Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Arch specific cpu topology information
  4 *
  5 * Copyright (C) 2016, ARM Ltd.
  6 * Written by: Juri Lelli, ARM Ltd.
  7 */
  8
  9#include <linux/acpi.h>
 10#include <linux/cacheinfo.h>
 11#include <linux/cleanup.h>
 12#include <linux/cpu.h>
 13#include <linux/cpufreq.h>
 14#include <linux/device.h>
 15#include <linux/of.h>
 16#include <linux/slab.h>
 17#include <linux/sched/topology.h>
 18#include <linux/cpuset.h>
 19#include <linux/cpumask.h>
 20#include <linux/init.h>
 21#include <linux/rcupdate.h>
 22#include <linux/sched.h>
 23#include <linux/units.h>
 24
 25#define CREATE_TRACE_POINTS
 26#include <trace/events/hw_pressure.h>
 27
 28static DEFINE_PER_CPU(struct scale_freq_data __rcu *, sft_data);
 29static struct cpumask scale_freq_counters_mask;
 30static bool scale_freq_invariant;
 31DEFINE_PER_CPU(unsigned long, capacity_freq_ref) = 1;
 32EXPORT_PER_CPU_SYMBOL_GPL(capacity_freq_ref);
 33
 34static bool supports_scale_freq_counters(const struct cpumask *cpus)
 35{
 36	return cpumask_subset(cpus, &scale_freq_counters_mask);
 37}
 38
 39bool topology_scale_freq_invariant(void)
 40{
 41	return cpufreq_supports_freq_invariance() ||
 42	       supports_scale_freq_counters(cpu_online_mask);
 43}
 44
 45static void update_scale_freq_invariant(bool status)
 46{
 47	if (scale_freq_invariant == status)
 48		return;
 49
 50	/*
 51	 * Task scheduler behavior depends on frequency invariance support,
 52	 * either cpufreq or counter driven. If the support status changes as
 53	 * a result of counter initialisation and use, retrigger the build of
 54	 * scheduling domains to ensure the information is propagated properly.
 55	 */
 56	if (topology_scale_freq_invariant() == status) {
 57		scale_freq_invariant = status;
 58		rebuild_sched_domains_energy();
 59	}
 60}
 61
 62void topology_set_scale_freq_source(struct scale_freq_data *data,
 63				    const struct cpumask *cpus)
 64{
 65	struct scale_freq_data *sfd;
 66	int cpu;
 67
 68	/*
 69	 * Avoid calling rebuild_sched_domains() unnecessarily if FIE is
 70	 * supported by cpufreq.
 71	 */
 72	if (cpumask_empty(&scale_freq_counters_mask))
 73		scale_freq_invariant = topology_scale_freq_invariant();
 74
 75	rcu_read_lock();
 76
 77	for_each_cpu(cpu, cpus) {
 78		sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
 79
 80		/* Use ARCH provided counters whenever possible */
 81		if (!sfd || sfd->source != SCALE_FREQ_SOURCE_ARCH) {
 82			rcu_assign_pointer(per_cpu(sft_data, cpu), data);
 83			cpumask_set_cpu(cpu, &scale_freq_counters_mask);
 84		}
 85	}
 86
 87	rcu_read_unlock();
 88
 89	update_scale_freq_invariant(true);
 90}
 91EXPORT_SYMBOL_GPL(topology_set_scale_freq_source);
 92
 93void topology_clear_scale_freq_source(enum scale_freq_source source,
 94				      const struct cpumask *cpus)
 95{
 96	struct scale_freq_data *sfd;
 97	int cpu;
 98
 99	rcu_read_lock();
100
101	for_each_cpu(cpu, cpus) {
102		sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
103
104		if (sfd && sfd->source == source) {
105			rcu_assign_pointer(per_cpu(sft_data, cpu), NULL);
106			cpumask_clear_cpu(cpu, &scale_freq_counters_mask);
107		}
108	}
109
110	rcu_read_unlock();
111
112	/*
113	 * Make sure all references to previous sft_data are dropped to avoid
114	 * use-after-free races.
