Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * kaslr.c
  4 *
  5 * This contains the routines needed to generate a reasonable level of
  6 * entropy to choose a randomized kernel base address offset in support
  7 * of Kernel Address Space Layout Randomization (KASLR). Additionally
  8 * handles walking the physical memory maps (and tracking memory regions
  9 * to avoid) in order to select a physical memory location that can
 10 * contain the entire properly aligned running kernel image.
 11 *
 12 */
 13
 14/*
 15 * isspace() in linux/ctype.h is expected by next_args() to filter
 16 * out "space/lf/tab". While boot/ctype.h conflicts with linux/ctype.h,
 17 * since isdigit() is implemented in both of them. Hence disable it
 18 * here.
 19 */
 20#define BOOT_CTYPE_H
 21
 22#include "misc.h"
 23#include "error.h"
 24#include "../string.h"
 25#include "efi.h"
 26
 27#include <generated/compile.h>
 28#include <linux/module.h>
 29#include <linux/uts.h>
 30#include <linux/utsname.h>
 31#include <linux/ctype.h>
 32#include <generated/utsversion.h>
 33#include <generated/utsrelease.h>
 34
 35#define _SETUP
 36#include <asm/setup.h>	/* For COMMAND_LINE_SIZE */
 37#undef _SETUP
 38
 39extern unsigned long get_cmd_line_ptr(void);
 40
 41/* Simplified build-specific string for starting entropy. */
 42static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@"
 43		LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION;
 44
 45static unsigned long rotate_xor(unsigned long hash, const void *area,
 46				size_t size)
 47{
 48	size_t i;
 49	unsigned long *ptr = (unsigned long *)area;
 50
 51	for (i = 0; i < size / sizeof(hash); i++) {
 52		/* Rotate by odd number of bits and XOR. */
 53		hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7);
 54		hash ^= ptr[i];
 55	}
 56
 57	return hash;
 58}
 59
 60/* Attempt to create a simple but unpredictable starting entropy. */
 61static unsigned long get_boot_seed(void)
 62{
 63	unsigned long hash = 0;
 64
 65	hash = rotate_xor(hash, build_str, sizeof(build_str));
 66	hash = rotate_xor(hash, boot_params_ptr, sizeof(*boot_params_ptr));
 67
 68	return hash;
 69}
 70
 71#define KASLR_COMPRESSED_BOOT
 72#include "../../lib/kaslr.c"
 73
 74
 75/* Only supporting at most 4 unusable memmap regions with kaslr */
 76#define MAX_MEMMAP_REGIONS	4
 77
 78static bool memmap_too_large;
 79
 80
 81/*
 82 * Store memory limit: MAXMEM on 64-bit and KERNEL_IMAGE_SIZE on 32-bit.
 83 * It may be reduced by "mem=nn[KMG]" or "memmap=nn[KMG]" command line options.
 84 */
 85static u64 mem_limit;
 86
 87/* Number of immovable memory regions */
 88static int num_immovable_mem;
 89
 90enum mem_avoid_index {
 91	MEM_AVOID_ZO_RANGE = 0,
 92	MEM_AVOID_INITRD,
 93	MEM_AVOID_CMDLINE,
 94	MEM_AVOID_BOOTPARAMS,
 95	MEM_AVOID_MEMMAP_BEGIN,
 96	MEM_AVOID_MEMMAP_END = MEM_AVOID_MEMMAP_BEGIN + MAX_MEMMAP_REGIONS - 1,
 97	MEM_AVOID_MAX,
 98};
 99
100static struct mem_vector mem_avoid[MEM_AVOID_MAX];
101
102static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two)
103{
104	/* Item one is entirely before item two. */
105	if (one->start + one->size <= two->start)
106		return false;
107	/* Item one is entirely after item two. */
108	if (one->start >= two->start + two->size)
109		return false;
110	return true;
111}
112
113char *skip_spaces(const char *str)
114{
115	while (isspace(*str))
116		++str;
117	return (char *)str;
118}
119#include "../../../../lib/ctype.c"
120#include "../../../../lib/cmdline.c"
121
122static int
123parse_memmap(char *p, u64 *start, u64 *size)
124{
125	char *oldp;
126
127	if (!p)
128		return -EINVAL;
129
130	/* We don't care about this option here */
131	if (!strncmp(p, "exactmap", 8))
132		return -EINVAL;
133
134	oldp = p;
135	*size = memparse(p, &p);
136	if (p == oldp)
137		return -EINVAL;
138
139	switch (*p) {
140	case '#':
141	case '$':
142	case '!':
143		*start = memparse(p + 1, &p);
144		return 0;
145	case '@':
146		/*
147		 * memmap=nn@ss specifies usable region, should
148		 * be skipped
149		 */
150		*size = 0;
151		fallthrough;
152	default:
153		/*
154		 * If w/o offset, only size specified, memmap=nn[KMG] has the
155		 * same behaviour as mem=nn[KMG]. It limits the max address
156		 * system can use. Region above the limit should be avoided.
