Loading...
1
2/*
3 rbd.c -- Export ceph rados objects as a Linux block device
4
5
6 based on drivers/block/osdblk.c:
7
8 Copyright 2009 Red Hat, Inc.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25 For usage instructions, please refer to:
26
27 Documentation/ABI/testing/sysfs-bus-rbd
28
29 */
30
31#include <linux/ceph/libceph.h>
32#include <linux/ceph/osd_client.h>
33#include <linux/ceph/mon_client.h>
34#include <linux/ceph/decode.h>
35#include <linux/parser.h>
36#include <linux/bsearch.h>
37
38#include <linux/kernel.h>
39#include <linux/device.h>
40#include <linux/module.h>
41#include <linux/fs.h>
42#include <linux/blkdev.h>
43#include <linux/slab.h>
44#include <linux/idr.h>
45
46#include "rbd_types.h"
47
48#define RBD_DEBUG /* Activate rbd_assert() calls */
49
50/*
51 * The basic unit of block I/O is a sector. It is interpreted in a
52 * number of contexts in Linux (blk, bio, genhd), but the default is
53 * universally 512 bytes. These symbols are just slightly more
54 * meaningful than the bare numbers they represent.
55 */
56#define SECTOR_SHIFT 9
57#define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
58
59/*
60 * Increment the given counter and return its updated value.
61 * If the counter is already 0 it will not be incremented.
62 * If the counter is already at its maximum value returns
63 * -EINVAL without updating it.
64 */
65static int atomic_inc_return_safe(atomic_t *v)
66{
67 unsigned int counter;
68
69 counter = (unsigned int)__atomic_add_unless(v, 1, 0);
70 if (counter <= (unsigned int)INT_MAX)
71 return (int)counter;
72
73 atomic_dec(v);
74
75 return -EINVAL;
76}
77
78/* Decrement the counter. Return the resulting value, or -EINVAL */
79static int atomic_dec_return_safe(atomic_t *v)
80{
81 int counter;
82
83 counter = atomic_dec_return(v);
84 if (counter >= 0)
85 return counter;
86
87 atomic_inc(v);
88
89 return -EINVAL;
90}
91
92#define RBD_DRV_NAME "rbd"
93
94#define RBD_MINORS_PER_MAJOR 256
95#define RBD_SINGLE_MAJOR_PART_SHIFT 4
96
97#define RBD_SNAP_DEV_NAME_PREFIX "snap_"
98#define RBD_MAX_SNAP_NAME_LEN \
99 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
100
101#define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
102
103#define RBD_SNAP_HEAD_NAME "-"
104
105#define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
106
107/* This allows a single page to hold an image name sent by OSD */
108#define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
109#define RBD_IMAGE_ID_LEN_MAX 64
110
111#define RBD_OBJ_PREFIX_LEN_MAX 64
112
113/* Feature bits */
114
115#define RBD_FEATURE_LAYERING (1<<0)
116#define RBD_FEATURE_STRIPINGV2 (1<<1)
117#define RBD_FEATURES_ALL \
118 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
119
120/* Features supported by this (client software) implementation. */
121
122#define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
123
124/*
125 * An RBD device name will be "rbd#", where the "rbd" comes from
126 * RBD_DRV_NAME above, and # is a unique integer identifier.
127 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
128 * enough to hold all possible device names.
129 */
130#define DEV_NAME_LEN 32
131#define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
132
133/*
134 * block device image metadata (in-memory version)
135 */
136struct rbd_image_header {
137 /* These six fields never change for a given rbd image */
138 char *object_prefix;
139 __u8 obj_order;
140 __u8 crypt_type;
141 __u8 comp_type;
142 u64 stripe_unit;
143 u64 stripe_count;
144 u64 features; /* Might be changeable someday? */
145
146 /* The remaining fields need to be updated occasionally */
147 u64 image_size;
148 struct ceph_snap_context *snapc;
149 char *snap_names; /* format 1 only */
150 u64 *snap_sizes; /* format 1 only */
151};
152
153/*
154 * An rbd image specification.
155 *
156 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
157 * identify an image. Each rbd_dev structure includes a pointer to
158 * an rbd_spec structure that encapsulates this identity.
159 *
160 * Each of the id's in an rbd_spec has an associated name. For a
161 * user-mapped image, the names are supplied and the id's associated
162 * with them are looked up. For a layered image, a parent image is
163 * defined by the tuple, and the names are looked up.
164 *
165 * An rbd_dev structure contains a parent_spec pointer which is
166 * non-null if the image it represents is a child in a layered
167 * image. This pointer will refer to the rbd_spec structure used
168 * by the parent rbd_dev for its own identity (i.e., the structure
169 * is shared between the parent and child).
170 *
171 * Since these structures are populated once, during the discovery
172 * phase of image construction, they are effectively immutable so
173 * we make no effort to synchronize access to them.
174 *
175 * Note that code herein does not assume the image name is known (it
176 * could be a null pointer).
177 */
178struct rbd_spec {
179 u64 pool_id;
180 const char *pool_name;
181
182 const char *image_id;
183 const char *image_name;
184
185 u64 snap_id;
186 const char *snap_name;
187
188 struct kref kref;
189};
190
191/*
192 * an instance of the client. multiple devices may share an rbd client.
193 */
194struct rbd_client {
195 struct ceph_client *client;
196 struct kref kref;
197 struct list_head node;
198};
199
200struct rbd_img_request;
201typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
202
203#define BAD_WHICH U32_MAX /* Good which or bad which, which? */
204
205struct rbd_obj_request;
206typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
207
208enum obj_request_type {
209 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
210};
211
212enum obj_req_flags {
213 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */
214 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */
215 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */
216 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */
217};
218
219struct rbd_obj_request {
220 const char *object_name;
221 u64 offset; /* object start byte */
222 u64 length; /* bytes from offset */
223 unsigned long flags;
224
225 /*
226 * An object request associated with an image will have its
227 * img_data flag set; a standalone object request will not.
228 *
229 * A standalone object request will have which == BAD_WHICH
230 * and a null obj_request pointer.
231 *
232 * An object request initiated in support of a layered image
233 * object (to check for its existence before a write) will
234 * have which == BAD_WHICH and a non-null obj_request pointer.
235 *
236 * Finally, an object request for rbd image data will have
237 * which != BAD_WHICH, and will have a non-null img_request
238 * pointer. The value of which will be in the range
239 * 0..(img_request->obj_request_count-1).
240 */
241 union {
242 struct rbd_obj_request *obj_request; /* STAT op */
243 struct {
244 struct rbd_img_request *img_request;
245 u64 img_offset;
246 /* links for img_request->obj_requests list */
247 struct list_head links;
248 };
249 };
250 u32 which; /* posn image request list */
251
252 enum obj_request_type type;
253 union {
254 struct bio *bio_list;
255 struct {
256 struct page **pages;
257 u32 page_count;
258 };
259 };
260 struct page **copyup_pages;
261 u32 copyup_page_count;
262
263 struct ceph_osd_request *osd_req;
264
265 u64 xferred; /* bytes transferred */
266 int result;
267
268 rbd_obj_callback_t callback;
269 struct completion completion;
270
271 struct kref kref;
272};
273
274enum img_req_flags {
275 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */
276 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
277 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
278};
279
280struct rbd_img_request {
281 struct rbd_device *rbd_dev;
282 u64 offset; /* starting image byte offset */
283 u64 length; /* byte count from offset */
284 unsigned long flags;
285 union {
286 u64 snap_id; /* for reads */
287 struct ceph_snap_context *snapc; /* for writes */
288 };
289 union {
290 struct request *rq; /* block request */
291 struct rbd_obj_request *obj_request; /* obj req initiator */
292 };
293 struct page **copyup_pages;
294 u32 copyup_page_count;
295 spinlock_t completion_lock;/* protects next_completion */
296 u32 next_completion;
297 rbd_img_callback_t callback;
298 u64 xferred;/* aggregate bytes transferred */
299 int result; /* first nonzero obj_request result */
300
301 u32 obj_request_count;
302 struct list_head obj_requests; /* rbd_obj_request structs */
303
304 struct kref kref;
305};
306
307#define for_each_obj_request(ireq, oreq) \
308 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
309#define for_each_obj_request_from(ireq, oreq) \
310 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
311#define for_each_obj_request_safe(ireq, oreq, n) \
312 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
313
314struct rbd_mapping {
315 u64 size;
316 u64 features;
317 bool read_only;
318};
319
320/*
321 * a single device
322 */
323struct rbd_device {
324 int dev_id; /* blkdev unique id */
325
326 int major; /* blkdev assigned major */
327 int minor;
328 struct gendisk *disk; /* blkdev's gendisk and rq */
329
330 u32 image_format; /* Either 1 or 2 */
331 struct rbd_client *rbd_client;
332
333 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
334
335 spinlock_t lock; /* queue, flags, open_count */
336
337 struct rbd_image_header header;
338 unsigned long flags; /* possibly lock protected */
339 struct rbd_spec *spec;
340
341 char *header_name;
342
343 struct ceph_file_layout layout;
344
345 struct ceph_osd_event *watch_event;
346 struct rbd_obj_request *watch_request;
347
348 struct rbd_spec *parent_spec;
349 u64 parent_overlap;
350 atomic_t parent_ref;
351 struct rbd_device *parent;
352
353 /* protects updating the header */
354 struct rw_semaphore header_rwsem;
355
356 struct rbd_mapping mapping;
357
358 struct list_head node;
359
360 /* sysfs related */
361 struct device dev;
362 unsigned long open_count; /* protected by lock */
363};
364
365/*
366 * Flag bits for rbd_dev->flags. If atomicity is required,
367 * rbd_dev->lock is used to protect access.
368 *
369 * Currently, only the "removing" flag (which is coupled with the
370 * "open_count" field) requires atomic access.
371 */
372enum rbd_dev_flags {
373 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
374 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
375};
376
377static DEFINE_MUTEX(client_mutex); /* Serialize client creation */
378
379static LIST_HEAD(rbd_dev_list); /* devices */
380static DEFINE_SPINLOCK(rbd_dev_list_lock);
381
382static LIST_HEAD(rbd_client_list); /* clients */
383static DEFINE_SPINLOCK(rbd_client_list_lock);
384
385/* Slab caches for frequently-allocated structures */
386
387static struct kmem_cache *rbd_img_request_cache;
388static struct kmem_cache *rbd_obj_request_cache;
389static struct kmem_cache *rbd_segment_name_cache;
390
391static int rbd_major;
392static DEFINE_IDA(rbd_dev_id_ida);
393
394/*
395 * Default to false for now, as single-major requires >= 0.75 version of
396 * userspace rbd utility.
397 */
398static bool single_major = false;
399module_param(single_major, bool, S_IRUGO);
400MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
401
402static int rbd_img_request_submit(struct rbd_img_request *img_request);
403
404static void rbd_dev_device_release(struct device *dev);
405
406static ssize_t rbd_add(struct bus_type *bus, const char *buf,
407 size_t count);
408static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
409 size_t count);
410static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
411 size_t count);
412static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
413 size_t count);
414static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
415static void rbd_spec_put(struct rbd_spec *spec);
416
417static int rbd_dev_id_to_minor(int dev_id)
418{
419 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
420}
421
422static int minor_to_rbd_dev_id(int minor)
423{
424 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
425}
426
427static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
428static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
429static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
430static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
431
432static struct attribute *rbd_bus_attrs[] = {
433 &bus_attr_add.attr,
434 &bus_attr_remove.attr,
435 &bus_attr_add_single_major.attr,
436 &bus_attr_remove_single_major.attr,
437 NULL,
438};
439
440static umode_t rbd_bus_is_visible(struct kobject *kobj,
441 struct attribute *attr, int index)
442{
443 if (!single_major &&
444 (attr == &bus_attr_add_single_major.attr ||
445 attr == &bus_attr_remove_single_major.attr))
446 return 0;
447
448 return attr->mode;
449}
450
451static const struct attribute_group rbd_bus_group = {
452 .attrs = rbd_bus_attrs,
453 .is_visible = rbd_bus_is_visible,
454};
455__ATTRIBUTE_GROUPS(rbd_bus);
456
457static struct bus_type rbd_bus_type = {
458 .name = "rbd",
459 .bus_groups = rbd_bus_groups,
460};
461
462static void rbd_root_dev_release(struct device *dev)
463{
464}
465
466static struct device rbd_root_dev = {
467 .init_name = "rbd",
468 .release = rbd_root_dev_release,
469};
470
471static __printf(2, 3)
472void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
473{
474 struct va_format vaf;
475 va_list args;
476
477 va_start(args, fmt);
478 vaf.fmt = fmt;
479 vaf.va = &args;
480
481 if (!rbd_dev)
482 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
483 else if (rbd_dev->disk)
484 printk(KERN_WARNING "%s: %s: %pV\n",
485 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
486 else if (rbd_dev->spec && rbd_dev->spec->image_name)
487 printk(KERN_WARNING "%s: image %s: %pV\n",
488 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
489 else if (rbd_dev->spec && rbd_dev->spec->image_id)
490 printk(KERN_WARNING "%s: id %s: %pV\n",
491 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
492 else /* punt */
493 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
494 RBD_DRV_NAME, rbd_dev, &vaf);
495 va_end(args);
496}
497
498#ifdef RBD_DEBUG
499#define rbd_assert(expr) \
500 if (unlikely(!(expr))) { \
501 printk(KERN_ERR "\nAssertion failure in %s() " \
502 "at line %d:\n\n" \
503 "\trbd_assert(%s);\n\n", \
504 __func__, __LINE__, #expr); \
505 BUG(); \
506 }
507#else /* !RBD_DEBUG */
508# define rbd_assert(expr) ((void) 0)
509#endif /* !RBD_DEBUG */
510
511static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
512static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
513static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
514
515static int rbd_dev_refresh(struct rbd_device *rbd_dev);
516static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
517static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
518static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
519 u64 snap_id);
520static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
521 u8 *order, u64 *snap_size);
522static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
523 u64 *snap_features);
524static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
525
526static int rbd_open(struct block_device *bdev, fmode_t mode)
527{
528 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
529 bool removing = false;
530
531 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
532 return -EROFS;
533
534 spin_lock_irq(&rbd_dev->lock);
535 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
536 removing = true;
537 else
538 rbd_dev->open_count++;
539 spin_unlock_irq(&rbd_dev->lock);
540 if (removing)
541 return -ENOENT;
542
543 (void) get_device(&rbd_dev->dev);
544 set_device_ro(bdev, rbd_dev->mapping.read_only);
545
546 return 0;
547}
548
549static void rbd_release(struct gendisk *disk, fmode_t mode)
550{
551 struct rbd_device *rbd_dev = disk->private_data;
552 unsigned long open_count_before;
553
554 spin_lock_irq(&rbd_dev->lock);
555 open_count_before = rbd_dev->open_count--;
556 spin_unlock_irq(&rbd_dev->lock);
557 rbd_assert(open_count_before > 0);
558
559 put_device(&rbd_dev->dev);
560}
561
562static const struct block_device_operations rbd_bd_ops = {
563 .owner = THIS_MODULE,
564 .open = rbd_open,
565 .release = rbd_release,
566};
567
568/*
569 * Initialize an rbd client instance. Success or not, this function
570 * consumes ceph_opts. Caller holds client_mutex.
571 */
572static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
573{
574 struct rbd_client *rbdc;
575 int ret = -ENOMEM;
576
577 dout("%s:\n", __func__);
578 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
579 if (!rbdc)
580 goto out_opt;
581
582 kref_init(&rbdc->kref);
583 INIT_LIST_HEAD(&rbdc->node);
584
585 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
586 if (IS_ERR(rbdc->client))
587 goto out_rbdc;
588 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
589
590 ret = ceph_open_session(rbdc->client);
591 if (ret < 0)
592 goto out_client;
593
594 spin_lock(&rbd_client_list_lock);
595 list_add_tail(&rbdc->node, &rbd_client_list);
596 spin_unlock(&rbd_client_list_lock);
597
598 dout("%s: rbdc %p\n", __func__, rbdc);
599
600 return rbdc;
601out_client:
602 ceph_destroy_client(rbdc->client);
603out_rbdc:
604 kfree(rbdc);
605out_opt:
606 if (ceph_opts)
607 ceph_destroy_options(ceph_opts);
608 dout("%s: error %d\n", __func__, ret);
609
610 return ERR_PTR(ret);
611}
612
613static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
614{
615 kref_get(&rbdc->kref);
616
617 return rbdc;
618}
619
620/*
621 * Find a ceph client with specific addr and configuration. If
622 * found, bump its reference count.
623 */
624static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
625{
626 struct rbd_client *client_node;
627 bool found = false;
628
629 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
630 return NULL;
631
632 spin_lock(&rbd_client_list_lock);
633 list_for_each_entry(client_node, &rbd_client_list, node) {
634 if (!ceph_compare_options(ceph_opts, client_node->client)) {
635 __rbd_get_client(client_node);
636
637 found = true;
638 break;
639 }
640 }
641 spin_unlock(&rbd_client_list_lock);
642
643 return found ? client_node : NULL;
644}
645
646/*
647 * mount options
648 */
649enum {
650 Opt_last_int,
651 /* int args above */
652 Opt_last_string,
653 /* string args above */
654 Opt_read_only,
655 Opt_read_write,
656 /* Boolean args above */
657 Opt_last_bool,
658};
659
660static match_table_t rbd_opts_tokens = {
661 /* int args above */
662 /* string args above */
663 {Opt_read_only, "read_only"},
664 {Opt_read_only, "ro"}, /* Alternate spelling */
665 {Opt_read_write, "read_write"},
666 {Opt_read_write, "rw"}, /* Alternate spelling */
667 /* Boolean args above */
668 {-1, NULL}
669};
670
671struct rbd_options {
672 bool read_only;
673};
674
675#define RBD_READ_ONLY_DEFAULT false
676
677static int parse_rbd_opts_token(char *c, void *private)
678{
679 struct rbd_options *rbd_opts = private;
680 substring_t argstr[MAX_OPT_ARGS];
681 int token, intval, ret;
682
683 token = match_token(c, rbd_opts_tokens, argstr);
684 if (token < 0)
685 return -EINVAL;
686
687 if (token < Opt_last_int) {
688 ret = match_int(&argstr[0], &intval);
689 if (ret < 0) {
690 pr_err("bad mount option arg (not int) "
691 "at '%s'\n", c);
692 return ret;
693 }
694 dout("got int token %d val %d\n", token, intval);
695 } else if (token > Opt_last_int && token < Opt_last_string) {
696 dout("got string token %d val %s\n", token,
697 argstr[0].from);
698 } else if (token > Opt_last_string && token < Opt_last_bool) {
699 dout("got Boolean token %d\n", token);
700 } else {
701 dout("got token %d\n", token);
702 }
703
704 switch (token) {
705 case Opt_read_only:
706 rbd_opts->read_only = true;
707 break;
708 case Opt_read_write:
709 rbd_opts->read_only = false;
710 break;
711 default:
712 rbd_assert(false);
713 break;
714 }
715 return 0;
716}
717
718/*
719 * Get a ceph client with specific addr and configuration, if one does
720 * not exist create it. Either way, ceph_opts is consumed by this
721 * function.
722 */
723static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
724{
725 struct rbd_client *rbdc;
726
727 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
728 rbdc = rbd_client_find(ceph_opts);
729 if (rbdc) /* using an existing client */
730 ceph_destroy_options(ceph_opts);
731 else
732 rbdc = rbd_client_create(ceph_opts);
733 mutex_unlock(&client_mutex);
734
735 return rbdc;
736}
737
738/*
739 * Destroy ceph client
740 *
741 * Caller must hold rbd_client_list_lock.
742 */
743static void rbd_client_release(struct kref *kref)
744{
745 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
746
747 dout("%s: rbdc %p\n", __func__, rbdc);
748 spin_lock(&rbd_client_list_lock);
749 list_del(&rbdc->node);
750 spin_unlock(&rbd_client_list_lock);
751
752 ceph_destroy_client(rbdc->client);
753 kfree(rbdc);
754}
755
756/*
757 * Drop reference to ceph client node. If it's not referenced anymore, release
758 * it.
759 */
760static void rbd_put_client(struct rbd_client *rbdc)
761{
762 if (rbdc)
763 kref_put(&rbdc->kref, rbd_client_release);
764}
765
766static bool rbd_image_format_valid(u32 image_format)
767{
768 return image_format == 1 || image_format == 2;
769}
770
771static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
772{
773 size_t size;
774 u32 snap_count;
775
776 /* The header has to start with the magic rbd header text */
777 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
778 return false;
779
780 /* The bio layer requires at least sector-sized I/O */
781
782 if (ondisk->options.order < SECTOR_SHIFT)
783 return false;
784
785 /* If we use u64 in a few spots we may be able to loosen this */
786
787 if (ondisk->options.order > 8 * sizeof (int) - 1)
788 return false;
789
790 /*
791 * The size of a snapshot header has to fit in a size_t, and
792 * that limits the number of snapshots.
793 */
794 snap_count = le32_to_cpu(ondisk->snap_count);
795 size = SIZE_MAX - sizeof (struct ceph_snap_context);
796 if (snap_count > size / sizeof (__le64))
797 return false;
798
799 /*
800 * Not only that, but the size of the entire the snapshot
801 * header must also be representable in a size_t.
802 */
803 size -= snap_count * sizeof (__le64);
804 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
805 return false;
806
807 return true;
808}
809
810/*
811 * Fill an rbd image header with information from the given format 1
812 * on-disk header.
813 */
814static int rbd_header_from_disk(struct rbd_device *rbd_dev,
815 struct rbd_image_header_ondisk *ondisk)
816{
817 struct rbd_image_header *header = &rbd_dev->header;
818 bool first_time = header->object_prefix == NULL;
819 struct ceph_snap_context *snapc;
820 char *object_prefix = NULL;
821 char *snap_names = NULL;
822 u64 *snap_sizes = NULL;
823 u32 snap_count;
824 size_t size;
825 int ret = -ENOMEM;
826 u32 i;
827
828 /* Allocate this now to avoid having to handle failure below */
829
830 if (first_time) {
831 size_t len;
832
833 len = strnlen(ondisk->object_prefix,
834 sizeof (ondisk->object_prefix));
835 object_prefix = kmalloc(len + 1, GFP_KERNEL);
836 if (!object_prefix)
837 return -ENOMEM;
838 memcpy(object_prefix, ondisk->object_prefix, len);
839 object_prefix[len] = '\0';
840 }
841
842 /* Allocate the snapshot context and fill it in */
843
844 snap_count = le32_to_cpu(ondisk->snap_count);
845 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
846 if (!snapc)
847 goto out_err;
848 snapc->seq = le64_to_cpu(ondisk->snap_seq);
849 if (snap_count) {
850 struct rbd_image_snap_ondisk *snaps;
851 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
852
853 /* We'll keep a copy of the snapshot names... */
854
855 if (snap_names_len > (u64)SIZE_MAX)
856 goto out_2big;
857 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
858 if (!snap_names)
859 goto out_err;
860
861 /* ...as well as the array of their sizes. */
862
863 size = snap_count * sizeof (*header->snap_sizes);
864 snap_sizes = kmalloc(size, GFP_KERNEL);
865 if (!snap_sizes)
866 goto out_err;
867
868 /*
869 * Copy the names, and fill in each snapshot's id
870 * and size.
871 *
872 * Note that rbd_dev_v1_header_info() guarantees the
873 * ondisk buffer we're working with has
874 * snap_names_len bytes beyond the end of the
875 * snapshot id array, this memcpy() is safe.
876 */
877 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
878 snaps = ondisk->snaps;
879 for (i = 0; i < snap_count; i++) {
880 snapc->snaps[i] = le64_to_cpu(snaps[i].id);
881 snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
882 }
883 }
884
885 /* We won't fail any more, fill in the header */
886
887 if (first_time) {
888 header->object_prefix = object_prefix;
889 header->obj_order = ondisk->options.order;
890 header->crypt_type = ondisk->options.crypt_type;
891 header->comp_type = ondisk->options.comp_type;
892 /* The rest aren't used for format 1 images */
893 header->stripe_unit = 0;
894 header->stripe_count = 0;
895 header->features = 0;
896 } else {
897 ceph_put_snap_context(header->snapc);
898 kfree(header->snap_names);
899 kfree(header->snap_sizes);
900 }
901
902 /* The remaining fields always get updated (when we refresh) */
903
904 header->image_size = le64_to_cpu(ondisk->image_size);
905 header->snapc = snapc;
906 header->snap_names = snap_names;
907 header->snap_sizes = snap_sizes;
908
909 /* Make sure mapping size is consistent with header info */
910
911 if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
912 if (rbd_dev->mapping.size != header->image_size)
913 rbd_dev->mapping.size = header->image_size;
914
915 return 0;
916out_2big:
917 ret = -EIO;
918out_err:
919 kfree(snap_sizes);
920 kfree(snap_names);
921 ceph_put_snap_context(snapc);
922 kfree(object_prefix);
923
924 return ret;
925}
926
927static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
928{
929 const char *snap_name;
930
931 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
932
933 /* Skip over names until we find the one we are looking for */
934
935 snap_name = rbd_dev->header.snap_names;
936 while (which--)
937 snap_name += strlen(snap_name) + 1;
938
939 return kstrdup(snap_name, GFP_KERNEL);
940}
941
942/*
943 * Snapshot id comparison function for use with qsort()/bsearch().
944 * Note that result is for snapshots in *descending* order.
945 */
946static int snapid_compare_reverse(const void *s1, const void *s2)
947{
948 u64 snap_id1 = *(u64 *)s1;
949 u64 snap_id2 = *(u64 *)s2;
950
951 if (snap_id1 < snap_id2)
952 return 1;
953 return snap_id1 == snap_id2 ? 0 : -1;
954}
955
956/*
957 * Search a snapshot context to see if the given snapshot id is
958 * present.
959 *
960 * Returns the position of the snapshot id in the array if it's found,
961 * or BAD_SNAP_INDEX otherwise.
962 *
963 * Note: The snapshot array is in kept sorted (by the osd) in
964 * reverse order, highest snapshot id first.
965 */
966static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
967{
968 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
969 u64 *found;
970
971 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
972 sizeof (snap_id), snapid_compare_reverse);
973
974 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
975}
976
977static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
978 u64 snap_id)
979{
980 u32 which;
981 const char *snap_name;
982
983 which = rbd_dev_snap_index(rbd_dev, snap_id);
984 if (which == BAD_SNAP_INDEX)
985 return ERR_PTR(-ENOENT);
986
987 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
988 return snap_name ? snap_name : ERR_PTR(-ENOMEM);
989}
990
991static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
992{
993 if (snap_id == CEPH_NOSNAP)
994 return RBD_SNAP_HEAD_NAME;
995
996 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
997 if (rbd_dev->image_format == 1)
998 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
999
1000 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1001}
1002
1003static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1004 u64 *snap_size)
1005{
1006 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1007 if (snap_id == CEPH_NOSNAP) {
1008 *snap_size = rbd_dev->header.image_size;
1009 } else if (rbd_dev->image_format == 1) {
1010 u32 which;
1011
1012 which = rbd_dev_snap_index(rbd_dev, snap_id);
1013 if (which == BAD_SNAP_INDEX)
1014 return -ENOENT;
1015
1016 *snap_size = rbd_dev->header.snap_sizes[which];
1017 } else {
1018 u64 size = 0;
1019 int ret;
1020
1021 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1022 if (ret)
1023 return ret;
1024
1025 *snap_size = size;
1026 }
1027 return 0;
1028}
1029
1030static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1031 u64 *snap_features)
1032{
1033 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1034 if (snap_id == CEPH_NOSNAP) {
1035 *snap_features = rbd_dev->header.features;
1036 } else if (rbd_dev->image_format == 1) {
1037 *snap_features = 0; /* No features for format 1 */
1038 } else {
1039 u64 features = 0;
1040 int ret;
1041
1042 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1043 if (ret)
1044 return ret;
1045
1046 *snap_features = features;
1047 }
1048 return 0;
1049}
1050
1051static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1052{
1053 u64 snap_id = rbd_dev->spec->snap_id;
1054 u64 size = 0;
1055 u64 features = 0;
1056 int ret;
1057
1058 ret = rbd_snap_size(rbd_dev, snap_id, &size);
1059 if (ret)
1060 return ret;
1061 ret = rbd_snap_features(rbd_dev, snap_id, &features);
1062 if (ret)
1063 return ret;
1064
1065 rbd_dev->mapping.size = size;
1066 rbd_dev->mapping.features = features;
1067
1068 return 0;
1069}
1070
1071static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1072{
1073 rbd_dev->mapping.size = 0;
1074 rbd_dev->mapping.features = 0;
1075}
1076
1077static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1078{
1079 char *name;
1080 u64 segment;
1081 int ret;
1082 char *name_format;
1083
1084 name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1085 if (!name)
1086 return NULL;
1087 segment = offset >> rbd_dev->header.obj_order;
1088 name_format = "%s.%012llx";
1089 if (rbd_dev->image_format == 2)
1090 name_format = "%s.%016llx";
1091 ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1092 rbd_dev->header.object_prefix, segment);
1093 if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1094 pr_err("error formatting segment name for #%llu (%d)\n",
1095 segment, ret);
1096 kfree(name);
1097 name = NULL;
1098 }
1099
1100 return name;
1101}
1102
1103static void rbd_segment_name_free(const char *name)
1104{
1105 /* The explicit cast here is needed to drop the const qualifier */
1106
1107 kmem_cache_free(rbd_segment_name_cache, (void *)name);
1108}
1109
1110static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1111{
1112 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1113
1114 return offset & (segment_size - 1);
1115}
1116
1117static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1118 u64 offset, u64 length)
1119{
1120 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1121
1122 offset &= segment_size - 1;
1123
1124 rbd_assert(length <= U64_MAX - offset);
1125 if (offset + length > segment_size)
1126 length = segment_size - offset;
1127
1128 return length;
1129}
1130
1131/*
1132 * returns the size of an object in the image
1133 */
1134static u64 rbd_obj_bytes(struct rbd_image_header *header)
1135{
1136 return 1 << header->obj_order;
1137}
1138
1139/*
1140 * bio helpers
1141 */
1142
1143static void bio_chain_put(struct bio *chain)
1144{
1145 struct bio *tmp;
1146
1147 while (chain) {
1148 tmp = chain;
1149 chain = chain->bi_next;
1150 bio_put(tmp);
1151 }
1152}
1153
1154/*
1155 * zeros a bio chain, starting at specific offset
1156 */
1157static void zero_bio_chain(struct bio *chain, int start_ofs)
1158{
1159 struct bio_vec bv;
1160 struct bvec_iter iter;
1161 unsigned long flags;
1162 void *buf;
1163 int pos = 0;
1164
1165 while (chain) {
1166 bio_for_each_segment(bv, chain, iter) {
1167 if (pos + bv.bv_len > start_ofs) {
1168 int remainder = max(start_ofs - pos, 0);
1169 buf = bvec_kmap_irq(&bv, &flags);
1170 memset(buf + remainder, 0,
1171 bv.bv_len - remainder);
1172 flush_dcache_page(bv.bv_page);
1173 bvec_kunmap_irq(buf, &flags);
1174 }
1175 pos += bv.bv_len;
1176 }
1177
1178 chain = chain->bi_next;
1179 }
1180}
1181
1182/*
1183 * similar to zero_bio_chain(), zeros data defined by a page array,
1184 * starting at the given byte offset from the start of the array and
1185 * continuing up to the given end offset. The pages array is
1186 * assumed to be big enough to hold all bytes up to the end.
1187 */
1188static void zero_pages(struct page **pages, u64 offset, u64 end)
1189{
1190 struct page **page = &pages[offset >> PAGE_SHIFT];
1191
1192 rbd_assert(end > offset);
1193 rbd_assert(end - offset <= (u64)SIZE_MAX);
1194 while (offset < end) {
1195 size_t page_offset;
1196 size_t length;
1197 unsigned long flags;
1198 void *kaddr;
1199
1200 page_offset = offset & ~PAGE_MASK;
1201 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1202 local_irq_save(flags);
1203 kaddr = kmap_atomic(*page);
1204 memset(kaddr + page_offset, 0, length);
1205 flush_dcache_page(*page);
1206 kunmap_atomic(kaddr);
1207 local_irq_restore(flags);
1208
1209 offset += length;
1210 page++;
1211 }
1212}
1213
1214/*
1215 * Clone a portion of a bio, starting at the given byte offset
1216 * and continuing for the number of bytes indicated.
1217 */
1218static struct bio *bio_clone_range(struct bio *bio_src,
1219 unsigned int offset,
1220 unsigned int len,
1221 gfp_t gfpmask)
1222{
1223 struct bio *bio;
1224
1225 bio = bio_clone(bio_src, gfpmask);
1226 if (!bio)
1227 return NULL; /* ENOMEM */
1228
1229 bio_advance(bio, offset);
1230 bio->bi_iter.bi_size = len;
1231
1232 return bio;
1233}
1234
1235/*
1236 * Clone a portion of a bio chain, starting at the given byte offset
1237 * into the first bio in the source chain and continuing for the
1238 * number of bytes indicated. The result is another bio chain of
1239 * exactly the given length, or a null pointer on error.
1240 *
1241 * The bio_src and offset parameters are both in-out. On entry they
1242 * refer to the first source bio and the offset into that bio where
1243 * the start of data to be cloned is located.
1244 *
1245 * On return, bio_src is updated to refer to the bio in the source
1246 * chain that contains first un-cloned byte, and *offset will
1247 * contain the offset of that byte within that bio.
1248 */
1249static struct bio *bio_chain_clone_range(struct bio **bio_src,
1250 unsigned int *offset,
1251 unsigned int len,
1252 gfp_t gfpmask)
1253{
1254 struct bio *bi = *bio_src;
1255 unsigned int off = *offset;
1256 struct bio *chain = NULL;
1257 struct bio **end;
1258
1259 /* Build up a chain of clone bios up to the limit */
1260
1261 if (!bi || off >= bi->bi_iter.bi_size || !len)
1262 return NULL; /* Nothing to clone */
1263
1264 end = &chain;
1265 while (len) {
1266 unsigned int bi_size;
1267 struct bio *bio;
1268
1269 if (!bi) {
1270 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1271 goto out_err; /* EINVAL; ran out of bio's */
1272 }
1273 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1274 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1275 if (!bio)
1276 goto out_err; /* ENOMEM */
1277
1278 *end = bio;
1279 end = &bio->bi_next;
1280
1281 off += bi_size;
1282 if (off == bi->bi_iter.bi_size) {
1283 bi = bi->bi_next;
1284 off = 0;
1285 }
1286 len -= bi_size;
1287 }
1288 *bio_src = bi;
1289 *offset = off;
1290
1291 return chain;
1292out_err:
1293 bio_chain_put(chain);
1294
1295 return NULL;
1296}
1297
1298/*
1299 * The default/initial value for all object request flags is 0. For
1300 * each flag, once its value is set to 1 it is never reset to 0
1301 * again.
1302 */
1303static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1304{
1305 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1306 struct rbd_device *rbd_dev;
1307
1308 rbd_dev = obj_request->img_request->rbd_dev;
1309 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1310 obj_request);
1311 }
1312}
1313
1314static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1315{
1316 smp_mb();
1317 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1318}
1319
1320static void obj_request_done_set(struct rbd_obj_request *obj_request)
1321{
1322 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1323 struct rbd_device *rbd_dev = NULL;
1324
1325 if (obj_request_img_data_test(obj_request))
1326 rbd_dev = obj_request->img_request->rbd_dev;
1327 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1328 obj_request);
1329 }
1330}
1331
1332static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1333{
1334 smp_mb();
1335 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1336}
1337
1338/*
1339 * This sets the KNOWN flag after (possibly) setting the EXISTS
1340 * flag. The latter is set based on the "exists" value provided.
1341 *
1342 * Note that for our purposes once an object exists it never goes
1343 * away again. It's possible that the response from two existence
1344 * checks are separated by the creation of the target object, and
1345 * the first ("doesn't exist") response arrives *after* the second
1346 * ("does exist"). In that case we ignore the second one.
1347 */
1348static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1349 bool exists)
1350{
1351 if (exists)
1352 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1353 set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1354 smp_mb();
1355}
1356
1357static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1358{
1359 smp_mb();
1360 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1361}
1362
1363static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1364{
1365 smp_mb();
1366 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1367}
1368
1369static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1370{
1371 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1372 atomic_read(&obj_request->kref.refcount));
1373 kref_get(&obj_request->kref);
1374}
1375
1376static void rbd_obj_request_destroy(struct kref *kref);
1377static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1378{
1379 rbd_assert(obj_request != NULL);
1380 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1381 atomic_read(&obj_request->kref.refcount));
1382 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1383}
1384
1385static bool img_request_child_test(struct rbd_img_request *img_request);
1386static void rbd_parent_request_destroy(struct kref *kref);
1387static void rbd_img_request_destroy(struct kref *kref);
1388static void rbd_img_request_put(struct rbd_img_request *img_request)
1389{
1390 rbd_assert(img_request != NULL);
1391 dout("%s: img %p (was %d)\n", __func__, img_request,
1392 atomic_read(&img_request->kref.refcount));
1393 if (img_request_child_test(img_request))
1394 kref_put(&img_request->kref, rbd_parent_request_destroy);
1395 else
1396 kref_put(&img_request->kref, rbd_img_request_destroy);
1397}
1398
1399static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1400 struct rbd_obj_request *obj_request)
1401{
1402 rbd_assert(obj_request->img_request == NULL);
1403
1404 /* Image request now owns object's original reference */
1405 obj_request->img_request = img_request;
1406 obj_request->which = img_request->obj_request_count;
1407 rbd_assert(!obj_request_img_data_test(obj_request));
1408 obj_request_img_data_set(obj_request);
1409 rbd_assert(obj_request->which != BAD_WHICH);
1410 img_request->obj_request_count++;
1411 list_add_tail(&obj_request->links, &img_request->obj_requests);
1412 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1413 obj_request->which);
1414}
1415
1416static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1417 struct rbd_obj_request *obj_request)
1418{
1419 rbd_assert(obj_request->which != BAD_WHICH);
1420
1421 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1422 obj_request->which);
1423 list_del(&obj_request->links);
1424 rbd_assert(img_request->obj_request_count > 0);
1425 img_request->obj_request_count--;
1426 rbd_assert(obj_request->which == img_request->obj_request_count);
1427 obj_request->which = BAD_WHICH;
1428 rbd_assert(obj_request_img_data_test(obj_request));
1429 rbd_assert(obj_request->img_request == img_request);
1430 obj_request->img_request = NULL;
1431 obj_request->callback = NULL;
1432 rbd_obj_request_put(obj_request);
1433}
1434
1435static bool obj_request_type_valid(enum obj_request_type type)
1436{
1437 switch (type) {
1438 case OBJ_REQUEST_NODATA:
1439 case OBJ_REQUEST_BIO:
1440 case OBJ_REQUEST_PAGES:
1441 return true;
1442 default:
1443 return false;
1444 }
1445}
1446
1447static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1448 struct rbd_obj_request *obj_request)
1449{
1450 dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1451
1452 return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1453}
1454
1455static void rbd_img_request_complete(struct rbd_img_request *img_request)
1456{
1457
1458 dout("%s: img %p\n", __func__, img_request);
1459
1460 /*
1461 * If no error occurred, compute the aggregate transfer
1462 * count for the image request. We could instead use
1463 * atomic64_cmpxchg() to update it as each object request
1464 * completes; not clear which way is better off hand.
1465 */
1466 if (!img_request->result) {
1467 struct rbd_obj_request *obj_request;
1468 u64 xferred = 0;
1469
1470 for_each_obj_request(img_request, obj_request)
1471 xferred += obj_request->xferred;
1472 img_request->xferred = xferred;
1473 }
1474
1475 if (img_request->callback)
1476 img_request->callback(img_request);
1477 else
1478 rbd_img_request_put(img_request);
1479}
1480
1481/* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1482
1483static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1484{
1485 dout("%s: obj %p\n", __func__, obj_request);
1486
1487 return wait_for_completion_interruptible(&obj_request->completion);
1488}
1489
1490/*
1491 * The default/initial value for all image request flags is 0. Each
1492 * is conditionally set to 1 at image request initialization time
1493 * and currently never change thereafter.
1494 */
1495static void img_request_write_set(struct rbd_img_request *img_request)
1496{
1497 set_bit(IMG_REQ_WRITE, &img_request->flags);
1498 smp_mb();
1499}
1500
1501static bool img_request_write_test(struct rbd_img_request *img_request)
1502{
1503 smp_mb();
1504 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1505}
1506
1507static void img_request_child_set(struct rbd_img_request *img_request)
1508{
1509 set_bit(IMG_REQ_CHILD, &img_request->flags);
1510 smp_mb();
1511}
1512
1513static void img_request_child_clear(struct rbd_img_request *img_request)
1514{
1515 clear_bit(IMG_REQ_CHILD, &img_request->flags);
1516 smp_mb();
1517}
1518
1519static bool img_request_child_test(struct rbd_img_request *img_request)
1520{
1521 smp_mb();
1522 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1523}
1524
1525static void img_request_layered_set(struct rbd_img_request *img_request)
1526{
1527 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1528 smp_mb();
1529}
1530
1531static void img_request_layered_clear(struct rbd_img_request *img_request)
1532{
1533 clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1534 smp_mb();
1535}
1536
1537static bool img_request_layered_test(struct rbd_img_request *img_request)
1538{
1539 smp_mb();
1540 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1541}
1542
1543static void
1544rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1545{
1546 u64 xferred = obj_request->xferred;
1547 u64 length = obj_request->length;
1548
1549 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1550 obj_request, obj_request->img_request, obj_request->result,
1551 xferred, length);
1552 /*
1553 * ENOENT means a hole in the image. We zero-fill the entire
1554 * length of the request. A short read also implies zero-fill
1555 * to the end of the request. An error requires the whole
1556 * length of the request to be reported finished with an error
1557 * to the block layer. In each case we update the xferred
1558 * count to indicate the whole request was satisfied.
1559 */
1560 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1561 if (obj_request->result == -ENOENT) {
1562 if (obj_request->type == OBJ_REQUEST_BIO)
1563 zero_bio_chain(obj_request->bio_list, 0);
1564 else
1565 zero_pages(obj_request->pages, 0, length);
1566 obj_request->result = 0;
1567 } else if (xferred < length && !obj_request->result) {
1568 if (obj_request->type == OBJ_REQUEST_BIO)
1569 zero_bio_chain(obj_request->bio_list, xferred);
1570 else
1571 zero_pages(obj_request->pages, xferred, length);
1572 }
1573 obj_request->xferred = length;
1574 obj_request_done_set(obj_request);
1575}
1576
1577static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1578{
1579 dout("%s: obj %p cb %p\n", __func__, obj_request,
1580 obj_request->callback);
1581 if (obj_request->callback)
1582 obj_request->callback(obj_request);
1583 else
1584 complete_all(&obj_request->completion);
1585}
1586
1587static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1588{
1589 dout("%s: obj %p\n", __func__, obj_request);
1590 obj_request_done_set(obj_request);
1591}
1592
1593static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1594{
1595 struct rbd_img_request *img_request = NULL;
1596 struct rbd_device *rbd_dev = NULL;
1597 bool layered = false;
1598
1599 if (obj_request_img_data_test(obj_request)) {
1600 img_request = obj_request->img_request;
1601 layered = img_request && img_request_layered_test(img_request);
1602 rbd_dev = img_request->rbd_dev;
1603 }
1604
1605 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1606 obj_request, img_request, obj_request->result,
1607 obj_request->xferred, obj_request->length);
1608 if (layered && obj_request->result == -ENOENT &&
1609 obj_request->img_offset < rbd_dev->parent_overlap)
1610 rbd_img_parent_read(obj_request);
1611 else if (img_request)
1612 rbd_img_obj_request_read_callback(obj_request);
1613 else
1614 obj_request_done_set(obj_request);
1615}
1616
1617static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1618{
1619 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1620 obj_request->result, obj_request->length);
1621 /*
1622 * There is no such thing as a successful short write. Set
1623 * it to our originally-requested length.
1624 */
1625 obj_request->xferred = obj_request->length;
1626 obj_request_done_set(obj_request);
1627}
1628
1629/*
1630 * For a simple stat call there's nothing to do. We'll do more if
1631 * this is part of a write sequence for a layered image.
1632 */
1633static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1634{
1635 dout("%s: obj %p\n", __func__, obj_request);
1636 obj_request_done_set(obj_request);
1637}
1638
1639static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1640 struct ceph_msg *msg)
1641{
1642 struct rbd_obj_request *obj_request = osd_req->r_priv;
1643 u16 opcode;
1644
1645 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1646 rbd_assert(osd_req == obj_request->osd_req);
1647 if (obj_request_img_data_test(obj_request)) {
1648 rbd_assert(obj_request->img_request);
1649 rbd_assert(obj_request->which != BAD_WHICH);
1650 } else {
1651 rbd_assert(obj_request->which == BAD_WHICH);
1652 }
1653
1654 if (osd_req->r_result < 0)
1655 obj_request->result = osd_req->r_result;
1656
1657 rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1658
1659 /*
1660 * We support a 64-bit length, but ultimately it has to be
1661 * passed to blk_end_request(), which takes an unsigned int.
1662 */
1663 obj_request->xferred = osd_req->r_reply_op_len[0];
1664 rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1665
1666 opcode = osd_req->r_ops[0].op;
1667 switch (opcode) {
1668 case CEPH_OSD_OP_READ:
1669 rbd_osd_read_callback(obj_request);
1670 break;
1671 case CEPH_OSD_OP_SETALLOCHINT:
1672 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1673 /* fall through */
1674 case CEPH_OSD_OP_WRITE:
1675 rbd_osd_write_callback(obj_request);
1676 break;
1677 case CEPH_OSD_OP_STAT:
1678 rbd_osd_stat_callback(obj_request);
1679 break;
1680 case CEPH_OSD_OP_CALL:
1681 case CEPH_OSD_OP_NOTIFY_ACK:
1682 case CEPH_OSD_OP_WATCH:
1683 rbd_osd_trivial_callback(obj_request);
1684 break;
1685 default:
1686 rbd_warn(NULL, "%s: unsupported op %hu\n",
1687 obj_request->object_name, (unsigned short) opcode);
1688 break;
1689 }
1690
1691 if (obj_request_done_test(obj_request))
1692 rbd_obj_request_complete(obj_request);
1693}
1694
1695static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1696{
1697 struct rbd_img_request *img_request = obj_request->img_request;
1698 struct ceph_osd_request *osd_req = obj_request->osd_req;
1699 u64 snap_id;
1700
1701 rbd_assert(osd_req != NULL);
1702
1703 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1704 ceph_osdc_build_request(osd_req, obj_request->offset,
1705 NULL, snap_id, NULL);
1706}
1707
1708static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1709{
1710 struct rbd_img_request *img_request = obj_request->img_request;
1711 struct ceph_osd_request *osd_req = obj_request->osd_req;
1712 struct ceph_snap_context *snapc;
1713 struct timespec mtime = CURRENT_TIME;
1714
1715 rbd_assert(osd_req != NULL);
1716
1717 snapc = img_request ? img_request->snapc : NULL;
1718 ceph_osdc_build_request(osd_req, obj_request->offset,
1719 snapc, CEPH_NOSNAP, &mtime);
1720}
1721
1722/*
1723 * Create an osd request. A read request has one osd op (read).
