Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 * lib/bitmap.c
   3 * Helper functions for bitmap.h.
   4 *
   5 * This source code is licensed under the GNU General Public License,
   6 * Version 2.  See the file COPYING for more details.
   7 */
   8#include <linux/export.h>
   9#include <linux/thread_info.h>
  10#include <linux/ctype.h>
  11#include <linux/errno.h>
  12#include <linux/bitmap.h>
  13#include <linux/bitops.h>
  14#include <linux/bug.h>
  15#include <asm/uaccess.h>
 
 
  16
  17/*
  18 * bitmaps provide an array of bits, implemented using an an
 
 
  19 * array of unsigned longs.  The number of valid bits in a
  20 * given bitmap does _not_ need to be an exact multiple of
  21 * BITS_PER_LONG.
  22 *
  23 * The possible unused bits in the last, partially used word
  24 * of a bitmap are 'don't care'.  The implementation makes
  25 * no particular effort to keep them zero.  It ensures that
  26 * their value will not affect the results of any operation.
  27 * The bitmap operations that return Boolean (bitmap_empty,
  28 * for example) or scalar (bitmap_weight, for example) results
  29 * carefully filter out these unused bits from impacting their
  30 * results.
  31 *
  32 * These operations actually hold to a slightly stronger rule:
  33 * if you don't input any bitmaps to these ops that have some
  34 * unused bits set, then they won't output any set unused bits
  35 * in output bitmaps.
  36 *
  37 * The byte ordering of bitmaps is more natural on little
  38 * endian architectures.  See the big-endian headers
  39 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
  40 * for the best explanations of this ordering.
  41 */
  42
  43int __bitmap_empty(const unsigned long *bitmap, int bits)
 
  44{
  45	int k, lim = bits/BITS_PER_LONG;
  46	for (k = 0; k < lim; ++k)
  47		if (bitmap[k])
  48			return 0;
  49
  50	if (bits % BITS_PER_LONG)
  51		if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
  52			return 0;
  53
  54	return 1;
  55}
  56EXPORT_SYMBOL(__bitmap_empty);
  57
  58int __bitmap_full(const unsigned long *bitmap, int bits)
 
 
 
  59{
  60	int k, lim = bits/BITS_PER_LONG;
  61	for (k = 0; k < lim; ++k)
  62		if (~bitmap[k])
  63			return 0;
  64
  65	if (bits % BITS_PER_LONG)
  66		if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
  67			return 0;
  68
  69	return 1;
  70}
  71EXPORT_SYMBOL(__bitmap_full);
  72
  73int __bitmap_equal(const unsigned long *bitmap1,
  74		const unsigned long *bitmap2, int bits)
  75{
  76	int k, lim = bits/BITS_PER_LONG;
  77	for (k = 0; k < lim; ++k)
  78		if (bitmap1[k] != bitmap2[k])
  79			return 0;
  80
  81	if (bits % BITS_PER_LONG)
  82		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
  83			return 0;
  84
  85	return 1;
 
  86}
  87EXPORT_SYMBOL(__bitmap_equal);
  88
  89void __bitmap_complement(unsigned long *dst, const unsigned long *src, int bits)
  90{
  91	int k, lim = bits/BITS_PER_LONG;
  92	for (k = 0; k < lim; ++k)
  93		dst[k] = ~src[k];
  94
  95	if (bits % BITS_PER_LONG)
  96		dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits);
  97}
  98EXPORT_SYMBOL(__bitmap_complement);
  99
 100/**
 101 * __bitmap_shift_right - logical right shift of the bits in a bitmap
 102 *   @dst : destination bitmap
 103 *   @src : source bitmap
 104 *   @shift : shift by this many bits
 105 *   @bits : bitmap size, in bits
 106 *
 107 * Shifting right (dividing) means moving bits in the MS -> LS bit
 108 * direction.  Zeros are fed into the vacated MS positions and the
 109 * LS bits shifted off the bottom are lost.
 110 */
 111void __bitmap_shift_right(unsigned long *dst,
 112			const unsigned long *src, int shift, int bits)
 113{
 114	int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
 115	int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
 116	unsigned long mask = (1UL << left) - 1;
 117	for (k = 0; off + k < lim; ++k) {
 118		unsigned long upper, lower;
 119
 120		/*
 121		 * If shift is not word aligned, take lower rem bits of
 122		 * word above and make them the top rem bits of result.
 123		 */
 124		if (!rem || off + k + 1 >= lim)
 125			upper = 0;
 126		else {
 127			upper = src[off + k + 1];
 128			if (off + k + 1 == lim - 1 && left)
 129				upper &= mask;
 