115	 */
116	synchronize_rcu();
117
118	update_scale_freq_invariant(false);
119}
120EXPORT_SYMBOL_GPL(topology_clear_scale_freq_source);
121
122void topology_scale_freq_tick(void)
123{
124	struct scale_freq_data *sfd = rcu_dereference_sched(*this_cpu_ptr(&sft_data));
125
126	if (sfd)
127		sfd->set_freq_scale();
128}
129
130DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
131EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale);
132
133void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq,
134			     unsigned long max_freq)
135{
136	unsigned long scale;
137	int i;
138
139	if (WARN_ON_ONCE(!cur_freq || !max_freq))
140		return;
141
142	/*
143	 * If the use of counters for FIE is enabled, just return as we don't
144	 * want to update the scale factor with information from CPUFREQ.
145	 * Instead the scale factor will be updated from arch_scale_freq_tick.
146	 */
147	if (supports_scale_freq_counters(cpus))
148		return;
149
150	scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
151
152	for_each_cpu(i, cpus)
153		per_cpu(arch_freq_scale, i) = scale;
154}
155
156DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
157EXPORT_PER_CPU_SYMBOL_GPL(cpu_scale);
158
159void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
160{
161	per_cpu(cpu_scale, cpu) = capacity;
162}
163
164DEFINE_PER_CPU(unsigned long, hw_pressure);
165
166/**
167 * topology_update_hw_pressure() - Update HW pressure for CPUs
168 * @cpus        : The related CPUs for which capacity has been reduced
169 * @capped_freq : The maximum allowed frequency that CPUs can run at
170 *
171 * Update the value of HW pressure for all @cpus in the mask. The
172 * cpumask should include all (online+offline) affected CPUs, to avoid
173 * operating on stale data when hot-plug is used for some CPUs. The
174 * @capped_freq reflects the currently allowed max CPUs frequency due to
175 * HW capping. It might be also a boost frequency value, which is bigger
176 * than the internal 'capacity_freq_ref' max frequency. In such case the
177 * pressure value should simply be removed, since this is an indication that
178 * there is no HW throttling. The @capped_freq must be provided in kHz.
179 */
180void topology_update_hw_pressure(const struct cpumask *cpus,
181				      unsigned long capped_freq)
182{
183	unsigned long max_capacity, capacity, pressure;
184	u32 max_freq;
185	int cpu;
186
187	cpu = cpumask_first(cpus);
188	max_capacity = arch_scale_cpu_capacity(cpu);
189	max_freq = arch_scale_freq_ref(cpu);
190
191	/*
192	 * Handle properly the boost frequencies, which should simply clean
193	 * the HW pressure value.
194	 */
195	if (max_freq <= capped_freq)
196		capacity = max_capacity;
197	else
198		capacity = mult_frac(max_capacity, capped_freq, max_freq);
199
200	pressure = max_capacity - capacity;
201
202	trace_hw_pressure_update(cpu, pressure);
203
204	for_each_cpu(cpu, cpus)
205		WRITE_ONCE(per_cpu(hw_pressure, cpu), pressure);
206}
207EXPORT_SYMBOL_GPL(topology_update_hw_pressure);
208
209static ssize_t cpu_capacity_show(struct device *dev,
210				 struct device_attribute *attr,
211				 char *buf)
212{
213	struct cpu *cpu = container_of(dev, struct cpu, dev);
214
215	return sysfs_emit(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id));
216}
217
218static void update_topology_flags_workfn(struct work_struct *work);
219static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
220
221static DEVICE_ATTR_RO(cpu_capacity);
222
223static int cpu_capacity_sysctl_add(unsigned int cpu)
224{
225	struct device *cpu_dev = get_cpu_device(cpu);
226
227	if (!cpu_dev)
228		return -ENOENT;
229
230	device_create_file(cpu_dev, &dev_attr_cpu_capacity);
231
232	return 0;
233}
234
235static int cpu_capacity_sysctl_remove(unsigned int cpu)
236{
237	struct device *cpu_dev = get_cpu_device(cpu);
238
239	if (!cpu_dev)
240		return -ENOENT;
241
242	device_remove_file(cpu_dev, &dev_attr_cpu_capacity);
243
244	return 0;
245}
246
247static int register_cpu_capacity_sysctl(void)
248{
249	cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "topology/cpu-capacity",
250			  cpu_capacity_sysctl_add, cpu_capacity_sysctl_remove);
251
252	return 0;
253}
254subsys_initcall(register_cpu_capacity_sysctl);
255
256static int update_topology;
257
258int topology_update_cpu_topology(void)
259{
260	return update_topology;
261}
262
263/*
264 * Updating the sched_domains can't be done directly from cpufreq callbacks
265 * due to locking, so queue the work for later.
