Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
   1/*
   2 * NVM Express device driver
   3 * Copyright (c) 2011-2014, Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * You should have received a copy of the GNU General Public License along with
  15 * this program; if not, write to the Free Software Foundation, Inc.,
  16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  17 */
  18
  19#include <linux/nvme.h>
  20#include <linux/bio.h>
  21#include <linux/bitops.h>
  22#include <linux/blkdev.h>
  23#include <linux/cpu.h>
  24#include <linux/delay.h>
  25#include <linux/errno.h>
  26#include <linux/fs.h>
  27#include <linux/genhd.h>
  28#include <linux/hdreg.h>
  29#include <linux/idr.h>
  30#include <linux/init.h>
  31#include <linux/interrupt.h>
  32#include <linux/io.h>
  33#include <linux/kdev_t.h>
  34#include <linux/kthread.h>
  35#include <linux/kernel.h>
  36#include <linux/mm.h>
  37#include <linux/module.h>
  38#include <linux/moduleparam.h>
  39#include <linux/pci.h>
  40#include <linux/percpu.h>
  41#include <linux/poison.h>
  42#include <linux/ptrace.h>
  43#include <linux/sched.h>
  44#include <linux/slab.h>
  45#include <linux/types.h>
  46#include <scsi/sg.h>
  47#include <asm-generic/io-64-nonatomic-lo-hi.h>
  48
  49#define NVME_Q_DEPTH 1024
  50#define SQ_SIZE(depth)		(depth * sizeof(struct nvme_command))
  51#define CQ_SIZE(depth)		(depth * sizeof(struct nvme_completion))
  52#define ADMIN_TIMEOUT	(60 * HZ)
  53#define IOD_TIMEOUT	(4 * NVME_IO_TIMEOUT)
  54
  55unsigned char io_timeout = 30;
  56module_param(io_timeout, byte, 0644);
  57MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
  58
  59static int nvme_major;
  60module_param(nvme_major, int, 0);
  61
  62static int use_threaded_interrupts;
  63module_param(use_threaded_interrupts, int, 0);
  64
  65static DEFINE_SPINLOCK(dev_list_lock);
  66static LIST_HEAD(dev_list);
  67static struct task_struct *nvme_thread;
  68static struct workqueue_struct *nvme_workq;
  69static wait_queue_head_t nvme_kthread_wait;
  70
  71static void nvme_reset_failed_dev(struct work_struct *ws);
  72
  73struct async_cmd_info {
  74	struct kthread_work work;
  75	struct kthread_worker *worker;
  76	u32 result;
  77	int status;
  78	void *ctx;
  79};
  80
  81/*
  82 * An NVM Express queue.  Each device has at least two (one for admin
  83 * commands and one for I/O commands).
  84 */
  85struct nvme_queue {
  86	struct rcu_head r_head;
  87	struct device *q_dmadev;
  88	struct nvme_dev *dev;
  89	char irqname[24];	/* nvme4294967295-65535\0 */
  90	spinlock_t q_lock;
  91	struct nvme_command *sq_cmds;
  92	volatile struct nvme_completion *cqes;
  93	dma_addr_t sq_dma_addr;
  94	dma_addr_t cq_dma_addr;
  95	wait_queue_head_t sq_full;
  96	wait_queue_t sq_cong_wait;
  97	struct bio_list sq_cong;
  98	struct list_head iod_bio;
  99	u32 __iomem *q_db;
 100	u16 q_depth;
 101	u16 cq_vector;
 102	u16 sq_head;
 103	u16 sq_tail;
 104	u16 cq_head;
 105	u16 qid;
 106	u8 cq_phase;
 107	u8 cqe_seen;
 108	u8 q_suspended;
 109	cpumask_var_t cpu_mask;
 110	struct async_cmd_info cmdinfo;
 111	unsigned long cmdid_data[];
 112};
 113
 114/*
 115 * Check we didin't inadvertently grow the command struct
 116 */
 117static inline void _nvme_check_size(void)
 118{
 119	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
 120	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
 121	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
 122	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
 123	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
 124	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
 125	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
 126	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
 127	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
 128	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
 129	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
 130	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
 131}
 132
 133typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
 134						struct nvme_completion *);
 135
 136struct nvme_cmd_info {
 137	nvme_completion_fn fn;
 138	void *ctx;
 139	unsigned long timeout;
 140	int aborted;
 141};
 142
 143static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
 144{
 145	return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
 146}
 147
 148static unsigned nvme_queue_extra(int depth)
 149{
 150	return DIV_ROUND_UP(depth, 8) + (depth * sizeof(struct nvme_cmd_info));
 151}
 152
 153/**
 154 * alloc_cmdid() - Allocate a Command ID
 155 * @nvmeq: The queue that will be used for this command
 156 * @ctx: A pointer that will be passed to the handler
 157 * @handler: The function to call on completion
 158 *
 159 * Allocate a Command ID for a queue.  The data passed in will
 160 * be passed to the completion handler.  This is implemented by using
 161 * the bottom two bits of the ctx pointer to store the handler ID.
 162 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
 163 * We can change this if it becomes a problem.
 164 *
 165 * May be called with local interrupts disabled and the q_lock held,
 166 * or with interrupts enabled and no locks held.
 167 */
 168static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
 169				nvme_completion_fn handler, unsigned timeout)
 170{
 171	int depth = nvmeq->q_depth - 1;
 172	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
 173	int cmdid;
 174
 175	do {
 176		cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
 177		if (cmdid >= depth)
 178			return -EBUSY;
 179	} while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
 180
 181	info[cmdid].fn = handler;
 182	info[cmdid].ctx = ctx;
 183	info[cmdid].timeout = jiffies + timeout;
 184	info[cmdid].aborted = 0;
 185	return cmdid;
 186}
 187
 188static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
 189				nvme_completion_fn handler, unsigned timeout)
 190{
 191	int cmdid;
 192	wait_event_killable(nvmeq->sq_full,
 193		(cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
 194	return (cmdid < 0) ? -EINTR : cmdid;
 195}
 196
 197/* Special values must be less than 0x1000 */
 198#define CMD_CTX_BASE		((void *)POISON_POINTER_DELTA)
 199#define CMD_CTX_CANCELLED	(0x30C + CMD_CTX_BASE)
 200#define CMD_CTX_COMPLETED	(0x310 + CMD_CTX_BASE)
 201#define CMD_CTX_INVALID		(0x314 + CMD_CTX_BASE)
 202#define CMD_CTX_FLUSH		(0x318 + CMD_CTX_BASE)
 203#define CMD_CTX_ABORT		(0x31C + CMD_CTX_BASE)
 204
 205static void special_completion(struct nvme_queue *nvmeq, void *ctx,
 206						struct nvme_completion *cqe)
 207{
 208	if (ctx == CMD_CTX_CANCELLED)
 209		return;
 210	if (ctx == CMD_CTX_FLUSH)
 211		return;
 212	if (ctx == CMD_CTX_ABORT) {
 213		++nvmeq->dev->abort_limit;
 214		return;
 215	}
 216	if (ctx == CMD_CTX_COMPLETED) {
 217		dev_warn(nvmeq->q_dmadev,
 218				"completed id %d twice on queue %d\n",
 219				cqe->command_id, le16_to_cpup(&cqe->sq_id));
 220		return;
 221	}
 222	if (ctx == CMD_CTX_INVALID) {
 223		dev_warn(nvmeq->q_dmadev,
 224				"invalid id %d completed on queue %d\n",
 225				cqe->command_id, le16_to_cpup(&cqe->sq_id));
 226		return;
 227	}
 228
 229	dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
 230}
 231
 232static void async_completion(struct nvme_queue *nvmeq, void *ctx,
 233						struct nvme_completion *cqe)
 234{
 235	struct async_cmd_info *cmdinfo = ctx;
 236	cmdinfo->result = le32_to_cpup(&cqe->result);
 237	cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
 238	queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
 239}
 240
 241/*
 242 * Called with local interrupts disabled and the q_lock held.  May not sleep.
 243 */
 244static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
 245						nvme_completion_fn *fn)
 246{
 247	void *ctx;
 248	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
 249
 250	if (cmdid >= nvmeq->q_depth) {
 251		*fn = special_completion;
 252		return CMD_CTX_INVALID;
 253	}
 254	if (fn)
 255		*fn = info[cmdid].fn;
 256	ctx = info[cmdid].ctx;
 257	info[cmdid].fn = special_completion;
 258	info[cmdid].ctx = CMD_CTX_COMPLETED;
 259	clear_bit(cmdid, nvmeq->cmdid_data);
 260	wake_up(&nvmeq->sq_full);
 261	return ctx;
 262}
 263
 264static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
 265						nvme_completion_fn *fn)
 266{
 267	void *ctx;
 268	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
 269	if (fn)
 270		*fn = info[cmdid].fn;
 271	ctx = info[cmdid].ctx;
 272	info[cmdid].fn = special_completion;
 273	info[cmdid].ctx = CMD_CTX_CANCELLED;
 274	return ctx;
 275}
 276
 277static struct nvme_queue *raw_nvmeq(struct nvme_dev *dev, int qid)
 278{
 279	return rcu_dereference_raw(dev->queues[qid]);
 280}
 281
 282static struct nvme_queue *get_nvmeq(struct nvme_dev *dev) __acquires(RCU)
 283{
 284	unsigned queue_id = get_cpu_var(*dev->io_queue);
 285	rcu_read_lock();
 286	return rcu_dereference(dev->queues[queue_id]);
 287}
 288
 289static void put_nvmeq(struct nvme_queue *nvmeq) __releases(RCU)
 290{
 291	rcu_read_unlock();
 292	put_cpu_var(nvmeq->dev->io_queue);
 293}
 294
 295static struct nvme_queue *lock_nvmeq(struct nvme_dev *dev, int q_idx)
 296							__acquires(RCU)
 297{
 298	rcu_read_lock();
 299	return rcu_dereference(dev->queues[q_idx]);
 300}
 301
 302static void unlock_nvmeq(struct nvme_queue *nvmeq) __releases(RCU)
 303{
 304	rcu_read_unlock();
 305}
 306
 307/**
 308 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
 309 * @nvmeq: The queue to use
 310 * @cmd: The command to send
 311 *
 312 * Safe to use from interrupt context
 313 */
 314static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
 315{
 316	unsigned long flags;
 317	u16 tail;
 318	spin_lock_irqsave(&nvmeq->q_lock, flags);
 319	if (nvmeq->q_suspended) {
 320		spin_unlock_irqrestore(&nvmeq->q_lock, flags);
 321		return -EBUSY;
 322	}
 323	tail = nvmeq->sq_tail;
 324	memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
 325	if (++tail == nvmeq->q_depth)
 326		tail = 0;
 327	writel(tail, nvmeq->q_db);
 328	nvmeq->sq_tail = tail;
 329	spin_unlock_irqrestore(&nvmeq->q_lock, flags);
 330
 331	return 0;
 332}
 333
 334static __le64 **iod_list(struct nvme_iod *iod)
 335{
 336	return ((void *)iod) + iod->offset;
 337}
 338
 339/*
 340 * Will slightly overestimate the number of pages needed.  This is OK
 341 * as it only leads to a small amount of wasted memory for the lifetime of
 342 * the I/O.
