Loading...
1/*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13#include <linux/kernel.h>
14#include <linux/slab.h>
15#include <linux/init.h>
16#include <linux/bitops.h>
17#include <linux/poison.h>
18#include <linux/pfn.h>
19#include <linux/debugfs.h>
20#include <linux/seq_file.h>
21#include <linux/memblock.h>
22
23#include <asm-generic/sections.h>
24#include <linux/io.h>
25
26#include "internal.h"
27
28static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
29static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
30
31struct memblock memblock __initdata_memblock = {
32 .memory.regions = memblock_memory_init_regions,
33 .memory.cnt = 1, /* empty dummy entry */
34 .memory.max = INIT_MEMBLOCK_REGIONS,
35
36 .reserved.regions = memblock_reserved_init_regions,
37 .reserved.cnt = 1, /* empty dummy entry */
38 .reserved.max = INIT_MEMBLOCK_REGIONS,
39
40 .bottom_up = false,
41 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
42};
43
44int memblock_debug __initdata_memblock;
45#ifdef CONFIG_MOVABLE_NODE
46bool movable_node_enabled __initdata_memblock = false;
47#endif
48static int memblock_can_resize __initdata_memblock;
49static int memblock_memory_in_slab __initdata_memblock = 0;
50static int memblock_reserved_in_slab __initdata_memblock = 0;
51
52/* inline so we don't get a warning when pr_debug is compiled out */
53static __init_memblock const char *
54memblock_type_name(struct memblock_type *type)
55{
56 if (type == &memblock.memory)
57 return "memory";
58 else if (type == &memblock.reserved)
59 return "reserved";
60 else
61 return "unknown";
62}
63
64/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
65static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
66{
67 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
68}
69
70/*
71 * Address comparison utilities
72 */
73static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
74 phys_addr_t base2, phys_addr_t size2)
75{
76 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
77}
78
79static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
80 phys_addr_t base, phys_addr_t size)
81{
82 unsigned long i;
83
84 for (i = 0; i < type->cnt; i++) {
85 phys_addr_t rgnbase = type->regions[i].base;
86 phys_addr_t rgnsize = type->regions[i].size;
87 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
88 break;
89 }
90
91 return (i < type->cnt) ? i : -1;
92}
93
94/*
95 * __memblock_find_range_bottom_up - find free area utility in bottom-up
96 * @start: start of candidate range
97 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
98 * @size: size of free area to find
99 * @align: alignment of free area to find
100 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
101 *
102 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
103 *
104 * RETURNS:
105 * Found address on success, 0 on failure.
106 */
107static phys_addr_t __init_memblock
108__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
109 phys_addr_t size, phys_addr_t align, int nid)
110{
111 phys_addr_t this_start, this_end, cand;
112 u64 i;
113
114 for_each_free_mem_range(i, nid, &this_start, &this_end, NULL) {
115 this_start = clamp(this_start, start, end);
116 this_end = clamp(this_end, start, end);
117
118 cand = round_up(this_start, align);
119 if (cand < this_end && this_end - cand >= size)
120 return cand;
121 }
122
123 return 0;
124}
125
126/**
127 * __memblock_find_range_top_down - find free area utility, in top-down
128 * @start: start of candidate range
129 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
130 * @size: size of free area to find
131 * @align: alignment of free area to find
132 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
133 *
134 * Utility called from memblock_find_in_range_node(), find free area top-down.
135 *
136 * RETURNS:
137 * Found address on success, 0 on failure.
138 */
139static phys_addr_t __init_memblock
140__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
141 phys_addr_t size, phys_addr_t align, int nid)
142{
143 phys_addr_t this_start, this_end, cand;
144 u64 i;
145
146 for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
147 this_start = clamp(this_start, start, end);
148 this_end = clamp(this_end, start, end);
149
150 if (this_end < size)
151 continue;
152
153 cand = round_down(this_end - size, align);
154 if (cand >= this_start)
155 return cand;
156 }
157
158 return 0;
159}
160
161/**
162 * memblock_find_in_range_node - find free area in given range and node
163 * @size: size of free area to find
164 * @align: alignment of free area to find
165 * @start: start of candidate range
166 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
167 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
168 *
169 * Find @size free area aligned to @align in the specified range and node.
170 *
171 * When allocation direction is bottom-up, the @start should be greater
172 * than the end of the kernel image. Otherwise, it will be trimmed. The
173 * reason is that we want the bottom-up allocation just near the kernel
174 * image so it is highly likely that the allocated memory and the kernel
175 * will reside in the same node.
176 *
177 * If bottom-up allocation failed, will try to allocate memory top-down.
178 *
179 * RETURNS:
180 * Found address on success, 0 on failure.
181 */
182phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
183 phys_addr_t align, phys_addr_t start,
184 phys_addr_t end, int nid)
185{
186 int ret;
187 phys_addr_t kernel_end;
188
189 /* pump up @end */
190 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
191 end = memblock.current_limit;
192
193 /* avoid allocating the first page */
194 start = max_t(phys_addr_t, start, PAGE_SIZE);
195 end = max(start, end);
196 kernel_end = __pa_symbol(_end);
197
198 /*
199 * try bottom-up allocation only when bottom-up mode
200 * is set and @end is above the kernel image.
201 */
202 if (memblock_bottom_up() && end > kernel_end) {
203 phys_addr_t bottom_up_start;
204
205 /* make sure we will allocate above the kernel */
206 bottom_up_start = max(start, kernel_end);
207
208 /* ok, try bottom-up allocation first */
209 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
210 size, align, nid);
211 if (ret)
212 return ret;
213
214 /*
215 * we always limit bottom-up allocation above the kernel,
216 * but top-down allocation doesn't have the limit, so
217 * retrying top-down allocation may succeed when bottom-up
218 * allocation failed.
219 *
220 * bottom-up allocation is expected to be fail very rarely,
221 * so we use WARN_ONCE() here to see the stack trace if
222 * fail happens.
223 */
224 WARN_ONCE(1, "memblock: bottom-up allocation failed, "
225 "memory hotunplug may be affected\n");
226 }
227
228 return __memblock_find_range_top_down(start, end, size, align, nid);
229}
230
231/**
232 * memblock_find_in_range - find free area in given range
233 * @start: start of candidate range
234 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
235 * @size: size of free area to find
236 * @align: alignment of free area to find
237 *
238 * Find @size free area aligned to @align in the specified range.
239 *
240 * RETURNS:
241 * Found address on success, 0 on failure.
242 */
243phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
244 phys_addr_t end, phys_addr_t size,
245 phys_addr_t align)
246{
247 return memblock_find_in_range_node(size, align, start, end,
248 NUMA_NO_NODE);
249}
250
251static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
252{
253 type->total_size -= type->regions[r].size;
254 memmove(&type->regions[r], &type->regions[r + 1],
255 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
256 type->cnt--;
257
258 /* Special case for empty arrays */
259 if (type->cnt == 0) {
260 WARN_ON(type->total_size != 0);
261 type->cnt = 1;
262 type->regions[0].base = 0;
263 type->regions[0].size = 0;
264 type->regions[0].flags = 0;
265 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
266 }
267}
268
269#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
270
271phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
272 phys_addr_t *addr)
273{
274 if (memblock.reserved.regions == memblock_reserved_init_regions)
275 return 0;
276
277 *addr = __pa(memblock.reserved.regions);
278
279 return PAGE_ALIGN(sizeof(struct memblock_region) *
280 memblock.reserved.max);
281}
282
283phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info(
284 phys_addr_t *addr)
285{
286 if (memblock.memory.regions == memblock_memory_init_regions)
287 return 0;
288
289 *addr = __pa(memblock.memory.regions);
290
291 return PAGE_ALIGN(sizeof(struct memblock_region) *
292 memblock.memory.max);
293}
294
295#endif
296
297/**
298 * memblock_double_array - double the size of the memblock regions array
299 * @type: memblock type of the regions array being doubled
300 * @new_area_start: starting address of memory range to avoid overlap with
301 * @new_area_size: size of memory range to avoid overlap with
302 *
303 * Double the size of the @type regions array. If memblock is being used to
304 * allocate memory for a new reserved regions array and there is a previously
305 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
306 * waiting to be reserved, ensure the memory used by the new array does
307 * not overlap.
308 *
309 * RETURNS:
310 * 0 on success, -1 on failure.
311 */
312static int __init_memblock memblock_double_array(struct memblock_type *type,
313 phys_addr_t new_area_start,
314 phys_addr_t new_area_size)
315{
316 struct memblock_region *new_array, *old_array;
317 phys_addr_t old_alloc_size, new_alloc_size;
318 phys_addr_t old_size, new_size, addr;
319 int use_slab = slab_is_available();
320 int *in_slab;
321
322 /* We don't allow resizing until we know about the reserved regions
323 * of memory that aren't suitable for allocation
324 */
325 if (!memblock_can_resize)
326 return -1;
327
328 /* Calculate new doubled size */
329 old_size = type->max * sizeof(struct memblock_region);
330 new_size = old_size << 1;
331 /*
332 * We need to allocated new one align to PAGE_SIZE,
333 * so we can free them completely later.
334 */
335 old_alloc_size = PAGE_ALIGN(old_size);
336 new_alloc_size = PAGE_ALIGN(new_size);
337
338 /* Retrieve the slab flag */
339 if (type == &memblock.memory)
340 in_slab = &memblock_memory_in_slab;
341 else
342 in_slab = &memblock_reserved_in_slab;
343
344 /* Try to find some space for it.
345 *
346 * WARNING: We assume that either slab_is_available() and we use it or
347 * we use MEMBLOCK for allocations. That means that this is unsafe to
348 * use when bootmem is currently active (unless bootmem itself is
349 * implemented on top of MEMBLOCK which isn't the case yet)
350 *
351 * This should however not be an issue for now, as we currently only
352 * call into MEMBLOCK while it's still active, or much later when slab
353 * is active for memory hotplug operations
354 */
355 if (use_slab) {
356 new_array = kmalloc(new_size, GFP_KERNEL);
357 addr = new_array ? __pa(new_array) : 0;
358 } else {
359 /* only exclude range when trying to double reserved.regions */
360 if (type != &memblock.reserved)
361 new_area_start = new_area_size = 0;
362
363 addr = memblock_find_in_range(new_area_start + new_area_size,
364 memblock.current_limit,
365 new_alloc_size, PAGE_SIZE);
366 if (!addr && new_area_size)
367 addr = memblock_find_in_range(0,
368 min(new_area_start, memblock.current_limit),
369 new_alloc_size, PAGE_SIZE);
370
371 new_array = addr ? __va(addr) : NULL;
372 }
373 if (!addr) {
374 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
375 memblock_type_name(type), type->max, type->max * 2);
376 return -1;
377 }
378
379 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
380 memblock_type_name(type), type->max * 2, (u64)addr,
381 (u64)addr + new_size - 1);
382
383 /*
384 * Found space, we now need to move the array over before we add the
385 * reserved region since it may be our reserved array itself that is
386 * full.
387 */
388 memcpy(new_array, type->regions, old_size);
389 memset(new_array + type->max, 0, old_size);
390 old_array = type->regions;
391 type->regions = new_array;
392 type->max <<= 1;
393
394 /* Free old array. We needn't free it if the array is the static one */
395 if (*in_slab)
396 kfree(old_array);
397 else if (old_array != memblock_memory_init_regions &&
398 old_array != memblock_reserved_init_regions)
399 memblock_free(__pa(old_array), old_alloc_size);
400
401 /*
402 * Reserve the new array if that comes from the memblock. Otherwise, we
403 * needn't do it
404 */
405 if (!use_slab)
406 BUG_ON(memblock_reserve(addr, new_alloc_size));
407
408 /* Update slab flag */
409 *in_slab = use_slab;
410
411 return 0;
412}
413
414/**
415 * memblock_merge_regions - merge neighboring compatible regions
416 * @type: memblock type to scan
417 *
418 * Scan @type and merge neighboring compatible regions.
419 */
420static void __init_memblock memblock_merge_regions(struct memblock_type *type)
421{
422 int i = 0;
423
424 /* cnt never goes below 1 */
425 while (i < type->cnt - 1) {
426 struct memblock_region *this = &type->regions[i];
427 struct memblock_region *next = &type->regions[i + 1];
428
429 if (this->base + this->size != next->base ||
430 memblock_get_region_node(this) !=
431 memblock_get_region_node(next) ||
432 this->flags != next->flags) {
433 BUG_ON(this->base + this->size > next->base);
434 i++;
435 continue;
436 }
437
438 this->size += next->size;
439 /* move forward from next + 1, index of which is i + 2 */
440 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
441 type->cnt--;
442 }
443}
444
445/**
446 * memblock_insert_region - insert new memblock region
447 * @type: memblock type to insert into
448 * @idx: index for the insertion point
449 * @base: base address of the new region
450 * @size: size of the new region
451 * @nid: node id of the new region
452 * @flags: flags of the new region
453 *
454 * Insert new memblock region [@base,@base+@size) into @type at @idx.
455 * @type must already have extra room to accomodate the new region.
456 */
457static void __init_memblock memblock_insert_region(struct memblock_type *type,
458 int idx, phys_addr_t base,
459 phys_addr_t size,
460 int nid, unsigned long flags)
461{
462 struct memblock_region *rgn = &type->regions[idx];
463
464 BUG_ON(type->cnt >= type->max);
465 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
466 rgn->base = base;
467 rgn->size = size;
468 rgn->flags = flags;
469 memblock_set_region_node(rgn, nid);
470 type->cnt++;
471 type->total_size += size;
472}
473
474/**
475 * memblock_add_region - add new memblock region
476 * @type: memblock type to add new region into
477 * @base: base address of the new region
478 * @size: size of the new region
479 * @nid: nid of the new region
480 * @flags: flags of the new region
481 *
482 * Add new memblock region [@base,@base+@size) into @type. The new region
483 * is allowed to overlap with existing ones - overlaps don't affect already
484 * existing regions. @type is guaranteed to be minimal (all neighbouring
485 * compatible regions are merged) after the addition.
486 *
487 * RETURNS:
488 * 0 on success, -errno on failure.
489 */
490static int __init_memblock memblock_add_region(struct memblock_type *type,
491 phys_addr_t base, phys_addr_t size,
492 int nid, unsigned long flags)
493{
494 bool insert = false;
495 phys_addr_t obase = base;
496 phys_addr_t end = base + memblock_cap_size(base, &size);
497 int i, nr_new;
498
499 if (!size)
500 return 0;
501
502 /* special case for empty array */
503 if (type->regions[0].size == 0) {
504 WARN_ON(type->cnt != 1 || type->total_size);
505 type->regions[0].base = base;
506 type->regions[0].size = size;
507 type->regions[0].flags = flags;
508 memblock_set_region_node(&type->regions[0], nid);
509 type->total_size = size;
510 return 0;
511 }
512repeat:
513 /*
514 * The following is executed twice. Once with %false @insert and
515 * then with %true. The first counts the number of regions needed
516 * to accomodate the new area. The second actually inserts them.
