Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 * Copyright (C) 1991, 1992 Linus Torvalds
   3 * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
   4 * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
   5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
   6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
   7 *	-  July2000
   8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
   9 */
  10
  11/*
  12 * This handles all read/write requests to block devices
  13 */
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/backing-dev.h>
  17#include <linux/bio.h>
  18#include <linux/blkdev.h>
  19#include <linux/blk-mq.h>
 
  20#include <linux/highmem.h>
  21#include <linux/mm.h>
 
  22#include <linux/kernel_stat.h>
  23#include <linux/string.h>
  24#include <linux/init.h>
  25#include <linux/completion.h>
  26#include <linux/slab.h>
  27#include <linux/swap.h>
  28#include <linux/writeback.h>
  29#include <linux/task_io_accounting_ops.h>
  30#include <linux/fault-inject.h>
  31#include <linux/list_sort.h>
  32#include <linux/delay.h>
  33#include <linux/ratelimit.h>
  34#include <linux/pm_runtime.h>
 
 
 
 
 
 
  35
  36#define CREATE_TRACE_POINTS
  37#include <trace/events/block.h>
  38
  39#include "blk.h"
 
 
  40#include "blk-cgroup.h"
  41#include "blk-mq.h"
 
 
 
  42
  43EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
  44EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
  45EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
 
  46EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
 
  47
  48DEFINE_IDA(blk_queue_ida);
  49
  50/*
  51 * For the allocated request tables
  52 */
  53struct kmem_cache *request_cachep = NULL;
  54
  55/*
  56 * For queue allocation
  57 */
  58struct kmem_cache *blk_requestq_cachep;
  59
  60/*
  61 * Controlling structure to kblockd
  62 */
  63static struct workqueue_struct *kblockd_workqueue;
  64
  65void blk_queue_congestion_threshold(struct request_queue *q)
 
 
 
 
 
  66{
  67	int nr;
  68
  69	nr = q->nr_requests - (q->nr_requests / 8) + 1;
  70	if (nr > q->nr_requests)
  71		nr = q->nr_requests;
  72	q->nr_congestion_on = nr;
  73
  74	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
  75	if (nr < 1)
  76		nr = 1;
  77	q->nr_congestion_off = nr;
  78}
 
  79
  80/**
  81 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
  82 * @bdev:	device
  83 *
  84 * Locates the passed device's request queue and returns the address of its
  85 * backing_dev_info
  86 *
  87 * Will return NULL if the request queue cannot be located.
  88 */
  89struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
  90{
  91	struct backing_dev_info *ret = NULL;
  92	struct request_queue *q = bdev_get_queue(bdev);
  93
  94	if (q)
  95		ret = &q->backing_dev_info;
  96	return ret;
  97}
  98EXPORT_SYMBOL(blk_get_backing_dev_info);
  99
 100void blk_rq_init(struct request_queue *q, struct request *rq)
 101{
 102	memset(rq, 0, sizeof(*rq));
 103
 104	INIT_LIST_HEAD(&rq->queuelist);
 105	INIT_LIST_HEAD(&rq->timeout_list);
 106	rq->cpu = -1;
 107	rq->q = q;
 108	rq->__sector = (sector_t) -1;
 109	INIT_HLIST_NODE(&rq->hash);
 110	RB_CLEAR_NODE(&rq->rb_node);
 111	rq->cmd = rq->__cmd;
 112	rq->cmd_len = BLK_MAX_CDB;
 113	rq->tag = -1;
 114	rq->start_time = jiffies;
 115	set_start_time_ns(rq);
 116	rq->part = NULL;
 117}
 118EXPORT_SYMBOL(blk_rq_init);
 119
 120static void req_bio_endio(struct request *rq, struct bio *bio,
 121			  unsigned int nbytes, int error)
 
 
 
 
 
 
 
 122{
 123	if (error)
 124		clear_bit(BIO_UPTODATE, &bio->bi_flags);
 125	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
 126		error = -EIO;
 127
 128	if (unlikely(rq->cmd_flags & REQ_QUIET))
 129		set_bit(BIO_QUIET, &bio->bi_flags);
 130
 131	bio_advance(bio, nbytes);
 132
 133	/* don't actually finish bio if it's part of flush sequence */
 134	if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
 135		bio_endio(bio, error);
 136}
 
 137
 138void blk_dump_rq_flags(struct request *rq, char *msg)
 139{
 140	int bit;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 141
 142	printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
 143		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
 144		(unsigned long long) rq->cmd_flags);
 145
 146	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
 147	       (unsigned long long)blk_rq_pos(rq),
 148	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
 149	printk(KERN_INFO "  bio %p, biotail %p, buffer %p, len %u\n",
 150	       rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
 151
 152	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
 153		printk(KERN_INFO "  cdb: ");
 154		for (bit = 0; bit < BLK_MAX_CDB; bit++)
 155			printk("%02x ", rq->cmd[bit]);
 156		printk("\n");
 157	}
 158}
 159EXPORT_SYMBOL(blk_dump_rq_flags);
 160
 161static void blk_delay_work(struct work_struct *work)
 162{
 163	struct request_queue *q;
 164
 165	q = container_of(work, struct request_queue, delay_work.work);
 166	spin_lock_irq(q->queue_lock);
 167	__blk_run_queue(q);
 168	spin_unlock_irq(q->queue_lock);
 169}
 170
 171/**
 172 * blk_delay_queue - restart queueing after defined interval
 173 * @q:		The &struct request_queue in question
 174 * @msecs:	Delay in msecs
 175 *
 176 * Description:
 177 *   Sometimes queueing needs to be postponed for a little while, to allow
 178 *   resources to come back. This function will make sure that queueing is
 179 *   restarted around the specified time. Queue lock must be held.
 180 */
 181void blk_delay_queue(struct request_queue *q, unsigned long msecs)
 182{
 183	if (likely(!blk_queue_dead(q)))
 184		queue_delayed_work(kblockd_workqueue, &q->delay_work,
 185				   msecs_to_jiffies(msecs));
 
 
 
 
 
 186}
 187EXPORT_SYMBOL(blk_delay_queue);
 188
 189/**
 190 * blk_start_queue - restart a previously stopped queue
 191 * @q:    The &struct request_queue in question
 192 *
 193 * Description:
 194 *   blk_start_queue() will clear the stop flag on the queue, and call
 195 *   the request_fn for the queue if it was in a stopped state when
 196 *   entered. Also see blk_stop_queue(). Queue lock must be held.
 197 **/
 198void blk_start_queue(struct request_queue *q)
 199{
 200	WARN_ON(!irqs_disabled());
 201
 202	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
 203	__blk_run_queue(q);
 
 204}
 205EXPORT_SYMBOL(blk_start_queue);
 206
 207/**
 208 * blk_stop_queue - stop a queue
 209 * @q:    The &struct request_queue in question
 210 *
 211 * Description:
 212 *   The Linux block layer assumes that a block driver will consume all
 213 *   entries on the request queue when the request_fn strategy is called.
 214 *   Often this will not happen, because of hardware limitations (queue
 215 *   depth settings). If a device driver gets a 'queue full' response,
 216 *   or if it simply chooses not to queue more I/O at one point, it can
 217 *   call this function to prevent the request_fn from being called until
 218 *   the driver has signalled it's ready to go again. This happens by calling
 219 *   blk_start_queue() to restart queue operations. Queue lock must be held.
 220 **/
 221void blk_stop_queue(struct request_queue *q)
 222{
 223	cancel_delayed_work(&q->delay_work);
 224	queue_flag_set(QUEUE_FLAG_STOPPED, q);
 
 
 
 225}
 226EXPORT_SYMBOL(blk_stop_queue);
 227
 228/**
 229 * blk_sync_queue - cancel any pending callbacks on a queue
 230 * @q: the queue
 231 *
 232 * Description:
 233 *     The block layer may perform asynchronous callback activity
 234 *     on a queue, such as calling the unplug function after a timeout.
 235 *     A block device may call blk_sync_queue to ensure that any
 236 *     such activity is cancelled, thus allowing it to release resources
 237 *     that the callbacks might use. The caller must already have made sure
 238 *     that its ->make_request_fn will not re-add plugging prior to calling
 239 *     this function.
 240 *
 241 *     This function does not cancel any asynchronous activity arising
 242 *     out of elevator or throttling code. That would require elevaotor_exit()
 243 *     and blkcg_exit_queue() to be called with queue lock initialized.
 244 *
 245 */
 246void blk_sync_queue(struct request_queue *q)
 247{
 248	del_timer_sync(&q->timeout);
 249
 250	if (q->mq_ops) {
 251		struct blk_mq_hw_ctx *hctx;
 252		int i;
 253
 254		queue_for_each_hw_ctx(q, hctx, i)
 255			cancel_delayed_work_sync(&hctx->delayed_work);
 256	} else {
 257		cancel_delayed_work_sync(&q->delay_work);
 258	}
 259}
 260EXPORT_SYMBOL(blk_sync_queue);
 261
 262/**
 263 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
 264 * @q:	The queue to run
 265 *
 266 * Description:
 267 *    Invoke request handling on a queue if there are any pending requests.
 268 *    May be used to restart request handling after a request has completed.
 269 *    This variant runs the queue whether or not the queue has been
 270 *    stopped. Must be called with the queue lock held and interrupts
 271 *    disabled. See also @blk_run_queue.
 272 */
 273inline void __blk_run_queue_uncond(struct request_queue *q)
 274{
 275	if (unlikely(blk_queue_dead(q)))
 276		return;
 
 277
 278	/*
 279	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
 280	 * the queue lock internally. As a result multiple threads may be
 281	 * running such a request function concurrently. Keep track of the
 282	 * number of active request_fn invocations such that blk_drain_queue()
 283	 * can wait until all these request_fn calls have finished.
 284	 */
 285	q->request_fn_active++;
 286	q->request_fn(q);
 287	q->request_fn_active--;
 288}
 
 289
 290/**
 291 * __blk_run_queue - run a single device queue
 292 * @q:	The queue to run
 293 *
 294 * Description:
 295 *    See @blk_run_queue. This variant must be called with the queue lock
 296 *    held and interrupts disabled.
 297 */
 298void __blk_run_queue(struct request_queue *q)
 299{
 300	if (unlikely(blk_queue_stopped(q)))
 301		return;
 302
 303	__blk_run_queue_uncond(q);
 
 304}
 305EXPORT_SYMBOL(__blk_run_queue);
 306
 307/**
 308 * blk_run_queue_async - run a single device queue in workqueue context
 309 * @q:	The queue to run
 310 *
 311 * Description:
 312 *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
 313 *    of us. The caller must hold the queue lock.
 314 */
 315void blk_run_queue_async(struct request_queue *q)
 316{
 317	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
 318		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
 
 
 
 
 
 
 319}
 320EXPORT_SYMBOL(blk_run_queue_async);
 321
 322/**
 323 * blk_run_queue - run a single device queue
 324 * @q: The queue to run
 325 *
 326 * Description:
 327 *    Invoke request handling on this queue, if it has pending work to do.
 328 *    May be used to restart queueing when a request has completed.
 329 */
 330void blk_run_queue(struct request_queue *q)
 331{
 332	unsigned long flags;
 333
 334	spin_lock_irqsave(q->queue_lock, flags);
 335	__blk_run_queue(q);
 336	spin_unlock_irqrestore(q->queue_lock, flags);
 337}
 338EXPORT_SYMBOL(blk_run_queue);
 339
 340void blk_put_queue(struct request_queue *q)
 341{
 342	kobject_put(&q->kobj);
 
 
 
 
 
 
 
 
 
 
 
 343}
 344EXPORT_SYMBOL(blk_put_queue);
 345
 346/**
 347 * __blk_drain_queue - drain requests from request_queue
 348 * @q: queue to drain
 349 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
 350 *
 351 * Drain requests from @q.  If @drain_all is set, all requests are drained.
 352 * If not, only ELVPRIV requests are drained.  The caller is responsible
 353 * for ensuring that no new requests which need to be drained are queued.
 354 */
 355static void __blk_drain_queue(struct request_queue *q, bool drain_all)
 356	__releases(q->queue_lock)
 357	__acquires(q->queue_lock)
 358{
 359	int i;
 360
 361	lockdep_assert_held(q->queue_lock);
 362
 363	while (true) {
 364		bool drain = false;
 365
 366		/*
 367		 * The caller might be trying to drain @q before its
 368		 * elevator is initialized.
 
 
 
 369		 */
 370		if (q->elevator)
 371			elv_drain_elevator(q);
 
 
 
 
 
 
 372
 373		blkcg_drain_queue(q);
 
 
 
 374
 375		/*
 376		 * This function might be called on a queue which failed
 377		 * driver init after queue creation or is not yet fully
 378		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
 379		 * in such cases.  Kick queue iff dispatch queue has
 380		 * something on it and @q has request_fn set.
 381		 */
 382		if (!list_empty(&q->queue_head) && q->request_fn)
 383			__blk_run_queue(q);
 384
 385		drain |= q->nr_rqs_elvpriv;
 386		drain |= q->request_fn_active;
 
 
 
 
 387
 388		/*
 389		 * Unfortunately, requests are queued at and tracked from
 390		 * multiple places and there's no single counter which can
 391		 * be drained.  Check all the queues and counters.
 
 
 392		 */
 393		if (drain_all) {
 394			drain |= !list_empty(&q->queue_head);
 395			for (i = 0; i < 2; i++) {
 396				drain |= q->nr_rqs[i];
 397				drain |= q->in_flight[i];
 398				drain |= !list_empty(&q->flush_queue[i]);
 399			}
 400		}
 401
 402		if (!drain)
 403			break;
 404
 405		spin_unlock_irq(q->queue_lock);
 406
 407		msleep(10);
 408
 409		spin_lock_irq(q->queue_lock);
 410	}
 411
 412	/*
 413	 * With queue marked dead, any woken up waiter will fail the
 414	 * allocation path, so the wakeup chaining is lost and we're
 415	 * left with hung waiters. We need to wake up those waiters.
 416	 */
 417	if (q->request_fn) {
 418		struct request_list *rl;
 419
 420		blk_queue_for_each_rl(rl, q)
 421			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
 422				wake_up_all(&rl->wait[i]);
 423	}
 424}
 425
 426/**
 427 * blk_queue_bypass_start - enter queue bypass mode
 428 * @q: queue of interest
 429 *
 430 * In bypass mode, only the dispatch FIFO queue of @q is used.  This
 431 * function makes @q enter bypass mode and drains all requests which were
 432 * throttled or issued before.  On return, it's guaranteed that no request
 433 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
 434 * inside queue or RCU read lock.
 435 */
 436void blk_queue_bypass_start(struct request_queue *q)
 437{
 438	bool drain;
 439
 440	spin_lock_irq(q->queue_lock);
 441	drain = !q->bypass_depth++;
 442	queue_flag_set(QUEUE_FLAG_BYPASS, q);
 443	spin_unlock_irq(q->queue_lock);
 444
 445	if (drain) {
 446		spin_lock_irq(q->queue_lock);
 447		__blk_drain_queue(q, false);
 448		spin_unlock_irq(q->queue_lock);
 449
 450		/* ensure blk_queue_bypass() is %true inside RCU read lock */
 451		synchronize_rcu();
 452	}
 453}
 454EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
 455
 456/**
 457 * blk_queue_bypass_end - leave queue bypass mode
 458 * @q: queue of interest
 459 *
 460 * Leave bypass mode and restore the normal queueing behavior.
 461 */
 462void blk_queue_bypass_end(struct request_queue *q)
 463{
 464	spin_lock_irq(q->queue_lock);
 465	if (!--q->bypass_depth)
 466		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
 467	WARN_ON_ONCE(q->bypass_depth < 0);
 468	spin_unlock_irq(q->queue_lock);
 469}
 470EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
 471
 472/**
 473 * blk_cleanup_queue - shutdown a request queue
 474 * @q: request queue to shutdown
 475 *
 476 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
 477 * put it.  All future requests will be failed immediately with -ENODEV.
 478 */
 479void blk_cleanup_queue(struct request_queue *q)
 480{
 481	spinlock_t *lock = q->queue_lock;
 482
 483	/* mark @q DYING, no new request or merges will be allowed afterwards */
 484	mutex_lock(&q->sysfs_lock);
 485	queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
 486	spin_lock_irq(lock);
 487
 488	/*
 489	 * A dying queue is permanently in bypass mode till released.  Note
 490	 * that, unlike blk_queue_bypass_start(), we aren't performing
 491	 * synchronize_rcu() after entering bypass mode to avoid the delay
 492	 * as some drivers create and destroy a lot of queues while
 493	 * probing.  This is still safe because blk_release_queue() will be
 494	 * called only after the queue refcnt drops to zero and nothing,
 495	 * RCU or not, would be traversing the queue by then.
 496	 */
 497	q->bypass_depth++;
 498	queue_flag_set(QUEUE_FLAG_BYPASS, q);
 499
 500	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
 501	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
 502	queue_flag_set(QUEUE_FLAG_DYING, q);
 503	spin_unlock_irq(lock);
 504	mutex_unlock(&q->sysfs_lock);
 505
 506	/*
 507	 * Drain all requests queued before DYING marking. Set DEAD flag to
 508	 * prevent that q->request_fn() gets invoked after draining finished.
 509	 */
 510	if (q->mq_ops) {
 511		blk_mq_drain_queue(q);
 512		spin_lock_irq(lock);
 513	} else {
 514		spin_lock_irq(lock);
 515		__blk_drain_queue(q, true);
 516	}
 517	queue_flag_set(QUEUE_FLAG_DEAD, q);
 518	spin_unlock_irq(lock);
 519
 520	/* @q won't process any more request, flush async actions */
 521	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
 522	blk_sync_queue(q);
 523
 524	spin_lock_irq(lock);
 525	if (q->queue_lock != &q->__queue_lock)
 526		q->queue_lock = &q->__queue_lock;
 527	spin_unlock_irq(lock);
 528
 529	/* @q is and will stay empty, shutdown and put */
 530	blk_put_queue(q);
 531}
 532EXPORT_SYMBOL(blk_cleanup_queue);
 533
 534int blk_init_rl(struct request_list *rl, struct request_queue *q,
 535		gfp_t gfp_mask)
 536{
 537	if (unlikely(rl->rq_pool))
 538		return 0;
 539
 540	rl->q = q;
 541	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
 542	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
 543	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
 544	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
 545
 546	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
 547					  mempool_free_slab, request_cachep,
 548					  gfp_mask, q->node);
 549	if (!rl->rq_pool)
 550		return -ENOMEM;
 551
 552	return 0;
 553}
 554
 555void blk_exit_rl(struct request_list *rl)
 556{
 557	if (rl->rq_pool)
 558		mempool_destroy(rl->rq_pool);
 559}
 560
 561struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
 562{
 563	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
 564}
 565EXPORT_SYMBOL(blk_alloc_queue);
 566
 567struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
 568{
 569	struct request_queue *q;
 570	int err;
 571
 572	q = kmem_cache_alloc_node(blk_requestq_cachep,
 573				gfp_mask | __GFP_ZERO, node_id);
 574	if (!q)
 575		return NULL;
 576
 577	if (percpu_counter_init(&q->mq_usage_counter, 0))
 
