Linux Audio

Check our new training course

Loading...
v3.15
 
 
 
 
 
 
 
 
  1#include <linux/kernel.h>
  2#include <linux/module.h>
  3#include <linux/percpu_ida.h>
  4
  5#include <linux/blk-mq.h>
  6#include "blk.h"
  7#include "blk-mq.h"
  8#include "blk-mq-tag.h"
  9
 10/*
 11 * Per tagged queue (tag address space) map
 12 */
 13struct blk_mq_tags {
 14	unsigned int nr_tags;
 15	unsigned int nr_reserved_tags;
 16	unsigned int nr_batch_move;
 17	unsigned int nr_max_cache;
 18
 19	struct percpu_ida free_tags;
 20	struct percpu_ida reserved_tags;
 21};
 
 
 22
 23void blk_mq_wait_for_tags(struct blk_mq_tags *tags)
 
 
 
 
 
 
 24{
 25	int tag = blk_mq_get_tag(tags, __GFP_WAIT, false);
 26	blk_mq_put_tag(tags, tag);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 27}
 28
 29bool blk_mq_has_free_tags(struct blk_mq_tags *tags)
 
 
 
 30{
 31	return !tags ||
 32		percpu_ida_free_tags(&tags->free_tags, nr_cpu_ids) != 0;
 
 33}
 34
 35static unsigned int __blk_mq_get_tag(struct blk_mq_tags *tags, gfp_t gfp)
 
 
 
 
 36{
 37	int tag;
 
 38
 39	tag = percpu_ida_alloc(&tags->free_tags, (gfp & __GFP_WAIT) ?
 40			       TASK_UNINTERRUPTIBLE : TASK_RUNNING);
 41	if (tag < 0)
 42		return BLK_MQ_TAG_FAIL;
 43	return tag + tags->nr_reserved_tags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 44}
 45
 46static unsigned int __blk_mq_get_reserved_tag(struct blk_mq_tags *tags,
 47					      gfp_t gfp)
 48{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 49	int tag;
 50
 51	if (unlikely(!tags->nr_reserved_tags)) {
 52		WARN_ON_ONCE(1);
 53		return BLK_MQ_TAG_FAIL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 54	}
 
 
 55
 56	tag = percpu_ida_alloc(&tags->reserved_tags, (gfp & __GFP_WAIT) ?
 57			       TASK_UNINTERRUPTIBLE : TASK_RUNNING);
 58	if (tag < 0)
 59		return BLK_MQ_TAG_FAIL;
 60	return tag;
 
 
 
 
 
 
 61}
 62
 63unsigned int blk_mq_get_tag(struct blk_mq_tags *tags, gfp_t gfp, bool reserved)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 64{
 65	if (!reserved)
 66		return __blk_mq_get_tag(tags, gfp);
 67
 68	return __blk_mq_get_reserved_tag(tags, gfp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 69}
 70
 71static void __blk_mq_put_tag(struct blk_mq_tags *tags, unsigned int tag)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 72{
 73	BUG_ON(tag >= tags->nr_tags);
 
 
 
 
 
 74
 75	percpu_ida_free(&tags->free_tags, tag - tags->nr_reserved_tags);
 
 76}
 77
 78static void __blk_mq_put_reserved_tag(struct blk_mq_tags *tags,
 79				      unsigned int tag)
 80{
 81	BUG_ON(tag >= tags->nr_reserved_tags);
 82
 83	percpu_ida_free(&tags->reserved_tags, tag);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 84}
 85
 86void blk_mq_put_tag(struct blk_mq_tags *tags, unsigned int tag)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 87{
 88	if (tag >= tags->nr_reserved_tags)
 89		__blk_mq_put_tag(tags, tag);
 90	else
 91		__blk_mq_put_reserved_tag(tags, tag);
 
 
 
 
 
 
 92}
 
 93
 94static int __blk_mq_tag_iter(unsigned id, void *data)
 95{
 96	unsigned long *tag_map = data;
 97	__set_bit(id, tag_map);
 98	return 0;
 
 
 99}
100
101void blk_mq_tag_busy_iter(struct blk_mq_tags *tags,
102			  void (*fn)(void *, unsigned long *), void *data)
 
 
 
 
 