 343 */
 344static int nvme_npages(unsigned size)
 345{
 346	unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
 347	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
 348}
 349
 350static struct nvme_iod *
 351nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
 352{
 353	struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
 354				sizeof(__le64 *) * nvme_npages(nbytes) +
 355				sizeof(struct scatterlist) * nseg, gfp);
 356
 357	if (iod) {
 358		iod->offset = offsetof(struct nvme_iod, sg[nseg]);
 359		iod->npages = -1;
 360		iod->length = nbytes;
 361		iod->nents = 0;
 362		iod->first_dma = 0ULL;
 363		iod->start_time = jiffies;
 364	}
 365
 366	return iod;
 367}
 368
 369void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
 370{
 371	const int last_prp = PAGE_SIZE / 8 - 1;
 372	int i;
 373	__le64 **list = iod_list(iod);
 374	dma_addr_t prp_dma = iod->first_dma;
 375
 376	if (iod->npages == 0)
 377		dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
 378	for (i = 0; i < iod->npages; i++) {
 379		__le64 *prp_list = list[i];
 380		dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
 381		dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
 382		prp_dma = next_prp_dma;
 383	}
 384	kfree(iod);
 385}
 386
 387static void nvme_start_io_acct(struct bio *bio)
 388{
 389	struct gendisk *disk = bio->bi_bdev->bd_disk;
 390	const int rw = bio_data_dir(bio);
 391	int cpu = part_stat_lock();
 392	part_round_stats(cpu, &disk->part0);
 393	part_stat_inc(cpu, &disk->part0, ios[rw]);
 394	part_stat_add(cpu, &disk->part0, sectors[rw], bio_sectors(bio));
 395	part_inc_in_flight(&disk->part0, rw);
 396	part_stat_unlock();
 397}
 398
 399static void nvme_end_io_acct(struct bio *bio, unsigned long start_time)
 400{
 401	struct gendisk *disk = bio->bi_bdev->bd_disk;
 402	const int rw = bio_data_dir(bio);
 403	unsigned long duration = jiffies - start_time;
 404	int cpu = part_stat_lock();
 405	part_stat_add(cpu, &disk->part0, ticks[rw], duration);
 406	part_round_stats(cpu, &disk->part0);
 407	part_dec_in_flight(&disk->part0, rw);
 408	part_stat_unlock();
 409}
 410
 411static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
 412						struct nvme_completion *cqe)
 413{
 414	struct nvme_iod *iod = ctx;
 415	struct bio *bio = iod->private;
 416	u16 status = le16_to_cpup(&cqe->status) >> 1;
 417
 418	if (unlikely(status)) {
 419		if (!(status & NVME_SC_DNR ||
 420				bio->bi_rw & REQ_FAILFAST_MASK) &&
 421				(jiffies - iod->start_time) < IOD_TIMEOUT) {
 422			if (!waitqueue_active(&nvmeq->sq_full))
 423				add_wait_queue(&nvmeq->sq_full,
 424							&nvmeq->sq_cong_wait);
 425			list_add_tail(&iod->node, &nvmeq->iod_bio);
 426			wake_up(&nvmeq->sq_full);
 427			return;
 428		}
 429	}
 430	if (iod->nents) {
 431		dma_unmap_sg(nvmeq->q_dmadev, iod->sg, iod->nents,
 432			bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
 433		nvme_end_io_acct(bio, iod->start_time);
 434	}
 435	nvme_free_iod(nvmeq->dev, iod);
 436	if (status)
 437		bio_endio(bio, -EIO);
 438	else
 439		bio_endio(bio, 0);
 440}
 441
 442/* length is in bytes.  gfp flags indicates whether we may sleep. */
 443int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod, int total_len,
 444								gfp_t gfp)
 445{
 446	struct dma_pool *pool;
 447	int length = total_len;
 448	struct scatterlist *sg = iod->sg;
 449	int dma_len = sg_dma_len(sg);
 450	u64 dma_addr = sg_dma_address(sg);
 451	int offset = offset_in_page(dma_addr);
 452	__le64 *prp_list;
 453	__le64 **list = iod_list(iod);
 454	dma_addr_t prp_dma;
 455	int nprps, i;
 456
 457	length -= (PAGE_SIZE - offset);
 458	if (length <= 0)
 459		return total_len;
 460
 461	dma_len -= (PAGE_SIZE - offset);
 462	if (dma_len) {
 463		dma_addr += (PAGE_SIZE - offset);
 464	} else {
 465		sg = sg_next(sg);
 466		dma_addr = sg_dma_address(sg);
 467		dma_len = sg_dma_len(sg);
 468	}
 469
 470	if (length <= PAGE_SIZE) {
 471		iod->first_dma = dma_addr;
 472		return total_len;
 473	}
 474
 475	nprps = DIV_ROUND_UP(length, PAGE_SIZE);
 476	if (nprps <= (256 / 8)) {
 477		pool = dev->prp_small_pool;
 478		iod->npages = 0;
 479	} else {
 480		pool = dev->prp_page_pool;
 481		iod->npages = 1;
 482	}
 483
 484	prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
 485	if (!prp_list) {
 486		iod->first_dma = dma_addr;
 487		iod->npages = -1;
 488		return (total_len - length) + PAGE_SIZE;
 489	}
 490	list[0] = prp_list;
 491	iod->first_dma = prp_dma;
 492	i = 0;
 493	for (;;) {
 494		if (i == PAGE_SIZE / 8) {
 495			__le64 *old_prp_list = prp_list;
 496			prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
 497			if (!prp_list)
 498				return total_len - length;
 499			list[iod->npages++] = prp_list;
 500			prp_list[0] = old_prp_list[i - 1];
 501			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
 502			i = 1;
 503		}
 504		prp_list[i++] = cpu_to_le64(dma_addr);
 505		dma_len -= PAGE_SIZE;
 506		dma_addr += PAGE_SIZE;
 507		length -= PAGE_SIZE;
 508		if (length <= 0)
 509			break;
 510		if (dma_len > 0)
 511			continue;
 512		BUG_ON(dma_len < 0);
 513		sg = sg_next(sg);
 514		dma_addr = sg_dma_address(sg);
 515		dma_len = sg_dma_len(sg);
 516	}
 517
 518	return total_len;
 519}
 520
 521static int nvme_split_and_submit(struct bio *bio, struct nvme_queue *nvmeq,
 522				 int len)
 523{
 524	struct bio *split = bio_split(bio, len >> 9, GFP_ATOMIC, NULL);
 525	if (!split)
 526		return -ENOMEM;
 527
 528	bio_chain(split, bio);
 529
 530	if (!waitqueue_active(&nvmeq->sq_full))
 531		add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
 532	bio_list_add(&nvmeq->sq_cong, split);
 533	bio_list_add(&nvmeq->sq_cong, bio);
 534	wake_up(&nvmeq->sq_full);
 535
 536	return 0;
 537}
 538
 539/* NVMe scatterlists require no holes in the virtual address */
 540#define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2)	((vec2)->bv_offset || \
 541			(((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
 542
 543static int nvme_map_bio(struct nvme_queue *nvmeq, struct nvme_iod *iod,
 544		struct bio *bio, enum dma_data_direction dma_dir, int psegs)
 545{
 546	struct bio_vec bvec, bvprv;
 547	struct bvec_iter iter;
 548	struct scatterlist *sg = NULL;
 549	int length = 0, nsegs = 0, split_len = bio->bi_iter.bi_size;
 550	int first = 1;
 551
 552	if (nvmeq->dev->stripe_size)
 553		split_len = nvmeq->dev->stripe_size -
 554			((bio->bi_iter.bi_sector << 9) &
 555			 (nvmeq->dev->stripe_size - 1));
 556
 557	sg_init_table(iod->sg, psegs);
 558	bio_for_each_segment(bvec, bio, iter) {
 559		if (!first && BIOVEC_PHYS_MERGEABLE(&bvprv, &bvec)) {
 560			sg->length += bvec.bv_len;
 561		} else {
 562			if (!first && BIOVEC_NOT_VIRT_MERGEABLE(&bvprv, &bvec))
 563				return nvme_split_and_submit(bio, nvmeq,
 564							     length);
 565
 566			sg = sg ? sg + 1 : iod->sg;
 567			sg_set_page(sg, bvec.bv_page,
 568				    bvec.bv_len, bvec.bv_offset);
 569			nsegs++;
 570		}
 571
 572		if (split_len - length < bvec.bv_len)
 573			return nvme_split_and_submit(bio, nvmeq, split_len);
 574		length += bvec.bv_len;
 575		bvprv = bvec;
 576		first = 0;
 577	}
 578	iod->nents = nsegs;
 579	sg_mark_end(sg);
 580	if (dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir) == 0)
 581		return -ENOMEM;
 582
 583	BUG_ON(length != bio->bi_iter.bi_size);
 584	return length;
 585}
 586
 587static int nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
 588		struct bio *bio, struct nvme_iod *iod, int cmdid)
 589{
 590	struct nvme_dsm_range *range =
 591				(struct nvme_dsm_range *)iod_list(iod)[0];
 592	struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
 593
 594	range->cattr = cpu_to_le32(0);
 595	range->nlb = cpu_to_le32(bio->bi_iter.bi_size >> ns->lba_shift);
 596	range->slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_iter.bi_sector));
 597
 598	memset(cmnd, 0, sizeof(*cmnd));
 599	cmnd->dsm.opcode = nvme_cmd_dsm;
 600	cmnd->dsm.command_id = cmdid;
 601	cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
 602	cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
 603	cmnd->dsm.nr = 0;
 604	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
 605
 606	if (++nvmeq->sq_tail == nvmeq->q_depth)
 607		nvmeq->sq_tail = 0;
 608	writel(nvmeq->sq_tail, nvmeq->q_db);
 609
 610	return 0;
 611}
 612
 613static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
 614								int cmdid)
 615{
 616	struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
 617
 618	memset(cmnd, 0, sizeof(*cmnd));
 619	cmnd->common.opcode = nvme_cmd_flush;
 620	cmnd->common.command_id = cmdid;
 621	cmnd->common.nsid = cpu_to_le32(ns->ns_id);
 622
 623	if (++nvmeq->sq_tail == nvmeq->q_depth)
 624		nvmeq->sq_tail = 0;
 625	writel(nvmeq->sq_tail, nvmeq->q_db);
 626
 627	return 0;
 628}
 629
 630int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
 631{
 632	int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
 633					special_completion, NVME_IO_TIMEOUT);
 634	if (unlikely(cmdid < 0))
 635		return cmdid;
 636
 637	return nvme_submit_flush(nvmeq, ns, cmdid);
 638}
 639
 640static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod)
 641{
 642	struct bio *bio = iod->private;
 643	struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
 644	struct nvme_command *cmnd;
 645	int cmdid;
 646	u16 control;
 647	u32 dsmgmt;
 648
 649	cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
 650	if (unlikely(cmdid < 0))
 651		return cmdid;
 652
 653	if (bio->bi_rw & REQ_DISCARD)
 654		return nvme_submit_discard(nvmeq, ns, bio, iod, cmdid);
 655	if ((bio->bi_rw & REQ_FLUSH) && !iod->nents)
 656		return nvme_submit_flush(nvmeq, ns, cmdid);
 657
 658	control = 0;
 659	if (bio->bi_rw & REQ_FUA)
 660		control |= NVME_RW_FUA;
 661	if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
 662		control |= NVME_RW_LR;
 663
 664	dsmgmt = 0;
 665	if (bio->bi_rw & REQ_RAHEAD)
 666		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
 667
 668	cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
 669	memset(cmnd, 0, sizeof(*cmnd));
 670
 671	cmnd->rw.opcode = bio_data_dir(bio) ? nvme_cmd_write : nvme_cmd_read;
 672	cmnd->rw.command_id = cmdid;
 673	cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
 674	cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
 675	cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
 676	cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_iter.bi_sector));
 677	cmnd->rw.length =
 678		cpu_to_le16((bio->bi_iter.bi_size >> ns->lba_shift) - 1);
 679	cmnd->rw.control = cpu_to_le16(control);
 680	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
 681
 682	if (++nvmeq->sq_tail == nvmeq->q_depth)
 683		nvmeq->sq_tail = 0;
 684	writel(nvmeq->sq_tail, nvmeq->q_db);
 685
 686	return 0;
 687}
 688
 689/*
 690 * Called with local interrupts disabled and the q_lock held.  May not sleep.
 691 */
 692static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
 693								struct bio *bio)
 694{
 695	struct nvme_iod *iod;
 696	int psegs = bio_phys_segments(ns->queue, bio);
 697	int result;
 698
 699	if ((bio->bi_rw & REQ_FLUSH) && psegs) {
 700		result = nvme_submit_flush_data(nvmeq, ns);
 701		if (result)
 702			return result;
 703	}
 704
 705	iod = nvme_alloc_iod(psegs, bio->bi_iter.bi_size, GFP_ATOMIC);
 706	if (!iod)
 707		return -ENOMEM;
 708
 709	iod->private = bio;
 710	if (bio->bi_rw & REQ_DISCARD) {
 711		void *range;
 712		/*
 713		 * We reuse the small pool to allocate the 16-byte range here
 714		 * as it is not worth having a special pool for these or
 715		 * additional cases to handle freeing the iod.
