316
1317	kvfree(info->rinfo);
1318	info->rinfo = NULL;
1319	info->nr_rings = 0;
1320}
1321
1322struct copy_from_grant {
1323	const struct blk_shadow *s;
1324	unsigned int grant_idx;
1325	unsigned int bvec_offset;
1326	char *bvec_data;
1327};
1328
1329static void blkif_copy_from_grant(unsigned long gfn, unsigned int offset,
1330				  unsigned int len, void *data)
1331{
1332	struct copy_from_grant *info = data;
1333	char *shared_data;
1334	/* Convenient aliases */
1335	const struct blk_shadow *s = info->s;
1336
1337	shared_data = kmap_atomic(s->grants_used[info->grant_idx]->page);
1338
1339	memcpy(info->bvec_data + info->bvec_offset,
1340	       shared_data + offset, len);
1341
1342	info->bvec_offset += len;
1343	info->grant_idx++;
1344
1345	kunmap_atomic(shared_data);
1346}
1347
1348static enum blk_req_status blkif_rsp_to_req_status(int rsp)
1349{
1350	switch (rsp)
1351	{
1352	case BLKIF_RSP_OKAY:
1353		return REQ_DONE;
1354	case BLKIF_RSP_EOPNOTSUPP:
1355		return REQ_EOPNOTSUPP;
1356	case BLKIF_RSP_ERROR:
1357	default:
1358		return REQ_ERROR;
1359	}
1360}
 
 
1361
1362/*
1363 * Get the final status of the block request based on two ring response
1364 */
1365static int blkif_get_final_status(enum blk_req_status s1,
1366				  enum blk_req_status s2)
1367{
1368	BUG_ON(s1 < REQ_DONE);
1369	BUG_ON(s2 < REQ_DONE);
1370
1371	if (s1 == REQ_ERROR || s2 == REQ_ERROR)
1372		return BLKIF_RSP_ERROR;
1373	else if (s1 == REQ_EOPNOTSUPP || s2 == REQ_EOPNOTSUPP)
1374		return BLKIF_RSP_EOPNOTSUPP;
1375	return BLKIF_RSP_OKAY;
1376}
1377
1378/*
1379 * Return values:
1380 *  1 response processed.
1381 *  0 missing further responses.
1382 * -1 error while processing.
1383 */
1384static int blkif_completion(unsigned long *id,
1385			    struct blkfront_ring_info *rinfo,
1386			    struct blkif_response *bret)
1387{
1388	int i = 0;
1389	struct scatterlist *sg;
1390	int num_sg, num_grant;
1391	struct blkfront_info *info = rinfo->dev_info;
1392	struct blk_shadow *s = &rinfo->shadow[*id];
1393	struct copy_from_grant data = {
1394		.grant_idx = 0,
1395	};
1396
1397	num_grant = s->req.operation == BLKIF_OP_INDIRECT ?
1398		s->req.u.indirect.nr_segments : s->req.u.rw.nr_segments;
1399
1400	/* The I/O request may be split in two. */
1401	if (unlikely(s->associated_id != NO_ASSOCIATED_ID)) {
1402		struct blk_shadow *s2 = &rinfo->shadow[s->associated_id];
1403
1404		/* Keep the status of the current response in shadow. */
1405		s->status = blkif_rsp_to_req_status(bret->status);
1406
1407		/* Wait the second response if not yet here. */
1408		if (s2->status < REQ_DONE)
1409			return 0;
1410
1411		bret->status = blkif_get_final_status(s->status,
1412						      s2->status);
1413
1414		/*
1415		 * All the grants is stored in the first shadow in order
1416		 * to make the completion code simpler.
1417		 */
1418		num_grant += s2->req.u.rw.nr_segments;
1419
1420		/*
1421		 * The two responses may not come in order. Only the
1422		 * first request will store the scatter-gather list.
 
 
1423		 */
1424		if (s2->num_sg != 0) {
1425			/* Update "id" with the ID of the first response. */
1426			*id = s->associated_id;
1427			s = s2;
1428		}
1429
1430		/*
1431		 * We don't need anymore the second request, so recycling
1432		 * it now.
1433		 */
1434		if (add_id_to_freelist(rinfo, s->associated_id))
1435			WARN(1, "%s: can't recycle the second part (id = %ld) of the request\n",
1436			     info->gd->disk_name, s->associated_id);
1437	}
1438
1439	data.s = s;
1440	num_sg = s->num_sg;
1441
1442	if (bret->operation == BLKIF_OP_READ && info->bounce) {
1443		for_each_sg(s->sg, sg, num_sg, i) {
1444			BUG_ON(sg->offset + sg->length > PAGE_SIZE);
1445
1446			data.bvec_offset = sg->offset;
1447			data.bvec_data = kmap_atomic(sg_page(sg));
1448
1449			gnttab_foreach_grant_in_range(sg_page(sg),
1450						      sg->offset,
1451						      sg->length,
1452						      blkif_copy_from_grant,
1453						      &data);
1454
1455			kunmap_atomic(data.bvec_data);
1456		}
1457	}
1458	/* Add the persistent grant into the list of free grants */
1459	for (i = 0; i < num_grant; i++) {
1460		if (!gnttab_try_end_foreign_access(s->grants_used[i]->gref)) {
1461			/*
1462			 * If the grant is still mapped by the backend (the
1463			 * backend has chosen to make this grant persistent)
1464			 * we add it at the head of the list, so it will be
1465			 * reused first.
1466			 */
1467			if (!info->feature_persistent) {
1468				pr_alert("backed has not unmapped grant: %u\n",
1469					 s->grants_used[i]->gref);
1470				return -1;
1471			}
1472			list_add(&s->grants_used[i]->node, &rinfo->grants);
1473			rinfo->persistent_gnts_c++;
1474		} else {
1475			/*
1476			 * If the grant is not mapped by the backend we add it
1477			 * to the tail of the list, so it will not be picked
1478			 * again unless we run out of persistent grants.
 