517 */
518 base = obase;
519 nr_new = 0;
520
521 for (i = 0; i < type->cnt; i++) {
522 struct memblock_region *rgn = &type->regions[i];
523 phys_addr_t rbase = rgn->base;
524 phys_addr_t rend = rbase + rgn->size;
525
526 if (rbase >= end)
527 break;
528 if (rend <= base)
529 continue;
530 /*
531 * @rgn overlaps. If it separates the lower part of new
532 * area, insert that portion.
533 */
534 if (rbase > base) {
535 nr_new++;
536 if (insert)
537 memblock_insert_region(type, i++, base,
538 rbase - base, nid,
539 flags);
540 }
541 /* area below @rend is dealt with, forget about it */
542 base = min(rend, end);
543 }
544
545 /* insert the remaining portion */
546 if (base < end) {
547 nr_new++;
548 if (insert)
549 memblock_insert_region(type, i, base, end - base,
550 nid, flags);
551 }
552
553 /*
554 * If this was the first round, resize array and repeat for actual
555 * insertions; otherwise, merge and return.
556 */
557 if (!insert) {
558 while (type->cnt + nr_new > type->max)
559 if (memblock_double_array(type, obase, size) < 0)
560 return -ENOMEM;
561 insert = true;
562 goto repeat;
563 } else {
564 memblock_merge_regions(type);
565 return 0;
566 }
567}
568
569int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
570 int nid)
571{
572 return memblock_add_region(&memblock.memory, base, size, nid, 0);
573}
574
575int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
576{
577 return memblock_add_region(&memblock.memory, base, size,
578 MAX_NUMNODES, 0);
579}
580
581/**
582 * memblock_isolate_range - isolate given range into disjoint memblocks
583 * @type: memblock type to isolate range for
584 * @base: base of range to isolate
585 * @size: size of range to isolate
586 * @start_rgn: out parameter for the start of isolated region
587 * @end_rgn: out parameter for the end of isolated region
588 *
589 * Walk @type and ensure that regions don't cross the boundaries defined by
590 * [@base,@base+@size). Crossing regions are split at the boundaries,
591 * which may create at most two more regions. The index of the first
592 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
593 *
594 * RETURNS:
595 * 0 on success, -errno on failure.
596 */
597static int __init_memblock memblock_isolate_range(struct memblock_type *type,
598 phys_addr_t base, phys_addr_t size,
599 int *start_rgn, int *end_rgn)
600{
601 phys_addr_t end = base + memblock_cap_size(base, &size);
602 int i;
603
604 *start_rgn = *end_rgn = 0;
605
606 if (!size)
607 return 0;
608
609 /* we'll create at most two more regions */
610 while (type->cnt + 2 > type->max)
611 if (memblock_double_array(type, base, size) < 0)
612 return -ENOMEM;
613
614 for (i = 0; i < type->cnt; i++) {
615 struct memblock_region *rgn = &type->regions[i];
616 phys_addr_t rbase = rgn->base;
617 phys_addr_t rend = rbase + rgn->size;
618
619 if (rbase >= end)
620 break;
621 if (rend <= base)
622 continue;
623
624 if (rbase < base) {
625 /*
626 * @rgn intersects from below. Split and continue
627 * to process the next region - the new top half.
628 */
629 rgn->base = base;
630 rgn->size -= base - rbase;
631 type->total_size -= base - rbase;
632 memblock_insert_region(type, i, rbase, base - rbase,
633 memblock_get_region_node(rgn),
634 rgn->flags);
635 } else if (rend > end) {
636 /*
637 * @rgn intersects from above. Split and redo the
638 * current region - the new bottom half.
639 */
640 rgn->base = end;
641 rgn->size -= end - rbase;
642 type->total_size -= end - rbase;
643 memblock_insert_region(type, i--, rbase, end - rbase,
644 memblock_get_region_node(rgn),
645 rgn->flags);
646 } else {
647 /* @rgn is fully contained, record it */
648 if (!*end_rgn)
649 *start_rgn = i;
650 *end_rgn = i + 1;
651 }
652 }
653
654 return 0;
655}
656
657static int __init_memblock __memblock_remove(struct memblock_type *type,
658 phys_addr_t base, phys_addr_t size)
659{
660 int start_rgn, end_rgn;
661 int i, ret;
662
663 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
664 if (ret)
665 return ret;
666
667 for (i = end_rgn - 1; i >= start_rgn; i--)
668 memblock_remove_region(type, i);
669 return 0;
670}
671
672int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
673{
674 return __memblock_remove(&memblock.memory, base, size);
675}
676
677int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
678{
679 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
680 (unsigned long long)base,
681 (unsigned long long)base + size - 1,
682 (void *)_RET_IP_);
683
684 return __memblock_remove(&memblock.reserved, base, size);
685}
686
687static int __init_memblock memblock_reserve_region(phys_addr_t base,
688 phys_addr_t size,
689 int nid,
690 unsigned long flags)
691{
692 struct memblock_type *_rgn = &memblock.reserved;
693
694 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n",
695 (unsigned long long)base,
696 (unsigned long long)base + size - 1,
697 flags, (void *)_RET_IP_);
698
699 return memblock_add_region(_rgn, base, size, nid, flags);
700}
701
702int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
703{
704 return memblock_reserve_region(base, size, MAX_NUMNODES, 0);
705}
706
707/**
708 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
709 * @base: the base phys addr of the region
710 * @size: the size of the region
711 *
712 * This function isolates region [@base, @base + @size), and mark it with flag
713 * MEMBLOCK_HOTPLUG.
714 *
715 * Return 0 on succees, -errno on failure.
716 */
717int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
718{
719 struct memblock_type *type = &memblock.memory;
720 int i, ret, start_rgn, end_rgn;
721
722 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
723 if (ret)
724 return ret;
725
726 for (i = start_rgn; i < end_rgn; i++)
727 memblock_set_region_flags(&type->regions[i], MEMBLOCK_HOTPLUG);
728
729 memblock_merge_regions(type);
730 return 0;
731}
732
733/**
734 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
735 * @base: the base phys addr of the region
736 * @size: the size of the region
737 *
738 * This function isolates region [@base, @base + @size), and clear flag
739 * MEMBLOCK_HOTPLUG for the isolated regions.
740 *
741 * Return 0 on succees, -errno on failure.
742 */
743int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
744{
745 struct memblock_type *type = &memblock.memory;
746 int i, ret, start_rgn, end_rgn;
747
748 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
749 if (ret)
750 return ret;
751
752 for (i = start_rgn; i < end_rgn; i++)
753 memblock_clear_region_flags(&type->regions[i],
754 MEMBLOCK_HOTPLUG);
755
756 memblock_merge_regions(type);
757 return 0;
758}
759
760/**
761 * __next_free_mem_range - next function for for_each_free_mem_range()
762 * @idx: pointer to u64 loop variable
763 * @nid: node selector, %NUMA_NO_NODE for all nodes
764 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
765 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
766 * @out_nid: ptr to int for nid of the range, can be %NULL
767 *
768 * Find the first free area from *@idx which matches @nid, fill the out
769 * parameters, and update *@idx for the next iteration. The lower 32bit of
770 * *@idx contains index into memory region and the upper 32bit indexes the
771 * areas before each reserved region. For example, if reserved regions
772 * look like the following,
773 *
774 * 0:[0-16), 1:[32-48), 2:[128-130)
775 *
776 * The upper 32bit indexes the following regions.
777 *
778 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
779 *
780 * As both region arrays are sorted, the function advances the two indices
781 * in lockstep and returns each intersection.
782 */
783void __init_memblock __next_free_mem_range(u64 *idx, int nid,
784 phys_addr_t *out_start,
785 phys_addr_t *out_end, int *out_nid)
786{
787 struct memblock_type *mem = &memblock.memory;
788 struct memblock_type *rsv = &memblock.reserved;
789 int mi = *idx & 0xffffffff;
790 int ri = *idx >> 32;
791
792 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
793 nid = NUMA_NO_NODE;
794
795 for ( ; mi < mem->cnt; mi++) {
796 struct memblock_region *m = &mem->regions[mi];
797 phys_addr_t m_start = m->base;
798 phys_addr_t m_end = m->base + m->size;
799
800 /* only memory regions are associated with nodes, check it */
801 if (nid != NUMA_NO_NODE && nid != memblock_get_region_node(m))
802 continue;
803
804 /* scan areas before each reservation for intersection */
805 for ( ; ri < rsv->cnt + 1; ri++) {
806 struct memblock_region *r = &rsv->regions[ri];
807 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
808 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
809
810 /* if ri advanced past mi, break out to advance mi */
811 if (r_start >= m_end)
812 break;
813 /* if the two regions intersect, we're done */
814 if (m_start < r_end) {
815 if (out_start)
816 *out_start = max(m_start, r_start);
817 if (out_end)
818 *out_end = min(m_end, r_end);
819 if (out_nid)
820 *out_nid = memblock_get_region_node(m);
821 /*
822 * The region which ends first is advanced
823 * for the next iteration.
824 */
825 if (m_end <= r_end)
826 mi++;
827 else
828 ri++;
829 *idx = (u32)mi | (u64)ri << 32;
830 return;
831 }
832 }
833 }
834
835 /* signal end of iteration */
836 *idx = ULLONG_MAX;
837}
838
839/**
840 * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse()
841 * @idx: pointer to u64 loop variable
842 * @nid: nid: node selector, %NUMA_NO_NODE for all nodes
843 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
844 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
845 * @out_nid: ptr to int for nid of the range, can be %NULL
846 *
847 * Reverse of __next_free_mem_range().
848 *
849 * Linux kernel cannot migrate pages used by itself. Memory hotplug users won't
850 * be able to hot-remove hotpluggable memory used by the kernel. So this
851 * function skip hotpluggable regions if needed when allocating memory for the
852 * kernel.
853 */
854void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid,
855 phys_addr_t *out_start,
856 phys_addr_t *out_end, int *out_nid)
857{
858 struct memblock_type *mem = &memblock.memory;
859 struct memblock_type *rsv = &memblock.reserved;
860 int mi = *idx & 0xffffffff;
861 int ri = *idx >> 32;
862
863 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
864 nid = NUMA_NO_NODE;
865
866 if (*idx == (u64)ULLONG_MAX) {
867 mi = mem->cnt - 1;
868 ri = rsv->cnt;
869 }
870
871 for ( ; mi >= 0; mi--) {
872 struct memblock_region *m = &mem->regions[mi];
873 phys_addr_t m_start = m->base;
874 phys_addr_t m_end = m->base + m->size;
875
876 /* only memory regions are associated with nodes, check it */
877 if (nid != NUMA_NO_NODE && nid != memblock_get_region_node(m))
878 continue;
879
880 /* skip hotpluggable memory regions if needed */
881 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
882 continue;
883
884 /* scan areas before each reservation for intersection */
885 for ( ; ri >= 0; ri--) {
886 struct memblock_region *r = &rsv->regions[ri];
887 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
888 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
889
890 /* if ri advanced past mi, break out to advance mi */
891 if (r_end <= m_start)
892 break;
893 /* if the two regions intersect, we're done */
894 if (m_end > r_start) {
895 if (out_start)
896 *out_start = max(m_start, r_start);
897 if (out_end)
898 *out_end = min(m_end, r_end);
899 if (out_nid)
900 *out_nid = memblock_get_region_node(m);
901
902 if (m_start >= r_start)
903 mi--;
904 else
905 ri--;
906 *idx = (u32)mi | (u64)ri << 32;
907 return;
908 }
909 }
910 }
911
912 *idx = ULLONG_MAX;
913}
914
915#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
916/*
917 * Common iterator interface used to define for_each_mem_range().
918 */
919void __init_memblock __next_mem_pfn_range(int *idx, int nid,
920 unsigned long *out_start_pfn,
921 unsigned long *out_end_pfn, int *out_nid)
922{
923 struct memblock_type *type = &memblock.memory;
924 struct memblock_region *r;
925
926 while (++*idx < type->cnt) {
927 r = &type->regions[*idx];
928
929 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
930 continue;
931 if (nid == MAX_NUMNODES || nid == r->nid)
932 break;
933 }
934 if (*idx >= type->cnt) {
935 *idx = -1;
936 return;
937 }
938
939 if (out_start_pfn)
940 *out_start_pfn = PFN_UP(r->base);
941 if (out_end_pfn)
942 *out_end_pfn = PFN_DOWN(r->base + r->size);
943 if (out_nid)
944 *out_nid = r->nid;
945}
946
947/**
948 * memblock_set_node - set node ID on memblock regions
949 * @base: base of area to set node ID for
950 * @size: size of area to set node ID for
951 * @type: memblock type to set node ID for
952 * @nid: node ID to set
953 *
954 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
955 * Regions which cross the area boundaries are split as necessary.
956 *
957 * RETURNS:
958 * 0 on success, -errno on failure.
959 */
960int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
961 struct memblock_type *type, int nid)
962{
963 int start_rgn, end_rgn;
964 int i, ret;
965
966 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
967 if (ret)
968 return ret;
969
970 for (i = start_rgn; i < end_rgn; i++)
971 memblock_set_region_node(&type->regions[i], nid);
972
973 memblock_merge_regions(type);
974 return 0;
975}
976#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
977
978static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
979 phys_addr_t align, phys_addr_t max_addr,
980 int nid)
981{
982 phys_addr_t found;
983
984 if (!align)
985 align = SMP_CACHE_BYTES;
986
987 found = memblock_find_in_range_node(size, align, 0, max_addr, nid);
988 if (found && !memblock_reserve(found, size))
989 return found;
990
991 return 0;
992}
993
994phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
995{
996 return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
997}
998
999phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1000{
1001 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE);
1002}
1003
1004phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1005{
1006 phys_addr_t alloc;
1007
1008 alloc = __memblock_alloc_base(size, align, max_addr);
1009
1010 if (alloc == 0)
1011 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
1012 (unsigned long long) size, (unsigned long long) max_addr);
1013
1014 return alloc;
1015}
1016
1017phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1018{
1019 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1020}
1021
1022phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1023{
1024 phys_addr_t res = memblock_alloc_nid(size, align, nid);
1025
1026 if (res)
1027 return res;
1028 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1029}
1030
1031/**
1032 * memblock_virt_alloc_internal - allocate boot memory block
1033 * @size: size of memory block to be allocated in bytes
1034 * @align: alignment of the region and block's size
1035 * @min_addr: the lower bound of the memory region to allocate (phys address)
1036 * @max_addr: the upper bound of the memory region to allocate (phys address)
1037 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1038 *
1039 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1040 * will fall back to memory below @min_addr. Also, allocation may fall back
1041 * to any node in the system if the specified node can not
1042 * hold the requested memory.