 716		 */
 717		range = dma_pool_alloc(nvmeq->dev->prp_small_pool,
 718						GFP_ATOMIC,
 719						&iod->first_dma);
 720		if (!range) {
 721			result = -ENOMEM;
 722			goto free_iod;
 723		}
 724		iod_list(iod)[0] = (__le64 *)range;
 725		iod->npages = 0;
 726	} else if (psegs) {
 727		result = nvme_map_bio(nvmeq, iod, bio,
 728			bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
 729			psegs);
 730		if (result <= 0)
 731			goto free_iod;
 732		if (nvme_setup_prps(nvmeq->dev, iod, result, GFP_ATOMIC) !=
 733								result) {
 734			result = -ENOMEM;
 735			goto free_iod;
 736		}
 737		nvme_start_io_acct(bio);
 738	}
 739	if (unlikely(nvme_submit_iod(nvmeq, iod))) {
 740		if (!waitqueue_active(&nvmeq->sq_full))
 741			add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
 742		list_add_tail(&iod->node, &nvmeq->iod_bio);
 743	}
 744	return 0;
 745
 746 free_iod:
 747	nvme_free_iod(nvmeq->dev, iod);
 748	return result;
 749}
 750
 751static int nvme_process_cq(struct nvme_queue *nvmeq)
 752{
 753	u16 head, phase;
 754
 755	head = nvmeq->cq_head;
 756	phase = nvmeq->cq_phase;
 757
 758	for (;;) {
 759		void *ctx;
 760		nvme_completion_fn fn;
 761		struct nvme_completion cqe = nvmeq->cqes[head];
 762		if ((le16_to_cpu(cqe.status) & 1) != phase)
 763			break;
 764		nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
 765		if (++head == nvmeq->q_depth) {
 766			head = 0;
 767			phase = !phase;
 768		}
 769
 770		ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
 771		fn(nvmeq, ctx, &cqe);
 772	}
 773
 774	/* If the controller ignores the cq head doorbell and continuously
 775	 * writes to the queue, it is theoretically possible to wrap around
 776	 * the queue twice and mistakenly return IRQ_NONE.  Linux only
 777	 * requires that 0.1% of your interrupts are handled, so this isn't
 778	 * a big problem.
 779	 */
 780	if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
 781		return 0;
 782
 783	writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
 784	nvmeq->cq_head = head;
 785	nvmeq->cq_phase = phase;
 786
 787	nvmeq->cqe_seen = 1;
 788	return 1;
 789}
 790
 791static void nvme_make_request(struct request_queue *q, struct bio *bio)
 792{
 793	struct nvme_ns *ns = q->queuedata;
 794	struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
 795	int result = -EBUSY;
 796
 797	if (!nvmeq) {
 798		put_nvmeq(NULL);
 799		bio_endio(bio, -EIO);
 800		return;
 801	}
 802
 803	spin_lock_irq(&nvmeq->q_lock);
 804	if (!nvmeq->q_suspended && bio_list_empty(&nvmeq->sq_cong))
 805		result = nvme_submit_bio_queue(nvmeq, ns, bio);
 806	if (unlikely(result)) {
 807		if (!waitqueue_active(&nvmeq->sq_full))
 808			add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
 809		bio_list_add(&nvmeq->sq_cong, bio);
 810	}
 811
 812	nvme_process_cq(nvmeq);
 813	spin_unlock_irq(&nvmeq->q_lock);
 814	put_nvmeq(nvmeq);
 815}
 816
 817static irqreturn_t nvme_irq(int irq, void *data)
 818{
 819	irqreturn_t result;
 820	struct nvme_queue *nvmeq = data;
 821	spin_lock(&nvmeq->q_lock);
 822	nvme_process_cq(nvmeq);
 823	result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
 824	nvmeq->cqe_seen = 0;
 825	spin_unlock(&nvmeq->q_lock);
 826	return result;
 827}
 828
 829static irqreturn_t nvme_irq_check(int irq, void *data)
 830{
 831	struct nvme_queue *nvmeq = data;
 832	struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
 833	if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
 834		return IRQ_NONE;
 835	return IRQ_WAKE_THREAD;
 836}
 837
 838static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
 839{
 840	spin_lock_irq(&nvmeq->q_lock);
 841	cancel_cmdid(nvmeq, cmdid, NULL);
 842	spin_unlock_irq(&nvmeq->q_lock);
 843}
 844
 845struct sync_cmd_info {
 846	struct task_struct *task;
 847	u32 result;
 848	int status;
 849};
 850
 851static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
 852						struct nvme_completion *cqe)
 853{
 854	struct sync_cmd_info *cmdinfo = ctx;
 855	cmdinfo->result = le32_to_cpup(&cqe->result);
 856	cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
 857	wake_up_process(cmdinfo->task);
 858}
 859
 860/*
 861 * Returns 0 on success.  If the result is negative, it's a Linux error code;
 862 * if the result is positive, it's an NVM Express status code
 863 */
 864static int nvme_submit_sync_cmd(struct nvme_dev *dev, int q_idx,
 865						struct nvme_command *cmd,
 866						u32 *result, unsigned timeout)
 867{
 868	int cmdid, ret;
 869	struct sync_cmd_info cmdinfo;
 870	struct nvme_queue *nvmeq;
 871
 872	nvmeq = lock_nvmeq(dev, q_idx);
 873	if (!nvmeq) {
 874		unlock_nvmeq(nvmeq);
 875		return -ENODEV;
 876	}
 877
 878	cmdinfo.task = current;
 879	cmdinfo.status = -EINTR;
 880
 881	cmdid = alloc_cmdid(nvmeq, &cmdinfo, sync_completion, timeout);
 882	if (cmdid < 0) {
 883		unlock_nvmeq(nvmeq);
 884		return cmdid;
 885	}
 886	cmd->common.command_id = cmdid;
 887
 888	set_current_state(TASK_KILLABLE);
 889	ret = nvme_submit_cmd(nvmeq, cmd);
 890	if (ret) {
 891		free_cmdid(nvmeq, cmdid, NULL);
 892		unlock_nvmeq(nvmeq);
 893		set_current_state(TASK_RUNNING);
 894		return ret;
 895	}
 896	unlock_nvmeq(nvmeq);
 897	schedule_timeout(timeout);
 898
 899	if (cmdinfo.status == -EINTR) {
 900		nvmeq = lock_nvmeq(dev, q_idx);
 901		if (nvmeq)
 902			nvme_abort_command(nvmeq, cmdid);
 903		unlock_nvmeq(nvmeq);
 904		return -EINTR;
 905	}
 906
 907	if (result)
 908		*result = cmdinfo.result;
 909
 910	return cmdinfo.status;
 911}
 912
 913static int nvme_submit_async_cmd(struct nvme_queue *nvmeq,
 914			struct nvme_command *cmd,
 915			struct async_cmd_info *cmdinfo, unsigned timeout)
 916{
 917	int cmdid;
 918
 919	cmdid = alloc_cmdid_killable(nvmeq, cmdinfo, async_completion, timeout);
 920	if (cmdid < 0)
 921		return cmdid;
 922	cmdinfo->status = -EINTR;
 923	cmd->common.command_id = cmdid;
 924	return nvme_submit_cmd(nvmeq, cmd);
 925}
 926
 927int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
 928								u32 *result)
 929{
 930	return nvme_submit_sync_cmd(dev, 0, cmd, result, ADMIN_TIMEOUT);
 931}
 932
 933int nvme_submit_io_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
 934								u32 *result)
 935{
 936	return nvme_submit_sync_cmd(dev, smp_processor_id() + 1, cmd, result,
 937							NVME_IO_TIMEOUT);
 938}
 939
 940static int nvme_submit_admin_cmd_async(struct nvme_dev *dev,
 941		struct nvme_command *cmd, struct async_cmd_info *cmdinfo)
 942{
 943	return nvme_submit_async_cmd(raw_nvmeq(dev, 0), cmd, cmdinfo,
 944								ADMIN_TIMEOUT);
 945}
 946
 947static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
 948{
 949	int status;
 950	struct nvme_command c;
 951
 952	memset(&c, 0, sizeof(c));
 953	c.delete_queue.opcode = opcode;
 954	c.delete_queue.qid = cpu_to_le16(id);
 955
 956	status = nvme_submit_admin_cmd(dev, &c, NULL);
 957	if (status)
 958		return -EIO;
 959	return 0;
 960}
 961
 962static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
 963						struct nvme_queue *nvmeq)
 964{
 965	int status;
 966	struct nvme_command c;
 967	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
 968
 969	memset(&c, 0, sizeof(c));
 970	c.create_cq.opcode = nvme_admin_create_cq;
 971	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
 972	c.create_cq.cqid = cpu_to_le16(qid);
 973	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
 974	c.create_cq.cq_flags = cpu_to_le16(flags);
 975	c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
 976
 977	status = nvme_submit_admin_cmd(dev, &c, NULL);
 978	if (status)
 979		return -EIO;
 980	return 0;
 981}
 982
 983static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
 984						struct nvme_queue *nvmeq)
 985{
 986	int status;
 987	struct nvme_command c;
 988	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
 989
 990	memset(&c, 0, sizeof(c));
 991	c.create_sq.opcode = nvme_admin_create_sq;
 992	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
 993	c.create_sq.sqid = cpu_to_le16(qid);
 994	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
 995	c.create_sq.sq_flags = cpu_to_le16(flags);
 996	c.create_sq.cqid = cpu_to_le16(qid);
 997
 998	status = nvme_submit_admin_cmd(dev, &c, NULL);
 999	if (status)
1000		return -EIO;
1001	return 0;
1002}
1003
1004static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1005{
1006	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1007}
1008
1009static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1010{
1011	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1012}
1013
1014int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
1015							dma_addr_t dma_addr)
1016{
1017	struct nvme_command c;
1018
1019	memset(&c, 0, sizeof(c));
1020	c.identify.opcode = nvme_admin_identify;
1021	c.identify.nsid = cpu_to_le32(nsid);
1022	c.identify.prp1 = cpu_to_le64(dma_addr);
1023	c.identify.cns = cpu_to_le32(cns);
1024
1025	return nvme_submit_admin_cmd(dev, &c, NULL);
1026}
1027
1028int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
1029					dma_addr_t dma_addr, u32 *result)
1030{
1031	struct nvme_command c;
1032
1033	memset(&c, 0, sizeof(c));
1034	c.features.opcode = nvme_admin_get_features;
1035	c.features.nsid = cpu_to_le32(nsid);
1036	c.features.prp1 = cpu_to_le64(dma_addr);
1037	c.features.fid = cpu_to_le32(fid);
1038
1039	return nvme_submit_admin_cmd(dev, &c, result);
1040}
1041
1042int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
1043					dma_addr_t dma_addr, u32 *result)
1044{
1045	struct nvme_command c;
1046
1047	memset(&c, 0, sizeof(c));
1048	c.features.opcode = nvme_admin_set_features;
1049	c.features.prp1 = cpu_to_le64(dma_addr);
1050	c.features.fid = cpu_to_le32(fid);
1051	c.features.dword11 = cpu_to_le32(dword11);
1052
1053	return nvme_submit_admin_cmd(dev, &c, result);
1054}
1055
1056/**
1057 * nvme_abort_cmd - Attempt aborting a command
1058 * @cmdid: Command id of a timed out IO
1059 * @queue: The queue with timed out IO
1060 *
1061 * Schedule controller reset if the command was already aborted once before and
1062 * still hasn't been returned to the driver, or if this is the admin queue.
