Loading...
1/*
2 * Register map access API
3 *
4 * Copyright 2011 Wolfson Microelectronics plc
5 *
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/device.h>
14#include <linux/slab.h>
15#include <linux/export.h>
16#include <linux/mutex.h>
17#include <linux/err.h>
18#include <linux/rbtree.h>
19#include <linux/sched.h>
20
21#define CREATE_TRACE_POINTS
22#include <trace/events/regmap.h>
23
24#include "internal.h"
25
26/*
27 * Sometimes for failures during very early init the trace
28 * infrastructure isn't available early enough to be used. For this
29 * sort of problem defining LOG_DEVICE will add printks for basic
30 * register I/O on a specific device.
31 */
32#undef LOG_DEVICE
33
34static int _regmap_update_bits(struct regmap *map, unsigned int reg,
35 unsigned int mask, unsigned int val,
36 bool *change);
37
38static int _regmap_bus_read(void *context, unsigned int reg,
39 unsigned int *val);
40static int _regmap_bus_formatted_write(void *context, unsigned int reg,
41 unsigned int val);
42static int _regmap_bus_raw_write(void *context, unsigned int reg,
43 unsigned int val);
44
45bool regmap_reg_in_ranges(unsigned int reg,
46 const struct regmap_range *ranges,
47 unsigned int nranges)
48{
49 const struct regmap_range *r;
50 int i;
51
52 for (i = 0, r = ranges; i < nranges; i++, r++)
53 if (regmap_reg_in_range(reg, r))
54 return true;
55 return false;
56}
57EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
58
59bool regmap_check_range_table(struct regmap *map, unsigned int reg,
60 const struct regmap_access_table *table)
61{
62 /* Check "no ranges" first */
63 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
64 return false;
65
66 /* In case zero "yes ranges" are supplied, any reg is OK */
67 if (!table->n_yes_ranges)
68 return true;
69
70 return regmap_reg_in_ranges(reg, table->yes_ranges,
71 table->n_yes_ranges);
72}
73EXPORT_SYMBOL_GPL(regmap_check_range_table);
74
75bool regmap_writeable(struct regmap *map, unsigned int reg)
76{
77 if (map->max_register && reg > map->max_register)
78 return false;
79
80 if (map->writeable_reg)
81 return map->writeable_reg(map->dev, reg);
82
83 if (map->wr_table)
84 return regmap_check_range_table(map, reg, map->wr_table);
85
86 return true;
87}
88
89bool regmap_readable(struct regmap *map, unsigned int reg)
90{
91 if (map->max_register && reg > map->max_register)
92 return false;
93
94 if (map->format.format_write)
95 return false;
96
97 if (map->readable_reg)
98 return map->readable_reg(map->dev, reg);
99
100 if (map->rd_table)
101 return regmap_check_range_table(map, reg, map->rd_table);
102
103 return true;
104}
105
106bool regmap_volatile(struct regmap *map, unsigned int reg)
107{
108 if (!regmap_readable(map, reg))
109 return false;
110
111 if (map->volatile_reg)
112 return map->volatile_reg(map->dev, reg);
113
114 if (map->volatile_table)
115 return regmap_check_range_table(map, reg, map->volatile_table);
116
117 if (map->cache_ops)
118 return false;
119 else
120 return true;
121}
122
123bool regmap_precious(struct regmap *map, unsigned int reg)
124{
125 if (!regmap_readable(map, reg))
126 return false;
127
128 if (map->precious_reg)
129 return map->precious_reg(map->dev, reg);
130
131 if (map->precious_table)
132 return regmap_check_range_table(map, reg, map->precious_table);
133
134 return false;
135}
136
137static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
138 size_t num)
139{
140 unsigned int i;
141
142 for (i = 0; i < num; i++)
143 if (!regmap_volatile(map, reg + i))
144 return false;
145
146 return true;
147}
148
149static void regmap_format_2_6_write(struct regmap *map,
150 unsigned int reg, unsigned int val)
151{
152 u8 *out = map->work_buf;
153
154 *out = (reg << 6) | val;
155}
156
157static void regmap_format_4_12_write(struct regmap *map,
158 unsigned int reg, unsigned int val)
159{
160 __be16 *out = map->work_buf;
161 *out = cpu_to_be16((reg << 12) | val);
162}
163
164static void regmap_format_7_9_write(struct regmap *map,
165 unsigned int reg, unsigned int val)
166{
167 __be16 *out = map->work_buf;
168 *out = cpu_to_be16((reg << 9) | val);
169}
170
171static void regmap_format_10_14_write(struct regmap *map,
172 unsigned int reg, unsigned int val)
173{
174 u8 *out = map->work_buf;
175
176 out[2] = val;
177 out[1] = (val >> 8) | (reg << 6);
178 out[0] = reg >> 2;
179}
180
181static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
182{
183 u8 *b = buf;
184
185 b[0] = val << shift;
186}
187
188static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
189{
190 __be16 *b = buf;
191
192 b[0] = cpu_to_be16(val << shift);
193}
194
195static void regmap_format_16_native(void *buf, unsigned int val,
196 unsigned int shift)
197{
198 *(u16 *)buf = val << shift;
199}
200
201static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
202{
203 u8 *b = buf;
204
205 val <<= shift;
206
207 b[0] = val >> 16;
208 b[1] = val >> 8;
209 b[2] = val;
210}
211
212static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
213{
214 __be32 *b = buf;
215
216 b[0] = cpu_to_be32(val << shift);
217}
218
219static void regmap_format_32_native(void *buf, unsigned int val,
220 unsigned int shift)
221{
222 *(u32 *)buf = val << shift;
223}
224
225static void regmap_parse_inplace_noop(void *buf)
226{
227}
228
229static unsigned int regmap_parse_8(const void *buf)
230{
231 const u8 *b = buf;
232
233 return b[0];
234}
235
236static unsigned int regmap_parse_16_be(const void *buf)
237{
238 const __be16 *b = buf;
239
240 return be16_to_cpu(b[0]);
241}
242
243static void regmap_parse_16_be_inplace(void *buf)
244{
245 __be16 *b = buf;
246
247 b[0] = be16_to_cpu(b[0]);
248}
249
250static unsigned int regmap_parse_16_native(const void *buf)
251{
252 return *(u16 *)buf;
253}
254
255static unsigned int regmap_parse_24(const void *buf)
256{
257 const u8 *b = buf;
258 unsigned int ret = b[2];
259 ret |= ((unsigned int)b[1]) << 8;
260 ret |= ((unsigned int)b[0]) << 16;
261
262 return ret;
263}
264
265static unsigned int regmap_parse_32_be(const void *buf)
266{
267 const __be32 *b = buf;
268
269 return be32_to_cpu(b[0]);
270}
271
272static void regmap_parse_32_be_inplace(void *buf)
273{
274 __be32 *b = buf;
275
276 b[0] = be32_to_cpu(b[0]);
277}
278
279static unsigned int regmap_parse_32_native(const void *buf)
280{
281 return *(u32 *)buf;
282}
283
284static void regmap_lock_mutex(void *__map)
285{
286 struct regmap *map = __map;
287 mutex_lock(&map->mutex);
288}
289
290static void regmap_unlock_mutex(void *__map)
291{
292 struct regmap *map = __map;
293 mutex_unlock(&map->mutex);
294}
295
296static void regmap_lock_spinlock(void *__map)
297__acquires(&map->spinlock)
298{
299 struct regmap *map = __map;
300 unsigned long flags;
301
302 spin_lock_irqsave(&map->spinlock, flags);
303 map->spinlock_flags = flags;
304}
305
306static void regmap_unlock_spinlock(void *__map)
307__releases(&map->spinlock)
308{
309 struct regmap *map = __map;
310 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
311}
312
313static void dev_get_regmap_release(struct device *dev, void *res)
314{
315 /*
316 * We don't actually have anything to do here; the goal here
317 * is not to manage the regmap but to provide a simple way to
318 * get the regmap back given a struct device.
319 */
320}
321
322static bool _regmap_range_add(struct regmap *map,
323 struct regmap_range_node *data)
324{
325 struct rb_root *root = &map->range_tree;
326 struct rb_node **new = &(root->rb_node), *parent = NULL;
327
328 while (*new) {
329 struct regmap_range_node *this =
330 container_of(*new, struct regmap_range_node, node);
331
332 parent = *new;
333 if (data->range_max < this->range_min)
334 new = &((*new)->rb_left);
335 else if (data->range_min > this->range_max)
336 new = &((*new)->rb_right);
337 else
338 return false;
339 }
340
341 rb_link_node(&data->node, parent, new);
342 rb_insert_color(&data->node, root);
343
344 return true;
345}
346
347static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
348 unsigned int reg)
349{
350 struct rb_node *node = map->range_tree.rb_node;
351
352 while (node) {
353 struct regmap_range_node *this =
354 container_of(node, struct regmap_range_node, node);
355
356 if (reg < this->range_min)
357 node = node->rb_left;
358 else if (reg > this->range_max)
359 node = node->rb_right;
360 else
361 return this;
362 }
363
364 return NULL;
365}
366
367static void regmap_range_exit(struct regmap *map)
368{
369 struct rb_node *next;
370 struct regmap_range_node *range_node;
371
372 next = rb_first(&map->range_tree);
373 while (next) {
374 range_node = rb_entry(next, struct regmap_range_node, node);
375 next = rb_next(&range_node->node);
376 rb_erase(&range_node->node, &map->range_tree);
377 kfree(range_node);
378 }
379
380 kfree(map->selector_work_buf);
381}
382
383int regmap_attach_dev(struct device *dev, struct regmap *map,
384 const struct regmap_config *config)
385{
386 struct regmap **m;
387
388 map->dev = dev;
389
390 regmap_debugfs_init(map, config->name);
391
392 /* Add a devres resource for dev_get_regmap() */
393 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
394 if (!m) {
395 regmap_debugfs_exit(map);
396 return -ENOMEM;
397 }
398 *m = map;
399 devres_add(dev, m);
400
401 return 0;
402}
403EXPORT_SYMBOL_GPL(regmap_attach_dev);
404
405/**
406 * regmap_init(): Initialise register map
407 *
408 * @dev: Device that will be interacted with
409 * @bus: Bus-specific callbacks to use with device
410 * @bus_context: Data passed to bus-specific callbacks
411 * @config: Configuration for register map
412 *
413 * The return value will be an ERR_PTR() on error or a valid pointer to
414 * a struct regmap. This function should generally not be called
415 * directly, it should be called by bus-specific init functions.
416 */
417struct regmap *regmap_init(struct device *dev,
418 const struct regmap_bus *bus,
419 void *bus_context,
420 const struct regmap_config *config)
421{
422 struct regmap *map;
423 int ret = -EINVAL;
424 enum regmap_endian reg_endian, val_endian;
425 int i, j;
426
427 if (!config)
428 goto err;
429
430 map = kzalloc(sizeof(*map), GFP_KERNEL);
431 if (map == NULL) {
432 ret = -ENOMEM;
433 goto err;
434 }
435
436 if (config->lock && config->unlock) {
437 map->lock = config->lock;
438 map->unlock = config->unlock;
439 map->lock_arg = config->lock_arg;
440 } else {
441 if ((bus && bus->fast_io) ||
442 config->fast_io) {
443 spin_lock_init(&map->spinlock);
444 map->lock = regmap_lock_spinlock;
445 map->unlock = regmap_unlock_spinlock;
446 } else {
447 mutex_init(&map->mutex);
448 map->lock = regmap_lock_mutex;
449 map->unlock = regmap_unlock_mutex;
450 }
451 map->lock_arg = map;
452 }
453 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
454 map->format.pad_bytes = config->pad_bits / 8;
455 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
456 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
457 config->val_bits + config->pad_bits, 8);
458 map->reg_shift = config->pad_bits % 8;
459 if (config->reg_stride)
460 map->reg_stride = config->reg_stride;
461 else
462 map->reg_stride = 1;
463 map->use_single_rw = config->use_single_rw;
464 map->can_multi_write = config->can_multi_write;
465 map->dev = dev;
466 map->bus = bus;
467 map->bus_context = bus_context;
468 map->max_register = config->max_register;
469 map->wr_table = config->wr_table;
470 map->rd_table = config->rd_table;
471 map->volatile_table = config->volatile_table;
472 map->precious_table = config->precious_table;
473 map->writeable_reg = config->writeable_reg;
474 map->readable_reg = config->readable_reg;
475 map->volatile_reg = config->volatile_reg;
476 map->precious_reg = config->precious_reg;
477 map->cache_type = config->cache_type;
478 map->name = config->name;
479
480 spin_lock_init(&map->async_lock);
481 INIT_LIST_HEAD(&map->async_list);
482 INIT_LIST_HEAD(&map->async_free);
483 init_waitqueue_head(&map->async_waitq);
484
485 if (config->read_flag_mask || config->write_flag_mask) {
486 map->read_flag_mask = config->read_flag_mask;
487 map->write_flag_mask = config->write_flag_mask;
488 } else if (bus) {
489 map->read_flag_mask = bus->read_flag_mask;
490 }
491
492 if (!bus) {
493 map->reg_read = config->reg_read;
494 map->reg_write = config->reg_write;
495
496 map->defer_caching = false;
497 goto skip_format_initialization;
498 } else {
499 map->reg_read = _regmap_bus_read;
500 }
501
502 reg_endian = config->reg_format_endian;
503 if (reg_endian == REGMAP_ENDIAN_DEFAULT)
504 reg_endian = bus->reg_format_endian_default;
505 if (reg_endian == REGMAP_ENDIAN_DEFAULT)
506 reg_endian = REGMAP_ENDIAN_BIG;
507
508 val_endian = config->val_format_endian;
509 if (val_endian == REGMAP_ENDIAN_DEFAULT)
510 val_endian = bus->val_format_endian_default;
511 if (val_endian == REGMAP_ENDIAN_DEFAULT)
512 val_endian = REGMAP_ENDIAN_BIG;
513
514 switch (config->reg_bits + map->reg_shift) {
515 case 2:
516 switch (config->val_bits) {
517 case 6:
518 map->format.format_write = regmap_format_2_6_write;
519 break;
520 default:
521 goto err_map;
522 }
523 break;
524
525 case 4:
526 switch (config->val_bits) {
527 case 12:
528 map->format.format_write = regmap_format_4_12_write;
529 break;
530 default:
531 goto err_map;
532 }
533 break;
534
535 case 7:
536 switch (config->val_bits) {
537 case 9:
538 map->format.format_write = regmap_format_7_9_write;
539 break;
540 default:
541 goto err_map;
542 }
543 break;
544
545 case 10:
546 switch (config->val_bits) {
547 case 14:
548 map->format.format_write = regmap_format_10_14_write;
549 break;
550 default:
551 goto err_map;
552 }
553 break;
554
555 case 8:
556 map->format.format_reg = regmap_format_8;
557 break;
558
559 case 16:
560 switch (reg_endian) {
561 case REGMAP_ENDIAN_BIG:
562 map->format.format_reg = regmap_format_16_be;
563 break;
564 case REGMAP_ENDIAN_NATIVE:
565 map->format.format_reg = regmap_format_16_native;
566 break;
567 default:
568 goto err_map;
569 }
570 break;
571
572 case 24:
573 if (reg_endian != REGMAP_ENDIAN_BIG)
574 goto err_map;
575 map->format.format_reg = regmap_format_24;
576 break;
577
578 case 32:
579 switch (reg_endian) {
580 case REGMAP_ENDIAN_BIG:
581 map->format.format_reg = regmap_format_32_be;
582 break;
583 case REGMAP_ENDIAN_NATIVE:
584 map->format.format_reg = regmap_format_32_native;
585 break;
586 default:
587 goto err_map;
588 }
589 break;
590
591 default:
592 goto err_map;
593 }
594
595 if (val_endian == REGMAP_ENDIAN_NATIVE)
596 map->format.parse_inplace = regmap_parse_inplace_noop;
597
598 switch (config->val_bits) {
599 case 8:
600 map->format.format_val = regmap_format_8;
601 map->format.parse_val = regmap_parse_8;
602 map->format.parse_inplace = regmap_parse_inplace_noop;
603 break;
604 case 16:
605 switch (val_endian) {
606 case REGMAP_ENDIAN_BIG:
607 map->format.format_val = regmap_format_16_be;
608 map->format.parse_val = regmap_parse_16_be;
609 map->format.parse_inplace = regmap_parse_16_be_inplace;
610 break;
611 case REGMAP_ENDIAN_NATIVE:
612 map->format.format_val = regmap_format_16_native;
613 map->format.parse_val = regmap_parse_16_native;
614 break;
615 default:
616 goto err_map;
617 }
618 break;
619 case 24:
620 if (val_endian != REGMAP_ENDIAN_BIG)
621 goto err_map;
622 map->format.format_val = regmap_format_24;
623 map->format.parse_val = regmap_parse_24;
624 break;
625 case 32:
626 switch (val_endian) {
627 case REGMAP_ENDIAN_BIG:
628 map->format.format_val = regmap_format_32_be;
629 map->format.parse_val = regmap_parse_32_be;
630 map->format.parse_inplace = regmap_parse_32_be_inplace;
631 break;
632 case REGMAP_ENDIAN_NATIVE:
633 map->format.format_val = regmap_format_32_native;
634 map->format.parse_val = regmap_parse_32_native;
635 break;
636 default:
637 goto err_map;
638 }
639 break;
640 }
641
642 if (map->format.format_write) {
643 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
644 (val_endian != REGMAP_ENDIAN_BIG))
645 goto err_map;
646 map->use_single_rw = true;
647 }
648
649 if (!map->format.format_write &&
650 !(map->format.format_reg && map->format.format_val))
651 goto err_map;
652
653 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
654 if (map->work_buf == NULL) {
655 ret = -ENOMEM;
656 goto err_map;
657 }
658
659 if (map->format.format_write) {
660 map->defer_caching = false;
661 map->reg_write = _regmap_bus_formatted_write;
662 } else if (map->format.format_val) {
663 map->defer_caching = true;
664 map->reg_write = _regmap_bus_raw_write;
665 }
666
667skip_format_initialization:
668
669 map->range_tree = RB_ROOT;
670 for (i = 0; i < config->num_ranges; i++) {
671 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
672 struct regmap_range_node *new;
673
674 /* Sanity check */
675 if (range_cfg->range_max < range_cfg->range_min) {
676 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
677 range_cfg->range_max, range_cfg->range_min);
678 goto err_range;
679 }
680
681 if (range_cfg->range_max > map->max_register) {
682 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
683 range_cfg->range_max, map->max_register);
684 goto err_range;
685 }
686
687 if (range_cfg->selector_reg > map->max_register) {
688 dev_err(map->dev,
689 "Invalid range %d: selector out of map\n", i);
690 goto err_range;
691 }
692
693 if (range_cfg->window_len == 0) {
694 dev_err(map->dev, "Invalid range %d: window_len 0\n",
695 i);
696 goto err_range;
697 }
698
699 /* Make sure, that this register range has no selector
700 or data window within its boundary */
701 for (j = 0; j < config->num_ranges; j++) {
702 unsigned sel_reg = config->ranges[j].selector_reg;
703 unsigned win_min = config->ranges[j].window_start;
704 unsigned win_max = win_min +
705 config->ranges[j].window_len - 1;
706
707 /* Allow data window inside its own virtual range */
708 if (j == i)
709 continue;
710
711 if (range_cfg->range_min <= sel_reg &&
712 sel_reg <= range_cfg->range_max) {
713 dev_err(map->dev,
714 "Range %d: selector for %d in window\n",
715 i, j);
716 goto err_range;
717 }
718
719 if (!(win_max < range_cfg->range_min ||
720 win_min > range_cfg->range_max)) {
721 dev_err(map->dev,
722 "Range %d: window for %d in window\n",
723 i, j);
724 goto err_range;
725 }
726 }
727
728 new = kzalloc(sizeof(*new), GFP_KERNEL);
729 if (new == NULL) {
730 ret = -ENOMEM;
731 goto err_range;
732 }
733
734 new->map = map;
735 new->name = range_cfg->name;
736 new->range_min = range_cfg->range_min;
737 new->range_max = range_cfg->range_max;
738 new->selector_reg = range_cfg->selector_reg;
739 new->selector_mask = range_cfg->selector_mask;
740 new->selector_shift = range_cfg->selector_shift;
741 new->window_start = range_cfg->window_start;
742 new->window_len = range_cfg->window_len;
743
744 if (!_regmap_range_add(map, new)) {
745 dev_err(map->dev, "Failed to add range %d\n", i);
746 kfree(new);
747 goto err_range;
748 }
749
750 if (map->selector_work_buf == NULL) {
751 map->selector_work_buf =
752 kzalloc(map->format.buf_size, GFP_KERNEL);
753 if (map->selector_work_buf == NULL) {
754 ret = -ENOMEM;
755 goto err_range;
756 }
757 }
758 }
759
760 ret = regcache_init(map, config);
761 if (ret != 0)
762 goto err_range;
763
764 if (dev) {
765 ret = regmap_attach_dev(dev, map, config);
766 if (ret != 0)
767 goto err_regcache;
768 }
769
770 return map;
771
772err_regcache:
773 regcache_exit(map);
774err_range:
775 regmap_range_exit(map);
776 kfree(map->work_buf);
777err_map:
778 kfree(map);
779err:
780 return ERR_PTR(ret);
781}
782EXPORT_SYMBOL_GPL(regmap_init);
783
784static void devm_regmap_release(struct device *dev, void *res)
785{
786 regmap_exit(*(struct regmap **)res);
787}
788
789/**
790 * devm_regmap_init(): Initialise managed register map
791 *
792 * @dev: Device that will be interacted with
793 * @bus: Bus-specific callbacks to use with device
794 * @bus_context: Data passed to bus-specific callbacks
795 * @config: Configuration for register map
796 *
797 * The return value will be an ERR_PTR() on error or a valid pointer
798 * to a struct regmap. This function should generally not be called
799 * directly, it should be called by bus-specific init functions. The
800 * map will be automatically freed by the device management code.