 
 
 
 578		goto fail_q;
 
 
 
 
 
 
 
 
 
 
 
 
 579
 580	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
 581	if (q->id < 0)
 582		goto fail_c;
 583
 584	q->backing_dev_info.ra_pages =
 585			(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
 586	q->backing_dev_info.state = 0;
 587	q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
 588	q->backing_dev_info.name = "block";
 589	q->node = node_id;
 590
 591	err = bdi_init(&q->backing_dev_info);
 592	if (err)
 593		goto fail_id;
 594
 595	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
 596		    laptop_mode_timer_fn, (unsigned long) q);
 597	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
 598	INIT_LIST_HEAD(&q->queue_head);
 599	INIT_LIST_HEAD(&q->timeout_list);
 600	INIT_LIST_HEAD(&q->icq_list);
 601#ifdef CONFIG_BLK_CGROUP
 602	INIT_LIST_HEAD(&q->blkg_list);
 603#endif
 604	INIT_LIST_HEAD(&q->flush_queue[0]);
 605	INIT_LIST_HEAD(&q->flush_queue[1]);
 606	INIT_LIST_HEAD(&q->flush_data_in_flight);
 607	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
 608
 609	kobject_init(&q->kobj, &blk_queue_ktype);
 610
 
 
 611	mutex_init(&q->sysfs_lock);
 612	spin_lock_init(&q->__queue_lock);
 
 
 
 613
 614	/*
 615	 * By default initialize queue_lock to internal lock and driver can
 616	 * override it later if need be.
 617	 */
 618	q->queue_lock = &q->__queue_lock;
 619
 620	/*
 621	 * A queue starts its life with bypass turned on to avoid
 622	 * unnecessary bypass on/off overhead and nasty surprises during
 623	 * init.  The initial bypass will be finished when the queue is
 624	 * registered by blk_register_queue().
 625	 */
 626	q->bypass_depth = 1;
 627	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
 628
 629	init_waitqueue_head(&q->mq_freeze_wq);
 
 
 
 
 
 
 
 630
 631	if (blkcg_init_queue(q))
 632		goto fail_bdi;
 633
 634	return q;
 635
 636fail_bdi:
 637	bdi_destroy(&q->backing_dev_info);
 638fail_id:
 639	ida_simple_remove(&blk_queue_ida, q->id);
 640fail_c:
 641	percpu_counter_destroy(&q->mq_usage_counter);
 642fail_q:
 643	kmem_cache_free(blk_requestq_cachep, q);
 644	return NULL;
 645}
 646EXPORT_SYMBOL(blk_alloc_queue_node);
 647
 648/**
 649 * blk_init_queue  - prepare a request queue for use with a block device
 650 * @rfn:  The function to be called to process requests that have been
 651 *        placed on the queue.
 652 * @lock: Request queue spin lock
 653 *
 654 * Description:
 655 *    If a block device wishes to use the standard request handling procedures,
 656 *    which sorts requests and coalesces adjacent requests, then it must
 657 *    call blk_init_queue().  The function @rfn will be called when there
 658 *    are requests on the queue that need to be processed.  If the device
 659 *    supports plugging, then @rfn may not be called immediately when requests
 660 *    are available on the queue, but may be called at some time later instead.
 661 *    Plugged queues are generally unplugged when a buffer belonging to one
 662 *    of the requests on the queue is needed, or due to memory pressure.
 663 *
 664 *    @rfn is not required, or even expected, to remove all requests off the
 665 *    queue, but only as many as it can handle at a time.  If it does leave
 666 *    requests on the queue, it is responsible for arranging that the requests
 667 *    get dealt with eventually.
 668 *
 669 *    The queue spin lock must be held while manipulating the requests on the
 670 *    request queue; this lock will be taken also from interrupt context, so irq
 671 *    disabling is needed for it.
 672 *
 673 *    Function returns a pointer to the initialized request queue, or %NULL if
 674 *    it didn't succeed.
 675 *
 676 * Note:
 677 *    blk_init_queue() must be paired with a blk_cleanup_queue() call
 678 *    when the block device is deactivated (such as at module unload).
 679 **/
 680
 681struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
 682{
 683	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
 684}
 685EXPORT_SYMBOL(blk_init_queue);
 686
 687struct request_queue *
 688blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
 689{
 690	struct request_queue *uninit_q, *q;
 691
 692	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
 693	if (!uninit_q)
 694		return NULL;
 695
 696	q = blk_init_allocated_queue(uninit_q, rfn, lock);
 697	if (!q)
 698		blk_cleanup_queue(uninit_q);
 699
 700	return q;
 701}
 702EXPORT_SYMBOL(blk_init_queue_node);
 703
 704struct request_queue *
 705blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
 706			 spinlock_t *lock)
 707{
 708	if (!q)
 709		return NULL;
 710
 711	q->flush_rq = kzalloc(sizeof(struct request), GFP_KERNEL);
 712	if (!q->flush_rq)
 713		return NULL;
 714
 715	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
 716		goto fail;
 717
 718	q->request_fn		= rfn;
 719	q->prep_rq_fn		= NULL;
 720	q->unprep_rq_fn		= NULL;
 721	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
 722
 723	/* Override internal queue lock with supplied lock pointer */
 724	if (lock)
 725		q->queue_lock		= lock;
 726
 727	/*
 728	 * This also sets hw/phys segments, boundary and size
 729	 */
 730	blk_queue_make_request(q, blk_queue_bio);
 731
 732	q->sg_reserved_size = INT_MAX;
 733
 734	/* Protect q->elevator from elevator_change */
 735	mutex_lock(&q->sysfs_lock);
 736
 737	/* init elevator */
 738	if (elevator_init(q, NULL)) {
 739		mutex_unlock(&q->sysfs_lock);
 740		goto fail;
 741	}
 742
 743	mutex_unlock(&q->sysfs_lock);
 744
 745	return q;
 746
 747fail:
 748	kfree(q->flush_rq);
 749	return NULL;
 750}
 751EXPORT_SYMBOL(blk_init_allocated_queue);
 752
 753bool blk_get_queue(struct request_queue *q)
 754{
 755	if (likely(!blk_queue_dying(q))) {
 756		__blk_get_queue(q);
 757		return true;
 758	}
 759
 760	return false;
 761}
 762EXPORT_SYMBOL(blk_get_queue);
 763
 764static inline void blk_free_request(struct request_list *rl, struct request *rq)
 765{
 766	if (rq->cmd_flags & REQ_ELVPRIV) {
 767		elv_put_request(rl->q, rq);
 768		if (rq->elv.icq)
 769			put_io_context(rq->elv.icq->ioc);
 770	}
 771
 772	mempool_free(rq, rl->rq_pool);
 773}
 774
 775/*
 776 * ioc_batching returns true if the ioc is a valid batching request and
 777 * should be given priority access to a request.
 778 */
 779static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
 780{
 781	if (!ioc)
 782		return 0;
 783
 784	/*
 785	 * Make sure the process is able to allocate at least 1 request
 786	 * even if the batch times out, otherwise we could theoretically
 787	 * lose wakeups.
 788	 */
 789	return ioc->nr_batch_requests == q->nr_batching ||
 790		(ioc->nr_batch_requests > 0
 791		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
 792}
 
 793
 794/*
 795 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
 796 * will cause the process to be a "batcher" on all queues in the system. This
 797 * is the behaviour we want though - once it gets a wakeup it should be given
 798 * a nice run.
 799 */
 800static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
 801{
 802	if (!ioc || ioc_batching(q, ioc))
 803		return;
 804
 805	ioc->nr_batch_requests = q->nr_batching;
 806	ioc->last_waited = jiffies;
 807}
 808
 809static void __freed_request(struct request_list *rl, int sync)
 810{
 811	struct request_queue *q = rl->q;
 812
 813	/*
 814	 * bdi isn't aware of blkcg yet.  As all async IOs end up root
 815	 * blkcg anyway, just use root blkcg state.
 816	 */
 817	if (rl == &q->root_rl &&
 818	    rl->count[sync] < queue_congestion_off_threshold(q))
 819		blk_clear_queue_congested(q, sync);
 820
 821	if (rl->count[sync] + 1 <= q->nr_requests) {
 822		if (waitqueue_active(&rl->wait[sync]))
 823			wake_up(&rl->wait[sync]);
 824
 825		blk_clear_rl_full(rl, sync);
 826	}
 827}
 828
 829/*
 830 * A request has just been released.  Account for it, update the full and
 831 * congestion status, wake up any waiters.   Called under q->queue_lock.
 832 */
 833static void freed_request(struct request_list *rl, unsigned int flags)
 834{
 835	struct request_queue *q = rl->q;
 836	int sync = rw_is_sync(flags);
 837
 838	q->nr_rqs[sync]--;
 839	rl->count[sync]--;
 840	if (flags & REQ_ELVPRIV)
 841		q->nr_rqs_elvpriv--;
 842
 843	__freed_request(rl, sync);
 844
 845	if (unlikely(rl->starved[sync ^ 1]))
 846		__freed_request(rl, sync ^ 1);
 847}
 848
 849/*
 850 * Determine if elevator data should be initialized when allocating the
 851 * request associated with @bio.
 852 */
 853static bool blk_rq_should_init_elevator(struct bio *bio)
 854{
 855	if (!bio)
 856		return true;
 
 857
 858	/*
 859	 * Flush requests do not use the elevator so skip initialization.
 860	 * This allows a request to share the flush and elevator data.
 861	 */
 862	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
 863		return false;
 864
 865	return true;
 866}
 867
 868/**
 869 * rq_ioc - determine io_context for request allocation
 870 * @bio: request being allocated is for this bio (can be %NULL)
 871 *
 872 * Determine io_context to use for request allocation for @bio.  May return
 873 * %NULL if %current->io_context doesn't exist.
 874 */
 875static struct io_context *rq_ioc(struct bio *bio)
 876{
 877#ifdef CONFIG_BLK_CGROUP
 878	if (bio && bio->bi_ioc)
 879		return bio->bi_ioc;
 880#endif
 881	return current->io_context;
 882}
 883
 884/**
 885 * __get_request - get a free request
 886 * @rl: request list to allocate from
 887 * @rw_flags: RW and SYNC flags
 888 * @bio: bio to allocate request for (can be %NULL)
 889 * @gfp_mask: allocation mask
 890 *
 891 * Get a free request from @q.  This function may fail under memory
 892 * pressure or if @q is dead.
 893 *
 894 * Must be callled with @q->queue_lock held and,
 895 * Returns %NULL on failure, with @q->queue_lock held.
 896 * Returns !%NULL on success, with @q->queue_lock *not held*.
 897 */
 898static struct request *__get_request(struct request_list *rl, int rw_flags,
 899				     struct bio *bio, gfp_t gfp_mask)
 900{
 901	struct request_queue *q = rl->q;
 902	struct request *rq;
 903	struct elevator_type *et = q->elevator->type;
 904	struct io_context *ioc = rq_ioc(bio);
 905	struct io_cq *icq = NULL;
 906	const bool is_sync = rw_is_sync(rw_flags) != 0;
 907	int may_queue;
 908
 909	if (unlikely(blk_queue_dying(q)))
 910		return NULL;
 911
 912	may_queue = elv_may_queue(q, rw_flags);
 913	if (may_queue == ELV_MQUEUE_NO)
 914		goto rq_starved;
 915
 916	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
 917		if (rl->count[is_sync]+1 >= q->nr_requests) {
 918			/*
 919			 * The queue will fill after this allocation, so set
 920			 * it as full, and mark this process as "batching".
 921			 * This process will be allowed to complete a batch of
 922			 * requests, others will be blocked.
 923			 */
 924			if (!blk_rl_full(rl, is_sync)) {
 925				ioc_set_batching(q, ioc);
 926				blk_set_rl_full(rl, is_sync);
 927			} else {
 928				if (may_queue != ELV_MQUEUE_MUST
 929						&& !ioc_batching(q, ioc)) {
 930					/*
 931					 * The queue is full and the allocating
 932					 * process is not a "batcher", and not
 933					 * exempted by the IO scheduler
 934					 */
 935					return NULL;
 936				}
 937			}
 938		}
 939		/*
 940		 * bdi isn't aware of blkcg yet.  As all async IOs end up
 941		 * root blkcg anyway, just use root blkcg state.
 942		 */
 943		if (rl == &q->root_rl)
 944			blk_set_queue_congested(q, is_sync);
 945	}
 946
 947	/*
 948	 * Only allow batching queuers to allocate up to 50% over the defined
 949	 * limit of requests, otherwise we could have thousands of requests
 950	 * allocated with any setting of ->nr_requests
 951	 */
 952	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
 953		return NULL;
 954
 955	q->nr_rqs[is_sync]++;
 956	rl->count[is_sync]++;
 957	rl->starved[is_sync] = 0;
 958
 959	/*
 960	 * Decide whether the new request will be managed by elevator.  If
 961	 * so, mark @rw_flags and increment elvpriv.  Non-zero elvpriv will
 962	 * prevent the current elevator from being destroyed until the new
 963	 * request is freed.  This guarantees icq's won't be destroyed and
 964	 * makes creating new ones safe.
 965	 *
 966	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
 967	 * it will be created after releasing queue_lock.
 968	 */
 969	if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
 970		rw_flags |= REQ_ELVPRIV;
 971		q->nr_rqs_elvpriv++;
 972		if (et->icq_cache && ioc)
 973			icq = ioc_lookup_icq(ioc, q);
 974	}
 975
 976	if (blk_queue_io_stat(q))
 977		rw_flags |= REQ_IO_STAT;
 978	spin_unlock_irq(q->queue_lock);
 979
 980	/* allocate and init request */
 981	rq = mempool_alloc(rl->rq_pool, gfp_mask);
 982	if (!rq)
 983		goto fail_alloc;
 984
 985	blk_rq_init(q, rq);
 986	blk_rq_set_rl(rq, rl);
 987	rq->cmd_flags = rw_flags | REQ_ALLOCED;
 988
 989	/* init elvpriv */
 990	if (rw_flags & REQ_ELVPRIV) {
 991		if (unlikely(et->icq_cache && !icq)) {
 992			if (ioc)
 993				icq = ioc_create_icq(ioc, q, gfp_mask);
 994			if (!icq)
 995				goto fail_elvpriv;
 996		}
 997
 998		rq->elv.icq = icq;
 999		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1000			goto fail_elvpriv;
1001
1002		/* @rq->elv.icq holds io_context until @rq is freed */
1003		if (icq)
1004			get_io_context(icq->ioc);
1005	}
1006out:
1007	/*
1008	 * ioc may be NULL here, and ioc_batching will be false. That's
1009	 * OK, if the queue is under the request limit then requests need
1010	 * not count toward the nr_batch_requests limit. There will always
1011	 * be some limit enforced by BLK_BATCH_TIME.
1012	 */
1013	if (ioc_batching(q, ioc))
1014		ioc->nr_batch_requests--;
1015
1016	trace_block_getrq(q, bio, rw_flags & 1);
1017	return rq;
1018
1019fail_elvpriv:
1020	/*
1021	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1022	 * and may fail indefinitely under memory pressure and thus
1023	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1024	 * disturb iosched and blkcg but weird is bettern than dead.
1025	 */
1026	printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
1027			   dev_name(q->backing_dev_info.dev));
1028
1029	rq->cmd_flags &= ~REQ_ELVPRIV;
1030	rq->elv.icq = NULL;
1031
1032	spin_lock_irq(q->queue_lock);
1033	q->nr_rqs_elvpriv--;
1034	spin_unlock_irq(q->queue_lock);
1035	goto out;
1036
1037fail_alloc:
1038	/*
1039	 * Allocation failed presumably due to memory. Undo anything we
1040	 * might have messed up.
1041	 *
1042	 * Allocating task should really be put onto the front of the wait
1043	 * queue, but this is pretty rare.
1044	 */
1045	spin_lock_irq(q->queue_lock);
1046	freed_request(rl, rw_flags);
1047
1048	/*
1049	 * in the very unlikely event that allocation failed and no
1050	 * requests for this direction was pending, mark us starved so that
1051	 * freeing of a request in the other direction will notice
1052	 * us. another possible fix would be to split the rq mempool into
1053	 * READ and WRITE
1054	 */
1055rq_starved:
1056	if (unlikely(rl->count[is_sync] == 0))
1057		rl->starved[is_sync] = 1;
1058	return NULL;
1059}
1060
1061/**
1062 * get_request - get a free request
1063 * @q: request_queue to allocate request from
1064 * @rw_flags: RW and SYNC flags
1065 * @bio: bio to allocate request for (can be %NULL)
1066 * @gfp_mask: allocation mask
1067 *
1068 * Get a free request from @q.  If %__GFP_WAIT is set in @gfp_mask, this
1069 * function keeps retrying under memory pressure and fails iff @q is dead.
1070 *
1071 * Must be callled with @q->queue_lock held and,
1072 * Returns %NULL on failure, with @q->queue_lock held.
1073 * Returns !%NULL on success, with @q->queue_lock *not held*.
1074 */
1075static struct request *get_request(struct request_queue *q, int rw_flags,
1076				   struct bio *bio, gfp_t gfp_mask)
1077{
1078	const bool is_sync = rw_is_sync(rw_flags) != 0;
1079	DEFINE_WAIT(wait);
1080	struct request_list *rl;
1081	struct request *rq;
1082
1083	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1084retry:
1085	rq = __get_request(rl, rw_flags, bio, gfp_mask);
1086	if (rq)
1087		return rq;
1088
1089	if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1090		blk_put_rl(rl);
1091		return NULL;
1092	}
1093
1094	/* wait on @rl and retry */
1095	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1096				  TASK_UNINTERRUPTIBLE);
1097
1098	trace_block_sleeprq(q, bio, rw_flags & 1);
1099
1100	spin_unlock_irq(q->queue_lock);
1101	io_schedule();
1102
1103	/*
1104	 * After sleeping, we become a "batching" process and will be able
1105	 * to allocate at least one request, and up to a big batch of them
1106	 * for a small period time.  See ioc_batching, ioc_set_batching
1107	 */
1108	ioc_set_batching(q, current->io_context);
1109
1110	spin_lock_irq(q->queue_lock);
1111	finish_wait(&rl->wait[is_sync], &wait);
1112
1113	goto retry;
1114}
1115
1116static struct request *blk_old_get_request(struct request_queue *q, int rw,
1117		gfp_t gfp_mask)
1118{
1119	struct request *rq;
1120
1121	BUG_ON(rw != READ && rw != WRITE);
1122
1123	/* create ioc upfront */
1124	create_io_context(gfp_mask, q->node);
1125
1126	spin_lock_irq(q->queue_lock);
1127	rq = get_request(q, rw, NULL, gfp_mask);
1128	if (!rq)
1129		spin_unlock_irq(q->queue_lock);
1130	/* q->queue_lock is unlocked at this point */
1131
1132	return rq;
1133}
1134
1135struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1136{
1137	if (q->mq_ops)
1138		return blk_mq_alloc_request(q, rw, gfp_mask);
1139	else
1140		return blk_old_get_request(q, rw, gfp_mask);
1141}
1142EXPORT_SYMBOL(blk_get_request);
1143
1144/**
1145 * blk_make_request - given a bio, allocate a corresponding struct request.
1146 * @q: target request queue
1147 * @bio:  The bio describing the memory mappings that will be submitted for IO.
1148 *        It may be a chained-bio properly constructed by block/bio layer.
1149 * @gfp_mask: gfp flags to be used for memory allocation
1150 *
1151 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1152 * type commands. Where the struct request needs to be farther initialized by
1153 * the caller. It is passed a &struct bio, which describes the memory info of
1154 * the I/O transfer.
1155 *
1156 * The caller of blk_make_request must make sure that bi_io_vec
1157 * are set to describe the memory buffers. That bio_data_dir() will return
1158 * the needed direction of the request. (And all bio's in the passed bio-chain
1159 * are properly set accordingly)
1160 *
1161 * If called under none-sleepable conditions, mapped bio buffers must not
1162 * need bouncing, by calling the appropriate masked or flagged allocator,
1163 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1164 * BUG.
1165 *
1166 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1167 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1168 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1169 * completion of a bio that hasn't been submitted yet, thus resulting in a
1170 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1171 * of bio_alloc(), as that avoids the mempool deadlock.
1172 * If possible a big IO should be split into smaller parts when allocation
1173 * fails. Partial allocation should not be an error, or you risk a live-lock.
1174 */
1175struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1176				 gfp_t gfp_mask)
1177{
1178	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1179
1180	if (unlikely(!rq))
1181		return ERR_PTR(-ENOMEM);
1182
1183	for_each_bio(bio) {
1184		struct bio *bounce_bio = bio;
1185		int ret;
1186
1187		blk_queue_bounce(q, &bounce_bio);
1188		ret = blk_rq_append_bio(q, rq, bounce_bio);
1189		if (unlikely(ret)) {
1190			blk_put_request(rq);
1191			return ERR_PTR(ret);
1192		}
1193	}
1194
1195	return rq;
1196}
1197EXPORT_SYMBOL(blk_make_request);
1198
1199/**
1200 * blk_requeue_request - put a request back on queue
1201 * @q:		request queue where request should be inserted
1202 * @rq:		request to be inserted
1203 *
1204 * Description:
1205 *    Drivers often keep queueing requests until the hardware cannot accept
1206 *    more, when that condition happens we need to put the request back
1207 *    on the queue. Must be called with queue lock held.
1208 */
1209void blk_requeue_request(struct request_queue *q, struct request *rq)
1210{
1211	blk_delete_timer(rq);
1212	blk_clear_rq_complete(rq);
1213	trace_block_rq_requeue(q, rq);
1214
1215	if (blk_rq_tagged(rq))
1216		blk_queue_end_tag(q, rq);
1217
1218	BUG_ON(blk_queued_rq(rq));
1219
1220	elv_requeue_request(q, rq);
1221}
1222EXPORT_SYMBOL(blk_requeue_request);
1223
1224static void add_acct_request(struct request_queue *q, struct request *rq,
1225			     int where)
1226{
1227	blk_account_io_start(rq, true);
1228	__elv_add_request(q, rq, where);
1229}
1230
1231static void part_round_stats_single(int cpu, struct hd_struct *part,
1232				    unsigned long now)
1233{
1234	if (now == part->stamp)
1235		return;
1236
1237	if (part_in_flight(part)) {
1238		__part_stat_add(cpu, part, time_in_queue,
1239				part_in_flight(part) * (now - part->stamp));
1240		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1241	}
1242	part->stamp = now;
1243}
1244
1245/**
1246 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1247 * @cpu: cpu number for stats access
1248 * @part: target partition
1249 *
1250 * The average IO queue length and utilisation statistics are maintained
1251 * by observing the current state of the queue length and the amount of
1252 * time it has been in this state for.
1253 *
1254 * Normally, that accounting is done on IO completion, but that can result
1255 * in more than a second's worth of IO being accounted for within any one
1256 * second, leading to >100% utilisation.  To deal with that, we call this
1257 * function to do a round-off before returning the results when reading
1258 * /proc/diskstats.  This accounts immediately for all queue usage up to
1259 * the current jiffies and restarts the counters again.
1260 */
1261void part_round_stats(int cpu, struct hd_struct *part)
1262{
1263	unsigned long now = jiffies;
1264
1265	if (part->partno)
1266		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1267	part_round_stats_single(cpu, part, now);
1268}
1269EXPORT_SYMBOL_GPL(part_round_stats);
1270
1271#ifdef CONFIG_PM_RUNTIME
1272static void blk_pm_put_request(struct request *rq)
1273{
1274	if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1275		pm_runtime_mark_last_busy(rq->q->dev);
1276}
1277#else
1278static inline void blk_pm_put_request(struct request *rq) {}
1279#endif
1280
1281/*
1282 * queue lock must be held
1283 */
1284void __blk_put_request(struct request_queue *q, struct request *req)
 