1063 */
1064static void nvme_abort_cmd(int cmdid, struct nvme_queue *nvmeq)
1065{
1066	int a_cmdid;
1067	struct nvme_command cmd;
1068	struct nvme_dev *dev = nvmeq->dev;
1069	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1070	struct nvme_queue *adminq;
1071
1072	if (!nvmeq->qid || info[cmdid].aborted) {
1073		if (work_busy(&dev->reset_work))
1074			return;
1075		list_del_init(&dev->node);
1076		dev_warn(&dev->pci_dev->dev,
1077			"I/O %d QID %d timeout, reset controller\n", cmdid,
1078								nvmeq->qid);
1079		dev->reset_workfn = nvme_reset_failed_dev;
1080		queue_work(nvme_workq, &dev->reset_work);
1081		return;
1082	}
1083
1084	if (!dev->abort_limit)
1085		return;
1086
1087	adminq = rcu_dereference(dev->queues[0]);
1088	a_cmdid = alloc_cmdid(adminq, CMD_CTX_ABORT, special_completion,
1089								ADMIN_TIMEOUT);
1090	if (a_cmdid < 0)
1091		return;
1092
1093	memset(&cmd, 0, sizeof(cmd));
1094	cmd.abort.opcode = nvme_admin_abort_cmd;
1095	cmd.abort.cid = cmdid;
1096	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1097	cmd.abort.command_id = a_cmdid;
1098
1099	--dev->abort_limit;
1100	info[cmdid].aborted = 1;
1101	info[cmdid].timeout = jiffies + ADMIN_TIMEOUT;
1102
1103	dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", cmdid,
1104							nvmeq->qid);
1105	nvme_submit_cmd(adminq, &cmd);
1106}
1107
1108/**
1109 * nvme_cancel_ios - Cancel outstanding I/Os
1110 * @queue: The queue to cancel I/Os on
1111 * @timeout: True to only cancel I/Os which have timed out
1112 */
1113static void nvme_cancel_ios(struct nvme_queue *nvmeq, bool timeout)
1114{
1115	int depth = nvmeq->q_depth - 1;
1116	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1117	unsigned long now = jiffies;
1118	int cmdid;
1119
1120	for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
1121		void *ctx;
1122		nvme_completion_fn fn;
1123		static struct nvme_completion cqe = {
1124			.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1),
1125		};
1126
1127		if (timeout && !time_after(now, info[cmdid].timeout))
1128			continue;
1129		if (info[cmdid].ctx == CMD_CTX_CANCELLED)
1130			continue;
1131		if (timeout && nvmeq->dev->initialized) {
1132			nvme_abort_cmd(cmdid, nvmeq);
1133			continue;
1134		}
1135		dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n", cmdid,
1136								nvmeq->qid);
1137		ctx = cancel_cmdid(nvmeq, cmdid, &fn);
1138		fn(nvmeq, ctx, &cqe);
1139	}
1140}
1141
1142static void nvme_free_queue(struct rcu_head *r)
1143{
1144	struct nvme_queue *nvmeq = container_of(r, struct nvme_queue, r_head);
1145
1146	spin_lock_irq(&nvmeq->q_lock);
1147	while (bio_list_peek(&nvmeq->sq_cong)) {
1148		struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1149		bio_endio(bio, -EIO);
1150	}
1151	while (!list_empty(&nvmeq->iod_bio)) {
1152		static struct nvme_completion cqe = {
1153			.status = cpu_to_le16(
1154				(NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1),
1155		};
1156		struct nvme_iod *iod = list_first_entry(&nvmeq->iod_bio,
1157							struct nvme_iod,
1158							node);
1159		list_del(&iod->node);
1160		bio_completion(nvmeq, iod, &cqe);
1161	}
1162	spin_unlock_irq(&nvmeq->q_lock);
1163
1164	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1165				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1166	dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1167					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1168	if (nvmeq->qid)
1169		free_cpumask_var(nvmeq->cpu_mask);
1170	kfree(nvmeq);
1171}
1172
1173static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1174{
1175	int i;
1176
1177	for (i = dev->queue_count - 1; i >= lowest; i--) {
1178		struct nvme_queue *nvmeq = raw_nvmeq(dev, i);
1179		rcu_assign_pointer(dev->queues[i], NULL);
1180		call_rcu(&nvmeq->r_head, nvme_free_queue);
1181		dev->queue_count--;
1182	}
1183}
1184
1185/**
1186 * nvme_suspend_queue - put queue into suspended state
1187 * @nvmeq - queue to suspend
1188 *
1189 * Returns 1 if already suspended, 0 otherwise.
1190 */
1191static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1192{
1193	int vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1194
1195	spin_lock_irq(&nvmeq->q_lock);
1196	if (nvmeq->q_suspended) {
1197		spin_unlock_irq(&nvmeq->q_lock);
1198		return 1;
1199	}
1200	nvmeq->q_suspended = 1;
1201	nvmeq->dev->online_queues--;
1202	spin_unlock_irq(&nvmeq->q_lock);
1203
1204	irq_set_affinity_hint(vector, NULL);
1205	free_irq(vector, nvmeq);
1206
1207	return 0;
1208}
1209
1210static void nvme_clear_queue(struct nvme_queue *nvmeq)
1211{
1212	spin_lock_irq(&nvmeq->q_lock);
1213	nvme_process_cq(nvmeq);
1214	nvme_cancel_ios(nvmeq, false);
1215	spin_unlock_irq(&nvmeq->q_lock);
1216}
1217
1218static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1219{
1220	struct nvme_queue *nvmeq = raw_nvmeq(dev, qid);
1221
1222	if (!nvmeq)
1223		return;
1224	if (nvme_suspend_queue(nvmeq))
1225		return;
1226
1227	/* Don't tell the adapter to delete the admin queue.
1228	 * Don't tell a removed adapter to delete IO queues. */
1229	if (qid && readl(&dev->bar->csts) != -1) {
1230		adapter_delete_sq(dev, qid);
1231		adapter_delete_cq(dev, qid);
1232	}
1233	nvme_clear_queue(nvmeq);
1234}
1235
1236static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1237							int depth, int vector)
1238{
1239	struct device *dmadev = &dev->pci_dev->dev;
1240	unsigned extra = nvme_queue_extra(depth);
1241	struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
1242	if (!nvmeq)
1243		return NULL;
1244
1245	nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
1246					&nvmeq->cq_dma_addr, GFP_KERNEL);
1247	if (!nvmeq->cqes)
1248		goto free_nvmeq;
1249	memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
1250
1251	nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
1252					&nvmeq->sq_dma_addr, GFP_KERNEL);
1253	if (!nvmeq->sq_cmds)
1254		goto free_cqdma;
1255
1256	if (qid && !zalloc_cpumask_var(&nvmeq->cpu_mask, GFP_KERNEL))
1257		goto free_sqdma;
1258
1259	nvmeq->q_dmadev = dmadev;
1260	nvmeq->dev = dev;
1261	snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1262			dev->instance, qid);
1263	spin_lock_init(&nvmeq->q_lock);
1264	nvmeq->cq_head = 0;
1265	nvmeq->cq_phase = 1;
1266	init_waitqueue_head(&nvmeq->sq_full);
1267	init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
1268	bio_list_init(&nvmeq->sq_cong);
1269	INIT_LIST_HEAD(&nvmeq->iod_bio);
1270	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1271	nvmeq->q_depth = depth;
1272	nvmeq->cq_vector = vector;
1273	nvmeq->qid = qid;
1274	nvmeq->q_suspended = 1;
1275	dev->queue_count++;
1276	rcu_assign_pointer(dev->queues[qid], nvmeq);
1277
1278	return nvmeq;
1279
1280 free_sqdma:
1281	dma_free_coherent(dmadev, SQ_SIZE(depth), (void *)nvmeq->sq_cmds,
1282							nvmeq->sq_dma_addr);
1283 free_cqdma:
1284	dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1285							nvmeq->cq_dma_addr);
1286 free_nvmeq:
1287	kfree(nvmeq);
1288	return NULL;
1289}
1290
1291static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1292							const char *name)
1293{
1294	if (use_threaded_interrupts)
1295		return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1296					nvme_irq_check, nvme_irq, IRQF_SHARED,
1297					name, nvmeq);
1298	return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1299				IRQF_SHARED, name, nvmeq);
1300}
1301
1302static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1303{
1304	struct nvme_dev *dev = nvmeq->dev;
1305	unsigned extra = nvme_queue_extra(nvmeq->q_depth);
1306
1307	nvmeq->sq_tail = 0;
1308	nvmeq->cq_head = 0;
1309	nvmeq->cq_phase = 1;
1310	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1311	memset(nvmeq->cmdid_data, 0, extra);
1312	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1313	nvme_cancel_ios(nvmeq, false);
1314	nvmeq->q_suspended = 0;
1315	dev->online_queues++;
1316}
1317
1318static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1319{
1320	struct nvme_dev *dev = nvmeq->dev;
1321	int result;
1322
1323	result = adapter_alloc_cq(dev, qid, nvmeq);
1324	if (result < 0)
1325		return result;
1326
1327	result = adapter_alloc_sq(dev, qid, nvmeq);
1328	if (result < 0)
1329		goto release_cq;
1330
1331	result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1332	if (result < 0)
1333		goto release_sq;
1334
1335	spin_lock_irq(&nvmeq->q_lock);
1336	nvme_init_queue(nvmeq, qid);
1337	spin_unlock_irq(&nvmeq->q_lock);
1338
1339	return result;
1340
1341 release_sq:
1342	adapter_delete_sq(dev, qid);
1343 release_cq:
1344	adapter_delete_cq(dev, qid);
1345	return result;
1346}
1347
1348static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1349{
1350	unsigned long timeout;
1351	u32 bit = enabled ? NVME_CSTS_RDY : 0;
1352
1353	timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1354
1355	while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1356		msleep(100);
1357		if (fatal_signal_pending(current))
1358			return -EINTR;
1359		if (time_after(jiffies, timeout)) {
1360			dev_err(&dev->pci_dev->dev,
1361				"Device not ready; aborting initialisation\n");
1362			return -ENODEV;
1363		}
1364	}
1365
1366	return 0;
1367}
1368
1369/*
1370 * If the device has been passed off to us in an enabled state, just clear
1371 * the enabled bit.  The spec says we should set the 'shutdown notification
1372 * bits', but doing so may cause the device to complete commands to the
1373 * admin queue ... and we don't know what memory that might be pointing at!