266 */
267static void update_topology_flags_workfn(struct work_struct *work)
268{
269	update_topology = 1;
270	rebuild_sched_domains();
271	pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
272	update_topology = 0;
273}
274
275static u32 *raw_capacity;
276
277static int free_raw_capacity(void)
278{
279	kfree(raw_capacity);
280	raw_capacity = NULL;
281
282	return 0;
283}
284
285void topology_normalize_cpu_scale(void)
286{
287	u64 capacity;
288	u64 capacity_scale;
289	int cpu;
290
291	if (!raw_capacity)
292		return;
293
294	capacity_scale = 1;
295	for_each_possible_cpu(cpu) {
296		capacity = raw_capacity[cpu] * per_cpu(capacity_freq_ref, cpu);
297		capacity_scale = max(capacity, capacity_scale);
298	}
299
300	pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale);
301	for_each_possible_cpu(cpu) {
302		capacity = raw_capacity[cpu] * per_cpu(capacity_freq_ref, cpu);
303		capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
304			capacity_scale);
305		topology_set_cpu_scale(cpu, capacity);
306		pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
307			cpu, topology_get_cpu_scale(cpu));
308	}
309}
310
311bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
312{
313	struct clk *cpu_clk;
314	static bool cap_parsing_failed;
315	int ret;
316	u32 cpu_capacity;
317
318	if (cap_parsing_failed)
319		return false;
320
321	ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
322				   &cpu_capacity);
323	if (!ret) {
324		if (!raw_capacity) {
325			raw_capacity = kcalloc(num_possible_cpus(),
326					       sizeof(*raw_capacity),
327					       GFP_KERNEL);
328			if (!raw_capacity) {
329				cap_parsing_failed = true;
330				return false;
331			}
332		}
333		raw_capacity[cpu] = cpu_capacity;
334		pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
335			cpu_node, raw_capacity[cpu]);
336
337		/*
338		 * Update capacity_freq_ref for calculating early boot CPU capacities.
339		 * For non-clk CPU DVFS mechanism, there's no way to get the
340		 * frequency value now, assuming they are running at the same
341		 * frequency (by keeping the initial capacity_freq_ref value).