1479			 */
1480			s->grants_used[i]->gref = INVALID_GRANT_REF;
1481			list_add_tail(&s->grants_used[i]->node, &rinfo->grants);
 
1482		}
1483	}
1484	if (s->req.operation == BLKIF_OP_INDIRECT) {
1485		for (i = 0; i < INDIRECT_GREFS(num_grant); i++) {
1486			if (!gnttab_try_end_foreign_access(s->indirect_grants[i]->gref)) {
1487				if (!info->feature_persistent) {
1488					pr_alert("backed has not unmapped grant: %u\n",
1489						 s->indirect_grants[i]->gref);
1490					return -1;
1491				}
1492				list_add(&s->indirect_grants[i]->node, &rinfo->grants);
1493				rinfo->persistent_gnts_c++;
1494			} else {
1495				struct page *indirect_page;
1496
 
1497				/*
1498				 * Add the used indirect page back to the list of
1499				 * available pages for indirect grefs.
1500				 */
1501				if (!info->bounce) {
1502					indirect_page = s->indirect_grants[i]->page;
1503					list_add(&indirect_page->lru, &rinfo->indirect_pages);
1504				}
1505				s->indirect_grants[i]->gref = INVALID_GRANT_REF;
1506				list_add_tail(&s->indirect_grants[i]->node, &rinfo->grants);
1507			}
1508		}
1509	}
1510
1511	return 1;
1512}
1513
1514static irqreturn_t blkif_interrupt(int irq, void *dev_id)
1515{
1516	struct request *req;
1517	struct blkif_response bret;
1518	RING_IDX i, rp;
1519	unsigned long flags;
1520	struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)dev_id;
1521	struct blkfront_info *info = rinfo->dev_info;
1522	unsigned int eoiflag = XEN_EOI_FLAG_SPURIOUS;
 
1523
1524	if (unlikely(info->connected != BLKIF_STATE_CONNECTED)) {
1525		xen_irq_lateeoi(irq, XEN_EOI_FLAG_SPURIOUS);
1526		return IRQ_HANDLED;
1527	}
1528
1529	spin_lock_irqsave(&rinfo->ring_lock, flags);
1530 again:
1531	rp = READ_ONCE(rinfo->ring.sring->rsp_prod);
1532	virt_rmb(); /* Ensure we see queued responses up to 'rp'. */
1533	if (RING_RESPONSE_PROD_OVERFLOW(&rinfo->ring, rp)) {
1534		pr_alert("%s: illegal number of responses %u\n",
1535			 info->gd->disk_name, rp - rinfo->ring.rsp_cons);
1536		goto err;
1537	}
1538
1539	for (i = rinfo->ring.rsp_cons; i != rp; i++) {
1540		unsigned long id;
1541		unsigned int op;
1542
1543		eoiflag = 0;
1544
1545		RING_COPY_RESPONSE(&rinfo->ring, i, &bret);
1546		id = bret.id;
1547
 
 
1548		/*
1549		 * The backend has messed up and given us an id that we would
1550		 * never have given to it (we stamp it up to BLK_RING_SIZE -
1551		 * look in get_id_from_freelist.
1552		 */
1553		if (id >= BLK_RING_SIZE(info)) {
1554			pr_alert("%s: response has incorrect id (%ld)\n",
1555				 info->gd->disk_name, id);
1556			goto err;
1557		}
1558		if (rinfo->shadow[id].status != REQ_WAITING) {
1559			pr_alert("%s: response references no pending request\n",
1560				 info->gd->disk_name);
1561			goto err;
1562		}
1563
1564		rinfo->shadow[id].status = REQ_PROCESSING;
1565		req  = rinfo->shadow[id].request;
1566
1567		op = rinfo->shadow[id].req.operation;
1568		if (op == BLKIF_OP_INDIRECT)
1569			op = rinfo->shadow[id].req.u.indirect.indirect_op;
1570		if (bret.operation != op) {
1571			pr_alert("%s: response has wrong operation (%u instead of %u)\n",
1572				 info->gd->disk_name, bret.operation, op);
1573			goto err;
1574		}
 
1575
1576		if (bret.operation != BLKIF_OP_DISCARD) {
1577			int ret;
1578
1579			/*
1580			 * We may need to wait for an extra response if the
1581			 * I/O request is split in 2
1582			 */
1583			ret = blkif_completion(&id, rinfo, &bret);
1584			if (!ret)
1585				continue;
1586			if (unlikely(ret < 0))
1587				goto err;
1588		}
1589
1590		if (add_id_to_freelist(rinfo, id)) {
1591			WARN(1, "%s: response to %s (id %ld) couldn't be recycled!\n",
1592			     info->gd->disk_name, op_name(bret.operation), id);
1593			continue;
1594		}
1595
1596		if (bret.status == BLKIF_RSP_OKAY)
1597			blkif_req(req)->error = BLK_STS_OK;
1598		else
1599			blkif_req(req)->error = BLK_STS_IOERR;
1600
1601		switch (bret.operation) {
1602		case BLKIF_OP_DISCARD:
1603			if (unlikely(bret.status == BLKIF_RSP_EOPNOTSUPP)) {
1604				struct request_queue *rq = info->rq;
1605
1606				pr_warn_ratelimited("blkfront: %s: %s op failed\n",
1607					   info->gd->disk_name, op_name(bret.operation));
1608				blkif_req(req)->error = BLK_STS_NOTSUPP;
1609				info->feature_discard = 0;
1610				info->feature_secdiscard = 0;
1611				blk_queue_disable_discard(rq);
1612				blk_queue_disable_secure_erase(rq);
1613			}
 
1614			break;
1615		case BLKIF_OP_FLUSH_DISKCACHE:
1616		case BLKIF_OP_WRITE_BARRIER:
1617			if (unlikely(bret.status == BLKIF_RSP_EOPNOTSUPP)) {
1618				pr_warn_ratelimited("blkfront: %s: %s op failed\n",
1619				       info->gd->disk_name, op_name(bret.operation));
1620				blkif_req(req)->error = BLK_STS_NOTSUPP;
1621			}
1622			if (unlikely(bret.status == BLKIF_RSP_ERROR &&
1623				     rinfo->shadow[id].req.u.rw.nr_segments == 0)) {
1624				pr_warn_ratelimited("blkfront: %s: empty %s op failed\n",
1625				       info->gd->disk_name, op_name(bret.operation));
1626				blkif_req(req)->error = BLK_STS_NOTSUPP;
1627			}
1628			if (unlikely(blkif_req(req)->error)) {
1629				if (blkif_req(req)->error == BLK_STS_NOTSUPP)
1630					blkif_req(req)->error = BLK_STS_OK;
1631				info->feature_fua = 0;
1632				info->feature_flush = 0;
 