1285{
1286	if (unlikely(!q))
1287		return;
1288
1289	if (q->mq_ops) {
1290		blk_mq_free_request(req);
1291		return;
1292	}
1293
1294	blk_pm_put_request(req);
1295
1296	elv_completed_request(q, req);
 
 
1297
1298	/* this is a bio leak */
1299	WARN_ON(req->bio != NULL);
 
1300
1301	/*
1302	 * Request may not have originated from ll_rw_blk. if not,
1303	 * it didn't come out of our reserved rq pools
 
1304	 */
1305	if (req->cmd_flags & REQ_ALLOCED) {
1306		unsigned int flags = req->cmd_flags;
1307		struct request_list *rl = blk_rq_rl(req);
1308
1309		BUG_ON(!list_empty(&req->queuelist));
1310		BUG_ON(ELV_ON_HASH(req));
1311
1312		blk_free_request(rl, req);
1313		freed_request(rl, flags);
1314		blk_put_rl(rl);
1315	}
1316}
1317EXPORT_SYMBOL_GPL(__blk_put_request);
1318
1319void blk_put_request(struct request *req)
1320{
1321	struct request_queue *q = req->q;
1322
1323	if (q->mq_ops)
1324		blk_mq_free_request(req);
1325	else {
1326		unsigned long flags;
1327
1328		spin_lock_irqsave(q->queue_lock, flags);
1329		__blk_put_request(q, req);
1330		spin_unlock_irqrestore(q->queue_lock, flags);
1331	}
1332}
1333EXPORT_SYMBOL(blk_put_request);
1334
1335/**
1336 * blk_add_request_payload - add a payload to a request
1337 * @rq: request to update
1338 * @page: page backing the payload
1339 * @len: length of the payload.
1340 *
1341 * This allows to later add a payload to an already submitted request by
1342 * a block driver.  The driver needs to take care of freeing the payload
1343 * itself.
1344 *
1345 * Note that this is a quite horrible hack and nothing but handling of
1346 * discard requests should ever use it.
1347 */
1348void blk_add_request_payload(struct request *rq, struct page *page,
1349		unsigned int len)
1350{
1351	struct bio *bio = rq->bio;
1352
1353	bio->bi_io_vec->bv_page = page;
1354	bio->bi_io_vec->bv_offset = 0;
1355	bio->bi_io_vec->bv_len = len;
1356
1357	bio->bi_iter.bi_size = len;
1358	bio->bi_vcnt = 1;
1359	bio->bi_phys_segments = 1;
1360
1361	rq->__data_len = rq->resid_len = len;
1362	rq->nr_phys_segments = 1;
1363	rq->buffer = bio_data(bio);
1364}
1365EXPORT_SYMBOL_GPL(blk_add_request_payload);
1366
1367bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1368			    struct bio *bio)
1369{
1370	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
 
1371
1372	if (!ll_back_merge_fn(q, req, bio))
1373		return false;
1374
1375	trace_block_bio_backmerge(q, req, bio);
1376
1377	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1378		blk_rq_set_mixed_merge(req);
1379
1380	req->biotail->bi_next = bio;
1381	req->biotail = bio;
1382	req->__data_len += bio->bi_iter.bi_size;
1383	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1384
1385	blk_account_io_start(req, false);
1386	return true;
1387}
1388
1389bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1390			     struct bio *bio)
1391{
1392	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1393
1394	if (!ll_front_merge_fn(q, req, bio))
1395		return false;
1396
1397	trace_block_bio_frontmerge(q, req, bio);
1398
1399	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1400		blk_rq_set_mixed_merge(req);
1401
1402	bio->bi_next = req->bio;
1403	req->bio = bio;
1404
1405	/*
1406	 * may not be valid. if the low level driver said
1407	 * it didn't need a bounce buffer then it better
1408	 * not touch req->buffer either...
1409	 */
1410	req->buffer = bio_data(bio);
1411	req->__sector = bio->bi_iter.bi_sector;
1412	req->__data_len += bio->bi_iter.bi_size;
1413	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1414
1415	blk_account_io_start(req, false);
1416	return true;
1417}
1418
1419/**
1420 * blk_attempt_plug_merge - try to merge with %current's plugged list
1421 * @q: request_queue new bio is being queued at
1422 * @bio: new bio being queued
1423 * @request_count: out parameter for number of traversed plugged requests
1424 *
1425 * Determine whether @bio being queued on @q can be merged with a request
1426 * on %current's plugged list.  Returns %true if merge was successful,
1427 * otherwise %false.
1428 *
1429 * Plugging coalesces IOs from the same issuer for the same purpose without
1430 * going through @q->queue_lock.  As such it's more of an issuing mechanism
1431 * than scheduling, and the request, while may have elvpriv data, is not
1432 * added on the elevator at this point.  In addition, we don't have
1433 * reliable access to the elevator outside queue lock.  Only check basic
1434 * merging parameters without querying the elevator.
1435 */
1436bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1437			    unsigned int *request_count)
1438{
1439	struct blk_plug *plug;
1440	struct request *rq;
1441	bool ret = false;
1442	struct list_head *plug_list;
1443
1444	if (blk_queue_nomerges(q))
1445		goto out;
1446
1447	plug = current->plug;
1448	if (!plug)
1449		goto out;
1450	*request_count = 0;
1451
1452	if (q->mq_ops)
1453		plug_list = &plug->mq_list;
1454	else
1455		plug_list = &plug->list;
1456
1457	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1458		int el_ret;
1459
1460		if (rq->q == q)
1461			(*request_count)++;
1462
1463		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1464			continue;
1465
1466		el_ret = blk_try_merge(rq, bio);
1467		if (el_ret == ELEVATOR_BACK_MERGE) {
1468			ret = bio_attempt_back_merge(q, rq, bio);
1469			if (ret)
1470				break;
1471		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1472			ret = bio_attempt_front_merge(q, rq, bio);
1473			if (ret)
1474				break;
1475		}
 
1476	}
1477out:
1478	return ret;
1479}
1480
1481void init_request_from_bio(struct request *req, struct bio *bio)
1482{
1483	req->cmd_type = REQ_TYPE_FS;
1484
1485	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1486	if (bio->bi_rw & REQ_RAHEAD)
1487		req->cmd_flags |= REQ_FAILFAST_MASK;
1488
1489	req->errors = 0;
1490	req->__sector = bio->bi_iter.bi_sector;
1491	req->ioprio = bio_prio(bio);
1492	blk_rq_bio_prep(req->q, req, bio);
1493}
1494
1495void blk_queue_bio(struct request_queue *q, struct bio *bio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1496{
1497	const bool sync = !!(bio->bi_rw & REQ_SYNC);
1498	struct blk_plug *plug;
1499	int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1500	struct request *req;
1501	unsigned int request_count = 0;
1502
1503	/*
1504	 * low level driver can indicate that it wants pages above a
1505	 * certain limit bounced to low memory (ie for highmem, or even
1506	 * ISA dma in theory)
1507	 */
1508	blk_queue_bounce(q, &bio);
1509
1510	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1511		bio_endio(bio, -EIO);
1512		return;
1513	}
1514
1515	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1516		spin_lock_irq(q->queue_lock);
1517		where = ELEVATOR_INSERT_FLUSH;
1518		goto get_rq;
1519	}
1520
1521	/*
1522	 * Check if we can merge with the plugged list before grabbing
1523	 * any locks.
1524	 */
1525	if (blk_attempt_plug_merge(q, bio, &request_count))
1526		return;
1527
1528	spin_lock_irq(q->queue_lock);
1529
1530	el_ret = elv_merge(q, &req, bio);
1531	if (el_ret == ELEVATOR_BACK_MERGE) {
1532		if (bio_attempt_back_merge(q, req, bio)) {
1533			elv_bio_merged(q, req, bio);
1534			if (!attempt_back_merge(q, req))
1535				elv_merged_request(q, req, el_ret);
1536			goto out_unlock;
1537		}
1538	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1539		if (bio_attempt_front_merge(q, req, bio)) {
1540			elv_bio_merged(q, req, bio);
1541			if (!attempt_front_merge(q, req))
1542				elv_merged_request(q, req, el_ret);
1543			goto out_unlock;
1544		}
1545	}
1546
1547get_rq:
1548	/*
1549	 * This sync check and mask will be re-done in init_request_from_bio(),
1550	 * but we need to set it earlier to expose the sync flag to the
1551	 * rq allocator and io schedulers.
1552	 */
1553	rw_flags = bio_data_dir(bio);
1554	if (sync)
1555		rw_flags |= REQ_SYNC;
1556
1557	/*
1558	 * Grab a free request. This is might sleep but can not fail.
1559	 * Returns with the queue unlocked.
1560	 */
1561	req = get_request(q, rw_flags, bio, GFP_NOIO);
1562	if (unlikely(!req)) {
1563		bio_endio(bio, -ENODEV);	/* @q is dead */
1564		goto out_unlock;
1565	}
1566
1567	/*
1568	 * After dropping the lock and possibly sleeping here, our request
1569	 * may now be mergeable after it had proven unmergeable (above).
1570	 * We don't worry about that case for efficiency. It won't happen
1571	 * often, and the elevators are able to handle it.
1572	 */
1573	init_request_from_bio(req, bio);
1574
1575	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1576		req->cpu = raw_smp_processor_id();
 
1577
1578	plug = current->plug;
1579	if (plug) {
1580		/*
1581		 * If this is the first request added after a plug, fire
1582		 * of a plug trace.
1583		 */
1584		if (!request_count)
1585			trace_block_plug(q);
1586		else {
1587			if (request_count >= BLK_MAX_REQUEST_COUNT) {
1588				blk_flush_plug_list(plug, false);
1589				trace_block_plug(q);
1590			}
1591		}
1592		list_add_tail(&req->queuelist, &plug->list);
1593		blk_account_io_start(req, true);
1594	} else {
1595		spin_lock_irq(q->queue_lock);
1596		add_acct_request(q, req, where);
1597		__blk_run_queue(q);
1598out_unlock:
1599		spin_unlock_irq(q->queue_lock);
1600	}
1601}
1602EXPORT_SYMBOL_GPL(blk_queue_bio);	/* for device mapper only */
1603
1604/*
1605 * If bio->bi_dev is a partition, remap the location
1606 */
1607static inline void blk_partition_remap(struct bio *bio)
1608{
1609	struct block_device *bdev = bio->bi_bdev;
1610
1611	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1612		struct hd_struct *p = bdev->bd_part;
 
 
 
 
 
 
 
 
 
1613
1614		bio->bi_iter.bi_sector += p->start_sect;
1615		bio->bi_bdev = bdev->bd_contains;
 
 
 
 
 
1616
1617		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1618				      bdev->bd_dev,
1619				      bio->bi_iter.bi_sector - p->start_sect);
1620	}
1621}
1622
1623static void handle_bad_sector(struct bio *bio)
1624{
1625	char b[BDEVNAME_SIZE];
1626
1627	printk(KERN_INFO "attempt to access beyond end of device\n");
1628	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1629			bdevname(bio->bi_bdev, b),
1630			bio->bi_rw,
1631			(unsigned long long)bio_end_sector(bio),
1632			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1633
1634	set_bit(BIO_EOF, &bio->bi_flags);
1635}
1636
1637#ifdef CONFIG_FAIL_MAKE_REQUEST
1638
1639static DECLARE_FAULT_ATTR(fail_make_request);
1640
1641static int __init setup_fail_make_request(char *str)
1642{
1643	return setup_fault_attr(&fail_make_request, str);
1644}
1645__setup("fail_make_request=", setup_fail_make_request);
1646
1647static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1648{
1649	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1650}
1651
1652static int __init fail_make_request_debugfs(void)
1653{
1654	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1655						NULL, &fail_make_request);
1656
1657	return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1658}
1659
1660late_initcall(fail_make_request_debugfs);
1661
1662#else /* CONFIG_FAIL_MAKE_REQUEST */
 
 
 
 
 
1663
1664static inline bool should_fail_request(struct hd_struct *part,
1665					unsigned int bytes)
1666{
1667	return false;
 
 
 
 
 
 
 
 
1668}
1669
1670#endif /* CONFIG_FAIL_MAKE_REQUEST */
1671
1672/*
1673 * Check whether this bio extends beyond the end of the device.
1674 */
1675static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1676{
1677	sector_t maxsector;
 
1678
1679	if (!nr_sectors)
1680		return 0;
1681
1682	/* Test device or partition size, when known. */
1683	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1684	if (maxsector) {
1685		sector_t sector = bio->bi_iter.bi_sector;
1686
1687		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1688			/*
1689			 * This may well happen - the kernel calls bread()
1690			 * without checking the size of the device, e.g., when
1691			 * mounting a device.
1692			 */
1693			handle_bad_sector(bio);
1694			return 1;
1695		}
1696	}
1697
1698	return 0;
1699}
1700
1701static noinline_for_stack bool
1702generic_make_request_checks(struct bio *bio)
 
 
 
 
 
 
 
 
1703{
1704	struct request_queue *q;
1705	int nr_sectors = bio_sectors(bio);
1706	int err = -EIO;
1707	char b[BDEVNAME_SIZE];
1708	struct hd_struct *part;
1709
1710	might_sleep();
1711
1712	if (bio_check_eod(bio, nr_sectors))
1713		goto end_io;
1714
1715	q = bdev_get_queue(bio->bi_bdev);
1716	if (unlikely(!q)) {
1717		printk(KERN_ERR
1718		       "generic_make_request: Trying to access "
1719			"nonexistent block-device %s (%Lu)\n",
1720			bdevname(bio->bi_bdev, b),
1721			(long long) bio->bi_iter.bi_sector);
1722		goto end_io;
1723	}
1724
1725	if (likely(bio_is_rw(bio) &&
1726		   nr_sectors > queue_max_hw_sectors(q))) {
1727		printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1728		       bdevname(bio->bi_bdev, b),
1729		       bio_sectors(bio),
1730		       queue_max_hw_sectors(q));
1731		goto end_io;
1732	}
1733
1734	part = bio->bi_bdev->bd_part;
1735	if (should_fail_request(part, bio->bi_iter.bi_size) ||
1736	    should_fail_request(&part_to_disk(part)->part0,
1737				bio->bi_iter.bi_size))
1738		goto end_io;
1739
1740	/*
1741	 * If this device has partitions, remap block n
1742	 * of partition p to block n+start(p) of the disk.
1743	 */
1744	blk_partition_remap(bio);
 
