Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
Note: File does not exist in v6.13.7.
   1#ifndef _ASM_IA64_SN_SN_SAL_H
   2#define _ASM_IA64_SN_SN_SAL_H
   3
   4/*
   5 * System Abstraction Layer definitions for IA64
   6 *
   7 * This file is subject to the terms and conditions of the GNU General Public
   8 * License.  See the file "COPYING" in the main directory of this archive
   9 * for more details.
  10 *
  11 * Copyright (c) 2000-2006 Silicon Graphics, Inc.  All rights reserved.
  12 */
  13
  14
  15#include <asm/sal.h>
  16#include <asm/sn/sn_cpuid.h>
  17#include <asm/sn/arch.h>
  18#include <asm/sn/geo.h>
  19#include <asm/sn/nodepda.h>
  20#include <asm/sn/shub_mmr.h>
  21
  22// SGI Specific Calls
  23#define  SN_SAL_POD_MODE                           0x02000001
  24#define  SN_SAL_SYSTEM_RESET                       0x02000002
  25#define  SN_SAL_PROBE                              0x02000003
  26#define  SN_SAL_GET_MASTER_NASID                   0x02000004
  27#define	 SN_SAL_GET_KLCONFIG_ADDR		   0x02000005
  28#define  SN_SAL_LOG_CE				   0x02000006
  29#define  SN_SAL_REGISTER_CE			   0x02000007
  30#define  SN_SAL_GET_PARTITION_ADDR		   0x02000009
  31#define  SN_SAL_XP_ADDR_REGION			   0x0200000f
  32#define  SN_SAL_NO_FAULT_ZONE_VIRTUAL		   0x02000010
  33#define  SN_SAL_NO_FAULT_ZONE_PHYSICAL		   0x02000011
  34#define  SN_SAL_PRINT_ERROR			   0x02000012
  35#define  SN_SAL_REGISTER_PMI_HANDLER		   0x02000014
  36#define  SN_SAL_SET_ERROR_HANDLING_FEATURES	   0x0200001a	// reentrant
  37#define  SN_SAL_GET_FIT_COMPT			   0x0200001b	// reentrant
  38#define  SN_SAL_GET_SAPIC_INFO                     0x0200001d
  39#define  SN_SAL_GET_SN_INFO                        0x0200001e
  40#define  SN_SAL_CONSOLE_PUTC                       0x02000021
  41#define  SN_SAL_CONSOLE_GETC                       0x02000022
  42#define  SN_SAL_CONSOLE_PUTS                       0x02000023
  43#define  SN_SAL_CONSOLE_GETS                       0x02000024
  44#define  SN_SAL_CONSOLE_GETS_TIMEOUT               0x02000025
  45#define  SN_SAL_CONSOLE_POLL                       0x02000026
  46#define  SN_SAL_CONSOLE_INTR                       0x02000027
  47#define  SN_SAL_CONSOLE_PUTB			   0x02000028
  48#define  SN_SAL_CONSOLE_XMIT_CHARS		   0x0200002a
  49#define  SN_SAL_CONSOLE_READC			   0x0200002b
  50#define  SN_SAL_SYSCTL_OP			   0x02000030
  51#define  SN_SAL_SYSCTL_MODID_GET	           0x02000031
  52#define  SN_SAL_SYSCTL_GET                         0x02000032
  53#define  SN_SAL_SYSCTL_IOBRICK_MODULE_GET          0x02000033
  54#define  SN_SAL_SYSCTL_IO_PORTSPEED_GET            0x02000035
  55#define  SN_SAL_SYSCTL_SLAB_GET                    0x02000036
  56#define  SN_SAL_BUS_CONFIG		   	   0x02000037
  57#define  SN_SAL_SYS_SERIAL_GET			   0x02000038
  58#define  SN_SAL_PARTITION_SERIAL_GET		   0x02000039
  59#define  SN_SAL_SYSCTL_PARTITION_GET               0x0200003a
  60#define  SN_SAL_SYSTEM_POWER_DOWN		   0x0200003b
  61#define  SN_SAL_GET_MASTER_BASEIO_NASID		   0x0200003c
  62#define  SN_SAL_COHERENCE                          0x0200003d
  63#define  SN_SAL_MEMPROTECT                         0x0200003e
  64#define  SN_SAL_SYSCTL_FRU_CAPTURE		   0x0200003f
  65
  66#define  SN_SAL_SYSCTL_IOBRICK_PCI_OP		   0x02000042	// reentrant
  67#define	 SN_SAL_IROUTER_OP			   0x02000043
  68#define  SN_SAL_SYSCTL_EVENT                       0x02000044
  69#define  SN_SAL_IOIF_INTERRUPT			   0x0200004a
  70#define  SN_SAL_HWPERF_OP			   0x02000050   // lock
  71#define  SN_SAL_IOIF_ERROR_INTERRUPT		   0x02000051
  72#define  SN_SAL_IOIF_PCI_SAFE			   0x02000052
  73#define  SN_SAL_IOIF_SLOT_ENABLE		   0x02000053
  74#define  SN_SAL_IOIF_SLOT_DISABLE		   0x02000054
  75#define  SN_SAL_IOIF_GET_HUBDEV_INFO		   0x02000055
  76#define  SN_SAL_IOIF_GET_PCIBUS_INFO		   0x02000056
  77#define  SN_SAL_IOIF_GET_PCIDEV_INFO		   0x02000057
  78#define  SN_SAL_IOIF_GET_WIDGET_DMAFLUSH_LIST	   0x02000058	// deprecated
  79#define  SN_SAL_IOIF_GET_DEVICE_DMAFLUSH_LIST	   0x0200005a
  80
  81#define SN_SAL_IOIF_INIT			   0x0200005f
  82#define SN_SAL_HUB_ERROR_INTERRUPT		   0x02000060
  83#define SN_SAL_BTE_RECOVER			   0x02000061
  84#define SN_SAL_RESERVED_DO_NOT_USE		   0x02000062
  85#define SN_SAL_IOIF_GET_PCI_TOPOLOGY		   0x02000064
  86
  87#define  SN_SAL_GET_PROM_FEATURE_SET		   0x02000065
  88#define  SN_SAL_SET_OS_FEATURE_SET		   0x02000066
  89#define  SN_SAL_INJECT_ERROR			   0x02000067
  90#define  SN_SAL_SET_CPU_NUMBER			   0x02000068
  91
  92#define  SN_SAL_KERNEL_LAUNCH_EVENT		   0x02000069
  93#define  SN_SAL_WATCHLIST_ALLOC			   0x02000070
  94#define  SN_SAL_WATCHLIST_FREE			   0x02000071
  95
  96/*
  97 * Service-specific constants
  98 */
  99