 130		}
 131		lower = src[off + k];
 132		if (left && off + k == lim - 1)
 133			lower &= mask;
 134		dst[k] = upper << (BITS_PER_LONG - rem) | lower >> rem;
 135		if (left && k == lim - 1)
 136			dst[k] &= mask;
 137	}
 138	if (off)
 139		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
 140}
 141EXPORT_SYMBOL(__bitmap_shift_right);
 142
 143
 144/**
 145 * __bitmap_shift_left - logical left shift of the bits in a bitmap
 146 *   @dst : destination bitmap
 147 *   @src : source bitmap
 148 *   @shift : shift by this many bits
 149 *   @bits : bitmap size, in bits
 150 *
 151 * Shifting left (multiplying) means moving bits in the LS -> MS
 152 * direction.  Zeros are fed into the vacated LS bit positions
 153 * and those MS bits shifted off the top are lost.
 154 */
 155
 156void __bitmap_shift_left(unsigned long *dst,
 157			const unsigned long *src, int shift, int bits)
 158{
 159	int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
 160	int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
 
 161	for (k = lim - off - 1; k >= 0; --k) {
 162		unsigned long upper, lower;
 163
 164		/*
 165		 * If shift is not word aligned, take upper rem bits of
 166		 * word below and make them the bottom rem bits of result.
 167		 */
 168		if (rem && k > 0)
 169			lower = src[k - 1];
 170		else
 171			lower = 0;
 172		upper = src[k];
 173		if (left && k == lim - 1)
 174			upper &= (1UL << left) - 1;
 175		dst[k + off] = lower  >> (BITS_PER_LONG - rem) | upper << rem;
 176		if (left && k + off == lim - 1)
 177			dst[k + off] &= (1UL << left) - 1;
 178	}
 179	if (off)
 180		memset(dst, 0, off*sizeof(unsigned long));
 181}
 182EXPORT_SYMBOL(__bitmap_shift_left);
 183
 184int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
 185				const unsigned long *bitmap2, int bits)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 186{
 187	int k;
 188	int nr = BITS_TO_LONGS(bits);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 189	unsigned long result = 0;
 190
 191	for (k = 0; k < nr; k++)
 192		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
 
 
 
 193	return result != 0;
 194}
 195EXPORT_SYMBOL(__bitmap_and);
 196
 197void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
 198				const unsigned long *bitmap2, int bits)
 199{
 200	int k;
 201	int nr = BITS_TO_LONGS(bits);
 202
 203	for (k = 0; k < nr; k++)
 204		dst[k] = bitmap1[k] | bitmap2[k];
 205}
 206EXPORT_SYMBOL(__bitmap_or);
 207
 208void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
 209				const unsigned long *bitmap2, int bits)
 210{
 211	int k;
 212	int nr = BITS_TO_LONGS(bits);
 213
 214	for (k = 0; k < nr; k++)
 215		dst[k] = bitmap1[k] ^ bitmap2[k];
 216}
 217EXPORT_SYMBOL(__bitmap_xor);
 218
 219int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
 220				const unsigned long *bitmap2, int bits)
 221{
 222	int k;
 223	int nr = BITS_TO_LONGS(bits);
 224	unsigned long result = 0;
 225
 226	for (k = 0; k < nr; k++)
 227		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
 
 
 
 228	return result != 0;
 229}
 230EXPORT_SYMBOL(__bitmap_andnot);
 231
 232int __bitmap_intersects(const unsigned long *bitmap1,
 233				const unsigned long *bitmap2, int bits)
 
 234{
 235	int k, lim = bits/BITS_PER_LONG;
 
 
 
 
 
 
 
 
 
 
 
 236	for (k = 0; k < lim; ++k)
 237		if (bitmap1[k] & bitmap2[k])
 238			return 1;
 239
 240	if (bits % BITS_PER_LONG)
 241		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
 242			return 1;
 243	return 0;
 244}
 245EXPORT_SYMBOL(__bitmap_intersects);
 246
 247int __bitmap_subset(const unsigned long *bitmap1,
 248				const unsigned long *bitmap2, int bits)
 249{
 250	int k, lim = bits/BITS_PER_LONG;
 251	for (k = 0; k < lim; ++k)
 252		if (bitmap1[k] & ~bitmap2[k])
 253			return 0;
 254
 255	if (bits % BITS_PER_LONG)
 256		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
 257			return 0;
 258	return 1;
 259}
 260EXPORT_SYMBOL(__bitmap_subset);
 261
 262int __bitmap_weight(const unsigned long *bitmap, int bits)
 263{
 264	int k, w = 0, lim = bits/BITS_PER_LONG;
 