1745
1746	if (bio_check_eod(bio, nr_sectors))
1747		goto end_io;
 
 
 
 
 
 
 
 
1748
1749	/*
1750	 * Filter flush bio's early so that make_request based
1751	 * drivers without flush support don't have to worry
1752	 * about them.
1753	 */
1754	if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1755		bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1756		if (!nr_sectors) {
1757			err = 0;
1758			goto end_io;
 
 
 
 
 
 
1759		}
1760	}
1761
1762	if ((bio->bi_rw & REQ_DISCARD) &&
1763	    (!blk_queue_discard(q) ||
1764	     ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1765		err = -EOPNOTSUPP;
1766		goto end_io;
1767	}
1768
1769	if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1770		err = -EOPNOTSUPP;
1771		goto end_io;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1772	}
1773
1774	/*
1775	 * Various block parts want %current->io_context and lazy ioc
1776	 * allocation ends up trading a lot of pain for a small amount of
1777	 * memory.  Just allocate it upfront.  This may fail and block
1778	 * layer knows how to live with it.
1779	 */
1780	create_io_context(GFP_ATOMIC, q->node);
1781
1782	if (blk_throtl_bio(q, bio))
1783		return false;	/* throttled, will be resubmitted later */
1784
1785	trace_block_bio_queue(q, bio);
1786	return true;
1787
 
 
1788end_io:
1789	bio_endio(bio, err);
1790	return false;
1791}
 
1792
1793/**
1794 * generic_make_request - hand a buffer to its device driver for I/O
1795 * @bio:  The bio describing the location in memory and on the device.
1796 *
1797 * generic_make_request() is used to make I/O requests of block
1798 * devices. It is passed a &struct bio, which describes the I/O that needs
1799 * to be done.
1800 *
1801 * generic_make_request() does not return any status.  The
1802 * success/failure status of the request, along with notification of
1803 * completion, is delivered asynchronously through the bio->bi_end_io
1804 * function described (one day) else where.
1805 *
1806 * The caller of generic_make_request must make sure that bi_io_vec
1807 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1808 * set to describe the device address, and the
1809 * bi_end_io and optionally bi_private are set to describe how
1810 * completion notification should be signaled.
1811 *
1812 * generic_make_request and the drivers it calls may use bi_next if this
1813 * bio happens to be merged with someone else, and may resubmit the bio to
1814 * a lower device by calling into generic_make_request recursively, which
1815 * means the bio should NOT be touched after the call to ->make_request_fn.
1816 */
1817void generic_make_request(struct bio *bio)
1818{
1819	struct bio_list bio_list_on_stack;
1820
1821	if (!generic_make_request_checks(bio))
1822		return;
1823
1824	/*
1825	 * We only want one ->make_request_fn to be active at a time, else
1826	 * stack usage with stacked devices could be a problem.  So use
1827	 * current->bio_list to keep a list of requests submited by a
1828	 * make_request_fn function.  current->bio_list is also used as a
1829	 * flag to say if generic_make_request is currently active in this
1830	 * task or not.  If it is NULL, then no make_request is active.  If
1831	 * it is non-NULL, then a make_request is active, and new requests
1832	 * should be added at the tail
1833	 */
1834	if (current->bio_list) {
1835		bio_list_add(current->bio_list, bio);
1836		return;
1837	}
1838
1839	/* following loop may be a bit non-obvious, and so deserves some
1840	 * explanation.
1841	 * Before entering the loop, bio->bi_next is NULL (as all callers
1842	 * ensure that) so we have a list with a single bio.
1843	 * We pretend that we have just taken it off a longer list, so
1844	 * we assign bio_list to a pointer to the bio_list_on_stack,
1845	 * thus initialising the bio_list of new bios to be
1846	 * added.  ->make_request() may indeed add some more bios
1847	 * through a recursive call to generic_make_request.  If it
1848	 * did, we find a non-NULL value in bio_list and re-enter the loop
1849	 * from the top.  In this case we really did just take the bio
1850	 * of the top of the list (no pretending) and so remove it from
1851	 * bio_list, and call into ->make_request() again.
1852	 */
1853	BUG_ON(bio->bi_next);
1854	bio_list_init(&bio_list_on_stack);
1855	current->bio_list = &bio_list_on_stack;
1856	do {
1857		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1858
1859		q->make_request_fn(q, bio);
1860
1861		bio = bio_list_pop(current->bio_list);
1862	} while (bio);
1863	current->bio_list = NULL; /* deactivate */
1864}
1865EXPORT_SYMBOL(generic_make_request);
1866
1867/**
1868 * submit_bio - submit a bio to the block device layer for I/O
1869 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1870 * @bio: The &struct bio which describes the I/O
1871 *
1872 * submit_bio() is very similar in purpose to generic_make_request(), and
1873 * uses that function to do most of the work. Both are fairly rough
1874 * interfaces; @bio must be presetup and ready for I/O.
1875 *
1876 */
1877void submit_bio(int rw, struct bio *bio)
1878{
1879	bio->bi_rw |= rw;
1880
1881	/*
1882	 * If it's a regular read/write or a barrier with data attached,
1883	 * go through the normal accounting stuff before submission.
1884	 */
1885	if (bio_has_data(bio)) {
1886		unsigned int count;
1887
1888		if (unlikely(rw & REQ_WRITE_SAME))
1889			count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1890		else
1891			count = bio_sectors(bio);
1892
1893		if (rw & WRITE) {
1894			count_vm_events(PGPGOUT, count);
1895		} else {
1896			task_io_account_read(bio->bi_iter.bi_size);
1897			count_vm_events(PGPGIN, count);
1898		}
1899
1900		if (unlikely(block_dump)) {
1901			char b[BDEVNAME_SIZE];
1902			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1903			current->comm, task_pid_nr(current),
1904				(rw & WRITE) ? "WRITE" : "READ",
1905				(unsigned long long)bio->bi_iter.bi_sector,
1906				bdevname(bio->bi_bdev, b),
1907				count);
1908		}
1909	}
1910
1911	generic_make_request(bio);
 
1912}
1913EXPORT_SYMBOL(submit_bio);
1914
1915/**
1916 * blk_rq_check_limits - Helper function to check a request for the queue limit
1917 * @q:  the queue
1918 * @rq: the request being checked
1919 *
1920 * Description:
1921 *    @rq may have been made based on weaker limitations of upper-level queues
1922 *    in request stacking drivers, and it may violate the limitation of @q.
1923 *    Since the block layer and the underlying device driver trust @rq
1924 *    after it is inserted to @q, it should be checked against @q before
1925 *    the insertion using this generic function.
1926 *
1927 *    This function should also be useful for request stacking drivers
1928 *    in some cases below, so export this function.
1929 *    Request stacking drivers like request-based dm may change the queue
1930 *    limits while requests are in the queue (e.g. dm's table swapping).
1931 *    Such request stacking drivers should check those requests against
1932 *    the new queue limits again when they dispatch those requests,
1933 *    although such checkings are also done against the old queue limits
1934 *    when submitting requests.
1935 */
1936int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1937{
1938	if (!rq_mergeable(rq))
1939		return 0;
1940
1941	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
1942		printk(KERN_ERR "%s: over max size limit.\n", __func__);
1943		return -EIO;
1944	}
1945
1946	/*
1947	 * queue's settings related to segment counting like q->bounce_pfn
1948	 * may differ from that of other stacking queues.
1949	 * Recalculate it to check the request correctly on this queue's
1950	 * limitation.
1951	 */
1952	blk_recalc_rq_segments(rq);
1953	if (rq->nr_phys_segments > queue_max_segments(q)) {
1954		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1955		return -EIO;
1956	}
1957
1958	return 0;
1959}
1960EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1961
1962/**
1963 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1964 * @q:  the queue to submit the request
1965 * @rq: the request being queued
1966 */
1967int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1968{
1969	unsigned long flags;
1970	int where = ELEVATOR_INSERT_BACK;
1971
1972	if (blk_rq_check_limits(q, rq))
1973		return -EIO;
1974
1975	if (rq->rq_disk &&
1976	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1977		return -EIO;
1978
1979	spin_lock_irqsave(q->queue_lock, flags);
1980	if (unlikely(blk_queue_dying(q))) {
1981		spin_unlock_irqrestore(q->queue_lock, flags);
1982		return -ENODEV;
1983	}
1984
1985	/*
1986	 * Submitting request must be dequeued before calling this function
1987	 * because it will be linked to another request_queue
1988	 */
1989	BUG_ON(blk_queued_rq(rq));
1990
1991	if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1992		where = ELEVATOR_INSERT_FLUSH;
1993
1994	add_acct_request(q, rq, where);
1995	if (where == ELEVATOR_INSERT_FLUSH)
1996		__blk_run_queue(q);
1997	spin_unlock_irqrestore(q->queue_lock, flags);
1998
1999	return 0;
2000}
2001EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2002
2003/**
2004 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2005 * @rq: request to examine
2006 *
2007 * Description:
2008 *     A request could be merge of IOs which require different failure
2009 *     handling.  This function determines the number of bytes which
2010 *     can be failed from the beginning of the request without
2011 *     crossing into area which need to be retried further.
2012 *
2013 * Return:
2014 *     The number of bytes to fail.
2015 *
2016 * Context:
2017 *     queue_lock must be held.
2018 */
2019unsigned int blk_rq_err_bytes(const struct request *rq)
2020{
2021	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2022	unsigned int bytes = 0;
2023	struct bio *bio;
 
2024
2025	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2026		return blk_rq_bytes(rq);
 
2027
2028	/*
2029	 * Currently the only 'mixing' which can happen is between
2030	 * different fastfail types.  We can safely fail portions
2031	 * which have all the failfast bits that the first one has -
2032	 * the ones which are at least as eager to fail as the first
2033	 * one.
2034	 */
2035	for (bio = rq->bio; bio; bio = bio->bi_next) {
2036		if ((bio->bi_rw & ff) != ff)
2037			break;
2038		bytes += bio->bi_iter.bi_size;
2039	}
2040
2041	/* this could lead to infinite loop */
2042	BUG_ON(blk_rq_bytes(rq) && !bytes);
2043	return bytes;
2044}
2045EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2046
2047void blk_account_io_completion(struct request *req, unsigned int bytes)
2048{
2049	if (blk_do_io_stat(req)) {
2050		const int rw = rq_data_dir(req);
2051		struct hd_struct *part;
2052		int cpu;
2053
2054		cpu = part_stat_lock();
2055		part = req->part;
2056		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2057		part_stat_unlock();
2058	}
2059}
2060
2061void blk_account_io_done(struct request *req)
2062{
2063	/*
2064	 * Account IO completion.  flush_rq isn't accounted as a
2065	 * normal IO on queueing nor completion.  Accounting the
2066	 * containing request is enough.
 
 
 