1043 *
1044 * The allocation is performed from memory region limited by
1045 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1046 *
1047 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1048 *
1049 * The phys address of allocated boot memory block is converted to virtual and
1050 * allocated memory is reset to 0.
1051 *
1052 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1053 * allocated boot memory block, so that it is never reported as leaks.
1054 *
1055 * RETURNS:
1056 * Virtual address of allocated memory block on success, NULL on failure.
1057 */
1058static void * __init memblock_virt_alloc_internal(
1059 phys_addr_t size, phys_addr_t align,
1060 phys_addr_t min_addr, phys_addr_t max_addr,
1061 int nid)
1062{
1063 phys_addr_t alloc;
1064 void *ptr;
1065
1066 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1067 nid = NUMA_NO_NODE;
1068
1069 /*
1070 * Detect any accidental use of these APIs after slab is ready, as at
1071 * this moment memblock may be deinitialized already and its
1072 * internal data may be destroyed (after execution of free_all_bootmem)
1073 */
1074 if (WARN_ON_ONCE(slab_is_available()))
1075 return kzalloc_node(size, GFP_NOWAIT, nid);
1076
1077 if (!align)
1078 align = SMP_CACHE_BYTES;
1079
1080 if (max_addr > memblock.current_limit)
1081 max_addr = memblock.current_limit;
1082
1083again:
1084 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1085 nid);
1086 if (alloc)
1087 goto done;
1088
1089 if (nid != NUMA_NO_NODE) {
1090 alloc = memblock_find_in_range_node(size, align, min_addr,
1091 max_addr, NUMA_NO_NODE);
1092 if (alloc)
1093 goto done;
1094 }
1095
1096 if (min_addr) {
1097 min_addr = 0;
1098 goto again;
1099 } else {
1100 goto error;
1101 }
1102
1103done:
1104 memblock_reserve(alloc, size);
1105 ptr = phys_to_virt(alloc);
1106 memset(ptr, 0, size);
1107
1108 /*
1109 * The min_count is set to 0 so that bootmem allocated blocks
1110 * are never reported as leaks. This is because many of these blocks
1111 * are only referred via the physical address which is not
1112 * looked up by kmemleak.
1113 */
1114 kmemleak_alloc(ptr, size, 0, 0);
1115
1116 return ptr;
1117
1118error:
1119 return NULL;
1120}
1121
1122/**
1123 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1124 * @size: size of memory block to be allocated in bytes
1125 * @align: alignment of the region and block's size
1126 * @min_addr: the lower bound of the memory region from where the allocation
1127 * is preferred (phys address)
1128 * @max_addr: the upper bound of the memory region from where the allocation
1129 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1130 * allocate only from memory limited by memblock.current_limit value
1131 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1132 *
1133 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1134 * additional debug information (including caller info), if enabled.
1135 *
1136 * RETURNS:
1137 * Virtual address of allocated memory block on success, NULL on failure.
1138 */
1139void * __init memblock_virt_alloc_try_nid_nopanic(
1140 phys_addr_t size, phys_addr_t align,
1141 phys_addr_t min_addr, phys_addr_t max_addr,
1142 int nid)
1143{
1144 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1145 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1146 (u64)max_addr, (void *)_RET_IP_);
1147 return memblock_virt_alloc_internal(size, align, min_addr,
1148 max_addr, nid);
1149}
1150
1151/**
1152 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1153 * @size: size of memory block to be allocated in bytes
1154 * @align: alignment of the region and block's size
1155 * @min_addr: the lower bound of the memory region from where the allocation
1156 * is preferred (phys address)
1157 * @max_addr: the upper bound of the memory region from where the allocation
1158 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1159 * allocate only from memory limited by memblock.current_limit value
1160 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1161 *
1162 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1163 * which provides debug information (including caller info), if enabled,
1164 * and panics if the request can not be satisfied.
1165 *
1166 * RETURNS:
1167 * Virtual address of allocated memory block on success, NULL on failure.
1168 */
1169void * __init memblock_virt_alloc_try_nid(
1170 phys_addr_t size, phys_addr_t align,
1171 phys_addr_t min_addr, phys_addr_t max_addr,
1172 int nid)
1173{
1174 void *ptr;
1175
1176 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1177 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1178 (u64)max_addr, (void *)_RET_IP_);
1179 ptr = memblock_virt_alloc_internal(size, align,
1180 min_addr, max_addr, nid);
1181 if (ptr)
1182 return ptr;
1183
1184 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1185 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1186 (u64)max_addr);
1187 return NULL;
1188}
1189
1190/**
1191 * __memblock_free_early - free boot memory block
1192 * @base: phys starting address of the boot memory block
1193 * @size: size of the boot memory block in bytes
1194 *
1195 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1196 * The freeing memory will not be released to the buddy allocator.
1197 */
1198void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1199{
1200 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1201 __func__, (u64)base, (u64)base + size - 1,
1202 (void *)_RET_IP_);
1203 kmemleak_free_part(__va(base), size);
1204 __memblock_remove(&memblock.reserved, base, size);
1205}
1206
1207/*
1208 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1209 * @addr: phys starting address of the boot memory block
1210 * @size: size of the boot memory block in bytes
1211 *
1212 * This is only useful when the bootmem allocator has already been torn
1213 * down, but we are still initializing the system. Pages are released directly
1214 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1215 */
1216void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1217{
1218 u64 cursor, end;
1219
1220 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1221 __func__, (u64)base, (u64)base + size - 1,
1222 (void *)_RET_IP_);
1223 kmemleak_free_part(__va(base), size);
1224 cursor = PFN_UP(base);
1225 end = PFN_DOWN(base + size);
1226
1227 for (; cursor < end; cursor++) {
1228 __free_pages_bootmem(pfn_to_page(cursor), 0);
1229 totalram_pages++;
1230 }
1231}
1232
1233/*
1234 * Remaining API functions
1235 */
1236
1237phys_addr_t __init memblock_phys_mem_size(void)
1238{
1239 return memblock.memory.total_size;
1240}
1241
1242phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1243{
1244 unsigned long pages = 0;
1245 struct memblock_region *r;
1246 unsigned long start_pfn, end_pfn;
1247
1248 for_each_memblock(memory, r) {
1249 start_pfn = memblock_region_memory_base_pfn(r);
1250 end_pfn = memblock_region_memory_end_pfn(r);
1251 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1252 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1253 pages += end_pfn - start_pfn;
1254 }
1255
1256 return PFN_PHYS(pages);
1257}
1258
1259/* lowest address */
1260phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1261{
1262 return memblock.memory.regions[0].base;
1263}
1264
1265phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1266{
1267 int idx = memblock.memory.cnt - 1;
1268
1269 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1270}
1271
1272void __init memblock_enforce_memory_limit(phys_addr_t limit)
1273{
1274 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1275 struct memblock_region *r;
1276
1277 if (!limit)
1278 return;
1279
1280 /* find out max address */
1281 for_each_memblock(memory, r) {
1282 if (limit <= r->size) {
1283 max_addr = r->base + limit;
1284 break;
1285 }
1286 limit -= r->size;
1287 }
1288
1289 /* truncate both memory and reserved regions */
1290 __memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX);
1291 __memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX);
1292}
1293
1294static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1295{
1296 unsigned int left = 0, right = type->cnt;
1297
1298 do {
1299 unsigned int mid = (right + left) / 2;
1300
1301 if (addr < type->regions[mid].base)
1302 right = mid;
1303 else if (addr >= (type->regions[mid].base +
1304 type->regions[mid].size))
1305 left = mid + 1;
1306 else
1307 return mid;
1308 } while (left < right);
1309 return -1;
1310}
1311
1312int __init memblock_is_reserved(phys_addr_t addr)
1313{
1314 return memblock_search(&memblock.reserved, addr) != -1;
1315}
1316
1317int __init_memblock memblock_is_memory(phys_addr_t addr)
1318{
1319 return memblock_search(&memblock.memory, addr) != -1;
1320}
1321
1322#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1323int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1324 unsigned long *start_pfn, unsigned long *end_pfn)
1325{
1326 struct memblock_type *type = &memblock.memory;
1327 int mid = memblock_search(type, PFN_PHYS(pfn));
1328
1329 if (mid == -1)
1330 return -1;
1331
1332 *start_pfn = type->regions[mid].base >> PAGE_SHIFT;
1333 *end_pfn = (type->regions[mid].base + type->regions[mid].size)
1334 >> PAGE_SHIFT;
1335
1336 return type->regions[mid].nid;
1337}
1338#endif
1339
1340/**
1341 * memblock_is_region_memory - check if a region is a subset of memory
1342 * @base: base of region to check
1343 * @size: size of region to check
1344 *
1345 * Check if the region [@base, @base+@size) is a subset of a memory block.
1346 *
1347 * RETURNS:
1348 * 0 if false, non-zero if true
1349 */
1350int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1351{
1352 int idx = memblock_search(&memblock.memory, base);
1353 phys_addr_t end = base + memblock_cap_size(base, &size);
1354
1355 if (idx == -1)
1356 return 0;
1357 return memblock.memory.regions[idx].base <= base &&
1358 (memblock.memory.regions[idx].base +
1359 memblock.memory.regions[idx].size) >= end;
1360}
1361
1362/**
1363 * memblock_is_region_reserved - check if a region intersects reserved memory
1364 * @base: base of region to check
1365 * @size: size of region to check
1366 *
1367 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1368 *
1369 * RETURNS:
1370 * 0 if false, non-zero if true
1371 */
1372int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1373{
1374 memblock_cap_size(base, &size);
1375 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
1376}
1377
1378void __init_memblock memblock_trim_memory(phys_addr_t align)
1379{
1380 phys_addr_t start, end, orig_start, orig_end;
1381 struct memblock_region *r;
1382
1383 for_each_memblock(memory, r) {
1384 orig_start = r->base;
1385 orig_end = r->base + r->size;
1386 start = round_up(orig_start, align);
1387 end = round_down(orig_end, align);
1388
1389 if (start == orig_start && end == orig_end)
1390 continue;
1391
1392 if (start < end) {
1393 r->base = start;
1394 r->size = end - start;
1395 } else {
1396 memblock_remove_region(&memblock.memory,
1397 r - memblock.memory.regions);
1398 r--;
1399 }
1400 }
1401}
1402
1403void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1404{
1405 memblock.current_limit = limit;
1406}
1407
1408phys_addr_t __init_memblock memblock_get_current_limit(void)
1409{
1410 return memblock.current_limit;
1411}
1412
1413static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
1414{
1415 unsigned long long base, size;
1416 unsigned long flags;
1417 int i;
1418
1419 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt);
1420
1421 for (i = 0; i < type->cnt; i++) {
1422 struct memblock_region *rgn = &type->regions[i];
1423 char nid_buf[32] = "";
1424
1425 base = rgn->base;
1426 size = rgn->size;
1427 flags = rgn->flags;
1428#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1429 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1430 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1431 memblock_get_region_node(rgn));
1432#endif
1433 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n",
1434 name, i, base, base + size - 1, size, nid_buf, flags);
1435 }
1436}
1437
1438void __init_memblock __memblock_dump_all(void)
1439{
1440 pr_info("MEMBLOCK configuration:\n");
1441 pr_info(" memory size = %#llx reserved size = %#llx\n",
1442 (unsigned long long)memblock.memory.total_size,
1443 (unsigned long long)memblock.reserved.total_size);
1444
1445 memblock_dump(&memblock.memory, "memory");
1446 memblock_dump(&memblock.reserved, "reserved");
1447}
1448
1449void __init memblock_allow_resize(void)
1450{
1451 memblock_can_resize = 1;
1452}
1453
1454static int __init early_memblock(char *p)
1455{
1456 if (p && strstr(p, "debug"))
1457 memblock_debug = 1;
1458 return 0;
1459}
1460early_param("memblock", early_memblock);
1461
1462#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1463
1464static int memblock_debug_show(struct seq_file *m, void *private)
1465{
1466 struct memblock_type *type = m->private;
1467 struct memblock_region *reg;
1468 int i;
1469
1470 for (i = 0; i < type->cnt; i++) {
1471 reg = &type->regions[i];
1472 seq_printf(m, "%4d: ", i);
1473 if (sizeof(phys_addr_t) == 4)
1474 seq_printf(m, "0x%08lx..0x%08lx\n",
1475 (unsigned long)reg->base,
1476 (unsigned long)(reg->base + reg->size - 1));
1477 else
1478 seq_printf(m, "0x%016llx..0x%016llx\n",
1479 (unsigned long long)reg->base,
1480 (unsigned long long)(reg->base + reg->size - 1));
1481
1482 }
1483 return 0;
1484}
1485
1486static int memblock_debug_open(struct inode *inode, struct file *file)
1487{
1488 return single_open(file, memblock_debug_show, inode->i_private);
1489}
1490
1491static const struct file_operations memblock_debug_fops = {
1492 .open = memblock_debug_open,
1493 .read = seq_read,
1494 .llseek = seq_lseek,
1495 .release = single_release,
1496};
1497
1498static int __init memblock_init_debugfs(void)
1499{
1500 struct dentry *root = debugfs_create_dir("memblock", NULL);
1501 if (!root)
1502 return -ENXIO;
1503 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1504 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1505
1506 return 0;
1507}
1508__initcall(memblock_init_debugfs);
1509
1510#endif /* CONFIG_DEBUG_FS */
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Procedures for maintaining information about logical memory blocks.
4 *
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
7 */
8
9#include <linux/kernel.h>
10#include <linux/slab.h>
11#include <linux/init.h>
12#include <linux/bitops.h>
13#include <linux/poison.h>
14#include <linux/pfn.h>
15#include <linux/debugfs.h>
16#include <linux/kmemleak.h>
17#include <linux/seq_file.h>
18#include <linux/memblock.h>
19
20#include <asm/sections.h>
21#include <linux/io.h>
22
23#include "internal.h"
24
25#define INIT_MEMBLOCK_REGIONS 128
26#define INIT_PHYSMEM_REGIONS 4
27
28#ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29# define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
30#endif
31
32#ifndef INIT_MEMBLOCK_MEMORY_REGIONS
33#define INIT_MEMBLOCK_MEMORY_REGIONS INIT_MEMBLOCK_REGIONS
34#endif
35
36/**
37 * DOC: memblock overview
38 *
39 * Memblock is a method of managing memory regions during the early
40 * boot period when the usual kernel memory allocators are not up and
41 * running.