 100/* Console interrupt manipulation */
 101	/* action codes */
 102#define SAL_CONSOLE_INTR_OFF    0       /* turn the interrupt off */
 103#define SAL_CONSOLE_INTR_ON     1       /* turn the interrupt on */
 104#define SAL_CONSOLE_INTR_STATUS 2	/* retrieve the interrupt status */
 105	/* interrupt specification & status return codes */
 106#define SAL_CONSOLE_INTR_XMIT	1	/* output interrupt */
 107#define SAL_CONSOLE_INTR_RECV	2	/* input interrupt */
 108
 109/* interrupt handling */
 110#define SAL_INTR_ALLOC		1
 111#define SAL_INTR_FREE		2
 112#define SAL_INTR_REDIRECT	3
 113
 114/*
 115 * operations available on the generic SN_SAL_SYSCTL_OP
 116 * runtime service
 117 */
 118#define SAL_SYSCTL_OP_IOBOARD		0x0001  /*  retrieve board type */
 119#define SAL_SYSCTL_OP_TIO_JLCK_RST      0x0002  /* issue TIO clock reset */
 120
 121/*
 122 * IRouter (i.e. generalized system controller) operations
 123 */
 124#define SAL_IROUTER_OPEN	0	/* open a subchannel */
 125#define SAL_IROUTER_CLOSE	1	/* close a subchannel */
 126#define SAL_IROUTER_SEND	2	/* send part of an IRouter packet */
 127#define SAL_IROUTER_RECV	3	/* receive part of an IRouter packet */
 128#define SAL_IROUTER_INTR_STATUS	4	/* check the interrupt status for
 129					 * an open subchannel
 130					 */
 131#define SAL_IROUTER_INTR_ON	5	/* enable an interrupt */
 132#define SAL_IROUTER_INTR_OFF	6	/* disable an interrupt */
 133#define SAL_IROUTER_INIT	7	/* initialize IRouter driver */
 134
 135/* IRouter interrupt mask bits */
 136#define SAL_IROUTER_INTR_XMIT	SAL_CONSOLE_INTR_XMIT
 137#define SAL_IROUTER_INTR_RECV	SAL_CONSOLE_INTR_RECV
 138
 139/*
 140 * Error Handling Features
 141 */
 142#define SAL_ERR_FEAT_MCA_SLV_TO_OS_INIT_SLV	0x1	// obsolete
 143#define SAL_ERR_FEAT_LOG_SBES			0x2	// obsolete
 144#define SAL_ERR_FEAT_MFR_OVERRIDE		0x4
 145#define SAL_ERR_FEAT_SBE_THRESHOLD		0xffff0000
 146
 147/*
 148 * SAL Error Codes
 149 */
 150#define SALRET_MORE_PASSES	1
 151#define SALRET_OK		0
 152#define SALRET_NOT_IMPLEMENTED	(-1)
 153#define SALRET_INVALID_ARG	(-2)
 154#define SALRET_ERROR		(-3)
 155
 156#define SN_SAL_FAKE_PROM			   0x02009999
 157
 158/**
 159  * sn_sal_revision - get the SGI SAL revision number
 160  *
 161  * The SGI PROM stores its version in the sal_[ab]_rev_(major|minor).
 162  * This routine simply extracts the major and minor values and
 163  * presents them in a u32 format.
 164  *
 165  * For example, version 4.05 would be represented at 0x0405.
 166  */
 167static inline u32
 168sn_sal_rev(void)
 169{
 170	struct ia64_sal_systab *systab = __va(efi.sal_systab);
 171
 172	return (u32)(systab->sal_b_rev_major << 8 | systab->sal_b_rev_minor);
 173}
 174
 175/*
 176 * Returns the master console nasid, if the call fails, return an illegal
 177 * value.
 178 */
 179static inline u64
 180ia64_sn_get_console_nasid(void)
 181{
 182	struct ia64_sal_retval ret_stuff;
 183
 184	ret_stuff.status = 0;
 185	ret_stuff.v0 = 0;
 186	ret_stuff.v1 = 0;
 187	ret_stuff.v2 = 0;
 188	SAL_CALL(ret_stuff, SN_SAL_GET_MASTER_NASID, 0, 0, 0, 0, 0, 0, 0);
 189
 190	if (ret_stuff.status < 0)
 191		return ret_stuff.status;
 192
 193	/* Master console nasid is in 'v0' */
 194	return ret_stuff.v0;
 195}
 196
 197/*
 198 * Returns the master baseio nasid, if the call fails, return an illegal
 199 * value.
 200 */
 201static inline u64
 202ia64_sn_get_master_baseio_nasid(void)
 203{
 204	struct ia64_sal_retval ret_stuff;
 205
 206	ret_stuff.status = 0;
 207	ret_stuff.v0 = 0;
 208	ret_stuff.v1 = 0;
 209	ret_stuff.v2 = 0;
 210	SAL_CALL(ret_stuff, SN_SAL_GET_MASTER_BASEIO_NASID, 0, 0, 0, 0, 0, 0, 0);
 211
 212	if (ret_stuff.status < 0)
 213		return ret_stuff.status;
 214
 215	/* Master baseio nasid is in 'v0' */
 216	return ret_stuff.v0;
 217}
 218
 219static inline void *
 220ia64_sn_get_klconfig_addr(nasid_t nasid)
 221{
 222	struct ia64_sal_retval ret_stuff;
 223
 224	ret_stuff.status = 0;
 225	ret_stuff.v0 = 0;
 226	ret_stuff.v1 = 0;
 227	ret_stuff.v2 = 0;
 228	SAL_CALL(ret_stuff, SN_SAL_GET_KLCONFIG_ADDR, (u64)nasid, 0, 0, 0, 0, 0, 0);
 229	return ret_stuff.v0 ? __va(ret_stuff.v0) : NULL;
 230}
 231
 232/*
 233 * Returns the next console character.
 234 */
 235static inline u64
 236ia64_sn_console_getc(int *ch)
 237{
 238	struct ia64_sal_retval ret_stuff;
 239
 240	ret_stuff.status = 0;
 241	ret_stuff.v0 = 0;
 242	ret_stuff.v1 = 0;
 243	ret_stuff.v2 = 0;
 244	SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_GETC, 0, 0, 0, 0, 0, 0, 0);
 245
 246	/* character is in 'v0' */
 247	*ch = (int)ret_stuff.v0;
 248
 249	return ret_stuff.status;
 250}
 251
 252/*
 253 * Read a character from the SAL console device, after a previous interrupt
 254 * or poll operation has given us to know that a character is available
 255 * to be read.