1374 */
1375static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1376{
1377	u32 cc = readl(&dev->bar->cc);
1378
1379	if (cc & NVME_CC_ENABLE)
1380		writel(cc & ~NVME_CC_ENABLE, &dev->bar->cc);
1381	return nvme_wait_ready(dev, cap, false);
1382}
1383
1384static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1385{
1386	return nvme_wait_ready(dev, cap, true);
1387}
1388
1389static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1390{
1391	unsigned long timeout;
1392	u32 cc;
1393
1394	cc = (readl(&dev->bar->cc) & ~NVME_CC_SHN_MASK) | NVME_CC_SHN_NORMAL;
1395	writel(cc, &dev->bar->cc);
1396
1397	timeout = 2 * HZ + jiffies;
1398	while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1399							NVME_CSTS_SHST_CMPLT) {
1400		msleep(100);
1401		if (fatal_signal_pending(current))
1402			return -EINTR;
1403		if (time_after(jiffies, timeout)) {
1404			dev_err(&dev->pci_dev->dev,
1405				"Device shutdown incomplete; abort shutdown\n");
1406			return -ENODEV;
1407		}
1408	}
1409
1410	return 0;
1411}
1412
1413static int nvme_configure_admin_queue(struct nvme_dev *dev)
1414{
1415	int result;
1416	u32 aqa;
1417	u64 cap = readq(&dev->bar->cap);
1418	struct nvme_queue *nvmeq;
1419
1420	result = nvme_disable_ctrl(dev, cap);
1421	if (result < 0)
1422		return result;
1423
1424	nvmeq = raw_nvmeq(dev, 0);
1425	if (!nvmeq) {
1426		nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
1427		if (!nvmeq)
1428			return -ENOMEM;
1429	}
1430
1431	aqa = nvmeq->q_depth - 1;
1432	aqa |= aqa << 16;
1433
1434	dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
1435	dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
1436	dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1437	dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1438
1439	writel(aqa, &dev->bar->aqa);
1440	writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1441	writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1442	writel(dev->ctrl_config, &dev->bar->cc);
1443
1444	result = nvme_enable_ctrl(dev, cap);
1445	if (result)
1446		return result;
1447
1448	result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1449	if (result)
1450		return result;
1451
1452	spin_lock_irq(&nvmeq->q_lock);
1453	nvme_init_queue(nvmeq, 0);
1454	spin_unlock_irq(&nvmeq->q_lock);
1455	return result;
1456}
1457
1458struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1459				unsigned long addr, unsigned length)
1460{
1461	int i, err, count, nents, offset;
1462	struct scatterlist *sg;
1463	struct page **pages;
1464	struct nvme_iod *iod;
1465
1466	if (addr & 3)
1467		return ERR_PTR(-EINVAL);
1468	if (!length || length > INT_MAX - PAGE_SIZE)
1469		return ERR_PTR(-EINVAL);
1470
1471	offset = offset_in_page(addr);
1472	count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1473	pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1474	if (!pages)
1475		return ERR_PTR(-ENOMEM);
1476
1477	err = get_user_pages_fast(addr, count, 1, pages);
1478	if (err < count) {
1479		count = err;
1480		err = -EFAULT;
1481		goto put_pages;
1482	}
1483
1484	iod = nvme_alloc_iod(count, length, GFP_KERNEL);
1485	sg = iod->sg;
1486	sg_init_table(sg, count);
1487	for (i = 0; i < count; i++) {
1488		sg_set_page(&sg[i], pages[i],
1489			    min_t(unsigned, length, PAGE_SIZE - offset),
1490			    offset);
1491		length -= (PAGE_SIZE - offset);
1492		offset = 0;
1493	}
1494	sg_mark_end(&sg[i - 1]);
1495	iod->nents = count;
1496
1497	err = -ENOMEM;
1498	nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1499				write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1500	if (!nents)
1501		goto free_iod;
1502
1503	kfree(pages);
1504	return iod;
1505
1506 free_iod:
1507	kfree(iod);
1508 put_pages:
1509	for (i = 0; i < count; i++)
1510		put_page(pages[i]);
1511	kfree(pages);
1512	return ERR_PTR(err);
1513}
1514
1515void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1516			struct nvme_iod *iod)
1517{
1518	int i;
1519
1520	dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1521				write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1522
1523	for (i = 0; i < iod->nents; i++)
1524		put_page(sg_page(&iod->sg[i]));
1525}
1526
1527static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1528{
1529	struct nvme_dev *dev = ns->dev;
1530	struct nvme_user_io io;
1531	struct nvme_command c;
1532	unsigned length, meta_len;
1533	int status, i;
1534	struct nvme_iod *iod, *meta_iod = NULL;
1535	dma_addr_t meta_dma_addr;
1536	void *meta, *uninitialized_var(meta_mem);
1537
1538	if (copy_from_user(&io, uio, sizeof(io)))
1539		return -EFAULT;
1540	length = (io.nblocks + 1) << ns->lba_shift;
1541	meta_len = (io.nblocks + 1) * ns->ms;
1542
1543	if (meta_len && ((io.metadata & 3) || !io.metadata))
1544		return -EINVAL;
1545
1546	switch (io.opcode) {
1547	case nvme_cmd_write:
1548	case nvme_cmd_read:
1549	case nvme_cmd_compare:
1550		iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1551		break;
1552	default:
1553		return -EINVAL;
1554	}
1555
1556	if (IS_ERR(iod))
1557		return PTR_ERR(iod);
1558
1559	memset(&c, 0, sizeof(c));
1560	c.rw.opcode = io.opcode;
1561	c.rw.flags = io.flags;
1562	c.rw.nsid = cpu_to_le32(ns->ns_id);
1563	c.rw.slba = cpu_to_le64(io.slba);
1564	c.rw.length = cpu_to_le16(io.nblocks);
1565	c.rw.control = cpu_to_le16(io.control);
1566	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1567	c.rw.reftag = cpu_to_le32(io.reftag);
1568	c.rw.apptag = cpu_to_le16(io.apptag);
1569	c.rw.appmask = cpu_to_le16(io.appmask);
1570
1571	if (meta_len) {
1572		meta_iod = nvme_map_user_pages(dev, io.opcode & 1, io.metadata,
1573								meta_len);
1574		if (IS_ERR(meta_iod)) {
1575			status = PTR_ERR(meta_iod);
1576			meta_iod = NULL;
1577			goto unmap;
1578		}
1579
1580		meta_mem = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
1581						&meta_dma_addr, GFP_KERNEL);
1582		if (!meta_mem) {
1583			status = -ENOMEM;
1584			goto unmap;
1585		}
1586
1587		if (io.opcode & 1) {
1588			int meta_offset = 0;
1589
1590			for (i = 0; i < meta_iod->nents; i++) {
1591				meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1592						meta_iod->sg[i].offset;
1593				memcpy(meta_mem + meta_offset, meta,
1594						meta_iod->sg[i].length);
1595				kunmap_atomic(meta);
1596				meta_offset += meta_iod->sg[i].length;
1597			}
1598		}
1599
1600		c.rw.metadata = cpu_to_le64(meta_dma_addr);
1601	}
1602
1603	length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1604	c.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1605	c.rw.prp2 = cpu_to_le64(iod->first_dma);
1606
1607	if (length != (io.nblocks + 1) << ns->lba_shift)
1608		status = -ENOMEM;
1609	else
1610		status = nvme_submit_io_cmd(dev, &c, NULL);
1611
1612	if (meta_len) {
1613		if (status == NVME_SC_SUCCESS && !(io.opcode & 1)) {
1614			int meta_offset = 0;
1615
1616			for (i = 0; i < meta_iod->nents; i++) {
1617				meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1618						meta_iod->sg[i].offset;
1619				memcpy(meta, meta_mem + meta_offset,
1620						meta_iod->sg[i].length);
1621				kunmap_atomic(meta);
1622				meta_offset += meta_iod->sg[i].length;
1623			}
1624		}
1625
1626		dma_free_coherent(&dev->pci_dev->dev, meta_len, meta_mem,
1627								meta_dma_addr);
1628	}
1629
1630 unmap:
1631	nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1632	nvme_free_iod(dev, iod);
1633
1634	if (meta_iod) {
1635		nvme_unmap_user_pages(dev, io.opcode & 1, meta_iod);
1636		nvme_free_iod(dev, meta_iod);
1637	}
1638
1639	return status;
1640}
1641
1642static int nvme_user_admin_cmd(struct nvme_dev *dev,
1643					struct nvme_admin_cmd __user *ucmd)
1644{
1645	struct nvme_admin_cmd cmd;
1646	struct nvme_command c;
1647	int status, length;
1648	struct nvme_iod *uninitialized_var(iod);
1649	unsigned timeout;
1650
1651	if (!capable(CAP_SYS_ADMIN))
1652		return -EACCES;
1653	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1654		return -EFAULT;
1655
1656	memset(&c, 0, sizeof(c));
1657	c.common.opcode = cmd.opcode;
1658	c.common.flags = cmd.flags;
1659	c.common.nsid = cpu_to_le32(cmd.nsid);
1660	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1661	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1662	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1663	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1664	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1665	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1666	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1667	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1668
1669	length = cmd.data_len;
1670	if (cmd.data_len) {
1671		iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1672								length);
1673		if (IS_ERR(iod))
1674			return PTR_ERR(iod);
1675		length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1676		c.common.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1677		c.common.prp2 = cpu_to_le64(iod->first_dma);
1678	}
1679
1680	timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
1681								ADMIN_TIMEOUT;
1682	if (length != cmd.data_len)
1683		status = -ENOMEM;
1684	else
1685		status = nvme_submit_sync_cmd(dev, 0, &c, &cmd.result, timeout);
1686
1687	if (cmd.data_len) {
1688		nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1689		nvme_free_iod(dev, iod);
1690	}
1691
1692	if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
1693							sizeof(cmd.result)))
1694		status = -EFAULT;
1695
1696	return status;
1697}
1698
1699static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1700							unsigned long arg)
1701{
1702	struct nvme_ns *ns = bdev->bd_disk->private_data;
1703
1704	switch (cmd) {
1705	case NVME_IOCTL_ID:
1706		force_successful_syscall_return();
1707		return ns->ns_id;
1708	case NVME_IOCTL_ADMIN_CMD:
1709		return nvme_user_admin_cmd(ns->dev, (void __user *)arg);
1710	case NVME_IOCTL_SUBMIT_IO:
1711		return nvme_submit_io(ns, (void __user *)arg);
1712	case SG_GET_VERSION_NUM:
1713		return nvme_sg_get_version_num((void __user *)arg);
1714	case SG_IO:
1715		return nvme_sg_io(ns, (void __user *)arg);
1716	default:
1717		return -ENOTTY;
1718	}
1719}
1720
1721#ifdef CONFIG_COMPAT
1722static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1723					unsigned int cmd, unsigned long arg)
1724{
1725	struct nvme_ns *ns = bdev->bd_disk->private_data;
1726
1727	switch (cmd) {
1728	case SG_IO:
1729		return nvme_sg_io32(ns, arg);
1730	}
1731	return nvme_ioctl(bdev, mode, cmd, arg);
1732}
1733#else
1734#define nvme_compat_ioctl	NULL
1735#endif
1736
1737static int nvme_open(struct block_device *bdev, fmode_t mode)
1738{
1739	struct nvme_ns *ns = bdev->bd_disk->private_data;
1740	struct nvme_dev *dev = ns->dev;
1741
1742	kref_get(&dev->kref);
1743	return 0;
1744}
1745
1746static void nvme_free_dev(struct kref *kref);
1747
1748static void nvme_release(struct gendisk *disk, fmode_t mode)
1749{
1750	struct nvme_ns *ns = disk->private_data;
1751	struct nvme_dev *dev = ns->dev;
1752
1753	kref_put(&dev->kref, nvme_free_dev);
1754}
1755
1756static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
1757{
1758	/* some standard values */
1759	geo->heads = 1 << 6;
1760	geo->sectors = 1 << 5;
1761	geo->cylinders = get_capacity(bd->bd_disk) >> 11;
1762	return 0;
1763}
1764
1765static const struct block_device_operations nvme_fops = {
1766	.owner		= THIS_MODULE,
1767	.ioctl		= nvme_ioctl,
1768	.compat_ioctl	= nvme_compat_ioctl,
1769	.open		= nvme_open,
1770	.release	= nvme_release,
1771	.getgeo		= nvme_getgeo,
1772};
1773
1774static void nvme_resubmit_iods(struct nvme_queue *nvmeq)