157		 */
158		*start = 0;
159		return 0;
160	}
161
162	return -EINVAL;
163}
164
165static void mem_avoid_memmap(char *str)
166{
167	static int i;
168
169	if (i >= MAX_MEMMAP_REGIONS)
170		return;
171
172	while (str && (i < MAX_MEMMAP_REGIONS)) {
173		int rc;
174		u64 start, size;
175		char *k = strchr(str, ',');
176
177		if (k)
178			*k++ = 0;
179
180		rc = parse_memmap(str, &start, &size);
181		if (rc < 0)
182			break;
183		str = k;
184
185		if (start == 0) {
186			/* Store the specified memory limit if size > 0 */
187			if (size > 0 && size < mem_limit)
188				mem_limit = size;
189
190			continue;
191		}
192
193		mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].start = start;
194		mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].size = size;
195		i++;
196	}
197
198	/* More than 4 memmaps, fail kaslr */
199	if ((i >= MAX_MEMMAP_REGIONS) && str)
200		memmap_too_large = true;
201}
202
203/* Store the number of 1GB huge pages which users specified: */
204static unsigned long max_gb_huge_pages;
205
206static void parse_gb_huge_pages(char *param, char *val)
207{
208	static bool gbpage_sz;
209	char *p;
210
211	if (!strcmp(param, "hugepagesz")) {
212		p = val;
213		if (memparse(p, &p) != PUD_SIZE) {
214			gbpage_sz = false;
215			return;
216		}
217
218		if (gbpage_sz)
219			warn("Repeatedly set hugeTLB page size of 1G!\n");
220		gbpage_sz = true;
221		return;
222	}
223
224	if (!strcmp(param, "hugepages") && gbpage_sz) {
225		p = val;
226		max_gb_huge_pages = simple_strtoull(p, &p, 0);
227		return;
228	}
229}
230
231static void handle_mem_options(void)
232{
233	char *args = (char *)get_cmd_line_ptr();
234	size_t len;
235	char *tmp_cmdline;
236	char *param, *val;
237	u64 mem_size;
238
239	if (!args)
240		return;
241
242	len = strnlen(args, COMMAND_LINE_SIZE-1);
243	tmp_cmdline = malloc(len + 1);
244	if (!tmp_cmdline)
245		error("Failed to allocate space for tmp_cmdline");
246
247	memcpy(tmp_cmdline, args, len);
248	tmp_cmdline[len] = 0;
249	args = tmp_cmdline;
250
251	/* Chew leading spaces */
252	args = skip_spaces(args);
253
254	while (*args) {
255		args = next_arg(args, &param, &val);
256		/* Stop at -- */
257		if (!val && strcmp(param, "--") == 0)
258			break;
259
260		if (!strcmp(param, "memmap")) {
261			mem_avoid_memmap(val);
262		} else if (IS_ENABLED(CONFIG_X86_64) && strstr(param, "hugepages")) {
263			parse_gb_huge_pages(param, val);
264		} else if (!strcmp(param, "mem")) {
265			char *p = val;
266
267			if (!strcmp(p, "nopentium"))
268				continue;
269			mem_size = memparse(p, &p);
270			if (mem_size == 0)
271				break;
272
273			if (mem_size < mem_limit)
274				mem_limit = mem_size;
275		}
276	}
277
278	free(tmp_cmdline);
279	return;
280}
281
282/*
283 * In theory, KASLR can put the kernel anywhere in the range of [16M, MAXMEM)
284 * on 64-bit, and [16M, KERNEL_IMAGE_SIZE) on 32-bit.