801 */
802struct regmap *devm_regmap_init(struct device *dev,
803 const struct regmap_bus *bus,
804 void *bus_context,
805 const struct regmap_config *config)
806{
807 struct regmap **ptr, *regmap;
808
809 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
810 if (!ptr)
811 return ERR_PTR(-ENOMEM);
812
813 regmap = regmap_init(dev, bus, bus_context, config);
814 if (!IS_ERR(regmap)) {
815 *ptr = regmap;
816 devres_add(dev, ptr);
817 } else {
818 devres_free(ptr);
819 }
820
821 return regmap;
822}
823EXPORT_SYMBOL_GPL(devm_regmap_init);
824
825static void regmap_field_init(struct regmap_field *rm_field,
826 struct regmap *regmap, struct reg_field reg_field)
827{
828 int field_bits = reg_field.msb - reg_field.lsb + 1;
829 rm_field->regmap = regmap;
830 rm_field->reg = reg_field.reg;
831 rm_field->shift = reg_field.lsb;
832 rm_field->mask = ((BIT(field_bits) - 1) << reg_field.lsb);
833 rm_field->id_size = reg_field.id_size;
834 rm_field->id_offset = reg_field.id_offset;
835}
836
837/**
838 * devm_regmap_field_alloc(): Allocate and initialise a register field
839 * in a register map.
840 *
841 * @dev: Device that will be interacted with
842 * @regmap: regmap bank in which this register field is located.
843 * @reg_field: Register field with in the bank.
844 *
845 * The return value will be an ERR_PTR() on error or a valid pointer
846 * to a struct regmap_field. The regmap_field will be automatically freed
847 * by the device management code.
848 */
849struct regmap_field *devm_regmap_field_alloc(struct device *dev,
850 struct regmap *regmap, struct reg_field reg_field)
851{
852 struct regmap_field *rm_field = devm_kzalloc(dev,
853 sizeof(*rm_field), GFP_KERNEL);
854 if (!rm_field)
855 return ERR_PTR(-ENOMEM);
856
857 regmap_field_init(rm_field, regmap, reg_field);
858
859 return rm_field;
860
861}
862EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
863
864/**
865 * devm_regmap_field_free(): Free register field allocated using
866 * devm_regmap_field_alloc. Usally drivers need not call this function,
867 * as the memory allocated via devm will be freed as per device-driver
868 * life-cyle.
869 *
870 * @dev: Device that will be interacted with
871 * @field: regmap field which should be freed.
872 */
873void devm_regmap_field_free(struct device *dev,
874 struct regmap_field *field)
875{
876 devm_kfree(dev, field);
877}
878EXPORT_SYMBOL_GPL(devm_regmap_field_free);
879
880/**
881 * regmap_field_alloc(): Allocate and initialise a register field
882 * in a register map.
883 *
884 * @regmap: regmap bank in which this register field is located.
885 * @reg_field: Register field with in the bank.
886 *
887 * The return value will be an ERR_PTR() on error or a valid pointer
888 * to a struct regmap_field. The regmap_field should be freed by the
889 * user once its finished working with it using regmap_field_free().
890 */
891struct regmap_field *regmap_field_alloc(struct regmap *regmap,
892 struct reg_field reg_field)
893{
894 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
895
896 if (!rm_field)
897 return ERR_PTR(-ENOMEM);
898
899 regmap_field_init(rm_field, regmap, reg_field);
900
901 return rm_field;
902}
903EXPORT_SYMBOL_GPL(regmap_field_alloc);
904
905/**
906 * regmap_field_free(): Free register field allocated using regmap_field_alloc
907 *
908 * @field: regmap field which should be freed.
909 */
910void regmap_field_free(struct regmap_field *field)
911{
912 kfree(field);
913}
914EXPORT_SYMBOL_GPL(regmap_field_free);
915
916/**
917 * regmap_reinit_cache(): Reinitialise the current register cache
918 *
919 * @map: Register map to operate on.
920 * @config: New configuration. Only the cache data will be used.
921 *
922 * Discard any existing register cache for the map and initialize a
923 * new cache. This can be used to restore the cache to defaults or to
924 * update the cache configuration to reflect runtime discovery of the
925 * hardware.
926 *
927 * No explicit locking is done here, the user needs to ensure that
928 * this function will not race with other calls to regmap.
929 */
930int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
931{
932 regcache_exit(map);
933 regmap_debugfs_exit(map);
934
935 map->max_register = config->max_register;
936 map->writeable_reg = config->writeable_reg;
937 map->readable_reg = config->readable_reg;
938 map->volatile_reg = config->volatile_reg;
939 map->precious_reg = config->precious_reg;
940 map->cache_type = config->cache_type;
941
942 regmap_debugfs_init(map, config->name);
943
944 map->cache_bypass = false;
945 map->cache_only = false;
946
947 return regcache_init(map, config);
948}
949EXPORT_SYMBOL_GPL(regmap_reinit_cache);
950
951/**
952 * regmap_exit(): Free a previously allocated register map
953 */
954void regmap_exit(struct regmap *map)
955{
956 struct regmap_async *async;
957
958 regcache_exit(map);
959 regmap_debugfs_exit(map);
960 regmap_range_exit(map);
961 if (map->bus && map->bus->free_context)
962 map->bus->free_context(map->bus_context);
963 kfree(map->work_buf);
964 while (!list_empty(&map->async_free)) {
965 async = list_first_entry_or_null(&map->async_free,
966 struct regmap_async,
967 list);
968 list_del(&async->list);
969 kfree(async->work_buf);
970 kfree(async);
971 }
972 kfree(map);
973}
974EXPORT_SYMBOL_GPL(regmap_exit);
975
976static int dev_get_regmap_match(struct device *dev, void *res, void *data)
977{
978 struct regmap **r = res;
979 if (!r || !*r) {
980 WARN_ON(!r || !*r);
981 return 0;
982 }
983
984 /* If the user didn't specify a name match any */
985 if (data)
986 return (*r)->name == data;
987 else
988 return 1;
989}
990
991/**
992 * dev_get_regmap(): Obtain the regmap (if any) for a device
993 *
994 * @dev: Device to retrieve the map for
995 * @name: Optional name for the register map, usually NULL.
996 *
997 * Returns the regmap for the device if one is present, or NULL. If
998 * name is specified then it must match the name specified when
999 * registering the device, if it is NULL then the first regmap found
1000 * will be used. Devices with multiple register maps are very rare,
1001 * generic code should normally not need to specify a name.
1002 */
1003struct regmap *dev_get_regmap(struct device *dev, const char *name)
1004{
1005 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1006 dev_get_regmap_match, (void *)name);
1007
1008 if (!r)
1009 return NULL;
1010 return *r;
1011}
1012EXPORT_SYMBOL_GPL(dev_get_regmap);
1013
1014static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1015 struct regmap_range_node *range,
1016 unsigned int val_num)
1017{
1018 void *orig_work_buf;
1019 unsigned int win_offset;
1020 unsigned int win_page;
1021 bool page_chg;
1022 int ret;
1023
1024 win_offset = (*reg - range->range_min) % range->window_len;
1025 win_page = (*reg - range->range_min) / range->window_len;
1026
1027 if (val_num > 1) {
1028 /* Bulk write shouldn't cross range boundary */
1029 if (*reg + val_num - 1 > range->range_max)
1030 return -EINVAL;
1031
1032 /* ... or single page boundary */
1033 if (val_num > range->window_len - win_offset)
1034 return -EINVAL;
1035 }
1036
1037 /* It is possible to have selector register inside data window.
1038 In that case, selector register is located on every page and
1039 it needs no page switching, when accessed alone. */
1040 if (val_num > 1 ||
1041 range->window_start + win_offset != range->selector_reg) {
1042 /* Use separate work_buf during page switching */
1043 orig_work_buf = map->work_buf;
1044 map->work_buf = map->selector_work_buf;
1045
1046 ret = _regmap_update_bits(map, range->selector_reg,
1047 range->selector_mask,
1048 win_page << range->selector_shift,
1049 &page_chg);
1050
1051 map->work_buf = orig_work_buf;
1052
1053 if (ret != 0)
1054 return ret;
1055 }
1056
1057 *reg = range->window_start + win_offset;
1058
1059 return 0;
1060}
1061
1062int _regmap_raw_write(struct regmap *map, unsigned int reg,
1063 const void *val, size_t val_len)
1064{
1065 struct regmap_range_node *range;
1066 unsigned long flags;
1067 u8 *u8 = map->work_buf;
1068 void *work_val = map->work_buf + map->format.reg_bytes +
1069 map->format.pad_bytes;
1070 void *buf;
1071 int ret = -ENOTSUPP;
1072 size_t len;
1073 int i;
1074
1075 WARN_ON(!map->bus);
1076
1077 /* Check for unwritable registers before we start */
1078 if (map->writeable_reg)
1079 for (i = 0; i < val_len / map->format.val_bytes; i++)
1080 if (!map->writeable_reg(map->dev,
1081 reg + (i * map->reg_stride)))
1082 return -EINVAL;
1083
1084 if (!map->cache_bypass && map->format.parse_val) {
1085 unsigned int ival;
1086 int val_bytes = map->format.val_bytes;
1087 for (i = 0; i < val_len / val_bytes; i++) {
1088 ival = map->format.parse_val(val + (i * val_bytes));
1089 ret = regcache_write(map, reg + (i * map->reg_stride),
1090 ival);
1091 if (ret) {
1092 dev_err(map->dev,
1093 "Error in caching of register: %x ret: %d\n",
1094 reg + i, ret);
1095 return ret;
1096 }
1097 }
1098 if (map->cache_only) {
1099 map->cache_dirty = true;
1100 return 0;
1101 }
1102 }
1103
1104 range = _regmap_range_lookup(map, reg);
1105 if (range) {
1106 int val_num = val_len / map->format.val_bytes;
1107 int win_offset = (reg - range->range_min) % range->window_len;
1108 int win_residue = range->window_len - win_offset;
1109
1110 /* If the write goes beyond the end of the window split it */
1111 while (val_num > win_residue) {
1112 dev_dbg(map->dev, "Writing window %d/%zu\n",
1113 win_residue, val_len / map->format.val_bytes);
1114 ret = _regmap_raw_write(map, reg, val, win_residue *
1115 map->format.val_bytes);
1116 if (ret != 0)
1117 return ret;
1118
1119 reg += win_residue;
1120 val_num -= win_residue;
1121 val += win_residue * map->format.val_bytes;
1122 val_len -= win_residue * map->format.val_bytes;
1123
1124 win_offset = (reg - range->range_min) %
1125 range->window_len;
1126 win_residue = range->window_len - win_offset;
1127 }
1128
1129 ret = _regmap_select_page(map, ®, range, val_num);
1130 if (ret != 0)
1131 return ret;
1132 }
1133
1134 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1135
1136 u8[0] |= map->write_flag_mask;
1137
1138 /*
1139 * Essentially all I/O mechanisms will be faster with a single
1140 * buffer to write. Since register syncs often generate raw
1141 * writes of single registers optimise that case.
1142 */
1143 if (val != work_val && val_len == map->format.val_bytes) {
1144 memcpy(work_val, val, map->format.val_bytes);
1145 val = work_val;
1146 }
1147
1148 if (map->async && map->bus->async_write) {
1149 struct regmap_async *async;
1150
1151 trace_regmap_async_write_start(map->dev, reg, val_len);
1152
1153 spin_lock_irqsave(&map->async_lock, flags);
1154 async = list_first_entry_or_null(&map->async_free,
1155 struct regmap_async,
1156 list);
1157 if (async)
1158 list_del(&async->list);
1159 spin_unlock_irqrestore(&map->async_lock, flags);
1160
1161 if (!async) {
1162 async = map->bus->async_alloc();
1163 if (!async)
1164 return -ENOMEM;
1165
1166 async->work_buf = kzalloc(map->format.buf_size,
1167 GFP_KERNEL | GFP_DMA);
1168 if (!async->work_buf) {
1169 kfree(async);
1170 return -ENOMEM;
1171 }
1172 }
1173
1174 async->map = map;
1175
1176 /* If the caller supplied the value we can use it safely. */
1177 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1178 map->format.reg_bytes + map->format.val_bytes);
1179
1180 spin_lock_irqsave(&map->async_lock, flags);
1181 list_add_tail(&async->list, &map->async_list);
1182 spin_unlock_irqrestore(&map->async_lock, flags);
1183
1184 if (val != work_val)
1185 ret = map->bus->async_write(map->bus_context,
1186 async->work_buf,
1187 map->format.reg_bytes +
1188 map->format.pad_bytes,
1189 val, val_len, async);
1190 else
1191 ret = map->bus->async_write(map->bus_context,
1192 async->work_buf,
1193 map->format.reg_bytes +
1194 map->format.pad_bytes +
1195 val_len, NULL, 0, async);
1196
1197 if (ret != 0) {
1198 dev_err(map->dev, "Failed to schedule write: %d\n",
1199 ret);
1200
1201 spin_lock_irqsave(&map->async_lock, flags);
1202 list_move(&async->list, &map->async_free);
1203 spin_unlock_irqrestore(&map->async_lock, flags);
1204 }
1205
1206 return ret;
1207 }
1208
1209 trace_regmap_hw_write_start(map->dev, reg,
1210 val_len / map->format.val_bytes);
1211
1212 /* If we're doing a single register write we can probably just
1213 * send the work_buf directly, otherwise try to do a gather
1214 * write.
1215 */
1216 if (val == work_val)
1217 ret = map->bus->write(map->bus_context, map->work_buf,
1218 map->format.reg_bytes +
1219 map->format.pad_bytes +
1220 val_len);
1221 else if (map->bus->gather_write)
1222 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1223 map->format.reg_bytes +
1224 map->format.pad_bytes,
1225 val, val_len);
1226
1227 /* If that didn't work fall back on linearising by hand. */
1228 if (ret == -ENOTSUPP) {
1229 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1230 buf = kzalloc(len, GFP_KERNEL);
1231 if (!buf)
1232 return -ENOMEM;
1233
1234 memcpy(buf, map->work_buf, map->format.reg_bytes);
1235 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1236 val, val_len);
1237 ret = map->bus->write(map->bus_context, buf, len);
1238
1239 kfree(buf);
1240 }
1241
1242 trace_regmap_hw_write_done(map->dev, reg,
1243 val_len / map->format.val_bytes);
1244
1245 return ret;
1246}
1247
1248/**
1249 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1250 *
1251 * @map: Map to check.
1252 */
1253bool regmap_can_raw_write(struct regmap *map)
1254{
1255 return map->bus && map->format.format_val && map->format.format_reg;
1256}
1257EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1258
1259static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1260 unsigned int val)
1261{
1262 int ret;
1263 struct regmap_range_node *range;
1264 struct regmap *map = context;
1265
1266 WARN_ON(!map->bus || !map->format.format_write);
1267
1268 range = _regmap_range_lookup(map, reg);
1269 if (range) {
1270 ret = _regmap_select_page(map, ®, range, 1);
1271 if (ret != 0)
1272 return ret;
1273 }
1274
1275 map->format.format_write(map, reg, val);
1276
1277 trace_regmap_hw_write_start(map->dev, reg, 1);
1278
1279 ret = map->bus->write(map->bus_context, map->work_buf,
1280 map->format.buf_size);
1281
1282 trace_regmap_hw_write_done(map->dev, reg, 1);
1283
1284 return ret;
1285}
1286
1287static int _regmap_bus_raw_write(void *context, unsigned int reg,
1288 unsigned int val)
1289{
1290 struct regmap *map = context;
1291
1292 WARN_ON(!map->bus || !map->format.format_val);
1293
1294 map->format.format_val(map->work_buf + map->format.reg_bytes
1295 + map->format.pad_bytes, val, 0);
1296 return _regmap_raw_write(map, reg,
1297 map->work_buf +
1298 map->format.reg_bytes +
1299 map->format.pad_bytes,
1300 map->format.val_bytes);
1301}
1302
1303static inline void *_regmap_map_get_context(struct regmap *map)
1304{
1305 return (map->bus) ? map : map->bus_context;
1306}
1307
1308int _regmap_write(struct regmap *map, unsigned int reg,
1309 unsigned int val)
1310{
1311 int ret;
1312 void *context = _regmap_map_get_context(map);
1313
1314 if (!regmap_writeable(map, reg))
1315 return -EIO;
1316
1317 if (!map->cache_bypass && !map->defer_caching) {
1318 ret = regcache_write(map, reg, val);
1319 if (ret != 0)
1320 return ret;
1321 if (map->cache_only) {
1322 map->cache_dirty = true;
1323 return 0;
1324 }
1325 }
1326
1327#ifdef LOG_DEVICE
1328 if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1329 dev_info(map->dev, "%x <= %x\n", reg, val);
1330#endif
1331
1332 trace_regmap_reg_write(map->dev, reg, val);
1333
1334 return map->reg_write(context, reg, val);
1335}
1336
1337/**
1338 * regmap_write(): Write a value to a single register
1339 *
1340 * @map: Register map to write to
1341 * @reg: Register to write to
1342 * @val: Value to be written
1343 *
1344 * A value of zero will be returned on success, a negative errno will
1345 * be returned in error cases.
1346 */
1347int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1348{
1349 int ret;
1350
1351 if (reg % map->reg_stride)
1352 return -EINVAL;
1353
1354 map->lock(map->lock_arg);
1355
1356 ret = _regmap_write(map, reg, val);
1357
1358 map->unlock(map->lock_arg);
1359
1360 return ret;
1361}
1362EXPORT_SYMBOL_GPL(regmap_write);
1363
1364/**
1365 * regmap_write_async(): Write a value to a single register asynchronously
1366 *
1367 * @map: Register map to write to
1368 * @reg: Register to write to
1369 * @val: Value to be written
1370 *
1371 * A value of zero will be returned on success, a negative errno will
1372 * be returned in error cases.
1373 */
1374int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1375{
1376 int ret;
1377
1378 if (reg % map->reg_stride)
1379 return -EINVAL;
1380
1381 map->lock(map->lock_arg);
1382
1383 map->async = true;
1384
1385 ret = _regmap_write(map, reg, val);
1386
1387 map->async = false;
1388
1389 map->unlock(map->lock_arg);
1390
1391 return ret;
1392}
1393EXPORT_SYMBOL_GPL(regmap_write_async);
1394
1395/**
1396 * regmap_raw_write(): Write raw values to one or more registers
1397 *
1398 * @map: Register map to write to
1399 * @reg: Initial register to write to
1400 * @val: Block of data to be written, laid out for direct transmission to the
1401 * device
1402 * @val_len: Length of data pointed to by val.
1403 *
1404 * This function is intended to be used for things like firmware
1405 * download where a large block of data needs to be transferred to the
1406 * device. No formatting will be done on the data provided.
1407 *
1408 * A value of zero will be returned on success, a negative errno will
1409 * be returned in error cases.
1410 */
1411int regmap_raw_write(struct regmap *map, unsigned int reg,
1412 const void *val, size_t val_len)
1413{
1414 int ret;
1415
1416 if (!regmap_can_raw_write(map))
1417 return -EINVAL;
1418 if (val_len % map->format.val_bytes)
1419 return -EINVAL;
1420
1421 map->lock(map->lock_arg);
1422
1423 ret = _regmap_raw_write(map, reg, val, val_len);
1424
1425 map->unlock(map->lock_arg);
1426
1427 return ret;
1428}
1429EXPORT_SYMBOL_GPL(regmap_raw_write);
1430
1431/**
1432 * regmap_field_write(): Write a value to a single register field
1433 *
1434 * @field: Register field to write to
1435 * @val: Value to be written
1436 *
1437 * A value of zero will be returned on success, a negative errno will
1438 * be returned in error cases.
1439 */
1440int regmap_field_write(struct regmap_field *field, unsigned int val)
1441{
1442 return regmap_update_bits(field->regmap, field->reg,
1443 field->mask, val << field->shift);
1444}
1445EXPORT_SYMBOL_GPL(regmap_field_write);
1446
1447/**
1448 * regmap_field_update_bits(): Perform a read/modify/write cycle
1449 * on the register field
1450 *
1451 * @field: Register field to write to
1452 * @mask: Bitmask to change
1453 * @val: Value to be written
1454 *
1455 * A value of zero will be returned on success, a negative errno will
1456 * be returned in error cases.
1457 */
1458int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
1459{
1460 mask = (mask << field->shift) & field->mask;
1461
1462 return regmap_update_bits(field->regmap, field->reg,
1463 mask, val << field->shift);
1464}
1465EXPORT_SYMBOL_GPL(regmap_field_update_bits);
1466
1467/**
1468 * regmap_fields_write(): Write a value to a single register field with port ID
1469 *
1470 * @field: Register field to write to
1471 * @id: port ID
1472 * @val: Value to be written
1473 *
1474 * A value of zero will be returned on success, a negative errno will
1475 * be returned in error cases.
1476 */
1477int regmap_fields_write(struct regmap_field *field, unsigned int id,
1478 unsigned int val)
1479{
1480 if (id >= field->id_size)
1481 return -EINVAL;
1482
1483 return regmap_update_bits(field->regmap,
1484 field->reg + (field->id_offset * id),
1485 field->mask, val << field->shift);
1486}
1487EXPORT_SYMBOL_GPL(regmap_fields_write);
1488
1489/**
1490 * regmap_fields_update_bits(): Perform a read/modify/write cycle
1491 * on the register field
1492 *
1493 * @field: Register field to write to
1494 * @id: port ID
1495 * @mask: Bitmask to change
1496 * @val: Value to be written
1497 *
1498 * A value of zero will be returned on success, a negative errno will
1499 * be returned in error cases.