 
1633			}
1634			fallthrough;
1635		case BLKIF_OP_READ:
1636		case BLKIF_OP_WRITE:
1637			if (unlikely(bret.status != BLKIF_RSP_OKAY))
1638				dev_dbg_ratelimited(&info->xbdev->dev,
1639					"Bad return from blkdev data request: %#x\n",
1640					bret.status);
1641
 
1642			break;
1643		default:
1644			BUG();
1645		}
1646
1647		if (likely(!blk_should_fake_timeout(req->q)))
1648			blk_mq_complete_request(req);
1649	}
1650
1651	rinfo->ring.rsp_cons = i;
1652
1653	if (i != rinfo->ring.req_prod_pvt) {
1654		int more_to_do;
1655		RING_FINAL_CHECK_FOR_RESPONSES(&rinfo->ring, more_to_do);
1656		if (more_to_do)
1657			goto again;
1658	} else
1659		rinfo->ring.sring->rsp_event = i + 1;
1660
1661	kick_pending_request_queues_locked(rinfo);
1662
1663	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1664
1665	xen_irq_lateeoi(irq, eoiflag);
1666
1667	return IRQ_HANDLED;
1668
1669 err:
1670	info->connected = BLKIF_STATE_ERROR;
1671
1672	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1673
1674	/* No EOI in order to avoid further interrupts. */
1675
1676	pr_alert("%s disabled for further use\n", info->gd->disk_name);
1677	return IRQ_HANDLED;
1678}
1679
1680
1681static int setup_blkring(struct xenbus_device *dev,
1682			 struct blkfront_ring_info *rinfo)
1683{
1684	struct blkif_sring *sring;
1685	int err;
1686	struct blkfront_info *info = rinfo->dev_info;
1687	unsigned long ring_size = info->nr_ring_pages * XEN_PAGE_SIZE;
1688
1689	err = xenbus_setup_ring(dev, GFP_NOIO, (void **)&sring,
1690				info->nr_ring_pages, rinfo->ring_ref);
1691	if (err)
 
 
 
 
 
 
 
 
 
 
 
1692		goto fail;
 
 
1693
1694	XEN_FRONT_RING_INIT(&rinfo->ring, sring, ring_size);
1695
1696	err = xenbus_alloc_evtchn(dev, &rinfo->evtchn);
1697	if (err)
1698		goto fail;
1699
1700	err = bind_evtchn_to_irqhandler_lateeoi(rinfo->evtchn, blkif_interrupt,
1701						0, "blkif", rinfo);
1702	if (err <= 0) {
1703		xenbus_dev_fatal(dev, err,
1704				 "bind_evtchn_to_irqhandler failed");
1705		goto fail;
1706	}
1707	rinfo->irq = err;
1708
1709	return 0;
1710fail:
1711	blkif_free(info, 0);
1712	return err;
1713}
1714
1715/*
1716 * Write out per-ring/queue nodes including ring-ref and event-channel, and each
1717 * ring buffer may have multi pages depending on ->nr_ring_pages.
1718 */
1719static int write_per_ring_nodes(struct xenbus_transaction xbt,
1720				struct blkfront_ring_info *rinfo, const char *dir)
1721{
1722	int err;
1723	unsigned int i;
1724	const char *message = NULL;
1725	struct blkfront_info *info = rinfo->dev_info;
1726
1727	if (info->nr_ring_pages == 1) {
1728		err = xenbus_printf(xbt, dir, "ring-ref", "%u", rinfo->ring_ref[0]);
1729		if (err) {
1730			message = "writing ring-ref";
1731			goto abort_transaction;
1732		}
1733	} else {
1734		for (i = 0; i < info->nr_ring_pages; i++) {
1735			char ring_ref_name[RINGREF_NAME_LEN];
1736
1737			snprintf(ring_ref_name, RINGREF_NAME_LEN, "ring-ref%u", i);
1738			err = xenbus_printf(xbt, dir, ring_ref_name,
1739					    "%u", rinfo->ring_ref[i]);
1740			if (err) {
1741				message = "writing ring-ref";
1742				goto abort_transaction;
1743			}
1744		}
1745	}
1746
1747	err = xenbus_printf(xbt, dir, "event-channel", "%u", rinfo->evtchn);
1748	if (err) {
1749		message = "writing event-channel";
1750		goto abort_transaction;
1751	}
1752
1753	return 0;
1754
1755abort_transaction:
1756	xenbus_transaction_end(xbt, 1);
1757	if (message)
1758		xenbus_dev_fatal(info->xbdev, err, "%s", message);
1759
1760	return err;
1761}
1762
1763/* Enable the persistent grants feature. */
1764static bool feature_persistent = true;
1765module_param(feature_persistent, bool, 0644);
1766MODULE_PARM_DESC(feature_persistent,
1767		"Enables the persistent grants feature");
1768
1769/* Common code used when first setting up, and when resuming. */
1770static int talk_to_blkback(struct xenbus_device *dev,
1771			   struct blkfront_info *info)
1772{
1773	const char *message = NULL;
1774	struct xenbus_transaction xbt;
1775	int err;
1776	unsigned int i, max_page_order;
1777	unsigned int ring_page_order;
1778	struct blkfront_ring_info *rinfo;
1779
1780	if (!info)
1781		return -ENODEV;
1782
1783	/* Check if backend is trusted. */
1784	info->bounce = !xen_blkif_trusted ||
1785		       !xenbus_read_unsigned(dev->nodename, "trusted", 1);
1786
1787	max_page_order = xenbus_read_unsigned(info->xbdev->otherend,
1788					      "max-ring-page-order", 0);
1789	ring_page_order = min(xen_blkif_max_ring_order, max_page_order);
1790	info->nr_ring_pages = 1 << ring_page_order;
1791
1792	err = negotiate_mq(info);
 