1775{
1776	struct nvme_iod *iod, *next;
1777
1778	list_for_each_entry_safe(iod, next, &nvmeq->iod_bio, node) {
1779		if (unlikely(nvme_submit_iod(nvmeq, iod)))
1780			break;
1781		list_del(&iod->node);
1782		if (bio_list_empty(&nvmeq->sq_cong) &&
1783						list_empty(&nvmeq->iod_bio))
1784			remove_wait_queue(&nvmeq->sq_full,
1785						&nvmeq->sq_cong_wait);
1786	}
1787}
1788
1789static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1790{
1791	while (bio_list_peek(&nvmeq->sq_cong)) {
1792		struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1793		struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1794
1795		if (bio_list_empty(&nvmeq->sq_cong) &&
1796						list_empty(&nvmeq->iod_bio))
1797			remove_wait_queue(&nvmeq->sq_full,
1798							&nvmeq->sq_cong_wait);
1799		if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1800			if (!waitqueue_active(&nvmeq->sq_full))
1801				add_wait_queue(&nvmeq->sq_full,
1802							&nvmeq->sq_cong_wait);
1803			bio_list_add_head(&nvmeq->sq_cong, bio);
1804			break;
1805		}
1806	}
1807}
1808
1809static int nvme_kthread(void *data)
1810{
1811	struct nvme_dev *dev, *next;
1812
1813	while (!kthread_should_stop()) {
1814		set_current_state(TASK_INTERRUPTIBLE);
1815		spin_lock(&dev_list_lock);
1816		list_for_each_entry_safe(dev, next, &dev_list, node) {
1817			int i;
1818			if (readl(&dev->bar->csts) & NVME_CSTS_CFS &&
1819							dev->initialized) {
1820				if (work_busy(&dev->reset_work))
1821					continue;
1822				list_del_init(&dev->node);
1823				dev_warn(&dev->pci_dev->dev,
1824					"Failed status, reset controller\n");
1825				dev->reset_workfn = nvme_reset_failed_dev;
1826				queue_work(nvme_workq, &dev->reset_work);
1827				continue;
1828			}
1829			rcu_read_lock();
1830			for (i = 0; i < dev->queue_count; i++) {
1831				struct nvme_queue *nvmeq =
1832						rcu_dereference(dev->queues[i]);
1833				if (!nvmeq)
1834					continue;
1835				spin_lock_irq(&nvmeq->q_lock);
1836				if (nvmeq->q_suspended)
1837					goto unlock;
1838				nvme_process_cq(nvmeq);
1839				nvme_cancel_ios(nvmeq, true);
1840				nvme_resubmit_bios(nvmeq);
1841				nvme_resubmit_iods(nvmeq);
1842 unlock:
1843				spin_unlock_irq(&nvmeq->q_lock);
1844			}
1845			rcu_read_unlock();
1846		}
1847		spin_unlock(&dev_list_lock);
1848		schedule_timeout(round_jiffies_relative(HZ));
1849	}
1850	return 0;
1851}
1852
1853static void nvme_config_discard(struct nvme_ns *ns)
1854{
1855	u32 logical_block_size = queue_logical_block_size(ns->queue);
1856	ns->queue->limits.discard_zeroes_data = 0;
1857	ns->queue->limits.discard_alignment = logical_block_size;
1858	ns->queue->limits.discard_granularity = logical_block_size;
1859	ns->queue->limits.max_discard_sectors = 0xffffffff;
1860	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1861}
1862
1863static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid,
1864			struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1865{
1866	struct nvme_ns *ns;
1867	struct gendisk *disk;
1868	int lbaf;
1869
1870	if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1871		return NULL;
1872
1873	ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1874	if (!ns)
1875		return NULL;
1876	ns->queue = blk_alloc_queue(GFP_KERNEL);
1877	if (!ns->queue)
1878		goto out_free_ns;
1879	ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
1880	queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1881	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1882	blk_queue_make_request(ns->queue, nvme_make_request);
1883	ns->dev = dev;
1884	ns->queue->queuedata = ns;
1885
1886	disk = alloc_disk(0);
1887	if (!disk)
1888		goto out_free_queue;
1889	ns->ns_id = nsid;
1890	ns->disk = disk;
1891	lbaf = id->flbas & 0xf;
1892	ns->lba_shift = id->lbaf[lbaf].ds;
1893	ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1894	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1895	if (dev->max_hw_sectors)
1896		blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
1897
1898	disk->major = nvme_major;
1899	disk->first_minor = 0;
1900	disk->fops = &nvme_fops;
1901	disk->private_data = ns;
1902	disk->queue = ns->queue;
1903	disk->driverfs_dev = &dev->pci_dev->dev;
1904	disk->flags = GENHD_FL_EXT_DEVT;
1905	sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
1906	set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1907
1908	if (dev->oncs & NVME_CTRL_ONCS_DSM)
1909		nvme_config_discard(ns);
1910
1911	return ns;
1912
1913 out_free_queue:
1914	blk_cleanup_queue(ns->queue);
1915 out_free_ns:
1916	kfree(ns);
1917	return NULL;
1918}
1919
1920static int nvme_find_closest_node(int node)
1921{
1922	int n, val, min_val = INT_MAX, best_node = node;
1923
1924	for_each_online_node(n) {
1925		if (n == node)
1926			continue;
1927		val = node_distance(node, n);
1928		if (val < min_val) {
1929			min_val = val;
1930			best_node = n;
1931		}
1932	}
1933	return best_node;
1934}
1935
1936static void nvme_set_queue_cpus(cpumask_t *qmask, struct nvme_queue *nvmeq,
1937								int count)
1938{
1939	int cpu;
1940	for_each_cpu(cpu, qmask) {
1941		if (cpumask_weight(nvmeq->cpu_mask) >= count)
1942			break;
1943		if (!cpumask_test_and_set_cpu(cpu, nvmeq->cpu_mask))
1944			*per_cpu_ptr(nvmeq->dev->io_queue, cpu) = nvmeq->qid;
1945	}
1946}
1947
1948static void nvme_add_cpus(cpumask_t *mask, const cpumask_t *unassigned_cpus,
1949	const cpumask_t *new_mask, struct nvme_queue *nvmeq, int cpus_per_queue)
1950{
1951	int next_cpu;
1952	for_each_cpu(next_cpu, new_mask) {
1953		cpumask_or(mask, mask, get_cpu_mask(next_cpu));
1954		cpumask_or(mask, mask, topology_thread_cpumask(next_cpu));
1955		cpumask_and(mask, mask, unassigned_cpus);
1956		nvme_set_queue_cpus(mask, nvmeq, cpus_per_queue);
1957	}
1958}
1959
1960static void nvme_create_io_queues(struct nvme_dev *dev)
1961{
1962	unsigned i, max;
1963
1964	max = min(dev->max_qid, num_online_cpus());
1965	for (i = dev->queue_count; i <= max; i++)
1966		if (!nvme_alloc_queue(dev, i, dev->q_depth, i - 1))
1967			break;
1968
1969	max = min(dev->queue_count - 1, num_online_cpus());
1970	for (i = dev->online_queues; i <= max; i++)
1971		if (nvme_create_queue(raw_nvmeq(dev, i), i))
1972			break;
1973}
1974
1975/*
1976 * If there are fewer queues than online cpus, this will try to optimally
1977 * assign a queue to multiple cpus by grouping cpus that are "close" together:
1978 * thread siblings, core, socket, closest node, then whatever else is
1979 * available.
1980 */
1981static void nvme_assign_io_queues(struct nvme_dev *dev)
1982{
1983	unsigned cpu, cpus_per_queue, queues, remainder, i;
1984	cpumask_var_t unassigned_cpus;
1985
1986	nvme_create_io_queues(dev);
1987
1988	queues = min(dev->online_queues - 1, num_online_cpus());
1989	if (!queues)
1990		return;
1991
1992	cpus_per_queue = num_online_cpus() / queues;
1993	remainder = queues - (num_online_cpus() - queues * cpus_per_queue);
1994
1995	if (!alloc_cpumask_var(&unassigned_cpus, GFP_KERNEL))
1996		return;
1997
1998	cpumask_copy(unassigned_cpus, cpu_online_mask);
1999	cpu = cpumask_first(unassigned_cpus);
2000	for (i = 1; i <= queues; i++) {
2001		struct nvme_queue *nvmeq = lock_nvmeq(dev, i);
2002		cpumask_t mask;
2003
2004		cpumask_clear(nvmeq->cpu_mask);
2005		if (!cpumask_weight(unassigned_cpus)) {
2006			unlock_nvmeq(nvmeq);
2007			break;
2008		}
2009
2010		mask = *get_cpu_mask(cpu);
2011		nvme_set_queue_cpus(&mask, nvmeq, cpus_per_queue);
2012		if (cpus_weight(mask) < cpus_per_queue)
2013			nvme_add_cpus(&mask, unassigned_cpus,
2014				topology_thread_cpumask(cpu),
2015				nvmeq, cpus_per_queue);
2016		if (cpus_weight(mask) < cpus_per_queue)
2017			nvme_add_cpus(&mask, unassigned_cpus,
2018				topology_core_cpumask(cpu),
2019				nvmeq, cpus_per_queue);
2020		if (cpus_weight(mask) < cpus_per_queue)
2021			nvme_add_cpus(&mask, unassigned_cpus,
2022				cpumask_of_node(cpu_to_node(cpu)),
2023				nvmeq, cpus_per_queue);
2024		if (cpus_weight(mask) < cpus_per_queue)
2025			nvme_add_cpus(&mask, unassigned_cpus,
2026				cpumask_of_node(
2027					nvme_find_closest_node(
2028						cpu_to_node(cpu))),
2029				nvmeq, cpus_per_queue);
2030		if (cpus_weight(mask) < cpus_per_queue)
2031			nvme_add_cpus(&mask, unassigned_cpus,
2032				unassigned_cpus,
2033				nvmeq, cpus_per_queue);
2034
2035		WARN(cpumask_weight(nvmeq->cpu_mask) != cpus_per_queue,
2036			"nvme%d qid:%d mis-matched queue-to-cpu assignment\n",
2037			dev->instance, i);
2038
2039		irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2040							nvmeq->cpu_mask);
2041		cpumask_andnot(unassigned_cpus, unassigned_cpus,
2042						nvmeq->cpu_mask);
2043		cpu = cpumask_next(cpu, unassigned_cpus);
2044		if (remainder && !--remainder)
2045			cpus_per_queue++;
2046		unlock_nvmeq(nvmeq);
2047	}
2048	WARN(cpumask_weight(unassigned_cpus), "nvme%d unassigned online cpus\n",
2049								dev->instance);
2050	i = 0;
2051	cpumask_andnot(unassigned_cpus, cpu_possible_mask, cpu_online_mask);
2052	for_each_cpu(cpu, unassigned_cpus)
2053		*per_cpu_ptr(dev->io_queue, cpu) = (i++ % queues) + 1;
2054	free_cpumask_var(unassigned_cpus);
2055}
2056
2057static int set_queue_count(struct nvme_dev *dev, int count)
2058{
2059	int status;
2060	u32 result;
2061	u32 q_count = (count - 1) | ((count - 1) << 16);
2062
2063	status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
2064								&result);
2065	if (status)
2066		return status < 0 ? -EIO : -EBUSY;
2067	return min(result & 0xffff, result >> 16) + 1;
2068}
2069
2070static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2071{
2072	return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
2073}
2074
2075static int nvme_cpu_notify(struct notifier_block *self,
2076				unsigned long action, void *hcpu)
2077{
2078	struct nvme_dev *dev = container_of(self, struct nvme_dev, nb);
2079	switch (action) {
2080	case CPU_ONLINE:
2081	case CPU_DEAD:
2082		nvme_assign_io_queues(dev);
2083		break;
2084	}
2085	return NOTIFY_OK;
2086}
2087
2088static int nvme_setup_io_queues(struct nvme_dev *dev)
2089{
2090	struct nvme_queue *adminq = raw_nvmeq(dev, 0);
2091	struct pci_dev *pdev = dev->pci_dev;
2092	int result, i, vecs, nr_io_queues, size;
2093
2094	nr_io_queues = num_possible_cpus();
2095	result = set_queue_count(dev, nr_io_queues);
2096	if (result < 0)
2097		return result;
2098	if (result < nr_io_queues)
2099		nr_io_queues = result;
2100
2101	size = db_bar_size(dev, nr_io_queues);
2102	if (size > 8192) {
2103		iounmap(dev->bar);
2104		do {
2105			dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2106			if (dev->bar)
2107				break;
2108			if (!--nr_io_queues)
2109				return -ENOMEM;
2110			size = db_bar_size(dev, nr_io_queues);
2111		} while (1);
2112		dev->dbs = ((void __iomem *)dev->bar) + 4096;
2113		adminq->q_db = dev->dbs;
2114	}
2115
2116	/* Deregister the admin queue's interrupt */
2117	free_irq(dev->entry[0].vector, adminq);
2118
2119	for (i = 0; i < nr_io_queues; i++)
2120		dev->entry[i].entry = i;
2121	vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2122	if (vecs < 0) {
2123		vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2124		if (vecs < 0) {
2125			vecs = 1;
2126		} else {
2127			for (i = 0; i < vecs; i++)
2128				dev->entry[i].vector = i + pdev->irq;
2129		}
2130	}
2131
2132	/*
2133	 * Should investigate if there's a performance win from allocating
2134	 * more queues than interrupt vectors; it might allow the submission
2135	 * path to scale better, even if the receive path is limited by the
2136	 * number of interrupts.