 
 
 
 
 
 
 
 
 265
 266	for (k = 0; k < lim; k++)
 267		w += hweight_long(bitmap[k]);
 
 
 
 268
 269	if (bits % BITS_PER_LONG)
 270		w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
 
 
 
 
 271
 272	return w;
 
 
 
 273}
 274EXPORT_SYMBOL(__bitmap_weight);
 275
 276void bitmap_set(unsigned long *map, int start, int nr)
 277{
 278	unsigned long *p = map + BIT_WORD(start);
 279	const int size = start + nr;
 280	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
 281	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
 282
 283	while (nr - bits_to_set >= 0) {
 284		*p |= mask_to_set;
 285		nr -= bits_to_set;
 286		bits_to_set = BITS_PER_LONG;
 287		mask_to_set = ~0UL;
 288		p++;
 289	}
 290	if (nr) {
 291		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
 292		*p |= mask_to_set;
 293	}
 294}
 295EXPORT_SYMBOL(bitmap_set);
 296
 297void bitmap_clear(unsigned long *map, int start, int nr)
 298{
 299	unsigned long *p = map + BIT_WORD(start);
 300	const int size = start + nr;
 301	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
 302	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
 303
 304	while (nr - bits_to_clear >= 0) {
 305		*p &= ~mask_to_clear;
 306		nr -= bits_to_clear;
 307		bits_to_clear = BITS_PER_LONG;
 308		mask_to_clear = ~0UL;
 309		p++;
 310	}
 311	if (nr) {
 312		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
 313		*p &= ~mask_to_clear;
 314	}
 315}
 316EXPORT_SYMBOL(bitmap_clear);
 317
 318/*
 319 * bitmap_find_next_zero_area - find a contiguous aligned zero area
 320 * @map: The address to base the search on
 321 * @size: The bitmap size in bits
 322 * @start: The bitnumber to start searching at
 323 * @nr: The number of zeroed bits we're looking for
 324 * @align_mask: Alignment mask for zero area
 
 325 *
 326 * The @align_mask should be one less than a power of 2; the effect is that
 327 * the bit offset of all zero areas this function finds is multiples of that
 328 * power of 2. A @align_mask of 0 means no alignment is required.
 329 */
 330unsigned long bitmap_find_next_zero_area(unsigned long *map,
 331					 unsigned long size,
 332					 unsigned long start,
 333					 unsigned int nr,
 334					 unsigned long align_mask)
 