1500 */
1501int regmap_fields_update_bits(struct regmap_field *field, unsigned int id,
1502 unsigned int mask, unsigned int val)
1503{
1504 if (id >= field->id_size)
1505 return -EINVAL;
1506
1507 mask = (mask << field->shift) & field->mask;
1508
1509 return regmap_update_bits(field->regmap,
1510 field->reg + (field->id_offset * id),
1511 mask, val << field->shift);
1512}
1513EXPORT_SYMBOL_GPL(regmap_fields_update_bits);
1514
1515/*
1516 * regmap_bulk_write(): Write multiple registers to the device
1517 *
1518 * @map: Register map to write to
1519 * @reg: First register to be write from
1520 * @val: Block of data to be written, in native register size for device
1521 * @val_count: Number of registers to write
1522 *
1523 * This function is intended to be used for writing a large block of
1524 * data to the device either in single transfer or multiple transfer.
1525 *
1526 * A value of zero will be returned on success, a negative errno will
1527 * be returned in error cases.
1528 */
1529int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1530 size_t val_count)
1531{
1532 int ret = 0, i;
1533 size_t val_bytes = map->format.val_bytes;
1534
1535 if (map->bus && !map->format.parse_inplace)
1536 return -EINVAL;
1537 if (reg % map->reg_stride)
1538 return -EINVAL;
1539
1540 /*
1541 * Some devices don't support bulk write, for
1542 * them we have a series of single write operations.
1543 */
1544 if (!map->bus || map->use_single_rw) {
1545 map->lock(map->lock_arg);
1546 for (i = 0; i < val_count; i++) {
1547 unsigned int ival;
1548
1549 switch (val_bytes) {
1550 case 1:
1551 ival = *(u8 *)(val + (i * val_bytes));
1552 break;
1553 case 2:
1554 ival = *(u16 *)(val + (i * val_bytes));
1555 break;
1556 case 4:
1557 ival = *(u32 *)(val + (i * val_bytes));
1558 break;
1559#ifdef CONFIG_64BIT
1560 case 8:
1561 ival = *(u64 *)(val + (i * val_bytes));
1562 break;
1563#endif
1564 default:
1565 ret = -EINVAL;
1566 goto out;
1567 }
1568
1569 ret = _regmap_write(map, reg + (i * map->reg_stride),
1570 ival);
1571 if (ret != 0)
1572 goto out;
1573 }
1574out:
1575 map->unlock(map->lock_arg);
1576 } else {
1577 void *wval;
1578
1579 wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
1580 if (!wval) {
1581 dev_err(map->dev, "Error in memory allocation\n");
1582 return -ENOMEM;
1583 }
1584 for (i = 0; i < val_count * val_bytes; i += val_bytes)
1585 map->format.parse_inplace(wval + i);
1586
1587 map->lock(map->lock_arg);
1588 ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1589 map->unlock(map->lock_arg);
1590
1591 kfree(wval);
1592 }
1593 return ret;
1594}
1595EXPORT_SYMBOL_GPL(regmap_bulk_write);
1596
1597/*
1598 * _regmap_raw_multi_reg_write()
1599 *
1600 * the (register,newvalue) pairs in regs have not been formatted, but
1601 * they are all in the same page and have been changed to being page
1602 * relative. The page register has been written if that was neccessary.
1603 */
1604static int _regmap_raw_multi_reg_write(struct regmap *map,
1605 const struct reg_default *regs,
1606 size_t num_regs)
1607{
1608 int ret;
1609 void *buf;
1610 int i;
1611 u8 *u8;
1612 size_t val_bytes = map->format.val_bytes;
1613 size_t reg_bytes = map->format.reg_bytes;
1614 size_t pad_bytes = map->format.pad_bytes;
1615 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1616 size_t len = pair_size * num_regs;
1617
1618 buf = kzalloc(len, GFP_KERNEL);
1619 if (!buf)
1620 return -ENOMEM;
1621
1622 /* We have to linearise by hand. */
1623
1624 u8 = buf;
1625
1626 for (i = 0; i < num_regs; i++) {
1627 int reg = regs[i].reg;
1628 int val = regs[i].def;
1629 trace_regmap_hw_write_start(map->dev, reg, 1);
1630 map->format.format_reg(u8, reg, map->reg_shift);
1631 u8 += reg_bytes + pad_bytes;
1632 map->format.format_val(u8, val, 0);
1633 u8 += val_bytes;
1634 }
1635 u8 = buf;
1636 *u8 |= map->write_flag_mask;
1637
1638 ret = map->bus->write(map->bus_context, buf, len);
1639
1640 kfree(buf);
1641
1642 for (i = 0; i < num_regs; i++) {
1643 int reg = regs[i].reg;
1644 trace_regmap_hw_write_done(map->dev, reg, 1);
1645 }
1646 return ret;
1647}
1648
1649static unsigned int _regmap_register_page(struct regmap *map,
1650 unsigned int reg,
1651 struct regmap_range_node *range)
1652{
1653 unsigned int win_page = (reg - range->range_min) / range->window_len;
1654
1655 return win_page;
1656}
1657
1658static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1659 struct reg_default *regs,
1660 size_t num_regs)
1661{
1662 int ret;
1663 int i, n;
1664 struct reg_default *base;
1665 unsigned int this_page;
1666 /*
1667 * the set of registers are not neccessarily in order, but
1668 * since the order of write must be preserved this algorithm
1669 * chops the set each time the page changes
1670 */
1671 base = regs;
1672 for (i = 0, n = 0; i < num_regs; i++, n++) {
1673 unsigned int reg = regs[i].reg;
1674 struct regmap_range_node *range;
1675
1676 range = _regmap_range_lookup(map, reg);
1677 if (range) {
1678 unsigned int win_page = _regmap_register_page(map, reg,
1679 range);
1680
1681 if (i == 0)
1682 this_page = win_page;
1683 if (win_page != this_page) {
1684 this_page = win_page;
1685 ret = _regmap_raw_multi_reg_write(map, base, n);
1686 if (ret != 0)
1687 return ret;
1688 base += n;
1689 n = 0;
1690 }
1691 ret = _regmap_select_page(map, &base[n].reg, range, 1);
1692 if (ret != 0)
1693 return ret;
1694 }
1695 }
1696 if (n > 0)
1697 return _regmap_raw_multi_reg_write(map, base, n);
1698 return 0;
1699}
1700
1701static int _regmap_multi_reg_write(struct regmap *map,
1702 const struct reg_default *regs,
1703 size_t num_regs)
1704{
1705 int i;
1706 int ret;
1707
1708 if (!map->can_multi_write) {
1709 for (i = 0; i < num_regs; i++) {
1710 ret = _regmap_write(map, regs[i].reg, regs[i].def);
1711 if (ret != 0)
1712 return ret;
1713 }
1714 return 0;
1715 }
1716
1717 if (!map->format.parse_inplace)
1718 return -EINVAL;
1719
1720 if (map->writeable_reg)
1721 for (i = 0; i < num_regs; i++) {
1722 int reg = regs[i].reg;
1723 if (!map->writeable_reg(map->dev, reg))
1724 return -EINVAL;
1725 if (reg % map->reg_stride)
1726 return -EINVAL;
1727 }
1728
1729 if (!map->cache_bypass) {
1730 for (i = 0; i < num_regs; i++) {
1731 unsigned int val = regs[i].def;
1732 unsigned int reg = regs[i].reg;
1733 ret = regcache_write(map, reg, val);
1734 if (ret) {
1735 dev_err(map->dev,
1736 "Error in caching of register: %x ret: %d\n",
1737 reg, ret);
1738 return ret;
1739 }
1740 }
1741 if (map->cache_only) {
1742 map->cache_dirty = true;
1743 return 0;
1744 }
1745 }
1746
1747 WARN_ON(!map->bus);
1748
1749 for (i = 0; i < num_regs; i++) {
1750 unsigned int reg = regs[i].reg;
1751 struct regmap_range_node *range;
1752 range = _regmap_range_lookup(map, reg);
1753 if (range) {
1754 size_t len = sizeof(struct reg_default)*num_regs;
1755 struct reg_default *base = kmemdup(regs, len,
1756 GFP_KERNEL);
1757 if (!base)
1758 return -ENOMEM;
1759 ret = _regmap_range_multi_paged_reg_write(map, base,
1760 num_regs);
1761 kfree(base);
1762
1763 return ret;
1764 }
1765 }
1766 return _regmap_raw_multi_reg_write(map, regs, num_regs);
1767}
1768
1769/*
1770 * regmap_multi_reg_write(): Write multiple registers to the device
1771 *
1772 * where the set of register,value pairs are supplied in any order,
1773 * possibly not all in a single range.
1774 *
1775 * @map: Register map to write to
1776 * @regs: Array of structures containing register,value to be written
1777 * @num_regs: Number of registers to write
1778 *
1779 * The 'normal' block write mode will send ultimately send data on the
1780 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
1781 * addressed. However, this alternative block multi write mode will send
1782 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
1783 * must of course support the mode.
1784 *
1785 * A value of zero will be returned on success, a negative errno will be
1786 * returned in error cases.
1787 */
1788int regmap_multi_reg_write(struct regmap *map, const struct reg_default *regs,
1789 int num_regs)
1790{
1791 int ret;
1792
1793 map->lock(map->lock_arg);
1794
1795 ret = _regmap_multi_reg_write(map, regs, num_regs);
1796
1797 map->unlock(map->lock_arg);
1798
1799 return ret;
1800}
1801EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
1802
1803/*
1804 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
1805 * device but not the cache
1806 *
1807 * where the set of register are supplied in any order
1808 *
1809 * @map: Register map to write to
1810 * @regs: Array of structures containing register,value to be written
1811 * @num_regs: Number of registers to write
1812 *
1813 * This function is intended to be used for writing a large block of data
1814 * atomically to the device in single transfer for those I2C client devices
1815 * that implement this alternative block write mode.
1816 *
1817 * A value of zero will be returned on success, a negative errno will
1818 * be returned in error cases.
1819 */
1820int regmap_multi_reg_write_bypassed(struct regmap *map,
1821 const struct reg_default *regs,
1822 int num_regs)
1823{
1824 int ret;
1825 bool bypass;
1826
1827 map->lock(map->lock_arg);
1828
1829 bypass = map->cache_bypass;
1830 map->cache_bypass = true;
1831
1832 ret = _regmap_multi_reg_write(map, regs, num_regs);
1833
1834 map->cache_bypass = bypass;
1835
1836 map->unlock(map->lock_arg);
1837
1838 return ret;
1839}
1840EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
1841
1842/**
1843 * regmap_raw_write_async(): Write raw values to one or more registers
1844 * asynchronously
1845 *
1846 * @map: Register map to write to
1847 * @reg: Initial register to write to
1848 * @val: Block of data to be written, laid out for direct transmission to the
1849 * device. Must be valid until regmap_async_complete() is called.
1850 * @val_len: Length of data pointed to by val.
1851 *
1852 * This function is intended to be used for things like firmware
1853 * download where a large block of data needs to be transferred to the
1854 * device. No formatting will be done on the data provided.
1855 *
1856 * If supported by the underlying bus the write will be scheduled
1857 * asynchronously, helping maximise I/O speed on higher speed buses
1858 * like SPI. regmap_async_complete() can be called to ensure that all
1859 * asynchrnous writes have been completed.
1860 *
1861 * A value of zero will be returned on success, a negative errno will
1862 * be returned in error cases.
1863 */
1864int regmap_raw_write_async(struct regmap *map, unsigned int reg,
1865 const void *val, size_t val_len)
1866{
1867 int ret;
1868
1869 if (val_len % map->format.val_bytes)
1870 return -EINVAL;
1871 if (reg % map->reg_stride)
1872 return -EINVAL;
1873
1874 map->lock(map->lock_arg);
1875
1876 map->async = true;
1877
1878 ret = _regmap_raw_write(map, reg, val, val_len);
1879
1880 map->async = false;
1881
1882 map->unlock(map->lock_arg);
1883
1884 return ret;
1885}
1886EXPORT_SYMBOL_GPL(regmap_raw_write_async);
1887
1888static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
1889 unsigned int val_len)
1890{
1891 struct regmap_range_node *range;
1892 u8 *u8 = map->work_buf;
1893 int ret;
1894
1895 WARN_ON(!map->bus);
1896
1897 range = _regmap_range_lookup(map, reg);
1898 if (range) {
1899 ret = _regmap_select_page(map, ®, range,
1900 val_len / map->format.val_bytes);
1901 if (ret != 0)
1902 return ret;
1903 }
1904
1905 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1906
1907 /*
1908 * Some buses or devices flag reads by setting the high bits in the
1909 * register addresss; since it's always the high bits for all
1910 * current formats we can do this here rather than in
1911 * formatting. This may break if we get interesting formats.
1912 */
1913 u8[0] |= map->read_flag_mask;
1914
1915 trace_regmap_hw_read_start(map->dev, reg,
1916 val_len / map->format.val_bytes);
1917
1918 ret = map->bus->read(map->bus_context, map->work_buf,
1919 map->format.reg_bytes + map->format.pad_bytes,
1920 val, val_len);
1921
1922 trace_regmap_hw_read_done(map->dev, reg,
1923 val_len / map->format.val_bytes);
1924
1925 return ret;
1926}
1927
1928static int _regmap_bus_read(void *context, unsigned int reg,
1929 unsigned int *val)
1930{
1931 int ret;
1932 struct regmap *map = context;
1933
1934 if (!map->format.parse_val)
1935 return -EINVAL;
1936
1937 ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
1938 if (ret == 0)
1939 *val = map->format.parse_val(map->work_buf);
1940
1941 return ret;
1942}
1943
1944static int _regmap_read(struct regmap *map, unsigned int reg,
1945 unsigned int *val)
1946{
1947 int ret;
1948 void *context = _regmap_map_get_context(map);
1949
1950 WARN_ON(!map->reg_read);
1951
1952 if (!map->cache_bypass) {
1953 ret = regcache_read(map, reg, val);
1954 if (ret == 0)
1955 return 0;
1956 }
1957
1958 if (map->cache_only)
1959 return -EBUSY;
1960
1961 if (!regmap_readable(map, reg))
1962 return -EIO;
1963
1964 ret = map->reg_read(context, reg, val);
1965 if (ret == 0) {
1966#ifdef LOG_DEVICE
1967 if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1968 dev_info(map->dev, "%x => %x\n", reg, *val);
1969#endif
1970
1971 trace_regmap_reg_read(map->dev, reg, *val);
1972
1973 if (!map->cache_bypass)
1974 regcache_write(map, reg, *val);
1975 }
1976
1977 return ret;
1978}
1979
1980/**
1981 * regmap_read(): Read a value from a single register
1982 *
1983 * @map: Register map to read from
1984 * @reg: Register to be read from
1985 * @val: Pointer to store read value
1986 *
1987 * A value of zero will be returned on success, a negative errno will
1988 * be returned in error cases.
1989 */
1990int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
1991{
1992 int ret;
1993
1994 if (reg % map->reg_stride)
1995 return -EINVAL;
1996
1997 map->lock(map->lock_arg);
1998
1999 ret = _regmap_read(map, reg, val);
2000
2001 map->unlock(map->lock_arg);
2002
2003 return ret;
2004}
2005EXPORT_SYMBOL_GPL(regmap_read);
2006
2007/**
2008 * regmap_raw_read(): Read raw data from the device
2009 *
2010 * @map: Register map to read from
2011 * @reg: First register to be read from
2012 * @val: Pointer to store read value
2013 * @val_len: Size of data to read
2014 *
2015 * A value of zero will be returned on success, a negative errno will
2016 * be returned in error cases.
2017 */
2018int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2019 size_t val_len)
2020{
2021 size_t val_bytes = map->format.val_bytes;
2022 size_t val_count = val_len / val_bytes;
2023 unsigned int v;
2024 int ret, i;
2025
2026 if (!map->bus)
2027 return -EINVAL;
2028 if (val_len % map->format.val_bytes)
2029 return -EINVAL;
2030 if (reg % map->reg_stride)
2031 return -EINVAL;
2032
2033 map->lock(map->lock_arg);
2034
2035 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2036 map->cache_type == REGCACHE_NONE) {
2037 /* Physical block read if there's no cache involved */
2038 ret = _regmap_raw_read(map, reg, val, val_len);
2039
2040 } else {
2041 /* Otherwise go word by word for the cache; should be low
2042 * cost as we expect to hit the cache.
2043 */
2044 for (i = 0; i < val_count; i++) {
2045 ret = _regmap_read(map, reg + (i * map->reg_stride),
2046 &v);
2047 if (ret != 0)
2048 goto out;
2049
2050 map->format.format_val(val + (i * val_bytes), v, 0);
2051 }
2052 }
2053
2054 out:
2055 map->unlock(map->lock_arg);
2056
2057 return ret;
2058}
2059EXPORT_SYMBOL_GPL(regmap_raw_read);
2060
2061/**
2062 * regmap_field_read(): Read a value to a single register field
2063 *
2064 * @field: Register field to read from
2065 * @val: Pointer to store read value
2066 *
2067 * A value of zero will be returned on success, a negative errno will
2068 * be returned in error cases.
2069 */
2070int regmap_field_read(struct regmap_field *field, unsigned int *val)
2071{
2072 int ret;
2073 unsigned int reg_val;
2074 ret = regmap_read(field->regmap, field->reg, ®_val);
2075 if (ret != 0)
2076 return ret;
2077
2078 reg_val &= field->mask;
2079 reg_val >>= field->shift;
2080 *val = reg_val;
2081
2082 return ret;
2083}
2084EXPORT_SYMBOL_GPL(regmap_field_read);
2085
2086/**
2087 * regmap_fields_read(): Read a value to a single register field with port ID
2088 *
2089 * @field: Register field to read from
2090 * @id: port ID
2091 * @val: Pointer to store read value
2092 *
2093 * A value of zero will be returned on success, a negative errno will
2094 * be returned in error cases.
2095 */
2096int regmap_fields_read(struct regmap_field *field, unsigned int id,
2097 unsigned int *val)
2098{
2099 int ret;
2100 unsigned int reg_val;
2101
2102 if (id >= field->id_size)
2103 return -EINVAL;
2104
2105 ret = regmap_read(field->regmap,
2106 field->reg + (field->id_offset * id),
2107 ®_val);
2108 if (ret != 0)
2109 return ret;
2110
2111 reg_val &= field->mask;
2112 reg_val >>= field->shift;
2113 *val = reg_val;
2114
2115 return ret;
2116}
2117EXPORT_SYMBOL_GPL(regmap_fields_read);
2118
2119/**
2120 * regmap_bulk_read(): Read multiple registers from the device
2121 *
2122 * @map: Register map to read from
2123 * @reg: First register to be read from
2124 * @val: Pointer to store read value, in native register size for device
2125 * @val_count: Number of registers to read
2126 *
2127 * A value of zero will be returned on success, a negative errno will
2128 * be returned in error cases.
2129 */
2130int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2131 size_t val_count)
2132{
2133 int ret, i;
2134 size_t val_bytes = map->format.val_bytes;
2135 bool vol = regmap_volatile_range(map, reg, val_count);
2136
2137 if (reg % map->reg_stride)
2138 return -EINVAL;
2139
2140 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2141 /*
2142 * Some devices does not support bulk read, for
2143 * them we have a series of single read operations.
2144 */
2145 if (map->use_single_rw) {
2146 for (i = 0; i < val_count; i++) {
2147 ret = regmap_raw_read(map,
2148 reg + (i * map->reg_stride),
2149 val + (i * val_bytes),
2150 val_bytes);
2151 if (ret != 0)
2152 return ret;
2153 }
2154 } else {
2155 ret = regmap_raw_read(map, reg, val,
2156 val_bytes * val_count);
2157 if (ret != 0)
2158 return ret;
2159 }
2160
2161 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2162 map->format.parse_inplace(val + i);
2163 } else {
2164 for (i = 0; i < val_count; i++) {
2165 unsigned int ival;
2166 ret = regmap_read(map, reg + (i * map->reg_stride),
2167 &ival);
2168 if (ret != 0)
2169 return ret;
2170 memcpy(val + (i * val_bytes), &ival, val_bytes);
2171 }
2172 }
2173
2174 return 0;
2175}
2176EXPORT_SYMBOL_GPL(regmap_bulk_read);
2177
2178static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2179 unsigned int mask, unsigned int val,
2180 bool *change)
2181{
2182 int ret;
2183 unsigned int tmp, orig;
2184
2185 ret = _regmap_read(map, reg, &orig);
2186 if (ret != 0)
2187 return ret;
2188
2189 tmp = orig & ~mask;
2190 tmp |= val & mask;
2191
2192 if (tmp != orig) {
2193 ret = _regmap_write(map, reg, tmp);
2194 if (change)
2195 *change = true;
2196 } else {
2197 if (change)
2198 *change = false;
2199 }
2200
2201 return ret;
2202}
2203
2204/**
2205 * regmap_update_bits: Perform a read/modify/write cycle on the register map
2206 *
2207 * @map: Register map to update
2208 * @reg: Register to update
2209 * @mask: Bitmask to change
2210 * @val: New value for bitmask
2211 *
2212 * Returns zero for success, a negative number on error.
2213 */
2214int regmap_update_bits(struct regmap *map, unsigned int reg,
2215 unsigned int mask, unsigned int val)
2216{
2217 int ret;
2218
2219 map->lock(map->lock_arg);
2220 ret = _regmap_update_bits(map, reg, mask, val, NULL);
2221 map->unlock(map->lock_arg);
2222
2223 return ret;
2224}
2225EXPORT_SYMBOL_GPL(regmap_update_bits);
2226
2227/**
2228 * regmap_update_bits_async: Perform a read/modify/write cycle on the register
2229 * map asynchronously
2230 *
2231 * @map: Register map to update
2232 * @reg: Register to update
2233 * @mask: Bitmask to change
2234 * @val: New value for bitmask
2235 *
2236 * With most buses the read must be done synchronously so this is most
2237 * useful for devices with a cache which do not need to interact with
2238 * the hardware to determine the current register value.
2239 *
2240 * Returns zero for success, a negative number on error.