1724 * A write request has either one (watch) or two (hint+write) osd ops.
1725 * (All rbd data writes are prefixed with an allocation hint op, but
1726 * technically osd watch is a write request, hence this distinction.)
1727 */
1728static struct ceph_osd_request *rbd_osd_req_create(
1729 struct rbd_device *rbd_dev,
1730 bool write_request,
1731 unsigned int num_ops,
1732 struct rbd_obj_request *obj_request)
1733{
1734 struct ceph_snap_context *snapc = NULL;
1735 struct ceph_osd_client *osdc;
1736 struct ceph_osd_request *osd_req;
1737
1738 if (obj_request_img_data_test(obj_request)) {
1739 struct rbd_img_request *img_request = obj_request->img_request;
1740
1741 rbd_assert(write_request ==
1742 img_request_write_test(img_request));
1743 if (write_request)
1744 snapc = img_request->snapc;
1745 }
1746
1747 rbd_assert(num_ops == 1 || (write_request && num_ops == 2));
1748
1749 /* Allocate and initialize the request, for the num_ops ops */
1750
1751 osdc = &rbd_dev->rbd_client->client->osdc;
1752 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1753 GFP_ATOMIC);
1754 if (!osd_req)
1755 return NULL; /* ENOMEM */
1756
1757 if (write_request)
1758 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1759 else
1760 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1761
1762 osd_req->r_callback = rbd_osd_req_callback;
1763 osd_req->r_priv = obj_request;
1764
1765 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1766 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1767
1768 return osd_req;
1769}
1770
1771/*
1772 * Create a copyup osd request based on the information in the
1773 * object request supplied. A copyup request has three osd ops,
1774 * a copyup method call, a hint op, and a write op.
1775 */
1776static struct ceph_osd_request *
1777rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1778{
1779 struct rbd_img_request *img_request;
1780 struct ceph_snap_context *snapc;
1781 struct rbd_device *rbd_dev;
1782 struct ceph_osd_client *osdc;
1783 struct ceph_osd_request *osd_req;
1784
1785 rbd_assert(obj_request_img_data_test(obj_request));
1786 img_request = obj_request->img_request;
1787 rbd_assert(img_request);
1788 rbd_assert(img_request_write_test(img_request));
1789
1790 /* Allocate and initialize the request, for the three ops */
1791
1792 snapc = img_request->snapc;
1793 rbd_dev = img_request->rbd_dev;
1794 osdc = &rbd_dev->rbd_client->client->osdc;
1795 osd_req = ceph_osdc_alloc_request(osdc, snapc, 3, false, GFP_ATOMIC);
1796 if (!osd_req)
1797 return NULL; /* ENOMEM */
1798
1799 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1800 osd_req->r_callback = rbd_osd_req_callback;
1801 osd_req->r_priv = obj_request;
1802
1803 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1804 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1805
1806 return osd_req;
1807}
1808
1809
1810static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1811{
1812 ceph_osdc_put_request(osd_req);
1813}
1814
1815/* object_name is assumed to be a non-null pointer and NUL-terminated */
1816
1817static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1818 u64 offset, u64 length,
1819 enum obj_request_type type)
1820{
1821 struct rbd_obj_request *obj_request;
1822 size_t size;
1823 char *name;
1824
1825 rbd_assert(obj_request_type_valid(type));
1826
1827 size = strlen(object_name) + 1;
1828 name = kmalloc(size, GFP_KERNEL);
1829 if (!name)
1830 return NULL;
1831
1832 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1833 if (!obj_request) {
1834 kfree(name);
1835 return NULL;
1836 }
1837
1838 obj_request->object_name = memcpy(name, object_name, size);
1839 obj_request->offset = offset;
1840 obj_request->length = length;
1841 obj_request->flags = 0;
1842 obj_request->which = BAD_WHICH;
1843 obj_request->type = type;
1844 INIT_LIST_HEAD(&obj_request->links);
1845 init_completion(&obj_request->completion);
1846 kref_init(&obj_request->kref);
1847
1848 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1849 offset, length, (int)type, obj_request);
1850
1851 return obj_request;
1852}
1853
1854static void rbd_obj_request_destroy(struct kref *kref)
1855{
1856 struct rbd_obj_request *obj_request;
1857
1858 obj_request = container_of(kref, struct rbd_obj_request, kref);
1859
1860 dout("%s: obj %p\n", __func__, obj_request);
1861
1862 rbd_assert(obj_request->img_request == NULL);
1863 rbd_assert(obj_request->which == BAD_WHICH);
1864
1865 if (obj_request->osd_req)
1866 rbd_osd_req_destroy(obj_request->osd_req);
1867
1868 rbd_assert(obj_request_type_valid(obj_request->type));
1869 switch (obj_request->type) {
1870 case OBJ_REQUEST_NODATA:
1871 break; /* Nothing to do */
1872 case OBJ_REQUEST_BIO:
1873 if (obj_request->bio_list)
1874 bio_chain_put(obj_request->bio_list);
1875 break;
1876 case OBJ_REQUEST_PAGES:
1877 if (obj_request->pages)
1878 ceph_release_page_vector(obj_request->pages,
1879 obj_request->page_count);
1880 break;
1881 }
1882
1883 kfree(obj_request->object_name);
1884 obj_request->object_name = NULL;
1885 kmem_cache_free(rbd_obj_request_cache, obj_request);
1886}
1887
1888/* It's OK to call this for a device with no parent */
1889
1890static void rbd_spec_put(struct rbd_spec *spec);
1891static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1892{
1893 rbd_dev_remove_parent(rbd_dev);
1894 rbd_spec_put(rbd_dev->parent_spec);
1895 rbd_dev->parent_spec = NULL;
1896 rbd_dev->parent_overlap = 0;
1897}
1898
1899/*
1900 * Parent image reference counting is used to determine when an
1901 * image's parent fields can be safely torn down--after there are no
1902 * more in-flight requests to the parent image. When the last
1903 * reference is dropped, cleaning them up is safe.
1904 */
1905static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1906{
1907 int counter;
1908
1909 if (!rbd_dev->parent_spec)
1910 return;
1911
1912 counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1913 if (counter > 0)
1914 return;
1915
1916 /* Last reference; clean up parent data structures */
1917
1918 if (!counter)
1919 rbd_dev_unparent(rbd_dev);
1920 else
1921 rbd_warn(rbd_dev, "parent reference underflow\n");
1922}
1923
1924/*
1925 * If an image has a non-zero parent overlap, get a reference to its
1926 * parent.
1927 *
1928 * We must get the reference before checking for the overlap to
1929 * coordinate properly with zeroing the parent overlap in
1930 * rbd_dev_v2_parent_info() when an image gets flattened. We
1931 * drop it again if there is no overlap.
1932 *
1933 * Returns true if the rbd device has a parent with a non-zero
1934 * overlap and a reference for it was successfully taken, or
1935 * false otherwise.
1936 */
1937static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1938{
1939 int counter;
1940
1941 if (!rbd_dev->parent_spec)
1942 return false;
1943
1944 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1945 if (counter > 0 && rbd_dev->parent_overlap)
1946 return true;
1947
1948 /* Image was flattened, but parent is not yet torn down */
1949
1950 if (counter < 0)
1951 rbd_warn(rbd_dev, "parent reference overflow\n");
1952
1953 return false;
1954}
1955
1956/*
1957 * Caller is responsible for filling in the list of object requests
1958 * that comprises the image request, and the Linux request pointer
1959 * (if there is one).
1960 */
1961static struct rbd_img_request *rbd_img_request_create(
1962 struct rbd_device *rbd_dev,
1963 u64 offset, u64 length,
1964 bool write_request)
1965{
1966 struct rbd_img_request *img_request;
1967
1968 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1969 if (!img_request)
1970 return NULL;
1971
1972 if (write_request) {
1973 down_read(&rbd_dev->header_rwsem);
1974 ceph_get_snap_context(rbd_dev->header.snapc);
1975 up_read(&rbd_dev->header_rwsem);
1976 }
1977
1978 img_request->rq = NULL;
1979 img_request->rbd_dev = rbd_dev;
1980 img_request->offset = offset;
1981 img_request->length = length;
1982 img_request->flags = 0;
1983 if (write_request) {
1984 img_request_write_set(img_request);
1985 img_request->snapc = rbd_dev->header.snapc;
1986 } else {
1987 img_request->snap_id = rbd_dev->spec->snap_id;
1988 }
1989 if (rbd_dev_parent_get(rbd_dev))
1990 img_request_layered_set(img_request);
1991 spin_lock_init(&img_request->completion_lock);
1992 img_request->next_completion = 0;
1993 img_request->callback = NULL;
1994 img_request->result = 0;
1995 img_request->obj_request_count = 0;
1996 INIT_LIST_HEAD(&img_request->obj_requests);
1997 kref_init(&img_request->kref);
1998
1999 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2000 write_request ? "write" : "read", offset, length,
2001 img_request);
2002
2003 return img_request;
2004}
2005
2006static void rbd_img_request_destroy(struct kref *kref)
2007{
2008 struct rbd_img_request *img_request;
2009 struct rbd_obj_request *obj_request;
2010 struct rbd_obj_request *next_obj_request;
2011
2012 img_request = container_of(kref, struct rbd_img_request, kref);
2013
2014 dout("%s: img %p\n", __func__, img_request);
2015
2016 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2017 rbd_img_obj_request_del(img_request, obj_request);
2018 rbd_assert(img_request->obj_request_count == 0);
2019
2020 if (img_request_layered_test(img_request)) {
2021 img_request_layered_clear(img_request);
2022 rbd_dev_parent_put(img_request->rbd_dev);
2023 }
2024
2025 if (img_request_write_test(img_request))
2026 ceph_put_snap_context(img_request->snapc);
2027
2028 kmem_cache_free(rbd_img_request_cache, img_request);
2029}
2030
2031static struct rbd_img_request *rbd_parent_request_create(
2032 struct rbd_obj_request *obj_request,
2033 u64 img_offset, u64 length)
2034{
2035 struct rbd_img_request *parent_request;
2036 struct rbd_device *rbd_dev;
2037
2038 rbd_assert(obj_request->img_request);
2039 rbd_dev = obj_request->img_request->rbd_dev;
2040
2041 parent_request = rbd_img_request_create(rbd_dev->parent,
2042 img_offset, length, false);
2043 if (!parent_request)
2044 return NULL;
2045
2046 img_request_child_set(parent_request);
2047 rbd_obj_request_get(obj_request);
2048 parent_request->obj_request = obj_request;
2049
2050 return parent_request;
2051}
2052
2053static void rbd_parent_request_destroy(struct kref *kref)
2054{
2055 struct rbd_img_request *parent_request;
2056 struct rbd_obj_request *orig_request;
2057
2058 parent_request = container_of(kref, struct rbd_img_request, kref);
2059 orig_request = parent_request->obj_request;
2060
2061 parent_request->obj_request = NULL;
2062 rbd_obj_request_put(orig_request);
2063 img_request_child_clear(parent_request);
2064
2065 rbd_img_request_destroy(kref);
2066}
2067
2068static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2069{
2070 struct rbd_img_request *img_request;
2071 unsigned int xferred;
2072 int result;
2073 bool more;
2074
2075 rbd_assert(obj_request_img_data_test(obj_request));
2076 img_request = obj_request->img_request;
2077
2078 rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2079 xferred = (unsigned int)obj_request->xferred;
2080 result = obj_request->result;
2081 if (result) {
2082 struct rbd_device *rbd_dev = img_request->rbd_dev;
2083
2084 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2085 img_request_write_test(img_request) ? "write" : "read",
2086 obj_request->length, obj_request->img_offset,
2087 obj_request->offset);
2088 rbd_warn(rbd_dev, " result %d xferred %x\n",
2089 result, xferred);
2090 if (!img_request->result)
2091 img_request->result = result;
2092 }
2093
2094 /* Image object requests don't own their page array */
2095
2096 if (obj_request->type == OBJ_REQUEST_PAGES) {
2097 obj_request->pages = NULL;
2098 obj_request->page_count = 0;
2099 }
2100
2101 if (img_request_child_test(img_request)) {
2102 rbd_assert(img_request->obj_request != NULL);
2103 more = obj_request->which < img_request->obj_request_count - 1;
2104 } else {
2105 rbd_assert(img_request->rq != NULL);
2106 more = blk_end_request(img_request->rq, result, xferred);
2107 }
2108
2109 return more;
2110}
2111
2112static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2113{
2114 struct rbd_img_request *img_request;
2115 u32 which = obj_request->which;
2116 bool more = true;
2117
2118 rbd_assert(obj_request_img_data_test(obj_request));
2119 img_request = obj_request->img_request;
2120
2121 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2122 rbd_assert(img_request != NULL);
2123 rbd_assert(img_request->obj_request_count > 0);
2124 rbd_assert(which != BAD_WHICH);
2125 rbd_assert(which < img_request->obj_request_count);
2126
2127 spin_lock_irq(&img_request->completion_lock);
2128 if (which != img_request->next_completion)
2129 goto out;
2130
2131 for_each_obj_request_from(img_request, obj_request) {
2132 rbd_assert(more);
2133 rbd_assert(which < img_request->obj_request_count);
2134
2135 if (!obj_request_done_test(obj_request))
2136 break;
2137 more = rbd_img_obj_end_request(obj_request);
2138 which++;
2139 }
2140
2141 rbd_assert(more ^ (which == img_request->obj_request_count));
2142 img_request->next_completion = which;
2143out:
2144 spin_unlock_irq(&img_request->completion_lock);
2145
2146 if (!more)
2147 rbd_img_request_complete(img_request);
2148}
2149
2150/*
2151 * Split up an image request into one or more object requests, each
2152 * to a different object. The "type" parameter indicates whether
2153 * "data_desc" is the pointer to the head of a list of bio
2154 * structures, or the base of a page array. In either case this
2155 * function assumes data_desc describes memory sufficient to hold
2156 * all data described by the image request.
2157 */
2158static int rbd_img_request_fill(struct rbd_img_request *img_request,
2159 enum obj_request_type type,
2160 void *data_desc)
2161{
2162 struct rbd_device *rbd_dev = img_request->rbd_dev;
2163 struct rbd_obj_request *obj_request = NULL;
2164 struct rbd_obj_request *next_obj_request;
2165 bool write_request = img_request_write_test(img_request);
2166 struct bio *bio_list = NULL;
2167 unsigned int bio_offset = 0;
2168 struct page **pages = NULL;
2169 u64 img_offset;
2170 u64 resid;
2171 u16 opcode;
2172
2173 dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2174 (int)type, data_desc);
2175
2176 opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2177 img_offset = img_request->offset;
2178 resid = img_request->length;
2179 rbd_assert(resid > 0);
2180
2181 if (type == OBJ_REQUEST_BIO) {
2182 bio_list = data_desc;
2183 rbd_assert(img_offset ==
2184 bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2185 } else {
2186 rbd_assert(type == OBJ_REQUEST_PAGES);
2187 pages = data_desc;
2188 }
2189
2190 while (resid) {
2191 struct ceph_osd_request *osd_req;
2192 const char *object_name;
2193 u64 offset;
2194 u64 length;
2195 unsigned int which = 0;
2196
2197 object_name = rbd_segment_name(rbd_dev, img_offset);
2198 if (!object_name)
2199 goto out_unwind;
2200 offset = rbd_segment_offset(rbd_dev, img_offset);
2201 length = rbd_segment_length(rbd_dev, img_offset, resid);
2202 obj_request = rbd_obj_request_create(object_name,
2203 offset, length, type);
2204 /* object request has its own copy of the object name */
2205 rbd_segment_name_free(object_name);
2206 if (!obj_request)
2207 goto out_unwind;
2208
2209 /*
2210 * set obj_request->img_request before creating the
2211 * osd_request so that it gets the right snapc
2212 */
2213 rbd_img_obj_request_add(img_request, obj_request);
2214
2215 if (type == OBJ_REQUEST_BIO) {
2216 unsigned int clone_size;
2217
2218 rbd_assert(length <= (u64)UINT_MAX);
2219 clone_size = (unsigned int)length;
2220 obj_request->bio_list =
2221 bio_chain_clone_range(&bio_list,
2222 &bio_offset,
2223 clone_size,
2224 GFP_ATOMIC);
2225 if (!obj_request->bio_list)
2226 goto out_unwind;
2227 } else {
2228 unsigned int page_count;
2229
2230 obj_request->pages = pages;
2231 page_count = (u32)calc_pages_for(offset, length);
2232 obj_request->page_count = page_count;
2233 if ((offset + length) & ~PAGE_MASK)
2234 page_count--; /* more on last page */
2235 pages += page_count;
2236 }
2237
2238 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2239 (write_request ? 2 : 1),
2240 obj_request);
2241 if (!osd_req)
2242 goto out_unwind;
2243 obj_request->osd_req = osd_req;
2244 obj_request->callback = rbd_img_obj_callback;
2245
2246 if (write_request) {
2247 osd_req_op_alloc_hint_init(osd_req, which,
2248 rbd_obj_bytes(&rbd_dev->header),
2249 rbd_obj_bytes(&rbd_dev->header));
2250 which++;
2251 }
2252
2253 osd_req_op_extent_init(osd_req, which, opcode, offset, length,
2254 0, 0);
2255 if (type == OBJ_REQUEST_BIO)
2256 osd_req_op_extent_osd_data_bio(osd_req, which,
2257 obj_request->bio_list, length);
2258 else
2259 osd_req_op_extent_osd_data_pages(osd_req, which,
2260 obj_request->pages, length,
2261 offset & ~PAGE_MASK, false, false);
2262
2263 if (write_request)
2264 rbd_osd_req_format_write(obj_request);
2265 else
2266 rbd_osd_req_format_read(obj_request);
2267
2268 obj_request->img_offset = img_offset;
2269
2270 img_offset += length;
2271 resid -= length;
2272 }
2273
2274 return 0;
2275
2276out_unwind:
2277 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2278 rbd_img_obj_request_del(img_request, obj_request);
2279
2280 return -ENOMEM;
2281}
2282
2283static void
2284rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2285{
2286 struct rbd_img_request *img_request;
2287 struct rbd_device *rbd_dev;
2288 struct page **pages;
2289 u32 page_count;
2290
2291 rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2292 rbd_assert(obj_request_img_data_test(obj_request));
2293 img_request = obj_request->img_request;
2294 rbd_assert(img_request);
2295
2296 rbd_dev = img_request->rbd_dev;
2297 rbd_assert(rbd_dev);
2298
2299 pages = obj_request->copyup_pages;
2300 rbd_assert(pages != NULL);
2301 obj_request->copyup_pages = NULL;
2302 page_count = obj_request->copyup_page_count;
2303 rbd_assert(page_count);
2304 obj_request->copyup_page_count = 0;
2305 ceph_release_page_vector(pages, page_count);
2306
2307 /*
2308 * We want the transfer count to reflect the size of the
2309 * original write request. There is no such thing as a
2310 * successful short write, so if the request was successful
2311 * we can just set it to the originally-requested length.
2312 */
2313 if (!obj_request->result)
2314 obj_request->xferred = obj_request->length;
2315
2316 /* Finish up with the normal image object callback */
2317
2318 rbd_img_obj_callback(obj_request);
2319}
2320
2321static void
2322rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2323{
2324 struct rbd_obj_request *orig_request;
2325 struct ceph_osd_request *osd_req;
2326 struct ceph_osd_client *osdc;
2327 struct rbd_device *rbd_dev;
2328 struct page **pages;
2329 u32 page_count;
2330 int img_result;
2331 u64 parent_length;
2332 u64 offset;
2333 u64 length;
2334
2335 rbd_assert(img_request_child_test(img_request));
2336
2337 /* First get what we need from the image request */
2338
2339 pages = img_request->copyup_pages;
2340 rbd_assert(pages != NULL);
2341 img_request->copyup_pages = NULL;
2342 page_count = img_request->copyup_page_count;
2343 rbd_assert(page_count);
2344 img_request->copyup_page_count = 0;
2345
2346 orig_request = img_request->obj_request;
2347 rbd_assert(orig_request != NULL);
2348 rbd_assert(obj_request_type_valid(orig_request->type));
2349 img_result = img_request->result;
2350 parent_length = img_request->length;
2351 rbd_assert(parent_length == img_request->xferred);
2352 rbd_img_request_put(img_request);
2353
2354 rbd_assert(orig_request->img_request);
2355 rbd_dev = orig_request->img_request->rbd_dev;
2356 rbd_assert(rbd_dev);
2357
2358 /*
2359 * If the overlap has become 0 (most likely because the
2360 * image has been flattened) we need to free the pages
2361 * and re-submit the original write request.
2362 */
2363 if (!rbd_dev->parent_overlap) {
2364 struct ceph_osd_client *osdc;
2365
2366 ceph_release_page_vector(pages, page_count);
2367 osdc = &rbd_dev->rbd_client->client->osdc;
2368 img_result = rbd_obj_request_submit(osdc, orig_request);
2369 if (!img_result)
2370 return;
2371 }
2372
2373 if (img_result)
2374 goto out_err;
2375
2376 /*
2377 * The original osd request is of no use to use any more.
2378 * We need a new one that can hold the three ops in a copyup
2379 * request. Allocate the new copyup osd request for the
2380 * original request, and release the old one.
2381 */
2382 img_result = -ENOMEM;
2383 osd_req = rbd_osd_req_create_copyup(orig_request);
2384 if (!osd_req)
2385 goto out_err;
2386 rbd_osd_req_destroy(orig_request->osd_req);
2387 orig_request->osd_req = osd_req;
2388 orig_request->copyup_pages = pages;
2389 orig_request->copyup_page_count = page_count;
2390
2391 /* Initialize the copyup op */
2392
2393 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2394 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2395 false, false);
2396
2397 /* Then the hint op */
2398
2399 osd_req_op_alloc_hint_init(osd_req, 1, rbd_obj_bytes(&rbd_dev->header),
2400 rbd_obj_bytes(&rbd_dev->header));
2401
2402 /* And the original write request op */
2403
2404 offset = orig_request->offset;
2405 length = orig_request->length;
2406 osd_req_op_extent_init(osd_req, 2, CEPH_OSD_OP_WRITE,
2407 offset, length, 0, 0);
2408 if (orig_request->type == OBJ_REQUEST_BIO)
2409 osd_req_op_extent_osd_data_bio(osd_req, 2,
2410 orig_request->bio_list, length);
2411 else
2412 osd_req_op_extent_osd_data_pages(osd_req, 2,
2413 orig_request->pages, length,
2414 offset & ~PAGE_MASK, false, false);
2415
2416 rbd_osd_req_format_write(orig_request);
2417
2418 /* All set, send it off. */
2419
2420 orig_request->callback = rbd_img_obj_copyup_callback;
2421 osdc = &rbd_dev->rbd_client->client->osdc;
2422 img_result = rbd_obj_request_submit(osdc, orig_request);
2423 if (!img_result)
2424 return;
2425out_err:
2426 /* Record the error code and complete the request */
2427
2428 orig_request->result = img_result;
2429 orig_request->xferred = 0;
2430 obj_request_done_set(orig_request);
2431 rbd_obj_request_complete(orig_request);
2432}
2433
2434/*
2435 * Read from the parent image the range of data that covers the
2436 * entire target of the given object request. This is used for
2437 * satisfying a layered image write request when the target of an
2438 * object request from the image request does not exist.
2439 *
2440 * A page array big enough to hold the returned data is allocated
2441 * and supplied to rbd_img_request_fill() as the "data descriptor."
2442 * When the read completes, this page array will be transferred to
2443 * the original object request for the copyup operation.
2444 *
2445 * If an error occurs, record it as the result of the original
2446 * object request and mark it done so it gets completed.
2447 */
2448static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2449{
2450 struct rbd_img_request *img_request = NULL;
2451 struct rbd_img_request *parent_request = NULL;
2452 struct rbd_device *rbd_dev;
2453 u64 img_offset;
2454 u64 length;
2455 struct page **pages = NULL;
2456 u32 page_count;
2457 int result;
2458
2459 rbd_assert(obj_request_img_data_test(obj_request));
2460 rbd_assert(obj_request_type_valid(obj_request->type));
2461
2462 img_request = obj_request->img_request;
2463 rbd_assert(img_request != NULL);
2464 rbd_dev = img_request->rbd_dev;
2465 rbd_assert(rbd_dev->parent != NULL);
2466
2467 /*
2468 * Determine the byte range covered by the object in the
2469 * child image to which the original request was to be sent.
2470 */
2471 img_offset = obj_request->img_offset - obj_request->offset;
2472 length = (u64)1 << rbd_dev->header.obj_order;
2473
2474 /*
2475 * There is no defined parent data beyond the parent
2476 * overlap, so limit what we read at that boundary if
2477 * necessary.
2478 */
2479 if (img_offset + length > rbd_dev->parent_overlap) {
2480 rbd_assert(img_offset < rbd_dev->parent_overlap);
2481 length = rbd_dev->parent_overlap - img_offset;
2482 }
2483
2484 /*
2485 * Allocate a page array big enough to receive the data read
2486 * from the parent.
2487 */
2488 page_count = (u32)calc_pages_for(0, length);
2489 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2490 if (IS_ERR(pages)) {
2491 result = PTR_ERR(pages);
2492 pages = NULL;
2493 goto out_err;
2494 }
2495
2496 result = -ENOMEM;
2497 parent_request = rbd_parent_request_create(obj_request,
2498 img_offset, length);
2499 if (!parent_request)
2500 goto out_err;
2501
2502 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2503 if (result)
2504 goto out_err;
2505 parent_request->copyup_pages = pages;
2506 parent_request->copyup_page_count = page_count;
2507
2508 parent_request->callback = rbd_img_obj_parent_read_full_callback;
2509 result = rbd_img_request_submit(parent_request);
2510 if (!result)
2511 return 0;
2512
2513 parent_request->copyup_pages = NULL;
2514 parent_request->copyup_page_count = 0;
2515 parent_request->obj_request = NULL;
2516 rbd_obj_request_put(obj_request);
2517out_err:
2518 if (pages)
2519 ceph_release_page_vector(pages, page_count);
2520 if (parent_request)
2521 rbd_img_request_put(parent_request);
2522 obj_request->result = result;
2523 obj_request->xferred = 0;
2524 obj_request_done_set(obj_request);
2525
2526 return result;
2527}
2528
2529static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2530{
2531 struct rbd_obj_request *orig_request;
2532 struct rbd_device *rbd_dev;
2533 int result;
2534
2535 rbd_assert(!obj_request_img_data_test(obj_request));
2536
2537 /*
2538 * All we need from the object request is the original
2539 * request and the result of the STAT op. Grab those, then
2540 * we're done with the request.
2541 */
2542 orig_request = obj_request->obj_request;
2543 obj_request->obj_request = NULL;
2544 rbd_obj_request_put(orig_request);
2545 rbd_assert(orig_request);
2546 rbd_assert(orig_request->img_request);
2547
2548 result = obj_request->result;
2549 obj_request->result = 0;
2550
2551 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2552 obj_request, orig_request, result,
2553 obj_request->xferred, obj_request->length);
2554 rbd_obj_request_put(obj_request);
2555
2556 /*
2557 * If the overlap has become 0 (most likely because the
2558 * image has been flattened) we need to free the pages
2559 * and re-submit the original write request.
2560 */
2561 rbd_dev = orig_request->img_request->rbd_dev;
2562 if (!rbd_dev->parent_overlap) {
2563 struct ceph_osd_client *osdc;
2564
2565 osdc = &rbd_dev->rbd_client->client->osdc;
2566 result = rbd_obj_request_submit(osdc, orig_request);
2567 if (!result)
2568 return;
2569 }
2570
2571 /*
2572 * Our only purpose here is to determine whether the object
2573 * exists, and we don't want to treat the non-existence as
2574 * an error. If something else comes back, transfer the
2575 * error to the original request and complete it now.
2576 */
2577 if (!result) {
2578 obj_request_existence_set(orig_request, true);
2579 } else if (result == -ENOENT) {
2580 obj_request_existence_set(orig_request, false);
2581 } else if (result) {
2582 orig_request->result = result;
2583 goto out;
2584 }
2585
2586 /*
2587 * Resubmit the original request now that we have recorded
2588 * whether the target object exists.
2589 */
2590 orig_request->result = rbd_img_obj_request_submit(orig_request);
2591out:
2592 if (orig_request->result)
2593 rbd_obj_request_complete(orig_request);
2594}
2595
2596static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2597{
2598 struct rbd_obj_request *stat_request;
2599 struct rbd_device *rbd_dev;
2600 struct ceph_osd_client *osdc;
2601 struct page **pages = NULL;
2602 u32 page_count;
2603 size_t size;
2604 int ret;
2605
2606 /*
2607 * The response data for a STAT call consists of:
2608 * le64 length;
2609 * struct {
2610 * le32 tv_sec;
2611 * le32 tv_nsec;
2612 * } mtime;
2613 */
2614 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2615 page_count = (u32)calc_pages_for(0, size);
2616 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2617 if (IS_ERR(pages))
2618 return PTR_ERR(pages);
2619
2620 ret = -ENOMEM;
2621 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2622 OBJ_REQUEST_PAGES);
2623 if (!stat_request)
2624 goto out;
2625
2626 rbd_obj_request_get(obj_request);
2627 stat_request->obj_request = obj_request;
2628 stat_request->pages = pages;
2629 stat_request->page_count = page_count;
2630
2631 rbd_assert(obj_request->img_request);
2632 rbd_dev = obj_request->img_request->rbd_dev;
2633 stat_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
2634 stat_request);
2635 if (!stat_request->osd_req)
2636 goto out;
2637 stat_request->callback = rbd_img_obj_exists_callback;
2638
2639 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2640 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2641 false, false);
2642 rbd_osd_req_format_read(stat_request);
2643
2644 osdc = &rbd_dev->rbd_client->client->osdc;
2645 ret = rbd_obj_request_submit(osdc, stat_request);
2646out:
2647 if (ret)
2648 rbd_obj_request_put(obj_request);
2649
2650 return ret;
2651}
2652
2653static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2654{
2655 struct rbd_img_request *img_request;
2656 struct rbd_device *rbd_dev;
2657 bool known;
2658
2659 rbd_assert(obj_request_img_data_test(obj_request));
2660
2661 img_request = obj_request->img_request;
2662 rbd_assert(img_request);
2663 rbd_dev = img_request->rbd_dev;
2664
2665 /*
2666 * Only writes to layered images need special handling.
2667 * Reads and non-layered writes are simple object requests.
2668 * Layered writes that start beyond the end of the overlap
2669 * with the parent have no parent data, so they too are
2670 * simple object requests. Finally, if the target object is
2671 * known to already exist, its parent data has already been
2672 * copied, so a write to the object can also be handled as a
2673 * simple object request.
2674 */
2675 if (!img_request_write_test(img_request) ||
2676 !img_request_layered_test(img_request) ||
2677 rbd_dev->parent_overlap <= obj_request->img_offset ||
2678 ((known = obj_request_known_test(obj_request)) &&
2679 obj_request_exists_test(obj_request))) {
2680
2681 struct rbd_device *rbd_dev;
2682 struct ceph_osd_client *osdc;
2683
2684 rbd_dev = obj_request->img_request->rbd_dev;
2685 osdc = &rbd_dev->rbd_client->client->osdc;
2686
2687 return rbd_obj_request_submit(osdc, obj_request);
2688 }
2689
2690 /*
2691 * It's a layered write. The target object might exist but
2692 * we may not know that yet. If we know it doesn't exist,
2693 * start by reading the data for the full target object from
2694 * the parent so we can use it for a copyup to the target.
2695 */
2696 if (known)
2697 return rbd_img_obj_parent_read_full(obj_request);
2698
2699 /* We don't know whether the target exists. Go find out. */
2700
2701 return rbd_img_obj_exists_submit(obj_request);
2702}
2703
2704static int rbd_img_request_submit(struct rbd_img_request *img_request)
2705{
2706 struct rbd_obj_request *obj_request;
2707 struct rbd_obj_request *next_obj_request;
2708
2709 dout("%s: img %p\n", __func__, img_request);
2710 for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2711 int ret;
2712
2713 ret = rbd_img_obj_request_submit(obj_request);
2714 if (ret)
2715 return ret;
2716 }
2717
2718 return 0;
2719}
2720
2721static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2722{
2723 struct rbd_obj_request *obj_request;
2724 struct rbd_device *rbd_dev;
2725 u64 obj_end;
2726 u64 img_xferred;
2727 int img_result;
2728
2729 rbd_assert(img_request_child_test(img_request));
2730
2731 /* First get what we need from the image request and release it */
2732
2733 obj_request = img_request->obj_request;
2734 img_xferred = img_request->xferred;
2735 img_result = img_request->result;
2736 rbd_img_request_put(img_request);
2737
2738 /*
2739 * If the overlap has become 0 (most likely because the
2740 * image has been flattened) we need to re-submit the
2741 * original request.
2742 */
2743 rbd_assert(obj_request);
2744 rbd_assert(obj_request->img_request);
2745 rbd_dev = obj_request->img_request->rbd_dev;
2746 if (!rbd_dev->parent_overlap) {
2747 struct ceph_osd_client *osdc;
2748
2749 osdc = &rbd_dev->rbd_client->client->osdc;
2750 img_result = rbd_obj_request_submit(osdc, obj_request);
2751 if (!img_result)
2752 return;
2753 }
2754
2755 obj_request->result = img_result;
2756 if (obj_request->result)
2757 goto out;
2758
2759 /*
2760 * We need to zero anything beyond the parent overlap
2761 * boundary. Since rbd_img_obj_request_read_callback()
2762 * will zero anything beyond the end of a short read, an
2763 * easy way to do this is to pretend the data from the
2764 * parent came up short--ending at the overlap boundary.
2765 */
2766 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2767 obj_end = obj_request->img_offset + obj_request->length;
2768 if (obj_end > rbd_dev->parent_overlap) {
2769 u64 xferred = 0;
2770
2771 if (obj_request->img_offset < rbd_dev->parent_overlap)
2772 xferred = rbd_dev->parent_overlap -
2773 obj_request->img_offset;
2774
2775 obj_request->xferred = min(img_xferred, xferred);
2776 } else {
2777 obj_request->xferred = img_xferred;
2778 }
2779out:
2780 rbd_img_obj_request_read_callback(obj_request);
2781 rbd_obj_request_complete(obj_request);
2782}
2783
2784static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2785{
2786 struct rbd_img_request *img_request;
2787 int result;
2788
2789 rbd_assert(obj_request_img_data_test(obj_request));
2790 rbd_assert(obj_request->img_request != NULL);
2791 rbd_assert(obj_request->result == (s32) -ENOENT);
2792 rbd_assert(obj_request_type_valid(obj_request->type));
2793
2794 /* rbd_read_finish(obj_request, obj_request->length); */
2795 img_request = rbd_parent_request_create(obj_request,
2796 obj_request->img_offset,
2797 obj_request->length);
2798 result = -ENOMEM;
2799 if (!img_request)
2800 goto out_err;
2801
2802 if (obj_request->type == OBJ_REQUEST_BIO)
2803 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2804 obj_request->bio_list);
2805 else
2806 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2807 obj_request->pages);
2808 if (result)
2809 goto out_err;
2810
2811 img_request->callback = rbd_img_parent_read_callback;
2812 result = rbd_img_request_submit(img_request);
2813 if (result)
2814 goto out_err;
2815
2816 return;
2817out_err:
2818 if (img_request)
2819 rbd_img_request_put(img_request);
2820 obj_request->result = result;
2821 obj_request->xferred = 0;
2822 obj_request_done_set(obj_request);
2823}
2824
2825static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
2826{
2827 struct rbd_obj_request *obj_request;
2828 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2829 int ret;
2830
2831 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2832 OBJ_REQUEST_NODATA);
2833 if (!obj_request)
2834 return -ENOMEM;
2835
2836 ret = -ENOMEM;
2837 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
2838 obj_request);
2839 if (!obj_request->osd_req)
2840 goto out;
2841
2842 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2843 notify_id, 0, 0);
2844 rbd_osd_req_format_read(obj_request);
2845
2846 ret = rbd_obj_request_submit(osdc, obj_request);
2847 if (ret)
2848 goto out;
2849 ret = rbd_obj_request_wait(obj_request);
2850out:
2851 rbd_obj_request_put(obj_request);
2852
2853 return ret;
2854}
2855
2856static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2857{
2858 struct rbd_device *rbd_dev = (struct rbd_device *)data;
2859 int ret;
2860
2861 if (!rbd_dev)
2862 return;
2863
2864 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2865 rbd_dev->header_name, (unsigned long long)notify_id,
2866 (unsigned int)opcode);
2867 ret = rbd_dev_refresh(rbd_dev);
2868 if (ret)
2869 rbd_warn(rbd_dev, "header refresh error (%d)\n", ret);
2870
2871 rbd_obj_notify_ack_sync(rbd_dev, notify_id);
2872}
2873
2874/*
2875 * Request sync osd watch/unwatch. The value of "start" determines
2876 * whether a watch request is being initiated or torn down.
2877 */
2878static int __rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start)
2879{
2880 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2881 struct rbd_obj_request *obj_request;
2882 int ret;
2883
2884 rbd_assert(start ^ !!rbd_dev->watch_event);
2885 rbd_assert(start ^ !!rbd_dev->watch_request);
2886
2887 if (start) {
2888 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2889 &rbd_dev->watch_event);
2890 if (ret < 0)
2891 return ret;
2892 rbd_assert(rbd_dev->watch_event != NULL);
2893 }
2894
2895 ret = -ENOMEM;
2896 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2897 OBJ_REQUEST_NODATA);
2898 if (!obj_request)
2899 goto out_cancel;
2900
2901 obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, 1,
2902 obj_request);
2903 if (!obj_request->osd_req)
2904 goto out_cancel;
2905
2906 if (start)
2907 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2908 else
2909 ceph_osdc_unregister_linger_request(osdc,
2910 rbd_dev->watch_request->osd_req);
2911
2912 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2913 rbd_dev->watch_event->cookie, 0, start ? 1 : 0);
2914 rbd_osd_req_format_write(obj_request);
2915
2916 ret = rbd_obj_request_submit(osdc, obj_request);
2917 if (ret)
2918 goto out_cancel;
2919 ret = rbd_obj_request_wait(obj_request);
2920 if (ret)
2921 goto out_cancel;
2922 ret = obj_request->result;
2923 if (ret)
2924 goto out_cancel;
2925
2926 /*
2927 * A watch request is set to linger, so the underlying osd
2928 * request won't go away until we unregister it. We retain
2929 * a pointer to the object request during that time (in
2930 * rbd_dev->watch_request), so we'll keep a reference to
2931 * it. We'll drop that reference (below) after we've
2932 * unregistered it.
2933 */
2934 if (start) {
2935 rbd_dev->watch_request = obj_request;
2936
2937 return 0;
2938 }
2939
2940 /* We have successfully torn down the watch request */
2941
2942 rbd_obj_request_put(rbd_dev->watch_request);
2943 rbd_dev->watch_request = NULL;
2944out_cancel:
2945 /* Cancel the event if we're tearing down, or on error */
2946 ceph_osdc_cancel_event(rbd_dev->watch_event);
2947 rbd_dev->watch_event = NULL;
2948 if (obj_request)
2949 rbd_obj_request_put(obj_request);
2950
2951 return ret;
2952}
2953
2954static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
2955{
2956 return __rbd_dev_header_watch_sync(rbd_dev, true);
2957}
2958
2959static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
2960{
2961 int ret;
2962
2963 ret = __rbd_dev_header_watch_sync(rbd_dev, false);
2964 if (ret) {
2965 rbd_warn(rbd_dev, "unable to tear down watch request: %d\n",
2966 ret);
2967 }
2968}
2969
2970/*
2971 * Synchronous osd object method call. Returns the number of bytes
2972 * returned in the outbound buffer, or a negative error code.
2973 */
2974static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2975 const char *object_name,
2976 const char *class_name,
2977 const char *method_name,
2978 const void *outbound,
2979 size_t outbound_size,
2980 void *inbound,
2981 size_t inbound_size)
2982{
2983 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2984 struct rbd_obj_request *obj_request;
2985 struct page **pages;
2986 u32 page_count;
2987 int ret;
2988
2989 /*
2990 * Method calls are ultimately read operations. The result
2991 * should placed into the inbound buffer provided. They
2992 * also supply outbound data--parameters for the object
2993 * method. Currently if this is present it will be a
2994 * snapshot id.
2995 */
2996 page_count = (u32)calc_pages_for(0, inbound_size);
2997 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2998 if (IS_ERR(pages))
2999 return PTR_ERR(pages);
3000
3001 ret = -ENOMEM;
3002 obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3003 OBJ_REQUEST_PAGES);
3004 if (!obj_request)
3005 goto out;
3006
3007 obj_request->pages = pages;
3008 obj_request->page_count = page_count;
3009
3010 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
3011 obj_request);
3012 if (!obj_request->osd_req)
3013 goto out;
3014
3015 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3016 class_name, method_name);
3017 if (outbound_size) {
3018 struct ceph_pagelist *pagelist;
3019
3020 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3021 if (!pagelist)
3022 goto out;
3023
3024 ceph_pagelist_init(pagelist);
3025 ceph_pagelist_append(pagelist, outbound, outbound_size);
3026 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3027 pagelist);
3028 }
3029 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3030 obj_request->pages, inbound_size,
3031 0, false, false);
3032 rbd_osd_req_format_read(obj_request);
3033
3034 ret = rbd_obj_request_submit(osdc, obj_request);
3035 if (ret)
3036 goto out;
3037 ret = rbd_obj_request_wait(obj_request);
3038 if (ret)
3039 goto out;
3040
3041 ret = obj_request->result;
3042 if (ret < 0)
3043 goto out;
3044
3045 rbd_assert(obj_request->xferred < (u64)INT_MAX);
3046 ret = (int)obj_request->xferred;
3047 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3048out:
3049 if (obj_request)
3050 rbd_obj_request_put(obj_request);
3051 else
3052 ceph_release_page_vector(pages, page_count);
3053
3054 return ret;
3055}
3056
3057static void rbd_request_fn(struct request_queue *q)
3058 __releases(q->queue_lock) __acquires(q->queue_lock)
3059{
3060 struct rbd_device *rbd_dev = q->queuedata;
3061 bool read_only = rbd_dev->mapping.read_only;
3062 struct request *rq;
3063 int result;
3064
3065 while ((rq = blk_fetch_request(q))) {
3066 bool write_request = rq_data_dir(rq) == WRITE;
3067 struct rbd_img_request *img_request;
3068 u64 offset;
3069 u64 length;
3070
3071 /* Ignore any non-FS requests that filter through. */
3072
3073 if (rq->cmd_type != REQ_TYPE_FS) {
3074 dout("%s: non-fs request type %d\n", __func__,
3075 (int) rq->cmd_type);
3076 __blk_end_request_all(rq, 0);
3077 continue;
3078 }
3079
3080 /* Ignore/skip any zero-length requests */
3081
3082 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3083 length = (u64) blk_rq_bytes(rq);
3084
3085 if (!length) {
3086 dout("%s: zero-length request\n", __func__);
3087 __blk_end_request_all(rq, 0);
3088 continue;
3089 }
3090
3091 spin_unlock_irq(q->queue_lock);
3092
3093 /* Disallow writes to a read-only device */
3094
3095 if (write_request) {
3096 result = -EROFS;
3097 if (read_only)
3098 goto end_request;
3099 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3100 }
3101
3102 /*
3103 * Quit early if the mapped snapshot no longer
3104 * exists. It's still possible the snapshot will
3105 * have disappeared by the time our request arrives
3106 * at the osd, but there's no sense in sending it if
3107 * we already know.
3108 */
3109 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3110 dout("request for non-existent snapshot");
3111 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3112 result = -ENXIO;
3113 goto end_request;
3114 }
3115
3116 result = -EINVAL;
3117 if (offset && length > U64_MAX - offset + 1) {
3118 rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3119 offset, length);
3120 goto end_request; /* Shouldn't happen */
3121 }
3122
3123 result = -EIO;
3124 if (offset + length > rbd_dev->mapping.size) {
3125 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3126 offset, length, rbd_dev->mapping.size);
3127 goto end_request;
3128 }
3129
3130 result = -ENOMEM;
3131 img_request = rbd_img_request_create(rbd_dev, offset, length,
3132 write_request);
3133 if (!img_request)
3134 goto end_request;
3135
3136 img_request->rq = rq;
3137
3138 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3139 rq->bio);
3140 if (!result)
3141 result = rbd_img_request_submit(img_request);
3142 if (result)
3143 rbd_img_request_put(img_request);
3144end_request:
3145 spin_lock_irq(q->queue_lock);
3146 if (result < 0) {
3147 rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3148 write_request ? "write" : "read",
3149 length, offset, result);
3150
3151 __blk_end_request_all(rq, result);
3152 }
3153 }
3154}
3155
3156/*
3157 * a queue callback. Makes sure that we don't create a bio that spans across
3158 * multiple osd objects. One exception would be with a single page bios,
3159 * which we handle later at bio_chain_clone_range()
3160 */
3161static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3162 struct bio_vec *bvec)
3163{
3164 struct rbd_device *rbd_dev = q->queuedata;
3165 sector_t sector_offset;
3166 sector_t sectors_per_obj;
3167 sector_t obj_sector_offset;
3168 int ret;
3169
3170 /*
3171 * Find how far into its rbd object the partition-relative
3172 * bio start sector is to offset relative to the enclosing
3173 * device.
3174 */
3175 sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3176 sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3177 obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3178
3179 /*
3180 * Compute the number of bytes from that offset to the end
3181 * of the object. Account for what's already used by the bio.
3182 */
3183 ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3184 if (ret > bmd->bi_size)
3185 ret -= bmd->bi_size;
3186 else
3187 ret = 0;
3188
3189 /*
3190 * Don't send back more than was asked for. And if the bio
3191 * was empty, let the whole thing through because: "Note
3192 * that a block device *must* allow a single page to be
3193 * added to an empty bio."