 
103{
104	unsigned long *tag_map;
105	size_t map_size;
106
107	map_size = ALIGN(tags->nr_tags, BITS_PER_LONG) / BITS_PER_LONG;
108	tag_map = kzalloc(map_size * sizeof(unsigned long), GFP_ATOMIC);
109	if (!tag_map)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
110		return;
111
112	percpu_ida_for_each_free(&tags->free_tags, __blk_mq_tag_iter, tag_map);
113	if (tags->nr_reserved_tags)
114		percpu_ida_for_each_free(&tags->reserved_tags, __blk_mq_tag_iter,
115			tag_map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116
117	fn(data, tag_map);
118	kfree(tag_map);
 
 
 
119}
120
121struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags,
122				     unsigned int reserved_tags, int node)
 
123{
124	unsigned int nr_tags, nr_cache;
125	struct blk_mq_tags *tags;
126	int ret;
127
128	if (total_tags > BLK_MQ_TAG_MAX) {
129		pr_err("blk-mq: tag depth too large\n");
130		return NULL;
131	}
132
133	tags = kzalloc_node(sizeof(*tags), GFP_KERNEL, node);
134	if (!tags)
135		return NULL;
136
137	nr_tags = total_tags - reserved_tags;
138	nr_cache = nr_tags / num_possible_cpus();
139
140	if (nr_cache < BLK_MQ_TAG_CACHE_MIN)
141		nr_cache = BLK_MQ_TAG_CACHE_MIN;
142	else if (nr_cache > BLK_MQ_TAG_CACHE_MAX)
143		nr_cache = BLK_MQ_TAG_CACHE_MAX;
144
145	tags->nr_tags = total_tags;
146	tags->nr_reserved_tags = reserved_tags;
147	tags->nr_max_cache = nr_cache;
148	tags->nr_batch_move = max(1u, nr_cache / 2);
149
150	ret = __percpu_ida_init(&tags->free_tags, tags->nr_tags -
151				tags->nr_reserved_tags,
152				tags->nr_max_cache,
153				tags->nr_batch_move);
154	if (ret)
155		goto err_free_tags;
156
157	if (reserved_tags) {
158		/*
159		 * With max_cahe and batch set to 1, the allocator fallbacks to
160		 * no cached. It's fine reserved tags allocation is slow.
161		 */
162		ret = __percpu_ida_init(&tags->reserved_tags, reserved_tags,
163				1, 1);
164		if (ret)
165			goto err_reserved_tags;
166	}
167
168	return tags;
169
170err_reserved_tags:
171	percpu_ida_destroy(&tags->free_tags);
172err_free_tags:
173	kfree(tags);
174	return NULL;
175}
176
177void blk_mq_free_tags(struct blk_mq_tags *tags)
178{
179	percpu_ida_destroy(&tags->free_tags);
180	percpu_ida_destroy(&tags->reserved_tags);
181	kfree(tags);
182}
183
184ssize_t blk_mq_tag_sysfs_show(struct blk_mq_tags *tags, char *page)
185{
186	char *orig_page = page;
187	unsigned int cpu;
 
 
 
 
 
 
 
 
 
 
 
 
188
189	if (!tags)
190		return 0;
191
192	page += sprintf(page, "nr_tags=%u, reserved_tags=%u, batch_move=%u,"
193			" max_cache=%u\n", tags->nr_tags, tags->nr_reserved_tags,
194			tags->nr_batch_move, tags->nr_max_cache);
 
 
 
195
196	page += sprintf(page, "nr_free=%u, nr_reserved=%u\n",
197			percpu_ida_free_tags(&tags->free_tags, nr_cpu_ids),
198			percpu_ida_free_tags(&tags->reserved_tags, nr_cpu_ids));
 
 
 
199
200	for_each_possible_cpu(cpu) {
201		page += sprintf(page, "  cpu%02u: nr_free=%u\n", cpu,
202				percpu_ida_free_tags(&tags->free_tags, cpu));
 
 
 
 
 
 
 
 
 
 
203	}
204
205	return page - orig_page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
206}
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Tag allocation using scalable bitmaps. Uses active queue tracking to support
  4 * fairer distribution of tags between multiple submitters when a shared tag map
  5 * is used.
  6 *
  7 * Copyright (C) 2013-2014 Jens Axboe
  8 */
  9#include <linux/kernel.h>
 10#include <linux/module.h>
 