2241 */
2242int regmap_update_bits_async(struct regmap *map, unsigned int reg,
2243 unsigned int mask, unsigned int val)
2244{
2245 int ret;
2246
2247 map->lock(map->lock_arg);
2248
2249 map->async = true;
2250
2251 ret = _regmap_update_bits(map, reg, mask, val, NULL);
2252
2253 map->async = false;
2254
2255 map->unlock(map->lock_arg);
2256
2257 return ret;
2258}
2259EXPORT_SYMBOL_GPL(regmap_update_bits_async);
2260
2261/**
2262 * regmap_update_bits_check: Perform a read/modify/write cycle on the
2263 * register map and report if updated
2264 *
2265 * @map: Register map to update
2266 * @reg: Register to update
2267 * @mask: Bitmask to change
2268 * @val: New value for bitmask
2269 * @change: Boolean indicating if a write was done
2270 *
2271 * Returns zero for success, a negative number on error.
2272 */
2273int regmap_update_bits_check(struct regmap *map, unsigned int reg,
2274 unsigned int mask, unsigned int val,
2275 bool *change)
2276{
2277 int ret;
2278
2279 map->lock(map->lock_arg);
2280 ret = _regmap_update_bits(map, reg, mask, val, change);
2281 map->unlock(map->lock_arg);
2282 return ret;
2283}
2284EXPORT_SYMBOL_GPL(regmap_update_bits_check);
2285
2286/**
2287 * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
2288 * register map asynchronously and report if
2289 * updated
2290 *
2291 * @map: Register map to update
2292 * @reg: Register to update
2293 * @mask: Bitmask to change
2294 * @val: New value for bitmask
2295 * @change: Boolean indicating if a write was done
2296 *
2297 * With most buses the read must be done synchronously so this is most
2298 * useful for devices with a cache which do not need to interact with
2299 * the hardware to determine the current register value.
2300 *
2301 * Returns zero for success, a negative number on error.
2302 */
2303int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
2304 unsigned int mask, unsigned int val,
2305 bool *change)
2306{
2307 int ret;
2308
2309 map->lock(map->lock_arg);
2310
2311 map->async = true;
2312
2313 ret = _regmap_update_bits(map, reg, mask, val, change);
2314
2315 map->async = false;
2316
2317 map->unlock(map->lock_arg);
2318
2319 return ret;
2320}
2321EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);
2322
2323void regmap_async_complete_cb(struct regmap_async *async, int ret)
2324{
2325 struct regmap *map = async->map;
2326 bool wake;
2327
2328 trace_regmap_async_io_complete(map->dev);
2329
2330 spin_lock(&map->async_lock);
2331 list_move(&async->list, &map->async_free);
2332 wake = list_empty(&map->async_list);
2333
2334 if (ret != 0)
2335 map->async_ret = ret;
2336
2337 spin_unlock(&map->async_lock);
2338
2339 if (wake)
2340 wake_up(&map->async_waitq);
2341}
2342EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2343
2344static int regmap_async_is_done(struct regmap *map)
2345{
2346 unsigned long flags;
2347 int ret;
2348
2349 spin_lock_irqsave(&map->async_lock, flags);
2350 ret = list_empty(&map->async_list);
2351 spin_unlock_irqrestore(&map->async_lock, flags);
2352
2353 return ret;
2354}
2355
2356/**
2357 * regmap_async_complete: Ensure all asynchronous I/O has completed.
2358 *
2359 * @map: Map to operate on.
2360 *
2361 * Blocks until any pending asynchronous I/O has completed. Returns
2362 * an error code for any failed I/O operations.
2363 */
2364int regmap_async_complete(struct regmap *map)
2365{
2366 unsigned long flags;
2367 int ret;
2368
2369 /* Nothing to do with no async support */
2370 if (!map->bus || !map->bus->async_write)
2371 return 0;
2372
2373 trace_regmap_async_complete_start(map->dev);
2374
2375 wait_event(map->async_waitq, regmap_async_is_done(map));
2376
2377 spin_lock_irqsave(&map->async_lock, flags);
2378 ret = map->async_ret;
2379 map->async_ret = 0;
2380 spin_unlock_irqrestore(&map->async_lock, flags);
2381
2382 trace_regmap_async_complete_done(map->dev);
2383
2384 return ret;
2385}
2386EXPORT_SYMBOL_GPL(regmap_async_complete);
2387
2388/**
2389 * regmap_register_patch: Register and apply register updates to be applied
2390 * on device initialistion
2391 *
2392 * @map: Register map to apply updates to.
2393 * @regs: Values to update.
2394 * @num_regs: Number of entries in regs.
2395 *
2396 * Register a set of register updates to be applied to the device
2397 * whenever the device registers are synchronised with the cache and
2398 * apply them immediately. Typically this is used to apply
2399 * corrections to be applied to the device defaults on startup, such
2400 * as the updates some vendors provide to undocumented registers.
2401 *
2402 * The caller must ensure that this function cannot be called
2403 * concurrently with either itself or regcache_sync().
2404 */
2405int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
2406 int num_regs)
2407{
2408 struct reg_default *p;
2409 int ret;
2410 bool bypass;
2411
2412 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2413 num_regs))
2414 return 0;
2415
2416 p = krealloc(map->patch,
2417 sizeof(struct reg_default) * (map->patch_regs + num_regs),
2418 GFP_KERNEL);
2419 if (p) {
2420 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2421 map->patch = p;
2422 map->patch_regs += num_regs;
2423 } else {
2424 return -ENOMEM;
2425 }
2426
2427 map->lock(map->lock_arg);
2428
2429 bypass = map->cache_bypass;
2430
2431 map->cache_bypass = true;
2432 map->async = true;
2433
2434 ret = _regmap_multi_reg_write(map, regs, num_regs);
2435 if (ret != 0)
2436 goto out;
2437
2438out:
2439 map->async = false;
2440 map->cache_bypass = bypass;
2441
2442 map->unlock(map->lock_arg);
2443
2444 regmap_async_complete(map);
2445
2446 return ret;
2447}
2448EXPORT_SYMBOL_GPL(regmap_register_patch);
2449
2450/*
2451 * regmap_get_val_bytes(): Report the size of a register value
2452 *
2453 * Report the size of a register value, mainly intended to for use by
2454 * generic infrastructure built on top of regmap.
2455 */
2456int regmap_get_val_bytes(struct regmap *map)
2457{
2458 if (map->format.format_write)
2459 return -EINVAL;
2460
2461 return map->format.val_bytes;
2462}
2463EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2464
2465int regmap_parse_val(struct regmap *map, const void *buf,
2466 unsigned int *val)
2467{
2468 if (!map->format.parse_val)
2469 return -EINVAL;
2470
2471 *val = map->format.parse_val(buf);
2472
2473 return 0;
2474}
2475EXPORT_SYMBOL_GPL(regmap_parse_val);
2476
2477static int __init regmap_initcall(void)
2478{
2479 regmap_debugfs_initcall();
2480
2481 return 0;
2482}
2483postcore_initcall(regmap_initcall);
1// SPDX-License-Identifier: GPL-2.0
2//
3// Register map access API
4//
5// Copyright 2011 Wolfson Microelectronics plc
6//
7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9#include <linux/device.h>
10#include <linux/slab.h>
11#include <linux/export.h>
12#include <linux/mutex.h>
13#include <linux/err.h>
14#include <linux/property.h>
15#include <linux/rbtree.h>
16#include <linux/sched.h>
17#include <linux/delay.h>
18#include <linux/log2.h>
19#include <linux/hwspinlock.h>
20#include <linux/unaligned.h>
21
22#define CREATE_TRACE_POINTS
23#include "trace.h"
24
25#include "internal.h"
26
27/*
28 * Sometimes for failures during very early init the trace
29 * infrastructure isn't available early enough to be used. For this
30 * sort of problem defining LOG_DEVICE will add printks for basic
31 * register I/O on a specific device.
32 */
33#undef LOG_DEVICE
34
35#ifdef LOG_DEVICE
36static inline bool regmap_should_log(struct regmap *map)
37{
38 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39}
40#else
41static inline bool regmap_should_log(struct regmap *map) { return false; }
42#endif
43
44
45static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 unsigned int mask, unsigned int val,
47 bool *change, bool force_write);
48
49static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 unsigned int *val);
51static int _regmap_bus_read(void *context, unsigned int reg,
52 unsigned int *val);
53static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 unsigned int val);
55static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 unsigned int val);
57static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 unsigned int val);
59
60bool regmap_reg_in_ranges(unsigned int reg,
61 const struct regmap_range *ranges,
62 unsigned int nranges)
63{
64 const struct regmap_range *r;
65 int i;
66
67 for (i = 0, r = ranges; i < nranges; i++, r++)
68 if (regmap_reg_in_range(reg, r))
69 return true;
70 return false;
71}
72EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73
74bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 const struct regmap_access_table *table)
76{
77 /* Check "no ranges" first */
78 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 return false;
80
81 /* In case zero "yes ranges" are supplied, any reg is OK */
82 if (!table->n_yes_ranges)
83 return true;
84
85 return regmap_reg_in_ranges(reg, table->yes_ranges,
86 table->n_yes_ranges);
87}
88EXPORT_SYMBOL_GPL(regmap_check_range_table);
89
90bool regmap_writeable(struct regmap *map, unsigned int reg)
91{
92 if (map->max_register_is_set && reg > map->max_register)
93 return false;
94
95 if (map->writeable_reg)
96 return map->writeable_reg(map->dev, reg);
97
98 if (map->wr_table)
99 return regmap_check_range_table(map, reg, map->wr_table);
100
101 return true;
102}
103
104bool regmap_cached(struct regmap *map, unsigned int reg)
105{
106 int ret;
107 unsigned int val;
108
109 if (map->cache_type == REGCACHE_NONE)
110 return false;
111
112 if (!map->cache_ops)
113 return false;
114
115 if (map->max_register_is_set && reg > map->max_register)
116 return false;
117
118 map->lock(map->lock_arg);
119 ret = regcache_read(map, reg, &val);
120 map->unlock(map->lock_arg);
121 if (ret)
122 return false;
123
124 return true;
125}
126
127bool regmap_readable(struct regmap *map, unsigned int reg)
128{
129 if (!map->reg_read)
130 return false;
131
132 if (map->max_register_is_set && reg > map->max_register)
133 return false;
134
135 if (map->format.format_write)
136 return false;
137
138 if (map->readable_reg)
139 return map->readable_reg(map->dev, reg);
140
141 if (map->rd_table)
142 return regmap_check_range_table(map, reg, map->rd_table);
143
144 return true;
145}
146
147bool regmap_volatile(struct regmap *map, unsigned int reg)
148{
149 if (!map->format.format_write && !regmap_readable(map, reg))
150 return false;
151
152 if (map->volatile_reg)
153 return map->volatile_reg(map->dev, reg);
154
155 if (map->volatile_table)
156 return regmap_check_range_table(map, reg, map->volatile_table);
157
158 if (map->cache_ops)
159 return false;
160 else
161 return true;
162}
163
164bool regmap_precious(struct regmap *map, unsigned int reg)
165{
166 if (!regmap_readable(map, reg))
167 return false;
168
169 if (map->precious_reg)
170 return map->precious_reg(map->dev, reg);
171
172 if (map->precious_table)
173 return regmap_check_range_table(map, reg, map->precious_table);
174
175 return false;
176}
177
178bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179{
180 if (map->writeable_noinc_reg)
181 return map->writeable_noinc_reg(map->dev, reg);
182
183 if (map->wr_noinc_table)
184 return regmap_check_range_table(map, reg, map->wr_noinc_table);
185
186 return true;
187}
188
189bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190{
191 if (map->readable_noinc_reg)
192 return map->readable_noinc_reg(map->dev, reg);
193
194 if (map->rd_noinc_table)
195 return regmap_check_range_table(map, reg, map->rd_noinc_table);
196
197 return true;
198}
199
200static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201 size_t num)
202{
203 unsigned int i;
204
205 for (i = 0; i < num; i++)
206 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 return false;
208
209 return true;
210}
211
212static void regmap_format_12_20_write(struct regmap *map,
213 unsigned int reg, unsigned int val)
214{
215 u8 *out = map->work_buf;
216
217 out[0] = reg >> 4;
218 out[1] = (reg << 4) | (val >> 16);
219 out[2] = val >> 8;
220 out[3] = val;
221}
222
223
224static void regmap_format_2_6_write(struct regmap *map,
225 unsigned int reg, unsigned int val)
226{
227 u8 *out = map->work_buf;
228
229 *out = (reg << 6) | val;
230}
231
232static void regmap_format_4_12_write(struct regmap *map,
233 unsigned int reg, unsigned int val)
234{
235 __be16 *out = map->work_buf;
236 *out = cpu_to_be16((reg << 12) | val);
237}
238
239static void regmap_format_7_9_write(struct regmap *map,
240 unsigned int reg, unsigned int val)
241{
242 __be16 *out = map->work_buf;
243 *out = cpu_to_be16((reg << 9) | val);
244}
245
246static void regmap_format_7_17_write(struct regmap *map,
247 unsigned int reg, unsigned int val)
248{
249 u8 *out = map->work_buf;
250
251 out[2] = val;
252 out[1] = val >> 8;
253 out[0] = (val >> 16) | (reg << 1);
254}
255
256static void regmap_format_10_14_write(struct regmap *map,
257 unsigned int reg, unsigned int val)
258{
259 u8 *out = map->work_buf;
260
261 out[2] = val;
262 out[1] = (val >> 8) | (reg << 6);
263 out[0] = reg >> 2;
264}
265
266static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
267{
268 u8 *b = buf;
269
270 b[0] = val << shift;
271}
272
273static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
274{
275 put_unaligned_be16(val << shift, buf);
276}
277
278static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
279{
280 put_unaligned_le16(val << shift, buf);
281}
282
283static void regmap_format_16_native(void *buf, unsigned int val,
284 unsigned int shift)
285{
286 u16 v = val << shift;
287
288 memcpy(buf, &v, sizeof(v));
289}
290
291static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift)
292{
293 put_unaligned_be24(val << shift, buf);
294}
295
296static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
297{
298 put_unaligned_be32(val << shift, buf);
299}
300
301static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
302{
303 put_unaligned_le32(val << shift, buf);
304}
305
306static void regmap_format_32_native(void *buf, unsigned int val,
307 unsigned int shift)
308{
309 u32 v = val << shift;
310
311 memcpy(buf, &v, sizeof(v));
312}
313
314static void regmap_parse_inplace_noop(void *buf)
315{
316}
317
318static unsigned int regmap_parse_8(const void *buf)
319{
320 const u8 *b = buf;
321
322 return b[0];
323}
324
325static unsigned int regmap_parse_16_be(const void *buf)
326{
327 return get_unaligned_be16(buf);
328}
329
330static unsigned int regmap_parse_16_le(const void *buf)
331{
332 return get_unaligned_le16(buf);
333}
334
335static void regmap_parse_16_be_inplace(void *buf)
336{
337 u16 v = get_unaligned_be16(buf);
338
339 memcpy(buf, &v, sizeof(v));
340}
341
342static void regmap_parse_16_le_inplace(void *buf)
343{
344 u16 v = get_unaligned_le16(buf);
345
346 memcpy(buf, &v, sizeof(v));
347}
348
349static unsigned int regmap_parse_16_native(const void *buf)
350{
351 u16 v;
352
353 memcpy(&v, buf, sizeof(v));
354 return v;
355}
356
357static unsigned int regmap_parse_24_be(const void *buf)
358{
359 return get_unaligned_be24(buf);
360}
361
362static unsigned int regmap_parse_32_be(const void *buf)
363{
364 return get_unaligned_be32(buf);
365}
366
367static unsigned int regmap_parse_32_le(const void *buf)
368{
369 return get_unaligned_le32(buf);
370}
371
372static void regmap_parse_32_be_inplace(void *buf)
373{
374 u32 v = get_unaligned_be32(buf);
375
376 memcpy(buf, &v, sizeof(v));
377}
378
379static void regmap_parse_32_le_inplace(void *buf)
380{
381 u32 v = get_unaligned_le32(buf);
382
383 memcpy(buf, &v, sizeof(v));
384}
385
386static unsigned int regmap_parse_32_native(const void *buf)
387{
388 u32 v;
389
390 memcpy(&v, buf, sizeof(v));
391 return v;
392}
393
394static void regmap_lock_hwlock(void *__map)
395{
396 struct regmap *map = __map;
397
398 hwspin_lock_timeout(map->hwlock, UINT_MAX);
399}
400
401static void regmap_lock_hwlock_irq(void *__map)
402{
403 struct regmap *map = __map;
404
405 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
406}
407
408static void regmap_lock_hwlock_irqsave(void *__map)
409{
410 struct regmap *map = __map;
411
412 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
413 &map->spinlock_flags);
414}
415
416static void regmap_unlock_hwlock(void *__map)
417{
418 struct regmap *map = __map;
419
420 hwspin_unlock(map->hwlock);
421}
422
423static void regmap_unlock_hwlock_irq(void *__map)
424{
425 struct regmap *map = __map;
426
427 hwspin_unlock_irq(map->hwlock);
428}
429
430static void regmap_unlock_hwlock_irqrestore(void *__map)
431{
432 struct regmap *map = __map;
433
434 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
435}
436
437static void regmap_lock_unlock_none(void *__map)
438{
439
440}
441
442static void regmap_lock_mutex(void *__map)
443{
444 struct regmap *map = __map;
445 mutex_lock(&map->mutex);
446}
447
448static void regmap_unlock_mutex(void *__map)
449{
450 struct regmap *map = __map;
451 mutex_unlock(&map->mutex);
452}
453
454static void regmap_lock_spinlock(void *__map)
455__acquires(&map->spinlock)
456{
457 struct regmap *map = __map;
458 unsigned long flags;
459
460 spin_lock_irqsave(&map->spinlock, flags);
461 map->spinlock_flags = flags;
462}
463
464static void regmap_unlock_spinlock(void *__map)
465__releases(&map->spinlock)
466{
467 struct regmap *map = __map;
468 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
469}
470
471static void regmap_lock_raw_spinlock(void *__map)
472__acquires(&map->raw_spinlock)
473{
474 struct regmap *map = __map;
475 unsigned long flags;
476
477 raw_spin_lock_irqsave(&map->raw_spinlock, flags);
478 map->raw_spinlock_flags = flags;
479}
480
481static void regmap_unlock_raw_spinlock(void *__map)
482__releases(&map->raw_spinlock)
483{
484 struct regmap *map = __map;
485 raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
486}
487
488static void dev_get_regmap_release(struct device *dev, void *res)
489{
490 /*
491 * We don't actually have anything to do here; the goal here
492 * is not to manage the regmap but to provide a simple way to
493 * get the regmap back given a struct device.