3194 */
3195 rbd_assert(bvec->bv_len <= PAGE_SIZE);
3196 if (ret > (int) bvec->bv_len || !bmd->bi_size)
3197 ret = (int) bvec->bv_len;
3198
3199 return ret;
3200}
3201
3202static void rbd_free_disk(struct rbd_device *rbd_dev)
3203{
3204 struct gendisk *disk = rbd_dev->disk;
3205
3206 if (!disk)
3207 return;
3208
3209 rbd_dev->disk = NULL;
3210 if (disk->flags & GENHD_FL_UP) {
3211 del_gendisk(disk);
3212 if (disk->queue)
3213 blk_cleanup_queue(disk->queue);
3214 }
3215 put_disk(disk);
3216}
3217
3218static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3219 const char *object_name,
3220 u64 offset, u64 length, void *buf)
3221
3222{
3223 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3224 struct rbd_obj_request *obj_request;
3225 struct page **pages = NULL;
3226 u32 page_count;
3227 size_t size;
3228 int ret;
3229
3230 page_count = (u32) calc_pages_for(offset, length);
3231 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3232 if (IS_ERR(pages))
3233 ret = PTR_ERR(pages);
3234
3235 ret = -ENOMEM;
3236 obj_request = rbd_obj_request_create(object_name, offset, length,
3237 OBJ_REQUEST_PAGES);
3238 if (!obj_request)
3239 goto out;
3240
3241 obj_request->pages = pages;
3242 obj_request->page_count = page_count;
3243
3244 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
3245 obj_request);
3246 if (!obj_request->osd_req)
3247 goto out;
3248
3249 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3250 offset, length, 0, 0);
3251 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3252 obj_request->pages,
3253 obj_request->length,
3254 obj_request->offset & ~PAGE_MASK,
3255 false, false);
3256 rbd_osd_req_format_read(obj_request);
3257
3258 ret = rbd_obj_request_submit(osdc, obj_request);
3259 if (ret)
3260 goto out;
3261 ret = rbd_obj_request_wait(obj_request);
3262 if (ret)
3263 goto out;
3264
3265 ret = obj_request->result;
3266 if (ret < 0)
3267 goto out;
3268
3269 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3270 size = (size_t) obj_request->xferred;
3271 ceph_copy_from_page_vector(pages, buf, 0, size);
3272 rbd_assert(size <= (size_t)INT_MAX);
3273 ret = (int)size;
3274out:
3275 if (obj_request)
3276 rbd_obj_request_put(obj_request);
3277 else
3278 ceph_release_page_vector(pages, page_count);
3279
3280 return ret;
3281}
3282
3283/*
3284 * Read the complete header for the given rbd device. On successful
3285 * return, the rbd_dev->header field will contain up-to-date
3286 * information about the image.
3287 */
3288static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3289{
3290 struct rbd_image_header_ondisk *ondisk = NULL;
3291 u32 snap_count = 0;
3292 u64 names_size = 0;
3293 u32 want_count;
3294 int ret;
3295
3296 /*
3297 * The complete header will include an array of its 64-bit
3298 * snapshot ids, followed by the names of those snapshots as
3299 * a contiguous block of NUL-terminated strings. Note that
3300 * the number of snapshots could change by the time we read
3301 * it in, in which case we re-read it.
3302 */
3303 do {
3304 size_t size;
3305
3306 kfree(ondisk);
3307
3308 size = sizeof (*ondisk);
3309 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3310 size += names_size;
3311 ondisk = kmalloc(size, GFP_KERNEL);
3312 if (!ondisk)
3313 return -ENOMEM;
3314
3315 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3316 0, size, ondisk);
3317 if (ret < 0)
3318 goto out;
3319 if ((size_t)ret < size) {
3320 ret = -ENXIO;
3321 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3322 size, ret);
3323 goto out;
3324 }
3325 if (!rbd_dev_ondisk_valid(ondisk)) {
3326 ret = -ENXIO;
3327 rbd_warn(rbd_dev, "invalid header");
3328 goto out;
3329 }
3330
3331 names_size = le64_to_cpu(ondisk->snap_names_len);
3332 want_count = snap_count;
3333 snap_count = le32_to_cpu(ondisk->snap_count);
3334 } while (snap_count != want_count);
3335
3336 ret = rbd_header_from_disk(rbd_dev, ondisk);
3337out:
3338 kfree(ondisk);
3339
3340 return ret;
3341}
3342
3343/*
3344 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3345 * has disappeared from the (just updated) snapshot context.
3346 */
3347static void rbd_exists_validate(struct rbd_device *rbd_dev)
3348{
3349 u64 snap_id;
3350
3351 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3352 return;
3353
3354 snap_id = rbd_dev->spec->snap_id;
3355 if (snap_id == CEPH_NOSNAP)
3356 return;
3357
3358 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3359 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3360}
3361
3362static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3363{
3364 sector_t size;
3365 bool removing;
3366
3367 /*
3368 * Don't hold the lock while doing disk operations,
3369 * or lock ordering will conflict with the bdev mutex via:
3370 * rbd_add() -> blkdev_get() -> rbd_open()
3371 */
3372 spin_lock_irq(&rbd_dev->lock);
3373 removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3374 spin_unlock_irq(&rbd_dev->lock);
3375 /*
3376 * If the device is being removed, rbd_dev->disk has
3377 * been destroyed, so don't try to update its size
3378 */
3379 if (!removing) {
3380 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3381 dout("setting size to %llu sectors", (unsigned long long)size);
3382 set_capacity(rbd_dev->disk, size);
3383 revalidate_disk(rbd_dev->disk);
3384 }
3385}
3386
3387static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3388{
3389 u64 mapping_size;
3390 int ret;
3391
3392 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3393 down_write(&rbd_dev->header_rwsem);
3394 mapping_size = rbd_dev->mapping.size;
3395 if (rbd_dev->image_format == 1)
3396 ret = rbd_dev_v1_header_info(rbd_dev);
3397 else
3398 ret = rbd_dev_v2_header_info(rbd_dev);
3399
3400 /* If it's a mapped snapshot, validate its EXISTS flag */
3401
3402 rbd_exists_validate(rbd_dev);
3403 up_write(&rbd_dev->header_rwsem);
3404
3405 if (mapping_size != rbd_dev->mapping.size) {
3406 rbd_dev_update_size(rbd_dev);
3407 }
3408
3409 return ret;
3410}
3411
3412static int rbd_init_disk(struct rbd_device *rbd_dev)
3413{
3414 struct gendisk *disk;
3415 struct request_queue *q;
3416 u64 segment_size;
3417
3418 /* create gendisk info */
3419 disk = alloc_disk(single_major ?
3420 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3421 RBD_MINORS_PER_MAJOR);
3422 if (!disk)
3423 return -ENOMEM;
3424
3425 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3426 rbd_dev->dev_id);
3427 disk->major = rbd_dev->major;
3428 disk->first_minor = rbd_dev->minor;
3429 if (single_major)
3430 disk->flags |= GENHD_FL_EXT_DEVT;
3431 disk->fops = &rbd_bd_ops;
3432 disk->private_data = rbd_dev;
3433
3434 q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3435 if (!q)
3436 goto out_disk;
3437
3438 /* We use the default size, but let's be explicit about it. */
3439 blk_queue_physical_block_size(q, SECTOR_SIZE);
3440
3441 /* set io sizes to object size */
3442 segment_size = rbd_obj_bytes(&rbd_dev->header);
3443 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3444 blk_queue_max_segment_size(q, segment_size);
3445 blk_queue_io_min(q, segment_size);
3446 blk_queue_io_opt(q, segment_size);
3447
3448 blk_queue_merge_bvec(q, rbd_merge_bvec);
3449 disk->queue = q;
3450
3451 q->queuedata = rbd_dev;
3452
3453 rbd_dev->disk = disk;
3454
3455 return 0;
3456out_disk:
3457 put_disk(disk);
3458
3459 return -ENOMEM;
3460}
3461
3462/*
3463 sysfs
3464*/
3465
3466static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3467{
3468 return container_of(dev, struct rbd_device, dev);
3469}
3470
3471static ssize_t rbd_size_show(struct device *dev,
3472 struct device_attribute *attr, char *buf)
3473{
3474 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3475
3476 return sprintf(buf, "%llu\n",
3477 (unsigned long long)rbd_dev->mapping.size);
3478}
3479
3480/*
3481 * Note this shows the features for whatever's mapped, which is not
3482 * necessarily the base image.
3483 */
3484static ssize_t rbd_features_show(struct device *dev,
3485 struct device_attribute *attr, char *buf)
3486{
3487 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3488
3489 return sprintf(buf, "0x%016llx\n",
3490 (unsigned long long)rbd_dev->mapping.features);
3491}
3492
3493static ssize_t rbd_major_show(struct device *dev,
3494 struct device_attribute *attr, char *buf)
3495{
3496 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3497
3498 if (rbd_dev->major)
3499 return sprintf(buf, "%d\n", rbd_dev->major);
3500
3501 return sprintf(buf, "(none)\n");
3502}
3503
3504static ssize_t rbd_minor_show(struct device *dev,
3505 struct device_attribute *attr, char *buf)
3506{
3507 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3508
3509 return sprintf(buf, "%d\n", rbd_dev->minor);
3510}
3511
3512static ssize_t rbd_client_id_show(struct device *dev,
3513 struct device_attribute *attr, char *buf)
3514{
3515 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3516
3517 return sprintf(buf, "client%lld\n",
3518 ceph_client_id(rbd_dev->rbd_client->client));
3519}
3520
3521static ssize_t rbd_pool_show(struct device *dev,
3522 struct device_attribute *attr, char *buf)
3523{
3524 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3525
3526 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3527}
3528
3529static ssize_t rbd_pool_id_show(struct device *dev,
3530 struct device_attribute *attr, char *buf)
3531{
3532 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3533
3534 return sprintf(buf, "%llu\n",
3535 (unsigned long long) rbd_dev->spec->pool_id);
3536}
3537
3538static ssize_t rbd_name_show(struct device *dev,
3539 struct device_attribute *attr, char *buf)
3540{
3541 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3542
3543 if (rbd_dev->spec->image_name)
3544 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3545
3546 return sprintf(buf, "(unknown)\n");
3547}
3548
3549static ssize_t rbd_image_id_show(struct device *dev,
3550 struct device_attribute *attr, char *buf)
3551{
3552 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3553
3554 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3555}
3556
3557/*
3558 * Shows the name of the currently-mapped snapshot (or
3559 * RBD_SNAP_HEAD_NAME for the base image).
3560 */
3561static ssize_t rbd_snap_show(struct device *dev,
3562 struct device_attribute *attr,
3563 char *buf)
3564{
3565 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3566
3567 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3568}
3569
3570/*
3571 * For an rbd v2 image, shows the pool id, image id, and snapshot id
3572 * for the parent image. If there is no parent, simply shows
3573 * "(no parent image)".
3574 */
3575static ssize_t rbd_parent_show(struct device *dev,
3576 struct device_attribute *attr,
3577 char *buf)
3578{
3579 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3580 struct rbd_spec *spec = rbd_dev->parent_spec;
3581 int count;
3582 char *bufp = buf;
3583
3584 if (!spec)
3585 return sprintf(buf, "(no parent image)\n");
3586
3587 count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3588 (unsigned long long) spec->pool_id, spec->pool_name);
3589 if (count < 0)
3590 return count;
3591 bufp += count;
3592
3593 count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3594 spec->image_name ? spec->image_name : "(unknown)");
3595 if (count < 0)
3596 return count;
3597 bufp += count;
3598
3599 count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3600 (unsigned long long) spec->snap_id, spec->snap_name);
3601 if (count < 0)
3602 return count;
3603 bufp += count;
3604
3605 count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3606 if (count < 0)
3607 return count;
3608 bufp += count;
3609
3610 return (ssize_t) (bufp - buf);
3611}
3612
3613static ssize_t rbd_image_refresh(struct device *dev,
3614 struct device_attribute *attr,
3615 const char *buf,
3616 size_t size)
3617{
3618 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3619 int ret;
3620
3621 ret = rbd_dev_refresh(rbd_dev);
3622 if (ret)
3623 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3624
3625 return ret < 0 ? ret : size;
3626}
3627
3628static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3629static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3630static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3631static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3632static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3633static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3634static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3635static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3636static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3637static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3638static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3639static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3640
3641static struct attribute *rbd_attrs[] = {
3642 &dev_attr_size.attr,
3643 &dev_attr_features.attr,
3644 &dev_attr_major.attr,
3645 &dev_attr_minor.attr,
3646 &dev_attr_client_id.attr,
3647 &dev_attr_pool.attr,
3648 &dev_attr_pool_id.attr,
3649 &dev_attr_name.attr,
3650 &dev_attr_image_id.attr,
3651 &dev_attr_current_snap.attr,
3652 &dev_attr_parent.attr,
3653 &dev_attr_refresh.attr,
3654 NULL
3655};
3656
3657static struct attribute_group rbd_attr_group = {
3658 .attrs = rbd_attrs,
3659};
3660
3661static const struct attribute_group *rbd_attr_groups[] = {
3662 &rbd_attr_group,
3663 NULL
3664};
3665
3666static void rbd_sysfs_dev_release(struct device *dev)
3667{
3668}
3669
3670static struct device_type rbd_device_type = {
3671 .name = "rbd",
3672 .groups = rbd_attr_groups,
3673 .release = rbd_sysfs_dev_release,
3674};
3675
3676static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3677{
3678 kref_get(&spec->kref);
3679
3680 return spec;
3681}
3682
3683static void rbd_spec_free(struct kref *kref);
3684static void rbd_spec_put(struct rbd_spec *spec)
3685{
3686 if (spec)
3687 kref_put(&spec->kref, rbd_spec_free);
3688}
3689
3690static struct rbd_spec *rbd_spec_alloc(void)
3691{
3692 struct rbd_spec *spec;
3693
3694 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3695 if (!spec)
3696 return NULL;
3697 kref_init(&spec->kref);
3698
3699 return spec;
3700}
3701
3702static void rbd_spec_free(struct kref *kref)
3703{
3704 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3705
3706 kfree(spec->pool_name);
3707 kfree(spec->image_id);
3708 kfree(spec->image_name);
3709 kfree(spec->snap_name);
3710 kfree(spec);
3711}
3712
3713static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3714 struct rbd_spec *spec)
3715{
3716 struct rbd_device *rbd_dev;
3717
3718 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3719 if (!rbd_dev)
3720 return NULL;
3721
3722 spin_lock_init(&rbd_dev->lock);
3723 rbd_dev->flags = 0;
3724 atomic_set(&rbd_dev->parent_ref, 0);
3725 INIT_LIST_HEAD(&rbd_dev->node);
3726 init_rwsem(&rbd_dev->header_rwsem);
3727
3728 rbd_dev->spec = spec;
3729 rbd_dev->rbd_client = rbdc;
3730
3731 /* Initialize the layout used for all rbd requests */
3732
3733 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3734 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3735 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3736 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3737
3738 return rbd_dev;
3739}
3740
3741static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3742{
3743 rbd_put_client(rbd_dev->rbd_client);
3744 rbd_spec_put(rbd_dev->spec);
3745 kfree(rbd_dev);
3746}
3747
3748/*
3749 * Get the size and object order for an image snapshot, or if
3750 * snap_id is CEPH_NOSNAP, gets this information for the base
3751 * image.
3752 */
3753static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3754 u8 *order, u64 *snap_size)
3755{
3756 __le64 snapid = cpu_to_le64(snap_id);
3757 int ret;
3758 struct {
3759 u8 order;
3760 __le64 size;
3761 } __attribute__ ((packed)) size_buf = { 0 };
3762
3763 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3764 "rbd", "get_size",
3765 &snapid, sizeof (snapid),
3766 &size_buf, sizeof (size_buf));
3767 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3768 if (ret < 0)
3769 return ret;
3770 if (ret < sizeof (size_buf))
3771 return -ERANGE;
3772
3773 if (order) {
3774 *order = size_buf.order;
3775 dout(" order %u", (unsigned int)*order);
3776 }
3777 *snap_size = le64_to_cpu(size_buf.size);
3778
3779 dout(" snap_id 0x%016llx snap_size = %llu\n",
3780 (unsigned long long)snap_id,
3781 (unsigned long long)*snap_size);
3782
3783 return 0;
3784}
3785
3786static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3787{
3788 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3789 &rbd_dev->header.obj_order,
3790 &rbd_dev->header.image_size);
3791}
3792
3793static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3794{
3795 void *reply_buf;
3796 int ret;
3797 void *p;
3798
3799 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3800 if (!reply_buf)
3801 return -ENOMEM;
3802
3803 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3804 "rbd", "get_object_prefix", NULL, 0,
3805 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3806 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3807 if (ret < 0)
3808 goto out;
3809
3810 p = reply_buf;
3811 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3812 p + ret, NULL, GFP_NOIO);
3813 ret = 0;
3814
3815 if (IS_ERR(rbd_dev->header.object_prefix)) {
3816 ret = PTR_ERR(rbd_dev->header.object_prefix);
3817 rbd_dev->header.object_prefix = NULL;
3818 } else {
3819 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
3820 }
3821out:
3822 kfree(reply_buf);
3823
3824 return ret;
3825}
3826
3827static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3828 u64 *snap_features)
3829{
3830 __le64 snapid = cpu_to_le64(snap_id);
3831 struct {
3832 __le64 features;
3833 __le64 incompat;
3834 } __attribute__ ((packed)) features_buf = { 0 };
3835 u64 incompat;
3836 int ret;
3837
3838 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3839 "rbd", "get_features",
3840 &snapid, sizeof (snapid),
3841 &features_buf, sizeof (features_buf));
3842 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3843 if (ret < 0)
3844 return ret;
3845 if (ret < sizeof (features_buf))
3846 return -ERANGE;
3847
3848 incompat = le64_to_cpu(features_buf.incompat);
3849 if (incompat & ~RBD_FEATURES_SUPPORTED)
3850 return -ENXIO;
3851
3852 *snap_features = le64_to_cpu(features_buf.features);
3853
3854 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3855 (unsigned long long)snap_id,
3856 (unsigned long long)*snap_features,
3857 (unsigned long long)le64_to_cpu(features_buf.incompat));
3858
3859 return 0;
3860}
3861
3862static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3863{
3864 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3865 &rbd_dev->header.features);
3866}
3867
3868static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3869{
3870 struct rbd_spec *parent_spec;
3871 size_t size;
3872 void *reply_buf = NULL;
3873 __le64 snapid;
3874 void *p;
3875 void *end;
3876 u64 pool_id;
3877 char *image_id;
3878 u64 snap_id;
3879 u64 overlap;
3880 int ret;
3881
3882 parent_spec = rbd_spec_alloc();
3883 if (!parent_spec)
3884 return -ENOMEM;
3885
3886 size = sizeof (__le64) + /* pool_id */
3887 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
3888 sizeof (__le64) + /* snap_id */
3889 sizeof (__le64); /* overlap */
3890 reply_buf = kmalloc(size, GFP_KERNEL);
3891 if (!reply_buf) {
3892 ret = -ENOMEM;
3893 goto out_err;
3894 }
3895
3896 snapid = cpu_to_le64(CEPH_NOSNAP);
3897 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3898 "rbd", "get_parent",
3899 &snapid, sizeof (snapid),
3900 reply_buf, size);
3901 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3902 if (ret < 0)
3903 goto out_err;
3904
3905 p = reply_buf;
3906 end = reply_buf + ret;
3907 ret = -ERANGE;
3908 ceph_decode_64_safe(&p, end, pool_id, out_err);
3909 if (pool_id == CEPH_NOPOOL) {
3910 /*
3911 * Either the parent never existed, or we have
3912 * record of it but the image got flattened so it no
3913 * longer has a parent. When the parent of a
3914 * layered image disappears we immediately set the
3915 * overlap to 0. The effect of this is that all new
3916 * requests will be treated as if the image had no
3917 * parent.
3918 */
3919 if (rbd_dev->parent_overlap) {
3920 rbd_dev->parent_overlap = 0;
3921 smp_mb();
3922 rbd_dev_parent_put(rbd_dev);
3923 pr_info("%s: clone image has been flattened\n",
3924 rbd_dev->disk->disk_name);
3925 }
3926
3927 goto out; /* No parent? No problem. */
3928 }
3929
3930 /* The ceph file layout needs to fit pool id in 32 bits */
3931
3932 ret = -EIO;
3933 if (pool_id > (u64)U32_MAX) {
3934 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3935 (unsigned long long)pool_id, U32_MAX);
3936 goto out_err;
3937 }
3938
3939 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3940 if (IS_ERR(image_id)) {
3941 ret = PTR_ERR(image_id);
3942 goto out_err;
3943 }
3944 ceph_decode_64_safe(&p, end, snap_id, out_err);
3945 ceph_decode_64_safe(&p, end, overlap, out_err);
3946
3947 /*
3948 * The parent won't change (except when the clone is
3949 * flattened, already handled that). So we only need to
3950 * record the parent spec we have not already done so.
3951 */
3952 if (!rbd_dev->parent_spec) {
3953 parent_spec->pool_id = pool_id;
3954 parent_spec->image_id = image_id;
3955 parent_spec->snap_id = snap_id;
3956 rbd_dev->parent_spec = parent_spec;
3957 parent_spec = NULL; /* rbd_dev now owns this */
3958 }
3959
3960 /*
3961 * We always update the parent overlap. If it's zero we
3962 * treat it specially.
3963 */
3964 rbd_dev->parent_overlap = overlap;
3965 smp_mb();
3966 if (!overlap) {
3967
3968 /* A null parent_spec indicates it's the initial probe */
3969
3970 if (parent_spec) {
3971 /*
3972 * The overlap has become zero, so the clone
3973 * must have been resized down to 0 at some
3974 * point. Treat this the same as a flatten.
3975 */
3976 rbd_dev_parent_put(rbd_dev);
3977 pr_info("%s: clone image now standalone\n",
3978 rbd_dev->disk->disk_name);
3979 } else {
3980 /*
3981 * For the initial probe, if we find the
3982 * overlap is zero we just pretend there was
3983 * no parent image.
3984 */
3985 rbd_warn(rbd_dev, "ignoring parent of "
3986 "clone with overlap 0\n");
3987 }
3988 }
3989out:
3990 ret = 0;
3991out_err:
3992 kfree(reply_buf);
3993 rbd_spec_put(parent_spec);
3994
3995 return ret;
3996}
3997
3998static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3999{
4000 struct {
4001 __le64 stripe_unit;
4002 __le64 stripe_count;
4003 } __attribute__ ((packed)) striping_info_buf = { 0 };
4004 size_t size = sizeof (striping_info_buf);
4005 void *p;
4006 u64 obj_size;
4007 u64 stripe_unit;
4008 u64 stripe_count;
4009 int ret;
4010
4011 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4012 "rbd", "get_stripe_unit_count", NULL, 0,
4013 (char *)&striping_info_buf, size);
4014 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4015 if (ret < 0)
4016 return ret;
4017 if (ret < size)
4018 return -ERANGE;
4019
4020 /*
4021 * We don't actually support the "fancy striping" feature
4022 * (STRIPINGV2) yet, but if the striping sizes are the
4023 * defaults the behavior is the same as before. So find
4024 * out, and only fail if the image has non-default values.
4025 */
4026 ret = -EINVAL;
4027 obj_size = (u64)1 << rbd_dev->header.obj_order;
4028 p = &striping_info_buf;
4029 stripe_unit = ceph_decode_64(&p);
4030 if (stripe_unit != obj_size) {
4031 rbd_warn(rbd_dev, "unsupported stripe unit "
4032 "(got %llu want %llu)",
4033 stripe_unit, obj_size);
4034 return -EINVAL;
4035 }
4036 stripe_count = ceph_decode_64(&p);
4037 if (stripe_count != 1) {
4038 rbd_warn(rbd_dev, "unsupported stripe count "
4039 "(got %llu want 1)", stripe_count);
4040 return -EINVAL;
4041 }
4042 rbd_dev->header.stripe_unit = stripe_unit;
4043 rbd_dev->header.stripe_count = stripe_count;
4044
4045 return 0;
4046}
4047
4048static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4049{
4050 size_t image_id_size;
4051 char *image_id;
4052 void *p;
4053 void *end;
4054 size_t size;
4055 void *reply_buf = NULL;
4056 size_t len = 0;
4057 char *image_name = NULL;
4058 int ret;
4059
4060 rbd_assert(!rbd_dev->spec->image_name);
4061
4062 len = strlen(rbd_dev->spec->image_id);
4063 image_id_size = sizeof (__le32) + len;
4064 image_id = kmalloc(image_id_size, GFP_KERNEL);
4065 if (!image_id)
4066 return NULL;
4067
4068 p = image_id;
4069 end = image_id + image_id_size;
4070 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4071
4072 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4073 reply_buf = kmalloc(size, GFP_KERNEL);
4074 if (!reply_buf)
4075 goto out;
4076
4077 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4078 "rbd", "dir_get_name",
4079 image_id, image_id_size,
4080 reply_buf, size);
4081 if (ret < 0)
4082 goto out;
4083 p = reply_buf;
4084 end = reply_buf + ret;
4085
4086 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4087 if (IS_ERR(image_name))
4088 image_name = NULL;
4089 else
4090 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4091out:
4092 kfree(reply_buf);
4093 kfree(image_id);
4094
4095 return image_name;
4096}
4097
4098static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4099{
4100 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4101 const char *snap_name;
4102 u32 which = 0;
4103
4104 /* Skip over names until we find the one we are looking for */
4105
4106 snap_name = rbd_dev->header.snap_names;
4107 while (which < snapc->num_snaps) {
4108 if (!strcmp(name, snap_name))
4109 return snapc->snaps[which];
4110 snap_name += strlen(snap_name) + 1;
4111 which++;
4112 }
4113 return CEPH_NOSNAP;
4114}
4115
4116static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4117{
4118 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4119 u32 which;
4120 bool found = false;
4121 u64 snap_id;
4122
4123 for (which = 0; !found && which < snapc->num_snaps; which++) {
4124 const char *snap_name;
4125
4126 snap_id = snapc->snaps[which];
4127 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4128 if (IS_ERR(snap_name)) {
4129 /* ignore no-longer existing snapshots */
4130 if (PTR_ERR(snap_name) == -ENOENT)
4131 continue;
4132 else
4133 break;
4134 }
4135 found = !strcmp(name, snap_name);
4136 kfree(snap_name);
4137 }
4138 return found ? snap_id : CEPH_NOSNAP;
4139}
4140
4141/*
4142 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4143 * no snapshot by that name is found, or if an error occurs.
4144 */
4145static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4146{
4147 if (rbd_dev->image_format == 1)
4148 return rbd_v1_snap_id_by_name(rbd_dev, name);
4149
4150 return rbd_v2_snap_id_by_name(rbd_dev, name);
4151}
4152
4153/*
4154 * When an rbd image has a parent image, it is identified by the
4155 * pool, image, and snapshot ids (not names). This function fills
4156 * in the names for those ids. (It's OK if we can't figure out the
4157 * name for an image id, but the pool and snapshot ids should always
4158 * exist and have names.) All names in an rbd spec are dynamically
4159 * allocated.
4160 *
4161 * When an image being mapped (not a parent) is probed, we have the
4162 * pool name and pool id, image name and image id, and the snapshot
4163 * name. The only thing we're missing is the snapshot id.
4164 */
4165static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4166{
4167 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4168 struct rbd_spec *spec = rbd_dev->spec;
4169 const char *pool_name;
4170 const char *image_name;
4171 const char *snap_name;
4172 int ret;
4173
4174 /*
4175 * An image being mapped will have the pool name (etc.), but
4176 * we need to look up the snapshot id.
4177 */
4178 if (spec->pool_name) {
4179 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4180 u64 snap_id;
4181
4182 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4183 if (snap_id == CEPH_NOSNAP)
4184 return -ENOENT;
4185 spec->snap_id = snap_id;
4186 } else {
4187 spec->snap_id = CEPH_NOSNAP;
4188 }
4189
4190 return 0;
4191 }
4192
4193 /* Get the pool name; we have to make our own copy of this */
4194
4195 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4196 if (!pool_name) {
4197 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4198 return -EIO;
4199 }
4200 pool_name = kstrdup(pool_name, GFP_KERNEL);
4201 if (!pool_name)
4202 return -ENOMEM;
4203
4204 /* Fetch the image name; tolerate failure here */
4205
4206 image_name = rbd_dev_image_name(rbd_dev);
4207 if (!image_name)
4208 rbd_warn(rbd_dev, "unable to get image name");
4209
4210 /* Look up the snapshot name, and make a copy */
4211
4212 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4213 if (IS_ERR(snap_name)) {
4214 ret = PTR_ERR(snap_name);
4215 goto out_err;
4216 }
4217
4218 spec->pool_name = pool_name;
4219 spec->image_name = image_name;
4220 spec->snap_name = snap_name;
4221
4222 return 0;
4223out_err:
4224 kfree(image_name);
4225 kfree(pool_name);
4226
4227 return ret;
4228}
4229
4230static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4231{
4232 size_t size;
4233 int ret;
4234 void *reply_buf;
4235 void *p;
4236 void *end;
4237 u64 seq;
4238 u32 snap_count;
4239 struct ceph_snap_context *snapc;
4240 u32 i;
4241
4242 /*
4243 * We'll need room for the seq value (maximum snapshot id),
4244 * snapshot count, and array of that many snapshot ids.
4245 * For now we have a fixed upper limit on the number we're
4246 * prepared to receive.
4247 */
4248 size = sizeof (__le64) + sizeof (__le32) +
4249 RBD_MAX_SNAP_COUNT * sizeof (__le64);
4250 reply_buf = kzalloc(size, GFP_KERNEL);
4251 if (!reply_buf)
4252 return -ENOMEM;
4253
4254 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4255 "rbd", "get_snapcontext", NULL, 0,
4256 reply_buf, size);
4257 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4258 if (ret < 0)
4259 goto out;
4260
4261 p = reply_buf;
4262 end = reply_buf + ret;
4263 ret = -ERANGE;
4264 ceph_decode_64_safe(&p, end, seq, out);
4265 ceph_decode_32_safe(&p, end, snap_count, out);
4266
4267 /*
4268 * Make sure the reported number of snapshot ids wouldn't go
4269 * beyond the end of our buffer. But before checking that,
4270 * make sure the computed size of the snapshot context we
4271 * allocate is representable in a size_t.
4272 */
4273 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4274 / sizeof (u64)) {
4275 ret = -EINVAL;
4276 goto out;
4277 }
4278 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4279 goto out;
4280 ret = 0;
4281
4282 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4283 if (!snapc) {
4284 ret = -ENOMEM;
4285 goto out;
4286 }
4287 snapc->seq = seq;
4288 for (i = 0; i < snap_count; i++)
4289 snapc->snaps[i] = ceph_decode_64(&p);
4290
4291 ceph_put_snap_context(rbd_dev->header.snapc);
4292 rbd_dev->header.snapc = snapc;
4293
4294 dout(" snap context seq = %llu, snap_count = %u\n",
4295 (unsigned long long)seq, (unsigned int)snap_count);
4296out:
4297 kfree(reply_buf);
4298
4299 return ret;
4300}
4301
4302static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4303 u64 snap_id)
4304{
4305 size_t size;
4306 void *reply_buf;
4307 __le64 snapid;
4308 int ret;
4309 void *p;
4310 void *end;
4311 char *snap_name;
4312
4313 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4314 reply_buf = kmalloc(size, GFP_KERNEL);
4315 if (!reply_buf)
4316 return ERR_PTR(-ENOMEM);
4317
4318 snapid = cpu_to_le64(snap_id);
4319 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4320 "rbd", "get_snapshot_name",
4321 &snapid, sizeof (snapid),
4322 reply_buf, size);
4323 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4324 if (ret < 0) {
4325 snap_name = ERR_PTR(ret);
4326 goto out;
4327 }
4328
4329 p = reply_buf;
4330 end = reply_buf + ret;
4331 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4332 if (IS_ERR(snap_name))
4333 goto out;
4334
4335 dout(" snap_id 0x%016llx snap_name = %s\n",
4336 (unsigned long long)snap_id, snap_name);
4337out:
4338 kfree(reply_buf);
4339
4340 return snap_name;
4341}
4342
4343static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4344{
4345 bool first_time = rbd_dev->header.object_prefix == NULL;
4346 int ret;
4347
4348 ret = rbd_dev_v2_image_size(rbd_dev);
4349 if (ret)
4350 return ret;
4351
4352 if (first_time) {
4353 ret = rbd_dev_v2_header_onetime(rbd_dev);
4354 if (ret)
4355 return ret;
4356 }
4357
4358 /*
4359 * If the image supports layering, get the parent info. We
4360 * need to probe the first time regardless. Thereafter we
4361 * only need to if there's a parent, to see if it has
4362 * disappeared due to the mapped image getting flattened.
4363 */
4364 if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4365 (first_time || rbd_dev->parent_spec)) {
4366 bool warn;
4367
4368 ret = rbd_dev_v2_parent_info(rbd_dev);
4369 if (ret)
4370 return ret;
4371
4372 /*
4373 * Print a warning if this is the initial probe and
4374 * the image has a parent. Don't print it if the
4375 * image now being probed is itself a parent. We
4376 * can tell at this point because we won't know its
4377 * pool name yet (just its pool id).
4378 */
4379 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4380 if (first_time && warn)
4381 rbd_warn(rbd_dev, "WARNING: kernel layering "
4382 "is EXPERIMENTAL!");
4383 }
4384
4385 if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4386 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4387 rbd_dev->mapping.size = rbd_dev->header.image_size;
4388
4389 ret = rbd_dev_v2_snap_context(rbd_dev);
4390 dout("rbd_dev_v2_snap_context returned %d\n", ret);
4391
4392 return ret;
4393}
4394
4395static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4396{
4397 struct device *dev;
4398 int ret;
4399
4400 dev = &rbd_dev->dev;
4401 dev->bus = &rbd_bus_type;
4402 dev->type = &rbd_device_type;
4403 dev->parent = &rbd_root_dev;
4404 dev->release = rbd_dev_device_release;
4405 dev_set_name(dev, "%d", rbd_dev->dev_id);
4406 ret = device_register(dev);
4407
4408 return ret;
4409}
4410
4411static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4412{
4413 device_unregister(&rbd_dev->dev);
4414}
4415
4416/*
4417 * Get a unique rbd identifier for the given new rbd_dev, and add
4418 * the rbd_dev to the global list.
4419 */
4420static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4421{
4422 int new_dev_id;
4423
4424 new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4425 0, minor_to_rbd_dev_id(1 << MINORBITS),
4426 GFP_KERNEL);
4427 if (new_dev_id < 0)
4428 return new_dev_id;
4429
4430 rbd_dev->dev_id = new_dev_id;
4431
4432 spin_lock(&rbd_dev_list_lock);
4433 list_add_tail(&rbd_dev->node, &rbd_dev_list);
4434 spin_unlock(&rbd_dev_list_lock);
4435
4436 dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4437
4438 return 0;
4439}
4440
4441/*
4442 * Remove an rbd_dev from the global list, and record that its
4443 * identifier is no longer in use.
4444 */
4445static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4446{
4447 spin_lock(&rbd_dev_list_lock);
4448 list_del_init(&rbd_dev->node);
4449 spin_unlock(&rbd_dev_list_lock);
4450
4451 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4452
4453 dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4454}
4455
4456/*
4457 * Skips over white space at *buf, and updates *buf to point to the
4458 * first found non-space character (if any). Returns the length of
4459 * the token (string of non-white space characters) found. Note
4460 * that *buf must be terminated with '\0'.
4461 */
4462static inline size_t next_token(const char **buf)
4463{
4464 /*
4465 * These are the characters that produce nonzero for
4466 * isspace() in the "C" and "POSIX" locales.
4467 */
4468 const char *spaces = " \f\n\r\t\v";
4469
4470 *buf += strspn(*buf, spaces); /* Find start of token */
4471
4472 return strcspn(*buf, spaces); /* Return token length */
4473}
4474
4475/*
4476 * Finds the next token in *buf, and if the provided token buffer is
4477 * big enough, copies the found token into it. The result, if
4478 * copied, is guaranteed to be terminated with '\0'. Note that *buf
4479 * must be terminated with '\0' on entry.
4480 *
4481 * Returns the length of the token found (not including the '\0').
4482 * Return value will be 0 if no token is found, and it will be >=
4483 * token_size if the token would not fit.
4484 *
4485 * The *buf pointer will be updated to point beyond the end of the
4486 * found token. Note that this occurs even if the token buffer is
4487 * too small to hold it.
4488 */
4489static inline size_t copy_token(const char **buf,
4490 char *token,
4491 size_t token_size)
4492{
4493 size_t len;
4494
4495 len = next_token(buf);
4496 if (len < token_size) {
4497 memcpy(token, *buf, len);
4498 *(token + len) = '\0';
4499 }
4500 *buf += len;
4501
4502 return len;
4503}
4504
4505/*
4506 * Finds the next token in *buf, dynamically allocates a buffer big
4507 * enough to hold a copy of it, and copies the token into the new
4508 * buffer. The copy is guaranteed to be terminated with '\0'. Note
4509 * that a duplicate buffer is created even for a zero-length token.
4510 *
4511 * Returns a pointer to the newly-allocated duplicate, or a null
4512 * pointer if memory for the duplicate was not available. If
4513 * the lenp argument is a non-null pointer, the length of the token
4514 * (not including the '\0') is returned in *lenp.
4515 *
4516 * If successful, the *buf pointer will be updated to point beyond
4517 * the end of the found token.
4518 *
4519 * Note: uses GFP_KERNEL for allocation.
4520 */
4521static inline char *dup_token(const char **buf, size_t *lenp)
4522{
4523 char *dup;
4524 size_t len;
4525
4526 len = next_token(buf);
4527 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4528 if (!dup)
4529 return NULL;
4530 *(dup + len) = '\0';
4531 *buf += len;
4532
4533 if (lenp)
4534 *lenp = len;
4535
4536 return dup;
4537}
4538
4539/*
4540 * Parse the options provided for an "rbd add" (i.e., rbd image
4541 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
4542 * and the data written is passed here via a NUL-terminated buffer.
4543 * Returns 0 if successful or an error code otherwise.
4544 *
4545 * The information extracted from these options is recorded in
4546 * the other parameters which return dynamically-allocated
4547 * structures:
4548 * ceph_opts
4549 * The address of a pointer that will refer to a ceph options
4550 * structure. Caller must release the returned pointer using
4551 * ceph_destroy_options() when it is no longer needed.
4552 * rbd_opts
4553 * Address of an rbd options pointer. Fully initialized by
4554 * this function; caller must release with kfree().
4555 * spec
4556 * Address of an rbd image specification pointer. Fully
4557 * initialized by this function based on parsed options.
4558 * Caller must release with rbd_spec_put().
4559 *
4560 * The options passed take this form:
4561 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4562 * where:
4563 * <mon_addrs>
4564 * A comma-separated list of one or more monitor addresses.
4565 * A monitor address is an ip address, optionally followed
4566 * by a port number (separated by a colon).
4567 * I.e.: ip1[:port1][,ip2[:port2]...]
4568 * <options>
4569 * A comma-separated list of ceph and/or rbd options.
4570 * <pool_name>
4571 * The name of the rados pool containing the rbd image.
4572 * <image_name>
4573 * The name of the image in that pool to map.
4574 * <snap_id>
4575 * An optional snapshot id. If provided, the mapping will
4576 * present data from the image at the time that snapshot was
4577 * created. The image head is used if no snapshot id is
4578 * provided. Snapshot mappings are always read-only.
4579 */
4580static int rbd_add_parse_args(const char *buf,
4581 struct ceph_options **ceph_opts,
4582 struct rbd_options **opts,
4583 struct rbd_spec **rbd_spec)
4584{
4585 size_t len;
4586 char *options;
4587 const char *mon_addrs;
4588 char *snap_name;
4589 size_t mon_addrs_size;
4590 struct rbd_spec *spec = NULL;
4591 struct rbd_options *rbd_opts = NULL;
4592 struct ceph_options *copts;
4593 int ret;
4594
4595 /* The first four tokens are required */
4596
4597 len = next_token(&buf);
4598 if (!len) {
4599 rbd_warn(NULL, "no monitor address(es) provided");
4600 return -EINVAL;
4601 }
4602 mon_addrs = buf;
4603 mon_addrs_size = len + 1;
4604 buf += len;
4605
4606 ret = -EINVAL;
4607 options = dup_token(&buf, NULL);
4608 if (!options)
4609 return -ENOMEM;
4610 if (!*options) {
4611 rbd_warn(NULL, "no options provided");
4612 goto out_err;
4613 }
4614
4615 spec = rbd_spec_alloc();
4616 if (!spec)
4617 goto out_mem;
4618
4619 spec->pool_name = dup_token(&buf, NULL);
4620 if (!spec->pool_name)
4621 goto out_mem;
4622 if (!*spec->pool_name) {
4623 rbd_warn(NULL, "no pool name provided");
4624 goto out_err;
4625 }
4626
4627 spec->image_name = dup_token(&buf, NULL);
4628 if (!spec->image_name)
4629 goto out_mem;
4630 if (!*spec->image_name) {
4631 rbd_warn(NULL, "no image name provided");
4632 goto out_err;
4633 }
4634
4635 /*
4636 * Snapshot name is optional; default is to use "-"
4637 * (indicating the head/no snapshot).
4638 */
4639 len = next_token(&buf);
4640 if (!len) {
4641 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4642 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4643 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4644 ret = -ENAMETOOLONG;
4645 goto out_err;
4646 }
4647 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4648 if (!snap_name)
4649 goto out_mem;
4650 *(snap_name + len) = '\0';
4651 spec->snap_name = snap_name;
4652
4653 /* Initialize all rbd options to the defaults */
4654
4655 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4656 if (!rbd_opts)
4657 goto out_mem;
4658
4659 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4660
4661 copts = ceph_parse_options(options, mon_addrs,
4662 mon_addrs + mon_addrs_size - 1,
4663 parse_rbd_opts_token, rbd_opts);
4664 if (IS_ERR(copts)) {
4665 ret = PTR_ERR(copts);
4666 goto out_err;
4667 }
4668 kfree(options);
4669
4670 *ceph_opts = copts;
4671 *opts = rbd_opts;
4672 *rbd_spec = spec;
4673
4674 return 0;
4675out_mem:
4676 ret = -ENOMEM;
4677out_err:
4678 kfree(rbd_opts);
4679 rbd_spec_put(spec);
4680 kfree(options);
4681
4682 return ret;
4683}
4684
4685/*
4686 * An rbd format 2 image has a unique identifier, distinct from the
4687 * name given to it by the user. Internally, that identifier is
4688 * what's used to specify the names of objects related to the image.
4689 *
4690 * A special "rbd id" object is used to map an rbd image name to its
4691 * id. If that object doesn't exist, then there is no v2 rbd image
4692 * with the supplied name.
4693 *
4694 * This function will record the given rbd_dev's image_id field if
4695 * it can be determined, and in that case will return 0. If any
4696 * errors occur a negative errno will be returned and the rbd_dev's
4697 * image_id field will be unchanged (and should be NULL).
4698 */
4699static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4700{
4701 int ret;
4702 size_t size;
4703 char *object_name;
4704 void *response;
4705 char *image_id;
4706
4707 /*
4708 * When probing a parent image, the image id is already
4709 * known (and the image name likely is not). There's no
4710 * need to fetch the image id again in this case. We
4711 * do still need to set the image format though.
4712 */
4713 if (rbd_dev->spec->image_id) {
4714 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4715
4716 return 0;
4717 }
4718
4719 /*
4720 * First, see if the format 2 image id file exists, and if
4721 * so, get the image's persistent id from it.
4722 */
4723 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4724 object_name = kmalloc(size, GFP_NOIO);
4725 if (!object_name)
4726 return -ENOMEM;
4727 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4728 dout("rbd id object name is %s\n", object_name);
4729
4730 /* Response will be an encoded string, which includes a length */
4731
4732 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4733 response = kzalloc(size, GFP_NOIO);
4734 if (!response) {
4735 ret = -ENOMEM;
4736 goto out;
4737 }
4738
4739 /* If it doesn't exist we'll assume it's a format 1 image */
4740
4741 ret = rbd_obj_method_sync(rbd_dev, object_name,
4742 "rbd", "get_id", NULL, 0,
4743 response, RBD_IMAGE_ID_LEN_MAX);
4744 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4745 if (ret == -ENOENT) {
4746 image_id = kstrdup("", GFP_KERNEL);
4747 ret = image_id ? 0 : -ENOMEM;
4748 if (!ret)
4749 rbd_dev->image_format = 1;
4750 } else if (ret > sizeof (__le32)) {
4751 void *p = response;
4752
4753 image_id = ceph_extract_encoded_string(&p, p + ret,
4754 NULL, GFP_NOIO);
4755 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4756 if (!ret)
4757 rbd_dev->image_format = 2;
4758 } else {
4759 ret = -EINVAL;
4760 }
4761
4762 if (!ret) {
4763 rbd_dev->spec->image_id = image_id;
4764 dout("image_id is %s\n", image_id);
4765 }
4766out:
4767 kfree(response);
4768 kfree(object_name);
4769
4770 return ret;
4771}
4772
4773/*
4774 * Undo whatever state changes are made by v1 or v2 header info
4775 * call.
4776 */
4777static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4778{
4779 struct rbd_image_header *header;
4780
4781 /* Drop parent reference unless it's already been done (or none) */
4782
4783 if (rbd_dev->parent_overlap)
4784 rbd_dev_parent_put(rbd_dev);
4785
4786 /* Free dynamic fields from the header, then zero it out */
4787
4788 header = &rbd_dev->header;
4789 ceph_put_snap_context(header->snapc);
4790 kfree(header->snap_sizes);
4791 kfree(header->snap_names);
4792 kfree(header->object_prefix);
4793 memset(header, 0, sizeof (*header));
4794}
4795
4796static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4797{
4798 int ret;
4799
4800 ret = rbd_dev_v2_object_prefix(rbd_dev);
4801 if (ret)
4802 goto out_err;
4803
4804 /*
4805 * Get the and check features for the image. Currently the
4806 * features are assumed to never change.
4807 */
4808 ret = rbd_dev_v2_features(rbd_dev);
4809 if (ret)
4810 goto out_err;
4811
4812 /* If the image supports fancy striping, get its parameters */
4813
4814 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4815 ret = rbd_dev_v2_striping_info(rbd_dev);
4816 if (ret < 0)
4817 goto out_err;
4818 }
4819 /* No support for crypto and compression type format 2 images */
4820
4821 return 0;
4822out_err:
4823 rbd_dev->header.features = 0;
4824 kfree(rbd_dev->header.object_prefix);
4825 rbd_dev->header.object_prefix = NULL;
4826
4827 return ret;
4828}
4829
4830static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4831{
4832 struct rbd_device *parent = NULL;
4833 struct rbd_spec *parent_spec;
4834 struct rbd_client *rbdc;
4835 int ret;
4836
4837 if (!rbd_dev->parent_spec)
4838 return 0;
4839 /*
4840 * We need to pass a reference to the client and the parent
4841 * spec when creating the parent rbd_dev. Images related by
4842 * parent/child relationships always share both.