 11
 12#include <linux/delay.h>
 13#include "blk.h"
 14#include "blk-mq.h"
 15#include "blk-mq-sched.h"
 16
 17/*
 18 * Recalculate wakeup batch when tag is shared by hctx.
 19 */
 20static void blk_mq_update_wake_batch(struct blk_mq_tags *tags,
 21		unsigned int users)
 22{
 23	if (!users)
 24		return;
 25
 26	sbitmap_queue_recalculate_wake_batch(&tags->bitmap_tags,
 27			users);
 28	sbitmap_queue_recalculate_wake_batch(&tags->breserved_tags,
 29			users);
 30}
 31
 32/*
 33 * If a previously inactive queue goes active, bump the active user count.
 34 * We need to do this before try to allocate driver tag, then even if fail
 35 * to get tag when first time, the other shared-tag users could reserve
 36 * budget for it.
 37 */
 38void __blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx)
 39{
 40	unsigned int users;
 41	unsigned long flags;
 42	struct blk_mq_tags *tags = hctx->tags;
 43
 44	/*
 45	 * calling test_bit() prior to test_and_set_bit() is intentional,
 46	 * it avoids dirtying the cacheline if the queue is already active.
 47	 */
 48	if (blk_mq_is_shared_tags(hctx->flags)) {
 49		struct request_queue *q = hctx->queue;
 50
 51		if (test_bit(QUEUE_FLAG_HCTX_ACTIVE, &q->queue_flags) ||
 52		    test_and_set_bit(QUEUE_FLAG_HCTX_ACTIVE, &q->queue_flags))
 53			return;
 54	} else {
 55		if (test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state) ||
 56		    test_and_set_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
 57			return;
 58	}
 59
 60	spin_lock_irqsave(&tags->lock, flags);
 61	users = tags->active_queues + 1;
 62	WRITE_ONCE(tags->active_queues, users);
 63	blk_mq_update_wake_batch(tags, users);
 64	spin_unlock_irqrestore(&tags->lock, flags);
 65}
 66
 67/*
 68 * Wakeup all potentially sleeping on tags
 69 */
 70void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool include_reserve)
 71{
 72	sbitmap_queue_wake_all(&tags->bitmap_tags);
 73	if (include_reserve)
 74		sbitmap_queue_wake_all(&tags->breserved_tags);
 75}
 76
 77/*
 78 * If a previously busy queue goes inactive, potential waiters could now
 79 * be allowed to queue. Wake them up and check.
 80 */
 81void __blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx)
 82{
 83	struct blk_mq_tags *tags = hctx->tags;
 84	unsigned int users;
 85
 86	if (blk_mq_is_shared_tags(hctx->flags)) {
 87		struct request_queue *q = hctx->queue;
 88
 89		if (!test_and_clear_bit(QUEUE_FLAG_HCTX_ACTIVE,
 90					&q->queue_flags))
 91			return;
 92	} else {
 93		if (!test_and_clear_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
 94			return;
 95	}
 96
 97	spin_lock_irq(&tags->lock);
 98	users = tags->active_queues - 1;
 99	WRITE_ONCE(tags->active_queues, users);
100	blk_mq_update_wake_batch(tags, users);
101	spin_unlock_irq(&tags->lock);
102
103	blk_mq_tag_wakeup_all(tags, false);
104}
105
106static int __blk_mq_get_tag(struct blk_mq_alloc_data *data,
107			    struct sbitmap_queue *bt)
108{
109	if (!data->q->elevator && !(data->flags & BLK_MQ_REQ_RESERVED) &&
110			!hctx_may_queue(data->hctx, bt))
111		return BLK_MQ_NO_TAG;
112
113	if (data->shallow_depth)
114		return sbitmap_queue_get_shallow(bt, data->shallow_depth);
115	else
116		return __sbitmap_queue_get(bt);
117}
118
119unsigned long blk_mq_get_tags(struct blk_mq_alloc_data *data, int nr_tags,
120			      unsigned int *offset)
121{
122	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
123	struct sbitmap_queue *bt = &tags->bitmap_tags;
124	unsigned long ret;
125
126	if (data->shallow_depth ||data->flags & BLK_MQ_REQ_RESERVED ||