1793	if (err)
1794		goto destroy_blkring;
1795
1796	for_each_rinfo(info, rinfo, i) {
1797		/* Create shared ring, alloc event channel. */
1798		err = setup_blkring(dev, rinfo);
1799		if (err)
1800			goto destroy_blkring;
1801	}
1802
1803again:
1804	err = xenbus_transaction_start(&xbt);
1805	if (err) {
1806		xenbus_dev_fatal(dev, err, "starting transaction");
1807		goto destroy_blkring;
1808	}
1809
1810	if (info->nr_ring_pages > 1) {
1811		err = xenbus_printf(xbt, dev->nodename, "ring-page-order", "%u",
1812				    ring_page_order);
1813		if (err) {
1814			message = "writing ring-page-order";
1815			goto abort_transaction;
1816		}
1817	}
1818
1819	/* We already got the number of queues/rings in _probe */
1820	if (info->nr_rings == 1) {
1821		err = write_per_ring_nodes(xbt, info->rinfo, dev->nodename);
1822		if (err)
1823			goto destroy_blkring;
1824	} else {
1825		char *path;
1826		size_t pathsize;
1827
1828		err = xenbus_printf(xbt, dev->nodename, "multi-queue-num-queues", "%u",
1829				    info->nr_rings);
1830		if (err) {
1831			message = "writing multi-queue-num-queues";
1832			goto abort_transaction;
1833		}
1834
1835		pathsize = strlen(dev->nodename) + QUEUE_NAME_LEN;
1836		path = kmalloc(pathsize, GFP_KERNEL);
1837		if (!path) {
1838			err = -ENOMEM;
1839			message = "ENOMEM while writing ring references";
1840			goto abort_transaction;
1841		}
1842
1843		for_each_rinfo(info, rinfo, i) {
1844			memset(path, 0, pathsize);
1845			snprintf(path, pathsize, "%s/queue-%u", dev->nodename, i);
1846			err = write_per_ring_nodes(xbt, rinfo, path);
1847			if (err) {
1848				kfree(path);
1849				goto destroy_blkring;
1850			}
1851		}
1852		kfree(path);
1853	}
1854	err = xenbus_printf(xbt, dev->nodename, "protocol", "%s",
1855			    XEN_IO_PROTO_ABI_NATIVE);
1856	if (err) {
1857		message = "writing protocol";
1858		goto abort_transaction;
1859	}
1860	info->feature_persistent_parm = feature_persistent;
1861	err = xenbus_printf(xbt, dev->nodename, "feature-persistent", "%u",
1862			info->feature_persistent_parm);
1863	if (err)
1864		dev_warn(&dev->dev,
1865			 "writing persistent grants feature to xenbus");
1866
1867	err = xenbus_transaction_end(xbt, 0);
1868	if (err) {
1869		if (err == -EAGAIN)
1870			goto again;
1871		xenbus_dev_fatal(dev, err, "completing transaction");
1872		goto destroy_blkring;
1873	}
1874
1875	for_each_rinfo(info, rinfo, i) {
1876		unsigned int j;
1877
1878		for (j = 0; j < BLK_RING_SIZE(info); j++)
1879			rinfo->shadow[j].req.u.rw.id = j + 1;
1880		rinfo->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff;
1881	}
1882	xenbus_switch_state(dev, XenbusStateInitialised);
1883
1884	return 0;
1885
1886 abort_transaction:
1887	xenbus_transaction_end(xbt, 1);
1888	if (message)
1889		xenbus_dev_fatal(dev, err, "%s", message);
1890 destroy_blkring:
1891	blkif_free(info, 0);
 
1892	return err;
1893}
1894
1895static int negotiate_mq(struct blkfront_info *info)
1896{
1897	unsigned int backend_max_queues;
1898	unsigned int i;
1899	struct blkfront_ring_info *rinfo;
1900
1901	BUG_ON(info->nr_rings);
1902
1903	/* Check if backend supports multiple queues. */
1904	backend_max_queues = xenbus_read_unsigned(info->xbdev->otherend,
1905						  "multi-queue-max-queues", 1);
1906	info->nr_rings = min(backend_max_queues, xen_blkif_max_queues);
1907	/* We need at least one ring. */
1908	if (!info->nr_rings)
1909		info->nr_rings = 1;
1910
1911	info->rinfo_size = struct_size(info->rinfo, shadow,
1912				       BLK_RING_SIZE(info));
1913	info->rinfo = kvcalloc(info->nr_rings, info->rinfo_size, GFP_KERNEL);
1914	if (!info->rinfo) {
1915		xenbus_dev_fatal(info->xbdev, -ENOMEM, "allocating ring_info structure");
1916		info->nr_rings = 0;
1917		return -ENOMEM;
1918	}
1919
1920	for_each_rinfo(info, rinfo, i) {
1921		INIT_LIST_HEAD(&rinfo->indirect_pages);
1922		INIT_LIST_HEAD(&rinfo->grants);
1923		rinfo->dev_info = info;
1924		INIT_WORK(&rinfo->work, blkif_restart_queue);
1925		spin_lock_init(&rinfo->ring_lock);
1926	}
1927	return 0;
1928}
1929
1930/*
1931 * Entry point to this code when a new device is created.  Allocate the basic
1932 * structures and the ring buffer for communication with the backend, and
1933 * inform the backend of the appropriate details for those.  Switch to
1934 * Initialised state.
1935 */
1936static int blkfront_probe(struct xenbus_device *dev,
1937			  const struct xenbus_device_id *id)
1938{
1939	int err, vdevice;
1940	struct blkfront_info *info;
1941
1942	/* FIXME: Use dynamic device id if this is not set. */
1943	err = xenbus_scanf(XBT_NIL, dev->nodename,
1944			   "virtual-device", "%i", &vdevice);
1945	if (err != 1) {
1946		/* go looking in the extended area instead */
1947		err = xenbus_scanf(XBT_NIL, dev->nodename, "virtual-device-ext",
1948				   "%i", &vdevice);
1949		if (err != 1) {
1950			xenbus_dev_fatal(dev, err, "reading virtual-device");
1951			return err;
1952		}
1953	}
1954
1955	if (xen_hvm_domain()) {
1956		char *type;
1957		int len;
1958		/* no unplug has been done: do not hook devices != xen vbds */
1959		if (xen_has_pv_and_legacy_disk_devices()) {
1960			int major;
1961
1962			if (!VDEV_IS_EXTENDED(vdevice))
1963				major = BLKIF_MAJOR(vdevice);
1964			else
1965				major = XENVBD_MAJOR;
1966
1967			if (major != XENVBD_MAJOR) {
1968				printk(KERN_INFO
1969						"%s: HVM does not support vbd %d as xen block device\n",
1970						__func__, vdevice);
1971				return -ENODEV;
1972			}
1973		}
1974		/* do not create a PV cdrom device if we are an HVM guest */
1975		type = xenbus_read(XBT_NIL, dev->nodename, "device-type", &len);
1976		if (IS_ERR(type))
1977			return -ENODEV;
1978		if (strncmp(type, "cdrom", 5) == 0) {
1979			kfree(type);
1980			return -ENODEV;
1981		}
1982		kfree(type);
1983	}
1984	info = kzalloc(sizeof(*info), GFP_KERNEL);
1985	if (!info) {
1986		xenbus_dev_fatal(dev, -ENOMEM, "allocating info structure");
1987		return -ENOMEM;
1988	}
1989
 