 256 */
 257static inline u64
 258ia64_sn_console_readc(void)
 259{
 260	struct ia64_sal_retval ret_stuff;
 261
 262	ret_stuff.status = 0;
 263	ret_stuff.v0 = 0;
 264	ret_stuff.v1 = 0;
 265	ret_stuff.v2 = 0;
 266	SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_READC, 0, 0, 0, 0, 0, 0, 0);
 267
 268	/* character is in 'v0' */
 269	return ret_stuff.v0;
 270}
 271
 272/*
 273 * Sends the given character to the console.
 274 */
 275static inline u64
 276ia64_sn_console_putc(char ch)
 277{
 278	struct ia64_sal_retval ret_stuff;
 279
 280	ret_stuff.status = 0;
 281	ret_stuff.v0 = 0;
 282	ret_stuff.v1 = 0;
 283	ret_stuff.v2 = 0;
 284	SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_PUTC, (u64)ch, 0, 0, 0, 0, 0, 0);
 285
 286	return ret_stuff.status;
 287}
 288
 289/*
 290 * Sends the given buffer to the console.
 291 */
 292static inline u64
 293ia64_sn_console_putb(const char *buf, int len)
 294{
 295	struct ia64_sal_retval ret_stuff;
 296
 297	ret_stuff.status = 0;
 298	ret_stuff.v0 = 0; 
 299	ret_stuff.v1 = 0;
 300	ret_stuff.v2 = 0;
 301	SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_PUTB, (u64)buf, (u64)len, 0, 0, 0, 0, 0);
 302
 303	if ( ret_stuff.status == 0 ) {
 304		return ret_stuff.v0;
 305	}
 306	return (u64)0;
 307}
 308
 309/*
 310 * Print a platform error record
 311 */
 312static inline u64
 313ia64_sn_plat_specific_err_print(int (*hook)(const char*, ...), char *rec)
 314{
 315	struct ia64_sal_retval ret_stuff;
 316
 317	ret_stuff.status = 0;
 318	ret_stuff.v0 = 0;
 319	ret_stuff.v1 = 0;
 320	ret_stuff.v2 = 0;
 321	SAL_CALL_REENTRANT(ret_stuff, SN_SAL_PRINT_ERROR, (u64)hook, (u64)rec, 0, 0, 0, 0, 0);
 322
 323	return ret_stuff.status;
 324}
 325
 326/*
 327 * Check for Platform errors
 328 */
 329static inline u64
 330ia64_sn_plat_cpei_handler(void)
 331{
 332	struct ia64_sal_retval ret_stuff;
 333
 334	ret_stuff.status = 0;
 335	ret_stuff.v0 = 0;
 336	ret_stuff.v1 = 0;
 337	ret_stuff.v2 = 0;
 338	SAL_CALL_NOLOCK(ret_stuff, SN_SAL_LOG_CE, 0, 0, 0, 0, 0, 0, 0);
 339
 340	return ret_stuff.status;
 341}
 342
 343/*
 344 * Set Error Handling Features	(Obsolete)
 345 */
 346static inline u64
 347ia64_sn_plat_set_error_handling_features(void)
 348{
 349	struct ia64_sal_retval ret_stuff;
 350
 351	ret_stuff.status = 0;
 352	ret_stuff.v0 = 0;
 353	ret_stuff.v1 = 0;
 354	ret_stuff.v2 = 0;
 355	SAL_CALL_REENTRANT(ret_stuff, SN_SAL_SET_ERROR_HANDLING_FEATURES,
 356		SAL_ERR_FEAT_LOG_SBES,
 357		0, 0, 0, 0, 0, 0);
 358
 359	return ret_stuff.status;
 360}
 361
 362/*
 363 * Checks for console input.
 364 */
 365static inline u64
 366ia64_sn_console_check(int *result)
 367{
 368	struct ia64_sal_retval ret_stuff;
 369
 370	ret_stuff.status = 0;
 371	ret_stuff.v0 = 0;
 372	ret_stuff.v1 = 0;
 373	ret_stuff.v2 = 0;
 374	SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_POLL, 0, 0, 0, 0, 0, 0, 0);
 375
 376	/* result is in 'v0' */
 377	*result = (int)ret_stuff.v0;
 378
 379	return ret_stuff.status;
 380}
 381
 382/*
 383 * Checks console interrupt status
 384 */
 385static inline u64
 386ia64_sn_console_intr_status(void)
 387{
 388	struct ia64_sal_retval ret_stuff;
 389
 390	ret_stuff.status = 0;
 391	ret_stuff.v0 = 0;
 392	ret_stuff.v1 = 0;
 393	ret_stuff.v2 = 0;
 394	SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR, 
 395		 0, SAL_CONSOLE_INTR_STATUS,
 396		 0, 0, 0, 0, 0);
 397
 398	if (ret_stuff.status == 0) {
 399	    return ret_stuff.v0;
 400	}
 401	
 402	return 0;
 403}
 404
 405/*
 406 * Enable an interrupt on the SAL console device.
 407 */
 408static inline void
 409ia64_sn_console_intr_enable(u64 intr)
 410{
 411	struct ia64_sal_retval ret_stuff;
 412
 413	ret_stuff.status = 0;
 414	ret_stuff.v0 = 0;
 415	ret_stuff.v1 = 0;
 416	ret_stuff.v2 = 0;
 417	SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR, 
 418		 intr, SAL_CONSOLE_INTR_ON,
 419		 0, 0, 0, 0, 0);
 420}
 421
 422/*
 423 * Disable an interrupt on the SAL console device.
 424 */
 425static inline void
 426ia64_sn_console_intr_disable(u64 intr)
 427{
 428	struct ia64_sal_retval ret_stuff;
 429
 430	ret_stuff.status = 0;
 431	ret_stuff.v0 = 0;
 432	ret_stuff.v1 = 0;
 433	ret_stuff.v2 = 0;
 434	SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR, 
 435		 intr, SAL_CONSOLE_INTR_OFF,
 436		 0, 0, 0, 0, 0);
 437}
 438
 439/*
 440 * Sends a character buffer to the console asynchronously.