127	    data->hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
128		return 0;
129	ret = __sbitmap_queue_get_batch(bt, nr_tags, offset);
130	*offset += tags->nr_reserved_tags;
131	return ret;
132}
133
134unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data)
135{
136	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
137	struct sbitmap_queue *bt;
138	struct sbq_wait_state *ws;
139	DEFINE_SBQ_WAIT(wait);
140	unsigned int tag_offset;
141	int tag;
142
143	if (data->flags & BLK_MQ_REQ_RESERVED) {
144		if (unlikely(!tags->nr_reserved_tags)) {
145			WARN_ON_ONCE(1);
146			return BLK_MQ_NO_TAG;
147		}
148		bt = &tags->breserved_tags;
149		tag_offset = 0;
150	} else {
151		bt = &tags->bitmap_tags;
152		tag_offset = tags->nr_reserved_tags;
153	}
154
155	tag = __blk_mq_get_tag(data, bt);
156	if (tag != BLK_MQ_NO_TAG)
157		goto found_tag;
158
159	if (data->flags & BLK_MQ_REQ_NOWAIT)
160		return BLK_MQ_NO_TAG;
161
162	ws = bt_wait_ptr(bt, data->hctx);
163	do {
164		struct sbitmap_queue *bt_prev;
165
166		/*
167		 * We're out of tags on this hardware queue, kick any
168		 * pending IO submits before going to sleep waiting for
169		 * some to complete.
170		 */
171		blk_mq_run_hw_queue(data->hctx, false);
172
173		/*
174		 * Retry tag allocation after running the hardware queue,
175		 * as running the queue may also have found completions.
176		 */
177		tag = __blk_mq_get_tag(data, bt);
178		if (tag != BLK_MQ_NO_TAG)
179			break;
180
181		sbitmap_prepare_to_wait(bt, ws, &wait, TASK_UNINTERRUPTIBLE);
182
183		tag = __blk_mq_get_tag(data, bt);
184		if (tag != BLK_MQ_NO_TAG)
185			break;
186
187		bt_prev = bt;
188		io_schedule();
189
190		sbitmap_finish_wait(bt, ws, &wait);
191
192		data->ctx = blk_mq_get_ctx(data->q);
193		data->hctx = blk_mq_map_queue(data->q, data->cmd_flags,
194						data->ctx);
195		tags = blk_mq_tags_from_data(data);
196		if (data->flags & BLK_MQ_REQ_RESERVED)
197			bt = &tags->breserved_tags;
198		else
199			bt = &tags->bitmap_tags;
200
201		/*
202		 * If destination hw queue is changed, fake wake up on
203		 * previous queue for compensating the wake up miss, so
204		 * other allocations on previous queue won't be starved.
205		 */
206		if (bt != bt_prev)
207			sbitmap_queue_wake_up(bt_prev, 1);
208
209		ws = bt_wait_ptr(bt, data->hctx);
210	} while (1);
211
212	sbitmap_finish_wait(bt, ws, &wait);
213
214found_tag:
215	/*
216	 * Give up this allocation if the hctx is inactive.  The caller will
217	 * retry on an active hctx.
218	 */
219	if (unlikely(test_bit(BLK_MQ_S_INACTIVE, &data->hctx->state))) {
220		blk_mq_put_tag(tags, data->ctx, tag + tag_offset);
221		return BLK_MQ_NO_TAG;
222	}
223	return tag + tag_offset;
224}
225
226void blk_mq_put_tag(struct blk_mq_tags *tags, struct blk_mq_ctx *ctx,
227		    unsigned int tag)
228{
229	if (!blk_mq_tag_is_reserved(tags, tag)) {
230		const int real_tag = tag - tags->nr_reserved_tags;
231
232		BUG_ON(real_tag >= tags->nr_tags);
233		sbitmap_queue_clear(&tags->bitmap_tags, real_tag, ctx->cpu);
234	} else {
235		sbitmap_queue_clear(&tags->breserved_tags, tag, ctx->cpu);
236	}
237}
238
239void blk_mq_put_tags(struct blk_mq_tags *tags, int *tag_array, int nr_tags)
240{
241	sbitmap_queue_clear_batch(&tags->bitmap_tags, tags->nr_reserved_tags,
242					tag_array, nr_tags);
243}
244
245struct bt_iter_data {
246	struct blk_mq_hw_ctx *hctx;
247	struct request_queue *q;
248	busy_tag_iter_fn *fn;
249	void *data;
250	bool reserved;
251};
252
253static struct request *blk_mq_find_and_get_req(struct blk_mq_tags *tags,