4843 */
4844 parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4845 rbdc = __rbd_get_client(rbd_dev->rbd_client);
4846
4847 ret = -ENOMEM;
4848 parent = rbd_dev_create(rbdc, parent_spec);
4849 if (!parent)
4850 goto out_err;
4851
4852 ret = rbd_dev_image_probe(parent, false);
4853 if (ret < 0)
4854 goto out_err;
4855 rbd_dev->parent = parent;
4856 atomic_set(&rbd_dev->parent_ref, 1);
4857
4858 return 0;
4859out_err:
4860 if (parent) {
4861 rbd_dev_unparent(rbd_dev);
4862 kfree(rbd_dev->header_name);
4863 rbd_dev_destroy(parent);
4864 } else {
4865 rbd_put_client(rbdc);
4866 rbd_spec_put(parent_spec);
4867 }
4868
4869 return ret;
4870}
4871
4872static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4873{
4874 int ret;
4875
4876 /* Get an id and fill in device name. */
4877
4878 ret = rbd_dev_id_get(rbd_dev);
4879 if (ret)
4880 return ret;
4881
4882 BUILD_BUG_ON(DEV_NAME_LEN
4883 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4884 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4885
4886 /* Record our major and minor device numbers. */
4887
4888 if (!single_major) {
4889 ret = register_blkdev(0, rbd_dev->name);
4890 if (ret < 0)
4891 goto err_out_id;
4892
4893 rbd_dev->major = ret;
4894 rbd_dev->minor = 0;
4895 } else {
4896 rbd_dev->major = rbd_major;
4897 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
4898 }
4899
4900 /* Set up the blkdev mapping. */
4901
4902 ret = rbd_init_disk(rbd_dev);
4903 if (ret)
4904 goto err_out_blkdev;
4905
4906 ret = rbd_dev_mapping_set(rbd_dev);
4907 if (ret)
4908 goto err_out_disk;
4909 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4910
4911 ret = rbd_bus_add_dev(rbd_dev);
4912 if (ret)
4913 goto err_out_mapping;
4914
4915 /* Everything's ready. Announce the disk to the world. */
4916
4917 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4918 add_disk(rbd_dev->disk);
4919
4920 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4921 (unsigned long long) rbd_dev->mapping.size);
4922
4923 return ret;
4924
4925err_out_mapping:
4926 rbd_dev_mapping_clear(rbd_dev);
4927err_out_disk:
4928 rbd_free_disk(rbd_dev);
4929err_out_blkdev:
4930 if (!single_major)
4931 unregister_blkdev(rbd_dev->major, rbd_dev->name);
4932err_out_id:
4933 rbd_dev_id_put(rbd_dev);
4934 rbd_dev_mapping_clear(rbd_dev);
4935
4936 return ret;
4937}
4938
4939static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4940{
4941 struct rbd_spec *spec = rbd_dev->spec;
4942 size_t size;
4943
4944 /* Record the header object name for this rbd image. */
4945
4946 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4947
4948 if (rbd_dev->image_format == 1)
4949 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4950 else
4951 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4952
4953 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4954 if (!rbd_dev->header_name)
4955 return -ENOMEM;
4956
4957 if (rbd_dev->image_format == 1)
4958 sprintf(rbd_dev->header_name, "%s%s",
4959 spec->image_name, RBD_SUFFIX);
4960 else
4961 sprintf(rbd_dev->header_name, "%s%s",
4962 RBD_HEADER_PREFIX, spec->image_id);
4963 return 0;
4964}
4965
4966static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4967{
4968 rbd_dev_unprobe(rbd_dev);
4969 kfree(rbd_dev->header_name);
4970 rbd_dev->header_name = NULL;
4971 rbd_dev->image_format = 0;
4972 kfree(rbd_dev->spec->image_id);
4973 rbd_dev->spec->image_id = NULL;
4974
4975 rbd_dev_destroy(rbd_dev);
4976}
4977
4978/*
4979 * Probe for the existence of the header object for the given rbd
4980 * device. If this image is the one being mapped (i.e., not a
4981 * parent), initiate a watch on its header object before using that
4982 * object to get detailed information about the rbd image.
4983 */
4984static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
4985{
4986 int ret;
4987
4988 /*
4989 * Get the id from the image id object. Unless there's an
4990 * error, rbd_dev->spec->image_id will be filled in with
4991 * a dynamically-allocated string, and rbd_dev->image_format
4992 * will be set to either 1 or 2.
4993 */
4994 ret = rbd_dev_image_id(rbd_dev);
4995 if (ret)
4996 return ret;
4997 rbd_assert(rbd_dev->spec->image_id);
4998 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4999
5000 ret = rbd_dev_header_name(rbd_dev);
5001 if (ret)
5002 goto err_out_format;
5003
5004 if (mapping) {
5005 ret = rbd_dev_header_watch_sync(rbd_dev);
5006 if (ret)
5007 goto out_header_name;
5008 }
5009
5010 if (rbd_dev->image_format == 1)
5011 ret = rbd_dev_v1_header_info(rbd_dev);
5012 else
5013 ret = rbd_dev_v2_header_info(rbd_dev);
5014 if (ret)
5015 goto err_out_watch;
5016
5017 ret = rbd_dev_spec_update(rbd_dev);
5018 if (ret)
5019 goto err_out_probe;
5020
5021 ret = rbd_dev_probe_parent(rbd_dev);
5022 if (ret)
5023 goto err_out_probe;
5024
5025 dout("discovered format %u image, header name is %s\n",
5026 rbd_dev->image_format, rbd_dev->header_name);
5027
5028 return 0;
5029err_out_probe:
5030 rbd_dev_unprobe(rbd_dev);
5031err_out_watch:
5032 if (mapping)
5033 rbd_dev_header_unwatch_sync(rbd_dev);
5034out_header_name:
5035 kfree(rbd_dev->header_name);
5036 rbd_dev->header_name = NULL;
5037err_out_format:
5038 rbd_dev->image_format = 0;
5039 kfree(rbd_dev->spec->image_id);
5040 rbd_dev->spec->image_id = NULL;
5041
5042 dout("probe failed, returning %d\n", ret);
5043
5044 return ret;
5045}
5046
5047static ssize_t do_rbd_add(struct bus_type *bus,
5048 const char *buf,
5049 size_t count)
5050{
5051 struct rbd_device *rbd_dev = NULL;
5052 struct ceph_options *ceph_opts = NULL;
5053 struct rbd_options *rbd_opts = NULL;
5054 struct rbd_spec *spec = NULL;
5055 struct rbd_client *rbdc;
5056 struct ceph_osd_client *osdc;
5057 bool read_only;
5058 int rc = -ENOMEM;
5059
5060 if (!try_module_get(THIS_MODULE))
5061 return -ENODEV;
5062
5063 /* parse add command */
5064 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5065 if (rc < 0)
5066 goto err_out_module;
5067 read_only = rbd_opts->read_only;
5068 kfree(rbd_opts);
5069 rbd_opts = NULL; /* done with this */
5070
5071 rbdc = rbd_get_client(ceph_opts);
5072 if (IS_ERR(rbdc)) {
5073 rc = PTR_ERR(rbdc);
5074 goto err_out_args;
5075 }
5076
5077 /* pick the pool */
5078 osdc = &rbdc->client->osdc;
5079 rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
5080 if (rc < 0)
5081 goto err_out_client;
5082 spec->pool_id = (u64)rc;
5083
5084 /* The ceph file layout needs to fit pool id in 32 bits */
5085
5086 if (spec->pool_id > (u64)U32_MAX) {
5087 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5088 (unsigned long long)spec->pool_id, U32_MAX);
5089 rc = -EIO;
5090 goto err_out_client;
5091 }
5092
5093 rbd_dev = rbd_dev_create(rbdc, spec);
5094 if (!rbd_dev)
5095 goto err_out_client;
5096 rbdc = NULL; /* rbd_dev now owns this */
5097 spec = NULL; /* rbd_dev now owns this */
5098
5099 rc = rbd_dev_image_probe(rbd_dev, true);
5100 if (rc < 0)
5101 goto err_out_rbd_dev;
5102
5103 /* If we are mapping a snapshot it must be marked read-only */
5104
5105 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5106 read_only = true;
5107 rbd_dev->mapping.read_only = read_only;
5108
5109 rc = rbd_dev_device_setup(rbd_dev);
5110 if (rc) {
5111 /*
5112 * rbd_dev_header_unwatch_sync() can't be moved into
5113 * rbd_dev_image_release() without refactoring, see
5114 * commit 1f3ef78861ac.
5115 */
5116 rbd_dev_header_unwatch_sync(rbd_dev);
5117 rbd_dev_image_release(rbd_dev);
5118 goto err_out_module;
5119 }
5120
5121 return count;
5122
5123err_out_rbd_dev:
5124 rbd_dev_destroy(rbd_dev);
5125err_out_client:
5126 rbd_put_client(rbdc);
5127err_out_args:
5128 rbd_spec_put(spec);
5129err_out_module:
5130 module_put(THIS_MODULE);
5131
5132 dout("Error adding device %s\n", buf);
5133
5134 return (ssize_t)rc;
5135}
5136
5137static ssize_t rbd_add(struct bus_type *bus,
5138 const char *buf,
5139 size_t count)
5140{
5141 if (single_major)
5142 return -EINVAL;
5143
5144 return do_rbd_add(bus, buf, count);
5145}
5146
5147static ssize_t rbd_add_single_major(struct bus_type *bus,
5148 const char *buf,
5149 size_t count)
5150{
5151 return do_rbd_add(bus, buf, count);
5152}
5153
5154static void rbd_dev_device_release(struct device *dev)
5155{
5156 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5157
5158 rbd_free_disk(rbd_dev);
5159 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5160 rbd_dev_mapping_clear(rbd_dev);
5161 if (!single_major)
5162 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5163 rbd_dev_id_put(rbd_dev);
5164 rbd_dev_mapping_clear(rbd_dev);
5165}
5166
5167static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5168{
5169 while (rbd_dev->parent) {
5170 struct rbd_device *first = rbd_dev;
5171 struct rbd_device *second = first->parent;
5172 struct rbd_device *third;
5173
5174 /*
5175 * Follow to the parent with no grandparent and
5176 * remove it.
5177 */
5178 while (second && (third = second->parent)) {
5179 first = second;
5180 second = third;
5181 }
5182 rbd_assert(second);
5183 rbd_dev_image_release(second);
5184 first->parent = NULL;
5185 first->parent_overlap = 0;
5186
5187 rbd_assert(first->parent_spec);
5188 rbd_spec_put(first->parent_spec);
5189 first->parent_spec = NULL;
5190 }
5191}
5192
5193static ssize_t do_rbd_remove(struct bus_type *bus,
5194 const char *buf,
5195 size_t count)
5196{
5197 struct rbd_device *rbd_dev = NULL;
5198 struct list_head *tmp;
5199 int dev_id;
5200 unsigned long ul;
5201 bool already = false;
5202 int ret;
5203
5204 ret = kstrtoul(buf, 10, &ul);
5205 if (ret)
5206 return ret;
5207
5208 /* convert to int; abort if we lost anything in the conversion */
5209 dev_id = (int)ul;
5210 if (dev_id != ul)
5211 return -EINVAL;
5212
5213 ret = -ENOENT;
5214 spin_lock(&rbd_dev_list_lock);
5215 list_for_each(tmp, &rbd_dev_list) {
5216 rbd_dev = list_entry(tmp, struct rbd_device, node);
5217 if (rbd_dev->dev_id == dev_id) {
5218 ret = 0;
5219 break;
5220 }
5221 }
5222 if (!ret) {
5223 spin_lock_irq(&rbd_dev->lock);
5224 if (rbd_dev->open_count)
5225 ret = -EBUSY;
5226 else
5227 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5228 &rbd_dev->flags);
5229 spin_unlock_irq(&rbd_dev->lock);
5230 }
5231 spin_unlock(&rbd_dev_list_lock);
5232 if (ret < 0 || already)
5233 return ret;
5234
5235 rbd_dev_header_unwatch_sync(rbd_dev);
5236 /*
5237 * flush remaining watch callbacks - these must be complete
5238 * before the osd_client is shutdown
5239 */
5240 dout("%s: flushing notifies", __func__);
5241 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5242
5243 /*
5244 * Don't free anything from rbd_dev->disk until after all
5245 * notifies are completely processed. Otherwise
5246 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5247 * in a potential use after free of rbd_dev->disk or rbd_dev.
5248 */
5249 rbd_bus_del_dev(rbd_dev);
5250 rbd_dev_image_release(rbd_dev);
5251 module_put(THIS_MODULE);
5252
5253 return count;
5254}
5255
5256static ssize_t rbd_remove(struct bus_type *bus,
5257 const char *buf,
5258 size_t count)
5259{
5260 if (single_major)
5261 return -EINVAL;
5262
5263 return do_rbd_remove(bus, buf, count);
5264}
5265
5266static ssize_t rbd_remove_single_major(struct bus_type *bus,
5267 const char *buf,
5268 size_t count)
5269{
5270 return do_rbd_remove(bus, buf, count);
5271}
5272
5273/*
5274 * create control files in sysfs
5275 * /sys/bus/rbd/...
5276 */
5277static int rbd_sysfs_init(void)
5278{
5279 int ret;
5280
5281 ret = device_register(&rbd_root_dev);
5282 if (ret < 0)
5283 return ret;
5284
5285 ret = bus_register(&rbd_bus_type);
5286 if (ret < 0)
5287 device_unregister(&rbd_root_dev);
5288
5289 return ret;
5290}
5291
5292static void rbd_sysfs_cleanup(void)
5293{
5294 bus_unregister(&rbd_bus_type);
5295 device_unregister(&rbd_root_dev);
5296}
5297
5298static int rbd_slab_init(void)
5299{
5300 rbd_assert(!rbd_img_request_cache);
5301 rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5302 sizeof (struct rbd_img_request),
5303 __alignof__(struct rbd_img_request),
5304 0, NULL);
5305 if (!rbd_img_request_cache)
5306 return -ENOMEM;
5307
5308 rbd_assert(!rbd_obj_request_cache);
5309 rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5310 sizeof (struct rbd_obj_request),
5311 __alignof__(struct rbd_obj_request),
5312 0, NULL);
5313 if (!rbd_obj_request_cache)
5314 goto out_err;
5315
5316 rbd_assert(!rbd_segment_name_cache);
5317 rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5318 CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5319 if (rbd_segment_name_cache)
5320 return 0;
5321out_err:
5322 if (rbd_obj_request_cache) {
5323 kmem_cache_destroy(rbd_obj_request_cache);
5324 rbd_obj_request_cache = NULL;
5325 }
5326
5327 kmem_cache_destroy(rbd_img_request_cache);
5328 rbd_img_request_cache = NULL;
5329
5330 return -ENOMEM;
5331}
5332
5333static void rbd_slab_exit(void)
5334{
5335 rbd_assert(rbd_segment_name_cache);
5336 kmem_cache_destroy(rbd_segment_name_cache);
5337 rbd_segment_name_cache = NULL;
5338
5339 rbd_assert(rbd_obj_request_cache);
5340 kmem_cache_destroy(rbd_obj_request_cache);
5341 rbd_obj_request_cache = NULL;
5342
5343 rbd_assert(rbd_img_request_cache);
5344 kmem_cache_destroy(rbd_img_request_cache);
5345 rbd_img_request_cache = NULL;
5346}
5347
5348static int __init rbd_init(void)
5349{
5350 int rc;
5351
5352 if (!libceph_compatible(NULL)) {
5353 rbd_warn(NULL, "libceph incompatibility (quitting)");
5354 return -EINVAL;
5355 }
5356
5357 rc = rbd_slab_init();
5358 if (rc)
5359 return rc;
5360
5361 if (single_major) {
5362 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5363 if (rbd_major < 0) {
5364 rc = rbd_major;
5365 goto err_out_slab;
5366 }
5367 }
5368
5369 rc = rbd_sysfs_init();
5370 if (rc)
5371 goto err_out_blkdev;
5372
5373 if (single_major)
5374 pr_info("loaded (major %d)\n", rbd_major);
5375 else
5376 pr_info("loaded\n");
5377
5378 return 0;
5379
5380err_out_blkdev:
5381 if (single_major)
5382 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5383err_out_slab:
5384 rbd_slab_exit();
5385 return rc;
5386}
5387
5388static void __exit rbd_exit(void)
5389{
5390 rbd_sysfs_cleanup();
5391 if (single_major)
5392 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5393 rbd_slab_exit();
5394}
5395
5396module_init(rbd_init);
5397module_exit(rbd_exit);
5398
5399MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5400MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5401MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5402/* following authorship retained from original osdblk.c */
5403MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5404
5405MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5406MODULE_LICENSE("GPL");
1
2/*
3 rbd.c -- Export ceph rados objects as a Linux block device
4
5
6 based on drivers/block/osdblk.c:
7
8 Copyright 2009 Red Hat, Inc.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25 For usage instructions, please refer to:
26
27 Documentation/ABI/testing/sysfs-bus-rbd
28
29 */
30
31#include <linux/ceph/libceph.h>
32#include <linux/ceph/osd_client.h>
33#include <linux/ceph/mon_client.h>
34#include <linux/ceph/cls_lock_client.h>
35#include <linux/ceph/striper.h>
36#include <linux/ceph/decode.h>
37#include <linux/fs_parser.h>
38#include <linux/bsearch.h>
39
40#include <linux/kernel.h>
41#include <linux/device.h>
42#include <linux/module.h>
43#include <linux/blk-mq.h>
44#include <linux/fs.h>
45#include <linux/blkdev.h>
46#include <linux/slab.h>
47#include <linux/idr.h>
48#include <linux/workqueue.h>
49
50#include "rbd_types.h"
51
52#define RBD_DEBUG /* Activate rbd_assert() calls */
53
54/*
55 * Increment the given counter and return its updated value.
56 * If the counter is already 0 it will not be incremented.
57 * If the counter is already at its maximum value returns
58 * -EINVAL without updating it.
59 */
60static int atomic_inc_return_safe(atomic_t *v)
61{
62 unsigned int counter;
63
64 counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65 if (counter <= (unsigned int)INT_MAX)
66 return (int)counter;
67
68 atomic_dec(v);
69
70 return -EINVAL;
71}
72
73/* Decrement the counter. Return the resulting value, or -EINVAL */
74static int atomic_dec_return_safe(atomic_t *v)
75{
76 int counter;
77
78 counter = atomic_dec_return(v);
79 if (counter >= 0)
80 return counter;
81
82 atomic_inc(v);
83
84 return -EINVAL;
85}
86
87#define RBD_DRV_NAME "rbd"
88
89#define RBD_MINORS_PER_MAJOR 256
90#define RBD_SINGLE_MAJOR_PART_SHIFT 4
91
92#define RBD_MAX_PARENT_CHAIN_LEN 16
93
94#define RBD_SNAP_DEV_NAME_PREFIX "snap_"
95#define RBD_MAX_SNAP_NAME_LEN \
96 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97
98#define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
99
100#define RBD_SNAP_HEAD_NAME "-"
101
102#define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
103
104/* This allows a single page to hold an image name sent by OSD */
105#define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
106#define RBD_IMAGE_ID_LEN_MAX 64
107
108#define RBD_OBJ_PREFIX_LEN_MAX 64
109
110#define RBD_NOTIFY_TIMEOUT 5 /* seconds */
111#define RBD_RETRY_DELAY msecs_to_jiffies(1000)
112
113/* Feature bits */
114
115#define RBD_FEATURE_LAYERING (1ULL<<0)
116#define RBD_FEATURE_STRIPINGV2 (1ULL<<1)
117#define RBD_FEATURE_EXCLUSIVE_LOCK (1ULL<<2)
118#define RBD_FEATURE_OBJECT_MAP (1ULL<<3)
119#define RBD_FEATURE_FAST_DIFF (1ULL<<4)
120#define RBD_FEATURE_DEEP_FLATTEN (1ULL<<5)
121#define RBD_FEATURE_DATA_POOL (1ULL<<7)
122#define RBD_FEATURE_OPERATIONS (1ULL<<8)
123
124#define RBD_FEATURES_ALL (RBD_FEATURE_LAYERING | \
125 RBD_FEATURE_STRIPINGV2 | \
126 RBD_FEATURE_EXCLUSIVE_LOCK | \
127 RBD_FEATURE_OBJECT_MAP | \
128 RBD_FEATURE_FAST_DIFF | \
129 RBD_FEATURE_DEEP_FLATTEN | \
130 RBD_FEATURE_DATA_POOL | \
131 RBD_FEATURE_OPERATIONS)
132
133/* Features supported by this (client software) implementation. */
134
135#define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
136
137/*
138 * An RBD device name will be "rbd#", where the "rbd" comes from
139 * RBD_DRV_NAME above, and # is a unique integer identifier.
140 */
141#define DEV_NAME_LEN 32
142
143/*
144 * block device image metadata (in-memory version)
145 */
146struct rbd_image_header {
147 /* These six fields never change for a given rbd image */
148 char *object_prefix;
149 __u8 obj_order;
150 u64 stripe_unit;
151 u64 stripe_count;
152 s64 data_pool_id;
153 u64 features; /* Might be changeable someday? */
154
155 /* The remaining fields need to be updated occasionally */
156 u64 image_size;
157 struct ceph_snap_context *snapc;
158 char *snap_names; /* format 1 only */
159 u64 *snap_sizes; /* format 1 only */
160};
161
162/*
163 * An rbd image specification.
164 *
165 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166 * identify an image. Each rbd_dev structure includes a pointer to
167 * an rbd_spec structure that encapsulates this identity.
168 *
169 * Each of the id's in an rbd_spec has an associated name. For a
170 * user-mapped image, the names are supplied and the id's associated
171 * with them are looked up. For a layered image, a parent image is
172 * defined by the tuple, and the names are looked up.
173 *
174 * An rbd_dev structure contains a parent_spec pointer which is
175 * non-null if the image it represents is a child in a layered
176 * image. This pointer will refer to the rbd_spec structure used
177 * by the parent rbd_dev for its own identity (i.e., the structure
178 * is shared between the parent and child).
179 *
180 * Since these structures are populated once, during the discovery
181 * phase of image construction, they are effectively immutable so
182 * we make no effort to synchronize access to them.
183 *
184 * Note that code herein does not assume the image name is known (it
185 * could be a null pointer).
186 */
187struct rbd_spec {
188 u64 pool_id;
189 const char *pool_name;
190 const char *pool_ns; /* NULL if default, never "" */
191
192 const char *image_id;
193 const char *image_name;
194
195 u64 snap_id;
196 const char *snap_name;
197
198 struct kref kref;
199};
200
201/*
202 * an instance of the client. multiple devices may share an rbd client.
203 */
204struct rbd_client {
205 struct ceph_client *client;
206 struct kref kref;
207 struct list_head node;
208};
209
210struct pending_result {
211 int result; /* first nonzero result */
212 int num_pending;
213};
214
215struct rbd_img_request;
216
217enum obj_request_type {
218 OBJ_REQUEST_NODATA = 1,
219 OBJ_REQUEST_BIO, /* pointer into provided bio (list) */
220 OBJ_REQUEST_BVECS, /* pointer into provided bio_vec array */
221 OBJ_REQUEST_OWN_BVECS, /* private bio_vec array, doesn't own pages */
222};
223
224enum obj_operation_type {
225 OBJ_OP_READ = 1,
226 OBJ_OP_WRITE,
227 OBJ_OP_DISCARD,
228 OBJ_OP_ZEROOUT,
229};
230
231#define RBD_OBJ_FLAG_DELETION (1U << 0)
232#define RBD_OBJ_FLAG_COPYUP_ENABLED (1U << 1)
233#define RBD_OBJ_FLAG_COPYUP_ZEROS (1U << 2)
234#define RBD_OBJ_FLAG_MAY_EXIST (1U << 3)
235#define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT (1U << 4)
236
237enum rbd_obj_read_state {
238 RBD_OBJ_READ_START = 1,
239 RBD_OBJ_READ_OBJECT,
240 RBD_OBJ_READ_PARENT,
241};
242
243/*
244 * Writes go through the following state machine to deal with
245 * layering:
246 *
247 * . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . .
248 * . | .
249 * . v .
250 * . RBD_OBJ_WRITE_READ_FROM_PARENT. . . .
251 * . | . .
252 * . v v (deep-copyup .
253 * (image . RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC . not needed) .
254 * flattened) v | . .
255 * . v . .
256 * . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . . (copyup .
257 * | not needed) v
258 * v .
259 * done . . . . . . . . . . . . . . . . . .
260 * ^
261 * |
262 * RBD_OBJ_WRITE_FLAT
263 *
264 * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
265 * assert_exists guard is needed or not (in some cases it's not needed
266 * even if there is a parent).
267 */
268enum rbd_obj_write_state {
269 RBD_OBJ_WRITE_START = 1,
270 RBD_OBJ_WRITE_PRE_OBJECT_MAP,
271 RBD_OBJ_WRITE_OBJECT,
272 __RBD_OBJ_WRITE_COPYUP,
273 RBD_OBJ_WRITE_COPYUP,
274 RBD_OBJ_WRITE_POST_OBJECT_MAP,
275};
276
277enum rbd_obj_copyup_state {
278 RBD_OBJ_COPYUP_START = 1,
279 RBD_OBJ_COPYUP_READ_PARENT,
280 __RBD_OBJ_COPYUP_OBJECT_MAPS,
281 RBD_OBJ_COPYUP_OBJECT_MAPS,
282 __RBD_OBJ_COPYUP_WRITE_OBJECT,
283 RBD_OBJ_COPYUP_WRITE_OBJECT,
284};
285
286struct rbd_obj_request {
287 struct ceph_object_extent ex;
288 unsigned int flags; /* RBD_OBJ_FLAG_* */
289 union {
290 enum rbd_obj_read_state read_state; /* for reads */
291 enum rbd_obj_write_state write_state; /* for writes */
292 };
293
294 struct rbd_img_request *img_request;
295 struct ceph_file_extent *img_extents;
296 u32 num_img_extents;
297
298 union {
299 struct ceph_bio_iter bio_pos;
300 struct {
301 struct ceph_bvec_iter bvec_pos;
302 u32 bvec_count;
303 u32 bvec_idx;
304 };
305 };
306
307 enum rbd_obj_copyup_state copyup_state;
308 struct bio_vec *copyup_bvecs;
309 u32 copyup_bvec_count;
310
311 struct list_head osd_reqs; /* w/ r_private_item */
312
313 struct mutex state_mutex;
314 struct pending_result pending;
315 struct kref kref;
316};
317
318enum img_req_flags {
319 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
320 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
321};
322
323enum rbd_img_state {
324 RBD_IMG_START = 1,
325 RBD_IMG_EXCLUSIVE_LOCK,
326 __RBD_IMG_OBJECT_REQUESTS,
327 RBD_IMG_OBJECT_REQUESTS,
328};
329
330struct rbd_img_request {
331 struct rbd_device *rbd_dev;
332 enum obj_operation_type op_type;
333 enum obj_request_type data_type;
334 unsigned long flags;
335 enum rbd_img_state state;
336 union {
337 u64 snap_id; /* for reads */
338 struct ceph_snap_context *snapc; /* for writes */
339 };
340 struct rbd_obj_request *obj_request; /* obj req initiator */
341
342 struct list_head lock_item;
343 struct list_head object_extents; /* obj_req.ex structs */
344
345 struct mutex state_mutex;
346 struct pending_result pending;
347 struct work_struct work;
348 int work_result;
349};
350
351#define for_each_obj_request(ireq, oreq) \
352 list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
353#define for_each_obj_request_safe(ireq, oreq, n) \
354 list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
355
356enum rbd_watch_state {
357 RBD_WATCH_STATE_UNREGISTERED,
358 RBD_WATCH_STATE_REGISTERED,
359 RBD_WATCH_STATE_ERROR,
360};
361
362enum rbd_lock_state {
363 RBD_LOCK_STATE_UNLOCKED,
364 RBD_LOCK_STATE_LOCKED,
365 RBD_LOCK_STATE_QUIESCING,
366};
367
368/* WatchNotify::ClientId */
369struct rbd_client_id {
370 u64 gid;
371 u64 handle;
372};
373
374struct rbd_mapping {
375 u64 size;
376};
377
378/*
379 * a single device
380 */
381struct rbd_device {
382 int dev_id; /* blkdev unique id */
383
384 int major; /* blkdev assigned major */
385 int minor;
386 struct gendisk *disk; /* blkdev's gendisk and rq */
387
388 u32 image_format; /* Either 1 or 2 */
389 struct rbd_client *rbd_client;
390
391 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
392
393 spinlock_t lock; /* queue, flags, open_count */
394
395 struct rbd_image_header header;
396 unsigned long flags; /* possibly lock protected */
397 struct rbd_spec *spec;
398 struct rbd_options *opts;
399 char *config_info; /* add{,_single_major} string */
400
401 struct ceph_object_id header_oid;
402 struct ceph_object_locator header_oloc;
403
404 struct ceph_file_layout layout; /* used for all rbd requests */
405
406 struct mutex watch_mutex;
407 enum rbd_watch_state watch_state;
408 struct ceph_osd_linger_request *watch_handle;
409 u64 watch_cookie;
410 struct delayed_work watch_dwork;
411
412 struct rw_semaphore lock_rwsem;
413 enum rbd_lock_state lock_state;
414 char lock_cookie[32];
415 struct rbd_client_id owner_cid;
416 struct work_struct acquired_lock_work;
417 struct work_struct released_lock_work;
418 struct delayed_work lock_dwork;
419 struct work_struct unlock_work;
420 spinlock_t lock_lists_lock;
421 struct list_head acquiring_list;
422 struct list_head running_list;
423 struct completion acquire_wait;
424 int acquire_err;
425 struct completion quiescing_wait;
426
427 spinlock_t object_map_lock;
428 u8 *object_map;
429 u64 object_map_size; /* in objects */
430 u64 object_map_flags;
431
432 struct workqueue_struct *task_wq;
433
434 struct rbd_spec *parent_spec;
435 u64 parent_overlap;
436 atomic_t parent_ref;
437 struct rbd_device *parent;
438
439 /* Block layer tags. */
440 struct blk_mq_tag_set tag_set;
441
442 /* protects updating the header */
443 struct rw_semaphore header_rwsem;
444
445 struct rbd_mapping mapping;
446
447 struct list_head node;
448
449 /* sysfs related */
450 struct device dev;
451 unsigned long open_count; /* protected by lock */
452};
453
454/*
455 * Flag bits for rbd_dev->flags:
456 * - REMOVING (which is coupled with rbd_dev->open_count) is protected
457 * by rbd_dev->lock
458 */
459enum rbd_dev_flags {
460 RBD_DEV_FLAG_EXISTS, /* rbd_dev_device_setup() ran */
461 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
462 RBD_DEV_FLAG_READONLY, /* -o ro or snapshot */
463};
464
465static DEFINE_MUTEX(client_mutex); /* Serialize client creation */
466
467static LIST_HEAD(rbd_dev_list); /* devices */
468static DEFINE_SPINLOCK(rbd_dev_list_lock);
469
470static LIST_HEAD(rbd_client_list); /* clients */
471static DEFINE_SPINLOCK(rbd_client_list_lock);
472
473/* Slab caches for frequently-allocated structures */
474
475static struct kmem_cache *rbd_img_request_cache;
476static struct kmem_cache *rbd_obj_request_cache;
477
478static int rbd_major;
479static DEFINE_IDA(rbd_dev_id_ida);
480
481static struct workqueue_struct *rbd_wq;
482
483static struct ceph_snap_context rbd_empty_snapc = {
484 .nref = REFCOUNT_INIT(1),
485};
486
487/*
488 * single-major requires >= 0.75 version of userspace rbd utility.
489 */
490static bool single_major = true;
491module_param(single_major, bool, 0444);
492MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
493
494static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count);
495static ssize_t remove_store(const struct bus_type *bus, const char *buf,
496 size_t count);
497static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf,
498 size_t count);
499static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf,
500 size_t count);
501static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
502
503static int rbd_dev_id_to_minor(int dev_id)
504{
505 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
506}
507
508static int minor_to_rbd_dev_id(int minor)
509{
510 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
511}
512
513static bool rbd_is_ro(struct rbd_device *rbd_dev)
514{
515 return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
516}
517
518static bool rbd_is_snap(struct rbd_device *rbd_dev)
519{
520 return rbd_dev->spec->snap_id != CEPH_NOSNAP;
521}
522
523static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
524{
525 lockdep_assert_held(&rbd_dev->lock_rwsem);
526
527 return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
528 rbd_dev->lock_state == RBD_LOCK_STATE_QUIESCING;
529}
530
531static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
532{
533 bool is_lock_owner;
534
535 down_read(&rbd_dev->lock_rwsem);
536 is_lock_owner = __rbd_is_lock_owner(rbd_dev);
537 up_read(&rbd_dev->lock_rwsem);
538 return is_lock_owner;
539}
540
541static ssize_t supported_features_show(const struct bus_type *bus, char *buf)
542{
543 return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
544}
545
546static BUS_ATTR_WO(add);
547static BUS_ATTR_WO(remove);
548static BUS_ATTR_WO(add_single_major);
549static BUS_ATTR_WO(remove_single_major);
550static BUS_ATTR_RO(supported_features);
551
552static struct attribute *rbd_bus_attrs[] = {
553 &bus_attr_add.attr,
554 &bus_attr_remove.attr,
555 &bus_attr_add_single_major.attr,
556 &bus_attr_remove_single_major.attr,
557 &bus_attr_supported_features.attr,
558 NULL,
559};
560
561static umode_t rbd_bus_is_visible(struct kobject *kobj,
562 struct attribute *attr, int index)
563{
564 if (!single_major &&
565 (attr == &bus_attr_add_single_major.attr ||
566 attr == &bus_attr_remove_single_major.attr))
567 return 0;
568
569 return attr->mode;
570}
571
572static const struct attribute_group rbd_bus_group = {
573 .attrs = rbd_bus_attrs,
574 .is_visible = rbd_bus_is_visible,
575};
576__ATTRIBUTE_GROUPS(rbd_bus);
577
578static const struct bus_type rbd_bus_type = {
579 .name = "rbd",
580 .bus_groups = rbd_bus_groups,
581};
582
583static void rbd_root_dev_release(struct device *dev)
584{
585}
586
587static struct device rbd_root_dev = {
588 .init_name = "rbd",
589 .release = rbd_root_dev_release,
590};
591
592static __printf(2, 3)
593void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
594{
595 struct va_format vaf;
596 va_list args;
597
598 va_start(args, fmt);
599 vaf.fmt = fmt;
600 vaf.va = &args;
601
602 if (!rbd_dev)
603 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
604 else if (rbd_dev->disk)
605 printk(KERN_WARNING "%s: %s: %pV\n",
606 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
607 else if (rbd_dev->spec && rbd_dev->spec->image_name)
608 printk(KERN_WARNING "%s: image %s: %pV\n",
609 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
610 else if (rbd_dev->spec && rbd_dev->spec->image_id)
611 printk(KERN_WARNING "%s: id %s: %pV\n",
612 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
613 else /* punt */
614 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
615 RBD_DRV_NAME, rbd_dev, &vaf);
616 va_end(args);
617}
618
619#ifdef RBD_DEBUG
620#define rbd_assert(expr) \
621 if (unlikely(!(expr))) { \
622 printk(KERN_ERR "\nAssertion failure in %s() " \
623 "at line %d:\n\n" \
624 "\trbd_assert(%s);\n\n", \
625 __func__, __LINE__, #expr); \
626 BUG(); \
627 }
628#else /* !RBD_DEBUG */
629# define rbd_assert(expr) ((void) 0)
630#endif /* !RBD_DEBUG */
631
632static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
633
634static int rbd_dev_refresh(struct rbd_device *rbd_dev);
635static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev,
636 struct rbd_image_header *header);
637static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
638 u64 snap_id);
639static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
640 u8 *order, u64 *snap_size);
641static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev);
642
643static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result);
644static void rbd_img_handle_request(struct rbd_img_request *img_req, int result);
645
646/*
647 * Return true if nothing else is pending.
648 */
649static bool pending_result_dec(struct pending_result *pending, int *result)
650{
651 rbd_assert(pending->num_pending > 0);
652
653 if (*result && !pending->result)
654 pending->result = *result;
655 if (--pending->num_pending)
656 return false;
657
658 *result = pending->result;
659 return true;
660}
661
662static int rbd_open(struct gendisk *disk, blk_mode_t mode)
663{
664 struct rbd_device *rbd_dev = disk->private_data;
665 bool removing = false;
666
667 spin_lock_irq(&rbd_dev->lock);
668 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
669 removing = true;
670 else
671 rbd_dev->open_count++;
672 spin_unlock_irq(&rbd_dev->lock);
673 if (removing)
674 return -ENOENT;
675
676 (void) get_device(&rbd_dev->dev);
677
678 return 0;
679}
680
681static void rbd_release(struct gendisk *disk)
682{
683 struct rbd_device *rbd_dev = disk->private_data;
684 unsigned long open_count_before;
685
686 spin_lock_irq(&rbd_dev->lock);
687 open_count_before = rbd_dev->open_count--;
688 spin_unlock_irq(&rbd_dev->lock);
689 rbd_assert(open_count_before > 0);
690
691 put_device(&rbd_dev->dev);
692}
693
694static const struct block_device_operations rbd_bd_ops = {
695 .owner = THIS_MODULE,
696 .open = rbd_open,
697 .release = rbd_release,
698};
699
700/*
701 * Initialize an rbd client instance. Success or not, this function
702 * consumes ceph_opts. Caller holds client_mutex.
703 */
704static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
705{
706 struct rbd_client *rbdc;
707 int ret = -ENOMEM;
708
709 dout("%s:\n", __func__);
710 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
711 if (!rbdc)
712 goto out_opt;
713
714 kref_init(&rbdc->kref);
715 INIT_LIST_HEAD(&rbdc->node);
716
717 rbdc->client = ceph_create_client(ceph_opts, rbdc);
718 if (IS_ERR(rbdc->client))
719 goto out_rbdc;
720 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
721
722 ret = ceph_open_session(rbdc->client);
723 if (ret < 0)
724 goto out_client;
725
726 spin_lock(&rbd_client_list_lock);
727 list_add_tail(&rbdc->node, &rbd_client_list);
728 spin_unlock(&rbd_client_list_lock);
729
730 dout("%s: rbdc %p\n", __func__, rbdc);
731
732 return rbdc;
733out_client:
734 ceph_destroy_client(rbdc->client);
735out_rbdc:
736 kfree(rbdc);
737out_opt:
738 if (ceph_opts)
739 ceph_destroy_options(ceph_opts);
740 dout("%s: error %d\n", __func__, ret);
741
742 return ERR_PTR(ret);
743}
744
745static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
746{
747 kref_get(&rbdc->kref);
748
749 return rbdc;
750}
751
752/*
753 * Find a ceph client with specific addr and configuration. If
754 * found, bump its reference count.
755 */
756static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
757{
758 struct rbd_client *rbdc = NULL, *iter;
759
760 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
761 return NULL;
762
763 spin_lock(&rbd_client_list_lock);
764 list_for_each_entry(iter, &rbd_client_list, node) {
765 if (!ceph_compare_options(ceph_opts, iter->client)) {
766 __rbd_get_client(iter);
767
768 rbdc = iter;
769 break;
770 }
771 }
772 spin_unlock(&rbd_client_list_lock);
773
774 return rbdc;
775}
776
777/*
778 * (Per device) rbd map options
779 */
780enum {
781 Opt_queue_depth,
782 Opt_alloc_size,
783 Opt_lock_timeout,
784 /* int args above */
785 Opt_pool_ns,
786 Opt_compression_hint,
787 /* string args above */
788 Opt_read_only,
789 Opt_read_write,
790 Opt_lock_on_read,
791 Opt_exclusive,
792 Opt_notrim,
793};
794
795enum {
796 Opt_compression_hint_none,
797 Opt_compression_hint_compressible,
798 Opt_compression_hint_incompressible,
799};
800
801static const struct constant_table rbd_param_compression_hint[] = {
802 {"none", Opt_compression_hint_none},
803 {"compressible", Opt_compression_hint_compressible},
804 {"incompressible", Opt_compression_hint_incompressible},
805 {}
806};
807
808static const struct fs_parameter_spec rbd_parameters[] = {
809 fsparam_u32 ("alloc_size", Opt_alloc_size),
810 fsparam_enum ("compression_hint", Opt_compression_hint,
811 rbd_param_compression_hint),
812 fsparam_flag ("exclusive", Opt_exclusive),
813 fsparam_flag ("lock_on_read", Opt_lock_on_read),
814 fsparam_u32 ("lock_timeout", Opt_lock_timeout),
815 fsparam_flag ("notrim", Opt_notrim),
816 fsparam_string ("_pool_ns", Opt_pool_ns),
817 fsparam_u32 ("queue_depth", Opt_queue_depth),
818 fsparam_flag ("read_only", Opt_read_only),
819 fsparam_flag ("read_write", Opt_read_write),
820 fsparam_flag ("ro", Opt_read_only),
821 fsparam_flag ("rw", Opt_read_write),
822 {}
823};
824
825struct rbd_options {
826 int queue_depth;
827 int alloc_size;
828 unsigned long lock_timeout;
829 bool read_only;
830 bool lock_on_read;
831 bool exclusive;
832 bool trim;
833
834 u32 alloc_hint_flags; /* CEPH_OSD_OP_ALLOC_HINT_FLAG_* */
835};
836
837#define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_DEFAULT_RQ
838#define RBD_ALLOC_SIZE_DEFAULT (64 * 1024)
839#define RBD_LOCK_TIMEOUT_DEFAULT 0 /* no timeout */
840#define RBD_READ_ONLY_DEFAULT false
841#define RBD_LOCK_ON_READ_DEFAULT false
842#define RBD_EXCLUSIVE_DEFAULT false
843#define RBD_TRIM_DEFAULT true
844
845struct rbd_parse_opts_ctx {
846 struct rbd_spec *spec;
847 struct ceph_options *copts;
848 struct rbd_options *opts;
849};
850
851static char* obj_op_name(enum obj_operation_type op_type)
852{
853 switch (op_type) {
854 case OBJ_OP_READ:
855 return "read";
856 case OBJ_OP_WRITE:
857 return "write";
858 case OBJ_OP_DISCARD:
859 return "discard";
860 case OBJ_OP_ZEROOUT:
861 return "zeroout";
862 default:
863 return "???";
864 }
865}
866
867/*
868 * Destroy ceph client
869 *
870 * Caller must hold rbd_client_list_lock.
871 */
872static void rbd_client_release(struct kref *kref)
873{
874 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
875
876 dout("%s: rbdc %p\n", __func__, rbdc);
877 spin_lock(&rbd_client_list_lock);
878 list_del(&rbdc->node);
879 spin_unlock(&rbd_client_list_lock);
880
881 ceph_destroy_client(rbdc->client);
882 kfree(rbdc);
883}
884
885/*
886 * Drop reference to ceph client node. If it's not referenced anymore, release
887 * it.
888 */
889static void rbd_put_client(struct rbd_client *rbdc)
890{
891 if (rbdc)
892 kref_put(&rbdc->kref, rbd_client_release);
893}
894
895/*
896 * Get a ceph client with specific addr and configuration, if one does
897 * not exist create it. Either way, ceph_opts is consumed by this
898 * function.
899 */
900static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
901{
902 struct rbd_client *rbdc;
903 int ret;
904
905 mutex_lock(&client_mutex);
906 rbdc = rbd_client_find(ceph_opts);
907 if (rbdc) {
908 ceph_destroy_options(ceph_opts);
909
910 /*
911 * Using an existing client. Make sure ->pg_pools is up to
912 * date before we look up the pool id in do_rbd_add().
913 */
914 ret = ceph_wait_for_latest_osdmap(rbdc->client,
915 rbdc->client->options->mount_timeout);
916 if (ret) {
917 rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
918 rbd_put_client(rbdc);
919 rbdc = ERR_PTR(ret);
920 }
921 } else {
922 rbdc = rbd_client_create(ceph_opts);
923 }
924 mutex_unlock(&client_mutex);
925
926 return rbdc;
927}
928
929static bool rbd_image_format_valid(u32 image_format)
930{
931 return image_format == 1 || image_format == 2;
932}
933
934static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
935{
936 size_t size;
937 u32 snap_count;
938
939 /* The header has to start with the magic rbd header text */
940 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
941 return false;
942
943 /* The bio layer requires at least sector-sized I/O */
944
945 if (ondisk->options.order < SECTOR_SHIFT)
946 return false;
947
948 /* If we use u64 in a few spots we may be able to loosen this */
949
950 if (ondisk->options.order > 8 * sizeof (int) - 1)
951 return false;
952
953 /*
954 * The size of a snapshot header has to fit in a size_t, and
955 * that limits the number of snapshots.
956 */
957 snap_count = le32_to_cpu(ondisk->snap_count);
958 size = SIZE_MAX - sizeof (struct ceph_snap_context);
959 if (snap_count > size / sizeof (__le64))
960 return false;
961
962 /*
963 * Not only that, but the size of the entire the snapshot
964 * header must also be representable in a size_t.
965 */
966 size -= snap_count * sizeof (__le64);
967 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
968 return false;
969
970 return true;
971}
972
973/*
974 * returns the size of an object in the image
975 */
976static u32 rbd_obj_bytes(struct rbd_image_header *header)
977{
978 return 1U << header->obj_order;
979}
980
981static void rbd_init_layout(struct rbd_device *rbd_dev)
982{
983 if (rbd_dev->header.stripe_unit == 0 ||
984 rbd_dev->header.stripe_count == 0) {
985 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
986 rbd_dev->header.stripe_count = 1;
987 }
988
989 rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
990 rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
991 rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
992 rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
993 rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
994 RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
995}
996
997static void rbd_image_header_cleanup(struct rbd_image_header *header)
998{
999 kfree(header->object_prefix);
1000 ceph_put_snap_context(header->snapc);
1001 kfree(header->snap_sizes);
1002 kfree(header->snap_names);
1003
1004 memset(header, 0, sizeof(*header));
1005}
1006
1007/*
1008 * Fill an rbd image header with information from the given format 1
1009 * on-disk header.
1010 */
1011static int rbd_header_from_disk(struct rbd_image_header *header,
1012 struct rbd_image_header_ondisk *ondisk,
1013 bool first_time)
1014{
1015 struct ceph_snap_context *snapc;
1016 char *object_prefix = NULL;
1017 char *snap_names = NULL;
1018 u64 *snap_sizes = NULL;
1019 u32 snap_count;
1020 int ret = -ENOMEM;
1021 u32 i;
1022
1023 /* Allocate this now to avoid having to handle failure below */
1024
1025 if (first_time) {
1026 object_prefix = kstrndup(ondisk->object_prefix,
1027 sizeof(ondisk->object_prefix),
1028 GFP_KERNEL);
1029 if (!object_prefix)
1030 return -ENOMEM;
1031 }
1032
1033 /* Allocate the snapshot context and fill it in */
1034
1035 snap_count = le32_to_cpu(ondisk->snap_count);
1036 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1037 if (!snapc)
1038 goto out_err;
1039 snapc->seq = le64_to_cpu(ondisk->snap_seq);
1040 if (snap_count) {
1041 struct rbd_image_snap_ondisk *snaps;
1042 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1043
1044 /* We'll keep a copy of the snapshot names... */
1045
1046 if (snap_names_len > (u64)SIZE_MAX)
1047 goto out_2big;
1048 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1049 if (!snap_names)
1050 goto out_err;
1051
1052 /* ...as well as the array of their sizes. */
1053 snap_sizes = kmalloc_array(snap_count,
1054 sizeof(*header->snap_sizes),
1055 GFP_KERNEL);
1056 if (!snap_sizes)
1057 goto out_err;
1058
1059 /*
1060 * Copy the names, and fill in each snapshot's id
1061 * and size.
1062 *
1063 * Note that rbd_dev_v1_header_info() guarantees the
1064 * ondisk buffer we're working with has
1065 * snap_names_len bytes beyond the end of the
1066 * snapshot id array, this memcpy() is safe.