 
1990	info->xbdev = dev;
1991
1992	mutex_init(&info->mutex);
1993	info->vdevice = vdevice;
 
 
 
1994	info->connected = BLKIF_STATE_DISCONNECTED;
 
 
 
 
 
1995
1996	/* Front end dir is a number, which is used as the id. */
1997	info->handle = simple_strtoul(strrchr(dev->nodename, '/')+1, NULL, 0);
1998	dev_set_drvdata(&dev->dev, info);
1999
2000	mutex_lock(&blkfront_mutex);
2001	list_add(&info->info_list, &info_list);
2002	mutex_unlock(&blkfront_mutex);
 
 
 
2003
2004	return 0;
2005}
2006
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2007static int blkif_recover(struct blkfront_info *info)
2008{
2009	struct queue_limits lim;
2010	unsigned int r_index;
2011	struct request *req, *n;
 
2012	int rc;
2013	struct bio *bio;
2014	struct blkfront_ring_info *rinfo;
 
 
 
 
 
 
 
 
 
 
2015
2016	lim = queue_limits_start_update(info->rq);
2017	blkfront_gather_backend_features(info);
2018	blkif_set_queue_limits(info, &lim);
2019	rc = queue_limits_commit_update(info->rq, &lim);
2020	if (rc)
 
 
 
 
 
2021		return rc;
 
 
 
 
 
 
 
 
 
 
2022
2023	for_each_rinfo(info, rinfo, r_index) {
2024		rc = blkfront_setup_indirect(rinfo);
2025		if (rc)
2026			return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2027	}
 
 
2028	xenbus_switch_state(info->xbdev, XenbusStateConnected);
2029
 
 
2030	/* Now safe for us to use the shared ring */
2031	info->connected = BLKIF_STATE_CONNECTED;
2032
2033	for_each_rinfo(info, rinfo, r_index) {
2034		/* Kick any other new requests queued since we resumed */
2035		kick_pending_request_queues(rinfo);
2036	}
2037
2038	list_for_each_entry_safe(req, n, &info->requests, queuelist) {
2039		/* Requeue pending requests (flush or discard) */
2040		list_del_init(&req->queuelist);
2041		BUG_ON(req->nr_phys_segments >
2042		       (info->max_indirect_segments ? :
2043			BLKIF_MAX_SEGMENTS_PER_REQUEST));
2044		blk_mq_requeue_request(req, false);
2045	}
2046	blk_mq_start_stopped_hw_queues(info->rq, true);
2047	blk_mq_kick_requeue_list(info->rq);
2048
2049	while ((bio = bio_list_pop(&info->bio_list)) != NULL) {
2050		/* Traverse the list of pending bios and re-queue them */
2051		submit_bio(bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2052	}
2053
2054	return 0;
2055}
2056
2057/*
2058 * We are reconnecting to the backend, due to a suspend/resume, or a backend
2059 * driver restart.  We tear down our blkif structure and recreate it, but
2060 * leave the device-layer structures intact so that this is transparent to the
2061 * rest of the kernel.
2062 */
2063static int blkfront_resume(struct xenbus_device *dev)
2064{
2065	struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2066	int err = 0;
2067	unsigned int i, j;
2068	struct blkfront_ring_info *rinfo;
2069
2070	dev_dbg(&dev->dev, "blkfront_resume: %s\n", dev->nodename);
2071
2072	bio_list_init(&info->bio_list);
2073	INIT_LIST_HEAD(&info->requests);
2074	for_each_rinfo(info, rinfo, i) {
2075		struct bio_list merge_bio;
2076		struct blk_shadow *shadow = rinfo->shadow;
2077
2078		for (j = 0; j < BLK_RING_SIZE(info); j++) {
2079			/* Not in use? */
2080			if (!shadow[j].request)
2081				continue;
2082
2083			/*
2084			 * Get the bios in the request so we can re-queue them.
2085			 */
2086			if (req_op(shadow[j].request) == REQ_OP_FLUSH ||
2087			    req_op(shadow[j].request) == REQ_OP_DISCARD ||
2088			    req_op(shadow[j].request) == REQ_OP_SECURE_ERASE ||
2089			    shadow[j].request->cmd_flags & REQ_FUA) {
2090				/*
2091				 * Flush operations don't contain bios, so
2092				 * we need to requeue the whole request
2093				 *
2094				 * XXX: but this doesn't make any sense for a
2095				 * write with the FUA flag set..
2096				 */
2097				list_add(&shadow[j].request->queuelist, &info->requests);
2098				continue;
2099			}
2100			merge_bio.head = shadow[j].request->bio;
2101			merge_bio.tail = shadow[j].request->biotail;
2102			bio_list_merge(&info->bio_list, &merge_bio);
2103			shadow[j].request->bio = NULL;
2104			blk_mq_end_request(shadow[j].request, BLK_STS_OK);
2105		}
2106	}
2107
2108	blkif_free(info, info->connected == BLKIF_STATE_CONNECTED);
2109
2110	err = talk_to_blkback(dev, info);
2111	if (!err)
2112		blk_mq_update_nr_hw_queues(&info->tag_set, info->nr_rings);
2113
2114	/*
2115	 * We have to wait for the backend to switch to
2116	 * connected state, since we want to read which
2117	 * features it supports.
2118	 */
2119
2120	return err;
2121}
2122
2123static void blkfront_closing(struct blkfront_info *info)
 
2124{
2125	struct xenbus_device *xbdev = info->xbdev;
2126	struct blkfront_ring_info *rinfo;
2127	unsigned int i;
 
2128
2129	if (xbdev->state == XenbusStateClosing)
 
2130		return;
 