254		unsigned int bitnr)
255{
256	struct request *rq;
257	unsigned long flags;
258
259	spin_lock_irqsave(&tags->lock, flags);
260	rq = tags->rqs[bitnr];
261	if (!rq || rq->tag != bitnr || !req_ref_inc_not_zero(rq))
262		rq = NULL;
263	spin_unlock_irqrestore(&tags->lock, flags);
264	return rq;
265}
266
267static bool bt_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data)
268{
269	struct bt_iter_data *iter_data = data;
270	struct blk_mq_hw_ctx *hctx = iter_data->hctx;
271	struct request_queue *q = iter_data->q;
272	struct blk_mq_tag_set *set = q->tag_set;
273	struct blk_mq_tags *tags;
274	struct request *rq;
275	bool ret = true;
276
277	if (blk_mq_is_shared_tags(set->flags))
278		tags = set->shared_tags;
279	else
280		tags = hctx->tags;
281
282	if (!iter_data->reserved)
283		bitnr += tags->nr_reserved_tags;
284	/*
285	 * We can hit rq == NULL here, because the tagging functions
286	 * test and set the bit before assigning ->rqs[].
287	 */
288	rq = blk_mq_find_and_get_req(tags, bitnr);
289	if (!rq)
290		return true;
291
292	if (rq->q == q && (!hctx || rq->mq_hctx == hctx))
293		ret = iter_data->fn(rq, iter_data->data);
294	blk_mq_put_rq_ref(rq);
295	return ret;
296}
297
298/**
299 * bt_for_each - iterate over the requests associated with a hardware queue
300 * @hctx:	Hardware queue to examine.
301 * @q:		Request queue to examine.
302 * @bt:		sbitmap to examine. This is either the breserved_tags member
303 *		or the bitmap_tags member of struct blk_mq_tags.
304 * @fn:		Pointer to the function that will be called for each request
305 *		associated with @hctx that has been assigned a driver tag.
306 *		@fn will be called as follows: @fn(@hctx, rq, @data, @reserved)
307 *		where rq is a pointer to a request. Return true to continue
308 *		iterating tags, false to stop.
309 * @data:	Will be passed as third argument to @fn.
310 * @reserved:	Indicates whether @bt is the breserved_tags member or the
311 *		bitmap_tags member of struct blk_mq_tags.
312 */
313static void bt_for_each(struct blk_mq_hw_ctx *hctx, struct request_queue *q,
314			struct sbitmap_queue *bt, busy_tag_iter_fn *fn,
315			void *data, bool reserved)
316{
317	struct bt_iter_data iter_data = {
318		.hctx = hctx,
319		.fn = fn,
320		.data = data,
321		.reserved = reserved,
322		.q = q,
323	};
324
325	sbitmap_for_each_set(&bt->sb, bt_iter, &iter_data);
326}
327
328struct bt_tags_iter_data {
329	struct blk_mq_tags *tags;
330	busy_tag_iter_fn *fn;
331	void *data;
332	unsigned int flags;
333};
334
335#define BT_TAG_ITER_RESERVED		(1 << 0)
336#define BT_TAG_ITER_STARTED		(1 << 1)
337#define BT_TAG_ITER_STATIC_RQS		(1 << 2)
338
339static bool bt_tags_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data)
340{
341	struct bt_tags_iter_data *iter_data = data;
342	struct blk_mq_tags *tags = iter_data->tags;
343	struct request *rq;
344	bool ret = true;
345	bool iter_static_rqs = !!(iter_data->flags & BT_TAG_ITER_STATIC_RQS);
346
347	if (!(iter_data->flags & BT_TAG_ITER_RESERVED))
348		bitnr += tags->nr_reserved_tags;
349
350	/*
351	 * We can hit rq == NULL here, because the tagging functions
352	 * test and set the bit before assigning ->rqs[].
353	 */
354	if (iter_static_rqs)
355		rq = tags->static_rqs[bitnr];
356	else
357		rq = blk_mq_find_and_get_req(tags, bitnr);
358	if (!rq)
359		return true;
360
361	if (!(iter_data->flags & BT_TAG_ITER_STARTED) ||
362	    blk_mq_request_started(rq))
363		ret = iter_data->fn(rq, iter_data->data);
364	if (!iter_static_rqs)