285 *
286 * The mem_avoid array is used to store the ranges that need to be avoided
287 * when KASLR searches for an appropriate random address. We must avoid any
288 * regions that are unsafe to overlap with during decompression, and other
289 * things like the initrd, cmdline and boot_params. This comment seeks to
290 * explain mem_avoid as clearly as possible since incorrect mem_avoid
291 * memory ranges lead to really hard to debug boot failures.
292 *
293 * The initrd, cmdline, and boot_params are trivial to identify for
294 * avoiding. They are MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, and
295 * MEM_AVOID_BOOTPARAMS respectively below.
296 *
297 * What is not obvious how to avoid is the range of memory that is used
298 * during decompression (MEM_AVOID_ZO_RANGE below). This range must cover
299 * the compressed kernel (ZO) and its run space, which is used to extract
300 * the uncompressed kernel (VO) and relocs.
301 *
302 * ZO's full run size sits against the end of the decompression buffer, so
303 * we can calculate where text, data, bss, etc of ZO are positioned more
304 * easily.
305 *
306 * For additional background, the decompression calculations can be found
307 * in header.S, and the memory diagram is based on the one found in misc.c.
308 *
309 * The following conditions are already enforced by the image layouts and
310 * associated code:
311 *  - input + input_size >= output + output_size
312 *  - kernel_total_size <= init_size
313 *  - kernel_total_size <= output_size (see Note below)
314 *  - output + init_size >= output + output_size
315 *
316 * (Note that kernel_total_size and output_size have no fundamental
317 * relationship, but output_size is passed to choose_random_location
318 * as a maximum of the two. The diagram is showing a case where
319 * kernel_total_size is larger than output_size, but this case is
320 * handled by bumping output_size.)
321 *
322 * The above conditions can be illustrated by a diagram:
323 *
324 * 0   output            input            input+input_size    output+init_size
325 * |     |                 |                             |             |
326 * |     |                 |                             |             |
327 * |-----|--------|--------|--------------|-----------|--|-------------|
328 *                |                       |           |
329 *                |                       |           |
330 * output+init_size-ZO_INIT_SIZE  output+output_size  output+kernel_total_size
331 *
332 * [output, output+init_size) is the entire memory range used for
333 * extracting the compressed image.
334 *
335 * [output, output+kernel_total_size) is the range needed for the
336 * uncompressed kernel (VO) and its run size (bss, brk, etc).
337 *
338 * [output, output+output_size) is VO plus relocs (i.e. the entire
339 * uncompressed payload contained by ZO). This is the area of the buffer
340 * written to during decompression.
341 *
342 * [output+init_size-ZO_INIT_SIZE, output+init_size) is the worst-case
343 * range of the copied ZO and decompression code. (i.e. the range
344 * covered backwards of size ZO_INIT_SIZE, starting from output+init_size.)
345 *
346 * [input, input+input_size) is the original copied compressed image (ZO)
347 * (i.e. it does not include its run size). This range must be avoided
348 * because it contains the data used for decompression.
349 *
350 * [input+input_size, output+init_size) is [_text, _end) for ZO. This
351 * range includes ZO's heap and stack, and must be avoided since it
352 * performs the decompression.
353 *
354 * Since the above two ranges need to be avoided and they are adjacent,
355 * they can be merged, resulting in: [input, output+init_size) which
356 * becomes the MEM_AVOID_ZO_RANGE below.
357 */
358static void mem_avoid_init(unsigned long input, unsigned long input_size,
359			   unsigned long output)
360{
361	unsigned long init_size = boot_params_ptr->hdr.init_size;
362	u64 initrd_start, initrd_size;
363	unsigned long cmd_line, cmd_line_size;
364
365	/*
366	 * Avoid the region that is unsafe to overlap during
367	 * decompression.