42 *
43 * Memblock views the system memory as collections of contiguous
44 * regions. There are several types of these collections:
45 *
46 * * ``memory`` - describes the physical memory available to the
47 * kernel; this may differ from the actual physical memory installed
48 * in the system, for instance when the memory is restricted with
49 * ``mem=`` command line parameter
50 * * ``reserved`` - describes the regions that were allocated
51 * * ``physmem`` - describes the actual physical memory available during
52 * boot regardless of the possible restrictions and memory hot(un)plug;
53 * the ``physmem`` type is only available on some architectures.
54 *
55 * Each region is represented by struct memblock_region that
56 * defines the region extents, its attributes and NUMA node id on NUMA
57 * systems. Every memory type is described by the struct memblock_type
58 * which contains an array of memory regions along with
59 * the allocator metadata. The "memory" and "reserved" types are nicely
60 * wrapped with struct memblock. This structure is statically
61 * initialized at build time. The region arrays are initially sized to
62 * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
63 * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
64 * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS.
65 * The memblock_allow_resize() enables automatic resizing of the region
66 * arrays during addition of new regions. This feature should be used
67 * with care so that memory allocated for the region array will not
68 * overlap with areas that should be reserved, for example initrd.
69 *
70 * The early architecture setup should tell memblock what the physical
71 * memory layout is by using memblock_add() or memblock_add_node()
72 * functions. The first function does not assign the region to a NUMA
73 * node and it is appropriate for UMA systems. Yet, it is possible to
74 * use it on NUMA systems as well and assign the region to a NUMA node
75 * later in the setup process using memblock_set_node(). The
76 * memblock_add_node() performs such an assignment directly.
77 *
78 * Once memblock is setup the memory can be allocated using one of the
79 * API variants:
80 *
81 * * memblock_phys_alloc*() - these functions return the **physical**
82 * address of the allocated memory
83 * * memblock_alloc*() - these functions return the **virtual** address
84 * of the allocated memory.
85 *
86 * Note, that both API variants use implicit assumptions about allowed
87 * memory ranges and the fallback methods. Consult the documentation
88 * of memblock_alloc_internal() and memblock_alloc_range_nid()
89 * functions for more elaborate description.
90 *
91 * As the system boot progresses, the architecture specific mem_init()
92 * function frees all the memory to the buddy page allocator.
93 *
94 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
95 * memblock data structures (except "physmem") will be discarded after the
96 * system initialization completes.
97 */
98
99#ifndef CONFIG_NUMA
100struct pglist_data __refdata contig_page_data;
101EXPORT_SYMBOL(contig_page_data);
102#endif
103
104unsigned long max_low_pfn;
105unsigned long min_low_pfn;
106unsigned long max_pfn;
107unsigned long long max_possible_pfn;
108
109static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock;
110static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
111#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
112static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
113#endif
114
115struct memblock memblock __initdata_memblock = {
116 .memory.regions = memblock_memory_init_regions,
117 .memory.max = INIT_MEMBLOCK_MEMORY_REGIONS,
118 .memory.name = "memory",
119
120 .reserved.regions = memblock_reserved_init_regions,
121 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
122 .reserved.name = "reserved",
123
124 .bottom_up = false,
125 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
126};
127
128#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
129struct memblock_type physmem = {
130 .regions = memblock_physmem_init_regions,
131 .max = INIT_PHYSMEM_REGIONS,
132 .name = "physmem",
133};
134#endif
135
136/*
137 * keep a pointer to &memblock.memory in the text section to use it in
138 * __next_mem_range() and its helpers.
139 * For architectures that do not keep memblock data after init, this
140 * pointer will be reset to NULL at memblock_discard()
141 */
142static __refdata struct memblock_type *memblock_memory = &memblock.memory;
143
144#define for_each_memblock_type(i, memblock_type, rgn) \
145 for (i = 0, rgn = &memblock_type->regions[0]; \
146 i < memblock_type->cnt; \
147 i++, rgn = &memblock_type->regions[i])
148
149#define memblock_dbg(fmt, ...) \
150 do { \
151 if (memblock_debug) \
152 pr_info(fmt, ##__VA_ARGS__); \
153 } while (0)
154
155static int memblock_debug __initdata_memblock;
156static bool system_has_some_mirror __initdata_memblock;
157static int memblock_can_resize __initdata_memblock;
158static int memblock_memory_in_slab __initdata_memblock;
159static int memblock_reserved_in_slab __initdata_memblock;
160
161bool __init_memblock memblock_has_mirror(void)
162{
163 return system_has_some_mirror;
164}
165
166static enum memblock_flags __init_memblock choose_memblock_flags(void)
167{
168 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
169}
170
171/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
172static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
173{
174 return *size = min(*size, PHYS_ADDR_MAX - base);
175}
176
177/*
178 * Address comparison utilities
179 */
180unsigned long __init_memblock
181memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, phys_addr_t base2,
182 phys_addr_t size2)
183{
184 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
185}
186
187bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
188 phys_addr_t base, phys_addr_t size)
189{
190 unsigned long i;
191
192 memblock_cap_size(base, &size);
193
194 for (i = 0; i < type->cnt; i++)
195 if (memblock_addrs_overlap(base, size, type->regions[i].base,
196 type->regions[i].size))
197 return true;
198 return false;
199}
200
201/**
202 * __memblock_find_range_bottom_up - find free area utility in bottom-up
203 * @start: start of candidate range
204 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
205 * %MEMBLOCK_ALLOC_ACCESSIBLE
206 * @size: size of free area to find
207 * @align: alignment of free area to find
208 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
209 * @flags: pick from blocks based on memory attributes
210 *
211 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
212 *
213 * Return:
214 * Found address on success, 0 on failure.
215 */
216static phys_addr_t __init_memblock
217__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
218 phys_addr_t size, phys_addr_t align, int nid,
219 enum memblock_flags flags)
220{
221 phys_addr_t this_start, this_end, cand;
222 u64 i;
223
224 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
225 this_start = clamp(this_start, start, end);
226 this_end = clamp(this_end, start, end);
227
228 cand = round_up(this_start, align);
229 if (cand < this_end && this_end - cand >= size)
230 return cand;
231 }
232
233 return 0;
234}
235
236/**
237 * __memblock_find_range_top_down - find free area utility, in top-down
238 * @start: start of candidate range
239 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
240 * %MEMBLOCK_ALLOC_ACCESSIBLE
241 * @size: size of free area to find
242 * @align: alignment of free area to find
243 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
244 * @flags: pick from blocks based on memory attributes
245 *
246 * Utility called from memblock_find_in_range_node(), find free area top-down.
247 *
248 * Return:
249 * Found address on success, 0 on failure.
250 */
251static phys_addr_t __init_memblock
252__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
253 phys_addr_t size, phys_addr_t align, int nid,
254 enum memblock_flags flags)
255{
256 phys_addr_t this_start, this_end, cand;
257 u64 i;
258
259 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
260 NULL) {
261 this_start = clamp(this_start, start, end);
262 this_end = clamp(this_end, start, end);
263
264 if (this_end < size)
265 continue;
266
267 cand = round_down(this_end - size, align);
268 if (cand >= this_start)
269 return cand;
270 }
271
272 return 0;
273}
274
275/**
276 * memblock_find_in_range_node - find free area in given range and node
277 * @size: size of free area to find
278 * @align: alignment of free area to find
279 * @start: start of candidate range
280 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
281 * %MEMBLOCK_ALLOC_ACCESSIBLE
282 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
283 * @flags: pick from blocks based on memory attributes
284 *
285 * Find @size free area aligned to @align in the specified range and node.
286 *
287 * Return:
288 * Found address on success, 0 on failure.
289 */
290static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
291 phys_addr_t align, phys_addr_t start,
292 phys_addr_t end, int nid,
293 enum memblock_flags flags)
294{
295 /* pump up @end */
296 if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
297 end == MEMBLOCK_ALLOC_NOLEAKTRACE)
298 end = memblock.current_limit;
299
300 /* avoid allocating the first page */
301 start = max_t(phys_addr_t, start, PAGE_SIZE);
302 end = max(start, end);
303
304 if (memblock_bottom_up())
305 return __memblock_find_range_bottom_up(start, end, size, align,
306 nid, flags);
307 else
308 return __memblock_find_range_top_down(start, end, size, align,
309 nid, flags);
310}
311
312/**
313 * memblock_find_in_range - find free area in given range
314 * @start: start of candidate range
315 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
316 * %MEMBLOCK_ALLOC_ACCESSIBLE
317 * @size: size of free area to find
318 * @align: alignment of free area to find
319 *
320 * Find @size free area aligned to @align in the specified range.
321 *
322 * Return:
323 * Found address on success, 0 on failure.
324 */
325static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
326 phys_addr_t end, phys_addr_t size,
327 phys_addr_t align)
328{
329 phys_addr_t ret;
330 enum memblock_flags flags = choose_memblock_flags();
331
332again:
333 ret = memblock_find_in_range_node(size, align, start, end,
334 NUMA_NO_NODE, flags);
335
336 if (!ret && (flags & MEMBLOCK_MIRROR)) {
337 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
338 &size);
339 flags &= ~MEMBLOCK_MIRROR;
340 goto again;
341 }
342
343 return ret;
344}
345
346static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
347{
348 type->total_size -= type->regions[r].size;
349 memmove(&type->regions[r], &type->regions[r + 1],
350 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
351 type->cnt--;
352
353 /* Special case for empty arrays */
354 if (type->cnt == 0) {
355 WARN_ON(type->total_size != 0);
356 type->regions[0].base = 0;
357 type->regions[0].size = 0;
358 type->regions[0].flags = 0;
359 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
360 }
361}
362
363#ifndef CONFIG_ARCH_KEEP_MEMBLOCK
364/**
365 * memblock_discard - discard memory and reserved arrays if they were allocated
366 */
367void __init memblock_discard(void)
368{
369 phys_addr_t addr, size;
370
371 if (memblock.reserved.regions != memblock_reserved_init_regions) {
372 addr = __pa(memblock.reserved.regions);
373 size = PAGE_ALIGN(sizeof(struct memblock_region) *
374 memblock.reserved.max);
375 if (memblock_reserved_in_slab)
376 kfree(memblock.reserved.regions);
377 else
378 memblock_free_late(addr, size);
379 }
380
381 if (memblock.memory.regions != memblock_memory_init_regions) {
382 addr = __pa(memblock.memory.regions);
383 size = PAGE_ALIGN(sizeof(struct memblock_region) *
384 memblock.memory.max);
385 if (memblock_memory_in_slab)
386 kfree(memblock.memory.regions);
387 else
388 memblock_free_late(addr, size);
389 }
390
391 memblock_memory = NULL;
392}
393#endif
394
395/**
396 * memblock_double_array - double the size of the memblock regions array
397 * @type: memblock type of the regions array being doubled
398 * @new_area_start: starting address of memory range to avoid overlap with
399 * @new_area_size: size of memory range to avoid overlap with
400 *
401 * Double the size of the @type regions array. If memblock is being used to
402 * allocate memory for a new reserved regions array and there is a previously
403 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
404 * waiting to be reserved, ensure the memory used by the new array does
405 * not overlap.
406 *
407 * Return:
408 * 0 on success, -1 on failure.
409 */
410static int __init_memblock memblock_double_array(struct memblock_type *type,
411 phys_addr_t new_area_start,
412 phys_addr_t new_area_size)
413{
414 struct memblock_region *new_array, *old_array;
415 phys_addr_t old_alloc_size, new_alloc_size;
416 phys_addr_t old_size, new_size, addr, new_end;
417 int use_slab = slab_is_available();
418 int *in_slab;
419
420 /* We don't allow resizing until we know about the reserved regions
421 * of memory that aren't suitable for allocation
422 */
423 if (!memblock_can_resize)
424 panic("memblock: cannot resize %s array\n", type->name);
425
426 /* Calculate new doubled size */
427 old_size = type->max * sizeof(struct memblock_region);
428 new_size = old_size << 1;
429 /*
430 * We need to allocated new one align to PAGE_SIZE,
431 * so we can free them completely later.
432 */
433 old_alloc_size = PAGE_ALIGN(old_size);
434 new_alloc_size = PAGE_ALIGN(new_size);
435
436 /* Retrieve the slab flag */
437 if (type == &memblock.memory)
438 in_slab = &memblock_memory_in_slab;
439 else
440 in_slab = &memblock_reserved_in_slab;
441
442 /* Try to find some space for it */
443 if (use_slab) {
444 new_array = kmalloc(new_size, GFP_KERNEL);
445 addr = new_array ? __pa(new_array) : 0;
446 } else {
447 /* only exclude range when trying to double reserved.regions */
448 if (type != &memblock.reserved)
449 new_area_start = new_area_size = 0;
450
451 addr = memblock_find_in_range(new_area_start + new_area_size,
452 memblock.current_limit,
453 new_alloc_size, PAGE_SIZE);
454 if (!addr && new_area_size)
455 addr = memblock_find_in_range(0,
456 min(new_area_start, memblock.current_limit),
457 new_alloc_size, PAGE_SIZE);
458
459 new_array = addr ? __va(addr) : NULL;
460 }
461 if (!addr) {
462 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
463 type->name, type->max, type->max * 2);
464 return -1;
465 }
466
467 new_end = addr + new_size - 1;
468 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
469 type->name, type->max * 2, &addr, &new_end);
470
471 /*
472 * Found space, we now need to move the array over before we add the
473 * reserved region since it may be our reserved array itself that is
474 * full.