342		 */
343		cpu_clk = of_clk_get(cpu_node, 0);
344		if (!PTR_ERR_OR_ZERO(cpu_clk)) {
345			per_cpu(capacity_freq_ref, cpu) =
346				clk_get_rate(cpu_clk) / HZ_PER_KHZ;
347			clk_put(cpu_clk);
348		}
349	} else {
350		if (raw_capacity) {
351			pr_err("cpu_capacity: missing %pOF raw capacity\n",
352				cpu_node);
353			pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
354		}
355		cap_parsing_failed = true;
356		free_raw_capacity();
357	}
358
359	return !ret;
360}
361
362void __weak freq_inv_set_max_ratio(int cpu, u64 max_rate)
363{
364}
365
366#ifdef CONFIG_ACPI_CPPC_LIB
367#include <acpi/cppc_acpi.h>
368
369static inline void topology_init_cpu_capacity_cppc(void)
370{
371	u64 capacity, capacity_scale = 0;
372	struct cppc_perf_caps perf_caps;
373	int cpu;
374
375	if (likely(!acpi_cpc_valid()))
376		return;
377
378	raw_capacity = kcalloc(num_possible_cpus(), sizeof(*raw_capacity),
379			       GFP_KERNEL);
380	if (!raw_capacity)
381		return;
382
383	for_each_possible_cpu(cpu) {
384		if (!cppc_get_perf_caps(cpu, &perf_caps) &&
385		    (perf_caps.highest_perf >= perf_caps.nominal_perf) &&
386		    (perf_caps.highest_perf >= perf_caps.lowest_perf)) {
387			raw_capacity[cpu] = perf_caps.highest_perf;
388			capacity_scale = max_t(u64, capacity_scale, raw_capacity[cpu]);
389
390			per_cpu(capacity_freq_ref, cpu) = cppc_perf_to_khz(&perf_caps, raw_capacity[cpu]);
391
392			pr_debug("cpu_capacity: CPU%d cpu_capacity=%u (raw).\n",
393				 cpu, raw_capacity[cpu]);
394			continue;
395		}
396
397		pr_err("cpu_capacity: CPU%d missing/invalid highest performance.\n", cpu);
398		pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
399		goto exit;
400	}
401
402	for_each_possible_cpu(cpu) {
403		freq_inv_set_max_ratio(cpu,
404				       per_cpu(capacity_freq_ref, cpu) * HZ_PER_KHZ);
405
406		capacity = raw_capacity[cpu];
407		capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
408				     capacity_scale);
409		topology_set_cpu_scale(cpu, capacity);
410		pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
411			cpu, topology_get_cpu_scale(cpu));
412	}
413
414	schedule_work(&update_topology_flags_work);
415	pr_debug("cpu_capacity: cpu_capacity initialization done\n");
416
417exit:
418	free_raw_capacity();
419}
420void acpi_processor_init_invariance_cppc(void)
421{
422	topology_init_cpu_capacity_cppc();
423}
424#endif
425
426#ifdef CONFIG_CPU_FREQ
427static cpumask_var_t cpus_to_visit;
428static void parsing_done_workfn(struct work_struct *work);
429static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
430
431static int
432init_cpu_capacity_callback(struct notifier_block *nb,
433			   unsigned long val,
434			   void *data)
435{
436	struct cpufreq_policy *policy = data;
437	int cpu;
438
439	if (val != CPUFREQ_CREATE_POLICY)
440		return 0;
441
442	pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
443		 cpumask_pr_args(policy->related_cpus),
444		 cpumask_pr_args(cpus_to_visit));
445
446	cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
447
448	for_each_cpu(cpu, policy->related_cpus) {
449		per_cpu(capacity_freq_ref, cpu) = policy->cpuinfo.max_freq;
450		freq_inv_set_max_ratio(cpu,
451				       per_cpu(capacity_freq_ref, cpu) * HZ_PER_KHZ);
452	}
453
454	if (cpumask_empty(cpus_to_visit)) {
455		if (raw_capacity) {
456			topology_normalize_cpu_scale();
457			schedule_work(&update_topology_flags_work);
458			free_raw_capacity();
459		}
460		pr_debug("cpu_capacity: parsing done\n");
461		schedule_work(&parsing_done_work);
462	}
463
464	return 0;
465}
466
467static struct notifier_block init_cpu_capacity_notifier = {
468	.notifier_call = init_cpu_capacity_callback,
469};
470
471static int __init register_cpufreq_notifier(void)
472{
473	int ret;
474
475	/*
476	 * On ACPI-based systems skip registering cpufreq notifier as cpufreq
477	 * information is not needed for cpu capacity initialization.
478	 */
479	if (!acpi_disabled)
480		return -EINVAL;
481
482	if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL))
483		return -ENOMEM;
484
485	cpumask_copy(cpus_to_visit, cpu_possible_mask);
486
487	ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
488					CPUFREQ_POLICY_NOTIFIER);
489
490	if (ret)
491		free_cpumask_var(cpus_to_visit);
492
493	return ret;
494}
495core_initcall(register_cpufreq_notifier);
496
497static void parsing_done_workfn(struct work_struct *work)
498{
499	cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
500					 CPUFREQ_POLICY_NOTIFIER);
501	free_cpumask_var(cpus_to_visit);
502}
503
504#else
505core_initcall(free_raw_capacity);
506#endif
507
508#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
509/*
510 * This function returns the logic cpu number of the node.