368	 */
369	mem_avoid[MEM_AVOID_ZO_RANGE].start = input;
370	mem_avoid[MEM_AVOID_ZO_RANGE].size = (output + init_size) - input;
371
372	/* Avoid initrd. */
373	initrd_start  = (u64)boot_params_ptr->ext_ramdisk_image << 32;
374	initrd_start |= boot_params_ptr->hdr.ramdisk_image;
375	initrd_size  = (u64)boot_params_ptr->ext_ramdisk_size << 32;
376	initrd_size |= boot_params_ptr->hdr.ramdisk_size;
377	mem_avoid[MEM_AVOID_INITRD].start = initrd_start;
378	mem_avoid[MEM_AVOID_INITRD].size = initrd_size;
379	/* No need to set mapping for initrd, it will be handled in VO. */
380
381	/* Avoid kernel command line. */
382	cmd_line = get_cmd_line_ptr();
383	/* Calculate size of cmd_line. */
384	if (cmd_line) {
385		cmd_line_size = strnlen((char *)cmd_line, COMMAND_LINE_SIZE-1) + 1;
386		mem_avoid[MEM_AVOID_CMDLINE].start = cmd_line;
387		mem_avoid[MEM_AVOID_CMDLINE].size = cmd_line_size;
388	}
389
390	/* Avoid boot parameters. */
391	mem_avoid[MEM_AVOID_BOOTPARAMS].start = (unsigned long)boot_params_ptr;
392	mem_avoid[MEM_AVOID_BOOTPARAMS].size = sizeof(*boot_params_ptr);
393
394	/* We don't need to set a mapping for setup_data. */
395
396	/* Mark the memmap regions we need to avoid */
397	handle_mem_options();
398
399	/* Enumerate the immovable memory regions */
400	num_immovable_mem = count_immovable_mem_regions();
401}
402
403/*
404 * Does this memory vector overlap a known avoided area? If so, record the
405 * overlap region with the lowest address.
406 */
407static bool mem_avoid_overlap(struct mem_vector *img,
408			      struct mem_vector *overlap)
409{
410	int i;
411	struct setup_data *ptr;
412	u64 earliest = img->start + img->size;
413	bool is_overlapping = false;
414
415	for (i = 0; i < MEM_AVOID_MAX; i++) {
416		if (mem_overlaps(img, &mem_avoid[i]) &&
417		    mem_avoid[i].start < earliest) {
418			*overlap = mem_avoid[i];
419			earliest = overlap->start;
420			is_overlapping = true;
421		}
422	}
423
424	/* Avoid all entries in the setup_data linked list. */
425	ptr = (struct setup_data *)(unsigned long)boot_params_ptr->hdr.setup_data;
426	while (ptr) {
427		struct mem_vector avoid;
428
429		avoid.start = (unsigned long)ptr;
430		avoid.size = sizeof(*ptr) + ptr->len;
431
432		if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
433			*overlap = avoid;
434			earliest = overlap->start;
435			is_overlapping = true;
436		}
437
438		if (ptr->type == SETUP_INDIRECT &&
439		    ((struct setup_indirect *)ptr->data)->type != SETUP_INDIRECT) {
440			avoid.start = ((struct setup_indirect *)ptr->data)->addr;
441			avoid.size = ((struct setup_indirect *)ptr->data)->len;
442
443			if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
444				*overlap = avoid;
445				earliest = overlap->start;
446				is_overlapping = true;
447			}
448		}
449
450		ptr = (struct setup_data *)(unsigned long)ptr->next;
451	}
452
453	return is_overlapping;
454}
455
456struct slot_area {
457	u64 addr;
458	unsigned long num;
459};
460
461#define MAX_SLOT_AREA 100
462
463static struct slot_area slot_areas[MAX_SLOT_AREA];
464static unsigned int slot_area_index;
465static unsigned long slot_max;
466
467static void store_slot_info(struct mem_vector *region, unsigned long image_size)
468{
469	struct slot_area slot_area;
470
471	if (slot_area_index == MAX_SLOT_AREA)
472		return;
473
474	slot_area.addr = region->start;
475	slot_area.num = 1 + (region->size - image_size) / CONFIG_PHYSICAL_ALIGN;
476
477	slot_areas[slot_area_index++] = slot_area;
478	slot_max += slot_area.num;
479}
480
481/*
482 * Skip as many 1GB huge pages as possible in the passed region
483 * according to the number which users specified:
484 */
485static void
486process_gb_huge_pages(struct mem_vector *region, unsigned long image_size)
487{
488	u64 pud_start, pud_end;
489	unsigned long gb_huge_pages;
490	struct mem_vector tmp;
491
492	if (!IS_ENABLED(CONFIG_X86_64) || !max_gb_huge_pages) {