 441 */
 442static inline u64
 443ia64_sn_console_xmit_chars(char *buf, int len)
 444{
 445	struct ia64_sal_retval ret_stuff;
 446
 447	ret_stuff.status = 0;
 448	ret_stuff.v0 = 0;
 449	ret_stuff.v1 = 0;
 450	ret_stuff.v2 = 0;
 451	SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_XMIT_CHARS,
 452		 (u64)buf, (u64)len,
 453		 0, 0, 0, 0, 0);
 454
 455	if (ret_stuff.status == 0) {
 456	    return ret_stuff.v0;
 457	}
 458
 459	return 0;
 460}
 461
 462/*
 463 * Returns the iobrick module Id
 464 */
 465static inline u64
 466ia64_sn_sysctl_iobrick_module_get(nasid_t nasid, int *result)
 467{
 468	struct ia64_sal_retval ret_stuff;
 469
 470	ret_stuff.status = 0;
 471	ret_stuff.v0 = 0;
 472	ret_stuff.v1 = 0;
 473	ret_stuff.v2 = 0;
 474	SAL_CALL_NOLOCK(ret_stuff, SN_SAL_SYSCTL_IOBRICK_MODULE_GET, nasid, 0, 0, 0, 0, 0, 0);
 475
 476	/* result is in 'v0' */
 477	*result = (int)ret_stuff.v0;
 478
 479	return ret_stuff.status;
 480}
 481
 482/**
 483 * ia64_sn_pod_mode - call the SN_SAL_POD_MODE function
 484 *
 485 * SN_SAL_POD_MODE actually takes an argument, but it's always
 486 * 0 when we call it from the kernel, so we don't have to expose
 487 * it to the caller.
 488 */
 489static inline u64
 490ia64_sn_pod_mode(void)
 491{
 492	struct ia64_sal_retval isrv;
 493	SAL_CALL_REENTRANT(isrv, SN_SAL_POD_MODE, 0, 0, 0, 0, 0, 0, 0);
 494	if (isrv.status)
 495		return 0;
 496	return isrv.v0;
 497}
 498
 499/**
 500 * ia64_sn_probe_mem - read from memory safely
 501 * @addr: address to probe
 502 * @size: number bytes to read (1,2,4,8)
 503 * @data_ptr: address to store value read by probe (-1 returned if probe fails)
 504 *
 505 * Call into the SAL to do a memory read.  If the read generates a machine
 506 * check, this routine will recover gracefully and return -1 to the caller.
 507 * @addr is usually a kernel virtual address in uncached space (i.e. the
 508 * address starts with 0xc), but if called in physical mode, @addr should
 509 * be a physical address.
 510 *
 511 * Return values:
 512 *  0 - probe successful
 513 *  1 - probe failed (generated MCA)
 514 *  2 - Bad arg
 515 * <0 - PAL error
 516 */
 517static inline u64
 518ia64_sn_probe_mem(long addr, long size, void *data_ptr)
 519{
 520	struct ia64_sal_retval isrv;
 521
 522	SAL_CALL(isrv, SN_SAL_PROBE, addr, size, 0, 0, 0, 0, 0);
 523
 524	if (data_ptr) {
 525		switch (size) {
 526		case 1:
 527			*((u8*)data_ptr) = (u8)isrv.v0;
 528			break;
 529		case 2:
 530			*((u16*)data_ptr) = (u16)isrv.v0;
 531			break;
 532		case 4:
 533			*((u32*)data_ptr) = (u32)isrv.v0;
 534			break;
 535		case 8:
 536			*((u64*)data_ptr) = (u64)isrv.v0;
 537			break;
 538		default:
 539			isrv.status = 2;
 540		}
 541	}
 542	return isrv.status;
 543}
 544
 545/*
 546 * Retrieve the system serial number as an ASCII string.
 547 */
 548static inline u64
 549ia64_sn_sys_serial_get(char *buf)
 550{
 551	struct ia64_sal_retval ret_stuff;
 552	SAL_CALL_NOLOCK(ret_stuff, SN_SAL_SYS_SERIAL_GET, buf, 0, 0, 0, 0, 0, 0);
 553	return ret_stuff.status;
 554}
 555
 556extern char sn_system_serial_number_string[];
 557extern u64 sn_partition_serial_number;
 558
 559static inline char *
 560sn_system_serial_number(void) {
 561	if (sn_system_serial_number_string[0]) {
 562		return(sn_system_serial_number_string);
 563	} else {
 564		ia64_sn_sys_serial_get(sn_system_serial_number_string);
 565		return(sn_system_serial_number_string);
 566	}
 567}
 568	
 569
 570/*
 571 * Returns a unique id number for this system and partition (suitable for
 572 * use with license managers), based in part on the system serial number.
 573 */
 574static inline u64
 575ia64_sn_partition_serial_get(void)
 576{
 577	struct ia64_sal_retval ret_stuff;
 578	ia64_sal_oemcall_reentrant(&ret_stuff, SN_SAL_PARTITION_SERIAL_GET, 0,
 579				   0, 0, 0, 0, 0, 0);
 580	if (ret_stuff.status != 0)
 581	    return 0;
 582	return ret_stuff.v0;
 583}
 584
 585static inline u64
 586sn_partition_serial_number_val(void) {
 587	if (unlikely(sn_partition_serial_number == 0)) {
 588		sn_partition_serial_number = ia64_sn_partition_serial_get();
 589	}
 590	return sn_partition_serial_number;
 591}
 592
 593/*
 594 * Returns the partition id of the nasid passed in as an argument,
 595 * or INVALID_PARTID if the partition id cannot be retrieved.
 596 */
 597static inline partid_t
 598ia64_sn_sysctl_partition_get(nasid_t nasid)
 599{
 600	struct ia64_sal_retval ret_stuff;
 601	SAL_CALL(ret_stuff, SN_SAL_SYSCTL_PARTITION_GET, nasid,
 602		0, 0, 0, 0, 0, 0);
 603	if (ret_stuff.status != 0)
 604	    return -1;
 605	return ((partid_t)ret_stuff.v0);
 606}
 607
 608/*
 609 * Returns the physical address of the partition's reserved page through
 610 * an iterative number of calls.
 611 *
 612 * On first call, 'cookie' and 'len' should be set to 0, and 'addr'
 613 * set to the nasid of the partition whose reserved page's address is
 614 * being sought.
 615 * On subsequent calls, pass the values, that were passed back on the
 616 * previous call.
 617 *
 618 * While the return status equals SALRET_MORE_PASSES, keep calling
 619 * this function after first copying 'len' bytes starting at 'addr'
 620 * into 'buf'. Once the return status equals SALRET_OK, 'addr' will
 621 * be the physical address of the partition's reserved page. If the
 622 * return status equals neither of these, an error as occurred.