 
2067	 */
2068	if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2069		unsigned long duration = jiffies - req->start_time;
2070		const int rw = rq_data_dir(req);
2071		struct hd_struct *part;
2072		int cpu;
2073
2074		cpu = part_stat_lock();
2075		part = req->part;
2076
2077		part_stat_inc(cpu, part, ios[rw]);
2078		part_stat_add(cpu, part, ticks[rw], duration);
2079		part_round_stats(cpu, part);
2080		part_dec_in_flight(part, rw);
2081
2082		hd_struct_put(part);
2083		part_stat_unlock();
2084	}
2085}
2086
2087#ifdef CONFIG_PM_RUNTIME
2088/*
2089 * Don't process normal requests when queue is suspended
2090 * or in the process of suspending/resuming
2091 */
2092static struct request *blk_pm_peek_request(struct request_queue *q,
2093					   struct request *rq)
2094{
2095	if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2096	    (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2097		return NULL;
2098	else
2099		return rq;
2100}
2101#else
2102static inline struct request *blk_pm_peek_request(struct request_queue *q,
2103						  struct request *rq)
2104{
2105	return rq;
2106}
2107#endif
2108
2109void blk_account_io_start(struct request *rq, bool new_io)
2110{
2111	struct hd_struct *part;
2112	int rw = rq_data_dir(rq);
2113	int cpu;
2114
2115	if (!blk_do_io_stat(rq))
2116		return;
2117
2118	cpu = part_stat_lock();
2119
2120	if (!new_io) {
2121		part = rq->part;
2122		part_stat_inc(cpu, part, merges[rw]);
2123	} else {
2124		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2125		if (!hd_struct_try_get(part)) {
2126			/*
2127			 * The partition is already being removed,
2128			 * the request will be accounted on the disk only
2129			 *
2130			 * We take a reference on disk->part0 although that
2131			 * partition will never be deleted, so we can treat
2132			 * it as any other partition.
2133			 */
2134			part = &rq->rq_disk->part0;
2135			hd_struct_get(part);
2136		}
2137		part_round_stats(cpu, part);
2138		part_inc_in_flight(part, rw);
2139		rq->part = part;
2140	}
2141
2142	part_stat_unlock();
2143}
2144
2145/**
2146 * blk_peek_request - peek at the top of a request queue
2147 * @q: request queue to peek at
2148 *
2149 * Description:
2150 *     Return the request at the top of @q.  The returned request
2151 *     should be started using blk_start_request() before LLD starts
2152 *     processing it.
2153 *
2154 * Return:
2155 *     Pointer to the request at the top of @q if available.  Null
2156 *     otherwise.
2157 *
2158 * Context:
2159 *     queue_lock must be held.
2160 */
2161struct request *blk_peek_request(struct request_queue *q)
2162{
2163	struct request *rq;
2164	int ret;
2165
2166	while ((rq = __elv_next_request(q)) != NULL) {
2167
2168		rq = blk_pm_peek_request(q, rq);
2169		if (!rq)
2170			break;
2171
2172		if (!(rq->cmd_flags & REQ_STARTED)) {
2173			/*
2174			 * This is the first time the device driver
2175			 * sees this request (possibly after
2176			 * requeueing).  Notify IO scheduler.
2177			 */
2178			if (rq->cmd_flags & REQ_SORTED)
2179				elv_activate_rq(q, rq);
2180
2181			/*
2182			 * just mark as started even if we don't start
2183			 * it, a request that has been delayed should
2184			 * not be passed by new incoming requests
2185			 */
2186			rq->cmd_flags |= REQ_STARTED;
2187			trace_block_rq_issue(q, rq);
2188		}
2189
2190		if (!q->boundary_rq || q->boundary_rq == rq) {
2191			q->end_sector = rq_end_sector(rq);
2192			q->boundary_rq = NULL;
2193		}
2194
2195		if (rq->cmd_flags & REQ_DONTPREP)
2196			break;
2197
2198		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2199			/*
2200			 * make sure space for the drain appears we
2201			 * know we can do this because max_hw_segments
2202			 * has been adjusted to be one fewer than the
2203			 * device can handle
2204			 */
2205			rq->nr_phys_segments++;
2206		}
2207
2208		if (!q->prep_rq_fn)
2209			break;
2210
2211		ret = q->prep_rq_fn(q, rq);
2212		if (ret == BLKPREP_OK) {
2213			break;
2214		} else if (ret == BLKPREP_DEFER) {
2215			/*
2216			 * the request may have been (partially) prepped.
2217			 * we need to keep this request in the front to
2218			 * avoid resource deadlock.  REQ_STARTED will
2219			 * prevent other fs requests from passing this one.
2220			 */
2221			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2222			    !(rq->cmd_flags & REQ_DONTPREP)) {
2223				/*
2224				 * remove the space for the drain we added
2225				 * so that we don't add it again
2226				 */
2227				--rq->nr_phys_segments;
2228			}
2229
2230			rq = NULL;
2231			break;
2232		} else if (ret == BLKPREP_KILL) {
2233			rq->cmd_flags |= REQ_QUIET;
2234			/*
2235			 * Mark this request as started so we don't trigger
2236			 * any debug logic in the end I/O path.
2237			 */
2238			blk_start_request(rq);
2239			__blk_end_request_all(rq, -EIO);
2240		} else {
2241			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2242			break;
2243		}
2244	}
2245
2246	return rq;
2247}
2248EXPORT_SYMBOL(blk_peek_request);
2249
2250void blk_dequeue_request(struct request *rq)
2251{
2252	struct request_queue *q = rq->q;
2253
2254	BUG_ON(list_empty(&rq->queuelist));
2255	BUG_ON(ELV_ON_HASH(rq));
2256
2257	list_del_init(&rq->queuelist);
2258
2259	/*
2260	 * the time frame between a request being removed from the lists
2261	 * and to it is freed is accounted as io that is in progress at
2262	 * the driver side.
2263	 */
2264	if (blk_account_rq(rq)) {
2265		q->in_flight[rq_is_sync(rq)]++;
2266		set_io_start_time_ns(rq);
2267	}
2268}
2269
2270/**
2271 * blk_start_request - start request processing on the driver
2272 * @req: request to dequeue
2273 *
2274 * Description:
2275 *     Dequeue @req and start timeout timer on it.  This hands off the
2276 *     request to the driver.
2277 *
2278 *     Block internal functions which don't want to start timer should
2279 *     call blk_dequeue_request().
2280 *
2281 * Context:
2282 *     queue_lock must be held.
2283 */
2284void blk_start_request(struct request *req)
2285{
2286	blk_dequeue_request(req);
2287
2288	/*
2289	 * We are now handing the request to the hardware, initialize
2290	 * resid_len to full count and add the timeout handler.
2291	 */
2292	req->resid_len = blk_rq_bytes(req);
2293	if (unlikely(blk_bidi_rq(req)))
2294		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2295
2296	BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2297	blk_add_timer(req);
2298}
2299EXPORT_SYMBOL(blk_start_request);
2300
2301/**
2302 * blk_fetch_request - fetch a request from a request queue
2303 * @q: request queue to fetch a request from
2304 *
2305 * Description:
2306 *     Return the request at the top of @q.  The request is started on
2307 *     return and LLD can start processing it immediately.
2308 *
2309 * Return:
2310 *     Pointer to the request at the top of @q if available.  Null
2311 *     otherwise.
2312 *
2313 * Context:
2314 *     queue_lock must be held.
2315 */
2316struct request *blk_fetch_request(struct request_queue *q)
2317{
2318	struct request *rq;
2319
2320	rq = blk_peek_request(q);
2321	if (rq)
2322		blk_start_request(rq);
2323	return rq;
2324}
2325EXPORT_SYMBOL(blk_fetch_request);
2326
2327/**
2328 * blk_update_request - Special helper function for request stacking drivers
2329 * @req:      the request being processed
2330 * @error:    %0 for success, < %0 for error
2331 * @nr_bytes: number of bytes to complete @req
2332 *
2333 * Description:
2334 *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2335 *     the request structure even if @req doesn't have leftover.
2336 *     If @req has leftover, sets it up for the next range of segments.
2337 *
2338 *     This special helper function is only for request stacking drivers
2339 *     (e.g. request-based dm) so that they can handle partial completion.
2340 *     Actual device drivers should use blk_end_request instead.
2341 *
2342 *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2343 *     %false return from this function.
2344 *
2345 * Return:
2346 *     %false - this request doesn't have any more data
2347 *     %true  - this request has more data
2348 **/
2349bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2350{
2351	int total_bytes;
2352
2353	if (!req->bio)
2354		return false;
2355
2356	trace_block_rq_complete(req->q, req, nr_bytes);
2357
2358	/*
2359	 * For fs requests, rq is just carrier of independent bio's
2360	 * and each partial completion should be handled separately.
2361	 * Reset per-request error on each partial completion.
2362	 *
2363	 * TODO: tj: This is too subtle.  It would be better to let
2364	 * low level drivers do what they see fit.
2365	 */
2366	if (req->cmd_type == REQ_TYPE_FS)
2367		req->errors = 0;
2368
2369	if (error && req->cmd_type == REQ_TYPE_FS &&
2370	    !(req->cmd_flags & REQ_QUIET)) {
2371		char *error_type;
2372
2373		switch (error) {
2374		case -ENOLINK:
2375			error_type = "recoverable transport";
2376			break;
2377		case -EREMOTEIO:
2378			error_type = "critical target";
2379			break;
2380		case -EBADE:
2381			error_type = "critical nexus";
2382			break;
2383		case -ETIMEDOUT:
2384			error_type = "timeout";
2385			break;
2386		case -ENOSPC:
2387			error_type = "critical space allocation";
2388			break;
2389		case -ENODATA:
2390			error_type = "critical medium";
2391			break;
2392		case -EIO:
2393		default:
2394			error_type = "I/O";
2395			break;
2396		}
2397		printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2398				   error_type, req->rq_disk ?
2399				   req->rq_disk->disk_name : "?",
2400				   (unsigned long long)blk_rq_pos(req));
2401
2402	}
2403
2404	blk_account_io_completion(req, nr_bytes);
2405
2406	total_bytes = 0;
2407	while (req->bio) {
2408		struct bio *bio = req->bio;
2409		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2410
2411		if (bio_bytes == bio->bi_iter.bi_size)
2412			req->bio = bio->bi_next;
2413
2414		req_bio_endio(req, bio, bio_bytes, error);
2415
2416		total_bytes += bio_bytes;
2417		nr_bytes -= bio_bytes;
2418
2419		if (!nr_bytes)
2420			break;
2421	}
2422
2423	/*
2424	 * completely done
2425	 */
2426	if (!req->bio) {
2427		/*
2428		 * Reset counters so that the request stacking driver
2429		 * can find how many bytes remain in the request
2430		 * later.
2431		 */
2432		req->__data_len = 0;
2433		return false;
2434	}
2435
2436	req->__data_len -= total_bytes;
2437	req->buffer = bio_data(req->bio);
2438
2439	/* update sector only for requests with clear definition of sector */
2440	if (req->cmd_type == REQ_TYPE_FS)
2441		req->__sector += total_bytes >> 9;
2442
2443	/* mixed attributes always follow the first bio */
2444	if (req->cmd_flags & REQ_MIXED_MERGE) {
2445		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2446		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2447	}
2448
2449	/*
2450	 * If total number of sectors is less than the first segment
2451	 * size, something has gone terribly wrong.
2452	 */
2453	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2454		blk_dump_rq_flags(req, "request botched");
2455		req->__data_len = blk_rq_cur_bytes(req);
2456	}
2457
2458	/* recalculate the number of segments */
2459	blk_recalc_rq_segments(req);
2460
2461	return true;
2462}
2463EXPORT_SYMBOL_GPL(blk_update_request);
2464
2465static bool blk_update_bidi_request(struct request *rq, int error,
2466				    unsigned int nr_bytes,
2467				    unsigned int bidi_bytes)
2468{
2469	if (blk_update_request(rq, error, nr_bytes))
2470		return true;
2471
2472	/* Bidi request must be completed as a whole */
2473	if (unlikely(blk_bidi_rq(rq)) &&
2474	    blk_update_request(rq->next_rq, error, bidi_bytes))
2475		return true;
2476
2477	if (blk_queue_add_random(rq->q))
2478		add_disk_randomness(rq->rq_disk);
2479
2480	return false;
2481}
2482
2483/**
2484 * blk_unprep_request - unprepare a request
2485 * @req:	the request
2486 *
2487 * This function makes a request ready for complete resubmission (or
2488 * completion).  It happens only after all error handling is complete,
2489 * so represents the appropriate moment to deallocate any resources
2490 * that were allocated to the request in the prep_rq_fn.  The queue
2491 * lock is held when calling this.
2492 */
2493void blk_unprep_request(struct request *req)
2494{
2495	struct request_queue *q = req->q;
2496
2497	req->cmd_flags &= ~REQ_DONTPREP;
2498	if (q->unprep_rq_fn)
2499		q->unprep_rq_fn(q, req);
2500}
2501EXPORT_SYMBOL_GPL(blk_unprep_request);
2502
2503/*
2504 * queue lock must be held
2505 */
2506static void blk_finish_request(struct request *req, int error)
2507{
2508	if (blk_rq_tagged(req))
2509		blk_queue_end_tag(req->q, req);
2510
2511	BUG_ON(blk_queued_rq(req));
2512
2513	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2514		laptop_io_completion(&req->q->backing_dev_info);
2515
2516	blk_delete_timer(req);
2517
2518	if (req->cmd_flags & REQ_DONTPREP)
2519		blk_unprep_request(req);
2520
2521	blk_account_io_done(req);
2522
2523	if (req->end_io)
2524		req->end_io(req, error);
2525	else {
2526		if (blk_bidi_rq(req))
2527			__blk_put_request(req->next_rq->q, req->next_rq);
2528
2529		__blk_put_request(req->q, req);
2530	}
2531}
2532
2533/**
2534 * blk_end_bidi_request - Complete a bidi request
2535 * @rq:         the request to complete
2536 * @error:      %0 for success, < %0 for error
2537 * @nr_bytes:   number of bytes to complete @rq
2538 * @bidi_bytes: number of bytes to complete @rq->next_rq
2539 *
2540 * Description:
2541 *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2542 *     Drivers that supports bidi can safely call this member for any
2543 *     type of request, bidi or uni.  In the later case @bidi_bytes is
2544 *     just ignored.
2545 *
2546 * Return:
2547 *     %false - we are done with this request
2548 *     %true  - still buffers pending for this request
2549 **/
2550static bool blk_end_bidi_request(struct request *rq, int error,
2551				 unsigned int nr_bytes, unsigned int bidi_bytes)
2552{
2553	struct request_queue *q = rq->q;
2554	unsigned long flags;
2555
2556	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2557		return true;
2558
2559	spin_lock_irqsave(q->queue_lock, flags);
2560	blk_finish_request(rq, error);
2561	spin_unlock_irqrestore(q->queue_lock, flags);
2562
2563	return false;
2564}
2565
2566/**
2567 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2568 * @rq:         the request to complete
2569 * @error:      %0 for success, < %0 for error
2570 * @nr_bytes:   number of bytes to complete @rq
2571 * @bidi_bytes: number of bytes to complete @rq->next_rq
2572 *
2573 * Description:
2574 *     Identical to blk_end_bidi_request() except that queue lock is
2575 *     assumed to be locked on entry and remains so on return.
2576 *
2577 * Return:
2578 *     %false - we are done with this request
2579 *     %true  - still buffers pending for this request
2580 **/
2581bool __blk_end_bidi_request(struct request *rq, int error,
2582				   unsigned int nr_bytes, unsigned int bidi_bytes)
2583{
2584	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2585		return true;
2586
2587	blk_finish_request(rq, error);
2588
2589	return false;
2590}
2591
2592/**
2593 * blk_end_request - Helper function for drivers to complete the request.
2594 * @rq:       the request being processed
2595 * @error:    %0 for success, < %0 for error
2596 * @nr_bytes: number of bytes to complete
2597 *
2598 * Description:
2599 *     Ends I/O on a number of bytes attached to @rq.
2600 *     If @rq has leftover, sets it up for the next range of segments.
2601 *
2602 * Return:
2603 *     %false - we are done with this request
2604 *     %true  - still buffers pending for this request
2605 **/
2606bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2607{
2608	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2609}
2610EXPORT_SYMBOL(blk_end_request);
2611
2612/**
2613 * blk_end_request_all - Helper function for drives to finish the request.
2614 * @rq: the request to finish
2615 * @error: %0 for success, < %0 for error
2616 *
2617 * Description:
2618 *     Completely finish @rq.
2619 */
2620void blk_end_request_all(struct request *rq, int error)
2621{
2622	bool pending;
2623	unsigned int bidi_bytes = 0;
2624
2625	if (unlikely(blk_bidi_rq(rq)))
2626		bidi_bytes = blk_rq_bytes(rq->next_rq);
2627
2628	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2629	BUG_ON(pending);
2630}
2631EXPORT_SYMBOL(blk_end_request_all);
2632
2633/**
2634 * blk_end_request_cur - Helper function to finish the current request chunk.
2635 * @rq: the request to finish the current chunk for
2636 * @error: %0 for success, < %0 for error
2637 *
2638 * Description:
2639 *     Complete the current consecutively mapped chunk from @rq.
2640 *
2641 * Return:
2642 *     %false - we are done with this request
2643 *     %true  - still buffers pending for this request
2644 */
2645bool blk_end_request_cur(struct request *rq, int error)
2646{
2647	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2648}
2649EXPORT_SYMBOL(blk_end_request_cur);
2650
2651/**
2652 * blk_end_request_err - Finish a request till the next failure boundary.
2653 * @rq: the request to finish till the next failure boundary for
2654 * @error: must be negative errno
2655 *
2656 * Description:
2657 *     Complete @rq till the next failure boundary.
2658 *
2659 * Return:
2660 *     %false - we are done with this request
2661 *     %true  - still buffers pending for this request
2662 */
2663bool blk_end_request_err(struct request *rq, int error)
2664{
2665	WARN_ON(error >= 0);
2666	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2667}
2668EXPORT_SYMBOL_GPL(blk_end_request_err);
2669
2670/**
2671 * __blk_end_request - Helper function for drivers to complete the request.
2672 * @rq:       the request being processed
2673 * @error:    %0 for success, < %0 for error
2674 * @nr_bytes: number of bytes to complete
2675 *
2676 * Description:
2677 *     Must be called with queue lock held unlike blk_end_request().
2678 *
2679 * Return:
2680 *     %false - we are done with this request
2681 *     %true  - still buffers pending for this request
2682 **/
2683bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2684{
2685	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2686}
2687EXPORT_SYMBOL(__blk_end_request);
2688
2689/**
2690 * __blk_end_request_all - Helper function for drives to finish the request.
2691 * @rq: the request to finish
2692 * @error: %0 for success, < %0 for error
2693 *
2694 * Description:
2695 *     Completely finish @rq.  Must be called with queue lock held.
2696 */
2697void __blk_end_request_all(struct request *rq, int error)
2698{
2699	bool pending;
2700	unsigned int bidi_bytes = 0;
2701
2702	if (unlikely(blk_bidi_rq(rq)))
2703		bidi_bytes = blk_rq_bytes(rq->next_rq);
2704
2705	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2706	BUG_ON(pending);
2707}
2708EXPORT_SYMBOL(__blk_end_request_all);
2709
2710/**
2711 * __blk_end_request_cur - Helper function to finish the current request chunk.
2712 * @rq: the request to finish the current chunk for
2713 * @error: %0 for success, < %0 for error
2714 *
2715 * Description:
2716 *     Complete the current consecutively mapped chunk from @rq.  Must
2717 *     be called with queue lock held.
2718 *
2719 * Return:
2720 *     %false - we are done with this request
2721 *     %true  - still buffers pending for this request
2722 */
2723bool __blk_end_request_cur(struct request *rq, int error)
2724{
2725	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2726}
2727EXPORT_SYMBOL(__blk_end_request_cur);
2728
2729/**
2730 * __blk_end_request_err - Finish a request till the next failure boundary.
2731 * @rq: the request to finish till the next failure boundary for
2732 * @error: must be negative errno
2733 *
2734 * Description:
2735 *     Complete @rq till the next failure boundary.  Must be called
2736 *     with queue lock held.
2737 *
2738 * Return:
2739 *     %false - we are done with this request
2740 *     %true  - still buffers pending for this request
2741 */
2742bool __blk_end_request_err(struct request *rq, int error)
2743{
2744	WARN_ON(error >= 0);
2745	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2746}
2747EXPORT_SYMBOL_GPL(__blk_end_request_err);
2748
2749void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2750		     struct bio *bio)
2751{
2752	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2753	rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2754
2755	if (bio_has_data(bio)) {
2756		rq->nr_phys_segments = bio_phys_segments(q, bio);
2757		rq->buffer = bio_data(bio);
2758	}
2759	rq->__data_len = bio->bi_iter.bi_size;
2760	rq->bio = rq->biotail = bio;
2761
2762	if (bio->bi_bdev)
2763		rq->rq_disk = bio->bi_bdev->bd_disk;
2764}
 
2765
2766#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2767/**
2768 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2769 * @rq: the request to be flushed
2770 *
2771 * Description:
2772 *     Flush all pages in @rq.
2773 */
2774void rq_flush_dcache_pages(struct request *rq)
2775{
2776	struct req_iterator iter;
2777	struct bio_vec bvec;
2778
2779	rq_for_each_segment(bvec, rq, iter)
2780		flush_dcache_page(bvec.bv_page);
2781}
2782EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2783#endif
2784
2785/**
2786 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2787 * @q : the queue of the device being checked
2788 *
2789 * Description:
2790 *    Check if underlying low-level drivers of a device are busy.
2791 *    If the drivers want to export their busy state, they must set own
2792 *    exporting function using blk_queue_lld_busy() first.
2793 *
2794 *    Basically, this function is used only by request stacking drivers
2795 *    to stop dispatching requests to underlying devices when underlying
2796 *    devices are busy.  This behavior helps more I/O merging on the queue
2797 *    of the request stacking driver and prevents I/O throughput regression
2798 *    on burst I/O load.
2799 *
2800 * Return:
2801 *    0 - Not busy (The request stacking driver should dispatch request)
2802 *    1 - Busy (The request stacking driver should stop dispatching request)
2803 */
2804int blk_lld_busy(struct request_queue *q)
2805{
2806	if (q->lld_busy_fn)
2807		return q->lld_busy_fn(q);
2808
2809	return 0;
2810}
2811EXPORT_SYMBOL_GPL(blk_lld_busy);
2812
2813/**
2814 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2815 * @rq: the clone request to be cleaned up
2816 *
2817 * Description:
2818 *     Free all bios in @rq for a cloned request.
2819 */
2820void blk_rq_unprep_clone(struct request *rq)
2821{
2822	struct bio *bio;
2823
2824	while ((bio = rq->bio) != NULL) {
2825		rq->bio = bio->bi_next;
2826
2827		bio_put(bio);
2828	}
2829}
2830EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2831
2832/*
2833 * Copy attributes of the original request to the clone request.
2834 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2835 */
2836static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2837{
2838	dst->cpu = src->cpu;
2839	dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2840	dst->cmd_type = src->cmd_type;
2841	dst->__sector = blk_rq_pos(src);
2842	dst->__data_len = blk_rq_bytes(src);
2843	dst->nr_phys_segments = src->nr_phys_segments;
2844	dst->ioprio = src->ioprio;
2845	dst->extra_len = src->extra_len;
2846}
 
2847
2848/**
2849 * blk_rq_prep_clone - Helper function to setup clone request
2850 * @rq: the request to be setup
2851 * @rq_src: original request to be cloned
2852 * @bs: bio_set that bios for clone are allocated from
2853 * @gfp_mask: memory allocation mask for bio
2854 * @bio_ctr: setup function to be called for each clone bio.
2855 *           Returns %0 for success, non %0 for failure.
2856 * @data: private data to be passed to @bio_ctr
2857 *
2858 * Description:
2859 *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2860 *     The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2861 *     are not copied, and copying such parts is the caller's responsibility.
2862 *     Also, pages which the original bios are pointing to are not copied
2863 *     and the cloned bios just point same pages.
2864 *     So cloned bios must be completed before original bios, which means
2865 *     the caller must complete @rq before @rq_src.
2866 */
2867int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2868		      struct bio_set *bs, gfp_t gfp_mask,
2869		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2870		      void *data)
2871{
2872	struct bio *bio, *bio_src;
2873
2874	if (!bs)
2875		bs = fs_bio_set;
2876
2877	blk_rq_init(NULL, rq);
2878
2879	__rq_for_each_bio(bio_src, rq_src) {
2880		bio = bio_clone_bioset(bio_src, gfp_mask, bs);
2881		if (!bio)
2882			goto free_and_out;
2883
2884		if (bio_ctr && bio_ctr(bio, bio_src, data))
2885			goto free_and_out;
2886
2887		if (rq->bio) {
2888			rq->biotail->bi_next = bio;
2889			rq->biotail = bio;
2890		} else
2891			rq->bio = rq->biotail = bio;
2892	}
2893
2894	__blk_rq_prep_clone(rq, rq_src);
2895
2896	return 0;
2897
2898free_and_out:
2899	if (bio)
2900		bio_put(bio);
2901	blk_rq_unprep_clone(rq);
2902
2903	return -ENOMEM;
2904}
2905EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
 
 
2906
2907int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2908{
2909	return queue_work(kblockd_workqueue, work);
2910}
2911EXPORT_SYMBOL(kblockd_schedule_work);
 
 
 
2912
2913int kblockd_schedule_delayed_work(struct request_queue *q,
2914			struct delayed_work *dwork, unsigned long delay)
2915{
2916	return queue_delayed_work(kblockd_workqueue, dwork, delay);
 
2917}
2918EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2919
2920#define PLUG_MAGIC	0x91827364
2921
2922/**
2923 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2924 * @plug:	The &struct blk_plug that needs to be initialized
2925 *
2926 * Description:
 
 
 
 
 
 
 
 
 