493		store_slot_info(region, image_size);
494		return;
495	}
496
497	/* Are there any 1GB pages in the region? */
498	pud_start = ALIGN(region->start, PUD_SIZE);
499	pud_end = ALIGN_DOWN(region->start + region->size, PUD_SIZE);
500
501	/* No good 1GB huge pages found: */
502	if (pud_start >= pud_end) {
503		store_slot_info(region, image_size);
504		return;
505	}
506
507	/* Check if the head part of the region is usable. */
508	if (pud_start >= region->start + image_size) {
509		tmp.start = region->start;
510		tmp.size = pud_start - region->start;
511		store_slot_info(&tmp, image_size);
512	}
513
514	/* Skip the good 1GB pages. */
515	gb_huge_pages = (pud_end - pud_start) >> PUD_SHIFT;
516	if (gb_huge_pages > max_gb_huge_pages) {
517		pud_end = pud_start + (max_gb_huge_pages << PUD_SHIFT);
518		max_gb_huge_pages = 0;
519	} else {
520		max_gb_huge_pages -= gb_huge_pages;
521	}
522
523	/* Check if the tail part of the region is usable. */
524	if (region->start + region->size >= pud_end + image_size) {
525		tmp.start = pud_end;
526		tmp.size = region->start + region->size - pud_end;
527		store_slot_info(&tmp, image_size);
528	}
529}
530
531static u64 slots_fetch_random(void)
532{
533	unsigned long slot;
534	unsigned int i;
535
536	/* Handle case of no slots stored. */
537	if (slot_max == 0)
538		return 0;
539
540	slot = kaslr_get_random_long("Physical") % slot_max;
541
542	for (i = 0; i < slot_area_index; i++) {
543		if (slot >= slot_areas[i].num) {
544			slot -= slot_areas[i].num;
545			continue;
546		}
547		return slot_areas[i].addr + ((u64)slot * CONFIG_PHYSICAL_ALIGN);
548	}
549
550	if (i == slot_area_index)
551		debug_putstr("slots_fetch_random() failed!?\n");
552	return 0;
553}
554
555static void __process_mem_region(struct mem_vector *entry,
556				 unsigned long minimum,
557				 unsigned long image_size)
558{
559	struct mem_vector region, overlap;
560	u64 region_end;
561
562	/* Enforce minimum and memory limit. */
563	region.start = max_t(u64, entry->start, minimum);
564	region_end = min(entry->start + entry->size, mem_limit);
565
566	/* Give up if slot area array is full. */
567	while (slot_area_index < MAX_SLOT_AREA) {
568		/* Potentially raise address to meet alignment needs. */
569		region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN);
570
571		/* Did we raise the address above the passed in memory entry? */
572		if (region.start > region_end)
573			return;
574
575		/* Reduce size by any delta from the original address. */
576		region.size = region_end - region.start;
577
578		/* Return if region can't contain decompressed kernel */
579		if (region.size < image_size)
580			return;
581
582		/* If nothing overlaps, store the region and return. */
583		if (!mem_avoid_overlap(&region, &overlap)) {
584			process_gb_huge_pages(&region, image_size);
585			return;
586		}
587
588		/* Store beginning of region if holds at least image_size. */
589		if (overlap.start >= region.start + image_size) {
590			region.size = overlap.start - region.start;
591			process_gb_huge_pages(&region, image_size);
592		}
593
594		/* Clip off the overlapping region and start over. */
595		region.start = overlap.start + overlap.size;
596	}
597}
598
599static bool process_mem_region(struct mem_vector *region,
600			       unsigned long minimum,
601			       unsigned long image_size)
602{
603	int i;
604	/*
605	 * If no immovable memory found, or MEMORY_HOTREMOVE disabled,
606	 * use @region directly.
607	 */
608	if (!num_immovable_mem) {
609		__process_mem_region(region, minimum, image_size);
610
611		if (slot_area_index == MAX_SLOT_AREA) {
612			debug_putstr("Aborted e820/efi memmap scan (slot_areas full)!\n");
613			return true;
614		}
615		return false;
616	}
617
618#if defined(CONFIG_MEMORY_HOTREMOVE) && defined(CONFIG_ACPI)
619	/*
620	 * If immovable memory found, filter the intersection between
621	 * immovable memory and @region.