 
 
 
2131
2132	/* No more blkif_request(). */
2133	if (info->rq && info->gd) {
2134		blk_mq_stop_hw_queues(info->rq);
2135		blk_mark_disk_dead(info->gd);
 
2136	}
2137
2138	for_each_rinfo(info, rinfo, i) {
2139		/* No more gnttab callback work. */
2140		gnttab_cancel_free_callback(&rinfo->callback);
2141
2142		/* Flush gnttab callback work. Must be done with no locks held. */
2143		flush_work(&rinfo->work);
 
 
 
 
 
2144	}
2145
2146	xenbus_frontend_closed(xbdev);
 
2147}
2148
2149static void blkfront_setup_discard(struct blkfront_info *info)
2150{
2151	info->feature_discard = 1;
2152	info->discard_granularity = xenbus_read_unsigned(info->xbdev->otherend,
2153							 "discard-granularity",
2154							 0);
2155	info->discard_alignment = xenbus_read_unsigned(info->xbdev->otherend,
2156						       "discard-alignment", 0);
2157	info->feature_secdiscard =
2158		!!xenbus_read_unsigned(info->xbdev->otherend, "discard-secure",
2159				       0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2160}
2161
2162static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo)
2163{
2164	unsigned int psegs, grants, memflags;
2165	int err, i;
2166	struct blkfront_info *info = rinfo->dev_info;
2167
2168	memflags = memalloc_noio_save();
2169
2170	if (info->max_indirect_segments == 0) {
2171		if (!HAS_EXTRA_REQ)
2172			grants = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2173		else {
2174			/*
2175			 * When an extra req is required, the maximum
2176			 * grants supported is related to the size of the
2177			 * Linux block segment.
2178			 */
2179			grants = GRANTS_PER_PSEG;
2180		}
2181	}
2182	else
2183		grants = info->max_indirect_segments;
2184	psegs = DIV_ROUND_UP(grants, GRANTS_PER_PSEG);
2185
2186	err = fill_grant_buffer(rinfo,
2187				(grants + INDIRECT_GREFS(grants)) * BLK_RING_SIZE(info));
2188	if (err)
2189		goto out_of_memory;
2190
2191	if (!info->bounce && info->max_indirect_segments) {
2192		/*
2193		 * We are using indirect descriptors but don't have a bounce
2194		 * buffer, we need to allocate a set of pages that can be
2195		 * used for mapping indirect grefs
2196		 */
2197		int num = INDIRECT_GREFS(grants) * BLK_RING_SIZE(info);
2198
2199		BUG_ON(!list_empty(&rinfo->indirect_pages));
2200		for (i = 0; i < num; i++) {
2201			struct page *indirect_page = alloc_page(GFP_KERNEL |
2202								__GFP_ZERO);
2203			if (!indirect_page)
2204				goto out_of_memory;
2205			list_add(&indirect_page->lru, &rinfo->indirect_pages);
2206		}
2207	}
2208
2209	for (i = 0; i < BLK_RING_SIZE(info); i++) {
2210		rinfo->shadow[i].grants_used =
2211			kvcalloc(grants,
2212				 sizeof(rinfo->shadow[i].grants_used[0]),
2213				 GFP_KERNEL);
2214		rinfo->shadow[i].sg = kvcalloc(psegs,
2215					       sizeof(rinfo->shadow[i].sg[0]),
2216					       GFP_KERNEL);
2217		if (info->max_indirect_segments)
2218			rinfo->shadow[i].indirect_grants =
2219				kvcalloc(INDIRECT_GREFS(grants),
2220					 sizeof(rinfo->shadow[i].indirect_grants[0]),
2221					 GFP_KERNEL);
2222		if ((rinfo->shadow[i].grants_used == NULL) ||
2223			(rinfo->shadow[i].sg == NULL) ||
2224		     (info->max_indirect_segments &&
2225		     (rinfo->shadow[i].indirect_grants == NULL)))
2226			goto out_of_memory;
2227		sg_init_table(rinfo->shadow[i].sg, psegs);
2228	}
2229
2230	memalloc_noio_restore(memflags);
2231
2232	return 0;
2233
2234out_of_memory:
2235	for (i = 0; i < BLK_RING_SIZE(info); i++) {
2236		kvfree(rinfo->shadow[i].grants_used);
2237		rinfo->shadow[i].grants_used = NULL;
2238		kvfree(rinfo->shadow[i].sg);
2239		rinfo->shadow[i].sg = NULL;
2240		kvfree(rinfo->shadow[i].indirect_grants);
2241		rinfo->shadow[i].indirect_grants = NULL;
2242	}
2243	if (!list_empty(&rinfo->indirect_pages)) {
2244		struct page *indirect_page, *n;
2245		list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
2246			list_del(&indirect_page->lru);
2247			__free_page(indirect_page);
2248		}
2249	}
2250
2251	memalloc_noio_restore(memflags);
2252
2253	return -ENOMEM;
2254}
2255
2256/*
2257 * Gather all backend feature-*
2258 */
2259static void blkfront_gather_backend_features(struct blkfront_info *info)
2260{
2261	unsigned int indirect_segments;
2262
2263	info->feature_flush = 0;
2264	info->feature_fua = 0;
2265
2266	/*
2267	 * If there's no "feature-barrier" defined, then it means
2268	 * we're dealing with a very old backend which writes
2269	 * synchronously; nothing to do.
2270	 *
2271	 * If there are barriers, then we use flush.
2272	 */
2273	if (xenbus_read_unsigned(info->xbdev->otherend, "feature-barrier", 0)) {
2274		info->feature_flush = 1;
2275		info->feature_fua = 1;
2276	}
2277
2278	/*
2279	 * And if there is "feature-flush-cache" use that above
2280	 * barriers.
2281	 */
2282	if (xenbus_read_unsigned(info->xbdev->otherend, "feature-flush-cache",
2283				 0)) {
2284		info->feature_flush = 1;
2285		info->feature_fua = 0;
2286	}
2287
2288	if (xenbus_read_unsigned(info->xbdev->otherend, "feature-discard", 0))
2289		blkfront_setup_discard(info);
2290
2291	if (info->feature_persistent_parm)
2292		info->feature_persistent =
2293			!!xenbus_read_unsigned(info->xbdev->otherend,
2294					       "feature-persistent", 0);
2295	if (info->feature_persistent)
2296		info->bounce = true;
2297
2298	indirect_segments = xenbus_read_unsigned(info->xbdev->otherend,
2299					"feature-max-indirect-segments", 0);
2300	if (indirect_segments > xen_blkif_max_segments)
2301		indirect_segments = xen_blkif_max_segments;
2302	if (indirect_segments <= BLKIF_MAX_SEGMENTS_PER_REQUEST)
2303		indirect_segments = 0;
2304	info->max_indirect_segments = indirect_segments;
2305
2306	if (info->feature_persistent) {
2307		mutex_lock(&blkfront_mutex);
2308		schedule_delayed_work(&blkfront_work, HZ * 10);
2309		mutex_unlock(&blkfront_mutex);
2310	}
2311}
2312
2313/*
2314 * Invoked when the backend is finally 'ready' (and has told produced
2315 * the details about the physical device - #sectors, size, etc).
2316 */
2317static void blkfront_connect(struct blkfront_info *info)
2318{
2319	unsigned long long sectors;
2320	int err, i;
2321	struct blkfront_ring_info *rinfo;
 