511 * There are basically three kinds of return values:
512 * (1) logic cpu number which is > 0.
513 * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but
514 * there is no possible logical CPU in the kernel to match. This happens
515 * when CONFIG_NR_CPUS is configure to be smaller than the number of
516 * CPU nodes in DT. We need to just ignore this case.
517 * (3) -1 if the node does not exist in the device tree
518 */
519static int __init get_cpu_for_node(struct device_node *node)
520{
521	int cpu;
522	struct device_node *cpu_node __free(device_node) =
523		of_parse_phandle(node, "cpu", 0);
524
525	if (!cpu_node)
526		return -1;
527
528	cpu = of_cpu_node_to_id(cpu_node);
529	if (cpu >= 0)
530		topology_parse_cpu_capacity(cpu_node, cpu);
531	else
532		pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n",
533			cpu_node, cpumask_pr_args(cpu_possible_mask));
534
535	return cpu;
536}
537
538static int __init parse_core(struct device_node *core, int package_id,
539			     int cluster_id, int core_id)
540{
541	char name[20];
542	bool leaf = true;
543	int i = 0;
544	int cpu;
545
546	do {
547		snprintf(name, sizeof(name), "thread%d", i);
548		struct device_node *t __free(device_node) =
549			of_get_child_by_name(core, name);
550
551		if (!t)
552			break;
553
554		leaf = false;
555		cpu = get_cpu_for_node(t);
556		if (cpu >= 0) {
557			cpu_topology[cpu].package_id = package_id;
558			cpu_topology[cpu].cluster_id = cluster_id;
559			cpu_topology[cpu].core_id = core_id;
560			cpu_topology[cpu].thread_id = i;
561		} else if (cpu != -ENODEV) {
562			pr_err("%pOF: Can't get CPU for thread\n", t);
563			return -EINVAL;
564		}
565		i++;
566	} while (1);
567
568	cpu = get_cpu_for_node(core);
569	if (cpu >= 0) {
570		if (!leaf) {
571			pr_err("%pOF: Core has both threads and CPU\n",
572			       core);
573			return -EINVAL;
574		}
575
576		cpu_topology[cpu].package_id = package_id;
577		cpu_topology[cpu].cluster_id = cluster_id;
578		cpu_topology[cpu].core_id = core_id;
579	} else if (leaf && cpu != -ENODEV) {
580		pr_err("%pOF: Can't get CPU for leaf core\n", core);
581		return -EINVAL;
582	}
583
584	return 0;
585}
586
587static int __init parse_cluster(struct device_node *cluster, int package_id,
588				int cluster_id, int depth)
589{
590	char name[20];
591	bool leaf = true;
592	bool has_cores = false;
593	int core_id = 0;
594	int i, ret;
595
596	/*
597	 * First check for child clusters; we currently ignore any
598	 * information about the nesting of clusters and present the
599	 * scheduler with a flat list of them.