 623 */
 624static inline s64
 625sn_partition_reserved_page_pa(u64 buf, u64 *cookie, u64 *addr, u64 *len)
 626{
 627	struct ia64_sal_retval rv;
 628	ia64_sal_oemcall_reentrant(&rv, SN_SAL_GET_PARTITION_ADDR, *cookie,
 629				   *addr, buf, *len, 0, 0, 0);
 630	*cookie = rv.v0;
 631	*addr = rv.v1;
 632	*len = rv.v2;
 633	return rv.status;
 634}
 635
 636/*
 637 * Register or unregister a physical address range being referenced across
 638 * a partition boundary for which certain SAL errors should be scanned for,
 639 * cleaned up and ignored.  This is of value for kernel partitioning code only.
 640 * Values for the operation argument:
 641 *	1 = register this address range with SAL
 642 *	0 = unregister this address range with SAL
 643 * 
 644 * SAL maintains a reference count on an address range in case it is registered
 645 * multiple times.
 646 * 
 647 * On success, returns the reference count of the address range after the SAL
 648 * call has performed the current registration/unregistration.  Returns a
 649 * negative value if an error occurred.
 650 */
 651static inline int
 652sn_register_xp_addr_region(u64 paddr, u64 len, int operation)
 653{
 654	struct ia64_sal_retval ret_stuff;
 655	ia64_sal_oemcall(&ret_stuff, SN_SAL_XP_ADDR_REGION, paddr, len,
 656			 (u64)operation, 0, 0, 0, 0);
 657	return ret_stuff.status;
 658}
 659
 660/*
 661 * Register or unregister an instruction range for which SAL errors should
 662 * be ignored.  If an error occurs while in the registered range, SAL jumps
 663 * to return_addr after ignoring the error.  Values for the operation argument:
 664 *	1 = register this instruction range with SAL
 665 *	0 = unregister this instruction range with SAL
 666 *
 667 * Returns 0 on success, or a negative value if an error occurred.
 668 */
 669static inline int
 670sn_register_nofault_code(u64 start_addr, u64 end_addr, u64 return_addr,
 671			 int virtual, int operation)
 672{
 673	struct ia64_sal_retval ret_stuff;
 674	u64 call;
 675	if (virtual) {
 676		call = SN_SAL_NO_FAULT_ZONE_VIRTUAL;
 677	} else {
 678		call = SN_SAL_NO_FAULT_ZONE_PHYSICAL;
 679	}
 680	ia64_sal_oemcall(&ret_stuff, call, start_addr, end_addr, return_addr,
 681			 (u64)1, 0, 0, 0);
 682	return ret_stuff.status;
 683}
 684
 685/*
 686 * Register or unregister a function to handle a PMI received by a CPU.
 687 * Before calling the registered handler, SAL sets r1 to the value that
 688 * was passed in as the global_pointer.
 689 *
 690 * If the handler pointer is NULL, then the currently registered handler
 691 * will be unregistered.
 692 *
 693 * Returns 0 on success, or a negative value if an error occurred.
 694 */
 695static inline int
 696sn_register_pmi_handler(u64 handler, u64 global_pointer)
 697{
 698	struct ia64_sal_retval ret_stuff;
 699	ia64_sal_oemcall(&ret_stuff, SN_SAL_REGISTER_PMI_HANDLER, handler,
 700			 global_pointer, 0, 0, 0, 0, 0);
 701	return ret_stuff.status;
 702}
 703
 704/*
 705 * Change or query the coherence domain for this partition. Each cpu-based
 706 * nasid is represented by a bit in an array of 64-bit words:
 707 *      0 = not in this partition's coherency domain
 708 *      1 = in this partition's coherency domain
 709 *
 710 * It is not possible for the local system's nasids to be removed from
 711 * the coherency domain.  Purpose of the domain arguments:
 712 *      new_domain = set the coherence domain to the given nasids
 713 *      old_domain = return the current coherence domain
 714 *
 715 * Returns 0 on success, or a negative value if an error occurred.
 716 */
 717static inline int
 718sn_change_coherence(u64 *new_domain, u64 *old_domain)
 719{
 720	struct ia64_sal_retval ret_stuff;
 721	ia64_sal_oemcall_nolock(&ret_stuff, SN_SAL_COHERENCE, (u64)new_domain,
 722				(u64)old_domain, 0, 0, 0, 0, 0);
 723	return ret_stuff.status;
 724}
 725
 726/*
 727 * Change memory access protections for a physical address range.
 728 * nasid_array is not used on Altix, but may be in future architectures.
 729 * Available memory protection access classes are defined after the function.
 730 */
 731static inline int
 732sn_change_memprotect(u64 paddr, u64 len, u64 perms, u64 *nasid_array)
 733{
 734	struct ia64_sal_retval ret_stuff;
 735
 736	ia64_sal_oemcall_nolock(&ret_stuff, SN_SAL_MEMPROTECT, paddr, len,
 737				(u64)nasid_array, perms, 0, 0, 0);
 738	return ret_stuff.status;
 739}
 740#define SN_MEMPROT_ACCESS_CLASS_0		0x14a080
 741#define SN_MEMPROT_ACCESS_CLASS_1		0x2520c2
 742#define SN_MEMPROT_ACCESS_CLASS_2		0x14a1ca
 743#define SN_MEMPROT_ACCESS_CLASS_3		0x14a290
 744#define SN_MEMPROT_ACCESS_CLASS_6		0x084080
 745#define SN_MEMPROT_ACCESS_CLASS_7		0x021080
 746
 747/*
 748 * Turns off system power.
 749 */
 750static inline void
 751ia64_sn_power_down(void)
 752{
 753	struct ia64_sal_retval ret_stuff;
 754	SAL_CALL(ret_stuff, SN_SAL_SYSTEM_POWER_DOWN, 0, 0, 0, 0, 0, 0, 0);
 755	while(1)
 756		cpu_relax();
 757	/* never returns */
 758}
 759
 760/**
 761 * ia64_sn_fru_capture - tell the system controller to capture hw state
 762 *
 763 * This routine will call the SAL which will tell the system controller(s)
 764 * to capture hw mmr information from each SHub in the system.