475 */
476 memcpy(new_array, type->regions, old_size);
477 memset(new_array + type->max, 0, old_size);
478 old_array = type->regions;
479 type->regions = new_array;
480 type->max <<= 1;
481
482 /* Free old array. We needn't free it if the array is the static one */
483 if (*in_slab)
484 kfree(old_array);
485 else if (old_array != memblock_memory_init_regions &&
486 old_array != memblock_reserved_init_regions)
487 memblock_free(old_array, old_alloc_size);
488
489 /*
490 * Reserve the new array if that comes from the memblock. Otherwise, we
491 * needn't do it
492 */
493 if (!use_slab)
494 BUG_ON(memblock_reserve(addr, new_alloc_size));
495
496 /* Update slab flag */
497 *in_slab = use_slab;
498
499 return 0;
500}
501
502/**
503 * memblock_merge_regions - merge neighboring compatible regions
504 * @type: memblock type to scan
505 * @start_rgn: start scanning from (@start_rgn - 1)
506 * @end_rgn: end scanning at (@end_rgn - 1)
507 * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn)
508 */
509static void __init_memblock memblock_merge_regions(struct memblock_type *type,
510 unsigned long start_rgn,
511 unsigned long end_rgn)
512{
513 int i = 0;
514 if (start_rgn)
515 i = start_rgn - 1;
516 end_rgn = min(end_rgn, type->cnt - 1);
517 while (i < end_rgn) {
518 struct memblock_region *this = &type->regions[i];
519 struct memblock_region *next = &type->regions[i + 1];
520
521 if (this->base + this->size != next->base ||
522 memblock_get_region_node(this) !=
523 memblock_get_region_node(next) ||
524 this->flags != next->flags) {
525 BUG_ON(this->base + this->size > next->base);
526 i++;
527 continue;
528 }
529
530 this->size += next->size;
531 /* move forward from next + 1, index of which is i + 2 */
532 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
533 type->cnt--;
534 end_rgn--;
535 }
536}
537
538/**
539 * memblock_insert_region - insert new memblock region
540 * @type: memblock type to insert into
541 * @idx: index for the insertion point
542 * @base: base address of the new region
543 * @size: size of the new region
544 * @nid: node id of the new region
545 * @flags: flags of the new region
546 *
547 * Insert new memblock region [@base, @base + @size) into @type at @idx.
548 * @type must already have extra room to accommodate the new region.
549 */
550static void __init_memblock memblock_insert_region(struct memblock_type *type,
551 int idx, phys_addr_t base,
552 phys_addr_t size,
553 int nid,
554 enum memblock_flags flags)
555{
556 struct memblock_region *rgn = &type->regions[idx];
557
558 BUG_ON(type->cnt >= type->max);
559 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
560 rgn->base = base;
561 rgn->size = size;
562 rgn->flags = flags;
563 memblock_set_region_node(rgn, nid);
564 type->cnt++;
565 type->total_size += size;
566}
567
568/**
569 * memblock_add_range - add new memblock region
570 * @type: memblock type to add new region into
571 * @base: base address of the new region
572 * @size: size of the new region
573 * @nid: nid of the new region
574 * @flags: flags of the new region
575 *
576 * Add new memblock region [@base, @base + @size) into @type. The new region
577 * is allowed to overlap with existing ones - overlaps don't affect already
578 * existing regions. @type is guaranteed to be minimal (all neighbouring
579 * compatible regions are merged) after the addition.
580 *
581 * Return:
582 * 0 on success, -errno on failure.
583 */
584static int __init_memblock memblock_add_range(struct memblock_type *type,
585 phys_addr_t base, phys_addr_t size,
586 int nid, enum memblock_flags flags)
587{
588 bool insert = false;
589 phys_addr_t obase = base;
590 phys_addr_t end = base + memblock_cap_size(base, &size);
591 int idx, nr_new, start_rgn = -1, end_rgn;
592 struct memblock_region *rgn;
593
594 if (!size)
595 return 0;
596
597 /* special case for empty array */
598 if (type->regions[0].size == 0) {
599 WARN_ON(type->cnt != 0 || type->total_size);
600 type->regions[0].base = base;
601 type->regions[0].size = size;
602 type->regions[0].flags = flags;
603 memblock_set_region_node(&type->regions[0], nid);
604 type->total_size = size;
605 type->cnt = 1;
606 return 0;
607 }
608
609 /*
610 * The worst case is when new range overlaps all existing regions,
611 * then we'll need type->cnt + 1 empty regions in @type. So if
612 * type->cnt * 2 + 1 is less than or equal to type->max, we know
613 * that there is enough empty regions in @type, and we can insert
614 * regions directly.
615 */
616 if (type->cnt * 2 + 1 <= type->max)
617 insert = true;
618
619repeat:
620 /*
621 * The following is executed twice. Once with %false @insert and
622 * then with %true. The first counts the number of regions needed
623 * to accommodate the new area. The second actually inserts them.
624 */
625 base = obase;
626 nr_new = 0;
627
628 for_each_memblock_type(idx, type, rgn) {
629 phys_addr_t rbase = rgn->base;
630 phys_addr_t rend = rbase + rgn->size;
631
632 if (rbase >= end)
633 break;
634 if (rend <= base)
635 continue;
636 /*
637 * @rgn overlaps. If it separates the lower part of new
638 * area, insert that portion.
639 */
640 if (rbase > base) {
641#ifdef CONFIG_NUMA
642 WARN_ON(nid != memblock_get_region_node(rgn));
643#endif
644 WARN_ON(flags != rgn->flags);
645 nr_new++;
646 if (insert) {
647 if (start_rgn == -1)
648 start_rgn = idx;
649 end_rgn = idx + 1;
650 memblock_insert_region(type, idx++, base,
651 rbase - base, nid,
652 flags);
653 }
654 }
655 /* area below @rend is dealt with, forget about it */
656 base = min(rend, end);
657 }
658
659 /* insert the remaining portion */
660 if (base < end) {
661 nr_new++;
662 if (insert) {
663 if (start_rgn == -1)
664 start_rgn = idx;
665 end_rgn = idx + 1;
666 memblock_insert_region(type, idx, base, end - base,
667 nid, flags);
668 }
669 }
670
671 if (!nr_new)
672 return 0;
673
674 /*
675 * If this was the first round, resize array and repeat for actual
676 * insertions; otherwise, merge and return.
677 */
678 if (!insert) {
679 while (type->cnt + nr_new > type->max)
680 if (memblock_double_array(type, obase, size) < 0)
681 return -ENOMEM;
682 insert = true;
683 goto repeat;
684 } else {
685 memblock_merge_regions(type, start_rgn, end_rgn);
686 return 0;
687 }
688}
689
690/**
691 * memblock_add_node - add new memblock region within a NUMA node
692 * @base: base address of the new region
693 * @size: size of the new region
694 * @nid: nid of the new region
695 * @flags: flags of the new region
696 *
697 * Add new memblock region [@base, @base + @size) to the "memory"
698 * type. See memblock_add_range() description for mode details
699 *
700 * Return:
701 * 0 on success, -errno on failure.
702 */
703int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
704 int nid, enum memblock_flags flags)
705{
706 phys_addr_t end = base + size - 1;
707
708 memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
709 &base, &end, nid, flags, (void *)_RET_IP_);
710
711 return memblock_add_range(&memblock.memory, base, size, nid, flags);
712}
713
714/**
715 * memblock_add - add new memblock region
716 * @base: base address of the new region
717 * @size: size of the new region
718 *
719 * Add new memblock region [@base, @base + @size) to the "memory"
720 * type. See memblock_add_range() description for mode details
721 *
722 * Return:
723 * 0 on success, -errno on failure.
724 */
725int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
726{
727 phys_addr_t end = base + size - 1;
728
729 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
730 &base, &end, (void *)_RET_IP_);
731
732 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
733}
734
735/**
736 * memblock_validate_numa_coverage - check if amount of memory with
737 * no node ID assigned is less than a threshold
738 * @threshold_bytes: maximal memory size that can have unassigned node
739 * ID (in bytes).
740 *
741 * A buggy firmware may report memory that does not belong to any node.
742 * Check if amount of such memory is below @threshold_bytes.
743 *
744 * Return: true on success, false on failure.
745 */
746bool __init_memblock memblock_validate_numa_coverage(unsigned long threshold_bytes)
747{
748 unsigned long nr_pages = 0;
749 unsigned long start_pfn, end_pfn, mem_size_mb;
750 int nid, i;
751
752 /* calculate lose page */
753 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
754 if (!numa_valid_node(nid))
755 nr_pages += end_pfn - start_pfn;
756 }
757
758 if ((nr_pages << PAGE_SHIFT) > threshold_bytes) {
759 mem_size_mb = memblock_phys_mem_size() >> 20;
760 pr_err("NUMA: no nodes coverage for %luMB of %luMB RAM\n",
761 (nr_pages << PAGE_SHIFT) >> 20, mem_size_mb);
762 return false;
763 }
764
765 return true;
766}
767
768
769/**
770 * memblock_isolate_range - isolate given range into disjoint memblocks
771 * @type: memblock type to isolate range for
772 * @base: base of range to isolate
773 * @size: size of range to isolate
774 * @start_rgn: out parameter for the start of isolated region
775 * @end_rgn: out parameter for the end of isolated region
776 *
777 * Walk @type and ensure that regions don't cross the boundaries defined by
778 * [@base, @base + @size). Crossing regions are split at the boundaries,
779 * which may create at most two more regions. The index of the first
780 * region inside the range is returned in *@start_rgn and the index of the
781 * first region after the range is returned in *@end_rgn.
782 *
783 * Return:
784 * 0 on success, -errno on failure.
785 */
786static int __init_memblock memblock_isolate_range(struct memblock_type *type,
787 phys_addr_t base, phys_addr_t size,
788 int *start_rgn, int *end_rgn)
789{
790 phys_addr_t end = base + memblock_cap_size(base, &size);
791 int idx;
792 struct memblock_region *rgn;
793
794 *start_rgn = *end_rgn = 0;
795
796 if (!size)
797 return 0;
798
799 /* we'll create at most two more regions */
800 while (type->cnt + 2 > type->max)
801 if (memblock_double_array(type, base, size) < 0)
802 return -ENOMEM;
803
804 for_each_memblock_type(idx, type, rgn) {
805 phys_addr_t rbase = rgn->base;
806 phys_addr_t rend = rbase + rgn->size;
807
808 if (rbase >= end)
809 break;
810 if (rend <= base)
811 continue;
812
813 if (rbase < base) {
814 /*
815 * @rgn intersects from below. Split and continue
816 * to process the next region - the new top half.
817 */
818 rgn->base = base;
819 rgn->size -= base - rbase;
820 type->total_size -= base - rbase;
821 memblock_insert_region(type, idx, rbase, base - rbase,
822 memblock_get_region_node(rgn),
823 rgn->flags);
824 } else if (rend > end) {
825 /*
826 * @rgn intersects from above. Split and redo the
827 * current region - the new bottom half.
828 */
829 rgn->base = end;
830 rgn->size -= end - rbase;
831 type->total_size -= end - rbase;
832 memblock_insert_region(type, idx--, rbase, end - rbase,
833 memblock_get_region_node(rgn),
834 rgn->flags);
835 } else {
836 /* @rgn is fully contained, record it */
837 if (!*end_rgn)
838 *start_rgn = idx;
839 *end_rgn = idx + 1;
840 }
841 }
842
843 return 0;
844}
845
846static int __init_memblock memblock_remove_range(struct memblock_type *type,
847 phys_addr_t base, phys_addr_t size)
848{
849 int start_rgn, end_rgn;
850 int i, ret;
851
852 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
853 if (ret)
854 return ret;
855
856 for (i = end_rgn - 1; i >= start_rgn; i--)
857 memblock_remove_region(type, i);
858 return 0;
859}
860
861int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
862{
863 phys_addr_t end = base + size - 1;
864
865 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
866 &base, &end, (void *)_RET_IP_);
867
868 return memblock_remove_range(&memblock.memory, base, size);
869}
870
871/**
872 * memblock_free - free boot memory allocation
873 * @ptr: starting address of the boot memory allocation
874 * @size: size of the boot memory block in bytes
875 *
876 * Free boot memory block previously allocated by memblock_alloc_xx() API.
877 * The freeing memory will not be released to the buddy allocator.
878 */
879void __init_memblock memblock_free(void *ptr, size_t size)
880{
881 if (ptr)
882 memblock_phys_free(__pa(ptr), size);
883}
884
885/**
886 * memblock_phys_free - free boot memory block
887 * @base: phys starting address of the boot memory block
888 * @size: size of the boot memory block in bytes
889 *
890 * Free boot memory block previously allocated by memblock_phys_alloc_xx() API.
891 * The freeing memory will not be released to the buddy allocator.
892 */
893int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
894{
895 phys_addr_t end = base + size - 1;
896
897 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
898 &base, &end, (void *)_RET_IP_);
899
900 kmemleak_free_part_phys(base, size);
901 return memblock_remove_range(&memblock.reserved, base, size);
902}
903
904int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
905{
906 phys_addr_t end = base + size - 1;
907
908 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
909 &base, &end, (void *)_RET_IP_);
910
911 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
912}
913
914#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
915int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
916{
917 phys_addr_t end = base + size - 1;
918
919 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
920 &base, &end, (void *)_RET_IP_);
921
922 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
923}
924#endif
925
926/**
927 * memblock_setclr_flag - set or clear flag for a memory region
928 * @type: memblock type to set/clear flag for
929 * @base: base address of the region
930 * @size: size of the region
931 * @set: set or clear the flag
932 * @flag: the flag to update
933 *
934 * This function isolates region [@base, @base + @size), and sets/clears flag
935 *
936 * Return: 0 on success, -errno on failure.
937 */
938static int __init_memblock memblock_setclr_flag(struct memblock_type *type,
939 phys_addr_t base, phys_addr_t size, int set, int flag)
940{
941 int i, ret, start_rgn, end_rgn;
942
943 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
944 if (ret)
945 return ret;
946
947 for (i = start_rgn; i < end_rgn; i++) {
948 struct memblock_region *r = &type->regions[i];
949
950 if (set)
951 r->flags |= flag;
952 else
953 r->flags &= ~flag;
954 }
955
956 memblock_merge_regions(type, start_rgn, end_rgn);
957 return 0;
958}
959
960/**
961 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
962 * @base: the base phys addr of the region
963 * @size: the size of the region
964 *
965 * Return: 0 on success, -errno on failure.
966 */
967int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
968{
969 return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_HOTPLUG);
970}
971
972/**
973 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
974 * @base: the base phys addr of the region
975 * @size: the size of the region
976 *
977 * Return: 0 on success, -errno on failure.
978 */
979int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
980{
981 return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_HOTPLUG);
982}
983
984/**
985 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
986 * @base: the base phys addr of the region
987 * @size: the size of the region
988 *
989 * Return: 0 on success, -errno on failure.
990 */
991int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
992{
993 if (!mirrored_kernelcore)
994 return 0;
995
996 system_has_some_mirror = true;
997
998 return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_MIRROR);
999}
1000
1001/**
1002 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
1003 * @base: the base phys addr of the region
1004 * @size: the size of the region
1005 *
1006 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
1007 * direct mapping of the physical memory. These regions will still be
1008 * covered by the memory map. The struct page representing NOMAP memory
1009 * frames in the memory map will be PageReserved()
1010 *
1011 * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
1012 * memblock, the caller must inform kmemleak to ignore that memory
1013 *
1014 * Return: 0 on success, -errno on failure.