494 */
495}
496
497static bool _regmap_range_add(struct regmap *map,
498 struct regmap_range_node *data)
499{
500 struct rb_root *root = &map->range_tree;
501 struct rb_node **new = &(root->rb_node), *parent = NULL;
502
503 while (*new) {
504 struct regmap_range_node *this =
505 rb_entry(*new, struct regmap_range_node, node);
506
507 parent = *new;
508 if (data->range_max < this->range_min)
509 new = &((*new)->rb_left);
510 else if (data->range_min > this->range_max)
511 new = &((*new)->rb_right);
512 else
513 return false;
514 }
515
516 rb_link_node(&data->node, parent, new);
517 rb_insert_color(&data->node, root);
518
519 return true;
520}
521
522static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
523 unsigned int reg)
524{
525 struct rb_node *node = map->range_tree.rb_node;
526
527 while (node) {
528 struct regmap_range_node *this =
529 rb_entry(node, struct regmap_range_node, node);
530
531 if (reg < this->range_min)
532 node = node->rb_left;
533 else if (reg > this->range_max)
534 node = node->rb_right;
535 else
536 return this;
537 }
538
539 return NULL;
540}
541
542static void regmap_range_exit(struct regmap *map)
543{
544 struct rb_node *next;
545 struct regmap_range_node *range_node;
546
547 next = rb_first(&map->range_tree);
548 while (next) {
549 range_node = rb_entry(next, struct regmap_range_node, node);
550 next = rb_next(&range_node->node);
551 rb_erase(&range_node->node, &map->range_tree);
552 kfree(range_node);
553 }
554
555 kfree(map->selector_work_buf);
556}
557
558static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
559{
560 if (config->name) {
561 const char *name = kstrdup_const(config->name, GFP_KERNEL);
562
563 if (!name)
564 return -ENOMEM;
565
566 kfree_const(map->name);
567 map->name = name;
568 }
569
570 return 0;
571}
572
573int regmap_attach_dev(struct device *dev, struct regmap *map,
574 const struct regmap_config *config)
575{
576 struct regmap **m;
577 int ret;
578
579 map->dev = dev;
580
581 ret = regmap_set_name(map, config);
582 if (ret)
583 return ret;
584
585 regmap_debugfs_exit(map);
586 regmap_debugfs_init(map);
587
588 /* Add a devres resource for dev_get_regmap() */
589 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
590 if (!m) {
591 regmap_debugfs_exit(map);
592 return -ENOMEM;
593 }
594 *m = map;
595 devres_add(dev, m);
596
597 return 0;
598}
599EXPORT_SYMBOL_GPL(regmap_attach_dev);
600
601static int dev_get_regmap_match(struct device *dev, void *res, void *data);
602
603static int regmap_detach_dev(struct device *dev, struct regmap *map)
604{
605 if (!dev)
606 return 0;
607
608 return devres_release(dev, dev_get_regmap_release,
609 dev_get_regmap_match, (void *)map->name);
610}
611
612static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
613 const struct regmap_config *config)
614{
615 enum regmap_endian endian;
616
617 /* Retrieve the endianness specification from the regmap config */
618 endian = config->reg_format_endian;
619
620 /* If the regmap config specified a non-default value, use that */
621 if (endian != REGMAP_ENDIAN_DEFAULT)
622 return endian;
623
624 /* Retrieve the endianness specification from the bus config */
625 if (bus && bus->reg_format_endian_default)
626 endian = bus->reg_format_endian_default;
627
628 /* If the bus specified a non-default value, use that */
629 if (endian != REGMAP_ENDIAN_DEFAULT)
630 return endian;
631
632 /* Use this if no other value was found */
633 return REGMAP_ENDIAN_BIG;
634}
635
636enum regmap_endian regmap_get_val_endian(struct device *dev,
637 const struct regmap_bus *bus,
638 const struct regmap_config *config)
639{
640 struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
641 enum regmap_endian endian;
642
643 /* Retrieve the endianness specification from the regmap config */
644 endian = config->val_format_endian;
645
646 /* If the regmap config specified a non-default value, use that */
647 if (endian != REGMAP_ENDIAN_DEFAULT)
648 return endian;
649
650 /* If the firmware node exist try to get endianness from it */
651 if (fwnode_property_read_bool(fwnode, "big-endian"))
652 endian = REGMAP_ENDIAN_BIG;
653 else if (fwnode_property_read_bool(fwnode, "little-endian"))
654 endian = REGMAP_ENDIAN_LITTLE;
655 else if (fwnode_property_read_bool(fwnode, "native-endian"))
656 endian = REGMAP_ENDIAN_NATIVE;
657
658 /* If the endianness was specified in fwnode, use that */
659 if (endian != REGMAP_ENDIAN_DEFAULT)
660 return endian;
661
662 /* Retrieve the endianness specification from the bus config */
663 if (bus && bus->val_format_endian_default)
664 endian = bus->val_format_endian_default;
665
666 /* If the bus specified a non-default value, use that */
667 if (endian != REGMAP_ENDIAN_DEFAULT)
668 return endian;
669
670 /* Use this if no other value was found */
671 return REGMAP_ENDIAN_BIG;
672}
673EXPORT_SYMBOL_GPL(regmap_get_val_endian);
674
675struct regmap *__regmap_init(struct device *dev,
676 const struct regmap_bus *bus,
677 void *bus_context,
678 const struct regmap_config *config,
679 struct lock_class_key *lock_key,
680 const char *lock_name)
681{
682 struct regmap *map;
683 int ret = -EINVAL;
684 enum regmap_endian reg_endian, val_endian;
685 int i, j;
686
687 if (!config)
688 goto err;
689
690 map = kzalloc(sizeof(*map), GFP_KERNEL);
691 if (map == NULL) {
692 ret = -ENOMEM;
693 goto err;
694 }
695
696 ret = regmap_set_name(map, config);
697 if (ret)
698 goto err_map;
699
700 ret = -EINVAL; /* Later error paths rely on this */
701
702 if (config->disable_locking) {
703 map->lock = map->unlock = regmap_lock_unlock_none;
704 map->can_sleep = config->can_sleep;
705 regmap_debugfs_disable(map);
706 } else if (config->lock && config->unlock) {
707 map->lock = config->lock;
708 map->unlock = config->unlock;
709 map->lock_arg = config->lock_arg;
710 map->can_sleep = config->can_sleep;
711 } else if (config->use_hwlock) {
712 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
713 if (!map->hwlock) {
714 ret = -ENXIO;
715 goto err_name;
716 }
717
718 switch (config->hwlock_mode) {
719 case HWLOCK_IRQSTATE:
720 map->lock = regmap_lock_hwlock_irqsave;
721 map->unlock = regmap_unlock_hwlock_irqrestore;
722 break;
723 case HWLOCK_IRQ:
724 map->lock = regmap_lock_hwlock_irq;
725 map->unlock = regmap_unlock_hwlock_irq;
726 break;
727 default:
728 map->lock = regmap_lock_hwlock;
729 map->unlock = regmap_unlock_hwlock;
730 break;
731 }
732
733 map->lock_arg = map;
734 } else {
735 if ((bus && bus->fast_io) ||
736 config->fast_io) {
737 if (config->use_raw_spinlock) {
738 raw_spin_lock_init(&map->raw_spinlock);
739 map->lock = regmap_lock_raw_spinlock;
740 map->unlock = regmap_unlock_raw_spinlock;
741 lockdep_set_class_and_name(&map->raw_spinlock,
742 lock_key, lock_name);
743 } else {
744 spin_lock_init(&map->spinlock);
745 map->lock = regmap_lock_spinlock;
746 map->unlock = regmap_unlock_spinlock;
747 lockdep_set_class_and_name(&map->spinlock,
748 lock_key, lock_name);
749 }
750 } else {
751 mutex_init(&map->mutex);
752 map->lock = regmap_lock_mutex;
753 map->unlock = regmap_unlock_mutex;
754 map->can_sleep = true;
755 lockdep_set_class_and_name(&map->mutex,
756 lock_key, lock_name);
757 }
758 map->lock_arg = map;
759 map->lock_key = lock_key;
760 }
761
762 /*
763 * When we write in fast-paths with regmap_bulk_write() don't allocate
764 * scratch buffers with sleeping allocations.
765 */
766 if ((bus && bus->fast_io) || config->fast_io)
767 map->alloc_flags = GFP_ATOMIC;
768 else
769 map->alloc_flags = GFP_KERNEL;
770
771 map->reg_base = config->reg_base;
772
773 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
774 map->format.pad_bytes = config->pad_bits / 8;
775 map->format.reg_shift = config->reg_shift;
776 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
777 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
778 config->val_bits + config->pad_bits, 8);
779 map->reg_shift = config->pad_bits % 8;
780 if (config->reg_stride)
781 map->reg_stride = config->reg_stride;
782 else
783 map->reg_stride = 1;
784 if (is_power_of_2(map->reg_stride))
785 map->reg_stride_order = ilog2(map->reg_stride);
786 else
787 map->reg_stride_order = -1;
788 map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read));
789 map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write));
790 map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write));
791 if (bus) {
792 map->max_raw_read = bus->max_raw_read;
793 map->max_raw_write = bus->max_raw_write;
794 } else if (config->max_raw_read && config->max_raw_write) {
795 map->max_raw_read = config->max_raw_read;
796 map->max_raw_write = config->max_raw_write;
797 }
798 map->dev = dev;
799 map->bus = bus;
800 map->bus_context = bus_context;
801 map->max_register = config->max_register;
802 map->max_register_is_set = map->max_register ?: config->max_register_is_0;
803 map->wr_table = config->wr_table;
804 map->rd_table = config->rd_table;
805 map->volatile_table = config->volatile_table;
806 map->precious_table = config->precious_table;
807 map->wr_noinc_table = config->wr_noinc_table;
808 map->rd_noinc_table = config->rd_noinc_table;
809 map->writeable_reg = config->writeable_reg;
810 map->readable_reg = config->readable_reg;
811 map->volatile_reg = config->volatile_reg;
812 map->precious_reg = config->precious_reg;
813 map->writeable_noinc_reg = config->writeable_noinc_reg;
814 map->readable_noinc_reg = config->readable_noinc_reg;
815 map->cache_type = config->cache_type;
816
817 spin_lock_init(&map->async_lock);
818 INIT_LIST_HEAD(&map->async_list);
819 INIT_LIST_HEAD(&map->async_free);
820 init_waitqueue_head(&map->async_waitq);
821
822 if (config->read_flag_mask ||
823 config->write_flag_mask ||
824 config->zero_flag_mask) {
825 map->read_flag_mask = config->read_flag_mask;
826 map->write_flag_mask = config->write_flag_mask;
827 } else if (bus) {
828 map->read_flag_mask = bus->read_flag_mask;
829 }
830
831 if (config && config->read && config->write) {
832 map->reg_read = _regmap_bus_read;
833 if (config->reg_update_bits)
834 map->reg_update_bits = config->reg_update_bits;
835
836 /* Bulk read/write */
837 map->read = config->read;
838 map->write = config->write;
839
840 reg_endian = REGMAP_ENDIAN_NATIVE;
841 val_endian = REGMAP_ENDIAN_NATIVE;
842 } else if (!bus) {
843 map->reg_read = config->reg_read;
844 map->reg_write = config->reg_write;
845 map->reg_update_bits = config->reg_update_bits;
846
847 map->defer_caching = false;
848 goto skip_format_initialization;
849 } else if (!bus->read || !bus->write) {
850 map->reg_read = _regmap_bus_reg_read;
851 map->reg_write = _regmap_bus_reg_write;
852 map->reg_update_bits = bus->reg_update_bits;
853
854 map->defer_caching = false;
855 goto skip_format_initialization;
856 } else {
857 map->reg_read = _regmap_bus_read;
858 map->reg_update_bits = bus->reg_update_bits;
859 /* Bulk read/write */
860 map->read = bus->read;
861 map->write = bus->write;
862
863 reg_endian = regmap_get_reg_endian(bus, config);
864 val_endian = regmap_get_val_endian(dev, bus, config);
865 }
866
867 switch (config->reg_bits + map->reg_shift) {
868 case 2:
869 switch (config->val_bits) {
870 case 6:
871 map->format.format_write = regmap_format_2_6_write;
872 break;
873 default:
874 goto err_hwlock;
875 }
876 break;
877
878 case 4:
879 switch (config->val_bits) {
880 case 12:
881 map->format.format_write = regmap_format_4_12_write;
882 break;
883 default:
884 goto err_hwlock;
885 }
886 break;
887
888 case 7:
889 switch (config->val_bits) {
890 case 9:
891 map->format.format_write = regmap_format_7_9_write;
892 break;
893 case 17:
894 map->format.format_write = regmap_format_7_17_write;
895 break;
896 default:
897 goto err_hwlock;
898 }
899 break;
900
901 case 10:
902 switch (config->val_bits) {
903 case 14:
904 map->format.format_write = regmap_format_10_14_write;
905 break;
906 default:
907 goto err_hwlock;
908 }
909 break;
910
911 case 12:
912 switch (config->val_bits) {
913 case 20:
914 map->format.format_write = regmap_format_12_20_write;
915 break;
916 default:
917 goto err_hwlock;
918 }
919 break;
920
921 case 8:
922 map->format.format_reg = regmap_format_8;
923 break;
924
925 case 16:
926 switch (reg_endian) {
927 case REGMAP_ENDIAN_BIG:
928 map->format.format_reg = regmap_format_16_be;
929 break;
930 case REGMAP_ENDIAN_LITTLE:
931 map->format.format_reg = regmap_format_16_le;
932 break;
933 case REGMAP_ENDIAN_NATIVE:
934 map->format.format_reg = regmap_format_16_native;
935 break;
936 default:
937 goto err_hwlock;
938 }
939 break;
940
941 case 24:
942 switch (reg_endian) {
943 case REGMAP_ENDIAN_BIG:
944 map->format.format_reg = regmap_format_24_be;
945 break;
946 default:
947 goto err_hwlock;
948 }
949 break;
950
951 case 32:
952 switch (reg_endian) {
953 case REGMAP_ENDIAN_BIG:
954 map->format.format_reg = regmap_format_32_be;
955 break;
956 case REGMAP_ENDIAN_LITTLE:
957 map->format.format_reg = regmap_format_32_le;
958 break;
959 case REGMAP_ENDIAN_NATIVE:
960 map->format.format_reg = regmap_format_32_native;
961 break;
962 default:
963 goto err_hwlock;
964 }
965 break;
966
967 default:
968 goto err_hwlock;
969 }
970
971 if (val_endian == REGMAP_ENDIAN_NATIVE)
972 map->format.parse_inplace = regmap_parse_inplace_noop;
973
974 switch (config->val_bits) {
975 case 8:
976 map->format.format_val = regmap_format_8;
977 map->format.parse_val = regmap_parse_8;
978 map->format.parse_inplace = regmap_parse_inplace_noop;
979 break;
980 case 16:
981 switch (val_endian) {
982 case REGMAP_ENDIAN_BIG:
983 map->format.format_val = regmap_format_16_be;
984 map->format.parse_val = regmap_parse_16_be;
985 map->format.parse_inplace = regmap_parse_16_be_inplace;
986 break;
987 case REGMAP_ENDIAN_LITTLE:
988 map->format.format_val = regmap_format_16_le;
989 map->format.parse_val = regmap_parse_16_le;
990 map->format.parse_inplace = regmap_parse_16_le_inplace;
991 break;
992 case REGMAP_ENDIAN_NATIVE:
993 map->format.format_val = regmap_format_16_native;
994 map->format.parse_val = regmap_parse_16_native;
995 break;
996 default:
997 goto err_hwlock;
998 }
999 break;
1000 case 24:
1001 switch (val_endian) {
1002 case REGMAP_ENDIAN_BIG:
1003 map->format.format_val = regmap_format_24_be;
1004 map->format.parse_val = regmap_parse_24_be;
1005 break;
1006 default:
1007 goto err_hwlock;
1008 }
1009 break;
1010 case 32:
1011 switch (val_endian) {
1012 case REGMAP_ENDIAN_BIG:
1013 map->format.format_val = regmap_format_32_be;
1014 map->format.parse_val = regmap_parse_32_be;
1015 map->format.parse_inplace = regmap_parse_32_be_inplace;
1016 break;
1017 case REGMAP_ENDIAN_LITTLE:
1018 map->format.format_val = regmap_format_32_le;
1019 map->format.parse_val = regmap_parse_32_le;
1020 map->format.parse_inplace = regmap_parse_32_le_inplace;
1021 break;
1022 case REGMAP_ENDIAN_NATIVE:
1023 map->format.format_val = regmap_format_32_native;
1024 map->format.parse_val = regmap_parse_32_native;
1025 break;
1026 default:
1027 goto err_hwlock;
1028 }
1029 break;
1030 }
1031
1032 if (map->format.format_write) {
1033 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1034 (val_endian != REGMAP_ENDIAN_BIG))
1035 goto err_hwlock;
1036 map->use_single_write = true;
1037 }
1038
1039 if (!map->format.format_write &&
1040 !(map->format.format_reg && map->format.format_val))
1041 goto err_hwlock;
1042
1043 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1044 if (map->work_buf == NULL) {
1045 ret = -ENOMEM;
1046 goto err_hwlock;
1047 }
1048
1049 if (map->format.format_write) {
1050 map->defer_caching = false;
1051 map->reg_write = _regmap_bus_formatted_write;
1052 } else if (map->format.format_val) {
1053 map->defer_caching = true;
1054 map->reg_write = _regmap_bus_raw_write;
1055 }
1056
1057skip_format_initialization:
1058
1059 map->range_tree = RB_ROOT;
1060 for (i = 0; i < config->num_ranges; i++) {
1061 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1062 struct regmap_range_node *new;
1063
1064 /* Sanity check */
1065 if (range_cfg->range_max < range_cfg->range_min) {
1066 dev_err(map->dev, "Invalid range %d: %u < %u\n", i,
1067 range_cfg->range_max, range_cfg->range_min);
1068 goto err_range;
1069 }
1070
1071 if (range_cfg->range_max > map->max_register) {
1072 dev_err(map->dev, "Invalid range %d: %u > %u\n", i,
1073 range_cfg->range_max, map->max_register);
1074 goto err_range;
1075 }
1076
1077 if (range_cfg->selector_reg > map->max_register) {
1078 dev_err(map->dev,
1079 "Invalid range %d: selector out of map\n", i);
1080 goto err_range;
1081 }
1082
1083 if (range_cfg->window_len == 0) {
1084 dev_err(map->dev, "Invalid range %d: window_len 0\n",
1085 i);
1086 goto err_range;
1087 }
1088
1089 /* Make sure, that this register range has no selector
1090 or data window within its boundary */
1091 for (j = 0; j < config->num_ranges; j++) {
1092 unsigned int sel_reg = config->ranges[j].selector_reg;
1093 unsigned int win_min = config->ranges[j].window_start;
1094 unsigned int win_max = win_min +
1095 config->ranges[j].window_len - 1;
1096
1097 /* Allow data window inside its own virtual range */
1098 if (j == i)
1099 continue;
1100
1101 if (range_cfg->range_min <= sel_reg &&
1102 sel_reg <= range_cfg->range_max) {
1103 dev_err(map->dev,
1104 "Range %d: selector for %d in window\n",
1105 i, j);
1106 goto err_range;
1107 }
1108
1109 if (!(win_max < range_cfg->range_min ||
1110 win_min > range_cfg->range_max)) {
1111 dev_err(map->dev,
1112 "Range %d: window for %d in window\n",
1113 i, j);
1114 goto err_range;
1115 }
1116 }
1117
1118 new = kzalloc(sizeof(*new), GFP_KERNEL);
1119 if (new == NULL) {
1120 ret = -ENOMEM;
1121 goto err_range;
1122 }
1123
1124 new->map = map;
1125 new->name = range_cfg->name;
1126 new->range_min = range_cfg->range_min;
1127 new->range_max = range_cfg->range_max;
1128 new->selector_reg = range_cfg->selector_reg;
1129 new->selector_mask = range_cfg->selector_mask;
1130 new->selector_shift = range_cfg->selector_shift;
1131 new->window_start = range_cfg->window_start;
1132 new->window_len = range_cfg->window_len;
1133
1134 if (!_regmap_range_add(map, new)) {
1135 dev_err(map->dev, "Failed to add range %d\n", i);
1136 kfree(new);
1137 goto err_range;
1138 }
1139
1140 if (map->selector_work_buf == NULL) {
1141 map->selector_work_buf =
1142 kzalloc(map->format.buf_size, GFP_KERNEL);
1143 if (map->selector_work_buf == NULL) {
1144 ret = -ENOMEM;
1145 goto err_range;
1146 }
1147 }
1148 }
1149
1150 ret = regcache_init(map, config);
1151 if (ret != 0)
1152 goto err_range;
1153
1154 if (dev) {
1155 ret = regmap_attach_dev(dev, map, config);
1156 if (ret != 0)
1157 goto err_regcache;
1158 } else {
1159 regmap_debugfs_init(map);
1160 }
1161
1162 return map;
1163
1164err_regcache:
1165 regcache_exit(map);
1166err_range:
1167 regmap_range_exit(map);
1168 kfree(map->work_buf);
1169err_hwlock:
1170 if (map->hwlock)
1171 hwspin_lock_free(map->hwlock);
1172err_name:
1173 kfree_const(map->name);
1174err_map:
1175 kfree(map);
1176err:
1177 return ERR_PTR(ret);
1178}
1179EXPORT_SYMBOL_GPL(__regmap_init);
1180
1181static void devm_regmap_release(struct device *dev, void *res)
1182{
1183 regmap_exit(*(struct regmap **)res);
1184}
1185
1186struct regmap *__devm_regmap_init(struct device *dev,
1187 const struct regmap_bus *bus,
1188 void *bus_context,
1189 const struct regmap_config *config,
1190 struct lock_class_key *lock_key,
1191 const char *lock_name)
1192{
1193 struct regmap **ptr, *regmap;
1194
1195 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1196 if (!ptr)
1197 return ERR_PTR(-ENOMEM);
1198
1199 regmap = __regmap_init(dev, bus, bus_context, config,
1200 lock_key, lock_name);
1201 if (!IS_ERR(regmap)) {
1202 *ptr = regmap;
1203 devres_add(dev, ptr);
1204 } else {
1205 devres_free(ptr);
1206 }
1207
1208 return regmap;
1209}
1210EXPORT_SYMBOL_GPL(__devm_regmap_init);
1211
1212static void regmap_field_init(struct regmap_field *rm_field,
1213 struct regmap *regmap, struct reg_field reg_field)
1214{
1215 rm_field->regmap = regmap;
1216 rm_field->reg = reg_field.reg;
1217 rm_field->shift = reg_field.lsb;
1218 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1219
1220 WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n");
1221
1222 rm_field->id_size = reg_field.id_size;
1223 rm_field->id_offset = reg_field.id_offset;
1224}
1225
1226/**
1227 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1228 *
1229 * @dev: Device that will be interacted with
1230 * @regmap: regmap bank in which this register field is located.
1231 * @reg_field: Register field with in the bank.
1232 *
1233 * The return value will be an ERR_PTR() on error or a valid pointer
1234 * to a struct regmap_field. The regmap_field will be automatically freed
1235 * by the device management code.
1236 */
1237struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1238 struct regmap *regmap, struct reg_field reg_field)
1239{
1240 struct regmap_field *rm_field = devm_kzalloc(dev,
1241 sizeof(*rm_field), GFP_KERNEL);
1242 if (!rm_field)
1243 return ERR_PTR(-ENOMEM);
1244
1245 regmap_field_init(rm_field, regmap, reg_field);
1246
1247 return rm_field;
1248
1249}
1250EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1251
1252
1253/**
1254 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1255 *
1256 * @regmap: regmap bank in which this register field is located.
1257 * @rm_field: regmap register fields within the bank.
1258 * @reg_field: Register fields within the bank.
1259 * @num_fields: Number of register fields.
1260 *
1261 * The return value will be an -ENOMEM on error or zero for success.
1262 * Newly allocated regmap_fields should be freed by calling
1263 * regmap_field_bulk_free()
1264 */
1265int regmap_field_bulk_alloc(struct regmap *regmap,
1266 struct regmap_field **rm_field,
1267 const struct reg_field *reg_field,
1268 int num_fields)
1269{
1270 struct regmap_field *rf;
1271 int i;
1272
1273 rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1274 if (!rf)
1275 return -ENOMEM;
1276
1277 for (i = 0; i < num_fields; i++) {
1278 regmap_field_init(&rf[i], regmap, reg_field[i]);
1279 rm_field[i] = &rf[i];
1280 }
1281
1282 return 0;
1283}
1284EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1285
1286/**
1287 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1288 * fields.
1289 *
1290 * @dev: Device that will be interacted with
1291 * @regmap: regmap bank in which this register field is located.
1292 * @rm_field: regmap register fields within the bank.
1293 * @reg_field: Register fields within the bank.
1294 * @num_fields: Number of register fields.
1295 *
1296 * The return value will be an -ENOMEM on error or zero for success.
1297 * Newly allocated regmap_fields will be automatically freed by the
1298 * device management code.