1067 */
1068 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1069 snaps = ondisk->snaps;
1070 for (i = 0; i < snap_count; i++) {
1071 snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1072 snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1073 }
1074 }
1075
1076 /* We won't fail any more, fill in the header */
1077
1078 if (first_time) {
1079 header->object_prefix = object_prefix;
1080 header->obj_order = ondisk->options.order;
1081 }
1082
1083 /* The remaining fields always get updated (when we refresh) */
1084
1085 header->image_size = le64_to_cpu(ondisk->image_size);
1086 header->snapc = snapc;
1087 header->snap_names = snap_names;
1088 header->snap_sizes = snap_sizes;
1089
1090 return 0;
1091out_2big:
1092 ret = -EIO;
1093out_err:
1094 kfree(snap_sizes);
1095 kfree(snap_names);
1096 ceph_put_snap_context(snapc);
1097 kfree(object_prefix);
1098
1099 return ret;
1100}
1101
1102static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1103{
1104 const char *snap_name;
1105
1106 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1107
1108 /* Skip over names until we find the one we are looking for */
1109
1110 snap_name = rbd_dev->header.snap_names;
1111 while (which--)
1112 snap_name += strlen(snap_name) + 1;
1113
1114 return kstrdup(snap_name, GFP_KERNEL);
1115}
1116
1117/*
1118 * Snapshot id comparison function for use with qsort()/bsearch().
1119 * Note that result is for snapshots in *descending* order.
1120 */
1121static int snapid_compare_reverse(const void *s1, const void *s2)
1122{
1123 u64 snap_id1 = *(u64 *)s1;
1124 u64 snap_id2 = *(u64 *)s2;
1125
1126 if (snap_id1 < snap_id2)
1127 return 1;
1128 return snap_id1 == snap_id2 ? 0 : -1;
1129}
1130
1131/*
1132 * Search a snapshot context to see if the given snapshot id is
1133 * present.
1134 *
1135 * Returns the position of the snapshot id in the array if it's found,
1136 * or BAD_SNAP_INDEX otherwise.
1137 *
1138 * Note: The snapshot array is in kept sorted (by the osd) in
1139 * reverse order, highest snapshot id first.
1140 */
1141static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1142{
1143 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1144 u64 *found;
1145
1146 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1147 sizeof (snap_id), snapid_compare_reverse);
1148
1149 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1150}
1151
1152static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1153 u64 snap_id)
1154{
1155 u32 which;
1156 const char *snap_name;
1157
1158 which = rbd_dev_snap_index(rbd_dev, snap_id);
1159 if (which == BAD_SNAP_INDEX)
1160 return ERR_PTR(-ENOENT);
1161
1162 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1163 return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1164}
1165
1166static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1167{
1168 if (snap_id == CEPH_NOSNAP)
1169 return RBD_SNAP_HEAD_NAME;
1170
1171 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1172 if (rbd_dev->image_format == 1)
1173 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1174
1175 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1176}
1177
1178static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1179 u64 *snap_size)
1180{
1181 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1182 if (snap_id == CEPH_NOSNAP) {
1183 *snap_size = rbd_dev->header.image_size;
1184 } else if (rbd_dev->image_format == 1) {
1185 u32 which;
1186
1187 which = rbd_dev_snap_index(rbd_dev, snap_id);
1188 if (which == BAD_SNAP_INDEX)
1189 return -ENOENT;
1190
1191 *snap_size = rbd_dev->header.snap_sizes[which];
1192 } else {
1193 u64 size = 0;
1194 int ret;
1195
1196 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1197 if (ret)
1198 return ret;
1199
1200 *snap_size = size;
1201 }
1202 return 0;
1203}
1204
1205static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1206{
1207 u64 snap_id = rbd_dev->spec->snap_id;
1208 u64 size = 0;
1209 int ret;
1210
1211 ret = rbd_snap_size(rbd_dev, snap_id, &size);
1212 if (ret)
1213 return ret;
1214
1215 rbd_dev->mapping.size = size;
1216 return 0;
1217}
1218
1219static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1220{
1221 rbd_dev->mapping.size = 0;
1222}
1223
1224static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1225{
1226 struct ceph_bio_iter it = *bio_pos;
1227
1228 ceph_bio_iter_advance(&it, off);
1229 ceph_bio_iter_advance_step(&it, bytes, ({
1230 memzero_bvec(&bv);
1231 }));
1232}
1233
1234static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1235{
1236 struct ceph_bvec_iter it = *bvec_pos;
1237
1238 ceph_bvec_iter_advance(&it, off);
1239 ceph_bvec_iter_advance_step(&it, bytes, ({
1240 memzero_bvec(&bv);
1241 }));
1242}
1243
1244/*
1245 * Zero a range in @obj_req data buffer defined by a bio (list) or
1246 * (private) bio_vec array.
1247 *
1248 * @off is relative to the start of the data buffer.
1249 */
1250static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1251 u32 bytes)
1252{
1253 dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes);
1254
1255 switch (obj_req->img_request->data_type) {
1256 case OBJ_REQUEST_BIO:
1257 zero_bios(&obj_req->bio_pos, off, bytes);
1258 break;
1259 case OBJ_REQUEST_BVECS:
1260 case OBJ_REQUEST_OWN_BVECS:
1261 zero_bvecs(&obj_req->bvec_pos, off, bytes);
1262 break;
1263 default:
1264 BUG();
1265 }
1266}
1267
1268static void rbd_obj_request_destroy(struct kref *kref);
1269static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1270{
1271 rbd_assert(obj_request != NULL);
1272 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1273 kref_read(&obj_request->kref));
1274 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1275}
1276
1277static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1278 struct rbd_obj_request *obj_request)
1279{
1280 rbd_assert(obj_request->img_request == NULL);
1281
1282 /* Image request now owns object's original reference */
1283 obj_request->img_request = img_request;
1284 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1285}
1286
1287static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1288 struct rbd_obj_request *obj_request)
1289{
1290 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1291 list_del(&obj_request->ex.oe_item);
1292 rbd_assert(obj_request->img_request == img_request);
1293 rbd_obj_request_put(obj_request);
1294}
1295
1296static void rbd_osd_submit(struct ceph_osd_request *osd_req)
1297{
1298 struct rbd_obj_request *obj_req = osd_req->r_priv;
1299
1300 dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n",
1301 __func__, osd_req, obj_req, obj_req->ex.oe_objno,
1302 obj_req->ex.oe_off, obj_req->ex.oe_len);
1303 ceph_osdc_start_request(osd_req->r_osdc, osd_req);
1304}
1305
1306/*
1307 * The default/initial value for all image request flags is 0. Each
1308 * is conditionally set to 1 at image request initialization time
1309 * and currently never change thereafter.
1310 */
1311static void img_request_layered_set(struct rbd_img_request *img_request)
1312{
1313 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1314}
1315
1316static bool img_request_layered_test(struct rbd_img_request *img_request)
1317{
1318 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1319}
1320
1321static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1322{
1323 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1324
1325 return !obj_req->ex.oe_off &&
1326 obj_req->ex.oe_len == rbd_dev->layout.object_size;
1327}
1328
1329static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1330{
1331 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1332
1333 return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1334 rbd_dev->layout.object_size;
1335}
1336
1337/*
1338 * Must be called after rbd_obj_calc_img_extents().
1339 */
1340static void rbd_obj_set_copyup_enabled(struct rbd_obj_request *obj_req)
1341{
1342 rbd_assert(obj_req->img_request->snapc);
1343
1344 if (obj_req->img_request->op_type == OBJ_OP_DISCARD) {
1345 dout("%s %p objno %llu discard\n", __func__, obj_req,
1346 obj_req->ex.oe_objno);
1347 return;
1348 }
1349
1350 if (!obj_req->num_img_extents) {
1351 dout("%s %p objno %llu not overlapping\n", __func__, obj_req,
1352 obj_req->ex.oe_objno);
1353 return;
1354 }
1355
1356 if (rbd_obj_is_entire(obj_req) &&
1357 !obj_req->img_request->snapc->num_snaps) {
1358 dout("%s %p objno %llu entire\n", __func__, obj_req,
1359 obj_req->ex.oe_objno);
1360 return;
1361 }
1362
1363 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
1364}
1365
1366static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1367{
1368 return ceph_file_extents_bytes(obj_req->img_extents,
1369 obj_req->num_img_extents);
1370}
1371
1372static bool rbd_img_is_write(struct rbd_img_request *img_req)
1373{
1374 switch (img_req->op_type) {
1375 case OBJ_OP_READ:
1376 return false;
1377 case OBJ_OP_WRITE:
1378 case OBJ_OP_DISCARD:
1379 case OBJ_OP_ZEROOUT:
1380 return true;
1381 default:
1382 BUG();
1383 }
1384}
1385
1386static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1387{
1388 struct rbd_obj_request *obj_req = osd_req->r_priv;
1389 int result;
1390
1391 dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1392 osd_req->r_result, obj_req);
1393
1394 /*
1395 * Writes aren't allowed to return a data payload. In some
1396 * guarded write cases (e.g. stat + zero on an empty object)
1397 * a stat response makes it through, but we don't care.
1398 */
1399 if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request))
1400 result = 0;
1401 else
1402 result = osd_req->r_result;
1403
1404 rbd_obj_handle_request(obj_req, result);
1405}
1406
1407static void rbd_osd_format_read(struct ceph_osd_request *osd_req)
1408{
1409 struct rbd_obj_request *obj_request = osd_req->r_priv;
1410 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1411 struct ceph_options *opt = rbd_dev->rbd_client->client->options;
1412
1413 osd_req->r_flags = CEPH_OSD_FLAG_READ | opt->read_from_replica;
1414 osd_req->r_snapid = obj_request->img_request->snap_id;
1415}
1416
1417static void rbd_osd_format_write(struct ceph_osd_request *osd_req)
1418{
1419 struct rbd_obj_request *obj_request = osd_req->r_priv;
1420
1421 osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1422 ktime_get_real_ts64(&osd_req->r_mtime);
1423 osd_req->r_data_offset = obj_request->ex.oe_off;
1424}
1425
1426static struct ceph_osd_request *
1427__rbd_obj_add_osd_request(struct rbd_obj_request *obj_req,
1428 struct ceph_snap_context *snapc, int num_ops)
1429{
1430 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1431 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1432 struct ceph_osd_request *req;
1433 const char *name_format = rbd_dev->image_format == 1 ?
1434 RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1435 int ret;
1436
1437 req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1438 if (!req)
1439 return ERR_PTR(-ENOMEM);
1440
1441 list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
1442 req->r_callback = rbd_osd_req_callback;
1443 req->r_priv = obj_req;
1444
1445 /*
1446 * Data objects may be stored in a separate pool, but always in
1447 * the same namespace in that pool as the header in its pool.
1448 */
1449 ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1450 req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1451
1452 ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1453 rbd_dev->header.object_prefix,
1454 obj_req->ex.oe_objno);
1455 if (ret)
1456 return ERR_PTR(ret);
1457
1458 return req;
1459}
1460
1461static struct ceph_osd_request *
1462rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops)
1463{
1464 rbd_assert(obj_req->img_request->snapc);
1465 return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc,
1466 num_ops);
1467}
1468
1469static struct rbd_obj_request *rbd_obj_request_create(void)
1470{
1471 struct rbd_obj_request *obj_request;
1472
1473 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1474 if (!obj_request)
1475 return NULL;
1476
1477 ceph_object_extent_init(&obj_request->ex);
1478 INIT_LIST_HEAD(&obj_request->osd_reqs);
1479 mutex_init(&obj_request->state_mutex);
1480 kref_init(&obj_request->kref);
1481
1482 dout("%s %p\n", __func__, obj_request);
1483 return obj_request;
1484}
1485
1486static void rbd_obj_request_destroy(struct kref *kref)
1487{
1488 struct rbd_obj_request *obj_request;
1489 struct ceph_osd_request *osd_req;
1490 u32 i;
1491
1492 obj_request = container_of(kref, struct rbd_obj_request, kref);
1493
1494 dout("%s: obj %p\n", __func__, obj_request);
1495
1496 while (!list_empty(&obj_request->osd_reqs)) {
1497 osd_req = list_first_entry(&obj_request->osd_reqs,
1498 struct ceph_osd_request, r_private_item);
1499 list_del_init(&osd_req->r_private_item);
1500 ceph_osdc_put_request(osd_req);
1501 }
1502
1503 switch (obj_request->img_request->data_type) {
1504 case OBJ_REQUEST_NODATA:
1505 case OBJ_REQUEST_BIO:
1506 case OBJ_REQUEST_BVECS:
1507 break; /* Nothing to do */
1508 case OBJ_REQUEST_OWN_BVECS:
1509 kfree(obj_request->bvec_pos.bvecs);
1510 break;
1511 default:
1512 BUG();
1513 }
1514
1515 kfree(obj_request->img_extents);
1516 if (obj_request->copyup_bvecs) {
1517 for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1518 if (obj_request->copyup_bvecs[i].bv_page)
1519 __free_page(obj_request->copyup_bvecs[i].bv_page);
1520 }
1521 kfree(obj_request->copyup_bvecs);
1522 }
1523
1524 kmem_cache_free(rbd_obj_request_cache, obj_request);
1525}
1526
1527/* It's OK to call this for a device with no parent */
1528
1529static void rbd_spec_put(struct rbd_spec *spec);
1530static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1531{
1532 rbd_dev_remove_parent(rbd_dev);
1533 rbd_spec_put(rbd_dev->parent_spec);
1534 rbd_dev->parent_spec = NULL;
1535 rbd_dev->parent_overlap = 0;
1536}
1537
1538/*
1539 * Parent image reference counting is used to determine when an
1540 * image's parent fields can be safely torn down--after there are no
1541 * more in-flight requests to the parent image. When the last
1542 * reference is dropped, cleaning them up is safe.
1543 */
1544static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1545{
1546 int counter;
1547
1548 if (!rbd_dev->parent_spec)
1549 return;
1550
1551 counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1552 if (counter > 0)
1553 return;
1554
1555 /* Last reference; clean up parent data structures */
1556
1557 if (!counter)
1558 rbd_dev_unparent(rbd_dev);
1559 else
1560 rbd_warn(rbd_dev, "parent reference underflow");
1561}
1562
1563/*
1564 * If an image has a non-zero parent overlap, get a reference to its
1565 * parent.
1566 *
1567 * Returns true if the rbd device has a parent with a non-zero
1568 * overlap and a reference for it was successfully taken, or
1569 * false otherwise.
1570 */
1571static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1572{
1573 int counter = 0;
1574
1575 if (!rbd_dev->parent_spec)
1576 return false;
1577
1578 if (rbd_dev->parent_overlap)
1579 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1580
1581 if (counter < 0)
1582 rbd_warn(rbd_dev, "parent reference overflow");
1583
1584 return counter > 0;
1585}
1586
1587static void rbd_img_request_init(struct rbd_img_request *img_request,
1588 struct rbd_device *rbd_dev,
1589 enum obj_operation_type op_type)
1590{
1591 memset(img_request, 0, sizeof(*img_request));
1592
1593 img_request->rbd_dev = rbd_dev;
1594 img_request->op_type = op_type;
1595
1596 INIT_LIST_HEAD(&img_request->lock_item);
1597 INIT_LIST_HEAD(&img_request->object_extents);
1598 mutex_init(&img_request->state_mutex);
1599}
1600
1601/*
1602 * Only snap_id is captured here, for reads. For writes, snapshot
1603 * context is captured in rbd_img_object_requests() after exclusive
1604 * lock is ensured to be held.
1605 */
1606static void rbd_img_capture_header(struct rbd_img_request *img_req)
1607{
1608 struct rbd_device *rbd_dev = img_req->rbd_dev;
1609
1610 lockdep_assert_held(&rbd_dev->header_rwsem);
1611
1612 if (!rbd_img_is_write(img_req))
1613 img_req->snap_id = rbd_dev->spec->snap_id;
1614
1615 if (rbd_dev_parent_get(rbd_dev))
1616 img_request_layered_set(img_req);
1617}
1618
1619static void rbd_img_request_destroy(struct rbd_img_request *img_request)
1620{
1621 struct rbd_obj_request *obj_request;
1622 struct rbd_obj_request *next_obj_request;
1623
1624 dout("%s: img %p\n", __func__, img_request);
1625
1626 WARN_ON(!list_empty(&img_request->lock_item));
1627 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1628 rbd_img_obj_request_del(img_request, obj_request);
1629
1630 if (img_request_layered_test(img_request))
1631 rbd_dev_parent_put(img_request->rbd_dev);
1632
1633 if (rbd_img_is_write(img_request))
1634 ceph_put_snap_context(img_request->snapc);
1635
1636 if (test_bit(IMG_REQ_CHILD, &img_request->flags))
1637 kmem_cache_free(rbd_img_request_cache, img_request);
1638}
1639
1640#define BITS_PER_OBJ 2
1641#define OBJS_PER_BYTE (BITS_PER_BYTE / BITS_PER_OBJ)
1642#define OBJ_MASK ((1 << BITS_PER_OBJ) - 1)
1643
1644static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno,
1645 u64 *index, u8 *shift)
1646{
1647 u32 off;
1648
1649 rbd_assert(objno < rbd_dev->object_map_size);
1650 *index = div_u64_rem(objno, OBJS_PER_BYTE, &off);
1651 *shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ;
1652}
1653
1654static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1655{
1656 u64 index;
1657 u8 shift;
1658
1659 lockdep_assert_held(&rbd_dev->object_map_lock);
1660 __rbd_object_map_index(rbd_dev, objno, &index, &shift);
1661 return (rbd_dev->object_map[index] >> shift) & OBJ_MASK;
1662}
1663
1664static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val)
1665{
1666 u64 index;
1667 u8 shift;
1668 u8 *p;
1669
1670 lockdep_assert_held(&rbd_dev->object_map_lock);
1671 rbd_assert(!(val & ~OBJ_MASK));
1672
1673 __rbd_object_map_index(rbd_dev, objno, &index, &shift);
1674 p = &rbd_dev->object_map[index];
1675 *p = (*p & ~(OBJ_MASK << shift)) | (val << shift);
1676}
1677
1678static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1679{
1680 u8 state;
1681
1682 spin_lock(&rbd_dev->object_map_lock);
1683 state = __rbd_object_map_get(rbd_dev, objno);
1684 spin_unlock(&rbd_dev->object_map_lock);
1685 return state;
1686}
1687
1688static bool use_object_map(struct rbd_device *rbd_dev)
1689{
1690 /*
1691 * An image mapped read-only can't use the object map -- it isn't
1692 * loaded because the header lock isn't acquired. Someone else can
1693 * write to the image and update the object map behind our back.
1694 *
1695 * A snapshot can't be written to, so using the object map is always
1696 * safe.
1697 */
1698 if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev))
1699 return false;
1700
1701 return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) &&
1702 !(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID));
1703}
1704
1705static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno)
1706{
1707 u8 state;
1708
1709 /* fall back to default logic if object map is disabled or invalid */
1710 if (!use_object_map(rbd_dev))
1711 return true;
1712
1713 state = rbd_object_map_get(rbd_dev, objno);
1714 return state != OBJECT_NONEXISTENT;
1715}
1716
1717static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id,
1718 struct ceph_object_id *oid)
1719{
1720 if (snap_id == CEPH_NOSNAP)
1721 ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX,
1722 rbd_dev->spec->image_id);
1723 else
1724 ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX,
1725 rbd_dev->spec->image_id, snap_id);
1726}
1727
1728static int rbd_object_map_lock(struct rbd_device *rbd_dev)
1729{
1730 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1731 CEPH_DEFINE_OID_ONSTACK(oid);
1732 u8 lock_type;
1733 char *lock_tag;
1734 struct ceph_locker *lockers;
1735 u32 num_lockers;
1736 bool broke_lock = false;
1737 int ret;
1738
1739 rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1740
1741again:
1742 ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1743 CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0);
1744 if (ret != -EBUSY || broke_lock) {
1745 if (ret == -EEXIST)
1746 ret = 0; /* already locked by myself */
1747 if (ret)
1748 rbd_warn(rbd_dev, "failed to lock object map: %d", ret);
1749 return ret;
1750 }
1751
1752 ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc,
1753 RBD_LOCK_NAME, &lock_type, &lock_tag,
1754 &lockers, &num_lockers);
1755 if (ret) {
1756 if (ret == -ENOENT)
1757 goto again;
1758
1759 rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret);
1760 return ret;
1761 }
1762
1763 kfree(lock_tag);
1764 if (num_lockers == 0)
1765 goto again;
1766
1767 rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu",
1768 ENTITY_NAME(lockers[0].id.name));
1769
1770 ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc,
1771 RBD_LOCK_NAME, lockers[0].id.cookie,
1772 &lockers[0].id.name);
1773 ceph_free_lockers(lockers, num_lockers);
1774 if (ret) {
1775 if (ret == -ENOENT)
1776 goto again;
1777
1778 rbd_warn(rbd_dev, "failed to break object map lock: %d", ret);
1779 return ret;
1780 }
1781
1782 broke_lock = true;
1783 goto again;
1784}
1785
1786static void rbd_object_map_unlock(struct rbd_device *rbd_dev)
1787{
1788 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1789 CEPH_DEFINE_OID_ONSTACK(oid);
1790 int ret;
1791
1792 rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1793
1794 ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1795 "");
1796 if (ret && ret != -ENOENT)
1797 rbd_warn(rbd_dev, "failed to unlock object map: %d", ret);
1798}
1799
1800static int decode_object_map_header(void **p, void *end, u64 *object_map_size)
1801{
1802 u8 struct_v;
1803 u32 struct_len;
1804 u32 header_len;
1805 void *header_end;
1806 int ret;
1807
1808 ceph_decode_32_safe(p, end, header_len, e_inval);
1809 header_end = *p + header_len;
1810
1811 ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v,
1812 &struct_len);
1813 if (ret)
1814 return ret;
1815
1816 ceph_decode_64_safe(p, end, *object_map_size, e_inval);
1817
1818 *p = header_end;
1819 return 0;
1820
1821e_inval:
1822 return -EINVAL;
1823}
1824
1825static int __rbd_object_map_load(struct rbd_device *rbd_dev)
1826{
1827 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1828 CEPH_DEFINE_OID_ONSTACK(oid);
1829 struct page **pages;
1830 void *p, *end;
1831 size_t reply_len;
1832 u64 num_objects;
1833 u64 object_map_bytes;
1834 u64 object_map_size;
1835 int num_pages;
1836 int ret;
1837
1838 rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size);
1839
1840 num_objects = ceph_get_num_objects(&rbd_dev->layout,
1841 rbd_dev->mapping.size);
1842 object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ,
1843 BITS_PER_BYTE);
1844 num_pages = calc_pages_for(0, object_map_bytes) + 1;
1845 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1846 if (IS_ERR(pages))
1847 return PTR_ERR(pages);
1848
1849 reply_len = num_pages * PAGE_SIZE;
1850 rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid);
1851 ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc,
1852 "rbd", "object_map_load", CEPH_OSD_FLAG_READ,
1853 NULL, 0, pages, &reply_len);
1854 if (ret)
1855 goto out;
1856
1857 p = page_address(pages[0]);
1858 end = p + min(reply_len, (size_t)PAGE_SIZE);
1859 ret = decode_object_map_header(&p, end, &object_map_size);
1860 if (ret)
1861 goto out;
1862
1863 if (object_map_size != num_objects) {
1864 rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu",
1865 object_map_size, num_objects);
1866 ret = -EINVAL;
1867 goto out;
1868 }
1869
1870 if (offset_in_page(p) + object_map_bytes > reply_len) {
1871 ret = -EINVAL;
1872 goto out;
1873 }
1874
1875 rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL);
1876 if (!rbd_dev->object_map) {
1877 ret = -ENOMEM;
1878 goto out;
1879 }
1880
1881 rbd_dev->object_map_size = object_map_size;
1882 ceph_copy_from_page_vector(pages, rbd_dev->object_map,
1883 offset_in_page(p), object_map_bytes);
1884
1885out:
1886 ceph_release_page_vector(pages, num_pages);
1887 return ret;
1888}
1889
1890static void rbd_object_map_free(struct rbd_device *rbd_dev)
1891{
1892 kvfree(rbd_dev->object_map);
1893 rbd_dev->object_map = NULL;
1894 rbd_dev->object_map_size = 0;
1895}
1896
1897static int rbd_object_map_load(struct rbd_device *rbd_dev)
1898{
1899 int ret;
1900
1901 ret = __rbd_object_map_load(rbd_dev);
1902 if (ret)
1903 return ret;
1904
1905 ret = rbd_dev_v2_get_flags(rbd_dev);
1906 if (ret) {
1907 rbd_object_map_free(rbd_dev);
1908 return ret;
1909 }
1910
1911 if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)
1912 rbd_warn(rbd_dev, "object map is invalid");
1913
1914 return 0;
1915}
1916
1917static int rbd_object_map_open(struct rbd_device *rbd_dev)
1918{
1919 int ret;
1920
1921 ret = rbd_object_map_lock(rbd_dev);
1922 if (ret)
1923 return ret;
1924
1925 ret = rbd_object_map_load(rbd_dev);
1926 if (ret) {
1927 rbd_object_map_unlock(rbd_dev);
1928 return ret;
1929 }
1930
1931 return 0;
1932}
1933
1934static void rbd_object_map_close(struct rbd_device *rbd_dev)
1935{
1936 rbd_object_map_free(rbd_dev);
1937 rbd_object_map_unlock(rbd_dev);
1938}
1939
1940/*
1941 * This function needs snap_id (or more precisely just something to
1942 * distinguish between HEAD and snapshot object maps), new_state and
1943 * current_state that were passed to rbd_object_map_update().
1944 *
1945 * To avoid allocating and stashing a context we piggyback on the OSD
1946 * request. A HEAD update has two ops (assert_locked). For new_state
1947 * and current_state we decode our own object_map_update op, encoded in
1948 * rbd_cls_object_map_update().
1949 */
1950static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req,
1951 struct ceph_osd_request *osd_req)
1952{
1953 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1954 struct ceph_osd_data *osd_data;
1955 u64 objno;
1956 u8 state, new_state, current_state;
1957 bool has_current_state;
1958 void *p;
1959
1960 if (osd_req->r_result)
1961 return osd_req->r_result;
1962
1963 /*
1964 * Nothing to do for a snapshot object map.
1965 */
1966 if (osd_req->r_num_ops == 1)
1967 return 0;
1968
1969 /*
1970 * Update in-memory HEAD object map.
1971 */
1972 rbd_assert(osd_req->r_num_ops == 2);
1973 osd_data = osd_req_op_data(osd_req, 1, cls, request_data);
1974 rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES);
1975
1976 p = page_address(osd_data->pages[0]);
1977 objno = ceph_decode_64(&p);
1978 rbd_assert(objno == obj_req->ex.oe_objno);
1979 rbd_assert(ceph_decode_64(&p) == objno + 1);
1980 new_state = ceph_decode_8(&p);
1981 has_current_state = ceph_decode_8(&p);
1982 if (has_current_state)
1983 current_state = ceph_decode_8(&p);
1984
1985 spin_lock(&rbd_dev->object_map_lock);
1986 state = __rbd_object_map_get(rbd_dev, objno);
1987 if (!has_current_state || current_state == state ||
1988 (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN))
1989 __rbd_object_map_set(rbd_dev, objno, new_state);
1990 spin_unlock(&rbd_dev->object_map_lock);
1991
1992 return 0;
1993}
1994
1995static void rbd_object_map_callback(struct ceph_osd_request *osd_req)
1996{
1997 struct rbd_obj_request *obj_req = osd_req->r_priv;
1998 int result;
1999
2000 dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
2001 osd_req->r_result, obj_req);
2002
2003 result = rbd_object_map_update_finish(obj_req, osd_req);
2004 rbd_obj_handle_request(obj_req, result);
2005}
2006
2007static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state)
2008{
2009 u8 state = rbd_object_map_get(rbd_dev, objno);
2010
2011 if (state == new_state ||
2012 (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) ||
2013 (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING))
2014 return false;
2015
2016 return true;
2017}
2018
2019static int rbd_cls_object_map_update(struct ceph_osd_request *req,
2020 int which, u64 objno, u8 new_state,
2021 const u8 *current_state)
2022{
2023 struct page **pages;
2024 void *p, *start;
2025 int ret;
2026
2027 ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update");
2028 if (ret)
2029 return ret;
2030
2031 pages = ceph_alloc_page_vector(1, GFP_NOIO);
2032 if (IS_ERR(pages))
2033 return PTR_ERR(pages);
2034
2035 p = start = page_address(pages[0]);
2036 ceph_encode_64(&p, objno);
2037 ceph_encode_64(&p, objno + 1);
2038 ceph_encode_8(&p, new_state);
2039 if (current_state) {
2040 ceph_encode_8(&p, 1);
2041 ceph_encode_8(&p, *current_state);
2042 } else {
2043 ceph_encode_8(&p, 0);
2044 }
2045
2046 osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0,
2047 false, true);
2048 return 0;
2049}
2050
2051/*
2052 * Return:
2053 * 0 - object map update sent
2054 * 1 - object map update isn't needed
2055 * <0 - error
2056 */
2057static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id,
2058 u8 new_state, const u8 *current_state)
2059{
2060 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2061 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2062 struct ceph_osd_request *req;
2063 int num_ops = 1;
2064 int which = 0;
2065 int ret;
2066
2067 if (snap_id == CEPH_NOSNAP) {
2068 if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state))
2069 return 1;
2070
2071 num_ops++; /* assert_locked */
2072 }
2073
2074 req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO);
2075 if (!req)
2076 return -ENOMEM;
2077
2078 list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
2079 req->r_callback = rbd_object_map_callback;
2080 req->r_priv = obj_req;
2081
2082 rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid);
2083 ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
2084 req->r_flags = CEPH_OSD_FLAG_WRITE;
2085 ktime_get_real_ts64(&req->r_mtime);
2086
2087 if (snap_id == CEPH_NOSNAP) {
2088 /*
2089 * Protect against possible race conditions during lock
2090 * ownership transitions.
2091 */
2092 ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME,
2093 CEPH_CLS_LOCK_EXCLUSIVE, "", "");
2094 if (ret)
2095 return ret;
2096 }
2097
2098 ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno,
2099 new_state, current_state);
2100 if (ret)
2101 return ret;
2102
2103 ret = ceph_osdc_alloc_messages(req, GFP_NOIO);
2104 if (ret)
2105 return ret;
2106
2107 ceph_osdc_start_request(osdc, req);
2108 return 0;
2109}
2110
2111static void prune_extents(struct ceph_file_extent *img_extents,
2112 u32 *num_img_extents, u64 overlap)
2113{
2114 u32 cnt = *num_img_extents;
2115
2116 /* drop extents completely beyond the overlap */
2117 while (cnt && img_extents[cnt - 1].fe_off >= overlap)
2118 cnt--;
2119
2120 if (cnt) {
2121 struct ceph_file_extent *ex = &img_extents[cnt - 1];
2122
2123 /* trim final overlapping extent */
2124 if (ex->fe_off + ex->fe_len > overlap)
2125 ex->fe_len = overlap - ex->fe_off;
2126 }
2127
2128 *num_img_extents = cnt;
2129}
2130
2131/*
2132 * Determine the byte range(s) covered by either just the object extent
2133 * or the entire object in the parent image.
2134 */
2135static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
2136 bool entire)
2137{
2138 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2139 int ret;
2140
2141 if (!rbd_dev->parent_overlap)
2142 return 0;
2143
2144 ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
2145 entire ? 0 : obj_req->ex.oe_off,
2146 entire ? rbd_dev->layout.object_size :
2147 obj_req->ex.oe_len,
2148 &obj_req->img_extents,
2149 &obj_req->num_img_extents);
2150 if (ret)
2151 return ret;
2152
2153 prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2154 rbd_dev->parent_overlap);
2155 return 0;
2156}
2157
2158static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which)
2159{
2160 struct rbd_obj_request *obj_req = osd_req->r_priv;
2161
2162 switch (obj_req->img_request->data_type) {
2163 case OBJ_REQUEST_BIO:
2164 osd_req_op_extent_osd_data_bio(osd_req, which,
2165 &obj_req->bio_pos,
2166 obj_req->ex.oe_len);
2167 break;
2168 case OBJ_REQUEST_BVECS:
2169 case OBJ_REQUEST_OWN_BVECS:
2170 rbd_assert(obj_req->bvec_pos.iter.bi_size ==
2171 obj_req->ex.oe_len);
2172 rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
2173 osd_req_op_extent_osd_data_bvec_pos(osd_req, which,
2174 &obj_req->bvec_pos);
2175 break;
2176 default:
2177 BUG();
2178 }
2179}
2180
2181static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which)
2182{
2183 struct page **pages;
2184
2185 /*
2186 * The response data for a STAT call consists of:
2187 * le64 length;
2188 * struct {
2189 * le32 tv_sec;
2190 * le32 tv_nsec;
2191 * } mtime;
2192 */
2193 pages = ceph_alloc_page_vector(1, GFP_NOIO);
2194 if (IS_ERR(pages))
2195 return PTR_ERR(pages);
2196
2197 osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0);
2198 osd_req_op_raw_data_in_pages(osd_req, which, pages,
2199 8 + sizeof(struct ceph_timespec),
2200 0, false, true);
2201 return 0;
2202}
2203
2204static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which,
2205 u32 bytes)
2206{
2207 struct rbd_obj_request *obj_req = osd_req->r_priv;
2208 int ret;
2209
2210 ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup");
2211 if (ret)
2212 return ret;
2213
2214 osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs,
2215 obj_req->copyup_bvec_count, bytes);
2216 return 0;
2217}
2218
2219static int rbd_obj_init_read(struct rbd_obj_request *obj_req)
2220{
2221 obj_req->read_state = RBD_OBJ_READ_START;
2222 return 0;
2223}
2224
2225static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2226 int which)
2227{
2228 struct rbd_obj_request *obj_req = osd_req->r_priv;
2229 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2230 u16 opcode;
2231
2232 if (!use_object_map(rbd_dev) ||
2233 !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) {
2234 osd_req_op_alloc_hint_init(osd_req, which++,
2235 rbd_dev->layout.object_size,
2236 rbd_dev->layout.object_size,
2237 rbd_dev->opts->alloc_hint_flags);
2238 }
2239
2240 if (rbd_obj_is_entire(obj_req))
2241 opcode = CEPH_OSD_OP_WRITEFULL;
2242 else
2243 opcode = CEPH_OSD_OP_WRITE;
2244
2245 osd_req_op_extent_init(osd_req, which, opcode,
2246 obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2247 rbd_osd_setup_data(osd_req, which);
2248}
2249
2250static int rbd_obj_init_write(struct rbd_obj_request *obj_req)
2251{
2252 int ret;
2253
2254 /* reverse map the entire object onto the parent */
2255 ret = rbd_obj_calc_img_extents(obj_req, true);
2256 if (ret)
2257 return ret;
2258
2259 obj_req->write_state = RBD_OBJ_WRITE_START;
2260 return 0;
2261}
2262
2263static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req)
2264{
2265 return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE :
2266 CEPH_OSD_OP_ZERO;
2267}
2268
2269static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req,
2270 int which)
2271{
2272 struct rbd_obj_request *obj_req = osd_req->r_priv;
2273
2274 if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) {
2275 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2276 osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0);
2277 } else {
2278 osd_req_op_extent_init(osd_req, which,
2279 truncate_or_zero_opcode(obj_req),
2280 obj_req->ex.oe_off, obj_req->ex.oe_len,
2281 0, 0);
2282 }
2283}
2284
2285static int rbd_obj_init_discard(struct rbd_obj_request *obj_req)
2286{
2287 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2288 u64 off, next_off;
2289 int ret;
2290
2291 /*
2292 * Align the range to alloc_size boundary and punt on discards
2293 * that are too small to free up any space.
2294 *
2295 * alloc_size == object_size && is_tail() is a special case for
2296 * filestore with filestore_punch_hole = false, needed to allow
2297 * truncate (in addition to delete).
2298 */
2299 if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size ||
2300 !rbd_obj_is_tail(obj_req)) {
2301 off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size);
2302 next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len,
2303 rbd_dev->opts->alloc_size);
2304 if (off >= next_off)
2305 return 1;
2306
2307 dout("%s %p %llu~%llu -> %llu~%llu\n", __func__,
2308 obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len,
2309 off, next_off - off);
2310 obj_req->ex.oe_off = off;
2311 obj_req->ex.oe_len = next_off - off;
2312 }
2313
2314 /* reverse map the entire object onto the parent */
2315 ret = rbd_obj_calc_img_extents(obj_req, true);
2316 if (ret)
2317 return ret;
2318
2319 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2320 if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents)
2321 obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2322
2323 obj_req->write_state = RBD_OBJ_WRITE_START;
2324 return 0;
2325}
2326
2327static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req,
2328 int which)
2329{
2330 struct rbd_obj_request *obj_req = osd_req->r_priv;
2331 u16 opcode;
2332
2333 if (rbd_obj_is_entire(obj_req)) {
2334 if (obj_req->num_img_extents) {
2335 if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2336 osd_req_op_init(osd_req, which++,
2337 CEPH_OSD_OP_CREATE, 0);
2338 opcode = CEPH_OSD_OP_TRUNCATE;
2339 } else {
2340 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2341 osd_req_op_init(osd_req, which++,
2342 CEPH_OSD_OP_DELETE, 0);
2343 opcode = 0;
2344 }
2345 } else {
2346 opcode = truncate_or_zero_opcode(obj_req);
2347 }
2348
2349 if (opcode)
2350 osd_req_op_extent_init(osd_req, which, opcode,
2351 obj_req->ex.oe_off, obj_req->ex.oe_len,
2352 0, 0);
2353}
2354
2355static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req)
2356{
2357 int ret;
2358
2359 /* reverse map the entire object onto the parent */
2360 ret = rbd_obj_calc_img_extents(obj_req, true);
2361 if (ret)
2362 return ret;
2363
2364 if (!obj_req->num_img_extents) {
2365 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2366 if (rbd_obj_is_entire(obj_req))
2367 obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2368 }
2369
2370 obj_req->write_state = RBD_OBJ_WRITE_START;
2371 return 0;
2372}
2373
2374static int count_write_ops(struct rbd_obj_request *obj_req)
2375{
2376 struct rbd_img_request *img_req = obj_req->img_request;
2377
2378 switch (img_req->op_type) {
2379 case OBJ_OP_WRITE:
2380 if (!use_object_map(img_req->rbd_dev) ||
2381 !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST))
2382 return 2; /* setallochint + write/writefull */
2383
2384 return 1; /* write/writefull */
2385 case OBJ_OP_DISCARD:
2386 return 1; /* delete/truncate/zero */
2387 case OBJ_OP_ZEROOUT:
2388 if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents &&
2389 !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2390 return 2; /* create + truncate */
2391
2392 return 1; /* delete/truncate/zero */
2393 default:
2394 BUG();
2395 }
2396}
2397
2398static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2399 int which)
2400{
2401 struct rbd_obj_request *obj_req = osd_req->r_priv;
2402
2403 switch (obj_req->img_request->op_type) {
2404 case OBJ_OP_WRITE:
2405 __rbd_osd_setup_write_ops(osd_req, which);
2406 break;
2407 case OBJ_OP_DISCARD:
2408 __rbd_osd_setup_discard_ops(osd_req, which);
2409 break;
2410 case OBJ_OP_ZEROOUT:
2411 __rbd_osd_setup_zeroout_ops(osd_req, which);
2412 break;
2413 default:
2414 BUG();
2415 }
2416}
2417
2418/*
2419 * Prune the list of object requests (adjust offset and/or length, drop
2420 * redundant requests). Prepare object request state machines and image
2421 * request state machine for execution.
2422 */
2423static int __rbd_img_fill_request(struct rbd_img_request *img_req)
2424{
2425 struct rbd_obj_request *obj_req, *next_obj_req;
2426 int ret;
2427
2428 for_each_obj_request_safe(img_req, obj_req, next_obj_req) {
2429 switch (img_req->op_type) {
2430 case OBJ_OP_READ:
2431 ret = rbd_obj_init_read(obj_req);
2432 break;
2433 case OBJ_OP_WRITE:
2434 ret = rbd_obj_init_write(obj_req);
2435 break;
2436 case OBJ_OP_DISCARD:
2437 ret = rbd_obj_init_discard(obj_req);
2438 break;
2439 case OBJ_OP_ZEROOUT:
2440 ret = rbd_obj_init_zeroout(obj_req);
2441 break;
2442 default:
2443 BUG();
2444 }
2445 if (ret < 0)
2446 return ret;
2447 if (ret > 0) {
2448 rbd_img_obj_request_del(img_req, obj_req);
2449 continue;
2450 }
2451 }
2452
2453 img_req->state = RBD_IMG_START;
2454 return 0;
2455}
2456
2457union rbd_img_fill_iter {
2458 struct ceph_bio_iter bio_iter;
2459 struct ceph_bvec_iter bvec_iter;
2460};
2461
2462struct rbd_img_fill_ctx {
2463 enum obj_request_type pos_type;
2464 union rbd_img_fill_iter *pos;
2465 union rbd_img_fill_iter iter;
2466 ceph_object_extent_fn_t set_pos_fn;
2467 ceph_object_extent_fn_t count_fn;
2468 ceph_object_extent_fn_t copy_fn;
2469};
2470
2471static struct ceph_object_extent *alloc_object_extent(void *arg)
2472{
2473 struct rbd_img_request *img_req = arg;
2474 struct rbd_obj_request *obj_req;
2475
2476 obj_req = rbd_obj_request_create();
2477 if (!obj_req)
2478 return NULL;
2479
2480 rbd_img_obj_request_add(img_req, obj_req);
2481 return &obj_req->ex;
2482}
2483
2484/*
2485 * While su != os && sc == 1 is technically not fancy (it's the same
2486 * layout as su == os && sc == 1), we can't use the nocopy path for it
2487 * because ->set_pos_fn() should be called only once per object.
2488 * ceph_file_to_extents() invokes action_fn once per stripe unit, so
2489 * treat su != os && sc == 1 as fancy.
2490 */
2491static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
2492{
2493 return l->stripe_unit != l->object_size;
2494}
2495
2496static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
2497 struct ceph_file_extent *img_extents,
2498 u32 num_img_extents,
2499 struct rbd_img_fill_ctx *fctx)
2500{
2501 u32 i;
2502 int ret;
2503
2504 img_req->data_type = fctx->pos_type;
2505
2506 /*
2507 * Create object requests and set each object request's starting
2508 * position in the provided bio (list) or bio_vec array.
2509 */
2510 fctx->iter = *fctx->pos;
2511 for (i = 0; i < num_img_extents; i++) {
2512 ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2513 img_extents[i].fe_off,
2514 img_extents[i].fe_len,
2515 &img_req->object_extents,
2516 alloc_object_extent, img_req,
2517 fctx->set_pos_fn, &fctx->iter);
2518 if (ret)
2519 return ret;
2520 }
2521
2522 return __rbd_img_fill_request(img_req);
2523}
2524
2525/*
2526 * Map a list of image extents to a list of object extents, create the
2527 * corresponding object requests (normally each to a different object,
2528 * but not always) and add them to @img_req. For each object request,
2529 * set up its data descriptor to point to the corresponding chunk(s) of
2530 * @fctx->pos data buffer.
2531 *
2532 * Because ceph_file_to_extents() will merge adjacent object extents
2533 * together, each object request's data descriptor may point to multiple
2534 * different chunks of @fctx->pos data buffer.
2535 *
2536 * @fctx->pos data buffer is assumed to be large enough.
2537 */
2538static int rbd_img_fill_request(struct rbd_img_request *img_req,
2539 struct ceph_file_extent *img_extents,
2540 u32 num_img_extents,
2541 struct rbd_img_fill_ctx *fctx)
2542{
2543 struct rbd_device *rbd_dev = img_req->rbd_dev;
2544 struct rbd_obj_request *obj_req;
2545 u32 i;
2546 int ret;
2547
2548 if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2549 !rbd_layout_is_fancy(&rbd_dev->layout))
2550 return rbd_img_fill_request_nocopy(img_req, img_extents,
2551 num_img_extents, fctx);
2552
2553 img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2554
2555 /*
2556 * Create object requests and determine ->bvec_count for each object
2557 * request. Note that ->bvec_count sum over all object requests may
2558 * be greater than the number of bio_vecs in the provided bio (list)
2559 * or bio_vec array because when mapped, those bio_vecs can straddle
2560 * stripe unit boundaries.
2561 */
2562 fctx->iter = *fctx->pos;
2563 for (i = 0; i < num_img_extents; i++) {
2564 ret = ceph_file_to_extents(&rbd_dev->layout,
2565 img_extents[i].fe_off,
2566 img_extents[i].fe_len,
2567 &img_req->object_extents,
2568 alloc_object_extent, img_req,
2569 fctx->count_fn, &fctx->iter);
2570 if (ret)
2571 return ret;
2572 }
2573
2574 for_each_obj_request(img_req, obj_req) {
2575 obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2576 sizeof(*obj_req->bvec_pos.bvecs),
2577 GFP_NOIO);
2578 if (!obj_req->bvec_pos.bvecs)
2579 return -ENOMEM;
2580 }
2581
2582 /*
2583 * Fill in each object request's private bio_vec array, splitting and
2584 * rearranging the provided bio_vecs in stripe unit chunks as needed.