1015 */
1016int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
1017{
1018 return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_NOMAP);
1019}
1020
1021/**
1022 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
1023 * @base: the base phys addr of the region
1024 * @size: the size of the region
1025 *
1026 * Return: 0 on success, -errno on failure.
1027 */
1028int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
1029{
1030 return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_NOMAP);
1031}
1032
1033/**
1034 * memblock_reserved_mark_noinit - Mark a reserved memory region with flag
1035 * MEMBLOCK_RSRV_NOINIT which results in the struct pages not being initialized
1036 * for this region.
1037 * @base: the base phys addr of the region
1038 * @size: the size of the region
1039 *
1040 * struct pages will not be initialized for reserved memory regions marked with
1041 * %MEMBLOCK_RSRV_NOINIT.
1042 *
1043 * Return: 0 on success, -errno on failure.
1044 */
1045int __init_memblock memblock_reserved_mark_noinit(phys_addr_t base, phys_addr_t size)
1046{
1047 return memblock_setclr_flag(&memblock.reserved, base, size, 1,
1048 MEMBLOCK_RSRV_NOINIT);
1049}
1050
1051static bool should_skip_region(struct memblock_type *type,
1052 struct memblock_region *m,
1053 int nid, int flags)
1054{
1055 int m_nid = memblock_get_region_node(m);
1056
1057 /* we never skip regions when iterating memblock.reserved or physmem */
1058 if (type != memblock_memory)
1059 return false;
1060
1061 /* only memory regions are associated with nodes, check it */
1062 if (numa_valid_node(nid) && nid != m_nid)
1063 return true;
1064
1065 /* skip hotpluggable memory regions if needed */
1066 if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
1067 !(flags & MEMBLOCK_HOTPLUG))
1068 return true;
1069
1070 /* if we want mirror memory skip non-mirror memory regions */
1071 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1072 return true;
1073
1074 /* skip nomap memory unless we were asked for it explicitly */
1075 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1076 return true;
1077
1078 /* skip driver-managed memory unless we were asked for it explicitly */
1079 if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
1080 return true;
1081
1082 return false;
1083}
1084
1085/**
1086 * __next_mem_range - next function for for_each_free_mem_range() etc.
1087 * @idx: pointer to u64 loop variable
1088 * @nid: node selector, %NUMA_NO_NODE for all nodes
1089 * @flags: pick from blocks based on memory attributes
1090 * @type_a: pointer to memblock_type from where the range is taken
1091 * @type_b: pointer to memblock_type which excludes memory from being taken
1092 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1093 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1094 * @out_nid: ptr to int for nid of the range, can be %NULL
1095 *
1096 * Find the first area from *@idx which matches @nid, fill the out
1097 * parameters, and update *@idx for the next iteration. The lower 32bit of
1098 * *@idx contains index into type_a and the upper 32bit indexes the
1099 * areas before each region in type_b. For example, if type_b regions
1100 * look like the following,
1101 *
1102 * 0:[0-16), 1:[32-48), 2:[128-130)
1103 *
1104 * The upper 32bit indexes the following regions.
1105 *
1106 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1107 *
1108 * As both region arrays are sorted, the function advances the two indices
1109 * in lockstep and returns each intersection.
1110 */
1111void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1112 struct memblock_type *type_a,
1113 struct memblock_type *type_b, phys_addr_t *out_start,
1114 phys_addr_t *out_end, int *out_nid)
1115{
1116 int idx_a = *idx & 0xffffffff;
1117 int idx_b = *idx >> 32;
1118
1119 for (; idx_a < type_a->cnt; idx_a++) {
1120 struct memblock_region *m = &type_a->regions[idx_a];
1121
1122 phys_addr_t m_start = m->base;
1123 phys_addr_t m_end = m->base + m->size;
1124 int m_nid = memblock_get_region_node(m);
1125
1126 if (should_skip_region(type_a, m, nid, flags))
1127 continue;
1128
1129 if (!type_b) {
1130 if (out_start)
1131 *out_start = m_start;
1132 if (out_end)
1133 *out_end = m_end;
1134 if (out_nid)
1135 *out_nid = m_nid;
1136 idx_a++;
1137 *idx = (u32)idx_a | (u64)idx_b << 32;
1138 return;
1139 }
1140
1141 /* scan areas before each reservation */
1142 for (; idx_b < type_b->cnt + 1; idx_b++) {
1143 struct memblock_region *r;
1144 phys_addr_t r_start;
1145 phys_addr_t r_end;
1146
1147 r = &type_b->regions[idx_b];
1148 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1149 r_end = idx_b < type_b->cnt ?
1150 r->base : PHYS_ADDR_MAX;
1151
1152 /*
1153 * if idx_b advanced past idx_a,
1154 * break out to advance idx_a
1155 */
1156 if (r_start >= m_end)
1157 break;
1158 /* if the two regions intersect, we're done */
1159 if (m_start < r_end) {
1160 if (out_start)
1161 *out_start =
1162 max(m_start, r_start);
1163 if (out_end)
1164 *out_end = min(m_end, r_end);
1165 if (out_nid)
1166 *out_nid = m_nid;
1167 /*
1168 * The region which ends first is
1169 * advanced for the next iteration.
1170 */
1171 if (m_end <= r_end)
1172 idx_a++;
1173 else
1174 idx_b++;
1175 *idx = (u32)idx_a | (u64)idx_b << 32;
1176 return;
1177 }
1178 }
1179 }
1180
1181 /* signal end of iteration */
1182 *idx = ULLONG_MAX;
1183}
1184
1185/**
1186 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1187 *
1188 * @idx: pointer to u64 loop variable
1189 * @nid: node selector, %NUMA_NO_NODE for all nodes
1190 * @flags: pick from blocks based on memory attributes
1191 * @type_a: pointer to memblock_type from where the range is taken
1192 * @type_b: pointer to memblock_type which excludes memory from being taken
1193 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1194 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1195 * @out_nid: ptr to int for nid of the range, can be %NULL
1196 *
1197 * Finds the next range from type_a which is not marked as unsuitable
1198 * in type_b.
1199 *
1200 * Reverse of __next_mem_range().
1201 */
1202void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1203 enum memblock_flags flags,
1204 struct memblock_type *type_a,
1205 struct memblock_type *type_b,
1206 phys_addr_t *out_start,
1207 phys_addr_t *out_end, int *out_nid)
1208{
1209 int idx_a = *idx & 0xffffffff;
1210 int idx_b = *idx >> 32;
1211
1212 if (*idx == (u64)ULLONG_MAX) {
1213 idx_a = type_a->cnt - 1;
1214 if (type_b != NULL)
1215 idx_b = type_b->cnt;
1216 else
1217 idx_b = 0;
1218 }
1219
1220 for (; idx_a >= 0; idx_a--) {
1221 struct memblock_region *m = &type_a->regions[idx_a];
1222
1223 phys_addr_t m_start = m->base;
1224 phys_addr_t m_end = m->base + m->size;
1225 int m_nid = memblock_get_region_node(m);
1226
1227 if (should_skip_region(type_a, m, nid, flags))
1228 continue;
1229
1230 if (!type_b) {
1231 if (out_start)
1232 *out_start = m_start;
1233 if (out_end)
1234 *out_end = m_end;
1235 if (out_nid)
1236 *out_nid = m_nid;
1237 idx_a--;
1238 *idx = (u32)idx_a | (u64)idx_b << 32;
1239 return;
1240 }
1241
1242 /* scan areas before each reservation */
1243 for (; idx_b >= 0; idx_b--) {
1244 struct memblock_region *r;
1245 phys_addr_t r_start;
1246 phys_addr_t r_end;
1247
1248 r = &type_b->regions[idx_b];
1249 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1250 r_end = idx_b < type_b->cnt ?
1251 r->base : PHYS_ADDR_MAX;
1252 /*
1253 * if idx_b advanced past idx_a,
1254 * break out to advance idx_a
1255 */
1256
1257 if (r_end <= m_start)
1258 break;
1259 /* if the two regions intersect, we're done */
1260 if (m_end > r_start) {
1261 if (out_start)
1262 *out_start = max(m_start, r_start);
1263 if (out_end)
1264 *out_end = min(m_end, r_end);
1265 if (out_nid)
1266 *out_nid = m_nid;
1267 if (m_start >= r_start)
1268 idx_a--;
1269 else
1270 idx_b--;
1271 *idx = (u32)idx_a | (u64)idx_b << 32;
1272 return;
1273 }
1274 }
1275 }
1276 /* signal end of iteration */
1277 *idx = ULLONG_MAX;
1278}
1279
1280/*
1281 * Common iterator interface used to define for_each_mem_pfn_range().
1282 */
1283void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1284 unsigned long *out_start_pfn,
1285 unsigned long *out_end_pfn, int *out_nid)
1286{
1287 struct memblock_type *type = &memblock.memory;
1288 struct memblock_region *r;
1289 int r_nid;
1290
1291 while (++*idx < type->cnt) {
1292 r = &type->regions[*idx];
1293 r_nid = memblock_get_region_node(r);
1294
1295 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1296 continue;
1297 if (!numa_valid_node(nid) || nid == r_nid)
1298 break;
1299 }
1300 if (*idx >= type->cnt) {
1301 *idx = -1;
1302 return;
1303 }
1304
1305 if (out_start_pfn)
1306 *out_start_pfn = PFN_UP(r->base);
1307 if (out_end_pfn)
1308 *out_end_pfn = PFN_DOWN(r->base + r->size);
1309 if (out_nid)
1310 *out_nid = r_nid;
1311}
1312
1313/**
1314 * memblock_set_node - set node ID on memblock regions
1315 * @base: base of area to set node ID for
1316 * @size: size of area to set node ID for
1317 * @type: memblock type to set node ID for
1318 * @nid: node ID to set
1319 *
1320 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1321 * Regions which cross the area boundaries are split as necessary.
1322 *
1323 * Return:
1324 * 0 on success, -errno on failure.
1325 */
1326int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1327 struct memblock_type *type, int nid)
1328{
1329#ifdef CONFIG_NUMA
1330 int start_rgn, end_rgn;
1331 int i, ret;
1332
1333 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1334 if (ret)
1335 return ret;
1336
1337 for (i = start_rgn; i < end_rgn; i++)
1338 memblock_set_region_node(&type->regions[i], nid);
1339
1340 memblock_merge_regions(type, start_rgn, end_rgn);
1341#endif
1342 return 0;
1343}
1344
1345#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1346/**
1347 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1348 *
1349 * @idx: pointer to u64 loop variable
1350 * @zone: zone in which all of the memory blocks reside
1351 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1352 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1353 *
1354 * This function is meant to be a zone/pfn specific wrapper for the
1355 * for_each_mem_range type iterators. Specifically they are used in the
1356 * deferred memory init routines and as such we were duplicating much of
1357 * this logic throughout the code. So instead of having it in multiple
1358 * locations it seemed like it would make more sense to centralize this to
1359 * one new iterator that does everything they need.
1360 */
1361void __init_memblock
1362__next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1363 unsigned long *out_spfn, unsigned long *out_epfn)
1364{
1365 int zone_nid = zone_to_nid(zone);
1366 phys_addr_t spa, epa;
1367
1368 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1369 &memblock.memory, &memblock.reserved,
1370 &spa, &epa, NULL);
1371
1372 while (*idx != U64_MAX) {
1373 unsigned long epfn = PFN_DOWN(epa);
1374 unsigned long spfn = PFN_UP(spa);
1375
1376 /*
1377 * Verify the end is at least past the start of the zone and
1378 * that we have at least one PFN to initialize.
1379 */
1380 if (zone->zone_start_pfn < epfn && spfn < epfn) {
1381 /* if we went too far just stop searching */
1382 if (zone_end_pfn(zone) <= spfn) {
1383 *idx = U64_MAX;
1384 break;
1385 }
1386
1387 if (out_spfn)
1388 *out_spfn = max(zone->zone_start_pfn, spfn);
1389 if (out_epfn)
1390 *out_epfn = min(zone_end_pfn(zone), epfn);
1391
1392 return;
1393 }
1394
1395 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1396 &memblock.memory, &memblock.reserved,
1397 &spa, &epa, NULL);
1398 }
1399
1400 /* signal end of iteration */
1401 if (out_spfn)
1402 *out_spfn = ULONG_MAX;
1403 if (out_epfn)
1404 *out_epfn = 0;
1405}
1406
1407#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1408
1409/**
1410 * memblock_alloc_range_nid - allocate boot memory block
1411 * @size: size of memory block to be allocated in bytes
1412 * @align: alignment of the region and block's size
1413 * @start: the lower bound of the memory region to allocate (phys address)
1414 * @end: the upper bound of the memory region to allocate (phys address)
1415 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1416 * @exact_nid: control the allocation fall back to other nodes
1417 *
1418 * The allocation is performed from memory region limited by
1419 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1420 *
1421 * If the specified node can not hold the requested memory and @exact_nid
1422 * is false, the allocation falls back to any node in the system.
1423 *
1424 * For systems with memory mirroring, the allocation is attempted first
1425 * from the regions with mirroring enabled and then retried from any
1426 * memory region.
1427 *
1428 * In addition, function using kmemleak_alloc_phys for allocated boot
1429 * memory block, it is never reported as leaks.
1430 *
1431 * Return:
1432 * Physical address of allocated memory block on success, %0 on failure.
1433 */
1434phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1435 phys_addr_t align, phys_addr_t start,
1436 phys_addr_t end, int nid,
1437 bool exact_nid)
1438{
1439 enum memblock_flags flags = choose_memblock_flags();
1440 phys_addr_t found;
1441
1442 /*
1443 * Detect any accidental use of these APIs after slab is ready, as at
1444 * this moment memblock may be deinitialized already and its
1445 * internal data may be destroyed (after execution of memblock_free_all)
1446 */
1447 if (WARN_ON_ONCE(slab_is_available())) {
1448 void *vaddr = kzalloc_node(size, GFP_NOWAIT, nid);
1449
1450 return vaddr ? virt_to_phys(vaddr) : 0;
1451 }
1452
1453 if (!align) {
1454 /* Can't use WARNs this early in boot on powerpc */
1455 dump_stack();
1456 align = SMP_CACHE_BYTES;
1457 }
1458
1459again:
1460 found = memblock_find_in_range_node(size, align, start, end, nid,
1461 flags);
1462 if (found && !memblock_reserve(found, size))
1463 goto done;
1464
1465 if (numa_valid_node(nid) && !exact_nid) {
1466 found = memblock_find_in_range_node(size, align, start,
1467 end, NUMA_NO_NODE,
1468 flags);
1469 if (found && !memblock_reserve(found, size))
1470 goto done;
1471 }
1472
1473 if (flags & MEMBLOCK_MIRROR) {
1474 flags &= ~MEMBLOCK_MIRROR;
1475 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
1476 &size);
1477 goto again;
1478 }
1479
1480 return 0;
1481
1482done:
1483 /*
1484 * Skip kmemleak for those places like kasan_init() and
1485 * early_pgtable_alloc() due to high volume.