1299 */
1300int devm_regmap_field_bulk_alloc(struct device *dev,
1301 struct regmap *regmap,
1302 struct regmap_field **rm_field,
1303 const struct reg_field *reg_field,
1304 int num_fields)
1305{
1306 struct regmap_field *rf;
1307 int i;
1308
1309 rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1310 if (!rf)
1311 return -ENOMEM;
1312
1313 for (i = 0; i < num_fields; i++) {
1314 regmap_field_init(&rf[i], regmap, reg_field[i]);
1315 rm_field[i] = &rf[i];
1316 }
1317
1318 return 0;
1319}
1320EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1321
1322/**
1323 * regmap_field_bulk_free() - Free register field allocated using
1324 * regmap_field_bulk_alloc.
1325 *
1326 * @field: regmap fields which should be freed.
1327 */
1328void regmap_field_bulk_free(struct regmap_field *field)
1329{
1330 kfree(field);
1331}
1332EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1333
1334/**
1335 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1336 * devm_regmap_field_bulk_alloc.
1337 *
1338 * @dev: Device that will be interacted with
1339 * @field: regmap field which should be freed.
1340 *
1341 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1342 * drivers need not call this function, as the memory allocated via devm
1343 * will be freed as per device-driver life-cycle.
1344 */
1345void devm_regmap_field_bulk_free(struct device *dev,
1346 struct regmap_field *field)
1347{
1348 devm_kfree(dev, field);
1349}
1350EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1351
1352/**
1353 * devm_regmap_field_free() - Free a register field allocated using
1354 * devm_regmap_field_alloc.
1355 *
1356 * @dev: Device that will be interacted with
1357 * @field: regmap field which should be freed.
1358 *
1359 * Free register field allocated using devm_regmap_field_alloc(). Usually
1360 * drivers need not call this function, as the memory allocated via devm
1361 * will be freed as per device-driver life-cyle.
1362 */
1363void devm_regmap_field_free(struct device *dev,
1364 struct regmap_field *field)
1365{
1366 devm_kfree(dev, field);
1367}
1368EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1369
1370/**
1371 * regmap_field_alloc() - Allocate and initialise a register field.
1372 *
1373 * @regmap: regmap bank in which this register field is located.
1374 * @reg_field: Register field with in the bank.
1375 *
1376 * The return value will be an ERR_PTR() on error or a valid pointer
1377 * to a struct regmap_field. The regmap_field should be freed by the
1378 * user once its finished working with it using regmap_field_free().
1379 */
1380struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1381 struct reg_field reg_field)
1382{
1383 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1384
1385 if (!rm_field)
1386 return ERR_PTR(-ENOMEM);
1387
1388 regmap_field_init(rm_field, regmap, reg_field);
1389
1390 return rm_field;
1391}
1392EXPORT_SYMBOL_GPL(regmap_field_alloc);
1393
1394/**
1395 * regmap_field_free() - Free register field allocated using
1396 * regmap_field_alloc.
1397 *
1398 * @field: regmap field which should be freed.
1399 */
1400void regmap_field_free(struct regmap_field *field)
1401{
1402 kfree(field);
1403}
1404EXPORT_SYMBOL_GPL(regmap_field_free);
1405
1406/**
1407 * regmap_reinit_cache() - Reinitialise the current register cache
1408 *
1409 * @map: Register map to operate on.
1410 * @config: New configuration. Only the cache data will be used.
1411 *
1412 * Discard any existing register cache for the map and initialize a
1413 * new cache. This can be used to restore the cache to defaults or to
1414 * update the cache configuration to reflect runtime discovery of the
1415 * hardware.
1416 *
1417 * No explicit locking is done here, the user needs to ensure that
1418 * this function will not race with other calls to regmap.
1419 */
1420int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1421{
1422 int ret;
1423
1424 regcache_exit(map);
1425 regmap_debugfs_exit(map);
1426
1427 map->max_register = config->max_register;
1428 map->max_register_is_set = map->max_register ?: config->max_register_is_0;
1429 map->writeable_reg = config->writeable_reg;
1430 map->readable_reg = config->readable_reg;
1431 map->volatile_reg = config->volatile_reg;
1432 map->precious_reg = config->precious_reg;
1433 map->writeable_noinc_reg = config->writeable_noinc_reg;
1434 map->readable_noinc_reg = config->readable_noinc_reg;
1435 map->cache_type = config->cache_type;
1436
1437 ret = regmap_set_name(map, config);
1438 if (ret)
1439 return ret;
1440
1441 regmap_debugfs_init(map);
1442
1443 map->cache_bypass = false;
1444 map->cache_only = false;
1445
1446 return regcache_init(map, config);
1447}
1448EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1449
1450/**
1451 * regmap_exit() - Free a previously allocated register map
1452 *
1453 * @map: Register map to operate on.
1454 */
1455void regmap_exit(struct regmap *map)
1456{
1457 struct regmap_async *async;
1458
1459 regmap_detach_dev(map->dev, map);
1460 regcache_exit(map);
1461
1462 regmap_debugfs_exit(map);
1463 regmap_range_exit(map);
1464 if (map->bus && map->bus->free_context)
1465 map->bus->free_context(map->bus_context);
1466 kfree(map->work_buf);
1467 while (!list_empty(&map->async_free)) {
1468 async = list_first_entry_or_null(&map->async_free,
1469 struct regmap_async,
1470 list);
1471 list_del(&async->list);
1472 kfree(async->work_buf);
1473 kfree(async);
1474 }
1475 if (map->hwlock)
1476 hwspin_lock_free(map->hwlock);
1477 if (map->lock == regmap_lock_mutex)
1478 mutex_destroy(&map->mutex);
1479 kfree_const(map->name);
1480 kfree(map->patch);
1481 if (map->bus && map->bus->free_on_exit)
1482 kfree(map->bus);
1483 kfree(map);
1484}
1485EXPORT_SYMBOL_GPL(regmap_exit);
1486
1487static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1488{
1489 struct regmap **r = res;
1490 if (!r || !*r) {
1491 WARN_ON(!r || !*r);
1492 return 0;
1493 }
1494
1495 /* If the user didn't specify a name match any */
1496 if (data)
1497 return (*r)->name && !strcmp((*r)->name, data);
1498 else
1499 return 1;
1500}
1501
1502/**
1503 * dev_get_regmap() - Obtain the regmap (if any) for a device
1504 *
1505 * @dev: Device to retrieve the map for
1506 * @name: Optional name for the register map, usually NULL.
1507 *
1508 * Returns the regmap for the device if one is present, or NULL. If
1509 * name is specified then it must match the name specified when
1510 * registering the device, if it is NULL then the first regmap found
1511 * will be used. Devices with multiple register maps are very rare,
1512 * generic code should normally not need to specify a name.
1513 */
1514struct regmap *dev_get_regmap(struct device *dev, const char *name)
1515{
1516 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1517 dev_get_regmap_match, (void *)name);
1518
1519 if (!r)
1520 return NULL;
1521 return *r;
1522}
1523EXPORT_SYMBOL_GPL(dev_get_regmap);
1524
1525/**
1526 * regmap_get_device() - Obtain the device from a regmap
1527 *
1528 * @map: Register map to operate on.
1529 *
1530 * Returns the underlying device that the regmap has been created for.
1531 */
1532struct device *regmap_get_device(struct regmap *map)
1533{
1534 return map->dev;
1535}
1536EXPORT_SYMBOL_GPL(regmap_get_device);
1537
1538static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1539 struct regmap_range_node *range,
1540 unsigned int val_num)
1541{
1542 void *orig_work_buf;
1543 unsigned int win_offset;
1544 unsigned int win_page;
1545 bool page_chg;
1546 int ret;
1547
1548 win_offset = (*reg - range->range_min) % range->window_len;
1549 win_page = (*reg - range->range_min) / range->window_len;
1550
1551 if (val_num > 1) {
1552 /* Bulk write shouldn't cross range boundary */
1553 if (*reg + val_num - 1 > range->range_max)
1554 return -EINVAL;
1555
1556 /* ... or single page boundary */
1557 if (val_num > range->window_len - win_offset)
1558 return -EINVAL;
1559 }
1560
1561 /* It is possible to have selector register inside data window.
1562 In that case, selector register is located on every page and
1563 it needs no page switching, when accessed alone. */
1564 if (val_num > 1 ||
1565 range->window_start + win_offset != range->selector_reg) {
1566 /* Use separate work_buf during page switching */
1567 orig_work_buf = map->work_buf;
1568 map->work_buf = map->selector_work_buf;
1569
1570 ret = _regmap_update_bits(map, range->selector_reg,
1571 range->selector_mask,
1572 win_page << range->selector_shift,
1573 &page_chg, false);
1574
1575 map->work_buf = orig_work_buf;
1576
1577 if (ret != 0)
1578 return ret;
1579 }
1580
1581 *reg = range->window_start + win_offset;
1582
1583 return 0;
1584}
1585
1586static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1587 unsigned long mask)
1588{
1589 u8 *buf;
1590 int i;
1591
1592 if (!mask || !map->work_buf)
1593 return;
1594
1595 buf = map->work_buf;
1596
1597 for (i = 0; i < max_bytes; i++)
1598 buf[i] |= (mask >> (8 * i)) & 0xff;
1599}
1600
1601static unsigned int regmap_reg_addr(struct regmap *map, unsigned int reg)
1602{
1603 reg += map->reg_base;
1604
1605 if (map->format.reg_shift > 0)
1606 reg >>= map->format.reg_shift;
1607 else if (map->format.reg_shift < 0)
1608 reg <<= -(map->format.reg_shift);
1609
1610 return reg;
1611}
1612
1613static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1614 const void *val, size_t val_len, bool noinc)
1615{
1616 struct regmap_range_node *range;
1617 unsigned long flags;
1618 void *work_val = map->work_buf + map->format.reg_bytes +
1619 map->format.pad_bytes;
1620 void *buf;
1621 int ret = -ENOTSUPP;
1622 size_t len;
1623 int i;
1624
1625 /* Check for unwritable or noinc registers in range
1626 * before we start
1627 */
1628 if (!regmap_writeable_noinc(map, reg)) {
1629 for (i = 0; i < val_len / map->format.val_bytes; i++) {
1630 unsigned int element =
1631 reg + regmap_get_offset(map, i);
1632 if (!regmap_writeable(map, element) ||
1633 regmap_writeable_noinc(map, element))
1634 return -EINVAL;
1635 }
1636 }
1637
1638 if (!map->cache_bypass && map->format.parse_val) {
1639 unsigned int ival, offset;
1640 int val_bytes = map->format.val_bytes;
1641
1642 /* Cache the last written value for noinc writes */
1643 i = noinc ? val_len - val_bytes : 0;
1644 for (; i < val_len; i += val_bytes) {
1645 ival = map->format.parse_val(val + i);
1646 offset = noinc ? 0 : regmap_get_offset(map, i / val_bytes);
1647 ret = regcache_write(map, reg + offset, ival);
1648 if (ret) {
1649 dev_err(map->dev,
1650 "Error in caching of register: %x ret: %d\n",
1651 reg + offset, ret);
1652 return ret;
1653 }
1654 }
1655 if (map->cache_only) {
1656 map->cache_dirty = true;
1657 return 0;
1658 }
1659 }
1660
1661 range = _regmap_range_lookup(map, reg);
1662 if (range) {
1663 int val_num = val_len / map->format.val_bytes;
1664 int win_offset = (reg - range->range_min) % range->window_len;
1665 int win_residue = range->window_len - win_offset;
1666
1667 /* If the write goes beyond the end of the window split it */
1668 while (val_num > win_residue) {
1669 dev_dbg(map->dev, "Writing window %d/%zu\n",
1670 win_residue, val_len / map->format.val_bytes);
1671 ret = _regmap_raw_write_impl(map, reg, val,
1672 win_residue *
1673 map->format.val_bytes, noinc);
1674 if (ret != 0)
1675 return ret;
1676
1677 reg += win_residue;
1678 val_num -= win_residue;
1679 val += win_residue * map->format.val_bytes;
1680 val_len -= win_residue * map->format.val_bytes;
1681
1682 win_offset = (reg - range->range_min) %
1683 range->window_len;
1684 win_residue = range->window_len - win_offset;
1685 }
1686
1687 ret = _regmap_select_page(map, ®, range, noinc ? 1 : val_num);
1688 if (ret != 0)
1689 return ret;
1690 }
1691
1692 reg = regmap_reg_addr(map, reg);
1693 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1694 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1695 map->write_flag_mask);
1696
1697 /*
1698 * Essentially all I/O mechanisms will be faster with a single
1699 * buffer to write. Since register syncs often generate raw
1700 * writes of single registers optimise that case.
1701 */
1702 if (val != work_val && val_len == map->format.val_bytes) {
1703 memcpy(work_val, val, map->format.val_bytes);
1704 val = work_val;
1705 }
1706
1707 if (map->async && map->bus && map->bus->async_write) {
1708 struct regmap_async *async;
1709
1710 trace_regmap_async_write_start(map, reg, val_len);
1711
1712 spin_lock_irqsave(&map->async_lock, flags);
1713 async = list_first_entry_or_null(&map->async_free,
1714 struct regmap_async,
1715 list);
1716 if (async)
1717 list_del(&async->list);
1718 spin_unlock_irqrestore(&map->async_lock, flags);
1719
1720 if (!async) {
1721 async = map->bus->async_alloc();
1722 if (!async)
1723 return -ENOMEM;
1724
1725 async->work_buf = kzalloc(map->format.buf_size,
1726 GFP_KERNEL | GFP_DMA);
1727 if (!async->work_buf) {
1728 kfree(async);
1729 return -ENOMEM;
1730 }
1731 }
1732
1733 async->map = map;
1734
1735 /* If the caller supplied the value we can use it safely. */
1736 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1737 map->format.reg_bytes + map->format.val_bytes);
1738
1739 spin_lock_irqsave(&map->async_lock, flags);
1740 list_add_tail(&async->list, &map->async_list);
1741 spin_unlock_irqrestore(&map->async_lock, flags);
1742
1743 if (val != work_val)
1744 ret = map->bus->async_write(map->bus_context,
1745 async->work_buf,
1746 map->format.reg_bytes +
1747 map->format.pad_bytes,
1748 val, val_len, async);
1749 else
1750 ret = map->bus->async_write(map->bus_context,
1751 async->work_buf,
1752 map->format.reg_bytes +
1753 map->format.pad_bytes +
1754 val_len, NULL, 0, async);
1755
1756 if (ret != 0) {
1757 dev_err(map->dev, "Failed to schedule write: %d\n",
1758 ret);
1759
1760 spin_lock_irqsave(&map->async_lock, flags);
1761 list_move(&async->list, &map->async_free);
1762 spin_unlock_irqrestore(&map->async_lock, flags);
1763 }
1764
1765 return ret;
1766 }
1767
1768 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1769
1770 /* If we're doing a single register write we can probably just
1771 * send the work_buf directly, otherwise try to do a gather
1772 * write.
1773 */
1774 if (val == work_val)
1775 ret = map->write(map->bus_context, map->work_buf,
1776 map->format.reg_bytes +
1777 map->format.pad_bytes +
1778 val_len);
1779 else if (map->bus && map->bus->gather_write)
1780 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1781 map->format.reg_bytes +
1782 map->format.pad_bytes,
1783 val, val_len);
1784 else
1785 ret = -ENOTSUPP;
1786
1787 /* If that didn't work fall back on linearising by hand. */
1788 if (ret == -ENOTSUPP) {
1789 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1790 buf = kzalloc(len, GFP_KERNEL);
1791 if (!buf)
1792 return -ENOMEM;
1793
1794 memcpy(buf, map->work_buf, map->format.reg_bytes);
1795 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1796 val, val_len);
1797 ret = map->write(map->bus_context, buf, len);
1798
1799 kfree(buf);
1800 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1801 /* regcache_drop_region() takes lock that we already have,
1802 * thus call map->cache_ops->drop() directly
1803 */
1804 if (map->cache_ops && map->cache_ops->drop)
1805 map->cache_ops->drop(map, reg, reg + 1);
1806 }
1807
1808 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1809
1810 return ret;
1811}
1812
1813/**
1814 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1815 *
1816 * @map: Map to check.
1817 */
1818bool regmap_can_raw_write(struct regmap *map)
1819{
1820 return map->write && map->format.format_val && map->format.format_reg;
1821}
1822EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1823
1824/**
1825 * regmap_get_raw_read_max - Get the maximum size we can read
1826 *
1827 * @map: Map to check.
1828 */
1829size_t regmap_get_raw_read_max(struct regmap *map)
1830{
1831 return map->max_raw_read;
1832}
1833EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1834
1835/**
1836 * regmap_get_raw_write_max - Get the maximum size we can read
1837 *
1838 * @map: Map to check.
1839 */
1840size_t regmap_get_raw_write_max(struct regmap *map)
1841{
1842 return map->max_raw_write;
1843}
1844EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1845
1846static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1847 unsigned int val)
1848{
1849 int ret;
1850 struct regmap_range_node *range;
1851 struct regmap *map = context;
1852
1853 WARN_ON(!map->format.format_write);
1854
1855 range = _regmap_range_lookup(map, reg);
1856 if (range) {
1857 ret = _regmap_select_page(map, ®, range, 1);
1858 if (ret != 0)
1859 return ret;
1860 }
1861
1862 reg = regmap_reg_addr(map, reg);
1863 map->format.format_write(map, reg, val);
1864
1865 trace_regmap_hw_write_start(map, reg, 1);
1866
1867 ret = map->write(map->bus_context, map->work_buf, map->format.buf_size);
1868
1869 trace_regmap_hw_write_done(map, reg, 1);
1870
1871 return ret;
1872}
1873
1874static int _regmap_bus_reg_write(void *context, unsigned int reg,
1875 unsigned int val)
1876{
1877 struct regmap *map = context;
1878 struct regmap_range_node *range;
1879 int ret;
1880
1881 range = _regmap_range_lookup(map, reg);
1882 if (range) {
1883 ret = _regmap_select_page(map, ®, range, 1);
1884 if (ret != 0)
1885 return ret;
1886 }
1887
1888 reg = regmap_reg_addr(map, reg);
1889 return map->bus->reg_write(map->bus_context, reg, val);
1890}
1891
1892static int _regmap_bus_raw_write(void *context, unsigned int reg,
1893 unsigned int val)
1894{
1895 struct regmap *map = context;
1896
1897 WARN_ON(!map->format.format_val);
1898
1899 map->format.format_val(map->work_buf + map->format.reg_bytes
1900 + map->format.pad_bytes, val, 0);
1901 return _regmap_raw_write_impl(map, reg,
1902 map->work_buf +
1903 map->format.reg_bytes +
1904 map->format.pad_bytes,
1905 map->format.val_bytes,
1906 false);
1907}
1908
1909static inline void *_regmap_map_get_context(struct regmap *map)
1910{
1911 return (map->bus || (!map->bus && map->read)) ? map : map->bus_context;
1912}
1913
1914int _regmap_write(struct regmap *map, unsigned int reg,
1915 unsigned int val)
1916{
1917 int ret;
1918 void *context = _regmap_map_get_context(map);
1919
1920 if (!regmap_writeable(map, reg))
1921 return -EIO;
1922
1923 if (!map->cache_bypass && !map->defer_caching) {
1924 ret = regcache_write(map, reg, val);
1925 if (ret != 0)
1926 return ret;
1927 if (map->cache_only) {
1928 map->cache_dirty = true;
1929 return 0;
1930 }
1931 }
1932
1933 ret = map->reg_write(context, reg, val);
1934 if (ret == 0) {
1935 if (regmap_should_log(map))
1936 dev_info(map->dev, "%x <= %x\n", reg, val);
1937
1938 trace_regmap_reg_write(map, reg, val);
1939 }
1940
1941 return ret;
1942}
1943
1944/**
1945 * regmap_write() - Write a value to a single register
1946 *
1947 * @map: Register map to write to
1948 * @reg: Register to write to
1949 * @val: Value to be written
1950 *
1951 * A value of zero will be returned on success, a negative errno will
1952 * be returned in error cases.
1953 */
1954int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1955{
1956 int ret;
1957
1958 if (!IS_ALIGNED(reg, map->reg_stride))
1959 return -EINVAL;
1960
1961 map->lock(map->lock_arg);
1962
1963 ret = _regmap_write(map, reg, val);
1964
1965 map->unlock(map->lock_arg);
1966
1967 return ret;
1968}
1969EXPORT_SYMBOL_GPL(regmap_write);
1970
1971/**
1972 * regmap_write_async() - Write a value to a single register asynchronously
1973 *
1974 * @map: Register map to write to
1975 * @reg: Register to write to
1976 * @val: Value to be written
1977 *
1978 * A value of zero will be returned on success, a negative errno will
1979 * be returned in error cases.
1980 */
1981int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1982{
1983 int ret;
1984
1985 if (!IS_ALIGNED(reg, map->reg_stride))
1986 return -EINVAL;
1987
1988 map->lock(map->lock_arg);
1989
1990 map->async = true;
1991
1992 ret = _regmap_write(map, reg, val);
1993
1994 map->async = false;
1995
1996 map->unlock(map->lock_arg);
1997
1998 return ret;
1999}
2000EXPORT_SYMBOL_GPL(regmap_write_async);
2001
2002int _regmap_raw_write(struct regmap *map, unsigned int reg,
2003 const void *val, size_t val_len, bool noinc)
2004{
2005 size_t val_bytes = map->format.val_bytes;
2006 size_t val_count = val_len / val_bytes;
2007 size_t chunk_count, chunk_bytes;
2008 size_t chunk_regs = val_count;
2009 int ret, i;
2010
2011 if (!val_count)
2012 return -EINVAL;
2013
2014 if (map->use_single_write)
2015 chunk_regs = 1;
2016 else if (map->max_raw_write && val_len > map->max_raw_write)
2017 chunk_regs = map->max_raw_write / val_bytes;
2018
2019 chunk_count = val_count / chunk_regs;
2020 chunk_bytes = chunk_regs * val_bytes;
2021
2022 /* Write as many bytes as possible with chunk_size */
2023 for (i = 0; i < chunk_count; i++) {
2024 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2025 if (ret)
2026 return ret;
2027
2028 reg += regmap_get_offset(map, chunk_regs);
2029 val += chunk_bytes;
2030 val_len -= chunk_bytes;
2031 }
2032
2033 /* Write remaining bytes */
2034 if (val_len)
2035 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2036
2037 return ret;
2038}
2039
2040/**
2041 * regmap_raw_write() - Write raw values to one or more registers
2042 *
2043 * @map: Register map to write to
2044 * @reg: Initial register to write to
2045 * @val: Block of data to be written, laid out for direct transmission to the
2046 * device
2047 * @val_len: Length of data pointed to by val.