 765 */
 766static inline u64
 767ia64_sn_fru_capture(void)
 768{
 769        struct ia64_sal_retval isrv;
 770        SAL_CALL(isrv, SN_SAL_SYSCTL_FRU_CAPTURE, 0, 0, 0, 0, 0, 0, 0);
 771        if (isrv.status)
 772                return 0;
 773        return isrv.v0;
 774}
 775
 776/*
 777 * Performs an operation on a PCI bus or slot -- power up, power down
 778 * or reset.
 779 */
 780static inline u64
 781ia64_sn_sysctl_iobrick_pci_op(nasid_t n, u64 connection_type, 
 782			      u64 bus, char slot, 
 783			      u64 action)
 784{
 785	struct ia64_sal_retval rv = {0, 0, 0, 0};
 786
 787	SAL_CALL_NOLOCK(rv, SN_SAL_SYSCTL_IOBRICK_PCI_OP, connection_type, n, action,
 788		 bus, (u64) slot, 0, 0);
 789	if (rv.status)
 790	    	return rv.v0;
 791	return 0;
 792}
 793
 794
 795/*
 796 * Open a subchannel for sending arbitrary data to the system
 797 * controller network via the system controller device associated with
 798 * 'nasid'.  Return the subchannel number or a negative error code.
 799 */
 800static inline int
 801ia64_sn_irtr_open(nasid_t nasid)
 802{
 803	struct ia64_sal_retval rv;
 804	SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_OPEN, nasid,
 805			   0, 0, 0, 0, 0);
 806	return (int) rv.v0;
 807}
 808
 809/*
 810 * Close system controller subchannel 'subch' previously opened on 'nasid'.
 811 */
 812static inline int
 813ia64_sn_irtr_close(nasid_t nasid, int subch)
 814{
 815	struct ia64_sal_retval rv;
 816	SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_CLOSE,
 817			   (u64) nasid, (u64) subch, 0, 0, 0, 0);
 818	return (int) rv.status;
 819}
 820
 821/*
 822 * Read data from system controller associated with 'nasid' on
 823 * subchannel 'subch'.  The buffer to be filled is pointed to by
 824 * 'buf', and its capacity is in the integer pointed to by 'len'.  The
 825 * referent of 'len' is set to the number of bytes read by the SAL
 826 * call.  The return value is either SALRET_OK (for bytes read) or
 827 * SALRET_ERROR (for error or "no data available").
 828 */
 829static inline int
 830ia64_sn_irtr_recv(nasid_t nasid, int subch, char *buf, int *len)
 831{
 832	struct ia64_sal_retval rv;
 833	SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_RECV,
 834			   (u64) nasid, (u64) subch, (u64) buf, (u64) len,
 835			   0, 0);
 836	return (int) rv.status;
 837}
 838
 839/*
 840 * Write data to the system controller network via the system
 841 * controller associated with 'nasid' on suchannel 'subch'.  The
 842 * buffer to be written out is pointed to by 'buf', and 'len' is the
 843 * number of bytes to be written.  The return value is either the
 844 * number of bytes written (which could be zero) or a negative error
 845 * code.
 846 */
 847static inline int
 848ia64_sn_irtr_send(nasid_t nasid, int subch, char *buf, int len)
 849{
 850	struct ia64_sal_retval rv;
 851	SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_SEND,
 852			   (u64) nasid, (u64) subch, (u64) buf, (u64) len,
 853			   0, 0);
 854	return (int) rv.v0;
 855}
 856
 857/*
 858 * Check whether any interrupts are pending for the system controller
 859 * associated with 'nasid' and its subchannel 'subch'.  The return
 860 * value is a mask of pending interrupts (SAL_IROUTER_INTR_XMIT and/or
 861 * SAL_IROUTER_INTR_RECV).
 862 */
 863static inline int
 864ia64_sn_irtr_intr(nasid_t nasid, int subch)
 865{
 866	struct ia64_sal_retval rv;
 867	SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_STATUS,
 868			   (u64) nasid, (u64) subch, 0, 0, 0, 0);
 869	return (int) rv.v0;
 870}
 871
 872/*
 873 * Enable the interrupt indicated by the intr parameter (either
 874 * SAL_IROUTER_INTR_XMIT or SAL_IROUTER_INTR_RECV).
 875 */
 876static inline int
 877ia64_sn_irtr_intr_enable(nasid_t nasid, int subch, u64 intr)
 878{
 879	struct ia64_sal_retval rv;
 880	SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_ON,
 881			   (u64) nasid, (u64) subch, intr, 0, 0, 0);
 882	return (int) rv.v0;
 883}
 884
 885/*
 886 * Disable the interrupt indicated by the intr parameter (either
 887 * SAL_IROUTER_INTR_XMIT or SAL_IROUTER_INTR_RECV).
 888 */
 889static inline int
 890ia64_sn_irtr_intr_disable(nasid_t nasid, int subch, u64 intr)
 891{
 892	struct ia64_sal_retval rv;
 893	SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_OFF,
 894			   (u64) nasid, (u64) subch, intr, 0, 0, 0);
 895	return (int) rv.v0;
 896}
 897
 898/*
 899 * Set up a node as the point of contact for system controller
 900 * environmental event delivery.
 901 */
 902static inline int
 903ia64_sn_sysctl_event_init(nasid_t nasid)
 904{
 905        struct ia64_sal_retval rv;
 906        SAL_CALL_REENTRANT(rv, SN_SAL_SYSCTL_EVENT, (u64) nasid,
 907			   0, 0, 0, 0, 0, 0);
 908        return (int) rv.v0;
 909}
 910
 911/*
 912 * Ask the system controller on the specified nasid to reset
 913 * the CX corelet clock.  Only valid on TIO nodes.
 914 */
 915static inline int
 916ia64_sn_sysctl_tio_clock_reset(nasid_t nasid)
 917{
 918	struct ia64_sal_retval rv;
 919	SAL_CALL_REENTRANT(rv, SN_SAL_SYSCTL_OP, SAL_SYSCTL_OP_TIO_JLCK_RST,
 920			nasid, 0, 0, 0, 0, 0);
 921	if (rv.status != 0)
 922		return (int)rv.status;
 923	if (rv.v0 != 0)
 924		return (int)rv.v0;
 925
 926	return 0;
 927}
 928
 929/*
 930 * Get the associated ioboard type for a given nasid.