622	 */
623	for (i = 0; i < num_immovable_mem; i++) {
624		u64 start, end, entry_end, region_end;
625		struct mem_vector entry;
626
627		if (!mem_overlaps(region, &immovable_mem[i]))
628			continue;
629
630		start = immovable_mem[i].start;
631		end = start + immovable_mem[i].size;
632		region_end = region->start + region->size;
633
634		entry.start = clamp(region->start, start, end);
635		entry_end = clamp(region_end, start, end);
636		entry.size = entry_end - entry.start;
637
638		__process_mem_region(&entry, minimum, image_size);
639
640		if (slot_area_index == MAX_SLOT_AREA) {
641			debug_putstr("Aborted e820/efi memmap scan when walking immovable regions(slot_areas full)!\n");
642			return true;
643		}
644	}
645#endif
646	return false;
647}
648
649#ifdef CONFIG_EFI
650
651/*
652 * Only EFI_CONVENTIONAL_MEMORY and EFI_UNACCEPTED_MEMORY (if supported) are
653 * guaranteed to be free.
654 *
655 * Pick free memory more conservatively than the EFI spec allows: according to
656 * the spec, EFI_BOOT_SERVICES_{CODE|DATA} are also free memory and thus
657 * available to place the kernel image into, but in practice there's firmware
658 * where using that memory leads to crashes. Buggy vendor EFI code registers
659 * for an event that triggers on SetVirtualAddressMap(). The handler assumes
660 * that EFI_BOOT_SERVICES_DATA memory has not been touched by loader yet, which
661 * is probably true for Windows.
662 *
663 * Preserve EFI_BOOT_SERVICES_* regions until after SetVirtualAddressMap().
664 */
665static inline bool memory_type_is_free(efi_memory_desc_t *md)
666{
667	if (md->type == EFI_CONVENTIONAL_MEMORY)
668		return true;
669
670	if (IS_ENABLED(CONFIG_UNACCEPTED_MEMORY) &&
671	    md->type == EFI_UNACCEPTED_MEMORY)
672		    return true;
673
674	return false;
675}
676
677/*
678 * Returns true if we processed the EFI memmap, which we prefer over the E820
679 * table if it is available.
680 */
681static bool
682process_efi_entries(unsigned long minimum, unsigned long image_size)
683{
684	struct efi_info *e = &boot_params_ptr->efi_info;
685	bool efi_mirror_found = false;
686	struct mem_vector region;
687	efi_memory_desc_t *md;
688	unsigned long pmap;
689	char *signature;
690	u32 nr_desc;
691	int i;
692
693	signature = (char *)&e->efi_loader_signature;
694	if (strncmp(signature, EFI32_LOADER_SIGNATURE, 4) &&
695	    strncmp(signature, EFI64_LOADER_SIGNATURE, 4))
696		return false;
697
698#ifdef CONFIG_X86_32
699	/* Can't handle data above 4GB at this time */
700	if (e->efi_memmap_hi) {
701		warn("EFI memmap is above 4GB, can't be handled now on x86_32. EFI should be disabled.\n");
702		return false;
703	}
704	pmap =  e->efi_memmap;
705#else
706	pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
707#endif
708
709	nr_desc = e->efi_memmap_size / e->efi_memdesc_size;
710	for (i = 0; i < nr_desc; i++) {
711		md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
712		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
713			efi_mirror_found = true;
714			break;
715		}
716	}
717
718	for (i = 0; i < nr_desc; i++) {
719		md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
720
721		if (!memory_type_is_free(md))
722			continue;
723
724		if (efi_soft_reserve_enabled() &&
725		    (md->attribute & EFI_MEMORY_SP))
726			continue;
727
728		if (efi_mirror_found &&
729		    !(md->attribute & EFI_MEMORY_MORE_RELIABLE))
730			continue;
731
732		region.start = md->phys_addr;
733		region.size = md->num_pages << EFI_PAGE_SHIFT;
734		if (process_mem_region(&region, minimum, image_size))
735			break;
736	}
737	return true;
738}
739#else
740static inline bool
741process_efi_entries(unsigned long minimum, unsigned long image_size)