1486 */
1487 if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
1488 /*
1489 * Memblock allocated blocks are never reported as
1490 * leaks. This is because many of these blocks are
1491 * only referred via the physical address which is
1492 * not looked up by kmemleak.
1493 */
1494 kmemleak_alloc_phys(found, size, 0);
1495
1496 /*
1497 * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP,
1498 * require memory to be accepted before it can be used by the
1499 * guest.
1500 *
1501 * Accept the memory of the allocated buffer.
1502 */
1503 accept_memory(found, size);
1504
1505 return found;
1506}
1507
1508/**
1509 * memblock_phys_alloc_range - allocate a memory block inside specified range
1510 * @size: size of memory block to be allocated in bytes
1511 * @align: alignment of the region and block's size
1512 * @start: the lower bound of the memory region to allocate (physical address)
1513 * @end: the upper bound of the memory region to allocate (physical address)
1514 *
1515 * Allocate @size bytes in the between @start and @end.
1516 *
1517 * Return: physical address of the allocated memory block on success,
1518 * %0 on failure.
1519 */
1520phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1521 phys_addr_t align,
1522 phys_addr_t start,
1523 phys_addr_t end)
1524{
1525 memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1526 __func__, (u64)size, (u64)align, &start, &end,
1527 (void *)_RET_IP_);
1528 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1529 false);
1530}
1531
1532/**
1533 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1534 * @size: size of memory block to be allocated in bytes
1535 * @align: alignment of the region and block's size
1536 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1537 *
1538 * Allocates memory block from the specified NUMA node. If the node
1539 * has no available memory, attempts to allocated from any node in the
1540 * system.
1541 *
1542 * Return: physical address of the allocated memory block on success,
1543 * %0 on failure.
1544 */
1545phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1546{
1547 return memblock_alloc_range_nid(size, align, 0,
1548 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1549}
1550
1551/**
1552 * memblock_alloc_internal - allocate boot memory block
1553 * @size: size of memory block to be allocated in bytes
1554 * @align: alignment of the region and block's size
1555 * @min_addr: the lower bound of the memory region to allocate (phys address)
1556 * @max_addr: the upper bound of the memory region to allocate (phys address)
1557 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1558 * @exact_nid: control the allocation fall back to other nodes
1559 *
1560 * Allocates memory block using memblock_alloc_range_nid() and
1561 * converts the returned physical address to virtual.
1562 *
1563 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1564 * will fall back to memory below @min_addr. Other constraints, such
1565 * as node and mirrored memory will be handled again in
1566 * memblock_alloc_range_nid().
1567 *
1568 * Return:
1569 * Virtual address of allocated memory block on success, NULL on failure.
1570 */
1571static void * __init memblock_alloc_internal(
1572 phys_addr_t size, phys_addr_t align,
1573 phys_addr_t min_addr, phys_addr_t max_addr,
1574 int nid, bool exact_nid)
1575{
1576 phys_addr_t alloc;
1577
1578
1579 if (max_addr > memblock.current_limit)
1580 max_addr = memblock.current_limit;
1581
1582 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1583 exact_nid);
1584
1585 /* retry allocation without lower limit */
1586 if (!alloc && min_addr)
1587 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1588 exact_nid);
1589
1590 if (!alloc)
1591 return NULL;
1592
1593 return phys_to_virt(alloc);
1594}
1595
1596/**
1597 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1598 * without zeroing memory
1599 * @size: size of memory block to be allocated in bytes
1600 * @align: alignment of the region and block's size
1601 * @min_addr: the lower bound of the memory region from where the allocation
1602 * is preferred (phys address)
1603 * @max_addr: the upper bound of the memory region from where the allocation
1604 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1605 * allocate only from memory limited by memblock.current_limit value
1606 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1607 *
1608 * Public function, provides additional debug information (including caller
1609 * info), if enabled. Does not zero allocated memory.
1610 *
1611 * Return:
1612 * Virtual address of allocated memory block on success, NULL on failure.
1613 */
1614void * __init memblock_alloc_exact_nid_raw(
1615 phys_addr_t size, phys_addr_t align,
1616 phys_addr_t min_addr, phys_addr_t max_addr,
1617 int nid)
1618{
1619 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1620 __func__, (u64)size, (u64)align, nid, &min_addr,
1621 &max_addr, (void *)_RET_IP_);
1622
1623 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1624 true);
1625}
1626
1627/**
1628 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1629 * memory and without panicking
1630 * @size: size of memory block to be allocated in bytes
1631 * @align: alignment of the region and block's size
1632 * @min_addr: the lower bound of the memory region from where the allocation
1633 * is preferred (phys address)
1634 * @max_addr: the upper bound of the memory region from where the allocation
1635 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1636 * allocate only from memory limited by memblock.current_limit value
1637 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1638 *
1639 * Public function, provides additional debug information (including caller
1640 * info), if enabled. Does not zero allocated memory, does not panic if request
1641 * cannot be satisfied.
1642 *
1643 * Return:
1644 * Virtual address of allocated memory block on success, NULL on failure.
1645 */
1646void * __init memblock_alloc_try_nid_raw(
1647 phys_addr_t size, phys_addr_t align,
1648 phys_addr_t min_addr, phys_addr_t max_addr,
1649 int nid)
1650{
1651 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1652 __func__, (u64)size, (u64)align, nid, &min_addr,
1653 &max_addr, (void *)_RET_IP_);
1654
1655 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1656 false);
1657}
1658
1659/**
1660 * memblock_alloc_try_nid - allocate boot memory block
1661 * @size: size of memory block to be allocated in bytes
1662 * @align: alignment of the region and block's size
1663 * @min_addr: the lower bound of the memory region from where the allocation
1664 * is preferred (phys address)
1665 * @max_addr: the upper bound of the memory region from where the allocation
1666 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1667 * allocate only from memory limited by memblock.current_limit value
1668 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1669 *
1670 * Public function, provides additional debug information (including caller
1671 * info), if enabled. This function zeroes the allocated memory.
1672 *
1673 * Return:
1674 * Virtual address of allocated memory block on success, NULL on failure.
1675 */
1676void * __init memblock_alloc_try_nid(
1677 phys_addr_t size, phys_addr_t align,
1678 phys_addr_t min_addr, phys_addr_t max_addr,
1679 int nid)
1680{
1681 void *ptr;
1682
1683 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1684 __func__, (u64)size, (u64)align, nid, &min_addr,
1685 &max_addr, (void *)_RET_IP_);
1686 ptr = memblock_alloc_internal(size, align,
1687 min_addr, max_addr, nid, false);
1688 if (ptr)
1689 memset(ptr, 0, size);
1690
1691 return ptr;
1692}
1693
1694/**
1695 * memblock_free_late - free pages directly to buddy allocator
1696 * @base: phys starting address of the boot memory block
1697 * @size: size of the boot memory block in bytes
1698 *
1699 * This is only useful when the memblock allocator has already been torn
1700 * down, but we are still initializing the system. Pages are released directly
1701 * to the buddy allocator.
1702 */
1703void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
1704{
1705 phys_addr_t cursor, end;
1706
1707 end = base + size - 1;
1708 memblock_dbg("%s: [%pa-%pa] %pS\n",
1709 __func__, &base, &end, (void *)_RET_IP_);
1710 kmemleak_free_part_phys(base, size);
1711 cursor = PFN_UP(base);
1712 end = PFN_DOWN(base + size);
1713
1714 for (; cursor < end; cursor++) {
1715 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1716 totalram_pages_inc();
1717 }
1718}
1719
1720/*
1721 * Remaining API functions
1722 */
1723
1724phys_addr_t __init_memblock memblock_phys_mem_size(void)
1725{
1726 return memblock.memory.total_size;
1727}
1728
1729phys_addr_t __init_memblock memblock_reserved_size(void)
1730{
1731 return memblock.reserved.total_size;
1732}
1733
1734/**
1735 * memblock_estimated_nr_free_pages - return estimated number of free pages
1736 * from memblock point of view
1737 *
1738 * During bootup, subsystems might need a rough estimate of the number of free
1739 * pages in the whole system, before precise numbers are available from the
1740 * buddy. Especially with CONFIG_DEFERRED_STRUCT_PAGE_INIT, the numbers
1741 * obtained from the buddy might be very imprecise during bootup.
1742 *
1743 * Return:
1744 * An estimated number of free pages from memblock point of view.
1745 */
1746unsigned long __init memblock_estimated_nr_free_pages(void)
1747{
1748 return PHYS_PFN(memblock_phys_mem_size() - memblock_reserved_size());
1749}
1750
1751/* lowest address */
1752phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1753{
1754 return memblock.memory.regions[0].base;
1755}
1756
1757phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1758{
1759 int idx = memblock.memory.cnt - 1;
1760
1761 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1762}
1763
1764static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1765{
1766 phys_addr_t max_addr = PHYS_ADDR_MAX;
1767 struct memblock_region *r;
1768
1769 /*
1770 * translate the memory @limit size into the max address within one of
1771 * the memory memblock regions, if the @limit exceeds the total size
1772 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1773 */
1774 for_each_mem_region(r) {
1775 if (limit <= r->size) {
1776 max_addr = r->base + limit;
1777 break;
1778 }
1779 limit -= r->size;
1780 }
1781
1782 return max_addr;
1783}
1784
1785void __init memblock_enforce_memory_limit(phys_addr_t limit)
1786{
1787 phys_addr_t max_addr;
1788
1789 if (!limit)
1790 return;
1791
1792 max_addr = __find_max_addr(limit);
1793
1794 /* @limit exceeds the total size of the memory, do nothing */
1795 if (max_addr == PHYS_ADDR_MAX)
1796 return;
1797
1798 /* truncate both memory and reserved regions */
1799 memblock_remove_range(&memblock.memory, max_addr,
1800 PHYS_ADDR_MAX);
1801 memblock_remove_range(&memblock.reserved, max_addr,
1802 PHYS_ADDR_MAX);
1803}
1804
1805void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1806{
1807 int start_rgn, end_rgn;
1808 int i, ret;
1809
1810 if (!size)
1811 return;
1812
1813 if (!memblock_memory->total_size) {
1814 pr_warn("%s: No memory registered yet\n", __func__);
1815 return;
1816 }
1817
1818 ret = memblock_isolate_range(&memblock.memory, base, size,
1819 &start_rgn, &end_rgn);
1820 if (ret)
1821 return;
1822
1823 /* remove all the MAP regions */
1824 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1825 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1826 memblock_remove_region(&memblock.memory, i);
1827
1828 for (i = start_rgn - 1; i >= 0; i--)
1829 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1830 memblock_remove_region(&memblock.memory, i);
1831
1832 /* truncate the reserved regions */
1833 memblock_remove_range(&memblock.reserved, 0, base);
1834 memblock_remove_range(&memblock.reserved,
1835 base + size, PHYS_ADDR_MAX);
1836}
1837
1838void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1839{
1840 phys_addr_t max_addr;
1841
1842 if (!limit)
1843 return;
1844
1845 max_addr = __find_max_addr(limit);
1846
1847 /* @limit exceeds the total size of the memory, do nothing */
1848 if (max_addr == PHYS_ADDR_MAX)
1849 return;
1850
1851 memblock_cap_memory_range(0, max_addr);
1852}
1853
1854static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1855{
1856 unsigned int left = 0, right = type->cnt;
1857
1858 do {
1859 unsigned int mid = (right + left) / 2;
1860
1861 if (addr < type->regions[mid].base)
1862 right = mid;
1863 else if (addr >= (type->regions[mid].base +
1864 type->regions[mid].size))
1865 left = mid + 1;
1866 else
1867 return mid;
1868 } while (left < right);
1869 return -1;
1870}
1871
1872bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1873{
1874 return memblock_search(&memblock.reserved, addr) != -1;
1875}
1876
1877bool __init_memblock memblock_is_memory(phys_addr_t addr)
1878{
1879 return memblock_search(&memblock.memory, addr) != -1;
1880}
1881
1882bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1883{
1884 int i = memblock_search(&memblock.memory, addr);
1885
1886 if (i == -1)
1887 return false;
1888 return !memblock_is_nomap(&memblock.memory.regions[i]);
1889}
1890
1891int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1892 unsigned long *start_pfn, unsigned long *end_pfn)
1893{
1894 struct memblock_type *type = &memblock.memory;
1895 int mid = memblock_search(type, PFN_PHYS(pfn));
1896
1897 if (mid == -1)
1898 return NUMA_NO_NODE;
1899
1900 *start_pfn = PFN_DOWN(type->regions[mid].base);
1901 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1902
1903 return memblock_get_region_node(&type->regions[mid]);
1904}
1905
1906/**
1907 * memblock_is_region_memory - check if a region is a subset of memory
1908 * @base: base of region to check
1909 * @size: size of region to check
1910 *
1911 * Check if the region [@base, @base + @size) is a subset of a memory block.
1912 *
1913 * Return:
1914 * 0 if false, non-zero if true
1915 */
1916bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1917{
1918 int idx = memblock_search(&memblock.memory, base);
1919 phys_addr_t end = base + memblock_cap_size(base, &size);
1920
1921 if (idx == -1)
1922 return false;
1923 return (memblock.memory.regions[idx].base +
1924 memblock.memory.regions[idx].size) >= end;
1925}
1926
1927/**
1928 * memblock_is_region_reserved - check if a region intersects reserved memory
1929 * @base: base of region to check
1930 * @size: size of region to check
1931 *
1932 * Check if the region [@base, @base + @size) intersects a reserved
1933 * memory block.
1934 *
1935 * Return:
1936 * True if they intersect, false if not.