2927 *   Tracking blk_plug inside the task_struct will help with auto-flushing the
2928 *   pending I/O should the task end up blocking between blk_start_plug() and
2929 *   blk_finish_plug(). This is important from a performance perspective, but
2930 *   also ensures that we don't deadlock. For instance, if the task is blocking
2931 *   for a memory allocation, memory reclaim could end up wanting to free a
2932 *   page belonging to that request that is currently residing in our private
2933 *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
2934 *   this kind of deadlock.
2935 */
2936void blk_start_plug(struct blk_plug *plug)
2937{
2938	struct task_struct *tsk = current;
2939
2940	plug->magic = PLUG_MAGIC;
2941	INIT_LIST_HEAD(&plug->list);
2942	INIT_LIST_HEAD(&plug->mq_list);
2943	INIT_LIST_HEAD(&plug->cb_list);
2944
2945	/*
2946	 * If this is a nested plug, don't actually assign it. It will be
2947	 * flushed on its own.
2948	 */
2949	if (!tsk->plug) {
2950		/*
2951		 * Store ordering should not be needed here, since a potential
2952		 * preempt will imply a full memory barrier
2953		 */
2954		tsk->plug = plug;
2955	}
2956}
2957EXPORT_SYMBOL(blk_start_plug);
2958
2959static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2960{
2961	struct request *rqa = container_of(a, struct request, queuelist);
2962	struct request *rqb = container_of(b, struct request, queuelist);
2963
2964	return !(rqa->q < rqb->q ||
2965		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
2966}
2967
2968/*
2969 * If 'from_schedule' is true, then postpone the dispatch of requests
2970 * until a safe kblockd context. We due this to avoid accidental big
2971 * additional stack usage in driver dispatch, in places where the originally
2972 * plugger did not intend it.
2973 */
2974static void queue_unplugged(struct request_queue *q, unsigned int depth,
2975			    bool from_schedule)
2976	__releases(q->queue_lock)
2977{
2978	trace_block_unplug(q, depth, !from_schedule);
2979
2980	if (from_schedule)
2981		blk_run_queue_async(q);
2982	else
2983		__blk_run_queue(q);
2984	spin_unlock(q->queue_lock);
2985}
2986
2987static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
2988{
2989	LIST_HEAD(callbacks);
2990
2991	while (!list_empty(&plug->cb_list)) {
2992		list_splice_init(&plug->cb_list, &callbacks);
2993
2994		while (!list_empty(&callbacks)) {
2995			struct blk_plug_cb *cb = list_first_entry(&callbacks,
2996							  struct blk_plug_cb,
2997							  list);
2998			list_del(&cb->list);
2999			cb->callback(cb, from_schedule);
3000		}
3001	}
3002}
3003
3004struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3005				      int size)
3006{
3007	struct blk_plug *plug = current->plug;
3008	struct blk_plug_cb *cb;
3009
3010	if (!plug)
3011		return NULL;
3012
3013	list_for_each_entry(cb, &plug->cb_list, list)
3014		if (cb->callback == unplug && cb->data == data)
3015			return cb;
3016
3017	/* Not currently on the callback list */
3018	BUG_ON(size < sizeof(*cb));
3019	cb = kzalloc(size, GFP_ATOMIC);
3020	if (cb) {
3021		cb->data = data;
3022		cb->callback = unplug;
3023		list_add(&cb->list, &plug->cb_list);
3024	}
3025	return cb;
3026}
3027EXPORT_SYMBOL(blk_check_plugged);
3028
3029void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3030{
3031	struct request_queue *q;
3032	unsigned long flags;
3033	struct request *rq;
3034	LIST_HEAD(list);
3035	unsigned int depth;
3036
3037	BUG_ON(plug->magic != PLUG_MAGIC);
3038
3039	flush_plug_callbacks(plug, from_schedule);
3040
3041	if (!list_empty(&plug->mq_list))
3042		blk_mq_flush_plug_list(plug, from_schedule);
3043
3044	if (list_empty(&plug->list))
3045		return;
3046
3047	list_splice_init(&plug->list, &list);
3048
3049	list_sort(NULL, &list, plug_rq_cmp);
3050
3051	q = NULL;
3052	depth = 0;
3053
3054	/*
3055	 * Save and disable interrupts here, to avoid doing it for every
3056	 * queue lock we have to take.
 
 
3057	 */
3058	local_irq_save(flags);
3059	while (!list_empty(&list)) {
3060		rq = list_entry_rq(list.next);
3061		list_del_init(&rq->queuelist);
3062		BUG_ON(!rq->q);
3063		if (rq->q != q) {
3064			/*
3065			 * This drops the queue lock
3066			 */
3067			if (q)
3068				queue_unplugged(q, depth, from_schedule);
3069			q = rq->q;
3070			depth = 0;
3071			spin_lock(q->queue_lock);
3072		}
3073
3074		/*
3075		 * Short-circuit if @q is dead
3076		 */
3077		if (unlikely(blk_queue_dying(q))) {
3078			__blk_end_request_all(rq, -ENODEV);
3079			continue;
3080		}
3081
3082		/*
3083		 * rq is already accounted, so use raw insert
3084		 */
3085		if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3086			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3087		else
3088			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3089
3090		depth++;
3091	}
3092
3093	/*
3094	 * This drops the queue lock
3095	 */
3096	if (q)
3097		queue_unplugged(q, depth, from_schedule);
3098
3099	local_irq_restore(flags);
3100}
3101
3102void blk_finish_plug(struct blk_plug *plug)
3103{
3104	blk_flush_plug_list(plug, false);
3105
3106	if (plug == current->plug)
3107		current->plug = NULL;
3108}
3109EXPORT_SYMBOL(blk_finish_plug);
3110
3111#ifdef CONFIG_PM_RUNTIME
3112/**
3113 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3114 * @q: the queue of the device
3115 * @dev: the device the queue belongs to
3116 *
3117 * Description:
3118 *    Initialize runtime-PM-related fields for @q and start auto suspend for
3119 *    @dev. Drivers that want to take advantage of request-based runtime PM
3120 *    should call this function after @dev has been initialized, and its
3121 *    request queue @q has been allocated, and runtime PM for it can not happen
3122 *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3123 *    cases, driver should call this function before any I/O has taken place.
3124 *
3125 *    This function takes care of setting up using auto suspend for the device,
3126 *    the autosuspend delay is set to -1 to make runtime suspend impossible
3127 *    until an updated value is either set by user or by driver. Drivers do
3128 *    not need to touch other autosuspend settings.
3129 *
3130 *    The block layer runtime PM is request based, so only works for drivers
3131 *    that use request as their IO unit instead of those directly use bio's.
3132 */
3133void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3134{
3135	q->dev = dev;
3136	q->rpm_status = RPM_ACTIVE;
3137	pm_runtime_set_autosuspend_delay(q->dev, -1);
3138	pm_runtime_use_autosuspend(q->dev);
3139}
3140EXPORT_SYMBOL(blk_pm_runtime_init);
3141
3142/**
3143 * blk_pre_runtime_suspend - Pre runtime suspend check
3144 * @q: the queue of the device
3145 *
3146 * Description:
3147 *    This function will check if runtime suspend is allowed for the device
3148 *    by examining if there are any requests pending in the queue. If there
3149 *    are requests pending, the device can not be runtime suspended; otherwise,
3150 *    the queue's status will be updated to SUSPENDING and the driver can
3151 *    proceed to suspend the device.
3152 *
3153 *    For the not allowed case, we mark last busy for the device so that
3154 *    runtime PM core will try to autosuspend it some time later.
3155 *
3156 *    This function should be called near the start of the device's
3157 *    runtime_suspend callback.
3158 *
3159 * Return:
3160 *    0		- OK to runtime suspend the device
3161 *    -EBUSY	- Device should not be runtime suspended
3162 */
3163int blk_pre_runtime_suspend(struct request_queue *q)
3164{
3165	int ret = 0;
3166
3167	spin_lock_irq(q->queue_lock);
3168	if (q->nr_pending) {
3169		ret = -EBUSY;
3170		pm_runtime_mark_last_busy(q->dev);
3171	} else {
3172		q->rpm_status = RPM_SUSPENDING;
3173	}
3174	spin_unlock_irq(q->queue_lock);
3175	return ret;
3176}
3177EXPORT_SYMBOL(blk_pre_runtime_suspend);
3178
3179/**
3180 * blk_post_runtime_suspend - Post runtime suspend processing
3181 * @q: the queue of the device
3182 * @err: return value of the device's runtime_suspend function
3183 *
3184 * Description:
3185 *    Update the queue's runtime status according to the return value of the
3186 *    device's runtime suspend function and mark last busy for the device so
3187 *    that PM core will try to auto suspend the device at a later time.
3188 *
3189 *    This function should be called near the end of the device's
3190 *    runtime_suspend callback.
3191 */
3192void blk_post_runtime_suspend(struct request_queue *q, int err)
3193{
3194	spin_lock_irq(q->queue_lock);
3195	if (!err) {
3196		q->rpm_status = RPM_SUSPENDED;
3197	} else {
3198		q->rpm_status = RPM_ACTIVE;
3199		pm_runtime_mark_last_busy(q->dev);
3200	}
3201	spin_unlock_irq(q->queue_lock);
3202}
3203EXPORT_SYMBOL(blk_post_runtime_suspend);
3204
3205/**
3206 * blk_pre_runtime_resume - Pre runtime resume processing
3207 * @q: the queue of the device
3208 *
3209 * Description:
3210 *    Update the queue's runtime status to RESUMING in preparation for the
3211 *    runtime resume of the device.
3212 *
3213 *    This function should be called near the start of the device's
3214 *    runtime_resume callback.
3215 */
3216void blk_pre_runtime_resume(struct request_queue *q)
3217{
3218	spin_lock_irq(q->queue_lock);
3219	q->rpm_status = RPM_RESUMING;
3220	spin_unlock_irq(q->queue_lock);
3221}
3222EXPORT_SYMBOL(blk_pre_runtime_resume);
3223
3224/**
3225 * blk_post_runtime_resume - Post runtime resume processing
3226 * @q: the queue of the device
3227 * @err: return value of the device's runtime_resume function
3228 *
3229 * Description:
3230 *    Update the queue's runtime status according to the return value of the
3231 *    device's runtime_resume function. If it is successfully resumed, process
3232 *    the requests that are queued into the device's queue when it is resuming
3233 *    and then mark last busy and initiate autosuspend for it.
3234 *
3235 *    This function should be called near the end of the device's
3236 *    runtime_resume callback.
3237 */
3238void blk_post_runtime_resume(struct request_queue *q, int err)
3239{
3240	spin_lock_irq(q->queue_lock);
3241	if (!err) {
3242		q->rpm_status = RPM_ACTIVE;
3243		__blk_run_queue(q);
3244		pm_runtime_mark_last_busy(q->dev);
3245		pm_request_autosuspend(q->dev);
3246	} else {
3247		q->rpm_status = RPM_SUSPENDED;
3248	}
3249	spin_unlock_irq(q->queue_lock);
3250}
3251EXPORT_SYMBOL(blk_post_runtime_resume);
3252#endif
3253
3254int __init blk_dev_init(void)
3255{
3256	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3257			sizeof(((struct request *)0)->cmd_flags));
 
 
 
3258
3259	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3260	kblockd_workqueue = alloc_workqueue("kblockd",
3261					    WQ_MEM_RECLAIM | WQ_HIGHPRI |
3262					    WQ_POWER_EFFICIENT, 0);
3263	if (!kblockd_workqueue)
3264		panic("Failed to create kblockd\n");
3265
3266	request_cachep = kmem_cache_create("blkdev_requests",
3267			sizeof(struct request), 0, SLAB_PANIC, NULL);
3268
3269	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3270			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3271
3272	return 0;
3273}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 1991, 1992 Linus Torvalds
   4 * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
   5 * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
   6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
   7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
   8 *	-  July2000
   9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
  10 */
  11
  12/*
  13 * This handles all read/write requests to block devices
  14 */
  15#include <linux/kernel.h>
  16#include <linux/module.h>
 
  17#include <linux/bio.h>
  18#include <linux/blkdev.h>
  19#include <linux/blk-pm.h>
  20#include <linux/blk-integrity.h>
  21#include <linux/highmem.h>
  22#include <linux/mm.h>
  23#include <linux/pagemap.h>
  24#include <linux/kernel_stat.h>
  25#include <linux/string.h>
  26#include <linux/init.h>
  27#include <linux/completion.h>
  28#include <linux/slab.h>
  29#include <linux/swap.h>
  30#include <linux/writeback.h>
  31#include <linux/task_io_accounting_ops.h>
  32#include <linux/fault-inject.h>
  33#include <linux/list_sort.h>
  34#include <linux/delay.h>
  35#include <linux/ratelimit.h>
  36#include <linux/pm_runtime.h>
  37#include <linux/t10-pi.h>
  38#include <linux/debugfs.h>
  39#include <linux/bpf.h>
  40#include <linux/part_stat.h>
  41#include <linux/sched/sysctl.h>
  42#include <linux/blk-crypto.h>
  43
  44#define CREATE_TRACE_POINTS
  45#include <trace/events/block.h>
  46
  47#include "blk.h"
  48#include "blk-mq-sched.h"
  49#include "blk-pm.h"
  50#include "blk-cgroup.h"
  51#include "blk-throttle.h"
  52#include "blk-ioprio.h"
  53
  54struct dentry *blk_debugfs_root;
  55
  56EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
  57EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
  58EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
  59EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
  60EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
  61EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
  62
  63static DEFINE_IDA(blk_queue_ida);
 
 
 
 
 
  64
  65/*
  66 * For queue allocation
  67 */
  68static struct kmem_cache *blk_requestq_cachep;
  69
  70/*
  71 * Controlling structure to kblockd
  72 */
  73static struct workqueue_struct *kblockd_workqueue;
  74
  75/**
  76 * blk_queue_flag_set - atomically set a queue flag
  77 * @flag: flag to be set
  78 * @q: request queue
  79 */
  80void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
  81{
  82	set_bit(flag, &q->queue_flags);
 
 
 
 
 
 
 
 
 
 
  83}
  84EXPORT_SYMBOL(blk_queue_flag_set);
  85
  86/**
  87 * blk_queue_flag_clear - atomically clear a queue flag
  88 * @flag: flag to be cleared
  89 * @q: request queue
 
 
 
 
  90 */
  91void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
  92{
  93	clear_bit(flag, &q->queue_flags);
 
 
 
 
 
  94}
  95EXPORT_SYMBOL(blk_queue_flag_clear);
  96
  97#define REQ_OP_NAME(name) [REQ_OP_##name] = #name
  98static const char *const blk_op_name[] = {
  99	REQ_OP_NAME(READ),
 100	REQ_OP_NAME(WRITE),
 101	REQ_OP_NAME(FLUSH),
 102	REQ_OP_NAME(DISCARD),
 103	REQ_OP_NAME(SECURE_ERASE),
 104	REQ_OP_NAME(ZONE_RESET),
 105	REQ_OP_NAME(ZONE_RESET_ALL),
 106	REQ_OP_NAME(ZONE_OPEN),
 107	REQ_OP_NAME(ZONE_CLOSE),
 108	REQ_OP_NAME(ZONE_FINISH),
 109	REQ_OP_NAME(ZONE_APPEND),
 110	REQ_OP_NAME(WRITE_ZEROES),
 111	REQ_OP_NAME(DRV_IN),
 112	REQ_OP_NAME(DRV_OUT),
 113};
 114#undef REQ_OP_NAME
 
 115
 116/**
 117 * blk_op_str - Return string XXX in the REQ_OP_XXX.
 118 * @op: REQ_OP_XXX.
 119 *
 120 * Description: Centralize block layer function to convert REQ_OP_XXX into
 121 * string format. Useful in the debugging and tracing bio or request. For
 122 * invalid REQ_OP_XXX it returns string "UNKNOWN".
 123 */
 124inline const char *blk_op_str(enum req_op op)
 125{
 126	const char *op_str = "UNKNOWN";
 
 
 
 127
 128	if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
 129		op_str = blk_op_name[op];
 130
 131	return op_str;
 
 
 
 
 132}
 133EXPORT_SYMBOL_GPL(blk_op_str);
 134
 135static const struct {
 136	int		errno;
 137	const char	*name;
 138} blk_errors[] = {
 139	[BLK_STS_OK]		= { 0,		"" },
 140	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
 141	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
 142	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
 143	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
 144	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
 145	[BLK_STS_RESV_CONFLICT]	= { -EBADE,	"reservation conflict" },
 146	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
 147	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
 148	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
 149	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
 150	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
 151	[BLK_STS_OFFLINE]	= { -ENODEV,	"device offline" },
 152
 153	/* device mapper special case, should not leak out: */
 154	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
 
 155
 156	/* zone device specific errors */
 157	[BLK_STS_ZONE_OPEN_RESOURCE]	= { -ETOOMANYREFS, "open zones exceeded" },
 158	[BLK_STS_ZONE_ACTIVE_RESOURCE]	= { -EOVERFLOW, "active zones exceeded" },
 
 
 159
 160	/* Command duration limit device-side timeout */
 161	[BLK_STS_DURATION_LIMIT]	= { -ETIME, "duration limit exceeded" },
 
 
 
 
 
 
 162
 163	[BLK_STS_INVAL]		= { -EINVAL,	"invalid" },
 
 
 164
 165	/* everything else not covered above: */
 166	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
 167};
 
 
 168
 169blk_status_t errno_to_blk_status(int errno)
 
 
 
 
 
 
 
 
 
 
 170{
 171	int i;
 172
 173	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
 174		if (blk_errors[i].errno == errno)
 175			return (__force blk_status_t)i;
 176	}
 177
 178	return BLK_STS_IOERR;
 179}
 180EXPORT_SYMBOL_GPL(errno_to_blk_status);
 181
 182int blk_status_to_errno(blk_status_t status)
 
 
 
 
 
 
 
 
 
 183{
 184	int idx = (__force int)status;
 185
 186	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
 187		return -EIO;
 188	return blk_errors[idx].errno;
 189}
 190EXPORT_SYMBOL_GPL(blk_status_to_errno);
 191
 192const char *blk_status_to_str(blk_status_t status)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 193{
 194	int idx = (__force int)status;
 195
 196	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
 197		return "<null>";
 198	return blk_errors[idx].name;
 199}
 200EXPORT_SYMBOL_GPL(blk_status_to_str);
 201
 202/**
 203 * blk_sync_queue - cancel any pending callbacks on a queue
 204 * @q: the queue
 205 *
 206 * Description:
 207 *     The block layer may perform asynchronous callback activity
 208 *     on a queue, such as calling the unplug function after a timeout.
 209 *     A block device may call blk_sync_queue to ensure that any
 210 *     such activity is cancelled, thus allowing it to release resources
 211 *     that the callbacks might use. The caller must already have made sure
 212 *     that its ->submit_bio will not re-add plugging prior to calling
 213 *     this function.
 214 *
 215 *     This function does not cancel any asynchronous activity arising
 216 *     out of elevator or throttling code. That would require elevator_exit()
 217 *     and blkcg_exit_queue() to be called with queue lock initialized.
 218 *
 219 */
 220void blk_sync_queue(struct request_queue *q)
 221{
 222	del_timer_sync(&q->timeout);
 223	cancel_work_sync(&q->timeout_work);
 
 
 
 
 
 
 
 
 
 224}
 225EXPORT_SYMBOL(blk_sync_queue);
 226
 227/**
 228 * blk_set_pm_only - increment pm_only counter
 229 * @q: request queue pointer
 
 
 
 
 
 
 
 230 */
 231void blk_set_pm_only(struct request_queue *q)
 232{
 233	atomic_inc(&q->pm_only);
 234}
 235EXPORT_SYMBOL_GPL(blk_set_pm_only);
 236
 237void blk_clear_pm_only(struct request_queue *q)
 238{
 239	int pm_only;
 240
 241	pm_only = atomic_dec_return(&q->pm_only);
 242	WARN_ON_ONCE(pm_only < 0);
 243	if (pm_only == 0)
 244		wake_up_all(&q->mq_freeze_wq);
 
 
 245}
 246EXPORT_SYMBOL_GPL(blk_clear_pm_only);
 247
 248static void blk_free_queue_rcu(struct rcu_head *rcu_head)
 
 
 
 
 
 
 
 
 249{
 250	struct request_queue *q = container_of(rcu_head,
 251			struct request_queue, rcu_head);
 252
 253	percpu_ref_exit(&q->q_usage_counter);
 254	kmem_cache_free(blk_requestq_cachep, q);
 255}
 
 256
 257static void blk_free_queue(struct request_queue *q)
 
 
 
 
 
 
 
 
 258{
 259	blk_free_queue_stats(q->stats);
 260	if (queue_is_mq(q))
 261		blk_mq_release(q);
 262
 263	ida_free(&blk_queue_ida, q->id);
 264	lockdep_unregister_key(&q->io_lock_cls_key);
 265	lockdep_unregister_key(&q->q_lock_cls_key);
 266	call_rcu(&q->rcu_head, blk_free_queue_rcu);
 267}
 
 268
 269/**
 270 * blk_put_queue - decrement the request_queue refcount
 271 * @q: the request_queue structure to decrement the refcount for
 272 *
 273 * Decrements the refcount of the request_queue and free it when the refcount
 274 * reaches 0.
 