2585 */
2586 fctx->iter = *fctx->pos;
2587 for (i = 0; i < num_img_extents; i++) {
2588 ret = ceph_iterate_extents(&rbd_dev->layout,
2589 img_extents[i].fe_off,
2590 img_extents[i].fe_len,
2591 &img_req->object_extents,
2592 fctx->copy_fn, &fctx->iter);
2593 if (ret)
2594 return ret;
2595 }
2596
2597 return __rbd_img_fill_request(img_req);
2598}
2599
2600static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2601 u64 off, u64 len)
2602{
2603 struct ceph_file_extent ex = { off, len };
2604 union rbd_img_fill_iter dummy = {};
2605 struct rbd_img_fill_ctx fctx = {
2606 .pos_type = OBJ_REQUEST_NODATA,
2607 .pos = &dummy,
2608 };
2609
2610 return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2611}
2612
2613static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2614{
2615 struct rbd_obj_request *obj_req =
2616 container_of(ex, struct rbd_obj_request, ex);
2617 struct ceph_bio_iter *it = arg;
2618
2619 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2620 obj_req->bio_pos = *it;
2621 ceph_bio_iter_advance(it, bytes);
2622}
2623
2624static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2625{
2626 struct rbd_obj_request *obj_req =
2627 container_of(ex, struct rbd_obj_request, ex);
2628 struct ceph_bio_iter *it = arg;
2629
2630 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2631 ceph_bio_iter_advance_step(it, bytes, ({
2632 obj_req->bvec_count++;
2633 }));
2634
2635}
2636
2637static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2638{
2639 struct rbd_obj_request *obj_req =
2640 container_of(ex, struct rbd_obj_request, ex);
2641 struct ceph_bio_iter *it = arg;
2642
2643 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2644 ceph_bio_iter_advance_step(it, bytes, ({
2645 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2646 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2647 }));
2648}
2649
2650static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2651 struct ceph_file_extent *img_extents,
2652 u32 num_img_extents,
2653 struct ceph_bio_iter *bio_pos)
2654{
2655 struct rbd_img_fill_ctx fctx = {
2656 .pos_type = OBJ_REQUEST_BIO,
2657 .pos = (union rbd_img_fill_iter *)bio_pos,
2658 .set_pos_fn = set_bio_pos,
2659 .count_fn = count_bio_bvecs,
2660 .copy_fn = copy_bio_bvecs,
2661 };
2662
2663 return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2664 &fctx);
2665}
2666
2667static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2668 u64 off, u64 len, struct bio *bio)
2669{
2670 struct ceph_file_extent ex = { off, len };
2671 struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2672
2673 return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2674}
2675
2676static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2677{
2678 struct rbd_obj_request *obj_req =
2679 container_of(ex, struct rbd_obj_request, ex);
2680 struct ceph_bvec_iter *it = arg;
2681
2682 obj_req->bvec_pos = *it;
2683 ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2684 ceph_bvec_iter_advance(it, bytes);
2685}
2686
2687static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2688{
2689 struct rbd_obj_request *obj_req =
2690 container_of(ex, struct rbd_obj_request, ex);
2691 struct ceph_bvec_iter *it = arg;
2692
2693 ceph_bvec_iter_advance_step(it, bytes, ({
2694 obj_req->bvec_count++;
2695 }));
2696}
2697
2698static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2699{
2700 struct rbd_obj_request *obj_req =
2701 container_of(ex, struct rbd_obj_request, ex);
2702 struct ceph_bvec_iter *it = arg;
2703
2704 ceph_bvec_iter_advance_step(it, bytes, ({
2705 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2706 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2707 }));
2708}
2709
2710static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2711 struct ceph_file_extent *img_extents,
2712 u32 num_img_extents,
2713 struct ceph_bvec_iter *bvec_pos)
2714{
2715 struct rbd_img_fill_ctx fctx = {
2716 .pos_type = OBJ_REQUEST_BVECS,
2717 .pos = (union rbd_img_fill_iter *)bvec_pos,
2718 .set_pos_fn = set_bvec_pos,
2719 .count_fn = count_bvecs,
2720 .copy_fn = copy_bvecs,
2721 };
2722
2723 return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2724 &fctx);
2725}
2726
2727static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2728 struct ceph_file_extent *img_extents,
2729 u32 num_img_extents,
2730 struct bio_vec *bvecs)
2731{
2732 struct ceph_bvec_iter it = {
2733 .bvecs = bvecs,
2734 .iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2735 num_img_extents) },
2736 };
2737
2738 return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2739 &it);
2740}
2741
2742static void rbd_img_handle_request_work(struct work_struct *work)
2743{
2744 struct rbd_img_request *img_req =
2745 container_of(work, struct rbd_img_request, work);
2746
2747 rbd_img_handle_request(img_req, img_req->work_result);
2748}
2749
2750static void rbd_img_schedule(struct rbd_img_request *img_req, int result)
2751{
2752 INIT_WORK(&img_req->work, rbd_img_handle_request_work);
2753 img_req->work_result = result;
2754 queue_work(rbd_wq, &img_req->work);
2755}
2756
2757static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req)
2758{
2759 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2760
2761 if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) {
2762 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2763 return true;
2764 }
2765
2766 dout("%s %p objno %llu assuming dne\n", __func__, obj_req,
2767 obj_req->ex.oe_objno);
2768 return false;
2769}
2770
2771static int rbd_obj_read_object(struct rbd_obj_request *obj_req)
2772{
2773 struct ceph_osd_request *osd_req;
2774 int ret;
2775
2776 osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1);
2777 if (IS_ERR(osd_req))
2778 return PTR_ERR(osd_req);
2779
2780 osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ,
2781 obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2782 rbd_osd_setup_data(osd_req, 0);
2783 rbd_osd_format_read(osd_req);
2784
2785 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2786 if (ret)
2787 return ret;
2788
2789 rbd_osd_submit(osd_req);
2790 return 0;
2791}
2792
2793static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2794{
2795 struct rbd_img_request *img_req = obj_req->img_request;
2796 struct rbd_device *parent = img_req->rbd_dev->parent;
2797 struct rbd_img_request *child_img_req;
2798 int ret;
2799
2800 child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2801 if (!child_img_req)
2802 return -ENOMEM;
2803
2804 rbd_img_request_init(child_img_req, parent, OBJ_OP_READ);
2805 __set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2806 child_img_req->obj_request = obj_req;
2807
2808 down_read(&parent->header_rwsem);
2809 rbd_img_capture_header(child_img_req);
2810 up_read(&parent->header_rwsem);
2811
2812 dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req,
2813 obj_req);
2814
2815 if (!rbd_img_is_write(img_req)) {
2816 switch (img_req->data_type) {
2817 case OBJ_REQUEST_BIO:
2818 ret = __rbd_img_fill_from_bio(child_img_req,
2819 obj_req->img_extents,
2820 obj_req->num_img_extents,
2821 &obj_req->bio_pos);
2822 break;
2823 case OBJ_REQUEST_BVECS:
2824 case OBJ_REQUEST_OWN_BVECS:
2825 ret = __rbd_img_fill_from_bvecs(child_img_req,
2826 obj_req->img_extents,
2827 obj_req->num_img_extents,
2828 &obj_req->bvec_pos);
2829 break;
2830 default:
2831 BUG();
2832 }
2833 } else {
2834 ret = rbd_img_fill_from_bvecs(child_img_req,
2835 obj_req->img_extents,
2836 obj_req->num_img_extents,
2837 obj_req->copyup_bvecs);
2838 }
2839 if (ret) {
2840 rbd_img_request_destroy(child_img_req);
2841 return ret;
2842 }
2843
2844 /* avoid parent chain recursion */
2845 rbd_img_schedule(child_img_req, 0);
2846 return 0;
2847}
2848
2849static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result)
2850{
2851 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2852 int ret;
2853
2854again:
2855 switch (obj_req->read_state) {
2856 case RBD_OBJ_READ_START:
2857 rbd_assert(!*result);
2858
2859 if (!rbd_obj_may_exist(obj_req)) {
2860 *result = -ENOENT;
2861 obj_req->read_state = RBD_OBJ_READ_OBJECT;
2862 goto again;
2863 }
2864
2865 ret = rbd_obj_read_object(obj_req);
2866 if (ret) {
2867 *result = ret;
2868 return true;
2869 }
2870 obj_req->read_state = RBD_OBJ_READ_OBJECT;
2871 return false;
2872 case RBD_OBJ_READ_OBJECT:
2873 if (*result == -ENOENT && rbd_dev->parent_overlap) {
2874 /* reverse map this object extent onto the parent */
2875 ret = rbd_obj_calc_img_extents(obj_req, false);
2876 if (ret) {
2877 *result = ret;
2878 return true;
2879 }
2880 if (obj_req->num_img_extents) {
2881 ret = rbd_obj_read_from_parent(obj_req);
2882 if (ret) {
2883 *result = ret;
2884 return true;
2885 }
2886 obj_req->read_state = RBD_OBJ_READ_PARENT;
2887 return false;
2888 }
2889 }
2890
2891 /*
2892 * -ENOENT means a hole in the image -- zero-fill the entire
2893 * length of the request. A short read also implies zero-fill
2894 * to the end of the request.
2895 */
2896 if (*result == -ENOENT) {
2897 rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len);
2898 *result = 0;
2899 } else if (*result >= 0) {
2900 if (*result < obj_req->ex.oe_len)
2901 rbd_obj_zero_range(obj_req, *result,
2902 obj_req->ex.oe_len - *result);
2903 else
2904 rbd_assert(*result == obj_req->ex.oe_len);
2905 *result = 0;
2906 }
2907 return true;
2908 case RBD_OBJ_READ_PARENT:
2909 /*
2910 * The parent image is read only up to the overlap -- zero-fill
2911 * from the overlap to the end of the request.
2912 */
2913 if (!*result) {
2914 u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req);
2915
2916 if (obj_overlap < obj_req->ex.oe_len)
2917 rbd_obj_zero_range(obj_req, obj_overlap,
2918 obj_req->ex.oe_len - obj_overlap);
2919 }
2920 return true;
2921 default:
2922 BUG();
2923 }
2924}
2925
2926static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req)
2927{
2928 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2929
2930 if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno))
2931 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2932
2933 if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) &&
2934 (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) {
2935 dout("%s %p noop for nonexistent\n", __func__, obj_req);
2936 return true;
2937 }
2938
2939 return false;
2940}
2941
2942/*
2943 * Return:
2944 * 0 - object map update sent
2945 * 1 - object map update isn't needed
2946 * <0 - error
2947 */
2948static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req)
2949{
2950 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2951 u8 new_state;
2952
2953 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
2954 return 1;
2955
2956 if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
2957 new_state = OBJECT_PENDING;
2958 else
2959 new_state = OBJECT_EXISTS;
2960
2961 return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL);
2962}
2963
2964static int rbd_obj_write_object(struct rbd_obj_request *obj_req)
2965{
2966 struct ceph_osd_request *osd_req;
2967 int num_ops = count_write_ops(obj_req);
2968 int which = 0;
2969 int ret;
2970
2971 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)
2972 num_ops++; /* stat */
2973
2974 osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
2975 if (IS_ERR(osd_req))
2976 return PTR_ERR(osd_req);
2977
2978 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
2979 ret = rbd_osd_setup_stat(osd_req, which++);
2980 if (ret)
2981 return ret;
2982 }
2983
2984 rbd_osd_setup_write_ops(osd_req, which);
2985 rbd_osd_format_write(osd_req);
2986
2987 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2988 if (ret)
2989 return ret;
2990
2991 rbd_osd_submit(osd_req);
2992 return 0;
2993}
2994
2995/*
2996 * copyup_bvecs pages are never highmem pages
2997 */
2998static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
2999{
3000 struct ceph_bvec_iter it = {
3001 .bvecs = bvecs,
3002 .iter = { .bi_size = bytes },
3003 };
3004
3005 ceph_bvec_iter_advance_step(&it, bytes, ({
3006 if (memchr_inv(bvec_virt(&bv), 0, bv.bv_len))
3007 return false;
3008 }));
3009 return true;
3010}
3011
3012#define MODS_ONLY U32_MAX
3013
3014static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req,
3015 u32 bytes)
3016{
3017 struct ceph_osd_request *osd_req;
3018 int ret;
3019
3020 dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3021 rbd_assert(bytes > 0 && bytes != MODS_ONLY);
3022
3023 osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1);
3024 if (IS_ERR(osd_req))
3025 return PTR_ERR(osd_req);
3026
3027 ret = rbd_osd_setup_copyup(osd_req, 0, bytes);
3028 if (ret)
3029 return ret;
3030
3031 rbd_osd_format_write(osd_req);
3032
3033 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3034 if (ret)
3035 return ret;
3036
3037 rbd_osd_submit(osd_req);
3038 return 0;
3039}
3040
3041static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req,
3042 u32 bytes)
3043{
3044 struct ceph_osd_request *osd_req;
3045 int num_ops = count_write_ops(obj_req);
3046 int which = 0;
3047 int ret;
3048
3049 dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3050
3051 if (bytes != MODS_ONLY)
3052 num_ops++; /* copyup */
3053
3054 osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3055 if (IS_ERR(osd_req))
3056 return PTR_ERR(osd_req);
3057
3058 if (bytes != MODS_ONLY) {
3059 ret = rbd_osd_setup_copyup(osd_req, which++, bytes);
3060 if (ret)
3061 return ret;
3062 }
3063
3064 rbd_osd_setup_write_ops(osd_req, which);
3065 rbd_osd_format_write(osd_req);
3066
3067 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3068 if (ret)
3069 return ret;
3070
3071 rbd_osd_submit(osd_req);
3072 return 0;
3073}
3074
3075static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
3076{
3077 u32 i;
3078
3079 rbd_assert(!obj_req->copyup_bvecs);
3080 obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
3081 obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
3082 sizeof(*obj_req->copyup_bvecs),
3083 GFP_NOIO);
3084 if (!obj_req->copyup_bvecs)
3085 return -ENOMEM;
3086
3087 for (i = 0; i < obj_req->copyup_bvec_count; i++) {
3088 unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
3089 struct page *page = alloc_page(GFP_NOIO);
3090
3091 if (!page)
3092 return -ENOMEM;
3093
3094 bvec_set_page(&obj_req->copyup_bvecs[i], page, len, 0);
3095 obj_overlap -= len;
3096 }
3097
3098 rbd_assert(!obj_overlap);
3099 return 0;
3100}
3101
3102/*
3103 * The target object doesn't exist. Read the data for the entire
3104 * target object up to the overlap point (if any) from the parent,
3105 * so we can use it for a copyup.
3106 */
3107static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req)
3108{
3109 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3110 int ret;
3111
3112 rbd_assert(obj_req->num_img_extents);
3113 prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
3114 rbd_dev->parent_overlap);
3115 if (!obj_req->num_img_extents) {
3116 /*
3117 * The overlap has become 0 (most likely because the
3118 * image has been flattened). Re-submit the original write
3119 * request -- pass MODS_ONLY since the copyup isn't needed
3120 * anymore.
3121 */
3122 return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY);
3123 }
3124
3125 ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
3126 if (ret)
3127 return ret;
3128
3129 return rbd_obj_read_from_parent(obj_req);
3130}
3131
3132static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req)
3133{
3134 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3135 struct ceph_snap_context *snapc = obj_req->img_request->snapc;
3136 u8 new_state;
3137 u32 i;
3138 int ret;
3139
3140 rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3141
3142 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3143 return;
3144
3145 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3146 return;
3147
3148 for (i = 0; i < snapc->num_snaps; i++) {
3149 if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) &&
3150 i + 1 < snapc->num_snaps)
3151 new_state = OBJECT_EXISTS_CLEAN;
3152 else
3153 new_state = OBJECT_EXISTS;
3154
3155 ret = rbd_object_map_update(obj_req, snapc->snaps[i],
3156 new_state, NULL);
3157 if (ret < 0) {
3158 obj_req->pending.result = ret;
3159 return;
3160 }
3161
3162 rbd_assert(!ret);
3163 obj_req->pending.num_pending++;
3164 }
3165}
3166
3167static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req)
3168{
3169 u32 bytes = rbd_obj_img_extents_bytes(obj_req);
3170 int ret;
3171
3172 rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3173
3174 /*
3175 * Only send non-zero copyup data to save some I/O and network
3176 * bandwidth -- zero copyup data is equivalent to the object not
3177 * existing.
3178 */
3179 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3180 bytes = 0;
3181
3182 if (obj_req->img_request->snapc->num_snaps && bytes > 0) {
3183 /*
3184 * Send a copyup request with an empty snapshot context to
3185 * deep-copyup the object through all existing snapshots.
3186 * A second request with the current snapshot context will be
3187 * sent for the actual modification.
3188 */
3189 ret = rbd_obj_copyup_empty_snapc(obj_req, bytes);
3190 if (ret) {
3191 obj_req->pending.result = ret;
3192 return;
3193 }
3194
3195 obj_req->pending.num_pending++;
3196 bytes = MODS_ONLY;
3197 }
3198
3199 ret = rbd_obj_copyup_current_snapc(obj_req, bytes);
3200 if (ret) {
3201 obj_req->pending.result = ret;
3202 return;
3203 }
3204
3205 obj_req->pending.num_pending++;
3206}
3207
3208static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result)
3209{
3210 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3211 int ret;
3212
3213again:
3214 switch (obj_req->copyup_state) {
3215 case RBD_OBJ_COPYUP_START:
3216 rbd_assert(!*result);
3217
3218 ret = rbd_obj_copyup_read_parent(obj_req);
3219 if (ret) {
3220 *result = ret;
3221 return true;
3222 }
3223 if (obj_req->num_img_extents)
3224 obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT;
3225 else
3226 obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3227 return false;
3228 case RBD_OBJ_COPYUP_READ_PARENT:
3229 if (*result)
3230 return true;
3231
3232 if (is_zero_bvecs(obj_req->copyup_bvecs,
3233 rbd_obj_img_extents_bytes(obj_req))) {
3234 dout("%s %p detected zeros\n", __func__, obj_req);
3235 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS;
3236 }
3237
3238 rbd_obj_copyup_object_maps(obj_req);
3239 if (!obj_req->pending.num_pending) {
3240 *result = obj_req->pending.result;
3241 obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS;
3242 goto again;
3243 }
3244 obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS;
3245 return false;
3246 case __RBD_OBJ_COPYUP_OBJECT_MAPS:
3247 if (!pending_result_dec(&obj_req->pending, result))
3248 return false;
3249 fallthrough;
3250 case RBD_OBJ_COPYUP_OBJECT_MAPS:
3251 if (*result) {
3252 rbd_warn(rbd_dev, "snap object map update failed: %d",
3253 *result);
3254 return true;
3255 }
3256
3257 rbd_obj_copyup_write_object(obj_req);
3258 if (!obj_req->pending.num_pending) {
3259 *result = obj_req->pending.result;
3260 obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3261 goto again;
3262 }
3263 obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT;
3264 return false;
3265 case __RBD_OBJ_COPYUP_WRITE_OBJECT:
3266 if (!pending_result_dec(&obj_req->pending, result))
3267 return false;
3268 fallthrough;
3269 case RBD_OBJ_COPYUP_WRITE_OBJECT:
3270 return true;
3271 default:
3272 BUG();
3273 }
3274}
3275
3276/*
3277 * Return:
3278 * 0 - object map update sent
3279 * 1 - object map update isn't needed
3280 * <0 - error
3281 */
3282static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req)
3283{
3284 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3285 u8 current_state = OBJECT_PENDING;
3286
3287 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3288 return 1;
3289
3290 if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION))
3291 return 1;
3292
3293 return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT,
3294 ¤t_state);
3295}
3296
3297static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result)
3298{
3299 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3300 int ret;
3301
3302again:
3303 switch (obj_req->write_state) {
3304 case RBD_OBJ_WRITE_START:
3305 rbd_assert(!*result);
3306
3307 rbd_obj_set_copyup_enabled(obj_req);
3308 if (rbd_obj_write_is_noop(obj_req))
3309 return true;
3310
3311 ret = rbd_obj_write_pre_object_map(obj_req);
3312 if (ret < 0) {
3313 *result = ret;
3314 return true;
3315 }
3316 obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP;
3317 if (ret > 0)
3318 goto again;
3319 return false;
3320 case RBD_OBJ_WRITE_PRE_OBJECT_MAP:
3321 if (*result) {
3322 rbd_warn(rbd_dev, "pre object map update failed: %d",
3323 *result);
3324 return true;
3325 }
3326 ret = rbd_obj_write_object(obj_req);
3327 if (ret) {
3328 *result = ret;
3329 return true;
3330 }
3331 obj_req->write_state = RBD_OBJ_WRITE_OBJECT;
3332 return false;
3333 case RBD_OBJ_WRITE_OBJECT:
3334 if (*result == -ENOENT) {
3335 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3336 *result = 0;
3337 obj_req->copyup_state = RBD_OBJ_COPYUP_START;
3338 obj_req->write_state = __RBD_OBJ_WRITE_COPYUP;
3339 goto again;
3340 }
3341 /*
3342 * On a non-existent object:
3343 * delete - -ENOENT, truncate/zero - 0
3344 */
3345 if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3346 *result = 0;
3347 }
3348 if (*result)
3349 return true;
3350
3351 obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
3352 goto again;
3353 case __RBD_OBJ_WRITE_COPYUP:
3354 if (!rbd_obj_advance_copyup(obj_req, result))
3355 return false;
3356 fallthrough;
3357 case RBD_OBJ_WRITE_COPYUP:
3358 if (*result) {
3359 rbd_warn(rbd_dev, "copyup failed: %d", *result);
3360 return true;
3361 }
3362 ret = rbd_obj_write_post_object_map(obj_req);
3363 if (ret < 0) {
3364 *result = ret;
3365 return true;
3366 }
3367 obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP;
3368 if (ret > 0)
3369 goto again;
3370 return false;
3371 case RBD_OBJ_WRITE_POST_OBJECT_MAP:
3372 if (*result)
3373 rbd_warn(rbd_dev, "post object map update failed: %d",
3374 *result);
3375 return true;
3376 default:
3377 BUG();
3378 }
3379}
3380
3381/*
3382 * Return true if @obj_req is completed.
3383 */
3384static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req,
3385 int *result)
3386{
3387 struct rbd_img_request *img_req = obj_req->img_request;
3388 struct rbd_device *rbd_dev = img_req->rbd_dev;
3389 bool done;
3390
3391 mutex_lock(&obj_req->state_mutex);
3392 if (!rbd_img_is_write(img_req))
3393 done = rbd_obj_advance_read(obj_req, result);
3394 else
3395 done = rbd_obj_advance_write(obj_req, result);
3396 mutex_unlock(&obj_req->state_mutex);
3397
3398 if (done && *result) {
3399 rbd_assert(*result < 0);
3400 rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d",
3401 obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
3402 obj_req->ex.oe_off, obj_req->ex.oe_len, *result);
3403 }
3404 return done;
3405}
3406
3407/*
3408 * This is open-coded in rbd_img_handle_request() to avoid parent chain
3409 * recursion.
3410 */
3411static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result)
3412{
3413 if (__rbd_obj_handle_request(obj_req, &result))
3414 rbd_img_handle_request(obj_req->img_request, result);
3415}
3416
3417static bool need_exclusive_lock(struct rbd_img_request *img_req)
3418{
3419 struct rbd_device *rbd_dev = img_req->rbd_dev;
3420
3421 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK))
3422 return false;
3423
3424 if (rbd_is_ro(rbd_dev))
3425 return false;
3426
3427 rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
3428 if (rbd_dev->opts->lock_on_read ||
3429 (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3430 return true;
3431
3432 return rbd_img_is_write(img_req);
3433}
3434
3435static bool rbd_lock_add_request(struct rbd_img_request *img_req)
3436{
3437 struct rbd_device *rbd_dev = img_req->rbd_dev;
3438 bool locked;
3439
3440 lockdep_assert_held(&rbd_dev->lock_rwsem);
3441 locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED;
3442 spin_lock(&rbd_dev->lock_lists_lock);
3443 rbd_assert(list_empty(&img_req->lock_item));
3444 if (!locked)
3445 list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list);
3446 else
3447 list_add_tail(&img_req->lock_item, &rbd_dev->running_list);
3448 spin_unlock(&rbd_dev->lock_lists_lock);
3449 return locked;
3450}
3451
3452static void rbd_lock_del_request(struct rbd_img_request *img_req)
3453{
3454 struct rbd_device *rbd_dev = img_req->rbd_dev;
3455 bool need_wakeup = false;
3456
3457 lockdep_assert_held(&rbd_dev->lock_rwsem);
3458 spin_lock(&rbd_dev->lock_lists_lock);
3459 if (!list_empty(&img_req->lock_item)) {
3460 rbd_assert(!list_empty(&rbd_dev->running_list));
3461 list_del_init(&img_req->lock_item);
3462 need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_QUIESCING &&
3463 list_empty(&rbd_dev->running_list));
3464 }
3465 spin_unlock(&rbd_dev->lock_lists_lock);
3466 if (need_wakeup)
3467 complete(&rbd_dev->quiescing_wait);
3468}
3469
3470static int rbd_img_exclusive_lock(struct rbd_img_request *img_req)
3471{
3472 struct rbd_device *rbd_dev = img_req->rbd_dev;
3473
3474 if (!need_exclusive_lock(img_req))
3475 return 1;
3476
3477 if (rbd_lock_add_request(img_req))
3478 return 1;
3479
3480 /*
3481 * Note the use of mod_delayed_work() in rbd_acquire_lock()
3482 * and cancel_delayed_work() in wake_lock_waiters().
3483 */
3484 dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3485 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3486 return 0;
3487}
3488
3489static void rbd_img_object_requests(struct rbd_img_request *img_req)
3490{
3491 struct rbd_device *rbd_dev = img_req->rbd_dev;
3492 struct rbd_obj_request *obj_req;
3493
3494 rbd_assert(!img_req->pending.result && !img_req->pending.num_pending);
3495 rbd_assert(!need_exclusive_lock(img_req) ||
3496 __rbd_is_lock_owner(rbd_dev));
3497
3498 if (rbd_img_is_write(img_req)) {
3499 rbd_assert(!img_req->snapc);
3500 down_read(&rbd_dev->header_rwsem);
3501 img_req->snapc = ceph_get_snap_context(rbd_dev->header.snapc);
3502 up_read(&rbd_dev->header_rwsem);
3503 }
3504
3505 for_each_obj_request(img_req, obj_req) {
3506 int result = 0;
3507
3508 if (__rbd_obj_handle_request(obj_req, &result)) {
3509 if (result) {
3510 img_req->pending.result = result;
3511 return;
3512 }
3513 } else {
3514 img_req->pending.num_pending++;
3515 }
3516 }
3517}
3518
3519static bool rbd_img_advance(struct rbd_img_request *img_req, int *result)
3520{
3521 int ret;
3522
3523again:
3524 switch (img_req->state) {
3525 case RBD_IMG_START:
3526 rbd_assert(!*result);
3527
3528 ret = rbd_img_exclusive_lock(img_req);
3529 if (ret < 0) {
3530 *result = ret;
3531 return true;
3532 }
3533 img_req->state = RBD_IMG_EXCLUSIVE_LOCK;
3534 if (ret > 0)
3535 goto again;
3536 return false;
3537 case RBD_IMG_EXCLUSIVE_LOCK:
3538 if (*result)
3539 return true;
3540
3541 rbd_img_object_requests(img_req);
3542 if (!img_req->pending.num_pending) {
3543 *result = img_req->pending.result;
3544 img_req->state = RBD_IMG_OBJECT_REQUESTS;
3545 goto again;
3546 }
3547 img_req->state = __RBD_IMG_OBJECT_REQUESTS;
3548 return false;
3549 case __RBD_IMG_OBJECT_REQUESTS:
3550 if (!pending_result_dec(&img_req->pending, result))
3551 return false;
3552 fallthrough;
3553 case RBD_IMG_OBJECT_REQUESTS:
3554 return true;
3555 default:
3556 BUG();
3557 }
3558}
3559
3560/*
3561 * Return true if @img_req is completed.
3562 */
3563static bool __rbd_img_handle_request(struct rbd_img_request *img_req,
3564 int *result)
3565{
3566 struct rbd_device *rbd_dev = img_req->rbd_dev;
3567 bool done;
3568
3569 if (need_exclusive_lock(img_req)) {
3570 down_read(&rbd_dev->lock_rwsem);
3571 mutex_lock(&img_req->state_mutex);
3572 done = rbd_img_advance(img_req, result);
3573 if (done)
3574 rbd_lock_del_request(img_req);
3575 mutex_unlock(&img_req->state_mutex);
3576 up_read(&rbd_dev->lock_rwsem);
3577 } else {
3578 mutex_lock(&img_req->state_mutex);
3579 done = rbd_img_advance(img_req, result);
3580 mutex_unlock(&img_req->state_mutex);
3581 }
3582
3583 if (done && *result) {
3584 rbd_assert(*result < 0);
3585 rbd_warn(rbd_dev, "%s%s result %d",
3586 test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "",
3587 obj_op_name(img_req->op_type), *result);
3588 }
3589 return done;
3590}
3591
3592static void rbd_img_handle_request(struct rbd_img_request *img_req, int result)
3593{
3594again:
3595 if (!__rbd_img_handle_request(img_req, &result))
3596 return;
3597
3598 if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
3599 struct rbd_obj_request *obj_req = img_req->obj_request;
3600
3601 rbd_img_request_destroy(img_req);
3602 if (__rbd_obj_handle_request(obj_req, &result)) {
3603 img_req = obj_req->img_request;
3604 goto again;
3605 }
3606 } else {
3607 struct request *rq = blk_mq_rq_from_pdu(img_req);
3608
3609 rbd_img_request_destroy(img_req);
3610 blk_mq_end_request(rq, errno_to_blk_status(result));
3611 }
3612}
3613
3614static const struct rbd_client_id rbd_empty_cid;
3615
3616static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3617 const struct rbd_client_id *rhs)
3618{
3619 return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3620}
3621
3622static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3623{
3624 struct rbd_client_id cid;
3625
3626 mutex_lock(&rbd_dev->watch_mutex);
3627 cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3628 cid.handle = rbd_dev->watch_cookie;
3629 mutex_unlock(&rbd_dev->watch_mutex);
3630 return cid;
3631}
3632
3633/*
3634 * lock_rwsem must be held for write
3635 */
3636static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3637 const struct rbd_client_id *cid)
3638{
3639 dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3640 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3641 cid->gid, cid->handle);
3642 rbd_dev->owner_cid = *cid; /* struct */
3643}
3644
3645static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3646{
3647 mutex_lock(&rbd_dev->watch_mutex);
3648 sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3649 mutex_unlock(&rbd_dev->watch_mutex);
3650}
3651
3652static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3653{
3654 struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3655
3656 rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3657 strcpy(rbd_dev->lock_cookie, cookie);
3658 rbd_set_owner_cid(rbd_dev, &cid);
3659 queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3660}
3661
3662/*
3663 * lock_rwsem must be held for write
3664 */
3665static int rbd_lock(struct rbd_device *rbd_dev)
3666{
3667 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3668 char cookie[32];
3669 int ret;
3670
3671 WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3672 rbd_dev->lock_cookie[0] != '\0');
3673
3674 format_lock_cookie(rbd_dev, cookie);
3675 ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3676 RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3677 RBD_LOCK_TAG, "", 0);
3678 if (ret && ret != -EEXIST)
3679 return ret;
3680
3681 __rbd_lock(rbd_dev, cookie);
3682 return 0;
3683}
3684
3685/*
3686 * lock_rwsem must be held for write
3687 */
3688static void rbd_unlock(struct rbd_device *rbd_dev)
3689{
3690 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3691 int ret;
3692
3693 WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3694 rbd_dev->lock_cookie[0] == '\0');
3695
3696 ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3697 RBD_LOCK_NAME, rbd_dev->lock_cookie);
3698 if (ret && ret != -ENOENT)
3699 rbd_warn(rbd_dev, "failed to unlock header: %d", ret);
3700
3701 /* treat errors as the image is unlocked */
3702 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3703 rbd_dev->lock_cookie[0] = '\0';
3704 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3705 queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3706}
3707
3708static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3709 enum rbd_notify_op notify_op,
3710 struct page ***preply_pages,
3711 size_t *preply_len)
3712{
3713 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3714 struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3715 char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
3716 int buf_size = sizeof(buf);
3717 void *p = buf;
3718
3719 dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3720
3721 /* encode *LockPayload NotifyMessage (op + ClientId) */
3722 ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3723 ceph_encode_32(&p, notify_op);
3724 ceph_encode_64(&p, cid.gid);
3725 ceph_encode_64(&p, cid.handle);
3726
3727 return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3728 &rbd_dev->header_oloc, buf, buf_size,
3729 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3730}
3731
3732static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3733 enum rbd_notify_op notify_op)
3734{
3735 __rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL);
3736}
3737
3738static void rbd_notify_acquired_lock(struct work_struct *work)
3739{
3740 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3741 acquired_lock_work);
3742
3743 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3744}
3745
3746static void rbd_notify_released_lock(struct work_struct *work)
3747{
3748 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3749 released_lock_work);
3750
3751 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3752}
3753
3754static int rbd_request_lock(struct rbd_device *rbd_dev)
3755{
3756 struct page **reply_pages;
3757 size_t reply_len;
3758 bool lock_owner_responded = false;
3759 int ret;
3760
3761 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3762
3763 ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3764 &reply_pages, &reply_len);
3765 if (ret && ret != -ETIMEDOUT) {
3766 rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3767 goto out;
3768 }
3769
3770 if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3771 void *p = page_address(reply_pages[0]);
3772 void *const end = p + reply_len;
3773 u32 n;
3774
3775 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3776 while (n--) {
3777 u8 struct_v;
3778 u32 len;
3779
3780 ceph_decode_need(&p, end, 8 + 8, e_inval);
3781 p += 8 + 8; /* skip gid and cookie */
3782
3783 ceph_decode_32_safe(&p, end, len, e_inval);
3784 if (!len)
3785 continue;
3786
3787 if (lock_owner_responded) {
3788 rbd_warn(rbd_dev,
3789 "duplicate lock owners detected");
3790 ret = -EIO;
3791 goto out;
3792 }
3793
3794 lock_owner_responded = true;
3795 ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3796 &struct_v, &len);
3797 if (ret) {
3798 rbd_warn(rbd_dev,
3799 "failed to decode ResponseMessage: %d",
3800 ret);
3801 goto e_inval;
3802 }
3803
3804 ret = ceph_decode_32(&p);
3805 }
3806 }
3807
3808 if (!lock_owner_responded) {
3809 rbd_warn(rbd_dev, "no lock owners detected");
3810 ret = -ETIMEDOUT;
3811 }
3812
3813out:
3814 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3815 return ret;
3816
3817e_inval:
3818 ret = -EINVAL;
3819 goto out;
3820}
3821
3822/*
3823 * Either image request state machine(s) or rbd_add_acquire_lock()
3824 * (i.e. "rbd map").
3825 */
3826static void wake_lock_waiters(struct rbd_device *rbd_dev, int result)
3827{
3828 struct rbd_img_request *img_req;
3829
3830 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3831 lockdep_assert_held_write(&rbd_dev->lock_rwsem);
3832
3833 cancel_delayed_work(&rbd_dev->lock_dwork);
3834 if (!completion_done(&rbd_dev->acquire_wait)) {
3835 rbd_assert(list_empty(&rbd_dev->acquiring_list) &&
3836 list_empty(&rbd_dev->running_list));
3837 rbd_dev->acquire_err = result;
3838 complete_all(&rbd_dev->acquire_wait);
3839 return;
3840 }
3841
3842 while (!list_empty(&rbd_dev->acquiring_list)) {
3843 img_req = list_first_entry(&rbd_dev->acquiring_list,
3844 struct rbd_img_request, lock_item);
3845 mutex_lock(&img_req->state_mutex);
3846 rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK);
3847 if (!result)
3848 list_move_tail(&img_req->lock_item,
3849 &rbd_dev->running_list);
3850 else
3851 list_del_init(&img_req->lock_item);
3852 rbd_img_schedule(img_req, result);
3853 mutex_unlock(&img_req->state_mutex);
3854 }
3855}
3856
3857static bool locker_equal(const struct ceph_locker *lhs,
3858 const struct ceph_locker *rhs)
3859{
3860 return lhs->id.name.type == rhs->id.name.type &&
3861 lhs->id.name.num == rhs->id.name.num &&
3862 !strcmp(lhs->id.cookie, rhs->id.cookie) &&
3863 ceph_addr_equal_no_type(&lhs->info.addr, &rhs->info.addr);
3864}
3865
3866static void free_locker(struct ceph_locker *locker)
3867{
3868 if (locker)
3869 ceph_free_lockers(locker, 1);
3870}
3871
3872static struct ceph_locker *get_lock_owner_info(struct rbd_device *rbd_dev)
3873{
3874 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3875 struct ceph_locker *lockers;
3876 u32 num_lockers;
3877 u8 lock_type;
3878 char *lock_tag;
3879 u64 handle;
3880 int ret;
3881
3882 ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3883 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3884 &lock_type, &lock_tag, &lockers, &num_lockers);
3885 if (ret) {
3886 rbd_warn(rbd_dev, "failed to get header lockers: %d", ret);
3887 return ERR_PTR(ret);
3888 }
3889
3890 if (num_lockers == 0) {
3891 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3892 lockers = NULL;
3893 goto out;
3894 }
3895
3896 if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3897 rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3898 lock_tag);
3899 goto err_busy;
3900 }
3901
3902 if (lock_type != CEPH_CLS_LOCK_EXCLUSIVE) {
3903 rbd_warn(rbd_dev, "incompatible lock type detected");
3904 goto err_busy;
3905 }
3906
3907 WARN_ON(num_lockers != 1);
3908 ret = sscanf(lockers[0].id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu",
3909 &handle);
3910 if (ret != 1) {
3911 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3912 lockers[0].id.cookie);
3913 goto err_busy;
3914 }
3915 if (ceph_addr_is_blank(&lockers[0].info.addr)) {
3916 rbd_warn(rbd_dev, "locker has a blank address");
3917 goto err_busy;
3918 }
3919
3920 dout("%s rbd_dev %p got locker %s%llu@%pISpc/%u handle %llu\n",
3921 __func__, rbd_dev, ENTITY_NAME(lockers[0].id.name),
3922 &lockers[0].info.addr.in_addr,
3923 le32_to_cpu(lockers[0].info.addr.nonce), handle);
3924
3925out:
3926 kfree(lock_tag);
3927 return lockers;
3928
3929err_busy:
3930 kfree(lock_tag);
3931 ceph_free_lockers(lockers, num_lockers);
3932 return ERR_PTR(-EBUSY);
3933}
3934
3935static int find_watcher(struct rbd_device *rbd_dev,
3936 const struct ceph_locker *locker)
3937{
3938 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3939 struct ceph_watch_item *watchers;
3940 u32 num_watchers;
3941 u64 cookie;
3942 int i;
3943 int ret;
3944
3945 ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3946 &rbd_dev->header_oloc, &watchers,
3947 &num_watchers);
3948 if (ret) {
3949 rbd_warn(rbd_dev, "failed to get watchers: %d", ret);
3950 return ret;
3951 }
3952
3953 sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3954 for (i = 0; i < num_watchers; i++) {
3955 /*
3956 * Ignore addr->type while comparing. This mimics
3957 * entity_addr_t::get_legacy_str() + strcmp().
3958 */
3959 if (ceph_addr_equal_no_type(&watchers[i].addr,
3960 &locker->info.addr) &&
3961 watchers[i].cookie == cookie) {
3962 struct rbd_client_id cid = {
3963 .gid = le64_to_cpu(watchers[i].name.num),
3964 .handle = cookie,
3965 };
3966
3967 dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3968 rbd_dev, cid.gid, cid.handle);
3969 rbd_set_owner_cid(rbd_dev, &cid);
3970 ret = 1;
3971 goto out;
3972 }
3973 }
3974
3975 dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3976 ret = 0;
3977out:
3978 kfree(watchers);
3979 return ret;
3980}
3981
3982/*
3983 * lock_rwsem must be held for write
3984 */
3985static int rbd_try_lock(struct rbd_device *rbd_dev)
3986{
3987 struct ceph_client *client = rbd_dev->rbd_client->client;
3988 struct ceph_locker *locker, *refreshed_locker;
3989 int ret;
3990
3991 for (;;) {
3992 locker = refreshed_locker = NULL;
3993
3994 ret = rbd_lock(rbd_dev);
3995 if (!ret)
3996 goto out;
3997 if (ret != -EBUSY) {
3998 rbd_warn(rbd_dev, "failed to lock header: %d", ret);
3999 goto out;
4000 }
4001
4002 /* determine if the current lock holder is still alive */
4003 locker = get_lock_owner_info(rbd_dev);
4004 if (IS_ERR(locker)) {
4005 ret = PTR_ERR(locker);
4006 locker = NULL;
4007 goto out;
4008 }
4009 if (!locker)
4010 goto again;
4011
4012 ret = find_watcher(rbd_dev, locker);
4013 if (ret)
4014 goto out; /* request lock or error */
4015
4016 refreshed_locker = get_lock_owner_info(rbd_dev);
4017 if (IS_ERR(refreshed_locker)) {
4018 ret = PTR_ERR(refreshed_locker);
4019 refreshed_locker = NULL;
4020 goto out;
4021 }
4022 if (!refreshed_locker ||
4023 !locker_equal(locker, refreshed_locker))
4024 goto again;
4025
4026 rbd_warn(rbd_dev, "breaking header lock owned by %s%llu",
4027 ENTITY_NAME(locker->id.name));
4028
4029 ret = ceph_monc_blocklist_add(&client->monc,
4030 &locker->info.addr);
4031 if (ret) {
4032 rbd_warn(rbd_dev, "failed to blocklist %s%llu: %d",
4033 ENTITY_NAME(locker->id.name), ret);
4034 goto out;
4035 }
4036
4037 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
4038 &rbd_dev->header_oloc, RBD_LOCK_NAME,
4039 locker->id.cookie, &locker->id.name);
4040 if (ret && ret != -ENOENT) {
4041 rbd_warn(rbd_dev, "failed to break header lock: %d",
4042 ret);
4043 goto out;
4044 }
4045
4046again:
4047 free_locker(refreshed_locker);
4048 free_locker(locker);
4049 }
4050
4051out:
4052 free_locker(refreshed_locker);
4053 free_locker(locker);
4054 return ret;
4055}
4056
4057static int rbd_post_acquire_action(struct rbd_device *rbd_dev)
4058{
4059 int ret;
4060
4061 ret = rbd_dev_refresh(rbd_dev);
4062 if (ret)
4063 return ret;
4064
4065 if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) {
4066 ret = rbd_object_map_open(rbd_dev);
4067 if (ret)
4068 return ret;
4069 }
4070
4071 return 0;
4072}
4073
4074/*
4075 * Return:
4076 * 0 - lock acquired
4077 * 1 - caller should call rbd_request_lock()
4078 * <0 - error
4079 */
4080static int rbd_try_acquire_lock(struct rbd_device *rbd_dev)
4081{
4082 int ret;
4083
4084 down_read(&rbd_dev->lock_rwsem);
4085 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
4086 rbd_dev->lock_state);
4087 if (__rbd_is_lock_owner(rbd_dev)) {
4088 up_read(&rbd_dev->lock_rwsem);
4089 return 0;
4090 }
4091
4092 up_read(&rbd_dev->lock_rwsem);
4093 down_write(&rbd_dev->lock_rwsem);
4094 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
4095 rbd_dev->lock_state);
4096 if (__rbd_is_lock_owner(rbd_dev)) {
4097 up_write(&rbd_dev->lock_rwsem);
4098 return 0;
4099 }
4100
4101 ret = rbd_try_lock(rbd_dev);
4102 if (ret < 0) {
4103 rbd_warn(rbd_dev, "failed to acquire lock: %d", ret);
4104 goto out;
4105 }
4106 if (ret > 0) {
4107 up_write(&rbd_dev->lock_rwsem);
4108 return ret;
4109 }
4110
4111 rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED);
4112 rbd_assert(list_empty(&rbd_dev->running_list));
4113
4114 ret = rbd_post_acquire_action(rbd_dev);
4115 if (ret) {
4116 rbd_warn(rbd_dev, "post-acquire action failed: %d", ret);
4117 /*
4118 * Can't stay in RBD_LOCK_STATE_LOCKED because
4119 * rbd_lock_add_request() would let the request through,
4120 * assuming that e.g. object map is locked and loaded.
4121 */
4122 rbd_unlock(rbd_dev);
4123 }
4124
4125out:
4126 wake_lock_waiters(rbd_dev, ret);
4127 up_write(&rbd_dev->lock_rwsem);
4128 return ret;
4129}
4130
4131static void rbd_acquire_lock(struct work_struct *work)
4132{
4133 struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4134 struct rbd_device, lock_dwork);
4135 int ret;
4136
4137 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4138again:
4139 ret = rbd_try_acquire_lock(rbd_dev);
4140 if (ret <= 0) {
4141 dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret);
4142 return;
4143 }
4144
4145 ret = rbd_request_lock(rbd_dev);
4146 if (ret == -ETIMEDOUT) {
4147 goto again; /* treat this as a dead client */
4148 } else if (ret == -EROFS) {
4149 rbd_warn(rbd_dev, "peer will not release lock");
4150 down_write(&rbd_dev->lock_rwsem);
4151 wake_lock_waiters(rbd_dev, ret);
4152 up_write(&rbd_dev->lock_rwsem);
4153 } else if (ret < 0) {
4154 rbd_warn(rbd_dev, "error requesting lock: %d", ret);
4155 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4156 RBD_RETRY_DELAY);
4157 } else {
4158 /*
4159 * lock owner acked, but resend if we don't see them
4160 * release the lock
4161 */
4162 dout("%s rbd_dev %p requeuing lock_dwork\n", __func__,
4163 rbd_dev);
4164 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4165 msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
4166 }
4167}
4168
4169static bool rbd_quiesce_lock(struct rbd_device *rbd_dev)
4170{
4171 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4172 lockdep_assert_held_write(&rbd_dev->lock_rwsem);
4173
4174 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4175 return false;
4176
4177 /*
4178 * Ensure that all in-flight IO is flushed.
4179 */
4180 rbd_dev->lock_state = RBD_LOCK_STATE_QUIESCING;
4181 rbd_assert(!completion_done(&rbd_dev->quiescing_wait));
4182 if (list_empty(&rbd_dev->running_list))
4183 return true;
4184
4185 up_write(&rbd_dev->lock_rwsem);
4186 wait_for_completion(&rbd_dev->quiescing_wait);
4187
4188 down_write(&rbd_dev->lock_rwsem);
4189 if (rbd_dev->lock_state != RBD_LOCK_STATE_QUIESCING)
4190 return false;
4191
4192 rbd_assert(list_empty(&rbd_dev->running_list));
4193 return true;
4194}
4195
4196static void rbd_pre_release_action(struct rbd_device *rbd_dev)
4197{
4198 if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)
4199 rbd_object_map_close(rbd_dev);
4200}
4201
4202static void __rbd_release_lock(struct rbd_device *rbd_dev)
4203{
4204 rbd_assert(list_empty(&rbd_dev->running_list));
4205
4206 rbd_pre_release_action(rbd_dev);
4207 rbd_unlock(rbd_dev);
4208}
4209
4210/*
4211 * lock_rwsem must be held for write
4212 */
4213static void rbd_release_lock(struct rbd_device *rbd_dev)
4214{
4215 if (!rbd_quiesce_lock(rbd_dev))
4216 return;
4217
4218 __rbd_release_lock(rbd_dev);
4219
4220 /*
4221 * Give others a chance to grab the lock - we would re-acquire
4222 * almost immediately if we got new IO while draining the running
4223 * list otherwise. We need to ack our own notifications, so this
4224 * lock_dwork will be requeued from rbd_handle_released_lock() by
4225 * way of maybe_kick_acquire().