 931 */
 932static inline long
 933ia64_sn_sysctl_ioboard_get(nasid_t nasid, u16 *ioboard)
 934{
 935	struct ia64_sal_retval isrv;
 936	SAL_CALL_REENTRANT(isrv, SN_SAL_SYSCTL_OP, SAL_SYSCTL_OP_IOBOARD,
 937			   nasid, 0, 0, 0, 0, 0);
 938	if (isrv.v0 != 0) {
 939		*ioboard = isrv.v0;
 940		return isrv.status;
 941	}
 942	if (isrv.v1 != 0) {
 943		*ioboard = isrv.v1;
 944		return isrv.status;
 945	}
 946
 947	return isrv.status;
 948}
 949
 950/**
 951 * ia64_sn_get_fit_compt - read a FIT entry from the PROM header
 952 * @nasid: NASID of node to read
 953 * @index: FIT entry index to be retrieved (0..n)
 954 * @fitentry: 16 byte buffer where FIT entry will be stored.
 955 * @banbuf: optional buffer for retrieving banner
 956 * @banlen: length of banner buffer
 957 *
 958 * Access to the physical PROM chips needs to be serialized since reads and
 959 * writes can't occur at the same time, so we need to call into the SAL when
 960 * we want to look at the FIT entries on the chips.
 961 *
 962 * Returns:
 963 *	%SALRET_OK if ok
 964 *	%SALRET_INVALID_ARG if index too big
 965 *	%SALRET_NOT_IMPLEMENTED if running on older PROM
 966 *	??? if nasid invalid OR banner buffer not large enough
 967 */
 968static inline int
 969ia64_sn_get_fit_compt(u64 nasid, u64 index, void *fitentry, void *banbuf,
 970		      u64 banlen)
 971{
 972	struct ia64_sal_retval rv;
 973	SAL_CALL_NOLOCK(rv, SN_SAL_GET_FIT_COMPT, nasid, index, fitentry,
 974			banbuf, banlen, 0, 0);
 975	return (int) rv.status;
 976}
 977
 978/*
 979 * Initialize the SAL components of the system controller
 980 * communication driver; specifically pass in a sizable buffer that
 981 * can be used for allocation of subchannel queues as new subchannels
 982 * are opened.  "buf" points to the buffer, and "len" specifies its
 983 * length.
 984 */
 985static inline int
 986ia64_sn_irtr_init(nasid_t nasid, void *buf, int len)
 987{
 988	struct ia64_sal_retval rv;
 989	SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INIT,
 990			   (u64) nasid, (u64) buf, (u64) len, 0, 0, 0);
 991	return (int) rv.status;
 992}
 993
 994/*
 995 * Returns the nasid, subnode & slice corresponding to a SAPIC ID
 996 *
 997 *  In:
 998 *	arg0 - SN_SAL_GET_SAPIC_INFO
 999 *	arg1 - sapicid (lid >> 16) 
1000 *  Out:
1001 *	v0 - nasid
1002 *	v1 - subnode
1003 *	v2 - slice
1004 */
1005static inline u64
1006ia64_sn_get_sapic_info(int sapicid, int *nasid, int *subnode, int *slice)
1007{
1008	struct ia64_sal_retval ret_stuff;
1009
1010	ret_stuff.status = 0;
1011	ret_stuff.v0 = 0;
1012	ret_stuff.v1 = 0;
1013	ret_stuff.v2 = 0;
1014	SAL_CALL_NOLOCK(ret_stuff, SN_SAL_GET_SAPIC_INFO, sapicid, 0, 0, 0, 0, 0, 0);
1015
1016/***** BEGIN HACK - temp til old proms no longer supported ********/
1017	if (ret_stuff.status == SALRET_NOT_IMPLEMENTED) {
1018		if (nasid) *nasid = sapicid & 0xfff;
1019		if (subnode) *subnode = (sapicid >> 13) & 1;
1020		if (slice) *slice = (sapicid >> 12) & 3;
1021		return 0;
1022	}
1023/***** END HACK *******/
1024
1025	if (ret_stuff.status < 0)
1026		return ret_stuff.status;
1027
1028	if (nasid) *nasid = (int) ret_stuff.v0;
1029	if (subnode) *subnode = (int) ret_stuff.v1;
1030	if (slice) *slice = (int) ret_stuff.v2;
1031	return 0;
1032}
1033 
1034/*
1035 * Returns information about the HUB/SHUB.
1036 *  In:
1037 *	arg0 - SN_SAL_GET_SN_INFO
1038 * 	arg1 - 0 (other values reserved for future use)
1039 *  Out:
1040 *	v0 
1041 *		[7:0]   - shub type (0=shub1, 1=shub2)
1042 *		[15:8]  - Log2 max number of nodes in entire system (includes
1043 *			  C-bricks, I-bricks, etc)
1044 *		[23:16] - Log2 of nodes per sharing domain			 
1045 * 		[31:24] - partition ID
1046 * 		[39:32] - coherency_id
1047 * 		[47:40] - regionsize
1048 *	v1 
1049 *		[15:0]  - nasid mask (ex., 0x7ff for 11 bit nasid)
1050 *	 	[23:15] - bit position of low nasid bit
1051 */
1052static inline u64
1053ia64_sn_get_sn_info(int fc, u8 *shubtype, u16 *nasid_bitmask, u8 *nasid_shift, 
1054		u8 *systemsize, u8 *sharing_domain_size, u8 *partid, u8 *coher, u8 *reg)
1055{
1056	struct ia64_sal_retval ret_stuff;
1057
1058	ret_stuff.status = 0;
1059	ret_stuff.v0 = 0;
1060	ret_stuff.v1 = 0;
1061	ret_stuff.v2 = 0;
1062	SAL_CALL_NOLOCK(ret_stuff, SN_SAL_GET_SN_INFO, fc, 0, 0, 0, 0, 0, 0);
1063
1064/***** BEGIN HACK - temp til old proms no longer supported ********/
1065	if (ret_stuff.status == SALRET_NOT_IMPLEMENTED) {
1066		int nasid = get_sapicid() & 0xfff;
1067#define SH_SHUB_ID_NODES_PER_BIT_MASK 0x001f000000000000UL
1068#define SH_SHUB_ID_NODES_PER_BIT_SHFT 48
1069		if (shubtype) *shubtype = 0;
1070		if (nasid_bitmask) *nasid_bitmask = 0x7ff;
1071		if (nasid_shift) *nasid_shift = 38;