600	 */
601	i = 0;
602	do {
603		snprintf(name, sizeof(name), "cluster%d", i);
604		struct device_node *c __free(device_node) =
605			of_get_child_by_name(cluster, name);
606
607		if (!c)
608			break;
609
610		leaf = false;
611		ret = parse_cluster(c, package_id, i, depth + 1);
612		if (depth > 0)
613			pr_warn("Topology for clusters of clusters not yet supported\n");
614		if (ret != 0)
615			return ret;
616		i++;
617	} while (1);
618
619	/* Now check for cores */
620	i = 0;
621	do {
622		snprintf(name, sizeof(name), "core%d", i);
623		struct device_node *c __free(device_node) =
624			of_get_child_by_name(cluster, name);
625
626		if (!c)
627			break;
628
629		has_cores = true;
630
631		if (depth == 0) {
632			pr_err("%pOF: cpu-map children should be clusters\n", c);
633			return -EINVAL;
634		}
635
636		if (leaf) {
637			ret = parse_core(c, package_id, cluster_id, core_id++);
638			if (ret != 0)
639				return ret;
640		} else {
641			pr_err("%pOF: Non-leaf cluster with core %s\n",
642			       cluster, name);
643			return -EINVAL;
644		}
645
646		i++;
647	} while (1);
648
649	if (leaf && !has_cores)
650		pr_warn("%pOF: empty cluster\n", cluster);
651
652	return 0;
653}
654
655static int __init parse_socket(struct device_node *socket)
656{
657	char name[20];
658	bool has_socket = false;
659	int package_id = 0, ret;
660
661	do {
662		snprintf(name, sizeof(name), "socket%d", package_id);
663		struct device_node *c __free(device_node) =
664			of_get_child_by_name(socket, name);
665
666		if (!c)
667			break;
668
669		has_socket = true;
670		ret = parse_cluster(c, package_id, -1, 0);
671		if (ret != 0)
672			return ret;
673
674		package_id++;
675	} while (1);
676
677	if (!has_socket)
678		ret = parse_cluster(socket, 0, -1, 0);
679
680	return ret;
681}
682
683static int __init parse_dt_topology(void)
684{
685	int ret = 0;
686	int cpu;
687	struct device_node *cn __free(device_node) =
688		of_find_node_by_path("/cpus");
689
690	if (!cn) {
691		pr_err("No CPU information found in DT\n");
692		return 0;
693	}
694
695	/*
696	 * When topology is provided cpu-map is essentially a root
697	 * cluster with restricted subnodes.
698	 */
699	struct device_node *map __free(device_node) =
700		of_get_child_by_name(cn, "cpu-map");
701
702	if (!map)
703		return ret;
704
705	ret = parse_socket(map);
706	if (ret != 0)
707		return ret;
708
709	topology_normalize_cpu_scale();
710
711	/*
712	 * Check that all cores are in the topology; the SMP code will
713	 * only mark cores described in the DT as possible.
714	 */
715	for_each_possible_cpu(cpu)
716		if (cpu_topology[cpu].package_id < 0) {
717			return -EINVAL;
718		}
719
720	return ret;
721}
722#endif
723
724/*
725 * cpu topology table
726 */
727struct cpu_topology cpu_topology[NR_CPUS];
728EXPORT_SYMBOL_GPL(cpu_topology);
729
730const struct cpumask *cpu_coregroup_mask(int cpu)
731{
732	const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));
733
734	/* Find the smaller of NUMA, core or LLC siblings */
735	if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
736		/* not numa in package, lets use the package siblings */
737		core_mask = &cpu_topology[cpu].core_sibling;
738	}
739
740	if (last_level_cache_is_valid(cpu)) {
741		if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
742			core_mask = &cpu_topology[cpu].llc_sibling;
743	}
744
745	/*
746	 * For systems with no shared cpu-side LLC but with clusters defined,
747	 * extend core_mask to cluster_siblings. The sched domain builder will
748	 * then remove MC as redundant with CLS if SCHED_CLUSTER is enabled.
749	 */
750	if (IS_ENABLED(CONFIG_SCHED_CLUSTER) &&
751	    cpumask_subset(core_mask, &cpu_topology[cpu].cluster_sibling))
752		core_mask = &cpu_topology[cpu].cluster_sibling;
753
754	return core_mask;
755}
756
757const struct cpumask *cpu_clustergroup_mask(int cpu)
758{
759	/*
760	 * Forbid cpu_clustergroup_mask() to span more or the same CPUs as
761	 * cpu_coregroup_mask().