4226 */
4227 cancel_delayed_work(&rbd_dev->lock_dwork);
4228}
4229
4230static void rbd_release_lock_work(struct work_struct *work)
4231{
4232 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
4233 unlock_work);
4234
4235 down_write(&rbd_dev->lock_rwsem);
4236 rbd_release_lock(rbd_dev);
4237 up_write(&rbd_dev->lock_rwsem);
4238}
4239
4240static void maybe_kick_acquire(struct rbd_device *rbd_dev)
4241{
4242 bool have_requests;
4243
4244 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4245 if (__rbd_is_lock_owner(rbd_dev))
4246 return;
4247
4248 spin_lock(&rbd_dev->lock_lists_lock);
4249 have_requests = !list_empty(&rbd_dev->acquiring_list);
4250 spin_unlock(&rbd_dev->lock_lists_lock);
4251 if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) {
4252 dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev);
4253 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4254 }
4255}
4256
4257static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
4258 void **p)
4259{
4260 struct rbd_client_id cid = { 0 };
4261
4262 if (struct_v >= 2) {
4263 cid.gid = ceph_decode_64(p);
4264 cid.handle = ceph_decode_64(p);
4265 }
4266
4267 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4268 cid.handle);
4269 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4270 down_write(&rbd_dev->lock_rwsem);
4271 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4272 dout("%s rbd_dev %p cid %llu-%llu == owner_cid\n",
4273 __func__, rbd_dev, cid.gid, cid.handle);
4274 } else {
4275 rbd_set_owner_cid(rbd_dev, &cid);
4276 }
4277 downgrade_write(&rbd_dev->lock_rwsem);
4278 } else {
4279 down_read(&rbd_dev->lock_rwsem);
4280 }
4281
4282 maybe_kick_acquire(rbd_dev);
4283 up_read(&rbd_dev->lock_rwsem);
4284}
4285
4286static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
4287 void **p)
4288{
4289 struct rbd_client_id cid = { 0 };
4290
4291 if (struct_v >= 2) {
4292 cid.gid = ceph_decode_64(p);
4293 cid.handle = ceph_decode_64(p);
4294 }
4295
4296 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4297 cid.handle);
4298 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4299 down_write(&rbd_dev->lock_rwsem);
4300 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4301 dout("%s rbd_dev %p cid %llu-%llu != owner_cid %llu-%llu\n",
4302 __func__, rbd_dev, cid.gid, cid.handle,
4303 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
4304 } else {
4305 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4306 }
4307 downgrade_write(&rbd_dev->lock_rwsem);
4308 } else {
4309 down_read(&rbd_dev->lock_rwsem);
4310 }
4311
4312 maybe_kick_acquire(rbd_dev);
4313 up_read(&rbd_dev->lock_rwsem);
4314}
4315
4316/*
4317 * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
4318 * ResponseMessage is needed.
4319 */
4320static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
4321 void **p)
4322{
4323 struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
4324 struct rbd_client_id cid = { 0 };
4325 int result = 1;
4326
4327 if (struct_v >= 2) {
4328 cid.gid = ceph_decode_64(p);
4329 cid.handle = ceph_decode_64(p);
4330 }
4331
4332 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4333 cid.handle);
4334 if (rbd_cid_equal(&cid, &my_cid))
4335 return result;
4336
4337 down_read(&rbd_dev->lock_rwsem);
4338 if (__rbd_is_lock_owner(rbd_dev)) {
4339 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
4340 rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
4341 goto out_unlock;
4342
4343 /*
4344 * encode ResponseMessage(0) so the peer can detect
4345 * a missing owner
4346 */
4347 result = 0;
4348
4349 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
4350 if (!rbd_dev->opts->exclusive) {
4351 dout("%s rbd_dev %p queueing unlock_work\n",
4352 __func__, rbd_dev);
4353 queue_work(rbd_dev->task_wq,
4354 &rbd_dev->unlock_work);
4355 } else {
4356 /* refuse to release the lock */
4357 result = -EROFS;
4358 }
4359 }
4360 }
4361
4362out_unlock:
4363 up_read(&rbd_dev->lock_rwsem);
4364 return result;
4365}
4366
4367static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
4368 u64 notify_id, u64 cookie, s32 *result)
4369{
4370 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4371 char buf[4 + CEPH_ENCODING_START_BLK_LEN];
4372 int buf_size = sizeof(buf);
4373 int ret;
4374
4375 if (result) {
4376 void *p = buf;
4377
4378 /* encode ResponseMessage */
4379 ceph_start_encoding(&p, 1, 1,
4380 buf_size - CEPH_ENCODING_START_BLK_LEN);
4381 ceph_encode_32(&p, *result);
4382 } else {
4383 buf_size = 0;
4384 }
4385
4386 ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
4387 &rbd_dev->header_oloc, notify_id, cookie,
4388 buf, buf_size);
4389 if (ret)
4390 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
4391}
4392
4393static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
4394 u64 cookie)
4395{
4396 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4397 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
4398}
4399
4400static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
4401 u64 notify_id, u64 cookie, s32 result)
4402{
4403 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
4404 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
4405}
4406
4407static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
4408 u64 notifier_id, void *data, size_t data_len)
4409{
4410 struct rbd_device *rbd_dev = arg;
4411 void *p = data;
4412 void *const end = p + data_len;
4413 u8 struct_v = 0;
4414 u32 len;
4415 u32 notify_op;
4416 int ret;
4417
4418 dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
4419 __func__, rbd_dev, cookie, notify_id, data_len);
4420 if (data_len) {
4421 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
4422 &struct_v, &len);
4423 if (ret) {
4424 rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
4425 ret);
4426 return;
4427 }
4428
4429 notify_op = ceph_decode_32(&p);
4430 } else {
4431 /* legacy notification for header updates */
4432 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
4433 len = 0;
4434 }
4435
4436 dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
4437 switch (notify_op) {
4438 case RBD_NOTIFY_OP_ACQUIRED_LOCK:
4439 rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
4440 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4441 break;
4442 case RBD_NOTIFY_OP_RELEASED_LOCK:
4443 rbd_handle_released_lock(rbd_dev, struct_v, &p);
4444 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4445 break;
4446 case RBD_NOTIFY_OP_REQUEST_LOCK:
4447 ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
4448 if (ret <= 0)
4449 rbd_acknowledge_notify_result(rbd_dev, notify_id,
4450 cookie, ret);
4451 else
4452 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4453 break;
4454 case RBD_NOTIFY_OP_HEADER_UPDATE:
4455 ret = rbd_dev_refresh(rbd_dev);
4456 if (ret)
4457 rbd_warn(rbd_dev, "refresh failed: %d", ret);
4458
4459 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4460 break;
4461 default:
4462 if (rbd_is_lock_owner(rbd_dev))
4463 rbd_acknowledge_notify_result(rbd_dev, notify_id,
4464 cookie, -EOPNOTSUPP);
4465 else
4466 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4467 break;
4468 }
4469}
4470
4471static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
4472
4473static void rbd_watch_errcb(void *arg, u64 cookie, int err)
4474{
4475 struct rbd_device *rbd_dev = arg;
4476
4477 rbd_warn(rbd_dev, "encountered watch error: %d", err);
4478
4479 down_write(&rbd_dev->lock_rwsem);
4480 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4481 up_write(&rbd_dev->lock_rwsem);
4482
4483 mutex_lock(&rbd_dev->watch_mutex);
4484 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
4485 __rbd_unregister_watch(rbd_dev);
4486 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
4487
4488 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
4489 }
4490 mutex_unlock(&rbd_dev->watch_mutex);
4491}
4492
4493/*
4494 * watch_mutex must be locked
4495 */
4496static int __rbd_register_watch(struct rbd_device *rbd_dev)
4497{
4498 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4499 struct ceph_osd_linger_request *handle;
4500
4501 rbd_assert(!rbd_dev->watch_handle);
4502 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4503
4504 handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
4505 &rbd_dev->header_oloc, rbd_watch_cb,
4506 rbd_watch_errcb, rbd_dev);
4507 if (IS_ERR(handle))
4508 return PTR_ERR(handle);
4509
4510 rbd_dev->watch_handle = handle;
4511 return 0;
4512}
4513
4514/*
4515 * watch_mutex must be locked
4516 */
4517static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
4518{
4519 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4520 int ret;
4521
4522 rbd_assert(rbd_dev->watch_handle);
4523 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4524
4525 ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
4526 if (ret)
4527 rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
4528
4529 rbd_dev->watch_handle = NULL;
4530}
4531
4532static int rbd_register_watch(struct rbd_device *rbd_dev)
4533{
4534 int ret;
4535
4536 mutex_lock(&rbd_dev->watch_mutex);
4537 rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
4538 ret = __rbd_register_watch(rbd_dev);
4539 if (ret)
4540 goto out;
4541
4542 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4543 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4544
4545out:
4546 mutex_unlock(&rbd_dev->watch_mutex);
4547 return ret;
4548}
4549
4550static void cancel_tasks_sync(struct rbd_device *rbd_dev)
4551{
4552 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4553
4554 cancel_work_sync(&rbd_dev->acquired_lock_work);
4555 cancel_work_sync(&rbd_dev->released_lock_work);
4556 cancel_delayed_work_sync(&rbd_dev->lock_dwork);
4557 cancel_work_sync(&rbd_dev->unlock_work);
4558}
4559
4560/*
4561 * header_rwsem must not be held to avoid a deadlock with
4562 * rbd_dev_refresh() when flushing notifies.
4563 */
4564static void rbd_unregister_watch(struct rbd_device *rbd_dev)
4565{
4566 cancel_tasks_sync(rbd_dev);
4567
4568 mutex_lock(&rbd_dev->watch_mutex);
4569 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
4570 __rbd_unregister_watch(rbd_dev);
4571 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4572 mutex_unlock(&rbd_dev->watch_mutex);
4573
4574 cancel_delayed_work_sync(&rbd_dev->watch_dwork);
4575 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
4576}
4577
4578/*
4579 * lock_rwsem must be held for write
4580 */
4581static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
4582{
4583 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4584 char cookie[32];
4585 int ret;
4586
4587 if (!rbd_quiesce_lock(rbd_dev))
4588 return;
4589
4590 format_lock_cookie(rbd_dev, cookie);
4591 ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
4592 &rbd_dev->header_oloc, RBD_LOCK_NAME,
4593 CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
4594 RBD_LOCK_TAG, cookie);
4595 if (ret) {
4596 if (ret != -EOPNOTSUPP)
4597 rbd_warn(rbd_dev, "failed to update lock cookie: %d",
4598 ret);
4599
4600 if (rbd_dev->opts->exclusive)
4601 rbd_warn(rbd_dev,
4602 "temporarily releasing lock on exclusive mapping");
4603
4604 /*
4605 * Lock cookie cannot be updated on older OSDs, so do
4606 * a manual release and queue an acquire.
4607 */
4608 __rbd_release_lock(rbd_dev);
4609 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4610 } else {
4611 __rbd_lock(rbd_dev, cookie);
4612 wake_lock_waiters(rbd_dev, 0);
4613 }
4614}
4615
4616static void rbd_reregister_watch(struct work_struct *work)
4617{
4618 struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4619 struct rbd_device, watch_dwork);
4620 int ret;
4621
4622 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4623
4624 mutex_lock(&rbd_dev->watch_mutex);
4625 if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
4626 mutex_unlock(&rbd_dev->watch_mutex);
4627 return;
4628 }
4629
4630 ret = __rbd_register_watch(rbd_dev);
4631 if (ret) {
4632 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
4633 if (ret != -EBLOCKLISTED && ret != -ENOENT) {
4634 queue_delayed_work(rbd_dev->task_wq,
4635 &rbd_dev->watch_dwork,
4636 RBD_RETRY_DELAY);
4637 mutex_unlock(&rbd_dev->watch_mutex);
4638 return;
4639 }
4640
4641 mutex_unlock(&rbd_dev->watch_mutex);
4642 down_write(&rbd_dev->lock_rwsem);
4643 wake_lock_waiters(rbd_dev, ret);
4644 up_write(&rbd_dev->lock_rwsem);
4645 return;
4646 }
4647
4648 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4649 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4650 mutex_unlock(&rbd_dev->watch_mutex);
4651
4652 down_write(&rbd_dev->lock_rwsem);
4653 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
4654 rbd_reacquire_lock(rbd_dev);
4655 up_write(&rbd_dev->lock_rwsem);
4656
4657 ret = rbd_dev_refresh(rbd_dev);
4658 if (ret)
4659 rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
4660}
4661
4662/*
4663 * Synchronous osd object method call. Returns the number of bytes
4664 * returned in the outbound buffer, or a negative error code.
4665 */
4666static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
4667 struct ceph_object_id *oid,
4668 struct ceph_object_locator *oloc,
4669 const char *method_name,
4670 const void *outbound,
4671 size_t outbound_size,
4672 void *inbound,
4673 size_t inbound_size)
4674{
4675 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4676 struct page *req_page = NULL;
4677 struct page *reply_page;
4678 int ret;
4679
4680 /*
4681 * Method calls are ultimately read operations. The result
4682 * should placed into the inbound buffer provided. They
4683 * also supply outbound data--parameters for the object
4684 * method. Currently if this is present it will be a
4685 * snapshot id.
4686 */
4687 if (outbound) {
4688 if (outbound_size > PAGE_SIZE)
4689 return -E2BIG;
4690
4691 req_page = alloc_page(GFP_KERNEL);
4692 if (!req_page)
4693 return -ENOMEM;
4694
4695 memcpy(page_address(req_page), outbound, outbound_size);
4696 }
4697
4698 reply_page = alloc_page(GFP_KERNEL);
4699 if (!reply_page) {
4700 if (req_page)
4701 __free_page(req_page);
4702 return -ENOMEM;
4703 }
4704
4705 ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
4706 CEPH_OSD_FLAG_READ, req_page, outbound_size,
4707 &reply_page, &inbound_size);
4708 if (!ret) {
4709 memcpy(inbound, page_address(reply_page), inbound_size);
4710 ret = inbound_size;
4711 }
4712
4713 if (req_page)
4714 __free_page(req_page);
4715 __free_page(reply_page);
4716 return ret;
4717}
4718
4719static void rbd_queue_workfn(struct work_struct *work)
4720{
4721 struct rbd_img_request *img_request =
4722 container_of(work, struct rbd_img_request, work);
4723 struct rbd_device *rbd_dev = img_request->rbd_dev;
4724 enum obj_operation_type op_type = img_request->op_type;
4725 struct request *rq = blk_mq_rq_from_pdu(img_request);
4726 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4727 u64 length = blk_rq_bytes(rq);
4728 u64 mapping_size;
4729 int result;
4730
4731 /* Ignore/skip any zero-length requests */
4732 if (!length) {
4733 dout("%s: zero-length request\n", __func__);
4734 result = 0;
4735 goto err_img_request;
4736 }
4737
4738 blk_mq_start_request(rq);
4739
4740 down_read(&rbd_dev->header_rwsem);
4741 mapping_size = rbd_dev->mapping.size;
4742 rbd_img_capture_header(img_request);
4743 up_read(&rbd_dev->header_rwsem);
4744
4745 if (offset + length > mapping_size) {
4746 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4747 length, mapping_size);
4748 result = -EIO;
4749 goto err_img_request;
4750 }
4751
4752 dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev,
4753 img_request, obj_op_name(op_type), offset, length);
4754
4755 if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT)
4756 result = rbd_img_fill_nodata(img_request, offset, length);
4757 else
4758 result = rbd_img_fill_from_bio(img_request, offset, length,
4759 rq->bio);
4760 if (result)
4761 goto err_img_request;
4762
4763 rbd_img_handle_request(img_request, 0);
4764 return;
4765
4766err_img_request:
4767 rbd_img_request_destroy(img_request);
4768 if (result)
4769 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4770 obj_op_name(op_type), length, offset, result);
4771 blk_mq_end_request(rq, errno_to_blk_status(result));
4772}
4773
4774static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4775 const struct blk_mq_queue_data *bd)
4776{
4777 struct rbd_device *rbd_dev = hctx->queue->queuedata;
4778 struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq);
4779 enum obj_operation_type op_type;
4780
4781 switch (req_op(bd->rq)) {
4782 case REQ_OP_DISCARD:
4783 op_type = OBJ_OP_DISCARD;
4784 break;
4785 case REQ_OP_WRITE_ZEROES:
4786 op_type = OBJ_OP_ZEROOUT;
4787 break;
4788 case REQ_OP_WRITE:
4789 op_type = OBJ_OP_WRITE;
4790 break;
4791 case REQ_OP_READ:
4792 op_type = OBJ_OP_READ;
4793 break;
4794 default:
4795 rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq));
4796 return BLK_STS_IOERR;
4797 }
4798
4799 rbd_img_request_init(img_req, rbd_dev, op_type);
4800
4801 if (rbd_img_is_write(img_req)) {
4802 if (rbd_is_ro(rbd_dev)) {
4803 rbd_warn(rbd_dev, "%s on read-only mapping",
4804 obj_op_name(img_req->op_type));
4805 return BLK_STS_IOERR;
4806 }
4807 rbd_assert(!rbd_is_snap(rbd_dev));
4808 }
4809
4810 INIT_WORK(&img_req->work, rbd_queue_workfn);
4811 queue_work(rbd_wq, &img_req->work);
4812 return BLK_STS_OK;
4813}
4814
4815static void rbd_free_disk(struct rbd_device *rbd_dev)
4816{
4817 put_disk(rbd_dev->disk);
4818 blk_mq_free_tag_set(&rbd_dev->tag_set);
4819 rbd_dev->disk = NULL;
4820}
4821
4822static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4823 struct ceph_object_id *oid,
4824 struct ceph_object_locator *oloc,
4825 void *buf, int buf_len)
4826
4827{
4828 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4829 struct ceph_osd_request *req;
4830 struct page **pages;
4831 int num_pages = calc_pages_for(0, buf_len);
4832 int ret;
4833
4834 req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4835 if (!req)
4836 return -ENOMEM;
4837
4838 ceph_oid_copy(&req->r_base_oid, oid);
4839 ceph_oloc_copy(&req->r_base_oloc, oloc);
4840 req->r_flags = CEPH_OSD_FLAG_READ;
4841
4842 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4843 if (IS_ERR(pages)) {
4844 ret = PTR_ERR(pages);
4845 goto out_req;
4846 }
4847
4848 osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4849 osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4850 true);
4851
4852 ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4853 if (ret)
4854 goto out_req;
4855
4856 ceph_osdc_start_request(osdc, req);
4857 ret = ceph_osdc_wait_request(osdc, req);
4858 if (ret >= 0)
4859 ceph_copy_from_page_vector(pages, buf, 0, ret);
4860
4861out_req:
4862 ceph_osdc_put_request(req);
4863 return ret;
4864}
4865
4866/*
4867 * Read the complete header for the given rbd device. On successful
4868 * return, the rbd_dev->header field will contain up-to-date
4869 * information about the image.
4870 */
4871static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev,
4872 struct rbd_image_header *header,
4873 bool first_time)
4874{
4875 struct rbd_image_header_ondisk *ondisk = NULL;
4876 u32 snap_count = 0;
4877 u64 names_size = 0;
4878 u32 want_count;
4879 int ret;
4880
4881 /*
4882 * The complete header will include an array of its 64-bit
4883 * snapshot ids, followed by the names of those snapshots as
4884 * a contiguous block of NUL-terminated strings. Note that
4885 * the number of snapshots could change by the time we read
4886 * it in, in which case we re-read it.
4887 */
4888 do {
4889 size_t size;
4890
4891 kfree(ondisk);
4892
4893 size = sizeof (*ondisk);
4894 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4895 size += names_size;
4896 ondisk = kmalloc(size, GFP_KERNEL);
4897 if (!ondisk)
4898 return -ENOMEM;
4899
4900 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4901 &rbd_dev->header_oloc, ondisk, size);
4902 if (ret < 0)
4903 goto out;
4904 if ((size_t)ret < size) {
4905 ret = -ENXIO;
4906 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4907 size, ret);
4908 goto out;
4909 }
4910 if (!rbd_dev_ondisk_valid(ondisk)) {
4911 ret = -ENXIO;
4912 rbd_warn(rbd_dev, "invalid header");
4913 goto out;
4914 }
4915
4916 names_size = le64_to_cpu(ondisk->snap_names_len);
4917 want_count = snap_count;
4918 snap_count = le32_to_cpu(ondisk->snap_count);
4919 } while (snap_count != want_count);
4920
4921 ret = rbd_header_from_disk(header, ondisk, first_time);
4922out:
4923 kfree(ondisk);
4924
4925 return ret;
4926}
4927
4928static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4929{
4930 sector_t size;
4931
4932 /*
4933 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4934 * try to update its size. If REMOVING is set, updating size
4935 * is just useless work since the device can't be opened.
4936 */
4937 if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4938 !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4939 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4940 dout("setting size to %llu sectors", (unsigned long long)size);
4941 set_capacity_and_notify(rbd_dev->disk, size);
4942 }
4943}
4944
4945static const struct blk_mq_ops rbd_mq_ops = {
4946 .queue_rq = rbd_queue_rq,
4947};
4948
4949static int rbd_init_disk(struct rbd_device *rbd_dev)
4950{
4951 struct gendisk *disk;
4952 unsigned int objset_bytes =
4953 rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
4954 struct queue_limits lim = {
4955 .max_hw_sectors = objset_bytes >> SECTOR_SHIFT,
4956 .io_opt = objset_bytes,
4957 .io_min = rbd_dev->opts->alloc_size,
4958 .max_segments = USHRT_MAX,
4959 .max_segment_size = UINT_MAX,
4960 };
4961 int err;
4962
4963 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4964 rbd_dev->tag_set.ops = &rbd_mq_ops;
4965 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4966 rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4967 rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
4968 rbd_dev->tag_set.nr_hw_queues = num_present_cpus();
4969 rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request);
4970
4971 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4972 if (err)
4973 return err;
4974
4975 if (rbd_dev->opts->trim) {
4976 lim.discard_granularity = rbd_dev->opts->alloc_size;
4977 lim.max_hw_discard_sectors = objset_bytes >> SECTOR_SHIFT;
4978 lim.max_write_zeroes_sectors = objset_bytes >> SECTOR_SHIFT;
4979 }
4980
4981 if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
4982 lim.features |= BLK_FEAT_STABLE_WRITES;
4983
4984 disk = blk_mq_alloc_disk(&rbd_dev->tag_set, &lim, rbd_dev);
4985 if (IS_ERR(disk)) {
4986 err = PTR_ERR(disk);
4987 goto out_tag_set;
4988 }
4989
4990 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4991 rbd_dev->dev_id);
4992 disk->major = rbd_dev->major;
4993 disk->first_minor = rbd_dev->minor;
4994 if (single_major)
4995 disk->minors = (1 << RBD_SINGLE_MAJOR_PART_SHIFT);
4996 else
4997 disk->minors = RBD_MINORS_PER_MAJOR;
4998 disk->fops = &rbd_bd_ops;
4999 disk->private_data = rbd_dev;
5000 rbd_dev->disk = disk;
5001
5002 return 0;
5003out_tag_set:
5004 blk_mq_free_tag_set(&rbd_dev->tag_set);
5005 return err;
5006}
5007
5008/*
5009 sysfs
5010*/
5011
5012static struct rbd_device *dev_to_rbd_dev(struct device *dev)
5013{
5014 return container_of(dev, struct rbd_device, dev);
5015}
5016
5017static ssize_t rbd_size_show(struct device *dev,
5018 struct device_attribute *attr, char *buf)
5019{
5020 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5021
5022 return sprintf(buf, "%llu\n",
5023 (unsigned long long)rbd_dev->mapping.size);
5024}
5025
5026static ssize_t rbd_features_show(struct device *dev,
5027 struct device_attribute *attr, char *buf)
5028{
5029 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5030
5031 return sprintf(buf, "0x%016llx\n", rbd_dev->header.features);
5032}
5033
5034static ssize_t rbd_major_show(struct device *dev,
5035 struct device_attribute *attr, char *buf)
5036{
5037 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5038
5039 if (rbd_dev->major)
5040 return sprintf(buf, "%d\n", rbd_dev->major);
5041
5042 return sprintf(buf, "(none)\n");
5043}
5044
5045static ssize_t rbd_minor_show(struct device *dev,
5046 struct device_attribute *attr, char *buf)
5047{
5048 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5049
5050 return sprintf(buf, "%d\n", rbd_dev->minor);
5051}
5052
5053static ssize_t rbd_client_addr_show(struct device *dev,
5054 struct device_attribute *attr, char *buf)
5055{
5056 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5057 struct ceph_entity_addr *client_addr =
5058 ceph_client_addr(rbd_dev->rbd_client->client);
5059
5060 return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
5061 le32_to_cpu(client_addr->nonce));
5062}
5063
5064static ssize_t rbd_client_id_show(struct device *dev,
5065 struct device_attribute *attr, char *buf)
5066{
5067 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5068
5069 return sprintf(buf, "client%lld\n",
5070 ceph_client_gid(rbd_dev->rbd_client->client));
5071}
5072
5073static ssize_t rbd_cluster_fsid_show(struct device *dev,
5074 struct device_attribute *attr, char *buf)
5075{
5076 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5077
5078 return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
5079}
5080
5081static ssize_t rbd_config_info_show(struct device *dev,
5082 struct device_attribute *attr, char *buf)
5083{
5084 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5085
5086 if (!capable(CAP_SYS_ADMIN))
5087 return -EPERM;
5088
5089 return sprintf(buf, "%s\n", rbd_dev->config_info);
5090}
5091
5092static ssize_t rbd_pool_show(struct device *dev,
5093 struct device_attribute *attr, char *buf)
5094{
5095 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5096
5097 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
5098}
5099
5100static ssize_t rbd_pool_id_show(struct device *dev,
5101 struct device_attribute *attr, char *buf)
5102{
5103 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5104
5105 return sprintf(buf, "%llu\n",
5106 (unsigned long long) rbd_dev->spec->pool_id);
5107}
5108
5109static ssize_t rbd_pool_ns_show(struct device *dev,
5110 struct device_attribute *attr, char *buf)
5111{
5112 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5113
5114 return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
5115}
5116
5117static ssize_t rbd_name_show(struct device *dev,
5118 struct device_attribute *attr, char *buf)
5119{
5120 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5121
5122 if (rbd_dev->spec->image_name)
5123 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
5124
5125 return sprintf(buf, "(unknown)\n");
5126}
5127
5128static ssize_t rbd_image_id_show(struct device *dev,
5129 struct device_attribute *attr, char *buf)
5130{
5131 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5132
5133 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
5134}
5135
5136/*
5137 * Shows the name of the currently-mapped snapshot (or
5138 * RBD_SNAP_HEAD_NAME for the base image).
5139 */
5140static ssize_t rbd_snap_show(struct device *dev,
5141 struct device_attribute *attr,
5142 char *buf)
5143{
5144 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5145
5146 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
5147}
5148
5149static ssize_t rbd_snap_id_show(struct device *dev,
5150 struct device_attribute *attr, char *buf)
5151{
5152 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5153
5154 return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
5155}
5156
5157/*
5158 * For a v2 image, shows the chain of parent images, separated by empty
5159 * lines. For v1 images or if there is no parent, shows "(no parent
5160 * image)".
5161 */
5162static ssize_t rbd_parent_show(struct device *dev,
5163 struct device_attribute *attr,
5164 char *buf)
5165{
5166 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5167 ssize_t count = 0;
5168
5169 if (!rbd_dev->parent)
5170 return sprintf(buf, "(no parent image)\n");
5171
5172 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
5173 struct rbd_spec *spec = rbd_dev->parent_spec;
5174
5175 count += sprintf(&buf[count], "%s"
5176 "pool_id %llu\npool_name %s\n"
5177 "pool_ns %s\n"
5178 "image_id %s\nimage_name %s\n"
5179 "snap_id %llu\nsnap_name %s\n"
5180 "overlap %llu\n",
5181 !count ? "" : "\n", /* first? */
5182 spec->pool_id, spec->pool_name,
5183 spec->pool_ns ?: "",
5184 spec->image_id, spec->image_name ?: "(unknown)",
5185 spec->snap_id, spec->snap_name,
5186 rbd_dev->parent_overlap);
5187 }
5188
5189 return count;
5190}
5191
5192static ssize_t rbd_image_refresh(struct device *dev,
5193 struct device_attribute *attr,
5194 const char *buf,
5195 size_t size)
5196{
5197 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5198 int ret;
5199
5200 if (!capable(CAP_SYS_ADMIN))
5201 return -EPERM;
5202
5203 ret = rbd_dev_refresh(rbd_dev);
5204 if (ret)
5205 return ret;
5206
5207 return size;
5208}
5209
5210static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
5211static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
5212static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
5213static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
5214static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
5215static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
5216static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
5217static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
5218static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
5219static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
5220static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
5221static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
5222static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
5223static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
5224static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
5225static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
5226static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
5227
5228static struct attribute *rbd_attrs[] = {
5229 &dev_attr_size.attr,
5230 &dev_attr_features.attr,
5231 &dev_attr_major.attr,
5232 &dev_attr_minor.attr,
5233 &dev_attr_client_addr.attr,
5234 &dev_attr_client_id.attr,
5235 &dev_attr_cluster_fsid.attr,
5236 &dev_attr_config_info.attr,
5237 &dev_attr_pool.attr,
5238 &dev_attr_pool_id.attr,
5239 &dev_attr_pool_ns.attr,
5240 &dev_attr_name.attr,
5241 &dev_attr_image_id.attr,
5242 &dev_attr_current_snap.attr,
5243 &dev_attr_snap_id.attr,
5244 &dev_attr_parent.attr,
5245 &dev_attr_refresh.attr,
5246 NULL
5247};
5248
5249static struct attribute_group rbd_attr_group = {
5250 .attrs = rbd_attrs,
5251};
5252
5253static const struct attribute_group *rbd_attr_groups[] = {
5254 &rbd_attr_group,
5255 NULL
5256};
5257
5258static void rbd_dev_release(struct device *dev);
5259
5260static const struct device_type rbd_device_type = {
5261 .name = "rbd",
5262 .groups = rbd_attr_groups,
5263 .release = rbd_dev_release,
5264};
5265
5266static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
5267{
5268 kref_get(&spec->kref);
5269
5270 return spec;
5271}
5272
5273static void rbd_spec_free(struct kref *kref);
5274static void rbd_spec_put(struct rbd_spec *spec)
5275{
5276 if (spec)
5277 kref_put(&spec->kref, rbd_spec_free);
5278}
5279
5280static struct rbd_spec *rbd_spec_alloc(void)
5281{
5282 struct rbd_spec *spec;
5283
5284 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
5285 if (!spec)
5286 return NULL;
5287
5288 spec->pool_id = CEPH_NOPOOL;
5289 spec->snap_id = CEPH_NOSNAP;
5290 kref_init(&spec->kref);
5291
5292 return spec;
5293}
5294
5295static void rbd_spec_free(struct kref *kref)
5296{
5297 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
5298
5299 kfree(spec->pool_name);
5300 kfree(spec->pool_ns);
5301 kfree(spec->image_id);
5302 kfree(spec->image_name);
5303 kfree(spec->snap_name);
5304 kfree(spec);
5305}
5306
5307static void rbd_dev_free(struct rbd_device *rbd_dev)
5308{
5309 WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
5310 WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
5311
5312 ceph_oid_destroy(&rbd_dev->header_oid);
5313 ceph_oloc_destroy(&rbd_dev->header_oloc);
5314 kfree(rbd_dev->config_info);
5315
5316 rbd_put_client(rbd_dev->rbd_client);
5317 rbd_spec_put(rbd_dev->spec);
5318 kfree(rbd_dev->opts);
5319 kfree(rbd_dev);
5320}
5321
5322static void rbd_dev_release(struct device *dev)
5323{
5324 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5325 bool need_put = !!rbd_dev->opts;
5326
5327 if (need_put) {
5328 destroy_workqueue(rbd_dev->task_wq);
5329 ida_free(&rbd_dev_id_ida, rbd_dev->dev_id);
5330 }
5331
5332 rbd_dev_free(rbd_dev);
5333
5334 /*
5335 * This is racy, but way better than putting module outside of
5336 * the release callback. The race window is pretty small, so
5337 * doing something similar to dm (dm-builtin.c) is overkill.
5338 */
5339 if (need_put)
5340 module_put(THIS_MODULE);
5341}
5342
5343static struct rbd_device *__rbd_dev_create(struct rbd_spec *spec)
5344{
5345 struct rbd_device *rbd_dev;
5346
5347 rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
5348 if (!rbd_dev)
5349 return NULL;
5350
5351 spin_lock_init(&rbd_dev->lock);
5352 INIT_LIST_HEAD(&rbd_dev->node);
5353 init_rwsem(&rbd_dev->header_rwsem);
5354
5355 rbd_dev->header.data_pool_id = CEPH_NOPOOL;
5356 ceph_oid_init(&rbd_dev->header_oid);
5357 rbd_dev->header_oloc.pool = spec->pool_id;
5358 if (spec->pool_ns) {
5359 WARN_ON(!*spec->pool_ns);
5360 rbd_dev->header_oloc.pool_ns =
5361 ceph_find_or_create_string(spec->pool_ns,
5362 strlen(spec->pool_ns));
5363 }
5364
5365 mutex_init(&rbd_dev->watch_mutex);
5366 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
5367 INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
5368
5369 init_rwsem(&rbd_dev->lock_rwsem);
5370 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
5371 INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
5372 INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
5373 INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
5374 INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
5375 spin_lock_init(&rbd_dev->lock_lists_lock);
5376 INIT_LIST_HEAD(&rbd_dev->acquiring_list);
5377 INIT_LIST_HEAD(&rbd_dev->running_list);
5378 init_completion(&rbd_dev->acquire_wait);
5379 init_completion(&rbd_dev->quiescing_wait);
5380
5381 spin_lock_init(&rbd_dev->object_map_lock);
5382
5383 rbd_dev->dev.bus = &rbd_bus_type;
5384 rbd_dev->dev.type = &rbd_device_type;
5385 rbd_dev->dev.parent = &rbd_root_dev;
5386 device_initialize(&rbd_dev->dev);
5387
5388 return rbd_dev;
5389}
5390
5391/*
5392 * Create a mapping rbd_dev.
5393 */
5394static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
5395 struct rbd_spec *spec,
5396 struct rbd_options *opts)
5397{
5398 struct rbd_device *rbd_dev;
5399
5400 rbd_dev = __rbd_dev_create(spec);
5401 if (!rbd_dev)
5402 return NULL;
5403
5404 /* get an id and fill in device name */
5405 rbd_dev->dev_id = ida_alloc_max(&rbd_dev_id_ida,
5406 minor_to_rbd_dev_id(1 << MINORBITS) - 1,
5407 GFP_KERNEL);
5408 if (rbd_dev->dev_id < 0)
5409 goto fail_rbd_dev;
5410
5411 sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
5412 rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
5413 rbd_dev->name);
5414 if (!rbd_dev->task_wq)
5415 goto fail_dev_id;
5416
5417 /* we have a ref from do_rbd_add() */
5418 __module_get(THIS_MODULE);
5419
5420 rbd_dev->rbd_client = rbdc;
5421 rbd_dev->spec = spec;
5422 rbd_dev->opts = opts;
5423
5424 dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
5425 return rbd_dev;
5426
5427fail_dev_id:
5428 ida_free(&rbd_dev_id_ida, rbd_dev->dev_id);
5429fail_rbd_dev:
5430 rbd_dev_free(rbd_dev);
5431 return NULL;
5432}
5433
5434static void rbd_dev_destroy(struct rbd_device *rbd_dev)
5435{
5436 if (rbd_dev)
5437 put_device(&rbd_dev->dev);
5438}
5439
5440/*
5441 * Get the size and object order for an image snapshot, or if
5442 * snap_id is CEPH_NOSNAP, gets this information for the base
5443 * image.
5444 */
5445static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
5446 u8 *order, u64 *snap_size)
5447{
5448 __le64 snapid = cpu_to_le64(snap_id);
5449 int ret;
5450 struct {
5451 u8 order;
5452 __le64 size;
5453 } __attribute__ ((packed)) size_buf = { 0 };
5454
5455 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5456 &rbd_dev->header_oloc, "get_size",
5457 &snapid, sizeof(snapid),
5458 &size_buf, sizeof(size_buf));
5459 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5460 if (ret < 0)
5461 return ret;
5462 if (ret < sizeof (size_buf))
5463 return -ERANGE;
5464
5465 if (order) {
5466 *order = size_buf.order;
5467 dout(" order %u", (unsigned int)*order);
5468 }
5469 *snap_size = le64_to_cpu(size_buf.size);
5470
5471 dout(" snap_id 0x%016llx snap_size = %llu\n",
5472 (unsigned long long)snap_id,
5473 (unsigned long long)*snap_size);
5474
5475 return 0;
5476}
5477
5478static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev,
5479 char **pobject_prefix)
5480{
5481 size_t size;
5482 void *reply_buf;
5483 char *object_prefix;
5484 int ret;
5485 void *p;
5486
5487 /* Response will be an encoded string, which includes a length */
5488 size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX;
5489 reply_buf = kzalloc(size, GFP_KERNEL);
5490 if (!reply_buf)
5491 return -ENOMEM;
5492
5493 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5494 &rbd_dev->header_oloc, "get_object_prefix",
5495 NULL, 0, reply_buf, size);
5496 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5497 if (ret < 0)
5498 goto out;
5499
5500 p = reply_buf;
5501 object_prefix = ceph_extract_encoded_string(&p, p + ret, NULL,
5502 GFP_NOIO);
5503 if (IS_ERR(object_prefix)) {
5504 ret = PTR_ERR(object_prefix);
5505 goto out;
5506 }
5507 ret = 0;
5508
5509 *pobject_prefix = object_prefix;
5510 dout(" object_prefix = %s\n", object_prefix);
5511out:
5512 kfree(reply_buf);
5513
5514 return ret;
5515}
5516
5517static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5518 bool read_only, u64 *snap_features)
5519{
5520 struct {
5521 __le64 snap_id;
5522 u8 read_only;
5523 } features_in;
5524 struct {
5525 __le64 features;
5526 __le64 incompat;
5527 } __attribute__ ((packed)) features_buf = { 0 };
5528 u64 unsup;
5529 int ret;
5530
5531 features_in.snap_id = cpu_to_le64(snap_id);
5532 features_in.read_only = read_only;
5533
5534 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5535 &rbd_dev->header_oloc, "get_features",
5536 &features_in, sizeof(features_in),
5537 &features_buf, sizeof(features_buf));
5538 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5539 if (ret < 0)
5540 return ret;
5541 if (ret < sizeof (features_buf))
5542 return -ERANGE;
5543
5544 unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5545 if (unsup) {
5546 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5547 unsup);
5548 return -ENXIO;
5549 }
5550
5551 *snap_features = le64_to_cpu(features_buf.features);
5552
5553 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5554 (unsigned long long)snap_id,
5555 (unsigned long long)*snap_features,
5556 (unsigned long long)le64_to_cpu(features_buf.incompat));
5557
5558 return 0;
5559}
5560
5561/*
5562 * These are generic image flags, but since they are used only for
5563 * object map, store them in rbd_dev->object_map_flags.
5564 *
5565 * For the same reason, this function is called only on object map
5566 * (re)load and not on header refresh.
5567 */
5568static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev)
5569{
5570 __le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5571 __le64 flags;
5572 int ret;
5573
5574 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5575 &rbd_dev->header_oloc, "get_flags",
5576 &snapid, sizeof(snapid),
5577 &flags, sizeof(flags));
5578 if (ret < 0)
5579 return ret;
5580 if (ret < sizeof(flags))
5581 return -EBADMSG;
5582
5583 rbd_dev->object_map_flags = le64_to_cpu(flags);
5584 return 0;
5585}
5586
5587struct parent_image_info {
5588 u64 pool_id;
5589 const char *pool_ns;
5590 const char *image_id;
5591 u64 snap_id;
5592
5593 bool has_overlap;
5594 u64 overlap;
5595};
5596
5597static void rbd_parent_info_cleanup(struct parent_image_info *pii)
5598{
5599 kfree(pii->pool_ns);
5600 kfree(pii->image_id);
5601
5602 memset(pii, 0, sizeof(*pii));
5603}
5604
5605/*
5606 * The caller is responsible for @pii.
5607 */
5608static int decode_parent_image_spec(void **p, void *end,
5609 struct parent_image_info *pii)
5610{
5611 u8 struct_v;
5612 u32 struct_len;
5613 int ret;
5614
5615 ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
5616 &struct_v, &struct_len);
5617 if (ret)
5618 return ret;
5619
5620 ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
5621 pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5622 if (IS_ERR(pii->pool_ns)) {
5623 ret = PTR_ERR(pii->pool_ns);
5624 pii->pool_ns = NULL;
5625 return ret;
5626 }
5627 pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5628 if (IS_ERR(pii->image_id)) {
5629 ret = PTR_ERR(pii->image_id);
5630 pii->image_id = NULL;
5631 return ret;
5632 }
5633 ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
5634 return 0;
5635
5636e_inval:
5637 return -EINVAL;
5638}
5639
5640static int __get_parent_info(struct rbd_device *rbd_dev,
5641 struct page *req_page,
5642 struct page *reply_page,
5643 struct parent_image_info *pii)
5644{
5645 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5646 size_t reply_len = PAGE_SIZE;
5647 void *p, *end;
5648 int ret;
5649
5650 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5651 "rbd", "parent_get", CEPH_OSD_FLAG_READ,
5652 req_page, sizeof(u64), &reply_page, &reply_len);
5653 if (ret)
5654 return ret == -EOPNOTSUPP ? 1 : ret;
5655
5656 p = page_address(reply_page);
5657 end = p + reply_len;
5658 ret = decode_parent_image_spec(&p, end, pii);
5659 if (ret)
5660 return ret;
5661
5662 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5663 "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
5664 req_page, sizeof(u64), &reply_page, &reply_len);
5665 if (ret)
5666 return ret;
5667
5668 p = page_address(reply_page);
5669 end = p + reply_len;
5670 ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
5671 if (pii->has_overlap)
5672 ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5673
5674 dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5675 __func__, pii->pool_id, pii->pool_ns, pii->image_id, pii->snap_id,
5676 pii->has_overlap, pii->overlap);
5677 return 0;
5678
5679e_inval:
5680 return -EINVAL;
5681}
5682
5683/*
5684 * The caller is responsible for @pii.
5685 */
5686static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
5687 struct page *req_page,
5688 struct page *reply_page,
5689 struct parent_image_info *pii)
5690{
5691 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5692 size_t reply_len = PAGE_SIZE;
5693 void *p, *end;
5694 int ret;
5695
5696 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5697 "rbd", "get_parent", CEPH_OSD_FLAG_READ,
5698 req_page, sizeof(u64), &reply_page, &reply_len);
5699 if (ret)
5700 return ret;
5701
5702 p = page_address(reply_page);
5703 end = p + reply_len;
5704 ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
5705 pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5706 if (IS_ERR(pii->image_id)) {
5707 ret = PTR_ERR(pii->image_id);
5708 pii->image_id = NULL;
5709 return ret;
5710 }
5711 ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
5712 pii->has_overlap = true;
5713 ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5714
5715 dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5716 __func__, pii->pool_id, pii->pool_ns, pii->image_id, pii->snap_id,
5717 pii->has_overlap, pii->overlap);
5718 return 0;
5719
5720e_inval:
5721 return -EINVAL;
5722}
5723
5724static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev,
5725 struct parent_image_info *pii)
5726{
5727 struct page *req_page, *reply_page;
5728 void *p;
5729 int ret;
5730
5731 req_page = alloc_page(GFP_KERNEL);
5732 if (!req_page)
5733 return -ENOMEM;
5734
5735 reply_page = alloc_page(GFP_KERNEL);
5736 if (!reply_page) {
5737 __free_page(req_page);
5738 return -ENOMEM;
5739 }
5740
5741 p = page_address(req_page);
5742 ceph_encode_64(&p, rbd_dev->spec->snap_id);
5743 ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
5744 if (ret > 0)
5745 ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
5746 pii);
5747
5748 __free_page(req_page);
5749 __free_page(reply_page);
5750 return ret;
5751}
5752
5753static int rbd_dev_setup_parent(struct rbd_device *rbd_dev)
5754{
5755 struct rbd_spec *parent_spec;
5756 struct parent_image_info pii = { 0 };
5757 int ret;
5758
5759 parent_spec = rbd_spec_alloc();
5760 if (!parent_spec)
5761 return -ENOMEM;
5762
5763 ret = rbd_dev_v2_parent_info(rbd_dev, &pii);
5764 if (ret)
5765 goto out_err;
5766
5767 if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap)
5768 goto out; /* No parent? No problem. */
5769
5770 /* The ceph file layout needs to fit pool id in 32 bits */
5771
5772 ret = -EIO;
5773 if (pii.pool_id > (u64)U32_MAX) {
5774 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5775 (unsigned long long)pii.pool_id, U32_MAX);
5776 goto out_err;
5777 }
5778
5779 /*
5780 * The parent won't change except when the clone is flattened,
5781 * so we only need to record the parent image spec once.
5782 */
5783 parent_spec->pool_id = pii.pool_id;
5784 if (pii.pool_ns && *pii.pool_ns) {
5785 parent_spec->pool_ns = pii.pool_ns;
5786 pii.pool_ns = NULL;
5787 }
5788 parent_spec->image_id = pii.image_id;
5789 pii.image_id = NULL;
5790 parent_spec->snap_id = pii.snap_id;
5791
5792 rbd_assert(!rbd_dev->parent_spec);
5793 rbd_dev->parent_spec = parent_spec;
5794 parent_spec = NULL; /* rbd_dev now owns this */
5795
5796 /*
5797 * Record the parent overlap. If it's zero, issue a warning as
5798 * we will proceed as if there is no parent.
5799 */
5800 if (!pii.overlap)
5801 rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5802 rbd_dev->parent_overlap = pii.overlap;
5803
5804out:
5805 ret = 0;
5806out_err:
5807 rbd_parent_info_cleanup(&pii);
5808 rbd_spec_put(parent_spec);
5809 return ret;
5810}
5811
5812static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev,
5813 u64 *stripe_unit, u64 *stripe_count)
5814{
5815 struct {
5816 __le64 stripe_unit;
5817 __le64 stripe_count;
5818 } __attribute__ ((packed)) striping_info_buf = { 0 };
5819 size_t size = sizeof (striping_info_buf);
5820 int ret;
5821
5822 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5823 &rbd_dev->header_oloc, "get_stripe_unit_count",
5824 NULL, 0, &striping_info_buf, size);
5825 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5826 if (ret < 0)
5827 return ret;
5828 if (ret < size)
5829 return -ERANGE;
5830
5831 *stripe_unit = le64_to_cpu(striping_info_buf.stripe_unit);
5832 *stripe_count = le64_to_cpu(striping_info_buf.stripe_count);
5833 dout(" stripe_unit = %llu stripe_count = %llu\n", *stripe_unit,
5834 *stripe_count);
5835
5836 return 0;
5837}
5838
5839static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev, s64 *data_pool_id)
5840{
5841 __le64 data_pool_buf;
5842 int ret;
5843
5844 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5845 &rbd_dev->header_oloc, "get_data_pool",
5846 NULL, 0, &data_pool_buf,
5847 sizeof(data_pool_buf));
5848 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5849 if (ret < 0)
5850 return ret;
5851 if (ret < sizeof(data_pool_buf))
5852 return -EBADMSG;
5853
5854 *data_pool_id = le64_to_cpu(data_pool_buf);
5855 dout(" data_pool_id = %lld\n", *data_pool_id);
5856 WARN_ON(*data_pool_id == CEPH_NOPOOL);
5857
5858 return 0;
5859}
5860
5861static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5862{
5863 CEPH_DEFINE_OID_ONSTACK(oid);
5864 size_t image_id_size;
5865 char *image_id;
5866 void *p;
5867 void *end;
5868 size_t size;
5869 void *reply_buf = NULL;
5870 size_t len = 0;
5871 char *image_name = NULL;
5872 int ret;
5873
5874 rbd_assert(!rbd_dev->spec->image_name);
5875
5876 len = strlen(rbd_dev->spec->image_id);
5877 image_id_size = sizeof (__le32) + len;
5878 image_id = kmalloc(image_id_size, GFP_KERNEL);
5879 if (!image_id)
5880 return NULL;
5881
5882 p = image_id;
5883 end = image_id + image_id_size;
5884 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5885
5886 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5887 reply_buf = kmalloc(size, GFP_KERNEL);
5888 if (!reply_buf)
5889 goto out;
5890
5891 ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5892 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5893 "dir_get_name", image_id, image_id_size,
5894 reply_buf, size);
5895 if (ret < 0)
5896 goto out;
5897 p = reply_buf;
5898 end = reply_buf + ret;
5899
5900 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5901 if (IS_ERR(image_name))
5902 image_name = NULL;
5903 else
5904 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5905out:
5906 kfree(reply_buf);
5907 kfree(image_id);
5908
5909 return image_name;
5910}
5911
5912static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5913{
5914 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5915 const char *snap_name;
5916 u32 which = 0;
5917
5918 /* Skip over names until we find the one we are looking for */
5919
5920 snap_name = rbd_dev->header.snap_names;
5921 while (which < snapc->num_snaps) {
5922 if (!strcmp(name, snap_name))
5923 return snapc->snaps[which];
5924 snap_name += strlen(snap_name) + 1;
5925 which++;
5926 }
5927 return CEPH_NOSNAP;
5928}
5929
5930static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5931{
5932 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5933 u32 which;
5934 bool found = false;
5935 u64 snap_id;
5936
5937 for (which = 0; !found && which < snapc->num_snaps; which++) {
5938 const char *snap_name;
5939
5940 snap_id = snapc->snaps[which];
5941 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
5942 if (IS_ERR(snap_name)) {
5943 /* ignore no-longer existing snapshots */
5944 if (PTR_ERR(snap_name) == -ENOENT)
5945 continue;
5946 else
5947 break;
5948 }
5949 found = !strcmp(name, snap_name);
5950 kfree(snap_name);
5951 }
5952 return found ? snap_id : CEPH_NOSNAP;
5953}
5954
5955/*
5956 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
5957 * no snapshot by that name is found, or if an error occurs.