 
 
2322
2323	switch (info->connected) {
2324	case BLKIF_STATE_CONNECTED:
2325		/*
2326		 * Potentially, the back-end may be signalling
2327		 * a capacity change; update the capacity.
2328		 */
2329		err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
2330				   "sectors", "%Lu", &sectors);
2331		if (XENBUS_EXIST_ERR(err))
2332			return;
2333		printk(KERN_INFO "Setting capacity to %Lu\n",
2334		       sectors);
2335		set_capacity_and_notify(info->gd, sectors);
 
2336
2337		return;
2338	case BLKIF_STATE_SUSPENDED:
2339		/*
2340		 * If we are recovering from suspension, we need to wait
2341		 * for the backend to announce it's features before
2342		 * reconnecting, at least we need to know if the backend
2343		 * supports indirect descriptors, and how many.
2344		 */
2345		blkif_recover(info);
2346		return;
2347
2348	default:
2349		break;
2350	}
2351
2352	dev_dbg(&info->xbdev->dev, "%s:%s.\n",
2353		__func__, info->xbdev->otherend);
2354
2355	err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2356			    "sectors", "%llu", &sectors,
2357			    "info", "%u", &info->vdisk_info,
2358			    "sector-size", "%lu", &info->sector_size,
2359			    NULL);
2360	if (err) {
2361		xenbus_dev_fatal(info->xbdev, err,
2362				 "reading backend fields at %s",
2363				 info->xbdev->otherend);
2364		return;
2365	}
2366
2367	/*
2368	 * physical-sector-size is a newer field, so old backends may not
2369	 * provide this. Assume physical sector size to be the same as
2370	 * sector_size in that case.
2371	 */
2372	info->physical_sector_size = xenbus_read_unsigned(info->xbdev->otherend,
2373						    "physical-sector-size",
2374						    info->sector_size);
2375	blkfront_gather_backend_features(info);
2376	for_each_rinfo(info, rinfo, i) {
2377		err = blkfront_setup_indirect(rinfo);
2378		if (err) {
2379			xenbus_dev_fatal(info->xbdev, err, "setup_indirect at %s",
2380					 info->xbdev->otherend);
2381			blkif_free(info, 0);
2382			break;
2383		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2384	}
2385
2386	err = xlvbd_alloc_gendisk(sectors, info);
 
2387	if (err) {
2388		xenbus_dev_fatal(info->xbdev, err, "xlvbd_add at %s",
2389				 info->xbdev->otherend);
2390		goto fail;
2391	}
2392
2393	xenbus_switch_state(info->xbdev, XenbusStateConnected);
2394
2395	/* Kick pending requests. */
 
2396	info->connected = BLKIF_STATE_CONNECTED;
2397	for_each_rinfo(info, rinfo, i)
2398		kick_pending_request_queues(rinfo);
2399
2400	err = device_add_disk(&info->xbdev->dev, info->gd, NULL);
2401	if (err) {
2402		put_disk(info->gd);
2403		blk_mq_free_tag_set(&info->tag_set);
2404		info->rq = NULL;
2405		goto fail;
2406	}
2407
2408	info->is_ready = 1;
2409	return;
2410
2411fail:
2412	blkif_free(info, 0);
2413	return;
2414}
2415
2416/*
2417 * Callback received when the backend's state changes.
2418 */
2419static void blkback_changed(struct xenbus_device *dev,
2420			    enum xenbus_state backend_state)
2421{
2422	struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2423
2424	dev_dbg(&dev->dev, "blkfront:blkback_changed to state %d.\n", backend_state);
2425
2426	switch (backend_state) {
 
2427	case XenbusStateInitWait:
2428		if (dev->state != XenbusStateInitialising)
2429			break;
2430		if (talk_to_blkback(dev, info))
2431			break;
2432		break;
2433	case XenbusStateInitialising:
2434	case XenbusStateInitialised:
2435	case XenbusStateReconfiguring:
2436	case XenbusStateReconfigured:
2437	case XenbusStateUnknown:
2438		break;
2439
2440	case XenbusStateConnected:
2441		/*
2442		 * talk_to_blkback sets state to XenbusStateInitialised
2443		 * and blkfront_connect sets it to XenbusStateConnected
2444		 * (if connection went OK).
2445		 *
2446		 * If the backend (or toolstack) decides to poke at backend
2447		 * state (and re-trigger the watch by setting the state repeatedly
2448		 * to XenbusStateConnected (4)) we need to deal with this.
2449		 * This is allowed as this is used to communicate to the guest
2450		 * that the size of disk has changed!
2451		 */
2452		if ((dev->state != XenbusStateInitialised) &&
2453		    (dev->state != XenbusStateConnected)) {
2454			if (talk_to_blkback(dev, info))
2455				break;
2456		}
2457
2458		blkfront_connect(info);
2459		break;
2460
2461	case XenbusStateClosed:
2462		if (dev->state == XenbusStateClosed)
2463			break;
2464		fallthrough;
2465	case XenbusStateClosing:
2466		blkfront_closing(info);
2467		break;
2468	}
2469}
2470
2471static void blkfront_remove(struct xenbus_device *xbdev)
2472{
2473	struct blkfront_info *info = dev_get_drvdata(&xbdev->dev);
 