365		blk_mq_put_rq_ref(rq);
366	return ret;
367}
368
369/**
370 * bt_tags_for_each - iterate over the requests in a tag map
371 * @tags:	Tag map to iterate over.
372 * @bt:		sbitmap to examine. This is either the breserved_tags member
373 *		or the bitmap_tags member of struct blk_mq_tags.
374 * @fn:		Pointer to the function that will be called for each started
375 *		request. @fn will be called as follows: @fn(rq, @data,
376 *		@reserved) where rq is a pointer to a request. Return true
377 *		to continue iterating tags, false to stop.
378 * @data:	Will be passed as second argument to @fn.
379 * @flags:	BT_TAG_ITER_*
380 */
381static void bt_tags_for_each(struct blk_mq_tags *tags, struct sbitmap_queue *bt,
382			     busy_tag_iter_fn *fn, void *data, unsigned int flags)
383{
384	struct bt_tags_iter_data iter_data = {
385		.tags = tags,
386		.fn = fn,
387		.data = data,
388		.flags = flags,
389	};
390
391	if (tags->rqs)
392		sbitmap_for_each_set(&bt->sb, bt_tags_iter, &iter_data);
393}
394
395static void __blk_mq_all_tag_iter(struct blk_mq_tags *tags,
396		busy_tag_iter_fn *fn, void *priv, unsigned int flags)
397{
398	WARN_ON_ONCE(flags & BT_TAG_ITER_RESERVED);
399
400	if (tags->nr_reserved_tags)
401		bt_tags_for_each(tags, &tags->breserved_tags, fn, priv,
402				 flags | BT_TAG_ITER_RESERVED);
403	bt_tags_for_each(tags, &tags->bitmap_tags, fn, priv, flags);
404}
405
406/**
407 * blk_mq_all_tag_iter - iterate over all requests in a tag map
408 * @tags:	Tag map to iterate over.
409 * @fn:		Pointer to the function that will be called for each
410 *		request. @fn will be called as follows: @fn(rq, @priv,
411 *		reserved) where rq is a pointer to a request. 'reserved'
412 *		indicates whether or not @rq is a reserved request. Return
413 *		true to continue iterating tags, false to stop.
414 * @priv:	Will be passed as second argument to @fn.
415 *
416 * Caller has to pass the tag map from which requests are allocated.
417 */
418void blk_mq_all_tag_iter(struct blk_mq_tags *tags, busy_tag_iter_fn *fn,
419		void *priv)
420{
421	__blk_mq_all_tag_iter(tags, fn, priv, BT_TAG_ITER_STATIC_RQS);
422}
423
424/**
425 * blk_mq_tagset_busy_iter - iterate over all started requests in a tag set
426 * @tagset:	Tag set to iterate over.
427 * @fn:		Pointer to the function that will be called for each started
428 *		request. @fn will be called as follows: @fn(rq, @priv,
429 *		reserved) where rq is a pointer to a request. 'reserved'
430 *		indicates whether or not @rq is a reserved request. Return
431 *		true to continue iterating tags, false to stop.
432 * @priv:	Will be passed as second argument to @fn.
433 *
434 * We grab one request reference before calling @fn and release it after
435 * @fn returns.
436 */
437void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset,
438		busy_tag_iter_fn *fn, void *priv)
439{
440	unsigned int flags = tagset->flags;
441	int i, nr_tags;
442
443	nr_tags = blk_mq_is_shared_tags(flags) ? 1 : tagset->nr_hw_queues;
444
445	for (i = 0; i < nr_tags; i++) {
446		if (tagset->tags && tagset->tags[i])
447			__blk_mq_all_tag_iter(tagset->tags[i], fn, priv,
448					      BT_TAG_ITER_STARTED);
449	}
450}
451EXPORT_SYMBOL(blk_mq_tagset_busy_iter);
452
453static bool blk_mq_tagset_count_completed_rqs(struct request *rq, void *data)
454{
455	unsigned *count = data;
456
457	if (blk_mq_request_completed(rq))
458		(*count)++;
459	return true;
460}
461
462/**
463 * blk_mq_tagset_wait_completed_request - Wait until all scheduled request
464 * completions have finished.