1072		if (systemsize) *systemsize = 10;
1073		if (sharing_domain_size) *sharing_domain_size = 8;
1074		if (partid) *partid = ia64_sn_sysctl_partition_get(nasid);
1075		if (coher) *coher = nasid >> 9;
1076		if (reg) *reg = (HUB_L((u64 *) LOCAL_MMR_ADDR(SH1_SHUB_ID)) & SH_SHUB_ID_NODES_PER_BIT_MASK) >>
1077			SH_SHUB_ID_NODES_PER_BIT_SHFT;
1078		return 0;
1079	}
1080/***** END HACK *******/
1081
1082	if (ret_stuff.status < 0)
1083		return ret_stuff.status;
1084
1085	if (shubtype) *shubtype = ret_stuff.v0 & 0xff;
1086	if (systemsize) *systemsize = (ret_stuff.v0 >> 8) & 0xff;
1087	if (sharing_domain_size) *sharing_domain_size = (ret_stuff.v0 >> 16) & 0xff;
1088	if (partid) *partid = (ret_stuff.v0 >> 24) & 0xff;
1089	if (coher) *coher = (ret_stuff.v0 >> 32) & 0xff;
1090	if (reg) *reg = (ret_stuff.v0 >> 40) & 0xff;
1091	if (nasid_bitmask) *nasid_bitmask = (ret_stuff.v1 & 0xffff);
1092	if (nasid_shift) *nasid_shift = (ret_stuff.v1 >> 16) & 0xff;
1093	return 0;
1094}
1095 
1096/*
1097 * This is the access point to the Altix PROM hardware performance
1098 * and status monitoring interface. For info on using this, see
1099 * arch/ia64/include/asm/sn/sn2/sn_hwperf.h
1100 */
1101static inline int
1102ia64_sn_hwperf_op(nasid_t nasid, u64 opcode, u64 a0, u64 a1, u64 a2,
1103                  u64 a3, u64 a4, int *v0)
1104{
1105	struct ia64_sal_retval rv;
1106	SAL_CALL_NOLOCK(rv, SN_SAL_HWPERF_OP, (u64)nasid,
1107		opcode, a0, a1, a2, a3, a4);
1108	if (v0)
1109		*v0 = (int) rv.v0;
1110	return (int) rv.status;
1111}
1112
1113static inline int
1114ia64_sn_ioif_get_pci_topology(u64 buf, u64 len)
1115{
1116	struct ia64_sal_retval rv;
1117	SAL_CALL_NOLOCK(rv, SN_SAL_IOIF_GET_PCI_TOPOLOGY, buf, len, 0, 0, 0, 0, 0);
1118	return (int) rv.status;
1119}
1120
1121/*
1122 * BTE error recovery is implemented in SAL
1123 */
1124static inline int
1125ia64_sn_bte_recovery(nasid_t nasid)
1126{
1127	struct ia64_sal_retval rv;
1128
1129	rv.status = 0;
1130	SAL_CALL_NOLOCK(rv, SN_SAL_BTE_RECOVER, (u64)nasid, 0, 0, 0, 0, 0, 0);
1131	if (rv.status == SALRET_NOT_IMPLEMENTED)
1132		return 0;
1133	return (int) rv.status;
1134}
1135
1136static inline int
1137ia64_sn_is_fake_prom(void)
1138{
1139	struct ia64_sal_retval rv;
1140	SAL_CALL_NOLOCK(rv, SN_SAL_FAKE_PROM, 0, 0, 0, 0, 0, 0, 0);
1141	return (rv.status == 0);
1142}
1143
1144static inline int
1145ia64_sn_get_prom_feature_set(int set, unsigned long *feature_set)
1146{
1147	struct ia64_sal_retval rv;
1148
1149	SAL_CALL_NOLOCK(rv, SN_SAL_GET_PROM_FEATURE_SET, set, 0, 0, 0, 0, 0, 0);
1150	if (rv.status != 0)
1151		return rv.status;
1152	*feature_set = rv.v0;
1153	return 0;
1154}
1155
1156static inline int
1157ia64_sn_set_os_feature(int feature)
1158{
1159	struct ia64_sal_retval rv;
1160
1161	SAL_CALL_NOLOCK(rv, SN_SAL_SET_OS_FEATURE_SET, feature, 0, 0, 0, 0, 0, 0);
1162	return rv.status;
1163}
1164
1165static inline int
1166sn_inject_error(u64 paddr, u64 *data, u64 *ecc)
1167{
1168	struct ia64_sal_retval ret_stuff;
1169
1170	ia64_sal_oemcall_nolock(&ret_stuff, SN_SAL_INJECT_ERROR, paddr, (u64)data,
1171				(u64)ecc, 0, 0, 0, 0);
1172	return ret_stuff.status;
1173}
1174
1175static inline int
1176ia64_sn_set_cpu_number(int cpu)
1177{
1178	struct ia64_sal_retval rv;
1179
1180	SAL_CALL_NOLOCK(rv, SN_SAL_SET_CPU_NUMBER, cpu, 0, 0, 0, 0, 0, 0);
1181	return rv.status;
1182}
1183static inline int
1184ia64_sn_kernel_launch_event(void)
1185{
1186 	struct ia64_sal_retval rv;
1187	SAL_CALL_NOLOCK(rv, SN_SAL_KERNEL_LAUNCH_EVENT, 0, 0, 0, 0, 0, 0, 0);
1188	return rv.status;
1189}
1190
1191union sn_watchlist_u {
1192	u64     val;
1193	struct {
1194		u64	blade	: 16,
1195			size	: 32,
1196			filler	: 16;
1197	};
1198};
1199
1200static inline int
1201sn_mq_watchlist_alloc(int blade, void *mq, unsigned int mq_size,
1202				unsigned long *intr_mmr_offset)
1203{
1204	struct ia64_sal_retval rv;
1205	unsigned long addr;
1206	union sn_watchlist_u size_blade;
1207	int watchlist;
1208
1209	addr = (unsigned long)mq;
1210	size_blade.size = mq_size;
1211	size_blade.blade = blade;
1212
1213	/*
1214	 * bios returns watchlist number or negative error number.
1215	 */
1216	ia64_sal_oemcall_nolock(&rv, SN_SAL_WATCHLIST_ALLOC, addr,
1217			size_blade.val, (u64)intr_mmr_offset,
1218			(u64)&watchlist, 0, 0, 0);
1219	if (rv.status < 0)
1220		return rv.status;
1221
1222	return watchlist;
1223}
1224
1225static inline int
1226sn_mq_watchlist_free(int blade, int watchlist_num)
1227{
1228	struct ia64_sal_retval rv;
1229	ia64_sal_oemcall_nolock(&rv, SN_SAL_WATCHLIST_FREE, blade,
1230			watchlist_num, 0, 0, 0, 0, 0);
1231	return rv.status;
1232}
1233#endif /* _ASM_IA64_SN_SN_SAL_H */