 335{
 336	unsigned long index, end, i;
 337again:
 338	index = find_next_zero_bit(map, size, start);
 339
 340	/* Align allocation */
 341	index = __ALIGN_MASK(index, align_mask);
 342
 343	end = index + nr;
 344	if (end > size)
 345		return end;
 346	i = find_next_bit(map, end, index);
 347	if (i < end) {
 348		start = i + 1;
 349		goto again;
 350	}
 351	return index;
 352}
 353EXPORT_SYMBOL(bitmap_find_next_zero_area);
 354
 355/*
 356 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
 357 * second version by Paul Jackson, third by Joe Korty.
 358 */
 359
 360#define CHUNKSZ				32
 361#define nbits_to_hold_value(val)	fls(val)
 362#define BASEDEC 10		/* fancier cpuset lists input in decimal */
 363
 364/**
 365 * bitmap_scnprintf - convert bitmap to an ASCII hex string.
 366 * @buf: byte buffer into which string is placed
 367 * @buflen: reserved size of @buf, in bytes
 368 * @maskp: pointer to bitmap to convert
 369 * @nmaskbits: size of bitmap, in bits
 370 *
 371 * Exactly @nmaskbits bits are displayed.  Hex digits are grouped into
 372 * comma-separated sets of eight digits per set.  Returns the number of
 373 * characters which were written to *buf, excluding the trailing \0.
 374 */
 375int bitmap_scnprintf(char *buf, unsigned int buflen,
 376	const unsigned long *maskp, int nmaskbits)
 377{
 378	int i, word, bit, len = 0;
 379	unsigned long val;
 380	const char *sep = "";
 381	int chunksz;
 382	u32 chunkmask;
 383
 384	chunksz = nmaskbits & (CHUNKSZ - 1);
 385	if (chunksz == 0)
 386		chunksz = CHUNKSZ;
 387
 388	i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ;
 389	for (; i >= 0; i -= CHUNKSZ) {
 390		chunkmask = ((1ULL << chunksz) - 1);
 391		word = i / BITS_PER_LONG;
 392		bit = i % BITS_PER_LONG;
 393		val = (maskp[word] >> bit) & chunkmask;
 394		len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep,
 395			(chunksz+3)/4, val);
 396		chunksz = CHUNKSZ;
 397		sep = ",";
 398	}
 399	return len;
 400}
 401EXPORT_SYMBOL(bitmap_scnprintf);
 402
 403/**
 404 * __bitmap_parse - convert an ASCII hex string into a bitmap.
 405 * @buf: pointer to buffer containing string.
 406 * @buflen: buffer size in bytes.  If string is smaller than this
 407 *    then it must be terminated with a \0.
 408 * @is_user: location of buffer, 0 indicates kernel space
 409 * @maskp: pointer to bitmap array that will contain result.
 410 * @nmaskbits: size of bitmap, in bits.
 411 *
 412 * Commas group hex digits into chunks.  Each chunk defines exactly 32
 413 * bits of the resultant bitmask.  No chunk may specify a value larger
 414 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
 415 * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
 416 * characters and for grouping errors such as "1,,5", ",44", "," and "".
 417 * Leading and trailing whitespace accepted, but not embedded whitespace.
 418 */
 419int __bitmap_parse(const char *buf, unsigned int buflen,
 420		int is_user, unsigned long *maskp,
 421		int nmaskbits)
 422{
 423	int c, old_c, totaldigits, ndigits, nchunks, nbits;
 424	u32 chunk;
 425	const char __user __force *ubuf = (const char __user __force *)buf;
 426
 427	bitmap_zero(maskp, nmaskbits);
 428
 429	nchunks = nbits = totaldigits = c = 0;
 430	do {
 431		chunk = ndigits = 0;
 432
 433		/* Get the next chunk of the bitmap */
 434		while (buflen) {
 435			old_c = c;
 436			if (is_user) {
 437				if (__get_user(c, ubuf++))
 438					return -EFAULT;
 439			}
 440			else
 441				c = *buf++;
 442			buflen--;
 443			if (isspace(c))
 444				continue;
 445
 446			/*
 447			 * If the last character was a space and the current
 448			 * character isn't '\0', we've got embedded whitespace.
 449			 * This is a no-no, so throw an error.
 450			 */
 451			if (totaldigits && c && isspace(old_c))
 452				return -EINVAL;
 453
 454			/* A '\0' or a ',' signal the end of the chunk */
 455			if (c == '\0' || c == ',')
 456				break;
 457
 458			if (!isxdigit(c))
 459				return -EINVAL;
 460
 461			/*
 462			 * Make sure there are at least 4 free bits in 'chunk'.
 463			 * If not, this hexdigit will overflow 'chunk', so
 464			 * throw an error.
 465			 */
 466			if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
 467				return -EOVERFLOW;
 468
 469			chunk = (chunk << 4) | hex_to_bin(c);
 470			ndigits++; totaldigits++;
 471		}
 472		if (ndigits == 0)
 473			return -EINVAL;
 474		if (nchunks == 0 && chunk == 0)
 475			continue;
 476
 477		__bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
 478		*maskp |= chunk;
 479		nchunks++;
 480		nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
 481		if (nbits > nmaskbits)
 482			return -EOVERFLOW;
 483	} while (buflen && c == ',');
 484
 485	return 0;
 486}
 487EXPORT_SYMBOL(__bitmap_parse);
 488
 489/**
 490 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
 491 *
 492 * @ubuf: pointer to user buffer containing string.
 493 * @ulen: buffer size in bytes.  If string is smaller than this
 494 *    then it must be terminated with a \0.
 495 * @maskp: pointer to bitmap array that will contain result.
 496 * @nmaskbits: size of bitmap, in bits.
 497 *
 498 * Wrapper for __bitmap_parse(), providing it with user buffer.
 499 *
 500 * We cannot have this as an inline function in bitmap.h because it needs
 501 * linux/uaccess.h to get the access_ok() declaration and this causes
 502 * cyclic dependencies.
 503 */
 504int bitmap_parse_user(const char __user *ubuf,
 505			unsigned int ulen, unsigned long *maskp,
 506			int nmaskbits)
 507{
 508	if (!access_ok(VERIFY_READ, ubuf, ulen))
 509		return -EFAULT;
 510	return __bitmap_parse((const char __force *)ubuf,
 511				ulen, 1, maskp, nmaskbits);
 512
 513}
 514EXPORT_SYMBOL(bitmap_parse_user);
 515
 516/*
 517 * bscnl_emit(buf, buflen, rbot, rtop, bp)
 518 *
 519 * Helper routine for bitmap_scnlistprintf().  Write decimal number