2137	 */
2138	nr_io_queues = vecs;
2139	dev->max_qid = nr_io_queues;
2140
2141	result = queue_request_irq(dev, adminq, adminq->irqname);
2142	if (result) {
2143		adminq->q_suspended = 1;
2144		goto free_queues;
2145	}
2146
2147	/* Free previously allocated queues that are no longer usable */
2148	nvme_free_queues(dev, nr_io_queues + 1);
2149	nvme_assign_io_queues(dev);
2150
2151	dev->nb.notifier_call = &nvme_cpu_notify;
2152	result = register_hotcpu_notifier(&dev->nb);
2153	if (result)
2154		goto free_queues;
2155
2156	return 0;
2157
2158 free_queues:
2159	nvme_free_queues(dev, 1);
2160	return result;
2161}
2162
2163/*
2164 * Return: error value if an error occurred setting up the queues or calling
2165 * Identify Device.  0 if these succeeded, even if adding some of the
2166 * namespaces failed.  At the moment, these failures are silent.  TBD which
2167 * failures should be reported.
2168 */
2169static int nvme_dev_add(struct nvme_dev *dev)
2170{
2171	struct pci_dev *pdev = dev->pci_dev;
2172	int res;
2173	unsigned nn, i;
2174	struct nvme_ns *ns;
2175	struct nvme_id_ctrl *ctrl;
2176	struct nvme_id_ns *id_ns;
2177	void *mem;
2178	dma_addr_t dma_addr;
2179	int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
2180
2181	mem = dma_alloc_coherent(&pdev->dev, 8192, &dma_addr, GFP_KERNEL);
2182	if (!mem)
2183		return -ENOMEM;
2184
2185	res = nvme_identify(dev, 0, 1, dma_addr);
2186	if (res) {
2187		res = -EIO;
2188		goto out;
2189	}
2190
2191	ctrl = mem;
2192	nn = le32_to_cpup(&ctrl->nn);
2193	dev->oncs = le16_to_cpup(&ctrl->oncs);
2194	dev->abort_limit = ctrl->acl + 1;
2195	memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2196	memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2197	memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
2198	if (ctrl->mdts)
2199		dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
2200	if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
2201			(pdev->device == 0x0953) && ctrl->vs[3])
2202		dev->stripe_size = 1 << (ctrl->vs[3] + shift);
2203
2204	id_ns = mem;
2205	for (i = 1; i <= nn; i++) {
2206		res = nvme_identify(dev, i, 0, dma_addr);
2207		if (res)
2208			continue;
2209
2210		if (id_ns->ncap == 0)
2211			continue;
2212
2213		res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
2214							dma_addr + 4096, NULL);
2215		if (res)
2216			memset(mem + 4096, 0, 4096);
2217
2218		ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
2219		if (ns)
2220			list_add_tail(&ns->list, &dev->namespaces);
2221	}
2222	list_for_each_entry(ns, &dev->namespaces, list)
2223		add_disk(ns->disk);
2224	res = 0;
2225
2226 out:
2227	dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
2228	return res;
2229}
2230
2231static int nvme_dev_map(struct nvme_dev *dev)
2232{
2233	u64 cap;
2234	int bars, result = -ENOMEM;
2235	struct pci_dev *pdev = dev->pci_dev;
2236
2237	if (pci_enable_device_mem(pdev))
2238		return result;
2239
2240	dev->entry[0].vector = pdev->irq;
2241	pci_set_master(pdev);
2242	bars = pci_select_bars(pdev, IORESOURCE_MEM);
2243	if (pci_request_selected_regions(pdev, bars, "nvme"))
2244		goto disable_pci;
2245
2246	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
2247	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)))
2248		goto disable;
2249
2250	dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2251	if (!dev->bar)
2252		goto disable;
2253	if (readl(&dev->bar->csts) == -1) {
2254		result = -ENODEV;
2255		goto unmap;
2256	}
2257	cap = readq(&dev->bar->cap);
2258	dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2259	dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
2260	dev->dbs = ((void __iomem *)dev->bar) + 4096;
2261
2262	return 0;
2263
2264 unmap:
2265	iounmap(dev->bar);
2266	dev->bar = NULL;
2267 disable:
2268	pci_release_regions(pdev);
2269 disable_pci:
2270	pci_disable_device(pdev);
2271	return result;
2272}
2273
2274static void nvme_dev_unmap(struct nvme_dev *dev)
2275{
2276	if (dev->pci_dev->msi_enabled)
2277		pci_disable_msi(dev->pci_dev);
2278	else if (dev->pci_dev->msix_enabled)
2279		pci_disable_msix(dev->pci_dev);
2280
2281	if (dev->bar) {
2282		iounmap(dev->bar);
2283		dev->bar = NULL;
2284		pci_release_regions(dev->pci_dev);
2285	}
2286
2287	if (pci_is_enabled(dev->pci_dev))
2288		pci_disable_device(dev->pci_dev);
2289}
2290
2291struct nvme_delq_ctx {
2292	struct task_struct *waiter;
2293	struct kthread_worker *worker;
2294	atomic_t refcount;
2295};
2296
2297static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2298{
2299	dq->waiter = current;
2300	mb();
2301
2302	for (;;) {
2303		set_current_state(TASK_KILLABLE);
2304		if (!atomic_read(&dq->refcount))
2305			break;
2306		if (!schedule_timeout(ADMIN_TIMEOUT) ||
2307					fatal_signal_pending(current)) {
2308			set_current_state(TASK_RUNNING);
2309
2310			nvme_disable_ctrl(dev, readq(&dev->bar->cap));
2311			nvme_disable_queue(dev, 0);
2312
2313			send_sig(SIGKILL, dq->worker->task, 1);
2314			flush_kthread_worker(dq->worker);
2315			return;
2316		}
2317	}
2318	set_current_state(TASK_RUNNING);
2319}
2320
2321static void nvme_put_dq(struct nvme_delq_ctx *dq)
2322{
2323	atomic_dec(&dq->refcount);
2324	if (dq->waiter)
2325		wake_up_process(dq->waiter);
2326}
2327
2328static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2329{
2330	atomic_inc(&dq->refcount);
2331	return dq;
2332}
2333
2334static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2335{
2336	struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
2337
2338	nvme_clear_queue(nvmeq);
2339	nvme_put_dq(dq);
2340}
2341
2342static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2343						kthread_work_func_t fn)
2344{
2345	struct nvme_command c;
2346
2347	memset(&c, 0, sizeof(c));
2348	c.delete_queue.opcode = opcode;
2349	c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2350
2351	init_kthread_work(&nvmeq->cmdinfo.work, fn);
2352	return nvme_submit_admin_cmd_async(nvmeq->dev, &c, &nvmeq->cmdinfo);
2353}
2354
2355static void nvme_del_cq_work_handler(struct kthread_work *work)
2356{
2357	struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2358							cmdinfo.work);
2359	nvme_del_queue_end(nvmeq);
2360}
2361
2362static int nvme_delete_cq(struct nvme_queue *nvmeq)
2363{
2364	return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2365						nvme_del_cq_work_handler);
2366}
2367
2368static void nvme_del_sq_work_handler(struct kthread_work *work)
2369{
2370	struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2371							cmdinfo.work);
2372	int status = nvmeq->cmdinfo.status;
2373
2374	if (!status)
2375		status = nvme_delete_cq(nvmeq);
2376	if (status)
2377		nvme_del_queue_end(nvmeq);
2378}
2379
2380static int nvme_delete_sq(struct nvme_queue *nvmeq)
2381{
2382	return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2383						nvme_del_sq_work_handler);
2384}
2385
2386static void nvme_del_queue_start(struct kthread_work *work)
2387{
2388	struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2389							cmdinfo.work);
2390	allow_signal(SIGKILL);
2391	if (nvme_delete_sq(nvmeq))
2392		nvme_del_queue_end(nvmeq);
2393}
2394
2395static void nvme_disable_io_queues(struct nvme_dev *dev)
2396{
2397	int i;
2398	DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2399	struct nvme_delq_ctx dq;
2400	struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2401					&worker, "nvme%d", dev->instance);
2402
2403	if (IS_ERR(kworker_task)) {
2404		dev_err(&dev->pci_dev->dev,
2405			"Failed to create queue del task\n");
2406		for (i = dev->queue_count - 1; i > 0; i--)
2407			nvme_disable_queue(dev, i);
2408		return;
2409	}
2410
2411	dq.waiter = NULL;
2412	atomic_set(&dq.refcount, 0);
2413	dq.worker = &worker;
2414	for (i = dev->queue_count - 1; i > 0; i--) {
2415		struct nvme_queue *nvmeq = raw_nvmeq(dev, i);
2416
2417		if (nvme_suspend_queue(nvmeq))
2418			continue;
2419		nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2420		nvmeq->cmdinfo.worker = dq.worker;
2421		init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2422		queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2423	}
2424	nvme_wait_dq(&dq, dev);
2425	kthread_stop(kworker_task);
2426}
2427
2428/*
2429* Remove the node from the device list and check
2430* for whether or not we need to stop the nvme_thread.