2048 *
2049 * This function is intended to be used for things like firmware
2050 * download where a large block of data needs to be transferred to the
2051 * device. No formatting will be done on the data provided.
2052 *
2053 * A value of zero will be returned on success, a negative errno will
2054 * be returned in error cases.
2055 */
2056int regmap_raw_write(struct regmap *map, unsigned int reg,
2057 const void *val, size_t val_len)
2058{
2059 int ret;
2060
2061 if (!regmap_can_raw_write(map))
2062 return -EINVAL;
2063 if (val_len % map->format.val_bytes)
2064 return -EINVAL;
2065
2066 map->lock(map->lock_arg);
2067
2068 ret = _regmap_raw_write(map, reg, val, val_len, false);
2069
2070 map->unlock(map->lock_arg);
2071
2072 return ret;
2073}
2074EXPORT_SYMBOL_GPL(regmap_raw_write);
2075
2076static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg,
2077 void *val, unsigned int val_len, bool write)
2078{
2079 size_t val_bytes = map->format.val_bytes;
2080 size_t val_count = val_len / val_bytes;
2081 unsigned int lastval;
2082 u8 *u8p;
2083 u16 *u16p;
2084 u32 *u32p;
2085 int ret;
2086 int i;
2087
2088 switch (val_bytes) {
2089 case 1:
2090 u8p = val;
2091 if (write)
2092 lastval = (unsigned int)u8p[val_count - 1];
2093 break;
2094 case 2:
2095 u16p = val;
2096 if (write)
2097 lastval = (unsigned int)u16p[val_count - 1];
2098 break;
2099 case 4:
2100 u32p = val;
2101 if (write)
2102 lastval = (unsigned int)u32p[val_count - 1];
2103 break;
2104 default:
2105 return -EINVAL;
2106 }
2107
2108 /*
2109 * Update the cache with the last value we write, the rest is just
2110 * gone down in the hardware FIFO. We can't cache FIFOs. This makes
2111 * sure a single read from the cache will work.
2112 */
2113 if (write) {
2114 if (!map->cache_bypass && !map->defer_caching) {
2115 ret = regcache_write(map, reg, lastval);
2116 if (ret != 0)
2117 return ret;
2118 if (map->cache_only) {
2119 map->cache_dirty = true;
2120 return 0;
2121 }
2122 }
2123 ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count);
2124 } else {
2125 ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count);
2126 }
2127
2128 if (!ret && regmap_should_log(map)) {
2129 dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>");
2130 for (i = 0; i < val_count; i++) {
2131 switch (val_bytes) {
2132 case 1:
2133 pr_cont("%x", u8p[i]);
2134 break;
2135 case 2:
2136 pr_cont("%x", u16p[i]);
2137 break;
2138 case 4:
2139 pr_cont("%x", u32p[i]);
2140 break;
2141 default:
2142 break;
2143 }
2144 if (i == (val_count - 1))
2145 pr_cont("]\n");
2146 else
2147 pr_cont(",");
2148 }
2149 }
2150
2151 return 0;
2152}
2153
2154/**
2155 * regmap_noinc_write(): Write data to a register without incrementing the
2156 * register number
2157 *
2158 * @map: Register map to write to
2159 * @reg: Register to write to
2160 * @val: Pointer to data buffer
2161 * @val_len: Length of output buffer in bytes.
2162 *
2163 * The regmap API usually assumes that bulk bus write operations will write a
2164 * range of registers. Some devices have certain registers for which a write
2165 * operation can write to an internal FIFO.
2166 *
2167 * The target register must be volatile but registers after it can be
2168 * completely unrelated cacheable registers.
2169 *
2170 * This will attempt multiple writes as required to write val_len bytes.
2171 *
2172 * A value of zero will be returned on success, a negative errno will be
2173 * returned in error cases.
2174 */
2175int regmap_noinc_write(struct regmap *map, unsigned int reg,
2176 const void *val, size_t val_len)
2177{
2178 size_t write_len;
2179 int ret;
2180
2181 if (!map->write && !(map->bus && map->bus->reg_noinc_write))
2182 return -EINVAL;
2183 if (val_len % map->format.val_bytes)
2184 return -EINVAL;
2185 if (!IS_ALIGNED(reg, map->reg_stride))
2186 return -EINVAL;
2187 if (val_len == 0)
2188 return -EINVAL;
2189
2190 map->lock(map->lock_arg);
2191
2192 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2193 ret = -EINVAL;
2194 goto out_unlock;
2195 }
2196
2197 /*
2198 * Use the accelerated operation if we can. The val drops the const
2199 * typing in order to facilitate code reuse in regmap_noinc_readwrite().
2200 */
2201 if (map->bus->reg_noinc_write) {
2202 ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true);
2203 goto out_unlock;
2204 }
2205
2206 while (val_len) {
2207 if (map->max_raw_write && map->max_raw_write < val_len)
2208 write_len = map->max_raw_write;
2209 else
2210 write_len = val_len;
2211 ret = _regmap_raw_write(map, reg, val, write_len, true);
2212 if (ret)
2213 goto out_unlock;
2214 val = ((u8 *)val) + write_len;
2215 val_len -= write_len;
2216 }
2217
2218out_unlock:
2219 map->unlock(map->lock_arg);
2220 return ret;
2221}
2222EXPORT_SYMBOL_GPL(regmap_noinc_write);
2223
2224/**
2225 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2226 * register field.
2227 *
2228 * @field: Register field to write to
2229 * @mask: Bitmask to change
2230 * @val: Value to be written
2231 * @change: Boolean indicating if a write was done
2232 * @async: Boolean indicating asynchronously
2233 * @force: Boolean indicating use force update
2234 *
2235 * Perform a read/modify/write cycle on the register field with change,
2236 * async, force option.
2237 *
2238 * A value of zero will be returned on success, a negative errno will
2239 * be returned in error cases.
2240 */
2241int regmap_field_update_bits_base(struct regmap_field *field,
2242 unsigned int mask, unsigned int val,
2243 bool *change, bool async, bool force)
2244{
2245 mask = (mask << field->shift) & field->mask;
2246
2247 return regmap_update_bits_base(field->regmap, field->reg,
2248 mask, val << field->shift,
2249 change, async, force);
2250}
2251EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2252
2253/**
2254 * regmap_field_test_bits() - Check if all specified bits are set in a
2255 * register field.
2256 *
2257 * @field: Register field to operate on
2258 * @bits: Bits to test
2259 *
2260 * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the
2261 * tested bits is not set and 1 if all tested bits are set.
2262 */
2263int regmap_field_test_bits(struct regmap_field *field, unsigned int bits)
2264{
2265 unsigned int val, ret;
2266
2267 ret = regmap_field_read(field, &val);
2268 if (ret)
2269 return ret;
2270
2271 return (val & bits) == bits;
2272}
2273EXPORT_SYMBOL_GPL(regmap_field_test_bits);
2274
2275/**
2276 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2277 * register field with port ID
2278 *
2279 * @field: Register field to write to
2280 * @id: port ID
2281 * @mask: Bitmask to change
2282 * @val: Value to be written
2283 * @change: Boolean indicating if a write was done
2284 * @async: Boolean indicating asynchronously
2285 * @force: Boolean indicating use force update
2286 *
2287 * A value of zero will be returned on success, a negative errno will
2288 * be returned in error cases.
2289 */
2290int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2291 unsigned int mask, unsigned int val,
2292 bool *change, bool async, bool force)
2293{
2294 if (id >= field->id_size)
2295 return -EINVAL;
2296
2297 mask = (mask << field->shift) & field->mask;
2298
2299 return regmap_update_bits_base(field->regmap,
2300 field->reg + (field->id_offset * id),
2301 mask, val << field->shift,
2302 change, async, force);
2303}
2304EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2305
2306/**
2307 * regmap_bulk_write() - Write multiple registers to the device
2308 *
2309 * @map: Register map to write to
2310 * @reg: First register to be write from
2311 * @val: Block of data to be written, in native register size for device
2312 * @val_count: Number of registers to write
2313 *
2314 * This function is intended to be used for writing a large block of
2315 * data to the device either in single transfer or multiple transfer.
2316 *
2317 * A value of zero will be returned on success, a negative errno will
2318 * be returned in error cases.
2319 */
2320int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2321 size_t val_count)
2322{
2323 int ret = 0, i;
2324 size_t val_bytes = map->format.val_bytes;
2325
2326 if (!IS_ALIGNED(reg, map->reg_stride))
2327 return -EINVAL;
2328
2329 /*
2330 * Some devices don't support bulk write, for them we have a series of
2331 * single write operations.
2332 */
2333 if (!map->write || !map->format.parse_inplace) {
2334 map->lock(map->lock_arg);
2335 for (i = 0; i < val_count; i++) {
2336 unsigned int ival;
2337
2338 switch (val_bytes) {
2339 case 1:
2340 ival = *(u8 *)(val + (i * val_bytes));
2341 break;
2342 case 2:
2343 ival = *(u16 *)(val + (i * val_bytes));
2344 break;
2345 case 4:
2346 ival = *(u32 *)(val + (i * val_bytes));
2347 break;
2348 default:
2349 ret = -EINVAL;
2350 goto out;
2351 }
2352
2353 ret = _regmap_write(map,
2354 reg + regmap_get_offset(map, i),
2355 ival);
2356 if (ret != 0)
2357 goto out;
2358 }
2359out:
2360 map->unlock(map->lock_arg);
2361 } else {
2362 void *wval;
2363
2364 wval = kmemdup_array(val, val_count, val_bytes, map->alloc_flags);
2365 if (!wval)
2366 return -ENOMEM;
2367
2368 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2369 map->format.parse_inplace(wval + i);
2370
2371 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2372
2373 kfree(wval);
2374 }
2375
2376 if (!ret)
2377 trace_regmap_bulk_write(map, reg, val, val_bytes * val_count);
2378
2379 return ret;
2380}
2381EXPORT_SYMBOL_GPL(regmap_bulk_write);
2382
2383/*
2384 * _regmap_raw_multi_reg_write()
2385 *
2386 * the (register,newvalue) pairs in regs have not been formatted, but
2387 * they are all in the same page and have been changed to being page
2388 * relative. The page register has been written if that was necessary.
2389 */
2390static int _regmap_raw_multi_reg_write(struct regmap *map,
2391 const struct reg_sequence *regs,
2392 size_t num_regs)
2393{
2394 int ret;
2395 void *buf;
2396 int i;
2397 u8 *u8;
2398 size_t val_bytes = map->format.val_bytes;
2399 size_t reg_bytes = map->format.reg_bytes;
2400 size_t pad_bytes = map->format.pad_bytes;
2401 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2402 size_t len = pair_size * num_regs;
2403
2404 if (!len)
2405 return -EINVAL;
2406
2407 buf = kzalloc(len, GFP_KERNEL);
2408 if (!buf)
2409 return -ENOMEM;
2410
2411 /* We have to linearise by hand. */
2412
2413 u8 = buf;
2414
2415 for (i = 0; i < num_regs; i++) {
2416 unsigned int reg = regs[i].reg;
2417 unsigned int val = regs[i].def;
2418 trace_regmap_hw_write_start(map, reg, 1);
2419 reg = regmap_reg_addr(map, reg);
2420 map->format.format_reg(u8, reg, map->reg_shift);
2421 u8 += reg_bytes + pad_bytes;
2422 map->format.format_val(u8, val, 0);
2423 u8 += val_bytes;
2424 }
2425 u8 = buf;
2426 *u8 |= map->write_flag_mask;
2427
2428 ret = map->write(map->bus_context, buf, len);
2429
2430 kfree(buf);
2431
2432 for (i = 0; i < num_regs; i++) {
2433 int reg = regs[i].reg;
2434 trace_regmap_hw_write_done(map, reg, 1);
2435 }
2436 return ret;
2437}
2438
2439static unsigned int _regmap_register_page(struct regmap *map,
2440 unsigned int reg,
2441 struct regmap_range_node *range)
2442{
2443 unsigned int win_page = (reg - range->range_min) / range->window_len;
2444
2445 return win_page;
2446}
2447
2448static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2449 struct reg_sequence *regs,
2450 size_t num_regs)
2451{
2452 int ret;
2453 int i, n;
2454 struct reg_sequence *base;
2455 unsigned int this_page = 0;
2456 unsigned int page_change = 0;
2457 /*
2458 * the set of registers are not neccessarily in order, but
2459 * since the order of write must be preserved this algorithm
2460 * chops the set each time the page changes. This also applies
2461 * if there is a delay required at any point in the sequence.
2462 */
2463 base = regs;
2464 for (i = 0, n = 0; i < num_regs; i++, n++) {
2465 unsigned int reg = regs[i].reg;
2466 struct regmap_range_node *range;
2467
2468 range = _regmap_range_lookup(map, reg);
2469 if (range) {
2470 unsigned int win_page = _regmap_register_page(map, reg,
2471 range);
2472
2473 if (i == 0)
2474 this_page = win_page;
2475 if (win_page != this_page) {
2476 this_page = win_page;
2477 page_change = 1;
2478 }
2479 }
2480
2481 /* If we have both a page change and a delay make sure to
2482 * write the regs and apply the delay before we change the
2483 * page.
2484 */
2485
2486 if (page_change || regs[i].delay_us) {
2487
2488 /* For situations where the first write requires
2489 * a delay we need to make sure we don't call
2490 * raw_multi_reg_write with n=0
2491 * This can't occur with page breaks as we
2492 * never write on the first iteration
2493 */
2494 if (regs[i].delay_us && i == 0)
2495 n = 1;
2496
2497 ret = _regmap_raw_multi_reg_write(map, base, n);
2498 if (ret != 0)
2499 return ret;
2500
2501 if (regs[i].delay_us) {
2502 if (map->can_sleep)
2503 fsleep(regs[i].delay_us);
2504 else
2505 udelay(regs[i].delay_us);
2506 }
2507
2508 base += n;
2509 n = 0;
2510
2511 if (page_change) {
2512 ret = _regmap_select_page(map,
2513 &base[n].reg,
2514 range, 1);
2515 if (ret != 0)
2516 return ret;
2517
2518 page_change = 0;
2519 }
2520
2521 }
2522
2523 }
2524 if (n > 0)
2525 return _regmap_raw_multi_reg_write(map, base, n);
2526 return 0;
2527}
2528
2529static int _regmap_multi_reg_write(struct regmap *map,
2530 const struct reg_sequence *regs,
2531 size_t num_regs)
2532{
2533 int i;
2534 int ret;
2535
2536 if (!map->can_multi_write) {
2537 for (i = 0; i < num_regs; i++) {
2538 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2539 if (ret != 0)
2540 return ret;
2541
2542 if (regs[i].delay_us) {
2543 if (map->can_sleep)
2544 fsleep(regs[i].delay_us);
2545 else
2546 udelay(regs[i].delay_us);
2547 }
2548 }
2549 return 0;
2550 }
2551
2552 if (!map->format.parse_inplace)
2553 return -EINVAL;
2554
2555 if (map->writeable_reg)
2556 for (i = 0; i < num_regs; i++) {
2557 int reg = regs[i].reg;
2558 if (!map->writeable_reg(map->dev, reg))
2559 return -EINVAL;
2560 if (!IS_ALIGNED(reg, map->reg_stride))
2561 return -EINVAL;
2562 }
2563
2564 if (!map->cache_bypass) {
2565 for (i = 0; i < num_regs; i++) {
2566 unsigned int val = regs[i].def;
2567 unsigned int reg = regs[i].reg;
2568 ret = regcache_write(map, reg, val);
2569 if (ret) {
2570 dev_err(map->dev,
2571 "Error in caching of register: %x ret: %d\n",
2572 reg, ret);
2573 return ret;
2574 }
2575 }
2576 if (map->cache_only) {
2577 map->cache_dirty = true;
2578 return 0;
2579 }
2580 }
2581
2582 WARN_ON(!map->bus);
2583
2584 for (i = 0; i < num_regs; i++) {
2585 unsigned int reg = regs[i].reg;
2586 struct regmap_range_node *range;
2587
2588 /* Coalesce all the writes between a page break or a delay
2589 * in a sequence
2590 */
2591 range = _regmap_range_lookup(map, reg);
2592 if (range || regs[i].delay_us) {
2593 size_t len = sizeof(struct reg_sequence)*num_regs;
2594 struct reg_sequence *base = kmemdup(regs, len,
2595 GFP_KERNEL);
2596 if (!base)
2597 return -ENOMEM;
2598 ret = _regmap_range_multi_paged_reg_write(map, base,
2599 num_regs);
2600 kfree(base);
2601
2602 return ret;
2603 }
2604 }
2605 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2606}
2607
2608/**
2609 * regmap_multi_reg_write() - Write multiple registers to the device
2610 *
2611 * @map: Register map to write to
2612 * @regs: Array of structures containing register,value to be written
2613 * @num_regs: Number of registers to write
2614 *
2615 * Write multiple registers to the device where the set of register, value
2616 * pairs are supplied in any order, possibly not all in a single range.
2617 *
2618 * The 'normal' block write mode will send ultimately send data on the
2619 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2620 * addressed. However, this alternative block multi write mode will send
2621 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2622 * must of course support the mode.
2623 *
2624 * A value of zero will be returned on success, a negative errno will be
2625 * returned in error cases.
2626 */
2627int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2628 int num_regs)
2629{
2630 int ret;
2631
2632 map->lock(map->lock_arg);
2633
2634 ret = _regmap_multi_reg_write(map, regs, num_regs);
2635
2636 map->unlock(map->lock_arg);
2637
2638 return ret;
2639}
2640EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2641
2642/**
2643 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2644 * device but not the cache
2645 *
2646 * @map: Register map to write to
2647 * @regs: Array of structures containing register,value to be written
2648 * @num_regs: Number of registers to write
2649 *
2650 * Write multiple registers to the device but not the cache where the set
2651 * of register are supplied in any order.
2652 *
2653 * This function is intended to be used for writing a large block of data
2654 * atomically to the device in single transfer for those I2C client devices
2655 * that implement this alternative block write mode.
2656 *
2657 * A value of zero will be returned on success, a negative errno will
2658 * be returned in error cases.
2659 */
2660int regmap_multi_reg_write_bypassed(struct regmap *map,
2661 const struct reg_sequence *regs,
2662 int num_regs)
2663{
2664 int ret;
2665 bool bypass;
2666
2667 map->lock(map->lock_arg);
2668
2669 bypass = map->cache_bypass;
2670 map->cache_bypass = true;
2671
2672 ret = _regmap_multi_reg_write(map, regs, num_regs);
2673
2674 map->cache_bypass = bypass;
2675
2676 map->unlock(map->lock_arg);
2677
2678 return ret;
2679}
2680EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2681
2682/**
2683 * regmap_raw_write_async() - Write raw values to one or more registers
2684 * asynchronously
2685 *
2686 * @map: Register map to write to
2687 * @reg: Initial register to write to
2688 * @val: Block of data to be written, laid out for direct transmission to the
2689 * device. Must be valid until regmap_async_complete() is called.
2690 * @val_len: Length of data pointed to by val.
2691 *
2692 * This function is intended to be used for things like firmware
2693 * download where a large block of data needs to be transferred to the
2694 * device. No formatting will be done on the data provided.
2695 *
2696 * If supported by the underlying bus the write will be scheduled
2697 * asynchronously, helping maximise I/O speed on higher speed buses
2698 * like SPI. regmap_async_complete() can be called to ensure that all
2699 * asynchrnous writes have been completed.
2700 *
2701 * A value of zero will be returned on success, a negative errno will
2702 * be returned in error cases.