 520 * or range to buf, suppressing output past buf+buflen, with optional
 521 * comma-prefix.  Return len of what was written to *buf, excluding the
 522 * trailing \0.
 523 */
 524static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len)
 525{
 526	if (len > 0)
 527		len += scnprintf(buf + len, buflen - len, ",");
 528	if (rbot == rtop)
 529		len += scnprintf(buf + len, buflen - len, "%d", rbot);
 530	else
 531		len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop);
 532	return len;
 533}
 534
 535/**
 536 * bitmap_scnlistprintf - convert bitmap to list format ASCII string
 537 * @buf: byte buffer into which string is placed
 538 * @buflen: reserved size of @buf, in bytes
 539 * @maskp: pointer to bitmap to convert
 540 * @nmaskbits: size of bitmap, in bits
 541 *
 542 * Output format is a comma-separated list of decimal numbers and
 543 * ranges.  Consecutively set bits are shown as two hyphen-separated
 544 * decimal numbers, the smallest and largest bit numbers set in
 545 * the range.  Output format is compatible with the format
 546 * accepted as input by bitmap_parselist().
 547 *
 548 * The return value is the number of characters which were written to *buf
 549 * excluding the trailing '\0', as per ISO C99's scnprintf.
 550 */
 551int bitmap_scnlistprintf(char *buf, unsigned int buflen,
 552	const unsigned long *maskp, int nmaskbits)
 553{
 554	int len = 0;
 555	/* current bit is 'cur', most recently seen range is [rbot, rtop] */
 556	int cur, rbot, rtop;
 557
 558	if (buflen == 0)
 559		return 0;
 560	buf[0] = 0;
 561
 562	rbot = cur = find_first_bit(maskp, nmaskbits);
 563	while (cur < nmaskbits) {
 564		rtop = cur;
 565		cur = find_next_bit(maskp, nmaskbits, cur+1);
 566		if (cur >= nmaskbits || cur > rtop + 1) {
 567			len = bscnl_emit(buf, buflen, rbot, rtop, len);
 568			rbot = cur;
 569		}
 570	}
 571	return len;
 572}
 573EXPORT_SYMBOL(bitmap_scnlistprintf);
 574
 575/**
 576 * __bitmap_parselist - convert list format ASCII string to bitmap
 577 * @buf: read nul-terminated user string from this buffer
 578 * @buflen: buffer size in bytes.  If string is smaller than this
 579 *    then it must be terminated with a \0.
 580 * @is_user: location of buffer, 0 indicates kernel space
 581 * @maskp: write resulting mask here
 582 * @nmaskbits: number of bits in mask to be written
 583 *
 584 * Input format is a comma-separated list of decimal numbers and
 585 * ranges.  Consecutively set bits are shown as two hyphen-separated
 586 * decimal numbers, the smallest and largest bit numbers set in
 587 * the range.
 588 *
 589 * Returns 0 on success, -errno on invalid input strings.
 590 * Error values:
 591 *    %-EINVAL: second number in range smaller than first
 592 *    %-EINVAL: invalid character in string
 593 *    %-ERANGE: bit number specified too large for mask
 594 */
 595static int __bitmap_parselist(const char *buf, unsigned int buflen,
 596		int is_user, unsigned long *maskp,
 597		int nmaskbits)
 598{
 599	unsigned a, b;
 600	int c, old_c, totaldigits;
 601	const char __user __force *ubuf = (const char __user __force *)buf;
 602	int exp_digit, in_range;
 603
 604	totaldigits = c = 0;
 605	bitmap_zero(maskp, nmaskbits);
 606	do {
 607		exp_digit = 1;
 608		in_range = 0;
 609		a = b = 0;
 610
 611		/* Get the next cpu# or a range of cpu#'s */
 612		while (buflen) {
 613			old_c = c;
 614			if (is_user) {
 615				if (__get_user(c, ubuf++))
 616					return -EFAULT;
 617			} else
 618				c = *buf++;
 619			buflen--;
 620			if (isspace(c))
 621				continue;
 622
 623			/*
 624			 * If the last character was a space and the current
 625			 * character isn't '\0', we've got embedded whitespace.
 626			 * This is a no-no, so throw an error.
 627			 */
 628			if (totaldigits && c && isspace(old_c))
 629				return -EINVAL;
 630
 631			/* A '\0' or a ',' signal the end of a cpu# or range */
 632			if (c == '\0' || c == ',')
 633				break;
 634
 635			if (c == '-') {
 636				if (exp_digit || in_range)
 637					return -EINVAL;
 638				b = 0;
 639				in_range = 1;
 640				exp_digit = 1;
 641				continue;
 642			}
 643
 644			if (!isdigit(c))
 645				return -EINVAL;
 646
 647			b = b * 10 + (c - '0');
 648			if (!in_range)
 649				a = b;
 650			exp_digit = 0;
 651			totaldigits++;
 652		}
 653		if (!(a <= b))
 654			return -EINVAL;
 655		if (b >= nmaskbits)
 656			return -ERANGE;
 657		while (a <= b) {
 658			set_bit(a, maskp);
 659			a++;
 660		}
 661	} while (buflen && c == ',');
 662	return 0;
 663}
 664
 665int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
 666{
 667	char *nl  = strchr(bp, '\n');
 668	int len;
 669
 670	if (nl)
 671		len = nl - bp;
 672	else
 673		len = strlen(bp);
 674
 675	return __bitmap_parselist(bp, len, 0, maskp, nmaskbits);
 676}
 677EXPORT_SYMBOL(bitmap_parselist);
 678
 679
 680/**
 681 * bitmap_parselist_user()
 682 *
 683 * @ubuf: pointer to user buffer containing string.
 684 * @ulen: buffer size in bytes.  If string is smaller than this
 685 *    then it must be terminated with a \0.
 686 * @maskp: pointer to bitmap array that will contain result.
 687 * @nmaskbits: size of bitmap, in bits.
 688 *
 689 * Wrapper for bitmap_parselist(), providing it with user buffer.
 690 *
 691 * We cannot have this as an inline function in bitmap.h because it needs
 692 * linux/uaccess.h to get the access_ok() declaration and this causes
 693 * cyclic dependencies.
 694 */
 695int bitmap_parselist_user(const char __user *ubuf,
 696			unsigned int ulen, unsigned long *maskp,
 697			int nmaskbits)
 698{
 699	if (!access_ok(VERIFY_READ, ubuf, ulen))
 700		return -EFAULT;
 701	return __bitmap_parselist((const char __force *)ubuf,
 702					ulen, 1, maskp, nmaskbits);
 703}
 704EXPORT_SYMBOL(bitmap_parselist_user);
 705
 706
 707/**
 708 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
 709 *	@buf: pointer to a bitmap
 710 *	@pos: a bit position in @buf (0 <= @pos < @bits)