2431*/
2432static void nvme_dev_list_remove(struct nvme_dev *dev)
2433{
2434	struct task_struct *tmp = NULL;
2435
2436	spin_lock(&dev_list_lock);
2437	list_del_init(&dev->node);
2438	if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2439		tmp = nvme_thread;
2440		nvme_thread = NULL;
2441	}
2442	spin_unlock(&dev_list_lock);
2443
2444	if (tmp)
2445		kthread_stop(tmp);
2446}
2447
2448static void nvme_dev_shutdown(struct nvme_dev *dev)
2449{
2450	int i;
2451
2452	dev->initialized = 0;
2453	unregister_hotcpu_notifier(&dev->nb);
2454
2455	nvme_dev_list_remove(dev);
2456
2457	if (!dev->bar || (dev->bar && readl(&dev->bar->csts) == -1)) {
2458		for (i = dev->queue_count - 1; i >= 0; i--) {
2459			struct nvme_queue *nvmeq = raw_nvmeq(dev, i);
2460			nvme_suspend_queue(nvmeq);
2461			nvme_clear_queue(nvmeq);
2462		}
2463	} else {
2464		nvme_disable_io_queues(dev);
2465		nvme_shutdown_ctrl(dev);
2466		nvme_disable_queue(dev, 0);
2467	}
2468	nvme_dev_unmap(dev);
2469}
2470
2471static void nvme_dev_remove(struct nvme_dev *dev)
2472{
2473	struct nvme_ns *ns;
2474
2475	list_for_each_entry(ns, &dev->namespaces, list) {
2476		if (ns->disk->flags & GENHD_FL_UP)
2477			del_gendisk(ns->disk);
2478		if (!blk_queue_dying(ns->queue))
2479			blk_cleanup_queue(ns->queue);
2480	}
2481}
2482
2483static int nvme_setup_prp_pools(struct nvme_dev *dev)
2484{
2485	struct device *dmadev = &dev->pci_dev->dev;
2486	dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
2487						PAGE_SIZE, PAGE_SIZE, 0);
2488	if (!dev->prp_page_pool)
2489		return -ENOMEM;
2490
2491	/* Optimisation for I/Os between 4k and 128k */
2492	dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
2493						256, 256, 0);
2494	if (!dev->prp_small_pool) {
2495		dma_pool_destroy(dev->prp_page_pool);
2496		return -ENOMEM;
2497	}
2498	return 0;
2499}
2500
2501static void nvme_release_prp_pools(struct nvme_dev *dev)
2502{
2503	dma_pool_destroy(dev->prp_page_pool);
2504	dma_pool_destroy(dev->prp_small_pool);
2505}
2506
2507static DEFINE_IDA(nvme_instance_ida);
2508
2509static int nvme_set_instance(struct nvme_dev *dev)
2510{
2511	int instance, error;
2512
2513	do {
2514		if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2515			return -ENODEV;
2516
2517		spin_lock(&dev_list_lock);
2518		error = ida_get_new(&nvme_instance_ida, &instance);
2519		spin_unlock(&dev_list_lock);
2520	} while (error == -EAGAIN);
2521
2522	if (error)
2523		return -ENODEV;
2524
2525	dev->instance = instance;
2526	return 0;
2527}
2528
2529static void nvme_release_instance(struct nvme_dev *dev)
2530{
2531	spin_lock(&dev_list_lock);
2532	ida_remove(&nvme_instance_ida, dev->instance);
2533	spin_unlock(&dev_list_lock);
2534}
2535
2536static void nvme_free_namespaces(struct nvme_dev *dev)
2537{
2538	struct nvme_ns *ns, *next;
2539
2540	list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
2541		list_del(&ns->list);
2542		put_disk(ns->disk);
2543		kfree(ns);
2544	}
2545}
2546
2547static void nvme_free_dev(struct kref *kref)
2548{
2549	struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
2550
2551	nvme_free_namespaces(dev);
2552	free_percpu(dev->io_queue);
2553	kfree(dev->queues);
2554	kfree(dev->entry);
2555	kfree(dev);
2556}
2557
2558static int nvme_dev_open(struct inode *inode, struct file *f)
2559{
2560	struct nvme_dev *dev = container_of(f->private_data, struct nvme_dev,
2561								miscdev);
2562	kref_get(&dev->kref);
2563	f->private_data = dev;
2564	return 0;
2565}
2566
2567static int nvme_dev_release(struct inode *inode, struct file *f)
2568{
2569	struct nvme_dev *dev = f->private_data;
2570	kref_put(&dev->kref, nvme_free_dev);
2571	return 0;
2572}
2573
2574static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2575{
2576	struct nvme_dev *dev = f->private_data;
2577	switch (cmd) {
2578	case NVME_IOCTL_ADMIN_CMD:
2579		return nvme_user_admin_cmd(dev, (void __user *)arg);
2580	default:
2581		return -ENOTTY;
2582	}
2583}
2584
2585static const struct file_operations nvme_dev_fops = {
2586	.owner		= THIS_MODULE,
2587	.open		= nvme_dev_open,
2588	.release	= nvme_dev_release,
2589	.unlocked_ioctl	= nvme_dev_ioctl,
2590	.compat_ioctl	= nvme_dev_ioctl,
2591};
2592
2593static int nvme_dev_start(struct nvme_dev *dev)
2594{
2595	int result;
2596	bool start_thread = false;
2597
2598	result = nvme_dev_map(dev);
2599	if (result)
2600		return result;
2601
2602	result = nvme_configure_admin_queue(dev);
2603	if (result)
2604		goto unmap;
2605
2606	spin_lock(&dev_list_lock);
2607	if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2608		start_thread = true;
2609		nvme_thread = NULL;
2610	}
2611	list_add(&dev->node, &dev_list);
2612	spin_unlock(&dev_list_lock);
2613
2614	if (start_thread) {
2615		nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2616		wake_up(&nvme_kthread_wait);
2617	} else
2618		wait_event_killable(nvme_kthread_wait, nvme_thread);
2619
2620	if (IS_ERR_OR_NULL(nvme_thread)) {
2621		result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2622		goto disable;
2623	}
2624
2625	result = nvme_setup_io_queues(dev);
2626	if (result && result != -EBUSY)
2627		goto disable;
2628
2629	return result;
2630
2631 disable:
2632	nvme_disable_queue(dev, 0);
2633	nvme_dev_list_remove(dev);
2634 unmap:
2635	nvme_dev_unmap(dev);
2636	return result;
2637}
2638
2639static int nvme_remove_dead_ctrl(void *arg)
2640{
2641	struct nvme_dev *dev = (struct nvme_dev *)arg;
2642	struct pci_dev *pdev = dev->pci_dev;
2643
2644	if (pci_get_drvdata(pdev))
2645		pci_stop_and_remove_bus_device(pdev);
2646	kref_put(&dev->kref, nvme_free_dev);
2647	return 0;
2648}
2649
2650static void nvme_remove_disks(struct work_struct *ws)
2651{
2652	struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2653
2654	nvme_dev_remove(dev);
2655	nvme_free_queues(dev, 1);
2656}
2657
2658static int nvme_dev_resume(struct nvme_dev *dev)
2659{
2660	int ret;
2661
2662	ret = nvme_dev_start(dev);
2663	if (ret && ret != -EBUSY)
2664		return ret;
2665	if (ret == -EBUSY) {
2666		spin_lock(&dev_list_lock);
2667		dev->reset_workfn = nvme_remove_disks;
2668		queue_work(nvme_workq, &dev->reset_work);
2669		spin_unlock(&dev_list_lock);
2670	}
2671	dev->initialized = 1;
2672	return 0;
2673}
2674
2675static void nvme_dev_reset(struct nvme_dev *dev)
2676{
2677	nvme_dev_shutdown(dev);
2678	if (nvme_dev_resume(dev)) {
2679		dev_err(&dev->pci_dev->dev, "Device failed to resume\n");
2680		kref_get(&dev->kref);
2681		if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
2682							dev->instance))) {
2683			dev_err(&dev->pci_dev->dev,
2684				"Failed to start controller remove task\n");
2685			kref_put(&dev->kref, nvme_free_dev);
2686		}
2687	}
2688}
2689
2690static void nvme_reset_failed_dev(struct work_struct *ws)
2691{
2692	struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2693	nvme_dev_reset(dev);
2694}
2695
2696static void nvme_reset_workfn(struct work_struct *work)
2697{
2698	struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
2699	dev->reset_workfn(work);
2700}
2701
2702static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2703{
2704	int result = -ENOMEM;
2705	struct nvme_dev *dev;
2706
2707	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2708	if (!dev)
2709		return -ENOMEM;
2710	dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
2711								GFP_KERNEL);
2712	if (!dev->entry)
2713		goto free;
2714	dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
2715								GFP_KERNEL);
2716	if (!dev->queues)
2717		goto free;
2718	dev->io_queue = alloc_percpu(unsigned short);
2719	if (!dev->io_queue)
2720		goto free;
2721
2722	INIT_LIST_HEAD(&dev->namespaces);
2723	dev->reset_workfn = nvme_reset_failed_dev;
2724	INIT_WORK(&dev->reset_work, nvme_reset_workfn);
2725	dev->pci_dev = pdev;
2726	pci_set_drvdata(pdev, dev);
2727	result = nvme_set_instance(dev);
2728	if (result)
2729		goto free;
2730
2731	result = nvme_setup_prp_pools(dev);
2732	if (result)
2733		goto release;
2734
2735	kref_init(&dev->kref);
2736	result = nvme_dev_start(dev);
2737	if (result) {
2738		if (result == -EBUSY)
2739			goto create_cdev;
2740		goto release_pools;
2741	}
2742
2743	result = nvme_dev_add(dev);
2744	if (result)
2745		goto shutdown;
2746
2747 create_cdev:
2748	scnprintf(dev->name, sizeof(dev->name), "nvme%d", dev->instance);
2749	dev->miscdev.minor = MISC_DYNAMIC_MINOR;
2750	dev->miscdev.parent = &pdev->dev;
2751	dev->miscdev.name = dev->name;
2752	dev->miscdev.fops = &nvme_dev_fops;
2753	result = misc_register(&dev->miscdev);
2754	if (result)
2755		goto remove;
2756
2757	dev->initialized = 1;
2758	return 0;
2759
2760 remove:
2761	nvme_dev_remove(dev);
2762	nvme_free_namespaces(dev);
2763 shutdown:
2764	nvme_dev_shutdown(dev);
2765 release_pools:
2766	nvme_free_queues(dev, 0);
2767	nvme_release_prp_pools(dev);
2768 release:
2769	nvme_release_instance(dev);
2770 free:
2771	free_percpu(dev->io_queue);
2772	kfree(dev->queues);
2773	kfree(dev->entry);
2774	kfree(dev);
2775	return result;
2776}
2777
2778static void nvme_shutdown(struct pci_dev *pdev)
2779{
2780	struct nvme_dev *dev = pci_get_drvdata(pdev);
2781	nvme_dev_shutdown(dev);
2782}
2783
2784static void nvme_remove(struct pci_dev *pdev)
2785{
2786	struct nvme_dev *dev = pci_get_drvdata(pdev);
2787
2788	spin_lock(&dev_list_lock);
2789	list_del_init(&dev->node);
2790	spin_unlock(&dev_list_lock);
2791
2792	pci_set_drvdata(pdev, NULL);
2793	flush_work(&dev->reset_work);
2794	misc_deregister(&dev->miscdev);
2795	nvme_dev_remove(dev);
2796	nvme_dev_shutdown(dev);
2797	nvme_free_queues(dev, 0);
2798	rcu_barrier();
2799	nvme_release_instance(dev);
2800	nvme_release_prp_pools(dev);
2801	kref_put(&dev->kref, nvme_free_dev);
2802}
2803
2804/* These functions are yet to be implemented */
2805#define nvme_error_detected NULL
2806#define nvme_dump_registers NULL
2807#define nvme_link_reset NULL
2808#define nvme_slot_reset NULL
2809#define nvme_error_resume NULL
2810
2811#ifdef CONFIG_PM_SLEEP
2812static int nvme_suspend(struct device *dev)
2813{
2814	struct pci_dev *pdev = to_pci_dev(dev);
2815	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2816
2817	nvme_dev_shutdown(ndev);
2818	return 0;
2819}
2820
2821static int nvme_resume(struct device *dev)
2822{
2823	struct pci_dev *pdev = to_pci_dev(dev);
2824	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2825
2826	if (nvme_dev_resume(ndev) && !work_busy(&ndev->reset_work)) {
2827		ndev->reset_workfn = nvme_reset_failed_dev;
2828		queue_work(nvme_workq, &ndev->reset_work);
2829	}
2830	return 0;
2831}
2832#endif
2833
2834static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2835
2836static const struct pci_error_handlers nvme_err_handler = {
2837	.error_detected	= nvme_error_detected,
2838	.mmio_enabled	= nvme_dump_registers,
2839	.link_reset	= nvme_link_reset,
2840	.slot_reset	= nvme_slot_reset,
2841	.resume		= nvme_error_resume,
2842};
2843
2844/* Move to pci_ids.h later */
2845#define PCI_CLASS_STORAGE_EXPRESS	0x010802
2846
2847static const struct pci_device_id nvme_id_table[] = {
2848	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2849	{ 0, }
2850};
2851MODULE_DEVICE_TABLE(pci, nvme_id_table);
2852
2853static struct pci_driver nvme_driver = {
2854	.name		= "nvme",
2855	.id_table	= nvme_id_table,
2856	.probe		= nvme_probe,
2857	.remove		= nvme_remove,
2858	.shutdown	= nvme_shutdown,
2859	.driver		= {
2860		.pm	= &nvme_dev_pm_ops,
2861	},
2862	.err_handler	= &nvme_err_handler,
2863};
2864
2865static int __init nvme_init(void)
2866{
2867	int result;
2868
2869	init_waitqueue_head(&nvme_kthread_wait);
2870
2871	nvme_workq = create_singlethread_workqueue("nvme");
2872	if (!nvme_workq)
2873		return -ENOMEM;
2874
2875	result = register_blkdev(nvme_major, "nvme");
2876	if (result < 0)
2877		goto kill_workq;
2878	else if (result > 0)
2879		nvme_major = result;
2880
2881	result = pci_register_driver(&nvme_driver);
2882	if (result)
2883		goto unregister_blkdev;
2884	return 0;
2885
2886 unregister_blkdev:
2887	unregister_blkdev(nvme_major, "nvme");
2888 kill_workq:
2889	destroy_workqueue(nvme_workq);
2890	return result;
2891}
2892
2893static void __exit nvme_exit(void)
2894{
2895	pci_unregister_driver(&nvme_driver);
2896	unregister_blkdev(nvme_major, "nvme");
2897	destroy_workqueue(nvme_workq);
2898	BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
2899}
2900
2901MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2902MODULE_LICENSE("GPL");
2903MODULE_VERSION("0.9");
2904module_init(nvme_init);
2905module_exit(nvme_exit);