5958 */
5959static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5960{
5961 if (rbd_dev->image_format == 1)
5962 return rbd_v1_snap_id_by_name(rbd_dev, name);
5963
5964 return rbd_v2_snap_id_by_name(rbd_dev, name);
5965}
5966
5967/*
5968 * An image being mapped will have everything but the snap id.
5969 */
5970static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
5971{
5972 struct rbd_spec *spec = rbd_dev->spec;
5973
5974 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
5975 rbd_assert(spec->image_id && spec->image_name);
5976 rbd_assert(spec->snap_name);
5977
5978 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
5979 u64 snap_id;
5980
5981 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
5982 if (snap_id == CEPH_NOSNAP)
5983 return -ENOENT;
5984
5985 spec->snap_id = snap_id;
5986 } else {
5987 spec->snap_id = CEPH_NOSNAP;
5988 }
5989
5990 return 0;
5991}
5992
5993/*
5994 * A parent image will have all ids but none of the names.
5995 *
5996 * All names in an rbd spec are dynamically allocated. It's OK if we
5997 * can't figure out the name for an image id.
5998 */
5999static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
6000{
6001 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
6002 struct rbd_spec *spec = rbd_dev->spec;
6003 const char *pool_name;
6004 const char *image_name;
6005 const char *snap_name;
6006 int ret;
6007
6008 rbd_assert(spec->pool_id != CEPH_NOPOOL);
6009 rbd_assert(spec->image_id);
6010 rbd_assert(spec->snap_id != CEPH_NOSNAP);
6011
6012 /* Get the pool name; we have to make our own copy of this */
6013
6014 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
6015 if (!pool_name) {
6016 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
6017 return -EIO;
6018 }
6019 pool_name = kstrdup(pool_name, GFP_KERNEL);
6020 if (!pool_name)
6021 return -ENOMEM;
6022
6023 /* Fetch the image name; tolerate failure here */
6024
6025 image_name = rbd_dev_image_name(rbd_dev);
6026 if (!image_name)
6027 rbd_warn(rbd_dev, "unable to get image name");
6028
6029 /* Fetch the snapshot name */
6030
6031 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
6032 if (IS_ERR(snap_name)) {
6033 ret = PTR_ERR(snap_name);
6034 goto out_err;
6035 }
6036
6037 spec->pool_name = pool_name;
6038 spec->image_name = image_name;
6039 spec->snap_name = snap_name;
6040
6041 return 0;
6042
6043out_err:
6044 kfree(image_name);
6045 kfree(pool_name);
6046 return ret;
6047}
6048
6049static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev,
6050 struct ceph_snap_context **psnapc)
6051{
6052 size_t size;
6053 int ret;
6054 void *reply_buf;
6055 void *p;
6056 void *end;
6057 u64 seq;
6058 u32 snap_count;
6059 struct ceph_snap_context *snapc;
6060 u32 i;
6061
6062 /*
6063 * We'll need room for the seq value (maximum snapshot id),
6064 * snapshot count, and array of that many snapshot ids.
6065 * For now we have a fixed upper limit on the number we're
6066 * prepared to receive.
6067 */
6068 size = sizeof (__le64) + sizeof (__le32) +
6069 RBD_MAX_SNAP_COUNT * sizeof (__le64);
6070 reply_buf = kzalloc(size, GFP_KERNEL);
6071 if (!reply_buf)
6072 return -ENOMEM;
6073
6074 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6075 &rbd_dev->header_oloc, "get_snapcontext",
6076 NULL, 0, reply_buf, size);
6077 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6078 if (ret < 0)
6079 goto out;
6080
6081 p = reply_buf;
6082 end = reply_buf + ret;
6083 ret = -ERANGE;
6084 ceph_decode_64_safe(&p, end, seq, out);
6085 ceph_decode_32_safe(&p, end, snap_count, out);
6086
6087 /*
6088 * Make sure the reported number of snapshot ids wouldn't go
6089 * beyond the end of our buffer. But before checking that,
6090 * make sure the computed size of the snapshot context we
6091 * allocate is representable in a size_t.
6092 */
6093 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
6094 / sizeof (u64)) {
6095 ret = -EINVAL;
6096 goto out;
6097 }
6098 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
6099 goto out;
6100 ret = 0;
6101
6102 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
6103 if (!snapc) {
6104 ret = -ENOMEM;
6105 goto out;
6106 }
6107 snapc->seq = seq;
6108 for (i = 0; i < snap_count; i++)
6109 snapc->snaps[i] = ceph_decode_64(&p);
6110
6111 *psnapc = snapc;
6112 dout(" snap context seq = %llu, snap_count = %u\n",
6113 (unsigned long long)seq, (unsigned int)snap_count);
6114out:
6115 kfree(reply_buf);
6116
6117 return ret;
6118}
6119
6120static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
6121 u64 snap_id)
6122{
6123 size_t size;
6124 void *reply_buf;
6125 __le64 snapid;
6126 int ret;
6127 void *p;
6128 void *end;
6129 char *snap_name;
6130
6131 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
6132 reply_buf = kmalloc(size, GFP_KERNEL);
6133 if (!reply_buf)
6134 return ERR_PTR(-ENOMEM);
6135
6136 snapid = cpu_to_le64(snap_id);
6137 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6138 &rbd_dev->header_oloc, "get_snapshot_name",
6139 &snapid, sizeof(snapid), reply_buf, size);
6140 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6141 if (ret < 0) {
6142 snap_name = ERR_PTR(ret);
6143 goto out;
6144 }
6145
6146 p = reply_buf;
6147 end = reply_buf + ret;
6148 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
6149 if (IS_ERR(snap_name))
6150 goto out;
6151
6152 dout(" snap_id 0x%016llx snap_name = %s\n",
6153 (unsigned long long)snap_id, snap_name);
6154out:
6155 kfree(reply_buf);
6156
6157 return snap_name;
6158}
6159
6160static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev,
6161 struct rbd_image_header *header,
6162 bool first_time)
6163{
6164 int ret;
6165
6166 ret = _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
6167 first_time ? &header->obj_order : NULL,
6168 &header->image_size);
6169 if (ret)
6170 return ret;
6171
6172 if (first_time) {
6173 ret = rbd_dev_v2_header_onetime(rbd_dev, header);
6174 if (ret)
6175 return ret;
6176 }
6177
6178 ret = rbd_dev_v2_snap_context(rbd_dev, &header->snapc);
6179 if (ret)
6180 return ret;
6181
6182 return 0;
6183}
6184
6185static int rbd_dev_header_info(struct rbd_device *rbd_dev,
6186 struct rbd_image_header *header,
6187 bool first_time)
6188{
6189 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6190 rbd_assert(!header->object_prefix && !header->snapc);
6191
6192 if (rbd_dev->image_format == 1)
6193 return rbd_dev_v1_header_info(rbd_dev, header, first_time);
6194
6195 return rbd_dev_v2_header_info(rbd_dev, header, first_time);
6196}
6197
6198/*
6199 * Skips over white space at *buf, and updates *buf to point to the
6200 * first found non-space character (if any). Returns the length of
6201 * the token (string of non-white space characters) found. Note
6202 * that *buf must be terminated with '\0'.
6203 */
6204static inline size_t next_token(const char **buf)
6205{
6206 /*
6207 * These are the characters that produce nonzero for
6208 * isspace() in the "C" and "POSIX" locales.
6209 */
6210 static const char spaces[] = " \f\n\r\t\v";
6211
6212 *buf += strspn(*buf, spaces); /* Find start of token */
6213
6214 return strcspn(*buf, spaces); /* Return token length */
6215}
6216
6217/*
6218 * Finds the next token in *buf, dynamically allocates a buffer big
6219 * enough to hold a copy of it, and copies the token into the new
6220 * buffer. The copy is guaranteed to be terminated with '\0'. Note
6221 * that a duplicate buffer is created even for a zero-length token.
6222 *
6223 * Returns a pointer to the newly-allocated duplicate, or a null
6224 * pointer if memory for the duplicate was not available. If
6225 * the lenp argument is a non-null pointer, the length of the token
6226 * (not including the '\0') is returned in *lenp.
6227 *
6228 * If successful, the *buf pointer will be updated to point beyond
6229 * the end of the found token.
6230 *
6231 * Note: uses GFP_KERNEL for allocation.
6232 */
6233static inline char *dup_token(const char **buf, size_t *lenp)
6234{
6235 char *dup;
6236 size_t len;
6237
6238 len = next_token(buf);
6239 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
6240 if (!dup)
6241 return NULL;
6242 *(dup + len) = '\0';
6243 *buf += len;
6244
6245 if (lenp)
6246 *lenp = len;
6247
6248 return dup;
6249}
6250
6251static int rbd_parse_param(struct fs_parameter *param,
6252 struct rbd_parse_opts_ctx *pctx)
6253{
6254 struct rbd_options *opt = pctx->opts;
6255 struct fs_parse_result result;
6256 struct p_log log = {.prefix = "rbd"};
6257 int token, ret;
6258
6259 ret = ceph_parse_param(param, pctx->copts, NULL);
6260 if (ret != -ENOPARAM)
6261 return ret;
6262
6263 token = __fs_parse(&log, rbd_parameters, param, &result);
6264 dout("%s fs_parse '%s' token %d\n", __func__, param->key, token);
6265 if (token < 0) {
6266 if (token == -ENOPARAM)
6267 return inval_plog(&log, "Unknown parameter '%s'",
6268 param->key);
6269 return token;
6270 }
6271
6272 switch (token) {
6273 case Opt_queue_depth:
6274 if (result.uint_32 < 1)
6275 goto out_of_range;
6276 opt->queue_depth = result.uint_32;
6277 break;
6278 case Opt_alloc_size:
6279 if (result.uint_32 < SECTOR_SIZE)
6280 goto out_of_range;
6281 if (!is_power_of_2(result.uint_32))
6282 return inval_plog(&log, "alloc_size must be a power of 2");
6283 opt->alloc_size = result.uint_32;
6284 break;
6285 case Opt_lock_timeout:
6286 /* 0 is "wait forever" (i.e. infinite timeout) */
6287 if (result.uint_32 > INT_MAX / 1000)
6288 goto out_of_range;
6289 opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000);
6290 break;
6291 case Opt_pool_ns:
6292 kfree(pctx->spec->pool_ns);
6293 pctx->spec->pool_ns = param->string;
6294 param->string = NULL;
6295 break;
6296 case Opt_compression_hint:
6297 switch (result.uint_32) {
6298 case Opt_compression_hint_none:
6299 opt->alloc_hint_flags &=
6300 ~(CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE |
6301 CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE);
6302 break;
6303 case Opt_compression_hint_compressible:
6304 opt->alloc_hint_flags |=
6305 CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6306 opt->alloc_hint_flags &=
6307 ~CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6308 break;
6309 case Opt_compression_hint_incompressible:
6310 opt->alloc_hint_flags |=
6311 CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6312 opt->alloc_hint_flags &=
6313 ~CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6314 break;
6315 default:
6316 BUG();
6317 }
6318 break;
6319 case Opt_read_only:
6320 opt->read_only = true;
6321 break;
6322 case Opt_read_write:
6323 opt->read_only = false;
6324 break;
6325 case Opt_lock_on_read:
6326 opt->lock_on_read = true;
6327 break;
6328 case Opt_exclusive:
6329 opt->exclusive = true;
6330 break;
6331 case Opt_notrim:
6332 opt->trim = false;
6333 break;
6334 default:
6335 BUG();
6336 }
6337
6338 return 0;
6339
6340out_of_range:
6341 return inval_plog(&log, "%s out of range", param->key);
6342}
6343
6344/*
6345 * This duplicates most of generic_parse_monolithic(), untying it from
6346 * fs_context and skipping standard superblock and security options.
6347 */
6348static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx)
6349{
6350 char *key;
6351 int ret = 0;
6352
6353 dout("%s '%s'\n", __func__, options);
6354 while ((key = strsep(&options, ",")) != NULL) {
6355 if (*key) {
6356 struct fs_parameter param = {
6357 .key = key,
6358 .type = fs_value_is_flag,
6359 };
6360 char *value = strchr(key, '=');
6361 size_t v_len = 0;
6362
6363 if (value) {
6364 if (value == key)
6365 continue;
6366 *value++ = 0;
6367 v_len = strlen(value);
6368 param.string = kmemdup_nul(value, v_len,
6369 GFP_KERNEL);
6370 if (!param.string)
6371 return -ENOMEM;
6372 param.type = fs_value_is_string;
6373 }
6374 param.size = v_len;
6375
6376 ret = rbd_parse_param(¶m, pctx);
6377 kfree(param.string);
6378 if (ret)
6379 break;
6380 }
6381 }
6382
6383 return ret;
6384}
6385
6386/*
6387 * Parse the options provided for an "rbd add" (i.e., rbd image
6388 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
6389 * and the data written is passed here via a NUL-terminated buffer.
6390 * Returns 0 if successful or an error code otherwise.
6391 *
6392 * The information extracted from these options is recorded in
6393 * the other parameters which return dynamically-allocated
6394 * structures:
6395 * ceph_opts
6396 * The address of a pointer that will refer to a ceph options
6397 * structure. Caller must release the returned pointer using
6398 * ceph_destroy_options() when it is no longer needed.
6399 * rbd_opts
6400 * Address of an rbd options pointer. Fully initialized by
6401 * this function; caller must release with kfree().
6402 * spec
6403 * Address of an rbd image specification pointer. Fully
6404 * initialized by this function based on parsed options.
6405 * Caller must release with rbd_spec_put().
6406 *
6407 * The options passed take this form:
6408 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
6409 * where:
6410 * <mon_addrs>
6411 * A comma-separated list of one or more monitor addresses.
6412 * A monitor address is an ip address, optionally followed
6413 * by a port number (separated by a colon).
6414 * I.e.: ip1[:port1][,ip2[:port2]...]
6415 * <options>
6416 * A comma-separated list of ceph and/or rbd options.
6417 * <pool_name>
6418 * The name of the rados pool containing the rbd image.
6419 * <image_name>
6420 * The name of the image in that pool to map.
6421 * <snap_id>
6422 * An optional snapshot id. If provided, the mapping will
6423 * present data from the image at the time that snapshot was
6424 * created. The image head is used if no snapshot id is
6425 * provided. Snapshot mappings are always read-only.
6426 */
6427static int rbd_add_parse_args(const char *buf,
6428 struct ceph_options **ceph_opts,
6429 struct rbd_options **opts,
6430 struct rbd_spec **rbd_spec)
6431{
6432 size_t len;
6433 char *options;
6434 const char *mon_addrs;
6435 char *snap_name;
6436 size_t mon_addrs_size;
6437 struct rbd_parse_opts_ctx pctx = { 0 };
6438 int ret;
6439
6440 /* The first four tokens are required */
6441
6442 len = next_token(&buf);
6443 if (!len) {
6444 rbd_warn(NULL, "no monitor address(es) provided");
6445 return -EINVAL;
6446 }
6447 mon_addrs = buf;
6448 mon_addrs_size = len;
6449 buf += len;
6450
6451 ret = -EINVAL;
6452 options = dup_token(&buf, NULL);
6453 if (!options)
6454 return -ENOMEM;
6455 if (!*options) {
6456 rbd_warn(NULL, "no options provided");
6457 goto out_err;
6458 }
6459
6460 pctx.spec = rbd_spec_alloc();
6461 if (!pctx.spec)
6462 goto out_mem;
6463
6464 pctx.spec->pool_name = dup_token(&buf, NULL);
6465 if (!pctx.spec->pool_name)
6466 goto out_mem;
6467 if (!*pctx.spec->pool_name) {
6468 rbd_warn(NULL, "no pool name provided");
6469 goto out_err;
6470 }
6471
6472 pctx.spec->image_name = dup_token(&buf, NULL);
6473 if (!pctx.spec->image_name)
6474 goto out_mem;
6475 if (!*pctx.spec->image_name) {
6476 rbd_warn(NULL, "no image name provided");
6477 goto out_err;
6478 }
6479
6480 /*
6481 * Snapshot name is optional; default is to use "-"
6482 * (indicating the head/no snapshot).
6483 */
6484 len = next_token(&buf);
6485 if (!len) {
6486 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
6487 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
6488 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
6489 ret = -ENAMETOOLONG;
6490 goto out_err;
6491 }
6492 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
6493 if (!snap_name)
6494 goto out_mem;
6495 *(snap_name + len) = '\0';
6496 pctx.spec->snap_name = snap_name;
6497
6498 pctx.copts = ceph_alloc_options();
6499 if (!pctx.copts)
6500 goto out_mem;
6501
6502 /* Initialize all rbd options to the defaults */
6503
6504 pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
6505 if (!pctx.opts)
6506 goto out_mem;
6507
6508 pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
6509 pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
6510 pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT;
6511 pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
6512 pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
6513 pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
6514 pctx.opts->trim = RBD_TRIM_DEFAULT;
6515
6516 ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL,
6517 ',');
6518 if (ret)
6519 goto out_err;
6520
6521 ret = rbd_parse_options(options, &pctx);
6522 if (ret)
6523 goto out_err;
6524
6525 *ceph_opts = pctx.copts;
6526 *opts = pctx.opts;
6527 *rbd_spec = pctx.spec;
6528 kfree(options);
6529 return 0;
6530
6531out_mem:
6532 ret = -ENOMEM;
6533out_err:
6534 kfree(pctx.opts);
6535 ceph_destroy_options(pctx.copts);
6536 rbd_spec_put(pctx.spec);
6537 kfree(options);
6538 return ret;
6539}
6540
6541static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
6542{
6543 down_write(&rbd_dev->lock_rwsem);
6544 if (__rbd_is_lock_owner(rbd_dev))
6545 __rbd_release_lock(rbd_dev);
6546 up_write(&rbd_dev->lock_rwsem);
6547}
6548
6549/*
6550 * If the wait is interrupted, an error is returned even if the lock
6551 * was successfully acquired. rbd_dev_image_unlock() will release it
6552 * if needed.
6553 */
6554static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
6555{
6556 long ret;
6557
6558 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
6559 if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read)
6560 return 0;
6561
6562 rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
6563 return -EINVAL;
6564 }
6565
6566 if (rbd_is_ro(rbd_dev))
6567 return 0;
6568
6569 rbd_assert(!rbd_is_lock_owner(rbd_dev));
6570 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
6571 ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait,
6572 ceph_timeout_jiffies(rbd_dev->opts->lock_timeout));
6573 if (ret > 0) {
6574 ret = rbd_dev->acquire_err;
6575 } else {
6576 cancel_delayed_work_sync(&rbd_dev->lock_dwork);
6577 if (!ret)
6578 ret = -ETIMEDOUT;
6579
6580 rbd_warn(rbd_dev, "failed to acquire lock: %ld", ret);
6581 }
6582 if (ret)
6583 return ret;
6584
6585 return 0;
6586}
6587
6588/*
6589 * An rbd format 2 image has a unique identifier, distinct from the
6590 * name given to it by the user. Internally, that identifier is
6591 * what's used to specify the names of objects related to the image.
6592 *
6593 * A special "rbd id" object is used to map an rbd image name to its
6594 * id. If that object doesn't exist, then there is no v2 rbd image
6595 * with the supplied name.
6596 *
6597 * This function will record the given rbd_dev's image_id field if
6598 * it can be determined, and in that case will return 0. If any
6599 * errors occur a negative errno will be returned and the rbd_dev's
6600 * image_id field will be unchanged (and should be NULL).
6601 */
6602static int rbd_dev_image_id(struct rbd_device *rbd_dev)
6603{
6604 int ret;
6605 size_t size;
6606 CEPH_DEFINE_OID_ONSTACK(oid);
6607 void *response;
6608 char *image_id;
6609
6610 /*
6611 * When probing a parent image, the image id is already
6612 * known (and the image name likely is not). There's no
6613 * need to fetch the image id again in this case. We
6614 * do still need to set the image format though.
6615 */
6616 if (rbd_dev->spec->image_id) {
6617 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
6618
6619 return 0;
6620 }
6621
6622 /*
6623 * First, see if the format 2 image id file exists, and if
6624 * so, get the image's persistent id from it.
6625 */
6626 ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
6627 rbd_dev->spec->image_name);
6628 if (ret)
6629 return ret;
6630
6631 dout("rbd id object name is %s\n", oid.name);
6632
6633 /* Response will be an encoded string, which includes a length */
6634 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
6635 response = kzalloc(size, GFP_NOIO);
6636 if (!response) {
6637 ret = -ENOMEM;
6638 goto out;
6639 }
6640
6641 /* If it doesn't exist we'll assume it's a format 1 image */
6642
6643 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
6644 "get_id", NULL, 0,
6645 response, size);
6646 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6647 if (ret == -ENOENT) {
6648 image_id = kstrdup("", GFP_KERNEL);
6649 ret = image_id ? 0 : -ENOMEM;
6650 if (!ret)
6651 rbd_dev->image_format = 1;
6652 } else if (ret >= 0) {
6653 void *p = response;
6654
6655 image_id = ceph_extract_encoded_string(&p, p + ret,
6656 NULL, GFP_NOIO);
6657 ret = PTR_ERR_OR_ZERO(image_id);
6658 if (!ret)
6659 rbd_dev->image_format = 2;
6660 }
6661
6662 if (!ret) {
6663 rbd_dev->spec->image_id = image_id;
6664 dout("image_id is %s\n", image_id);
6665 }
6666out:
6667 kfree(response);
6668 ceph_oid_destroy(&oid);
6669 return ret;
6670}
6671
6672/*
6673 * Undo whatever state changes are made by v1 or v2 header info
6674 * call.
6675 */
6676static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
6677{
6678 rbd_dev_parent_put(rbd_dev);
6679 rbd_object_map_free(rbd_dev);
6680 rbd_dev_mapping_clear(rbd_dev);
6681
6682 /* Free dynamic fields from the header, then zero it out */
6683
6684 rbd_image_header_cleanup(&rbd_dev->header);
6685}
6686
6687static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev,
6688 struct rbd_image_header *header)
6689{
6690 int ret;
6691
6692 ret = rbd_dev_v2_object_prefix(rbd_dev, &header->object_prefix);
6693 if (ret)
6694 return ret;
6695
6696 /*
6697 * Get the and check features for the image. Currently the
6698 * features are assumed to never change.
6699 */
6700 ret = _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
6701 rbd_is_ro(rbd_dev), &header->features);
6702 if (ret)
6703 return ret;
6704
6705 /* If the image supports fancy striping, get its parameters */
6706
6707 if (header->features & RBD_FEATURE_STRIPINGV2) {
6708 ret = rbd_dev_v2_striping_info(rbd_dev, &header->stripe_unit,
6709 &header->stripe_count);
6710 if (ret)
6711 return ret;
6712 }
6713
6714 if (header->features & RBD_FEATURE_DATA_POOL) {
6715 ret = rbd_dev_v2_data_pool(rbd_dev, &header->data_pool_id);
6716 if (ret)
6717 return ret;
6718 }
6719
6720 return 0;
6721}
6722
6723/*
6724 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
6725 * rbd_dev_image_probe() recursion depth, which means it's also the
6726 * length of the already discovered part of the parent chain.
6727 */
6728static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
6729{
6730 struct rbd_device *parent = NULL;
6731 int ret;
6732
6733 if (!rbd_dev->parent_spec)
6734 return 0;
6735
6736 if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
6737 pr_info("parent chain is too long (%d)\n", depth);
6738 ret = -EINVAL;
6739 goto out_err;
6740 }
6741
6742 parent = __rbd_dev_create(rbd_dev->parent_spec);
6743 if (!parent) {
6744 ret = -ENOMEM;
6745 goto out_err;
6746 }
6747
6748 /*
6749 * Images related by parent/child relationships always share
6750 * rbd_client and spec/parent_spec, so bump their refcounts.
6751 */
6752 parent->rbd_client = __rbd_get_client(rbd_dev->rbd_client);
6753 parent->spec = rbd_spec_get(rbd_dev->parent_spec);
6754
6755 __set_bit(RBD_DEV_FLAG_READONLY, &parent->flags);
6756
6757 ret = rbd_dev_image_probe(parent, depth);
6758 if (ret < 0)
6759 goto out_err;
6760
6761 rbd_dev->parent = parent;
6762 atomic_set(&rbd_dev->parent_ref, 1);
6763 return 0;
6764
6765out_err:
6766 rbd_dev_unparent(rbd_dev);
6767 rbd_dev_destroy(parent);
6768 return ret;
6769}
6770
6771static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6772{
6773 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6774 rbd_free_disk(rbd_dev);
6775 if (!single_major)
6776 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6777}
6778
6779/*
6780 * rbd_dev->header_rwsem must be locked for write and will be unlocked
6781 * upon return.
6782 */
6783static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6784{
6785 int ret;
6786
6787 /* Record our major and minor device numbers. */
6788
6789 if (!single_major) {
6790 ret = register_blkdev(0, rbd_dev->name);
6791 if (ret < 0)
6792 goto err_out_unlock;
6793
6794 rbd_dev->major = ret;
6795 rbd_dev->minor = 0;
6796 } else {
6797 rbd_dev->major = rbd_major;
6798 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6799 }
6800
6801 /* Set up the blkdev mapping. */
6802
6803 ret = rbd_init_disk(rbd_dev);
6804 if (ret)
6805 goto err_out_blkdev;
6806
6807 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6808 set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev));
6809
6810 ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6811 if (ret)
6812 goto err_out_disk;
6813
6814 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6815 up_write(&rbd_dev->header_rwsem);
6816 return 0;
6817
6818err_out_disk:
6819 rbd_free_disk(rbd_dev);
6820err_out_blkdev:
6821 if (!single_major)
6822 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6823err_out_unlock:
6824 up_write(&rbd_dev->header_rwsem);
6825 return ret;
6826}
6827
6828static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6829{
6830 struct rbd_spec *spec = rbd_dev->spec;
6831 int ret;
6832
6833 /* Record the header object name for this rbd image. */
6834
6835 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6836 if (rbd_dev->image_format == 1)
6837 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6838 spec->image_name, RBD_SUFFIX);
6839 else
6840 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6841 RBD_HEADER_PREFIX, spec->image_id);
6842
6843 return ret;
6844}
6845
6846static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap)
6847{
6848 if (!is_snap) {
6849 pr_info("image %s/%s%s%s does not exist\n",
6850 rbd_dev->spec->pool_name,
6851 rbd_dev->spec->pool_ns ?: "",
6852 rbd_dev->spec->pool_ns ? "/" : "",
6853 rbd_dev->spec->image_name);
6854 } else {
6855 pr_info("snap %s/%s%s%s@%s does not exist\n",
6856 rbd_dev->spec->pool_name,
6857 rbd_dev->spec->pool_ns ?: "",
6858 rbd_dev->spec->pool_ns ? "/" : "",
6859 rbd_dev->spec->image_name,
6860 rbd_dev->spec->snap_name);
6861 }
6862}
6863
6864static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6865{
6866 if (!rbd_is_ro(rbd_dev))
6867 rbd_unregister_watch(rbd_dev);
6868
6869 rbd_dev_unprobe(rbd_dev);
6870 rbd_dev->image_format = 0;
6871 kfree(rbd_dev->spec->image_id);
6872 rbd_dev->spec->image_id = NULL;
6873}
6874
6875/*
6876 * Probe for the existence of the header object for the given rbd
6877 * device. If this image is the one being mapped (i.e., not a
6878 * parent), initiate a watch on its header object before using that
6879 * object to get detailed information about the rbd image.
6880 *
6881 * On success, returns with header_rwsem held for write if called
6882 * with @depth == 0.
6883 */
6884static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6885{
6886 bool need_watch = !rbd_is_ro(rbd_dev);
6887 int ret;
6888
6889 /*
6890 * Get the id from the image id object. Unless there's an
6891 * error, rbd_dev->spec->image_id will be filled in with
6892 * a dynamically-allocated string, and rbd_dev->image_format
6893 * will be set to either 1 or 2.
6894 */
6895 ret = rbd_dev_image_id(rbd_dev);
6896 if (ret)
6897 return ret;
6898
6899 ret = rbd_dev_header_name(rbd_dev);
6900 if (ret)
6901 goto err_out_format;
6902
6903 if (need_watch) {
6904 ret = rbd_register_watch(rbd_dev);
6905 if (ret) {
6906 if (ret == -ENOENT)
6907 rbd_print_dne(rbd_dev, false);
6908 goto err_out_format;
6909 }
6910 }
6911
6912 if (!depth)
6913 down_write(&rbd_dev->header_rwsem);
6914
6915 ret = rbd_dev_header_info(rbd_dev, &rbd_dev->header, true);
6916 if (ret) {
6917 if (ret == -ENOENT && !need_watch)
6918 rbd_print_dne(rbd_dev, false);
6919 goto err_out_probe;
6920 }
6921
6922 rbd_init_layout(rbd_dev);
6923
6924 /*
6925 * If this image is the one being mapped, we have pool name and
6926 * id, image name and id, and snap name - need to fill snap id.
6927 * Otherwise this is a parent image, identified by pool, image
6928 * and snap ids - need to fill in names for those ids.
6929 */
6930 if (!depth)
6931 ret = rbd_spec_fill_snap_id(rbd_dev);
6932 else
6933 ret = rbd_spec_fill_names(rbd_dev);
6934 if (ret) {
6935 if (ret == -ENOENT)
6936 rbd_print_dne(rbd_dev, true);
6937 goto err_out_probe;
6938 }
6939
6940 ret = rbd_dev_mapping_set(rbd_dev);
6941 if (ret)
6942 goto err_out_probe;
6943
6944 if (rbd_is_snap(rbd_dev) &&
6945 (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) {
6946 ret = rbd_object_map_load(rbd_dev);
6947 if (ret)
6948 goto err_out_probe;
6949 }
6950
6951 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
6952 ret = rbd_dev_setup_parent(rbd_dev);
6953 if (ret)
6954 goto err_out_probe;
6955 }
6956
6957 ret = rbd_dev_probe_parent(rbd_dev, depth);
6958 if (ret)
6959 goto err_out_probe;
6960
6961 dout("discovered format %u image, header name is %s\n",
6962 rbd_dev->image_format, rbd_dev->header_oid.name);
6963 return 0;
6964
6965err_out_probe:
6966 if (!depth)
6967 up_write(&rbd_dev->header_rwsem);
6968 if (need_watch)
6969 rbd_unregister_watch(rbd_dev);
6970 rbd_dev_unprobe(rbd_dev);
6971err_out_format:
6972 rbd_dev->image_format = 0;
6973 kfree(rbd_dev->spec->image_id);
6974 rbd_dev->spec->image_id = NULL;
6975 return ret;
6976}
6977
6978static void rbd_dev_update_header(struct rbd_device *rbd_dev,
6979 struct rbd_image_header *header)
6980{
6981 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6982 rbd_assert(rbd_dev->header.object_prefix); /* !first_time */
6983
6984 if (rbd_dev->header.image_size != header->image_size) {
6985 rbd_dev->header.image_size = header->image_size;
6986
6987 if (!rbd_is_snap(rbd_dev)) {
6988 rbd_dev->mapping.size = header->image_size;
6989 rbd_dev_update_size(rbd_dev);
6990 }
6991 }
6992
6993 ceph_put_snap_context(rbd_dev->header.snapc);
6994 rbd_dev->header.snapc = header->snapc;
6995 header->snapc = NULL;
6996
6997 if (rbd_dev->image_format == 1) {
6998 kfree(rbd_dev->header.snap_names);
6999 rbd_dev->header.snap_names = header->snap_names;
7000 header->snap_names = NULL;
7001
7002 kfree(rbd_dev->header.snap_sizes);
7003 rbd_dev->header.snap_sizes = header->snap_sizes;
7004 header->snap_sizes = NULL;
7005 }
7006}
7007
7008static void rbd_dev_update_parent(struct rbd_device *rbd_dev,
7009 struct parent_image_info *pii)
7010{
7011 if (pii->pool_id == CEPH_NOPOOL || !pii->has_overlap) {
7012 /*
7013 * Either the parent never existed, or we have
7014 * record of it but the image got flattened so it no
7015 * longer has a parent. When the parent of a
7016 * layered image disappears we immediately set the
7017 * overlap to 0. The effect of this is that all new
7018 * requests will be treated as if the image had no
7019 * parent.
7020 *
7021 * If !pii.has_overlap, the parent image spec is not
7022 * applicable. It's there to avoid duplication in each
7023 * snapshot record.
7024 */
7025 if (rbd_dev->parent_overlap) {
7026 rbd_dev->parent_overlap = 0;
7027 rbd_dev_parent_put(rbd_dev);
7028 pr_info("%s: clone has been flattened\n",
7029 rbd_dev->disk->disk_name);
7030 }
7031 } else {
7032 rbd_assert(rbd_dev->parent_spec);
7033
7034 /*
7035 * Update the parent overlap. If it became zero, issue
7036 * a warning as we will proceed as if there is no parent.
7037 */
7038 if (!pii->overlap && rbd_dev->parent_overlap)
7039 rbd_warn(rbd_dev,
7040 "clone has become standalone (overlap 0)");
7041 rbd_dev->parent_overlap = pii->overlap;
7042 }
7043}
7044
7045static int rbd_dev_refresh(struct rbd_device *rbd_dev)
7046{
7047 struct rbd_image_header header = { 0 };
7048 struct parent_image_info pii = { 0 };
7049 int ret;
7050
7051 dout("%s rbd_dev %p\n", __func__, rbd_dev);
7052
7053 ret = rbd_dev_header_info(rbd_dev, &header, false);
7054 if (ret)
7055 goto out;
7056
7057 /*
7058 * If there is a parent, see if it has disappeared due to the
7059 * mapped image getting flattened.
7060 */
7061 if (rbd_dev->parent) {
7062 ret = rbd_dev_v2_parent_info(rbd_dev, &pii);
7063 if (ret)
7064 goto out;
7065 }
7066
7067 down_write(&rbd_dev->header_rwsem);
7068 rbd_dev_update_header(rbd_dev, &header);
7069 if (rbd_dev->parent)
7070 rbd_dev_update_parent(rbd_dev, &pii);
7071 up_write(&rbd_dev->header_rwsem);
7072
7073out:
7074 rbd_parent_info_cleanup(&pii);
7075 rbd_image_header_cleanup(&header);
7076 return ret;
7077}
7078
7079static ssize_t do_rbd_add(const char *buf, size_t count)
7080{
7081 struct rbd_device *rbd_dev = NULL;
7082 struct ceph_options *ceph_opts = NULL;
7083 struct rbd_options *rbd_opts = NULL;
7084 struct rbd_spec *spec = NULL;
7085 struct rbd_client *rbdc;
7086 int rc;
7087
7088 if (!capable(CAP_SYS_ADMIN))
7089 return -EPERM;
7090
7091 if (!try_module_get(THIS_MODULE))
7092 return -ENODEV;
7093
7094 /* parse add command */
7095 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
7096 if (rc < 0)
7097 goto out;
7098
7099 rbdc = rbd_get_client(ceph_opts);
7100 if (IS_ERR(rbdc)) {
7101 rc = PTR_ERR(rbdc);
7102 goto err_out_args;
7103 }
7104
7105 /* pick the pool */
7106 rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
7107 if (rc < 0) {
7108 if (rc == -ENOENT)
7109 pr_info("pool %s does not exist\n", spec->pool_name);
7110 goto err_out_client;
7111 }
7112 spec->pool_id = (u64)rc;
7113
7114 rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
7115 if (!rbd_dev) {
7116 rc = -ENOMEM;
7117 goto err_out_client;
7118 }
7119 rbdc = NULL; /* rbd_dev now owns this */
7120 spec = NULL; /* rbd_dev now owns this */
7121 rbd_opts = NULL; /* rbd_dev now owns this */
7122
7123 /* if we are mapping a snapshot it will be a read-only mapping */
7124 if (rbd_dev->opts->read_only ||
7125 strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME))
7126 __set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
7127
7128 rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
7129 if (!rbd_dev->config_info) {
7130 rc = -ENOMEM;
7131 goto err_out_rbd_dev;
7132 }
7133
7134 rc = rbd_dev_image_probe(rbd_dev, 0);
7135 if (rc < 0)
7136 goto err_out_rbd_dev;
7137
7138 if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) {
7139 rbd_warn(rbd_dev, "alloc_size adjusted to %u",
7140 rbd_dev->layout.object_size);
7141 rbd_dev->opts->alloc_size = rbd_dev->layout.object_size;
7142 }
7143
7144 rc = rbd_dev_device_setup(rbd_dev);
7145 if (rc)
7146 goto err_out_image_probe;
7147
7148 rc = rbd_add_acquire_lock(rbd_dev);
7149 if (rc)
7150 goto err_out_image_lock;
7151
7152 /* Everything's ready. Announce the disk to the world. */
7153
7154 rc = device_add(&rbd_dev->dev);
7155 if (rc)
7156 goto err_out_image_lock;
7157
7158 rc = device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL);
7159 if (rc)
7160 goto err_out_cleanup_disk;
7161
7162 spin_lock(&rbd_dev_list_lock);
7163 list_add_tail(&rbd_dev->node, &rbd_dev_list);
7164 spin_unlock(&rbd_dev_list_lock);
7165
7166 pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
7167 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
7168 rbd_dev->header.features);
7169 rc = count;
7170out:
7171 module_put(THIS_MODULE);
7172 return rc;
7173
7174err_out_cleanup_disk:
7175 rbd_free_disk(rbd_dev);
7176err_out_image_lock:
7177 rbd_dev_image_unlock(rbd_dev);
7178 rbd_dev_device_release(rbd_dev);
7179err_out_image_probe:
7180 rbd_dev_image_release(rbd_dev);
7181err_out_rbd_dev:
7182 rbd_dev_destroy(rbd_dev);
7183err_out_client:
7184 rbd_put_client(rbdc);
7185err_out_args:
7186 rbd_spec_put(spec);
7187 kfree(rbd_opts);
7188 goto out;
7189}
7190
7191static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count)
7192{
7193 if (single_major)
7194 return -EINVAL;
7195
7196 return do_rbd_add(buf, count);
7197}
7198
7199static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf,
7200 size_t count)
7201{
7202 return do_rbd_add(buf, count);
7203}
7204
7205static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
7206{
7207 while (rbd_dev->parent) {
7208 struct rbd_device *first = rbd_dev;
7209 struct rbd_device *second = first->parent;
7210 struct rbd_device *third;
7211
7212 /*
7213 * Follow to the parent with no grandparent and
7214 * remove it.
7215 */
7216 while (second && (third = second->parent)) {
7217 first = second;
7218 second = third;
7219 }
7220 rbd_assert(second);
7221 rbd_dev_image_release(second);
7222 rbd_dev_destroy(second);
7223 first->parent = NULL;
7224 first->parent_overlap = 0;
7225
7226 rbd_assert(first->parent_spec);
7227 rbd_spec_put(first->parent_spec);
7228 first->parent_spec = NULL;
7229 }
7230}
7231
7232static ssize_t do_rbd_remove(const char *buf, size_t count)
7233{
7234 struct rbd_device *rbd_dev = NULL;
7235 int dev_id;
7236 char opt_buf[6];
7237 bool force = false;
7238 int ret;
7239
7240 if (!capable(CAP_SYS_ADMIN))
7241 return -EPERM;
7242
7243 dev_id = -1;
7244 opt_buf[0] = '\0';
7245 sscanf(buf, "%d %5s", &dev_id, opt_buf);
7246 if (dev_id < 0) {
7247 pr_err("dev_id out of range\n");
7248 return -EINVAL;
7249 }
7250 if (opt_buf[0] != '\0') {
7251 if (!strcmp(opt_buf, "force")) {
7252 force = true;
7253 } else {
7254 pr_err("bad remove option at '%s'\n", opt_buf);
7255 return -EINVAL;
7256 }
7257 }
7258
7259 ret = -ENOENT;
7260 spin_lock(&rbd_dev_list_lock);
7261 list_for_each_entry(rbd_dev, &rbd_dev_list, node) {
7262 if (rbd_dev->dev_id == dev_id) {
7263 ret = 0;
7264 break;
7265 }
7266 }
7267 if (!ret) {
7268 spin_lock_irq(&rbd_dev->lock);
7269 if (rbd_dev->open_count && !force)
7270 ret = -EBUSY;
7271 else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
7272 &rbd_dev->flags))
7273 ret = -EINPROGRESS;
7274 spin_unlock_irq(&rbd_dev->lock);
7275 }
7276 spin_unlock(&rbd_dev_list_lock);
7277 if (ret)
7278 return ret;
7279
7280 if (force) {
7281 /*
7282 * Prevent new IO from being queued and wait for existing
7283 * IO to complete/fail.
7284 */
7285 blk_mq_freeze_queue(rbd_dev->disk->queue);
7286 blk_mark_disk_dead(rbd_dev->disk);
7287 blk_mq_unfreeze_queue(rbd_dev->disk->queue);
7288 }
7289
7290 del_gendisk(rbd_dev->disk);
7291 spin_lock(&rbd_dev_list_lock);
7292 list_del_init(&rbd_dev->node);
7293 spin_unlock(&rbd_dev_list_lock);
7294 device_del(&rbd_dev->dev);
7295
7296 rbd_dev_image_unlock(rbd_dev);
7297 rbd_dev_device_release(rbd_dev);
7298 rbd_dev_image_release(rbd_dev);
7299 rbd_dev_destroy(rbd_dev);
7300 return count;
7301}
7302
7303static ssize_t remove_store(const struct bus_type *bus, const char *buf, size_t count)
7304{
7305 if (single_major)
7306 return -EINVAL;
7307
7308 return do_rbd_remove(buf, count);
7309}
7310
7311static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf,
7312 size_t count)
7313{
7314 return do_rbd_remove(buf, count);
7315}
7316
7317/*
7318 * create control files in sysfs
7319 * /sys/bus/rbd/...
7320 */
7321static int __init rbd_sysfs_init(void)
7322{
7323 int ret;
7324
7325 ret = device_register(&rbd_root_dev);
7326 if (ret < 0) {
7327 put_device(&rbd_root_dev);
7328 return ret;
7329 }
7330
7331 ret = bus_register(&rbd_bus_type);
7332 if (ret < 0)
7333 device_unregister(&rbd_root_dev);
7334
7335 return ret;
7336}
7337
7338static void __exit rbd_sysfs_cleanup(void)
7339{
7340 bus_unregister(&rbd_bus_type);
7341 device_unregister(&rbd_root_dev);
7342}
7343
7344static int __init rbd_slab_init(void)
7345{
7346 rbd_assert(!rbd_img_request_cache);
7347 rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
7348 if (!rbd_img_request_cache)
7349 return -ENOMEM;
7350
7351 rbd_assert(!rbd_obj_request_cache);
7352 rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
7353 if (!rbd_obj_request_cache)
7354 goto out_err;
7355
7356 return 0;
7357
7358out_err:
7359 kmem_cache_destroy(rbd_img_request_cache);
7360 rbd_img_request_cache = NULL;
7361 return -ENOMEM;
7362}
7363
7364static void rbd_slab_exit(void)
7365{
7366 rbd_assert(rbd_obj_request_cache);
7367 kmem_cache_destroy(rbd_obj_request_cache);
7368 rbd_obj_request_cache = NULL;
7369
7370 rbd_assert(rbd_img_request_cache);
7371 kmem_cache_destroy(rbd_img_request_cache);
7372 rbd_img_request_cache = NULL;
7373}
7374
7375static int __init rbd_init(void)
7376{
7377 int rc;
7378
7379 if (!libceph_compatible(NULL)) {
7380 rbd_warn(NULL, "libceph incompatibility (quitting)");
7381 return -EINVAL;
7382 }
7383
7384 rc = rbd_slab_init();
7385 if (rc)
7386 return rc;
7387
7388 /*
7389 * The number of active work items is limited by the number of
7390 * rbd devices * queue depth, so leave @max_active at default.
7391 */
7392 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
7393 if (!rbd_wq) {
7394 rc = -ENOMEM;
7395 goto err_out_slab;
7396 }
7397
7398 if (single_major) {
7399 rbd_major = register_blkdev(0, RBD_DRV_NAME);
7400 if (rbd_major < 0) {
7401 rc = rbd_major;
7402 goto err_out_wq;
7403 }
7404 }
7405
7406 rc = rbd_sysfs_init();
7407 if (rc)
7408 goto err_out_blkdev;
7409
7410 if (single_major)
7411 pr_info("loaded (major %d)\n", rbd_major);
7412 else
7413 pr_info("loaded\n");
7414
7415 return 0;
7416
7417err_out_blkdev:
7418 if (single_major)
7419 unregister_blkdev(rbd_major, RBD_DRV_NAME);
7420err_out_wq:
7421 destroy_workqueue(rbd_wq);
7422err_out_slab:
7423 rbd_slab_exit();
7424 return rc;
7425}
7426
7427static void __exit rbd_exit(void)
7428{
7429 ida_destroy(&rbd_dev_id_ida);
7430 rbd_sysfs_cleanup();
7431 if (single_major)
7432 unregister_blkdev(rbd_major, RBD_DRV_NAME);
7433 destroy_workqueue(rbd_wq);
7434 rbd_slab_exit();
7435}
7436
7437module_init(rbd_init);
7438module_exit(rbd_exit);
7439
7440MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
7441MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
7442MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
7443/* following authorship retained from original osdblk.c */
7444MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
7445
7446MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
7447MODULE_LICENSE("GPL");