 711 *	@bits: number of valid bit positions in @buf
 712 *
 713 * Map the bit at position @pos in @buf (of length @bits) to the
 714 * ordinal of which set bit it is.  If it is not set or if @pos
 715 * is not a valid bit position, map to -1.
 716 *
 717 * If for example, just bits 4 through 7 are set in @buf, then @pos
 718 * values 4 through 7 will get mapped to 0 through 3, respectively,
 719 * and other @pos values will get mapped to 0.  When @pos value 7
 720 * gets mapped to (returns) @ord value 3 in this example, that means
 721 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
 722 *
 723 * The bit positions 0 through @bits are valid positions in @buf.
 724 */
 725static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits)
 726{
 727	int i, ord;
 728
 729	if (pos < 0 || pos >= bits || !test_bit(pos, buf))
 730		return -1;
 731
 732	i = find_first_bit(buf, bits);
 733	ord = 0;
 734	while (i < pos) {
 735		i = find_next_bit(buf, bits, i + 1);
 736	     	ord++;
 737	}
 738	BUG_ON(i != pos);
 739
 740	return ord;
 741}
 742
 743/**
 744 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
 745 *	@buf: pointer to bitmap
 746 *	@ord: ordinal bit position (n-th set bit, n >= 0)
 747 *	@bits: number of valid bit positions in @buf
 748 *
 749 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
 750 * Value of @ord should be in range 0 <= @ord < weight(buf), else
 751 * results are undefined.
 752 *
 753 * If for example, just bits 4 through 7 are set in @buf, then @ord
 754 * values 0 through 3 will get mapped to 4 through 7, respectively,
 755 * and all other @ord values return undefined values.  When @ord value 3
 756 * gets mapped to (returns) @pos value 7 in this example, that means
 757 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
 758 *
 759 * The bit positions 0 through @bits are valid positions in @buf.
 760 */
 761int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits)
 762{
 763	int pos = 0;
 764
 765	if (ord >= 0 && ord < bits) {
 766		int i;
 767
 768		for (i = find_first_bit(buf, bits);
 769		     i < bits && ord > 0;
 770		     i = find_next_bit(buf, bits, i + 1))
 771	     		ord--;
 772		if (i < bits && ord == 0)
 773			pos = i;
 774	}
 775
 776	return pos;
 777}
 778
 779/**
 780 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
 781 *	@dst: remapped result
 782 *	@src: subset to be remapped
 783 *	@old: defines domain of map
 784 *	@new: defines range of map
 785 *	@bits: number of bits in each of these bitmaps
 786 *
 787 * Let @old and @new define a mapping of bit positions, such that
 788 * whatever position is held by the n-th set bit in @old is mapped
 789 * to the n-th set bit in @new.  In the more general case, allowing
 790 * for the possibility that the weight 'w' of @new is less than the
 791 * weight of @old, map the position of the n-th set bit in @old to
 792 * the position of the m-th set bit in @new, where m == n % w.
 793 *
 794 * If either of the @old and @new bitmaps are empty, or if @src and
 795 * @dst point to the same location, then this routine copies @src
 796 * to @dst.
 797 *
 798 * The positions of unset bits in @old are mapped to themselves
 799 * (the identify map).
 800 *
 801 * Apply the above specified mapping to @src, placing the result in
 802 * @dst, clearing any bits previously set in @dst.
 803 *
 804 * For example, lets say that @old has bits 4 through 7 set, and
 805 * @new has bits 12 through 15 set.  This defines the mapping of bit
 806 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
 807 * bit positions unchanged.  So if say @src comes into this routine
 808 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
 809 * 13 and 15 set.
 810 */
 811void bitmap_remap(unsigned long *dst, const unsigned long *src,
 812		const unsigned long *old, const unsigned long *new,
 813		int bits)
 814{
 815	int oldbit, w;
 816
 817	if (dst == src)		/* following doesn't handle inplace remaps */
 818		return;
 819	bitmap_zero(dst, bits);
 820
 821	w = bitmap_weight(new, bits);
 822	for_each_set_bit(oldbit, src, bits) {
 823	     	int n = bitmap_pos_to_ord(old, oldbit, bits);
 824
 825		if (n < 0 || w == 0)
 826			set_bit(oldbit, dst);	/* identity map */
 827		else
 828			set_bit(bitmap_ord_to_pos(new, n % w, bits), dst);
 829	}
 830}
 831EXPORT_SYMBOL(bitmap_remap);
 832
 833/**
 834 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
 835 *	@oldbit: bit position to be mapped
 836 *	@old: defines domain of map
 837 *	@new: defines range of map
 838 *	@bits: number of bits in each of these bitmaps
 839 *
 840 * Let @old and @new define a mapping of bit positions, such that
 841 * whatever position is held by the n-th set bit in @old is mapped
 842 * to the n-th set bit in @new.  In the more general case, allowing
 843 * for the possibility that the weight 'w' of @new is less than the
 844 * weight of @old, map the position of the n-th set bit in @old to
 845 * the position of the m-th set bit in @new, where m == n % w.
 846 *
 847 * The positions of unset bits in @old are mapped to themselves
 848 * (the identify map).
 849 *
 850 * Apply the above specified mapping to bit position @oldbit, returning
 851 * the new bit position.
 852 *
 853 * For example, lets say that @old has bits 4 through 7 set, and
 854 * @new has bits 12 through 15 set.  This defines the mapping of bit
 855 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
 856 * bit positions unchanged.  So if say @oldbit is 5, then this routine
 857 * returns 13.
 858 */
 859int bitmap_bitremap(int oldbit, const unsigned long *old,
 860				const unsigned long *new, int bits)
 861{
 862	int w = bitmap_weight(new, bits);
 863	int n = bitmap_pos_to_ord(old, oldbit, bits);
 864	if (n < 0 || w == 0)
 865		return oldbit;
 866	else
 867		return bitmap_ord_to_pos(new, n % w, bits);
 868}
 869EXPORT_SYMBOL(bitmap_bitremap);
 870
 