742{
743	return false;
744}
745#endif
746
747static void process_e820_entries(unsigned long minimum,
748				 unsigned long image_size)
749{
750	int i;
751	struct mem_vector region;
752	struct boot_e820_entry *entry;
753
754	/* Verify potential e820 positions, appending to slots list. */
755	for (i = 0; i < boot_params_ptr->e820_entries; i++) {
756		entry = &boot_params_ptr->e820_table[i];
757		/* Skip non-RAM entries. */
758		if (entry->type != E820_TYPE_RAM)
759			continue;
760		region.start = entry->addr;
761		region.size = entry->size;
762		if (process_mem_region(&region, minimum, image_size))
763			break;
764	}
765}
766
767static unsigned long find_random_phys_addr(unsigned long minimum,
768					   unsigned long image_size)
769{
770	u64 phys_addr;
771
772	/* Bail out early if it's impossible to succeed. */
773	if (minimum + image_size > mem_limit)
774		return 0;
775
776	/* Check if we had too many memmaps. */
777	if (memmap_too_large) {
778		debug_putstr("Aborted memory entries scan (more than 4 memmap= args)!\n");
779		return 0;
780	}
781
782	if (!process_efi_entries(minimum, image_size))
783		process_e820_entries(minimum, image_size);
784
785	phys_addr = slots_fetch_random();
786
787	/* Perform a final check to make sure the address is in range. */
788	if (phys_addr < minimum || phys_addr + image_size > mem_limit) {
789		warn("Invalid physical address chosen!\n");
790		return 0;
791	}
792
793	return (unsigned long)phys_addr;
794}
795
796static unsigned long find_random_virt_addr(unsigned long minimum,
797					   unsigned long image_size)
798{
799	unsigned long slots, random_addr;
800
801	/*
802	 * There are how many CONFIG_PHYSICAL_ALIGN-sized slots
803	 * that can hold image_size within the range of minimum to
804	 * KERNEL_IMAGE_SIZE?
805	 */
806	slots = 1 + (KERNEL_IMAGE_SIZE - minimum - image_size) / CONFIG_PHYSICAL_ALIGN;
807
808	random_addr = kaslr_get_random_long("Virtual") % slots;
809
810	return random_addr * CONFIG_PHYSICAL_ALIGN + minimum;
811}
812
813/*
814 * Since this function examines addresses much more numerically,
815 * it takes the input and output pointers as 'unsigned long'.
816 */
817void choose_random_location(unsigned long input,
818			    unsigned long input_size,
819			    unsigned long *output,
820			    unsigned long output_size,
821			    unsigned long *virt_addr)
822{
823	unsigned long random_addr, min_addr;
824
825	if (cmdline_find_option_bool("nokaslr")) {
826		warn("KASLR disabled: 'nokaslr' on cmdline.");
827		return;
828	}
829
830	boot_params_ptr->hdr.loadflags |= KASLR_FLAG;
831
832	if (IS_ENABLED(CONFIG_X86_32))
833		mem_limit = KERNEL_IMAGE_SIZE;
834	else
835		mem_limit = MAXMEM;
836
837	/* Record the various known unsafe memory ranges. */
838	mem_avoid_init(input, input_size, *output);
839
840	/*
841	 * Low end of the randomization range should be the
842	 * smaller of 512M or the initial kernel image
843	 * location:
844	 */
845	min_addr = min(*output, 512UL << 20);
846	/* Make sure minimum is aligned. */
847	min_addr = ALIGN(min_addr, CONFIG_PHYSICAL_ALIGN);
848
849	/* Walk available memory entries to find a random address. */
850	random_addr = find_random_phys_addr(min_addr, output_size);
851	if (!random_addr) {
852		warn("Physical KASLR disabled: no suitable memory region!");
853	} else {
854		/* Update the new physical address location. */
855		if (*output != random_addr)
856			*output = random_addr;
857	}
858
859
860	/* Pick random virtual address starting from LOAD_PHYSICAL_ADDR. */
861	if (IS_ENABLED(CONFIG_X86_64))
862		random_addr = find_random_virt_addr(LOAD_PHYSICAL_ADDR, output_size);
863	*virt_addr = random_addr;
864}