762	 */
763	if (cpumask_subset(cpu_coregroup_mask(cpu),
764			   &cpu_topology[cpu].cluster_sibling))
765		return topology_sibling_cpumask(cpu);
766
767	return &cpu_topology[cpu].cluster_sibling;
768}
769
770void update_siblings_masks(unsigned int cpuid)
771{
772	struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
773	int cpu, ret;
774
775	ret = detect_cache_attributes(cpuid);
776	if (ret && ret != -ENOENT)
777		pr_info("Early cacheinfo allocation failed, ret = %d\n", ret);
778
779	/* update core and thread sibling masks */
780	for_each_online_cpu(cpu) {
781		cpu_topo = &cpu_topology[cpu];
782
783		if (last_level_cache_is_shared(cpu, cpuid)) {
784			cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
785			cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
786		}
787
788		if (cpuid_topo->package_id != cpu_topo->package_id)
789			continue;
790
791		cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
792		cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
793
794		if (cpuid_topo->cluster_id != cpu_topo->cluster_id)
795			continue;
796
797		if (cpuid_topo->cluster_id >= 0) {
798			cpumask_set_cpu(cpu, &cpuid_topo->cluster_sibling);
799			cpumask_set_cpu(cpuid, &cpu_topo->cluster_sibling);
800		}
801
802		if (cpuid_topo->core_id != cpu_topo->core_id)
803			continue;
804
805		cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
806		cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
807	}
808}
809
810static void clear_cpu_topology(int cpu)
811{
812	struct cpu_topology *cpu_topo = &cpu_topology[cpu];
813
814	cpumask_clear(&cpu_topo->llc_sibling);
815	cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);
816
817	cpumask_clear(&cpu_topo->cluster_sibling);
818	cpumask_set_cpu(cpu, &cpu_topo->cluster_sibling);
819
820	cpumask_clear(&cpu_topo->core_sibling);
821	cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
822	cpumask_clear(&cpu_topo->thread_sibling);
823	cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
824}
825
826void __init reset_cpu_topology(void)
827{
828	unsigned int cpu;
829
830	for_each_possible_cpu(cpu) {
831		struct cpu_topology *cpu_topo = &cpu_topology[cpu];
832
833		cpu_topo->thread_id = -1;
834		cpu_topo->core_id = -1;
835		cpu_topo->cluster_id = -1;
836		cpu_topo->package_id = -1;
837
838		clear_cpu_topology(cpu);
839	}
840}
841
842void remove_cpu_topology(unsigned int cpu)
843{
844	int sibling;
845
846	for_each_cpu(sibling, topology_core_cpumask(cpu))
847		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
848	for_each_cpu(sibling, topology_sibling_cpumask(cpu))
849		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
850	for_each_cpu(sibling, topology_cluster_cpumask(cpu))
851		cpumask_clear_cpu(cpu, topology_cluster_cpumask(sibling));
852	for_each_cpu(sibling, topology_llc_cpumask(cpu))
853		cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));
854
855	clear_cpu_topology(cpu);
856}
857
858__weak int __init parse_acpi_topology(void)
859{
860	return 0;
861}
862
863#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
864void __init init_cpu_topology(void)
865{
866	int cpu, ret;
867
868	reset_cpu_topology();
869	ret = parse_acpi_topology();
870	if (!ret)
871		ret = of_have_populated_dt() && parse_dt_topology();
872
873	if (ret) {
874		/*
875		 * Discard anything that was parsed if we hit an error so we
876		 * don't use partial information. But do not return yet to give
877		 * arch-specific early cache level detection a chance to run.
878		 */
879		reset_cpu_topology();
880	}
881
882	for_each_possible_cpu(cpu) {
883		ret = fetch_cache_info(cpu);
884		if (!ret)
885			continue;
886		else if (ret != -ENOENT)
887			pr_err("Early cacheinfo failed, ret = %d\n", ret);
888		return;
889	}
890}
891
892void store_cpu_topology(unsigned int cpuid)
893{
894	struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
895
896	if (cpuid_topo->package_id != -1)
897		goto topology_populated;
898
899	cpuid_topo->thread_id = -1;
900	cpuid_topo->core_id = cpuid;
901	cpuid_topo->package_id = cpu_to_node(cpuid);
902
903	pr_debug("CPU%u: package %d core %d thread %d\n",
904		 cpuid, cpuid_topo->package_id, cpuid_topo->core_id,
905		 cpuid_topo->thread_id);
906
907topology_populated:
908	update_siblings_masks(cpuid);
909}
910#endif