 275 */
 276void blk_put_queue(struct request_queue *q)
 277{
 278	if (refcount_dec_and_test(&q->refs))
 279		blk_free_queue(q);
 
 
 
 280}
 281EXPORT_SYMBOL(blk_put_queue);
 282
 283bool blk_queue_start_drain(struct request_queue *q)
 284{
 285	/*
 286	 * When queue DYING flag is set, we need to block new req
 287	 * entering queue, so we call blk_freeze_queue_start() to
 288	 * prevent I/O from crossing blk_queue_enter().
 289	 */
 290	bool freeze = __blk_freeze_queue_start(q, current);
 291	if (queue_is_mq(q))
 292		blk_mq_wake_waiters(q);
 293	/* Make blk_queue_enter() reexamine the DYING flag. */
 294	wake_up_all(&q->mq_freeze_wq);
 295
 296	return freeze;
 297}
 
 298
 299/**
 300 * blk_queue_enter() - try to increase q->q_usage_counter
 301 * @q: request queue pointer
 302 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
 303 */
 304int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
 
 
 
 
 
 
 305{
 306	const bool pm = flags & BLK_MQ_REQ_PM;
 307
 308	while (!blk_try_enter_queue(q, pm)) {
 309		if (flags & BLK_MQ_REQ_NOWAIT)
 310			return -EAGAIN;
 
 311
 312		/*
 313		 * read pair of barrier in blk_freeze_queue_start(), we need to
 314		 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
 315		 * reading .mq_freeze_depth or queue dying flag, otherwise the
 316		 * following wait may never return if the two reads are
 317		 * reordered.
 318		 */
 319		smp_rmb();
 320		wait_event(q->mq_freeze_wq,
 321			   (!q->mq_freeze_depth &&
 322			    blk_pm_resume_queue(pm, q)) ||
 323			   blk_queue_dying(q));
 324		if (blk_queue_dying(q))
 325			return -ENODEV;
 326	}
 327
 328	rwsem_acquire_read(&q->q_lockdep_map, 0, 0, _RET_IP_);
 329	rwsem_release(&q->q_lockdep_map, _RET_IP_);
 330	return 0;
 331}
 332
 333int __bio_queue_enter(struct request_queue *q, struct bio *bio)
 334{
 335	while (!blk_try_enter_queue(q, false)) {
 336		struct gendisk *disk = bio->bi_bdev->bd_disk;
 
 
 
 
 
 337
 338		if (bio->bi_opf & REQ_NOWAIT) {
 339			if (test_bit(GD_DEAD, &disk->state))
 340				goto dead;
 341			bio_wouldblock_error(bio);
 342			return -EAGAIN;
 343		}
 344
 345		/*
 346		 * read pair of barrier in blk_freeze_queue_start(), we need to
 347		 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
 348		 * reading .mq_freeze_depth or queue dying flag, otherwise the
 349		 * following wait may never return if the two reads are
 350		 * reordered.
 351		 */
 352		smp_rmb();
 353		wait_event(q->mq_freeze_wq,
 354			   (!q->mq_freeze_depth &&
 355			    blk_pm_resume_queue(false, q)) ||
 356			   test_bit(GD_DEAD, &disk->state));
 357		if (test_bit(GD_DEAD, &disk->state))
 358			goto dead;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 359	}
 
 360
 361	rwsem_acquire_read(&q->io_lockdep_map, 0, 0, _RET_IP_);
 362	rwsem_release(&q->io_lockdep_map, _RET_IP_);
 363	return 0;
 364dead:
 365	bio_io_error(bio);
 366	return -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 367}
 
 368
 369void blk_queue_exit(struct request_queue *q)
 
 
 
 
 
 
 370{
 371	percpu_ref_put(&q->q_usage_counter);
 
 
 
 
 372}
 
 373
 374static void blk_queue_usage_counter_release(struct percpu_ref *ref)
 
 
 
 
 
 
 
 375{
 376	struct request_queue *q =
 377		container_of(ref, struct request_queue, q_usage_counter);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 378
 379	wake_up_all(&q->mq_freeze_wq);
 
 
 
 
 
 
 
 
 
 
 380}
 
 381
 382static void blk_rq_timed_out_timer(struct timer_list *t)
 
 383{
 384	struct request_queue *q = from_timer(q, t, timeout);
 
 
 
 
 
 
 
 
 
 
 
 
 
 385
 386	kblockd_schedule_work(&q->timeout_work);
 
 
 
 
 
 
 387}
 388
 389static void blk_timeout_work(struct work_struct *work)
 390{
 
 391}
 
 392
 393struct request_queue *blk_alloc_queue(struct queue_limits *lim, int node_id)
 394{
 395	struct request_queue *q;
 396	int error;
 397
 398	q = kmem_cache_alloc_node(blk_requestq_cachep, GFP_KERNEL | __GFP_ZERO,
 399				  node_id);
 400	if (!q)
 401		return ERR_PTR(-ENOMEM);
 402
 403	q->last_merge = NULL;
 404
 405	q->id = ida_alloc(&blk_queue_ida, GFP_KERNEL);
 406	if (q->id < 0) {
 407		error = q->id;
 408		goto fail_q;
 409	}
 410
 411	q->stats = blk_alloc_queue_stats();
 412	if (!q->stats) {
 413		error = -ENOMEM;
 414		goto fail_id;
 415	}
 416
 417	error = blk_set_default_limits(lim);
 418	if (error)
 419		goto fail_stats;
 420	q->limits = *lim;
 421
 
 
 
 
 
 
 
 
 
 422	q->node = node_id;
 423
 424	atomic_set(&q->nr_active_requests_shared_tags, 0);
 
 
 425
 426	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
 427	INIT_WORK(&q->timeout_work, blk_timeout_work);
 
 
 
 428	INIT_LIST_HEAD(&q->icq_list);
 
 
 
 
 
 
 
 
 
 429
 430	refcount_set(&q->refs, 1);
 431	mutex_init(&q->debugfs_mutex);
 432	mutex_init(&q->sysfs_lock);
 433	mutex_init(&q->sysfs_dir_lock);
 434	mutex_init(&q->limits_lock);
 435	mutex_init(&q->rq_qos_mutex);
 436	spin_lock_init(&q->queue_lock);
 437
 438	init_waitqueue_head(&q->mq_freeze_wq);
 439	mutex_init(&q->mq_freeze_lock);
 440
 441	blkg_init_queue(q);
 
 442
 443	/*
 444	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
 445	 * See blk_register_queue() for details.
 
 
 446	 */
 447	error = percpu_ref_init(&q->q_usage_counter,
 448				blk_queue_usage_counter_release,
 449				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL);
 450	if (error)
 451		goto fail_stats;
 452	lockdep_register_key(&q->io_lock_cls_key);
 453	lockdep_register_key(&q->q_lock_cls_key);
 454	lockdep_init_map(&q->io_lockdep_map, "&q->q_usage_counter(io)",
 455			 &q->io_lock_cls_key, 0);
 456	lockdep_init_map(&q->q_lockdep_map, "&q->q_usage_counter(queue)",
 457			 &q->q_lock_cls_key, 0);
 458
 459	q->nr_requests = BLKDEV_DEFAULT_RQ;
 
 460
 461	return q;
 462
 463fail_stats:
 464	blk_free_queue_stats(q->stats);
 465fail_id:
 466	ida_free(&blk_queue_ida, q->id);
 
 
 467fail_q:
 468	kmem_cache_free(blk_requestq_cachep, q);
 469	return ERR_PTR(error);
 470}
 
 471
 472/**
 473 * blk_get_queue - increment the request_queue refcount
 474 * @q: the request_queue structure to increment the refcount for
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 475 *
 476 * Increment the refcount of the request_queue kobject.
 
 477 *
 478 * Context: Any context.
 479 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 480bool blk_get_queue(struct request_queue *q)
 481{
 482	if (unlikely(blk_queue_dying(q)))
 483		return false;
 484	refcount_inc(&q->refs);
 485	return true;
 
 
 486}
 487EXPORT_SYMBOL(blk_get_queue);
 488
 489#ifdef CONFIG_FAIL_MAKE_REQUEST
 
 
 
 
 
 
 490
 491static DECLARE_FAULT_ATTR(fail_make_request);
 
 492
 493static int __init setup_fail_make_request(char *str)
 
 
 
 
 494{
 495	return setup_fault_attr(&fail_make_request, str);
 
 
 
 
 
 
 
 
 
 
 496}
 497__setup("fail_make_request=", setup_fail_make_request);
 498
 499bool should_fail_request(struct block_device *part, unsigned int bytes)
 
 
 
 
 
 
 500{
 501	return bdev_test_flag(part, BD_MAKE_IT_FAIL) &&
 502	       should_fail(&fail_make_request, bytes);
 
 
 
 503}
 504
 505static int __init fail_make_request_debugfs(void)
 506{
 507	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
 508						NULL, &fail_make_request);
 
 
 
 
 
 
 
 
 
 
 
 509
 510	return PTR_ERR_OR_ZERO(dir);
 
 511}
 512
 513late_initcall(fail_make_request_debugfs);
 514#endif /* CONFIG_FAIL_MAKE_REQUEST */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 515
 516static inline void bio_check_ro(struct bio *bio)
 
 
 
 
 517{
 518	if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
 519		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
 520			return;
 521
 522		if (bdev_test_flag(bio->bi_bdev, BD_RO_WARNED))
 523			return;
 
 
 
 
 
 
 
 524
 525		bdev_set_flag(bio->bi_bdev, BD_RO_WARNED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 526
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 527		/*
 528		 * Use ioctl to set underlying disk of raid/dm to read-only
 529		 * will trigger this.
 530		 */
 531		pr_warn("Trying to write to read-only block-device %pg\n",
 532			bio->bi_bdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 533	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 534}
 535
 536static noinline int should_fail_bio(struct bio *bio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 537{
 538	if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
 539		return -EIO;
 540	return 0;
 
 541}
 542ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
 543
 544/*
 545 * Check whether this bio extends beyond the end of the device or partition.
 546 * This may well happen - the kernel calls bread() without checking the size of
 547 * the device, e.g., when mounting a file system.
 548 */
 549static inline int bio_check_eod(struct bio *bio)
 550{
 551	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
 552	unsigned int nr_sectors = bio_sectors(bio);
 553
 554	if (nr_sectors &&
 555	    (nr_sectors > maxsector ||
 556	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
 557		pr_info_ratelimited("%s: attempt to access beyond end of device\n"
 558				    "%pg: rw=%d, sector=%llu, nr_sectors = %u limit=%llu\n",
 559				    current->comm, bio->bi_bdev, bio->bi_opf,
 560				    bio->bi_iter.bi_sector, nr_sectors, maxsector);
 561		return -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 562	}
 563	return 0;
 
 564}
 
 565
 566/*
 567 * Remap block n of partition p to block n+start(p) of the disk.
 
 
 
 
 
 
 
 568 */
 569static int blk_partition_remap(struct bio *bio)
 570{
 571	struct block_device *p = bio->bi_bdev;
 
 
 572
 573	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
 574		return -EIO;
 575	if (bio_sectors(bio)) {
 576		bio->bi_iter.bi_sector += p->bd_start_sect;
 577		trace_block_bio_remap(bio, p->bd_dev,
 578				      bio->bi_iter.bi_sector -
 579				      p->bd_start_sect);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 580	}
 581	bio_set_flag(bio, BIO_REMAPPED);
 582	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 583}
 
 
 
 584
 585/*
 586 * Check write append to a zoned block device.
 587 */
 588static inline blk_status_t blk_check_zone_append(struct request_queue *q,
 589						 struct bio *bio)
 590{
 591	int nr_sectors = bio_sectors(bio);
 
 
 
 
 
 
 
 
 592
 593	/* Only applicable to zoned block devices */
 594	if (!bdev_is_zoned(bio->bi_bdev))
 595		return BLK_STS_NOTSUPP;
 596
 597	/* The bio sector must point to the start of a sequential zone */
 598	if (!bdev_is_zone_start(bio->bi_bdev, bio->bi_iter.bi_sector))
 599		return BLK_STS_IOERR;
 600
 601	/*
 602	 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
 603	 * split and could result in non-contiguous sectors being written in
 604	 * different zones.
 605	 */
 606	if (nr_sectors > q->limits.chunk_sectors)
 607		return BLK_STS_IOERR;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 608
 609	/* Make sure the BIO is small enough and will not get split */
 610	if (nr_sectors > q->limits.max_zone_append_sectors)
 611		return BLK_STS_IOERR;
 612
 613	bio->bi_opf |= REQ_NOMERGE;
 
 
 614
 615	return BLK_STS_OK;
 
 
 616}
 
 617
 618static void __submit_bio(struct bio *bio)
 
 619{
 620	/* If plug is not used, add new plug here to cache nsecs time. */
 621	struct blk_plug plug;
 622
 623	if (unlikely(!blk_crypto_bio_prep(&bio)))
 624		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 625
 626	blk_start_plug(&plug);
 
 627
 628	if (!bdev_test_flag(bio->bi_bdev, BD_HAS_SUBMIT_BIO)) {
 629		blk_mq_submit_bio(bio);
 630	} else if (likely(bio_queue_enter(bio) == 0)) {
 631		struct gendisk *disk = bio->bi_bdev->bd_disk;
 632	
 633		if ((bio->bi_opf & REQ_POLLED) &&
 634		    !(disk->queue->limits.features & BLK_FEAT_POLL)) {
 635			bio->bi_status = BLK_STS_NOTSUPP;
 636			bio_endio(bio);
 637		} else {
 638			disk->fops->submit_bio(bio);
 
 639		}
 640		blk_queue_exit(disk->queue);
 641	}
 
 
 
 
 
 
 
 
 
 
 
 642
 643	blk_finish_plug(&plug);
 
 
 
 644}
 645
 646/*
 647 * The loop in this function may be a bit non-obvious, and so deserves some
 648 * explanation:
 649 *
 650 *  - Before entering the loop, bio->bi_next is NULL (as all callers ensure
 651 *    that), so we have a list with a single bio.
 652 *  - We pretend that we have just taken it off a longer list, so we assign
 653 *    bio_list to a pointer to the bio_list_on_stack, thus initialising the
 654 *    bio_list of new bios to be added.  ->submit_bio() may indeed add some more
 655 *    bios through a recursive call to submit_bio_noacct.  If it did, we find a
 656 *    non-NULL value in bio_list and re-enter the loop from the top.
 657 *  - In this case we really did just take the bio of the top of the list (no
 658 *    pretending) and so remove it from bio_list, and call into ->submit_bio()
 659 *    again.
 660 *
 661 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
 662 * bio_list_on_stack[1] contains bios that were submitted before the current
 663 *	->submit_bio, but that haven't been processed yet.
 664 */
 665static void __submit_bio_noacct(struct bio *bio)
 666{
 667	struct bio_list bio_list_on_stack[2];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 668
 669	BUG_ON(bio->bi_next);
 
 
 
 
 
 
 
 
 670
 671	bio_list_init(&bio_list_on_stack[0]);
 672	current->bio_list = bio_list_on_stack;
 
 
 
 
 
 673
 674	do {
 675		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
 676		struct bio_list lower, same;
 677
 
 
 678		/*
 679		 * Create a fresh bio_list for all subordinate requests.
 
 680		 */
 681		bio_list_on_stack[1] = bio_list_on_stack[0];
 682		bio_list_init(&bio_list_on_stack[0]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 683
 684		__submit_bio(bio);
 
 
 
 
 
 685
 686		/*
 687		 * Sort new bios into those for a lower level and those for the
 688		 * same level.
 689		 */
 690		bio_list_init(&lower);
 691		bio_list_init(&same);
 692		while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
 693			if (q == bdev_get_queue(bio->bi_bdev))
 694				bio_list_add(&same, bio);
 695			else
 696				bio_list_add(&lower, bio);
 697
 698		/*
 699		 * Now assemble so we handle the lowest level first.
 700		 */
 701		bio_list_merge(&bio_list_on_stack[0], &lower);
 702		bio_list_merge(&bio_list_on_stack[0], &same);
 703		bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
 704	} while ((bio = bio_list_pop(&bio_list_on_stack[0])));
 705
 706	current->bio_list = NULL;
 
 
 
 707}
 708
 709static void __submit_bio_noacct_mq(struct bio *bio)
 710{
 711	struct bio_list bio_list[2] = { };
 712
 713	current->bio_list = bio_list;
 
 
 
 
 
 714
 715	do {
 716		__submit_bio(bio);
 717	} while ((bio = bio_list_pop(&bio_list[0])));
 
 
 
 
 
 
 
 
 
 718
 719	current->bio_list = NULL;
 
 
 720}
 721
 722void submit_bio_noacct_nocheck(struct bio *bio)
 723{
 724	blk_cgroup_bio_start(bio);
 725	blkcg_bio_issue_init(bio);
 
 
 
 726
 727	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
 728		trace_block_bio_queue(bio);
 729		/*
 730		 * Now that enqueuing has been traced, we need to trace
 731		 * completion as well.
 732		 */
 733		bio_set_flag(bio, BIO_TRACE_COMPLETION);
 734	}
 735
 736	/*
 737	 * We only want one ->submit_bio to be active at a time, else stack
 738	 * usage with stacked devices could be a problem.  Use current->bio_list
 739	 * to collect a list of requests submited by a ->submit_bio method while
 740	 * it is active, and then process them after it returned.
 741	 */
 742	if (current->bio_list)
 743		bio_list_add(&current->bio_list[0], bio);
 744	else if (!bdev_test_flag(bio->bi_bdev, BD_HAS_SUBMIT_BIO))
 745		__submit_bio_noacct_mq(bio);
 746	else
 747		__submit_bio_noacct(bio);
 748}
 749
 750static blk_status_t blk_validate_atomic_write_op_size(struct request_queue *q,
 751						 struct bio *bio)
 
 
 
 
 752{
 753	if (bio->bi_iter.bi_size > queue_atomic_write_unit_max_bytes(q))
 754		return BLK_STS_INVAL;
 755
 756	if (bio->bi_iter.bi_size % queue_atomic_write_unit_min_bytes(q))
 757		return BLK_STS_INVAL;
 758
 759	return BLK_STS_OK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 760}
 761
 762/**
 763 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
 764 * @bio:  The bio describing the location in memory and on the device.
 765 *
 766 * This is a version of submit_bio() that shall only be used for I/O that is
 767 * resubmitted to lower level drivers by stacking block drivers.  All file
 768 * systems and other upper level users of the block layer should use
 769 * submit_bio() instead.
 770 */
 771void submit_bio_noacct(struct bio *bio)
 772{
 773	struct block_device *bdev = bio->bi_bdev;
 774	struct request_queue *q = bdev_get_queue(bdev);
 775	blk_status_t status = BLK_STS_IOERR;
 
 
 776
 777	might_sleep();
 778
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 779	/*
 780	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
 781	 * if queue does not support NOWAIT.
 782	 */
 783	if ((bio->bi_opf & REQ_NOWAIT) && !bdev_nowait(bdev))
 784		goto not_supported;
 785
 786	if (should_fail_bio(bio))
 787		goto end_io;
 788	bio_check_ro(bio);
 789	if (!bio_flagged(bio, BIO_REMAPPED)) {
 790		if (unlikely(bio_check_eod(bio)))
 791			goto end_io;
 792		if (bdev_is_partition(bdev) &&
 793		    unlikely(blk_partition_remap(bio)))
 794			goto end_io;
 795	}
 796
 797	/*
 798	 * Filter flush bio's early so that bio based drivers without flush
 799	 * support don't have to worry about them.
 