 871/**
 872 * bitmap_onto - translate one bitmap relative to another
 873 *	@dst: resulting translated bitmap
 874 * 	@orig: original untranslated bitmap
 875 * 	@relmap: bitmap relative to which translated
 876 *	@bits: number of bits in each of these bitmaps
 877 *
 878 * Set the n-th bit of @dst iff there exists some m such that the
 879 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
 880 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
 881 * (If you understood the previous sentence the first time your
 882 * read it, you're overqualified for your current job.)
 883 *
 884 * In other words, @orig is mapped onto (surjectively) @dst,
 885 * using the the map { <n, m> | the n-th bit of @relmap is the
 886 * m-th set bit of @relmap }.
 887 *
 888 * Any set bits in @orig above bit number W, where W is the
 889 * weight of (number of set bits in) @relmap are mapped nowhere.
 890 * In particular, if for all bits m set in @orig, m >= W, then
 891 * @dst will end up empty.  In situations where the possibility
 892 * of such an empty result is not desired, one way to avoid it is
 893 * to use the bitmap_fold() operator, below, to first fold the
 894 * @orig bitmap over itself so that all its set bits x are in the
 895 * range 0 <= x < W.  The bitmap_fold() operator does this by
 896 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
 897 *
 898 * Example [1] for bitmap_onto():
 899 *  Let's say @relmap has bits 30-39 set, and @orig has bits
 900 *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
 901 *  @dst will have bits 31, 33, 35, 37 and 39 set.
 902 *
 903 *  When bit 0 is set in @orig, it means turn on the bit in
 904 *  @dst corresponding to whatever is the first bit (if any)
 905 *  that is turned on in @relmap.  Since bit 0 was off in the
 906 *  above example, we leave off that bit (bit 30) in @dst.
 907 *
 908 *  When bit 1 is set in @orig (as in the above example), it
 909 *  means turn on the bit in @dst corresponding to whatever
 910 *  is the second bit that is turned on in @relmap.  The second
 911 *  bit in @relmap that was turned on in the above example was
 912 *  bit 31, so we turned on bit 31 in @dst.
 913 *
 914 *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
 915 *  because they were the 4th, 6th, 8th and 10th set bits
 916 *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
 917 *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
 918 *
 919 *  When bit 11 is set in @orig, it means turn on the bit in
 920 *  @dst corresponding to whatever is the twelfth bit that is
 921 *  turned on in @relmap.  In the above example, there were
 922 *  only ten bits turned on in @relmap (30..39), so that bit
 923 *  11 was set in @orig had no affect on @dst.
 924 *
 925 * Example [2] for bitmap_fold() + bitmap_onto():
 926 *  Let's say @relmap has these ten bits set:
 