1937 */
1938bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1939{
1940 return memblock_overlaps_region(&memblock.reserved, base, size);
1941}
1942
1943void __init_memblock memblock_trim_memory(phys_addr_t align)
1944{
1945 phys_addr_t start, end, orig_start, orig_end;
1946 struct memblock_region *r;
1947
1948 for_each_mem_region(r) {
1949 orig_start = r->base;
1950 orig_end = r->base + r->size;
1951 start = round_up(orig_start, align);
1952 end = round_down(orig_end, align);
1953
1954 if (start == orig_start && end == orig_end)
1955 continue;
1956
1957 if (start < end) {
1958 r->base = start;
1959 r->size = end - start;
1960 } else {
1961 memblock_remove_region(&memblock.memory,
1962 r - memblock.memory.regions);
1963 r--;
1964 }
1965 }
1966}
1967
1968void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1969{
1970 memblock.current_limit = limit;
1971}
1972
1973phys_addr_t __init_memblock memblock_get_current_limit(void)
1974{
1975 return memblock.current_limit;
1976}
1977
1978static void __init_memblock memblock_dump(struct memblock_type *type)
1979{
1980 phys_addr_t base, end, size;
1981 enum memblock_flags flags;
1982 int idx;
1983 struct memblock_region *rgn;
1984
1985 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
1986
1987 for_each_memblock_type(idx, type, rgn) {
1988 char nid_buf[32] = "";
1989
1990 base = rgn->base;
1991 size = rgn->size;
1992 end = base + size - 1;
1993 flags = rgn->flags;
1994#ifdef CONFIG_NUMA
1995 if (numa_valid_node(memblock_get_region_node(rgn)))
1996 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1997 memblock_get_region_node(rgn));
1998#endif
1999 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
2000 type->name, idx, &base, &end, &size, nid_buf, flags);
2001 }
2002}
2003
2004static void __init_memblock __memblock_dump_all(void)
2005{
2006 pr_info("MEMBLOCK configuration:\n");
2007 pr_info(" memory size = %pa reserved size = %pa\n",
2008 &memblock.memory.total_size,
2009 &memblock.reserved.total_size);
2010
2011 memblock_dump(&memblock.memory);
2012 memblock_dump(&memblock.reserved);
2013#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2014 memblock_dump(&physmem);
2015#endif
2016}
2017
2018void __init_memblock memblock_dump_all(void)
2019{
2020 if (memblock_debug)
2021 __memblock_dump_all();
2022}
2023
2024void __init memblock_allow_resize(void)
2025{
2026 memblock_can_resize = 1;
2027}
2028
2029static int __init early_memblock(char *p)
2030{
2031 if (p && strstr(p, "debug"))
2032 memblock_debug = 1;
2033 return 0;
2034}
2035early_param("memblock", early_memblock);
2036
2037static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
2038{
2039 struct page *start_pg, *end_pg;
2040 phys_addr_t pg, pgend;
2041
2042 /*
2043 * Convert start_pfn/end_pfn to a struct page pointer.
2044 */
2045 start_pg = pfn_to_page(start_pfn - 1) + 1;
2046 end_pg = pfn_to_page(end_pfn - 1) + 1;
2047
2048 /*
2049 * Convert to physical addresses, and round start upwards and end
2050 * downwards.
2051 */
2052 pg = PAGE_ALIGN(__pa(start_pg));
2053 pgend = PAGE_ALIGN_DOWN(__pa(end_pg));
2054
2055 /*
2056 * If there are free pages between these, free the section of the
2057 * memmap array.
2058 */
2059 if (pg < pgend)
2060 memblock_phys_free(pg, pgend - pg);
2061}
2062
2063/*
2064 * The mem_map array can get very big. Free the unused area of the memory map.
2065 */
2066static void __init free_unused_memmap(void)
2067{
2068 unsigned long start, end, prev_end = 0;
2069 int i;
2070
2071 if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
2072 IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
2073 return;
2074
2075 /*
2076 * This relies on each bank being in address order.
2077 * The banks are sorted previously in bootmem_init().
2078 */
2079 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
2080#ifdef CONFIG_SPARSEMEM
2081 /*
2082 * Take care not to free memmap entries that don't exist
2083 * due to SPARSEMEM sections which aren't present.
2084 */
2085 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
2086#endif
2087 /*
2088 * Align down here since many operations in VM subsystem
2089 * presume that there are no holes in the memory map inside
2090 * a pageblock
2091 */
2092 start = pageblock_start_pfn(start);
2093
2094 /*
2095 * If we had a previous bank, and there is a space
2096 * between the current bank and the previous, free it.
2097 */
2098 if (prev_end && prev_end < start)
2099 free_memmap(prev_end, start);
2100
2101 /*
2102 * Align up here since many operations in VM subsystem
2103 * presume that there are no holes in the memory map inside
2104 * a pageblock
2105 */
2106 prev_end = pageblock_align(end);
2107 }
2108
2109#ifdef CONFIG_SPARSEMEM
2110 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
2111 prev_end = pageblock_align(end);
2112 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
2113 }
2114#endif
2115}
2116
2117static void __init __free_pages_memory(unsigned long start, unsigned long end)
2118{
2119 int order;
2120
2121 while (start < end) {
2122 /*
2123 * Free the pages in the largest chunks alignment allows.
2124 *
2125 * __ffs() behaviour is undefined for 0. start == 0 is
2126 * MAX_PAGE_ORDER-aligned, set order to MAX_PAGE_ORDER for
2127 * the case.
2128 */
2129 if (start)
2130 order = min_t(int, MAX_PAGE_ORDER, __ffs(start));
2131 else
2132 order = MAX_PAGE_ORDER;
2133
2134 while (start + (1UL << order) > end)
2135 order--;
2136
2137 memblock_free_pages(pfn_to_page(start), start, order);
2138
2139 start += (1UL << order);
2140 }
2141}
2142
2143static unsigned long __init __free_memory_core(phys_addr_t start,
2144 phys_addr_t end)
2145{
2146 unsigned long start_pfn = PFN_UP(start);
2147 unsigned long end_pfn = min_t(unsigned long,
2148 PFN_DOWN(end), max_low_pfn);
2149
2150 if (start_pfn >= end_pfn)
2151 return 0;
2152
2153 __free_pages_memory(start_pfn, end_pfn);
2154
2155 return end_pfn - start_pfn;
2156}
2157
2158static void __init memmap_init_reserved_pages(void)
2159{
2160 struct memblock_region *region;
2161 phys_addr_t start, end;
2162 int nid;
2163
2164 /*
2165 * set nid on all reserved pages and also treat struct
2166 * pages for the NOMAP regions as PageReserved
2167 */
2168 for_each_mem_region(region) {
2169 nid = memblock_get_region_node(region);
2170 start = region->base;
2171 end = start + region->size;
2172
2173 if (memblock_is_nomap(region))
2174 reserve_bootmem_region(start, end, nid);
2175
2176 memblock_set_node(start, end, &memblock.reserved, nid);
2177 }
2178
2179 /*
2180 * initialize struct pages for reserved regions that don't have
2181 * the MEMBLOCK_RSRV_NOINIT flag set
2182 */
2183 for_each_reserved_mem_region(region) {
2184 if (!memblock_is_reserved_noinit(region)) {
2185 nid = memblock_get_region_node(region);
2186 start = region->base;
2187 end = start + region->size;
2188
2189 if (!numa_valid_node(nid))
2190 nid = early_pfn_to_nid(PFN_DOWN(start));
2191
2192 reserve_bootmem_region(start, end, nid);
2193 }
2194 }
2195}
2196
2197static unsigned long __init free_low_memory_core_early(void)
2198{
2199 unsigned long count = 0;
2200 phys_addr_t start, end;
2201 u64 i;
2202
2203 memblock_clear_hotplug(0, -1);
2204
2205 memmap_init_reserved_pages();
2206
2207 /*
2208 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2209 * because in some case like Node0 doesn't have RAM installed
2210 * low ram will be on Node1
2211 */
2212 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2213 NULL)
2214 count += __free_memory_core(start, end);
2215
2216 return count;
2217}
2218
2219static int reset_managed_pages_done __initdata;
2220
2221static void __init reset_node_managed_pages(pg_data_t *pgdat)
2222{
2223 struct zone *z;
2224
2225 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2226 atomic_long_set(&z->managed_pages, 0);
2227}
2228
2229void __init reset_all_zones_managed_pages(void)
2230{
2231 struct pglist_data *pgdat;
2232
2233 if (reset_managed_pages_done)
2234 return;
2235
2236 for_each_online_pgdat(pgdat)
2237 reset_node_managed_pages(pgdat);
2238
2239 reset_managed_pages_done = 1;
2240}
2241
2242/**
2243 * memblock_free_all - release free pages to the buddy allocator
2244 */
2245void __init memblock_free_all(void)
2246{
2247 unsigned long pages;
2248
2249 free_unused_memmap();
2250 reset_all_zones_managed_pages();
2251
2252 pages = free_low_memory_core_early();
2253 totalram_pages_add(pages);
2254}
2255
2256/* Keep a table to reserve named memory */
2257#define RESERVE_MEM_MAX_ENTRIES 8
2258#define RESERVE_MEM_NAME_SIZE 16
2259struct reserve_mem_table {
2260 char name[RESERVE_MEM_NAME_SIZE];
2261 phys_addr_t start;
2262 phys_addr_t size;
2263};
2264static struct reserve_mem_table reserved_mem_table[RESERVE_MEM_MAX_ENTRIES];
2265static int reserved_mem_count;
2266
2267/* Add wildcard region with a lookup name */
2268static void __init reserved_mem_add(phys_addr_t start, phys_addr_t size,
2269 const char *name)
2270{
2271 struct reserve_mem_table *map;
2272
2273 map = &reserved_mem_table[reserved_mem_count++];
2274 map->start = start;
2275 map->size = size;
2276 strscpy(map->name, name);
2277}
2278
2279/**
2280 * reserve_mem_find_by_name - Find reserved memory region with a given name
2281 * @name: The name that is attached to a reserved memory region
2282 * @start: If found, holds the start address
2283 * @size: If found, holds the size of the address.
2284 *
2285 * @start and @size are only updated if @name is found.
2286 *
2287 * Returns: 1 if found or 0 if not found.
2288 */
2289int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size)
2290{
2291 struct reserve_mem_table *map;
2292 int i;
2293
2294 for (i = 0; i < reserved_mem_count; i++) {
2295 map = &reserved_mem_table[i];
2296 if (!map->size)
2297 continue;
2298 if (strcmp(name, map->name) == 0) {
2299 *start = map->start;
2300 *size = map->size;
2301 return 1;
2302 }
2303 }
2304 return 0;
2305}
2306EXPORT_SYMBOL_GPL(reserve_mem_find_by_name);
2307
2308/*
2309 * Parse reserve_mem=nn:align:name
2310 */
2311static int __init reserve_mem(char *p)
2312{
2313 phys_addr_t start, size, align, tmp;
2314 char *name;
2315 char *oldp;
2316 int len;
2317
2318 if (!p)
2319 return -EINVAL;
2320
2321 /* Check if there's room for more reserved memory */
2322 if (reserved_mem_count >= RESERVE_MEM_MAX_ENTRIES)
2323 return -EBUSY;
2324
2325 oldp = p;
2326 size = memparse(p, &p);
2327 if (!size || p == oldp)
2328 return -EINVAL;
2329
2330 if (*p != ':')
2331 return -EINVAL;
2332
2333 align = memparse(p+1, &p);
2334 if (*p != ':')
2335 return -EINVAL;
2336
2337 /*
2338 * memblock_phys_alloc() doesn't like a zero size align,
2339 * but it is OK for this command to have it.
2340 */
2341 if (align < SMP_CACHE_BYTES)
2342 align = SMP_CACHE_BYTES;
2343
2344 name = p + 1;
2345 len = strlen(name);
2346
2347 /* name needs to have length but not too big */
2348 if (!len || len >= RESERVE_MEM_NAME_SIZE)
2349 return -EINVAL;
2350
2351 /* Make sure that name has text */
2352 for (p = name; *p; p++) {
2353 if (!isspace(*p))
2354 break;
2355 }
2356 if (!*p)
2357 return -EINVAL;
2358
2359 /* Make sure the name is not already used */
2360 if (reserve_mem_find_by_name(name, &start, &tmp))
2361 return -EBUSY;
2362
2363 start = memblock_phys_alloc(size, align);
2364 if (!start)
2365 return -ENOMEM;
2366
2367 reserved_mem_add(start, size, name);
2368
2369 return 1;
2370}
2371__setup("reserve_mem=", reserve_mem);
2372
2373#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2374static const char * const flagname[] = {
2375 [ilog2(MEMBLOCK_HOTPLUG)] = "HOTPLUG",
2376 [ilog2(MEMBLOCK_MIRROR)] = "MIRROR",
2377 [ilog2(MEMBLOCK_NOMAP)] = "NOMAP",
2378 [ilog2(MEMBLOCK_DRIVER_MANAGED)] = "DRV_MNG",
2379 [ilog2(MEMBLOCK_RSRV_NOINIT)] = "RSV_NIT",
2380};
2381
2382static int memblock_debug_show(struct seq_file *m, void *private)
2383{
2384 struct memblock_type *type = m->private;
2385 struct memblock_region *reg;
2386 int i, j, nid;
2387 unsigned int count = ARRAY_SIZE(flagname);
2388 phys_addr_t end;
2389
2390 for (i = 0; i < type->cnt; i++) {
2391 reg = &type->regions[i];
2392 end = reg->base + reg->size - 1;
2393 nid = memblock_get_region_node(reg);
2394
2395 seq_printf(m, "%4d: ", i);
2396 seq_printf(m, "%pa..%pa ", ®->base, &end);
2397 if (numa_valid_node(nid))
2398 seq_printf(m, "%4d ", nid);
2399 else
2400 seq_printf(m, "%4c ", 'x');
2401 if (reg->flags) {
2402 for (j = 0; j < count; j++) {
2403 if (reg->flags & (1U << j)) {
2404 seq_printf(m, "%s\n", flagname[j]);
2405 break;
2406 }
2407 }
2408 if (j == count)
2409 seq_printf(m, "%s\n", "UNKNOWN");
2410 } else {
2411 seq_printf(m, "%s\n", "NONE");
2412 }
2413 }
2414 return 0;
2415}
2416DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2417
2418static int __init memblock_init_debugfs(void)
2419{
2420 struct dentry *root = debugfs_create_dir("memblock", NULL);
2421
2422 debugfs_create_file("memory", 0444, root,
2423 &memblock.memory, &memblock_debug_fops);
2424 debugfs_create_file("reserved", 0444, root,
2425 &memblock.reserved, &memblock_debug_fops);
2426#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2427 debugfs_create_file("physmem", 0444, root, &physmem,
2428 &memblock_debug_fops);
2429#endif
2430
2431 return 0;
2432}
2433__initcall(memblock_init_debugfs);
2434
2435#endif /* CONFIG_DEBUG_FS */