 800	 */
 801	if (op_is_flush(bio->bi_opf)) {
 802		if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_WRITE &&
 803				 bio_op(bio) != REQ_OP_ZONE_APPEND))
 
 804			goto end_io;
 805		if (!bdev_write_cache(bdev)) {
 806			bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
 807			if (!bio_sectors(bio)) {
 808				status = BLK_STS_OK;
 809				goto end_io;
 810			}
 811		}
 812	}
 813
 814	switch (bio_op(bio)) {
 815	case REQ_OP_READ:
 816		break;
 817	case REQ_OP_WRITE:
 818		if (bio->bi_opf & REQ_ATOMIC) {
 819			status = blk_validate_atomic_write_op_size(q, bio);
 820			if (status != BLK_STS_OK)
 821				goto end_io;
 822		}
 823		break;
 824	case REQ_OP_FLUSH:
 825		/*
 826		 * REQ_OP_FLUSH can't be submitted through bios, it is only
 827		 * synthetized in struct request by the flush state machine.
 828		 */
 829		goto not_supported;
 830	case REQ_OP_DISCARD:
 831		if (!bdev_max_discard_sectors(bdev))
 832			goto not_supported;
 833		break;
 834	case REQ_OP_SECURE_ERASE:
 835		if (!bdev_max_secure_erase_sectors(bdev))
 836			goto not_supported;
 837		break;
 838	case REQ_OP_ZONE_APPEND:
 839		status = blk_check_zone_append(q, bio);
 840		if (status != BLK_STS_OK)
 841			goto end_io;
 842		break;
 843	case REQ_OP_WRITE_ZEROES:
 844		if (!q->limits.max_write_zeroes_sectors)
 845			goto not_supported;
 846		break;
 847	case REQ_OP_ZONE_RESET:
 848	case REQ_OP_ZONE_OPEN:
 849	case REQ_OP_ZONE_CLOSE:
 850	case REQ_OP_ZONE_FINISH:
 851	case REQ_OP_ZONE_RESET_ALL:
 852		if (!bdev_is_zoned(bio->bi_bdev))
 853			goto not_supported;
 854		break;
 855	case REQ_OP_DRV_IN:
 856	case REQ_OP_DRV_OUT:
 857		/*
 858		 * Driver private operations are only used with passthrough
 859		 * requests.
 860		 */
 861		fallthrough;
 862	default:
 863		goto not_supported;
 864	}
 865
 866	if (blk_throtl_bio(bio))
 867		return;
 868	submit_bio_noacct_nocheck(bio);
 869	return;
 
 
 
 
 
 
 
 
 
 870
 871not_supported:
 872	status = BLK_STS_NOTSUPP;
 873end_io:
 874	bio->bi_status = status;
 875	bio_endio(bio);
 876}
 877EXPORT_SYMBOL(submit_bio_noacct);
 878
 879static void bio_set_ioprio(struct bio *bio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 880{
 881	/* Nobody set ioprio so far? Initialize it based on task's nice value */
 882	if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
 883		bio->bi_ioprio = get_current_ioprio();
 884	blkcg_set_ioprio(bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 885}
 
 886
 887/**
 888 * submit_bio - submit a bio to the block device layer for I/O
 
 889 * @bio: The &struct bio which describes the I/O
 890 *
 891 * submit_bio() is used to submit I/O requests to block devices.  It is passed a
 892 * fully set up &struct bio that describes the I/O that needs to be done.  The
 893 * bio will be send to the device described by the bi_bdev field.
 894 *
 895 * The success/failure status of the request, along with notification of
 896 * completion, is delivered asynchronously through the ->bi_end_io() callback
 897 * in @bio.  The bio must NOT be touched by the caller until ->bi_end_io() has
 898 * been called.
 899 */
 900void submit_bio(struct bio *bio)
 901{
 902	if (bio_op(bio) == REQ_OP_READ) {
 903		task_io_account_read(bio->bi_iter.bi_size);
 904		count_vm_events(PGPGIN, bio_sectors(bio));
 905	} else if (bio_op(bio) == REQ_OP_WRITE) {
 906		count_vm_events(PGPGOUT, bio_sectors(bio));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 907	}
 908
 909	bio_set_ioprio(bio);
 910	submit_bio_noacct(bio);
 911}
 912EXPORT_SYMBOL(submit_bio);
 913
 914/**
 915 * bio_poll - poll for BIO completions
 916 * @bio: bio to poll for
 917 * @iob: batches of IO
 918 * @flags: BLK_POLL_* flags that control the behavior
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 919 *
 920 * Poll for completions on queue associated with the bio. Returns number of
 921 * completed entries found.
 922 *
 923 * Note: the caller must either be the context that submitted @bio, or
 924 * be in a RCU critical section to prevent freeing of @bio.
 925 */
 926int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
 927{
 928	blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
 929	struct block_device *bdev;
 930	struct request_queue *q;
 931	int ret = 0;
 932
 933	bdev = READ_ONCE(bio->bi_bdev);
 934	if (!bdev)
 935		return 0;
 936
 937	q = bdev_get_queue(bdev);
 938	if (cookie == BLK_QC_T_NONE)
 939		return 0;
 
 
 
 
 
 
 
 
 
 940
 941	blk_flush_plug(current->plug, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 942
 
 
 943	/*
 944	 * We need to be able to enter a frozen queue, similar to how
 945	 * timeouts also need to do that. If that is blocked, then we can
 946	 * have pending IO when a queue freeze is started, and then the
 947	 * wait for the freeze to finish will wait for polled requests to
 948	 * timeout as the poller is preventer from entering the queue and
 949	 * completing them. As long as we prevent new IO from being queued,
 950	 * that should be all that matters.
 951	 */
 952	if (!percpu_ref_tryget(&q->q_usage_counter))
 953		return 0;
 954	if (queue_is_mq(q)) {
 955		ret = blk_mq_poll(q, cookie, iob, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 956	} else {
 957		struct gendisk *disk = q->disk;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 958
 959		if ((q->limits.features & BLK_FEAT_POLL) && disk &&
 960		    disk->fops->poll_bio)
 961			ret = disk->fops->poll_bio(bio, iob, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 962	}
 963	blk_queue_exit(q);
 964	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 965}
 966EXPORT_SYMBOL_GPL(bio_poll);
 967
 968/*
 969 * Helper to implement file_operations.iopoll.  Requires the bio to be stored
 970 * in iocb->private, and cleared before freeing the bio.
 
 
 
 
 
 
 
 
 
 
 
 971 */
 972int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
 973		    unsigned int flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 974{
 975	struct bio *bio;
 976	int ret = 0;
 
 
 
 
 977
 978	/*
 979	 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
 980	 * point to a freshly allocated bio at this point.  If that happens
 981	 * we have a few cases to consider:
 982	 *
 983	 *  1) the bio is beeing initialized and bi_bdev is NULL.  We can just
 984	 *     simply nothing in this case
 985	 *  2) the bio points to a not poll enabled device.  bio_poll will catch
 986	 *     this and return 0
 987	 *  3) the bio points to a poll capable device, including but not
 988	 *     limited to the one that the original bio pointed to.  In this
 989	 *     case we will call into the actual poll method and poll for I/O,
 990	 *     even if we don't need to, but it won't cause harm either.
 991	 *
 992	 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev
 993	 * is still allocated. Because partitions hold a reference to the whole
 994	 * device bdev and thus disk, the disk is also still valid.  Grabbing
 995	 * a reference to the queue in bio_poll() ensures the hctxs and requests
 996	 * are still valid as well.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 997	 */
 998	rcu_read_lock();
 999	bio = READ_ONCE(kiocb->private);
1000	if (bio)
1001		ret = bio_poll(bio, iob, flags);
1002	rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1003
1004	return ret;
 
 
1005}
1006EXPORT_SYMBOL_GPL(iocb_bio_iopoll);
1007
1008void update_io_ticks(struct block_device *part, unsigned long now, bool end)
 
 
 
1009{
1010	unsigned long stamp;
1011again:
1012	stamp = READ_ONCE(part->bd_stamp);
1013	if (unlikely(time_after(now, stamp)) &&
1014	    likely(try_cmpxchg(&part->bd_stamp, &stamp, now)) &&
1015	    (end || part_in_flight(part)))
1016		__part_stat_add(part, io_ticks, now - stamp);
 
 
 
 
 
1017
1018	if (bdev_is_partition(part)) {
1019		part = bdev_whole(part);
1020		goto again;
 
 
 
 
 
 
1021	}
1022}
1023
1024unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op,
1025				 unsigned long start_time)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1026{
1027	part_stat_lock();
1028	update_io_ticks(bdev, start_time, false);
1029	part_stat_local_inc(bdev, in_flight[op_is_write(op)]);
1030	part_stat_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1031
1032	return start_time;
 
1033}
1034EXPORT_SYMBOL(bdev_start_io_acct);
1035
1036/**
1037 * bio_start_io_acct - start I/O accounting for bio based drivers
1038 * @bio:	bio to start account for
 
1039 *
1040 * Returns the start time that should be passed back to bio_end_io_acct().
 
 
 
 
 
 
1041 */
1042unsigned long bio_start_io_acct(struct bio *bio)
1043{
1044	return bdev_start_io_acct(bio->bi_bdev, bio_op(bio), jiffies);
1045}
1046EXPORT_SYMBOL_GPL(bio_start_io_acct);
1047
1048void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
1049		      unsigned int sectors, unsigned long start_time)
 
 
 
 
 
 
 
 
 
 
 
 
1050{
1051	const int sgrp = op_stat_group(op);
1052	unsigned long now = READ_ONCE(jiffies);
1053	unsigned long duration = now - start_time;
 
1054
1055	part_stat_lock();
1056	update_io_ticks(bdev, now, true);
1057	part_stat_inc(bdev, ios[sgrp]);
1058	part_stat_add(bdev, sectors[sgrp], sectors);
1059	part_stat_add(bdev, nsecs[sgrp], jiffies_to_nsecs(duration));
1060	part_stat_local_dec(bdev, in_flight[op_is_write(op)]);
1061	part_stat_unlock();
 
 
 
 
 
 
 
 
1062}
1063EXPORT_SYMBOL(bdev_end_io_acct);
1064
1065void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1066			      struct block_device *orig_bdev)
 
 
 
 
 
 
 
1067{
1068	bdev_end_io_acct(orig_bdev, bio_op(bio), bio_sectors(bio), start_time);
 
 
 
 
1069}
1070EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
 
1071
1072/**
1073 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1074 * @q : the queue of the device being checked
1075 *
1076 * Description:
1077 *    Check if underlying low-level drivers of a device are busy.
1078 *    If the drivers want to export their busy state, they must set own
1079 *    exporting function using blk_queue_lld_busy() first.
1080 *
1081 *    Basically, this function is used only by request stacking drivers
1082 *    to stop dispatching requests to underlying devices when underlying
1083 *    devices are busy.  This behavior helps more I/O merging on the queue
1084 *    of the request stacking driver and prevents I/O throughput regression
1085 *    on burst I/O load.
1086 *
1087 * Return:
1088 *    0 - Not busy (The request stacking driver should dispatch request)
1089 *    1 - Busy (The request stacking driver should stop dispatching request)
1090 */
1091int blk_lld_busy(struct request_queue *q)
1092{
1093	if (queue_is_mq(q) && q->mq_ops->busy)
1094		return q->mq_ops->busy(q);
1095
1096	return 0;
1097}
1098EXPORT_SYMBOL_GPL(blk_lld_busy);
1099
1100int kblockd_schedule_work(struct work_struct *work)
 
 
 
 
 
 
 
1101{
1102	return queue_work(kblockd_workqueue, work);
 
 
 
 
 
 
1103}
1104EXPORT_SYMBOL(kblockd_schedule_work);
1105
1106int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1107				unsigned long delay)
 
 
 
1108{
1109	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
 
 
 
 
 
 
 
1110}
1111EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1112
1113void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
1114{
1115	struct task_struct *tsk = current;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1116
1117	/*
1118	 * If this is a nested plug, don't actually assign it.
1119	 */
1120	if (tsk->plug)
1121		return;
1122
1123	plug->cur_ktime = 0;
1124	rq_list_init(&plug->mq_list);
1125	rq_list_init(&plug->cached_rqs);
1126	plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
1127	plug->rq_count = 0;
1128	plug->multiple_queues = false;
1129	plug->has_elevator = false;
1130	INIT_LIST_HEAD(&plug->cb_list);
1131
1132	/*
1133	 * Store ordering should not be needed here, since a potential
1134	 * preempt will imply a full memory barrier
1135	 */
1136	tsk->plug = plug;
1137}
 
 
 
1138
1139/**
1140 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1141 * @plug:	The &struct blk_plug that needs to be initialized
1142 *
1143 * Description:
1144 *   blk_start_plug() indicates to the block layer an intent by the caller
1145 *   to submit multiple I/O requests in a batch.  The block layer may use
1146 *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1147 *   is called.  However, the block layer may choose to submit requests
1148 *   before a call to blk_finish_plug() if the number of queued I/Os
1149 *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1150 *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1151 *   the task schedules (see below).
1152 *
1153 *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1154 *   pending I/O should the task end up blocking between blk_start_plug() and
1155 *   blk_finish_plug(). This is important from a performance perspective, but
1156 *   also ensures that we don't deadlock. For instance, if the task is blocking
1157 *   for a memory allocation, memory reclaim could end up wanting to free a
1158 *   page belonging to that request that is currently residing in our private
1159 *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1160 *   this kind of deadlock.
1161 */
1162void blk_start_plug(struct blk_plug *plug)
1163{
1164	blk_start_plug_nr_ios(plug, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1165}
1166EXPORT_SYMBOL(blk_start_plug);
1167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1168static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1169{
1170	LIST_HEAD(callbacks);
1171
1172	while (!list_empty(&plug->cb_list)) {
1173		list_splice_init(&plug->cb_list, &callbacks);
1174
1175		while (!list_empty(&callbacks)) {
1176			struct blk_plug_cb *cb = list_first_entry(&callbacks,
1177							  struct blk_plug_cb,
1178							  list);
1179			list_del(&cb->list);
1180			cb->callback(cb, from_schedule);
1181		}
1182	}
1183}
1184
1185struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1186				      int size)
1187{
1188	struct blk_plug *plug = current->plug;
1189	struct blk_plug_cb *cb;
1190
1191	if (!plug)
1192		return NULL;
1193
1194	list_for_each_entry(cb, &plug->cb_list, list)
1195		if (cb->callback == unplug && cb->data == data)
1196			return cb;
1197
1198	/* Not currently on the callback list */
1199	BUG_ON(size < sizeof(*cb));
1200	cb = kzalloc(size, GFP_ATOMIC);
1201	if (cb) {
1202		cb->data = data;
1203		cb->callback = unplug;
1204		list_add(&cb->list, &plug->cb_list);
1205	}
1206	return cb;
1207}
1208EXPORT_SYMBOL(blk_check_plugged);
1209
1210void __blk_flush_plug(struct blk_plug *plug, bool from_schedule)
1211{
1212	if (!list_empty(&plug->cb_list))
1213		flush_plug_callbacks(plug, from_schedule);
1214	blk_mq_flush_plug_list(plug, from_schedule);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1215	/*
1216	 * Unconditionally flush out cached requests, even if the unplug
1217	 * event came from schedule. Since we know hold references to the
1218	 * queue for cached requests, we don't want a blocked task holding
1219	 * up a queue freeze/quiesce event.
1220	 */
1221	if (unlikely(!rq_list_empty(&plug->cached_rqs)))
1222		blk_mq_free_plug_rqs(plug);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1223
1224	plug->cur_ktime = 0;
1225	current->flags &= ~PF_BLOCK_TS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1226}
 
1227
 
1228/**
1229 * blk_finish_plug - mark the end of a batch of submitted I/O
1230 * @plug:	The &struct blk_plug passed to blk_start_plug()
 
1231 *
1232 * Description:
1233 * Indicate that a batch of I/O submissions is complete.  This function
1234 * must be paired with an initial call to blk_start_plug().  The intent
1235 * is to allow the block layer to optimize I/O submission.  See the
1236 * documentation for blk_start_plug() for more information.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1237 */
1238void blk_finish_plug(struct blk_plug *plug)
1239{
1240	if (plug == current->plug) {
1241		__blk_flush_plug(plug, false);
1242		current->plug = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1243	}
 
1244}
1245EXPORT_SYMBOL(blk_finish_plug);
1246
1247void blk_io_schedule(void)
 
 
 
 
 
 
 
 
 
 
 
1248{
1249	/* Prevent hang_check timer from firing at us during very long I/O */
1250	unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
 
 
 
1251
1252	if (timeout)
1253		io_schedule_timeout(timeout);
1254	else
1255		io_schedule();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1256}
1257EXPORT_SYMBOL_GPL(blk_io_schedule);
 
1258
1259int __init blk_dev_init(void)
1260{
1261	BUILD_BUG_ON((__force u32)REQ_OP_LAST >= (1 << REQ_OP_BITS));
1262	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1263			sizeof_field(struct request, cmd_flags));
1264	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1265			sizeof_field(struct bio, bi_opf));
1266
1267	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
1268	kblockd_workqueue = alloc_workqueue("kblockd",
1269					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
 
1270	if (!kblockd_workqueue)
1271		panic("Failed to create kblockd\n");
1272
1273	blk_requestq_cachep = KMEM_CACHE(request_queue, SLAB_PANIC);
 
1274
1275	blk_debugfs_root = debugfs_create_dir("block", NULL);
 
1276
1277	return 0;
1278}