465 * @tagset:	Tag set to drain completed request
466 *
467 * Note: This function has to be run after all IO queues are shutdown
468 */
469void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset)
470{
471	while (true) {
472		unsigned count = 0;
473
474		blk_mq_tagset_busy_iter(tagset,
475				blk_mq_tagset_count_completed_rqs, &count);
476		if (!count)
477			break;
478		msleep(5);
479	}
480}
481EXPORT_SYMBOL(blk_mq_tagset_wait_completed_request);
482
483/**
484 * blk_mq_queue_tag_busy_iter - iterate over all requests with a driver tag
485 * @q:		Request queue to examine.
486 * @fn:		Pointer to the function that will be called for each request
487 *		on @q. @fn will be called as follows: @fn(hctx, rq, @priv,
488 *		reserved) where rq is a pointer to a request and hctx points
489 *		to the hardware queue associated with the request. 'reserved'
490 *		indicates whether or not @rq is a reserved request.
491 * @priv:	Will be passed as third argument to @fn.
492 *
493 * Note: if @q->tag_set is shared with other request queues then @fn will be
494 * called for all requests on all queues that share that tag set and not only
495 * for requests associated with @q.
496 */
497void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_tag_iter_fn *fn,
498		void *priv)
499{
500	/*
501	 * __blk_mq_update_nr_hw_queues() updates nr_hw_queues and hctx_table
502	 * while the queue is frozen. So we can use q_usage_counter to avoid
503	 * racing with it.
504	 */
505	if (!percpu_ref_tryget(&q->q_usage_counter))
506		return;
507
508	if (blk_mq_is_shared_tags(q->tag_set->flags)) {
509		struct blk_mq_tags *tags = q->tag_set->shared_tags;
510		struct sbitmap_queue *bresv = &tags->breserved_tags;
511		struct sbitmap_queue *btags = &tags->bitmap_tags;
512
513		if (tags->nr_reserved_tags)
514			bt_for_each(NULL, q, bresv, fn, priv, true);
515		bt_for_each(NULL, q, btags, fn, priv, false);
516	} else {
517		struct blk_mq_hw_ctx *hctx;
518		unsigned long i;
519
520		queue_for_each_hw_ctx(q, hctx, i) {
521			struct blk_mq_tags *tags = hctx->tags;
522			struct sbitmap_queue *bresv = &tags->breserved_tags;
523			struct sbitmap_queue *btags = &tags->bitmap_tags;
524
525			/*
526			 * If no software queues are currently mapped to this
527			 * hardware queue, there's nothing to check
528			 */
529			if (!blk_mq_hw_queue_mapped(hctx))
530				continue;
531
532			if (tags->nr_reserved_tags)
533				bt_for_each(hctx, q, bresv, fn, priv, true);
534			bt_for_each(hctx, q, btags, fn, priv, false);
535		}
536	}
537	blk_queue_exit(q);
538}
539
540static int bt_alloc(struct sbitmap_queue *bt, unsigned int depth,
541		    bool round_robin, int node)
542{
543	return sbitmap_queue_init_node(bt, depth, -1, round_robin, GFP_KERNEL,
544				       node);
545}
546
547int blk_mq_init_bitmaps(struct sbitmap_queue *bitmap_tags,
548			struct sbitmap_queue *breserved_tags,
549			unsigned int queue_depth, unsigned int reserved,
550			int node, int alloc_policy)
551{
552	unsigned int depth = queue_depth - reserved;
553	bool round_robin = alloc_policy == BLK_TAG_ALLOC_RR;
554
555	if (bt_alloc(bitmap_tags, depth, round_robin, node))
556		return -ENOMEM;
557	if (bt_alloc(breserved_tags, reserved, round_robin, node))
558		goto free_bitmap_tags;
559
560	return 0;
561
562free_bitmap_tags:
563	sbitmap_queue_free(bitmap_tags);
564	return -ENOMEM;
565}
566
567struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags,
568				     unsigned int reserved_tags,
569				     int node, int alloc_policy)
570{
 