 
2474
2475	dev_dbg(&xbdev->dev, "%s removed", xbdev->nodename);
2476
2477	if (info->gd)
2478		del_gendisk(info->gd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2479
2480	mutex_lock(&blkfront_mutex);
2481	list_del(&info->info_list);
2482	mutex_unlock(&blkfront_mutex);
2483
2484	blkif_free(info, 0);
2485	if (info->gd) {
2486		xlbd_release_minors(info->gd->first_minor, info->gd->minors);
2487		put_disk(info->gd);
2488		blk_mq_free_tag_set(&info->tag_set);
2489	}
2490
2491	kfree(info);
 
 
 
2492}
2493
2494static int blkfront_is_ready(struct xenbus_device *dev)
2495{
2496	struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2497
2498	return info->is_ready && info->xbdev;
2499}
2500
2501static const struct block_device_operations xlvbd_block_fops =
2502{
2503	.owner = THIS_MODULE,
2504	.getgeo = blkif_getgeo,
2505	.ioctl = blkif_ioctl,
2506	.compat_ioctl = blkdev_compat_ptr_ioctl,
2507};
2508
 
2509
2510static const struct xenbus_device_id blkfront_ids[] = {
2511	{ "vbd" },
2512	{ "" }
2513};
 
 
2514
2515static struct xenbus_driver blkfront_driver = {
2516	.ids  = blkfront_ids,
2517	.probe = blkfront_probe,
2518	.remove = blkfront_remove,
2519	.resume = blkfront_resume,
2520	.otherend_changed = blkback_changed,
2521	.is_ready = blkfront_is_ready,
2522};
2523
2524static void purge_persistent_grants(struct blkfront_info *info)
2525{
2526	unsigned int i;
2527	unsigned long flags;
2528	struct blkfront_ring_info *rinfo;
2529
2530	for_each_rinfo(info, rinfo, i) {
2531		struct grant *gnt_list_entry, *tmp;
2532		LIST_HEAD(grants);
2533
2534		spin_lock_irqsave(&rinfo->ring_lock, flags);
 
 
 
2535
2536		if (rinfo->persistent_gnts_c == 0) {
2537			spin_unlock_irqrestore(&rinfo->ring_lock, flags);
2538			continue;
2539		}
 
2540
2541		list_for_each_entry_safe(gnt_list_entry, tmp, &rinfo->grants,
2542					 node) {
2543			if (gnt_list_entry->gref == INVALID_GRANT_REF ||
2544			    !gnttab_try_end_foreign_access(gnt_list_entry->gref))
2545				continue;
2546
2547			list_del(&gnt_list_entry->node);
2548			rinfo->persistent_gnts_c--;
2549			gnt_list_entry->gref = INVALID_GRANT_REF;
2550			list_add_tail(&gnt_list_entry->node, &grants);
2551		}
2552
2553		list_splice_tail(&grants, &rinfo->grants);
2554
2555		spin_unlock_irqrestore(&rinfo->ring_lock, flags);
 
 
2556	}
2557}
2558
2559static void blkfront_delay_work(struct work_struct *work)
2560{
2561	struct blkfront_info *info;
2562	bool need_schedule_work = false;
2563
2564	/*
2565	 * Note that when using bounce buffers but not persistent grants
2566	 * there's no need to run blkfront_delay_work because grants are
2567	 * revoked in blkif_completion or else an error is reported and the
2568	 * connection is closed.
2569	 */
2570
2571	mutex_lock(&blkfront_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2572
2573	list_for_each_entry(info, &info_list, info_list) {
2574		if (info->feature_persistent) {
2575			need_schedule_work = true;
2576			mutex_lock(&info->mutex);
2577			purge_persistent_grants(info);
2578			mutex_unlock(&info->mutex);
2579		}
2580	}
2581
2582	if (need_schedule_work)
2583		schedule_delayed_work(&blkfront_work, HZ * 10);
 
 
2584
2585	mutex_unlock(&blkfront_mutex);
2586}
 
 
 
 
 
2587
2588static int __init xlblk_init(void)
2589{
2590	int ret;
2591	int nr_cpus = num_online_cpus();
2592
2593	if (!xen_domain())
2594		return -ENODEV;
2595
2596	if (!xen_has_pv_disk_devices())
2597		return -ENODEV;
2598
2599	if (register_blkdev(XENVBD_MAJOR, DEV_NAME)) {
2600		pr_warn("xen_blk: can't get major %d with name %s\n",
2601			XENVBD_MAJOR, DEV_NAME);
2602		return -ENODEV;
2603	}
2604
2605	if (xen_blkif_max_segments < BLKIF_MAX_SEGMENTS_PER_REQUEST)
2606		xen_blkif_max_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2607
2608	if (xen_blkif_max_ring_order > XENBUS_MAX_RING_GRANT_ORDER) {
2609		pr_info("Invalid max_ring_order (%d), will use default max: %d.\n",
2610			xen_blkif_max_ring_order, XENBUS_MAX_RING_GRANT_ORDER);
2611		xen_blkif_max_ring_order = XENBUS_MAX_RING_GRANT_ORDER;
2612	}
2613
2614	if (xen_blkif_max_queues > nr_cpus) {
2615		pr_info("Invalid max_queues (%d), will use default max: %d.\n",
2616			xen_blkif_max_queues, nr_cpus);
2617		xen_blkif_max_queues = nr_cpus;
2618	}
2619
2620	INIT_DELAYED_WORK(&blkfront_work, blkfront_delay_work);
2621
2622	ret = xenbus_register_frontend(&blkfront_driver);
2623	if (ret) {
2624		unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2625		return ret;
2626	}
2627
2628	return 0;
2629}
2630module_init(xlblk_init);
2631
2632
2633static void __exit xlblk_exit(void)
2634{
2635	cancel_delayed_work_sync(&blkfront_work);
2636
2637	xenbus_unregister_driver(&blkfront_driver);
2638	unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2639	kfree(minors);
2640}
2641module_exit(xlblk_exit);
2642
2643MODULE_DESCRIPTION("Xen virtual block device frontend");
2644MODULE_LICENSE("GPL");
2645MODULE_ALIAS_BLOCKDEV_MAJOR(XENVBD_MAJOR);
2646MODULE_ALIAS("xen:vbd");
2647MODULE_ALIAS("xenblk");