2703 */
2704int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2705 const void *val, size_t val_len)
2706{
2707 int ret;
2708
2709 if (val_len % map->format.val_bytes)
2710 return -EINVAL;
2711 if (!IS_ALIGNED(reg, map->reg_stride))
2712 return -EINVAL;
2713
2714 map->lock(map->lock_arg);
2715
2716 map->async = true;
2717
2718 ret = _regmap_raw_write(map, reg, val, val_len, false);
2719
2720 map->async = false;
2721
2722 map->unlock(map->lock_arg);
2723
2724 return ret;
2725}
2726EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2727
2728static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2729 unsigned int val_len, bool noinc)
2730{
2731 struct regmap_range_node *range;
2732 int ret;
2733
2734 if (!map->read)
2735 return -EINVAL;
2736
2737 range = _regmap_range_lookup(map, reg);
2738 if (range) {
2739 ret = _regmap_select_page(map, ®, range,
2740 noinc ? 1 : val_len / map->format.val_bytes);
2741 if (ret != 0)
2742 return ret;
2743 }
2744
2745 reg = regmap_reg_addr(map, reg);
2746 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2747 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2748 map->read_flag_mask);
2749 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2750
2751 ret = map->read(map->bus_context, map->work_buf,
2752 map->format.reg_bytes + map->format.pad_bytes,
2753 val, val_len);
2754
2755 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2756
2757 return ret;
2758}
2759
2760static int _regmap_bus_reg_read(void *context, unsigned int reg,
2761 unsigned int *val)
2762{
2763 struct regmap *map = context;
2764 struct regmap_range_node *range;
2765 int ret;
2766
2767 range = _regmap_range_lookup(map, reg);
2768 if (range) {
2769 ret = _regmap_select_page(map, ®, range, 1);
2770 if (ret != 0)
2771 return ret;
2772 }
2773
2774 reg = regmap_reg_addr(map, reg);
2775 return map->bus->reg_read(map->bus_context, reg, val);
2776}
2777
2778static int _regmap_bus_read(void *context, unsigned int reg,
2779 unsigned int *val)
2780{
2781 int ret;
2782 struct regmap *map = context;
2783 void *work_val = map->work_buf + map->format.reg_bytes +
2784 map->format.pad_bytes;
2785
2786 if (!map->format.parse_val)
2787 return -EINVAL;
2788
2789 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2790 if (ret == 0)
2791 *val = map->format.parse_val(work_val);
2792
2793 return ret;
2794}
2795
2796static int _regmap_read(struct regmap *map, unsigned int reg,
2797 unsigned int *val)
2798{
2799 int ret;
2800 void *context = _regmap_map_get_context(map);
2801
2802 if (!map->cache_bypass) {
2803 ret = regcache_read(map, reg, val);
2804 if (ret == 0)
2805 return 0;
2806 }
2807
2808 if (map->cache_only)
2809 return -EBUSY;
2810
2811 if (!regmap_readable(map, reg))
2812 return -EIO;
2813
2814 ret = map->reg_read(context, reg, val);
2815 if (ret == 0) {
2816 if (regmap_should_log(map))
2817 dev_info(map->dev, "%x => %x\n", reg, *val);
2818
2819 trace_regmap_reg_read(map, reg, *val);
2820
2821 if (!map->cache_bypass)
2822 regcache_write(map, reg, *val);
2823 }
2824
2825 return ret;
2826}
2827
2828/**
2829 * regmap_read() - Read a value from a single register
2830 *
2831 * @map: Register map to read from
2832 * @reg: Register to be read from
2833 * @val: Pointer to store read value
2834 *
2835 * A value of zero will be returned on success, a negative errno will
2836 * be returned in error cases.
2837 */
2838int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2839{
2840 int ret;
2841
2842 if (!IS_ALIGNED(reg, map->reg_stride))
2843 return -EINVAL;
2844
2845 map->lock(map->lock_arg);
2846
2847 ret = _regmap_read(map, reg, val);
2848
2849 map->unlock(map->lock_arg);
2850
2851 return ret;
2852}
2853EXPORT_SYMBOL_GPL(regmap_read);
2854
2855/**
2856 * regmap_read_bypassed() - Read a value from a single register direct
2857 * from the device, bypassing the cache
2858 *
2859 * @map: Register map to read from
2860 * @reg: Register to be read from
2861 * @val: Pointer to store read value
2862 *
2863 * A value of zero will be returned on success, a negative errno will
2864 * be returned in error cases.
2865 */
2866int regmap_read_bypassed(struct regmap *map, unsigned int reg, unsigned int *val)
2867{
2868 int ret;
2869 bool bypass, cache_only;
2870
2871 if (!IS_ALIGNED(reg, map->reg_stride))
2872 return -EINVAL;
2873
2874 map->lock(map->lock_arg);
2875
2876 bypass = map->cache_bypass;
2877 cache_only = map->cache_only;
2878 map->cache_bypass = true;
2879 map->cache_only = false;
2880
2881 ret = _regmap_read(map, reg, val);
2882
2883 map->cache_bypass = bypass;
2884 map->cache_only = cache_only;
2885
2886 map->unlock(map->lock_arg);
2887
2888 return ret;
2889}
2890EXPORT_SYMBOL_GPL(regmap_read_bypassed);
2891
2892/**
2893 * regmap_raw_read() - Read raw data from the device
2894 *
2895 * @map: Register map to read from
2896 * @reg: First register to be read from
2897 * @val: Pointer to store read value
2898 * @val_len: Size of data to read
2899 *
2900 * A value of zero will be returned on success, a negative errno will
2901 * be returned in error cases.
2902 */
2903int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2904 size_t val_len)
2905{
2906 size_t val_bytes = map->format.val_bytes;
2907 size_t val_count = val_len / val_bytes;
2908 unsigned int v;
2909 int ret, i;
2910
2911 if (val_len % map->format.val_bytes)
2912 return -EINVAL;
2913 if (!IS_ALIGNED(reg, map->reg_stride))
2914 return -EINVAL;
2915 if (val_count == 0)
2916 return -EINVAL;
2917
2918 map->lock(map->lock_arg);
2919
2920 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2921 map->cache_type == REGCACHE_NONE) {
2922 size_t chunk_count, chunk_bytes;
2923 size_t chunk_regs = val_count;
2924
2925 if (!map->cache_bypass && map->cache_only) {
2926 ret = -EBUSY;
2927 goto out;
2928 }
2929
2930 if (!map->read) {
2931 ret = -ENOTSUPP;
2932 goto out;
2933 }
2934
2935 if (map->use_single_read)
2936 chunk_regs = 1;
2937 else if (map->max_raw_read && val_len > map->max_raw_read)
2938 chunk_regs = map->max_raw_read / val_bytes;
2939
2940 chunk_count = val_count / chunk_regs;
2941 chunk_bytes = chunk_regs * val_bytes;
2942
2943 /* Read bytes that fit into whole chunks */
2944 for (i = 0; i < chunk_count; i++) {
2945 ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2946 if (ret != 0)
2947 goto out;
2948
2949 reg += regmap_get_offset(map, chunk_regs);
2950 val += chunk_bytes;
2951 val_len -= chunk_bytes;
2952 }
2953
2954 /* Read remaining bytes */
2955 if (val_len) {
2956 ret = _regmap_raw_read(map, reg, val, val_len, false);
2957 if (ret != 0)
2958 goto out;
2959 }
2960 } else {
2961 /* Otherwise go word by word for the cache; should be low
2962 * cost as we expect to hit the cache.
2963 */
2964 for (i = 0; i < val_count; i++) {
2965 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2966 &v);
2967 if (ret != 0)
2968 goto out;
2969
2970 map->format.format_val(val + (i * val_bytes), v, 0);
2971 }
2972 }
2973
2974 out:
2975 map->unlock(map->lock_arg);
2976
2977 return ret;
2978}
2979EXPORT_SYMBOL_GPL(regmap_raw_read);
2980
2981/**
2982 * regmap_noinc_read(): Read data from a register without incrementing the
2983 * register number
2984 *
2985 * @map: Register map to read from
2986 * @reg: Register to read from
2987 * @val: Pointer to data buffer
2988 * @val_len: Length of output buffer in bytes.
2989 *
2990 * The regmap API usually assumes that bulk read operations will read a
2991 * range of registers. Some devices have certain registers for which a read
2992 * operation read will read from an internal FIFO.
2993 *
2994 * The target register must be volatile but registers after it can be
2995 * completely unrelated cacheable registers.
2996 *
2997 * This will attempt multiple reads as required to read val_len bytes.
2998 *
2999 * A value of zero will be returned on success, a negative errno will be
3000 * returned in error cases.
3001 */
3002int regmap_noinc_read(struct regmap *map, unsigned int reg,
3003 void *val, size_t val_len)
3004{
3005 size_t read_len;
3006 int ret;
3007
3008 if (!map->read)
3009 return -ENOTSUPP;
3010
3011 if (val_len % map->format.val_bytes)
3012 return -EINVAL;
3013 if (!IS_ALIGNED(reg, map->reg_stride))
3014 return -EINVAL;
3015 if (val_len == 0)
3016 return -EINVAL;
3017
3018 map->lock(map->lock_arg);
3019
3020 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
3021 ret = -EINVAL;
3022 goto out_unlock;
3023 }
3024
3025 /*
3026 * We have not defined the FIFO semantics for cache, as the
3027 * cache is just one value deep. Should we return the last
3028 * written value? Just avoid this by always reading the FIFO
3029 * even when using cache. Cache only will not work.
3030 */
3031 if (!map->cache_bypass && map->cache_only) {
3032 ret = -EBUSY;
3033 goto out_unlock;
3034 }
3035
3036 /* Use the accelerated operation if we can */
3037 if (map->bus->reg_noinc_read) {
3038 ret = regmap_noinc_readwrite(map, reg, val, val_len, false);
3039 goto out_unlock;
3040 }
3041
3042 while (val_len) {
3043 if (map->max_raw_read && map->max_raw_read < val_len)
3044 read_len = map->max_raw_read;
3045 else
3046 read_len = val_len;
3047 ret = _regmap_raw_read(map, reg, val, read_len, true);
3048 if (ret)
3049 goto out_unlock;
3050 val = ((u8 *)val) + read_len;
3051 val_len -= read_len;
3052 }
3053
3054out_unlock:
3055 map->unlock(map->lock_arg);
3056 return ret;
3057}
3058EXPORT_SYMBOL_GPL(regmap_noinc_read);
3059
3060/**
3061 * regmap_field_read(): Read a value to a single register field
3062 *
3063 * @field: Register field to read from
3064 * @val: Pointer to store read value
3065 *
3066 * A value of zero will be returned on success, a negative errno will
3067 * be returned in error cases.
3068 */
3069int regmap_field_read(struct regmap_field *field, unsigned int *val)
3070{
3071 int ret;
3072 unsigned int reg_val;
3073 ret = regmap_read(field->regmap, field->reg, ®_val);
3074 if (ret != 0)
3075 return ret;
3076
3077 reg_val &= field->mask;
3078 reg_val >>= field->shift;
3079 *val = reg_val;
3080
3081 return ret;
3082}
3083EXPORT_SYMBOL_GPL(regmap_field_read);
3084
3085/**
3086 * regmap_fields_read() - Read a value to a single register field with port ID
3087 *
3088 * @field: Register field to read from
3089 * @id: port ID
3090 * @val: Pointer to store read value
3091 *
3092 * A value of zero will be returned on success, a negative errno will
3093 * be returned in error cases.
3094 */
3095int regmap_fields_read(struct regmap_field *field, unsigned int id,
3096 unsigned int *val)
3097{
3098 int ret;
3099 unsigned int reg_val;
3100
3101 if (id >= field->id_size)
3102 return -EINVAL;
3103
3104 ret = regmap_read(field->regmap,
3105 field->reg + (field->id_offset * id),
3106 ®_val);
3107 if (ret != 0)
3108 return ret;
3109
3110 reg_val &= field->mask;
3111 reg_val >>= field->shift;
3112 *val = reg_val;
3113
3114 return ret;
3115}
3116EXPORT_SYMBOL_GPL(regmap_fields_read);
3117
3118static int _regmap_bulk_read(struct regmap *map, unsigned int reg,
3119 unsigned int *regs, void *val, size_t val_count)
3120{
3121 u32 *u32 = val;
3122 u16 *u16 = val;
3123 u8 *u8 = val;
3124 int ret, i;
3125
3126 map->lock(map->lock_arg);
3127
3128 for (i = 0; i < val_count; i++) {
3129 unsigned int ival;
3130
3131 if (regs) {
3132 if (!IS_ALIGNED(regs[i], map->reg_stride)) {
3133 ret = -EINVAL;
3134 goto out;
3135 }
3136 ret = _regmap_read(map, regs[i], &ival);
3137 } else {
3138 ret = _regmap_read(map, reg + regmap_get_offset(map, i), &ival);
3139 }
3140 if (ret != 0)
3141 goto out;
3142
3143 switch (map->format.val_bytes) {
3144 case 4:
3145 u32[i] = ival;
3146 break;
3147 case 2:
3148 u16[i] = ival;
3149 break;
3150 case 1:
3151 u8[i] = ival;
3152 break;
3153 default:
3154 ret = -EINVAL;
3155 goto out;
3156 }
3157 }
3158out:
3159 map->unlock(map->lock_arg);
3160 return ret;
3161}
3162
3163/**
3164 * regmap_bulk_read() - Read multiple sequential registers from the device
3165 *
3166 * @map: Register map to read from
3167 * @reg: First register to be read from
3168 * @val: Pointer to store read value, in native register size for device
3169 * @val_count: Number of registers to read
3170 *
3171 * A value of zero will be returned on success, a negative errno will
3172 * be returned in error cases.
3173 */
3174int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3175 size_t val_count)
3176{
3177 int ret, i;
3178 size_t val_bytes = map->format.val_bytes;
3179 bool vol = regmap_volatile_range(map, reg, val_count);
3180
3181 if (!IS_ALIGNED(reg, map->reg_stride))
3182 return -EINVAL;
3183 if (val_count == 0)
3184 return -EINVAL;
3185
3186 if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3187 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3188 if (ret != 0)
3189 return ret;
3190
3191 for (i = 0; i < val_count * val_bytes; i += val_bytes)
3192 map->format.parse_inplace(val + i);
3193 } else {
3194 ret = _regmap_bulk_read(map, reg, NULL, val, val_count);
3195 }
3196 if (!ret)
3197 trace_regmap_bulk_read(map, reg, val, val_bytes * val_count);
3198 return ret;
3199}
3200EXPORT_SYMBOL_GPL(regmap_bulk_read);
3201
3202/**
3203 * regmap_multi_reg_read() - Read multiple non-sequential registers from the device
3204 *
3205 * @map: Register map to read from
3206 * @regs: Array of registers to read from
3207 * @val: Pointer to store read value, in native register size for device
3208 * @val_count: Number of registers to read
3209 *
3210 * A value of zero will be returned on success, a negative errno will
3211 * be returned in error cases.
3212 */
3213int regmap_multi_reg_read(struct regmap *map, unsigned int *regs, void *val,
3214 size_t val_count)
3215{
3216 if (val_count == 0)
3217 return -EINVAL;
3218
3219 return _regmap_bulk_read(map, 0, regs, val, val_count);
3220}
3221EXPORT_SYMBOL_GPL(regmap_multi_reg_read);
3222
3223static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3224 unsigned int mask, unsigned int val,
3225 bool *change, bool force_write)
3226{
3227 int ret;
3228 unsigned int tmp, orig;
3229
3230 if (change)
3231 *change = false;
3232
3233 if (regmap_volatile(map, reg) && map->reg_update_bits) {
3234 reg = regmap_reg_addr(map, reg);
3235 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3236 if (ret == 0 && change)
3237 *change = true;
3238 } else {
3239 ret = _regmap_read(map, reg, &orig);
3240 if (ret != 0)
3241 return ret;
3242
3243 tmp = orig & ~mask;
3244 tmp |= val & mask;
3245
3246 if (force_write || (tmp != orig) || map->force_write_field) {
3247 ret = _regmap_write(map, reg, tmp);
3248 if (ret == 0 && change)
3249 *change = true;
3250 }
3251 }
3252
3253 return ret;
3254}
3255
3256/**
3257 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3258 *
3259 * @map: Register map to update
3260 * @reg: Register to update
3261 * @mask: Bitmask to change
3262 * @val: New value for bitmask
3263 * @change: Boolean indicating if a write was done
3264 * @async: Boolean indicating asynchronously
3265 * @force: Boolean indicating use force update
3266 *
3267 * Perform a read/modify/write cycle on a register map with change, async, force
3268 * options.
3269 *
3270 * If async is true:
3271 *
3272 * With most buses the read must be done synchronously so this is most useful
3273 * for devices with a cache which do not need to interact with the hardware to
3274 * determine the current register value.
3275 *
3276 * Returns zero for success, a negative number on error.
3277 */
3278int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3279 unsigned int mask, unsigned int val,
3280 bool *change, bool async, bool force)
3281{
3282 int ret;
3283
3284 map->lock(map->lock_arg);
3285
3286 map->async = async;
3287
3288 ret = _regmap_update_bits(map, reg, mask, val, change, force);
3289
3290 map->async = false;
3291
3292 map->unlock(map->lock_arg);
3293
3294 return ret;
3295}
3296EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3297
3298/**
3299 * regmap_test_bits() - Check if all specified bits are set in a register.
3300 *
3301 * @map: Register map to operate on
3302 * @reg: Register to read from
3303 * @bits: Bits to test
3304 *
3305 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3306 * bits are set and a negative error number if the underlying regmap_read()
3307 * fails.
3308 */
3309int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3310{
3311 unsigned int val, ret;
3312
3313 ret = regmap_read(map, reg, &val);
3314 if (ret)
3315 return ret;
3316
3317 return (val & bits) == bits;
3318}
3319EXPORT_SYMBOL_GPL(regmap_test_bits);
3320
3321void regmap_async_complete_cb(struct regmap_async *async, int ret)
3322{
3323 struct regmap *map = async->map;
3324 bool wake;
3325
3326 trace_regmap_async_io_complete(map);
3327
3328 spin_lock(&map->async_lock);
3329 list_move(&async->list, &map->async_free);
3330 wake = list_empty(&map->async_list);
3331
3332 if (ret != 0)
3333 map->async_ret = ret;
3334
3335 spin_unlock(&map->async_lock);
3336
3337 if (wake)
3338 wake_up(&map->async_waitq);
3339}
3340EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3341
3342static int regmap_async_is_done(struct regmap *map)
3343{
3344 unsigned long flags;
3345 int ret;
3346
3347 spin_lock_irqsave(&map->async_lock, flags);
3348 ret = list_empty(&map->async_list);
3349 spin_unlock_irqrestore(&map->async_lock, flags);
3350
3351 return ret;
3352}
3353
3354/**
3355 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3356 *
3357 * @map: Map to operate on.
3358 *
3359 * Blocks until any pending asynchronous I/O has completed. Returns
3360 * an error code for any failed I/O operations.
3361 */
3362int regmap_async_complete(struct regmap *map)
3363{
3364 unsigned long flags;
3365 int ret;
3366
3367 /* Nothing to do with no async support */
3368 if (!map->bus || !map->bus->async_write)
3369 return 0;
3370
3371 trace_regmap_async_complete_start(map);
3372
3373 wait_event(map->async_waitq, regmap_async_is_done(map));
3374
3375 spin_lock_irqsave(&map->async_lock, flags);
3376 ret = map->async_ret;
3377 map->async_ret = 0;
3378 spin_unlock_irqrestore(&map->async_lock, flags);
3379
3380 trace_regmap_async_complete_done(map);
3381
3382 return ret;
3383}
3384EXPORT_SYMBOL_GPL(regmap_async_complete);
3385
3386/**
3387 * regmap_register_patch - Register and apply register updates to be applied
3388 * on device initialistion
3389 *
3390 * @map: Register map to apply updates to.
3391 * @regs: Values to update.
3392 * @num_regs: Number of entries in regs.
3393 *
3394 * Register a set of register updates to be applied to the device
3395 * whenever the device registers are synchronised with the cache and
3396 * apply them immediately. Typically this is used to apply
3397 * corrections to be applied to the device defaults on startup, such
3398 * as the updates some vendors provide to undocumented registers.
3399 *
3400 * The caller must ensure that this function cannot be called
3401 * concurrently with either itself or regcache_sync().
3402 */
3403int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3404 int num_regs)
3405{
3406 struct reg_sequence *p;
3407 int ret;
3408 bool bypass;
3409
3410 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3411 num_regs))
3412 return 0;
3413
3414 p = krealloc(map->patch,
3415 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3416 GFP_KERNEL);
3417 if (p) {
3418 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3419 map->patch = p;
3420 map->patch_regs += num_regs;
3421 } else {
3422 return -ENOMEM;
3423 }
3424
3425 map->lock(map->lock_arg);
3426
3427 bypass = map->cache_bypass;
3428
3429 map->cache_bypass = true;
3430 map->async = true;
3431
3432 ret = _regmap_multi_reg_write(map, regs, num_regs);
3433
3434 map->async = false;
3435 map->cache_bypass = bypass;
3436
3437 map->unlock(map->lock_arg);
3438
3439 regmap_async_complete(map);
3440
3441 return ret;
3442}
3443EXPORT_SYMBOL_GPL(regmap_register_patch);
3444
3445/**
3446 * regmap_get_val_bytes() - Report the size of a register value
3447 *
3448 * @map: Register map to operate on.
3449 *
3450 * Report the size of a register value, mainly intended to for use by
3451 * generic infrastructure built on top of regmap.
3452 */
3453int regmap_get_val_bytes(struct regmap *map)
3454{
3455 if (map->format.format_write)
3456 return -EINVAL;
3457
3458 return map->format.val_bytes;
3459}
3460EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3461
3462/**
3463 * regmap_get_max_register() - Report the max register value
3464 *
3465 * @map: Register map to operate on.
3466 *
3467 * Report the max register value, mainly intended to for use by
3468 * generic infrastructure built on top of regmap.
3469 */
3470int regmap_get_max_register(struct regmap *map)
3471{
3472 return map->max_register_is_set ? map->max_register : -EINVAL;
3473}
3474EXPORT_SYMBOL_GPL(regmap_get_max_register);
3475
3476/**
3477 * regmap_get_reg_stride() - Report the register address stride
3478 *
3479 * @map: Register map to operate on.
3480 *
3481 * Report the register address stride, mainly intended to for use by
3482 * generic infrastructure built on top of regmap.
3483 */
3484int regmap_get_reg_stride(struct regmap *map)
3485{
3486 return map->reg_stride;
3487}
3488EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3489
3490/**
3491 * regmap_might_sleep() - Returns whether a regmap access might sleep.
3492 *
3493 * @map: Register map to operate on.
3494 *
3495 * Returns true if an access to the register might sleep, else false.
3496 */
3497bool regmap_might_sleep(struct regmap *map)
3498{
3499 return map->can_sleep;
3500}
3501EXPORT_SYMBOL_GPL(regmap_might_sleep);
3502
3503int regmap_parse_val(struct regmap *map, const void *buf,
3504 unsigned int *val)
3505{
3506 if (!map->format.parse_val)
3507 return -EINVAL;
3508
3509 *val = map->format.parse_val(buf);
3510
3511 return 0;
3512}
3513EXPORT_SYMBOL_GPL(regmap_parse_val);
3514
3515static int __init regmap_initcall(void)
3516{
3517 regmap_debugfs_initcall();
3518
3519 return 0;
3520}
3521postcore_initcall(regmap_initcall);