571	struct blk_mq_tags *tags;
 
572
573	if (total_tags > BLK_MQ_TAG_MAX) {
574		pr_err("blk-mq: tag depth too large\n");
575		return NULL;
576	}
577
578	tags = kzalloc_node(sizeof(*tags), GFP_KERNEL, node);
579	if (!tags)
580		return NULL;
581
 
 
 
 
 
 
 
 
582	tags->nr_tags = total_tags;
583	tags->nr_reserved_tags = reserved_tags;
584	spin_lock_init(&tags->lock);
 
585
586	if (blk_mq_init_bitmaps(&tags->bitmap_tags, &tags->breserved_tags,
587				total_tags, reserved_tags, node,
588				alloc_policy) < 0) {
589		kfree(tags);
590		return NULL;
 
 
 
 
 
 
 
 
 
 
 
591	}
 
592	return tags;
 
 
 
 
 
 
593}
594
595void blk_mq_free_tags(struct blk_mq_tags *tags)
596{
597	sbitmap_queue_free(&tags->bitmap_tags);
598	sbitmap_queue_free(&tags->breserved_tags);
599	kfree(tags);
600}
601
602int blk_mq_tag_update_depth(struct blk_mq_hw_ctx *hctx,
603			    struct blk_mq_tags **tagsptr, unsigned int tdepth,
604			    bool can_grow)
605{
606	struct blk_mq_tags *tags = *tagsptr;
607
608	if (tdepth <= tags->nr_reserved_tags)
609		return -EINVAL;
610
611	/*
612	 * If we are allowed to grow beyond the original size, allocate
613	 * a new set of tags before freeing the old one.
614	 */
615	if (tdepth > tags->nr_tags) {
616		struct blk_mq_tag_set *set = hctx->queue->tag_set;
617		struct blk_mq_tags *new;
618
619		if (!can_grow)
620			return -EINVAL;
621
622		/*
623		 * We need some sort of upper limit, set it high enough that
624		 * no valid use cases should require more.
625		 */
626		if (tdepth > MAX_SCHED_RQ)
627			return -EINVAL;
628
629		/*
630		 * Only the sbitmap needs resizing since we allocated the max
631		 * initially.
632		 */
633		if (blk_mq_is_shared_tags(set->flags))
634			return 0;
635
636		new = blk_mq_alloc_map_and_rqs(set, hctx->queue_num, tdepth);
637		if (!new)
638			return -ENOMEM;
639
640		blk_mq_free_map_and_rqs(set, *tagsptr, hctx->queue_num);
641		*tagsptr = new;
642	} else {
643		/*
644		 * Don't need (or can't) update reserved tags here, they
645		 * remain static and should never need resizing.
646		 */
647		sbitmap_queue_resize(&tags->bitmap_tags,
648				tdepth - tags->nr_reserved_tags);
649	}
650
651	return 0;
652}
653
654void blk_mq_tag_resize_shared_tags(struct blk_mq_tag_set *set, unsigned int size)
655{
656	struct blk_mq_tags *tags = set->shared_tags;
657
658	sbitmap_queue_resize(&tags->bitmap_tags, size - set->reserved_tags);
659}
660
661void blk_mq_tag_update_sched_shared_tags(struct request_queue *q)
662{
663	sbitmap_queue_resize(&q->sched_shared_tags->bitmap_tags,
664			     q->nr_requests - q->tag_set->reserved_tags);
665}
666
667/**
668 * blk_mq_unique_tag() - return a tag that is unique queue-wide
669 * @rq: request for which to compute a unique tag
670 *
671 * The tag field in struct request is unique per hardware queue but not over
672 * all hardware queues. Hence this function that returns a tag with the
673 * hardware context index in the upper bits and the per hardware queue tag in
674 * the lower bits.
675 *
676 * Note: When called for a request that is queued on a non-multiqueue request
677 * queue, the hardware context index is set to zero.
678 */
679u32 blk_mq_unique_tag(struct request *rq)
680{
681	return (rq->mq_hctx->queue_num << BLK_MQ_UNIQUE_TAG_BITS) |
682		(rq->tag & BLK_MQ_UNIQUE_TAG_MASK);
683}
684EXPORT_SYMBOL(blk_mq_unique_tag);