 927 *		40 41 42 43 45 48 53 61 74 95
 
 928 *  (for the curious, that's 40 plus the first ten terms of the
 929 *  Fibonacci sequence.)
 930 *
 931 *  Further lets say we use the following code, invoking
 932 *  bitmap_fold() then bitmap_onto, as suggested above to
 933 *  avoid the possitility of an empty @dst result:
 934 *
 935 *	unsigned long *tmp;	// a temporary bitmap's bits
 936 *
 937 *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
 938 *	bitmap_onto(dst, tmp, relmap, bits);
 939 *
 940 *  Then this table shows what various values of @dst would be, for
 941 *  various @orig's.  I list the zero-based positions of each set bit.
 942 *  The tmp column shows the intermediate result, as computed by
 943 *  using bitmap_fold() to fold the @orig bitmap modulo ten
 944 *  (the weight of @relmap).
 945 *
 
 946 *      @orig           tmp            @dst
 947 *      0                0             40
 948 *      1                1             41
 949 *      9                9             95
 950 *      10               0             40 (*)
 951 *      1 3 5 7          1 3 5 7       41 43 48 61
 952 *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
 953 *      0 9 18 27        0 9 8 7       40 61 74 95
 954 *      0 10 20 30       0             40
 955 *      0 11 22 33       0 1 2 3       40 41 42 43
 956 *      0 12 24 36       0 2 4 6       40 42 45 53
 957 *      78 102 211       1 2 8         41 42 74 (*)
 
 958 *
 959 * (*) For these marked lines, if we hadn't first done bitmap_fold()
 
 
 960 *     into tmp, then the @dst result would have been empty.
 961 *
 962 * If either of @orig or @relmap is empty (no set bits), then @dst
 963 * will be returned empty.
 964 *
 965 * If (as explained above) the only set bits in @orig are in positions
 966 * m where m >= W, (where W is the weight of @relmap) then @dst will
 967 * once again be returned empty.
 968 *
 969 * All bits in @dst not set by the above rule are cleared.
 970 */
 971void bitmap_onto(unsigned long *dst, const unsigned long *orig,
 972			const unsigned long *relmap, int bits)
 973{
 974	int n, m;       	/* same meaning as in above comment */
 975
 976	if (dst == orig)	/* following doesn't handle inplace mappings */
 977		return;
 978	bitmap_zero(dst, bits);
 979
 980	/*
 981	 * The following code is a more efficient, but less
 982	 * obvious, equivalent to the loop:
 983	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
 984	 *		n = bitmap_ord_to_pos(orig, m, bits);
 985	 *		if (test_bit(m, orig))
 986	 *			set_bit(n, dst);
 987	 *	}
 988	 */
 989
 990	m = 0;
 991	for_each_set_bit(n, relmap, bits) {
 992		/* m == bitmap_pos_to_ord(relmap, n, bits) */
 993		if (test_bit(m, orig))
 994			set_bit(n, dst);
 995		m++;
 996	}
 997}
 998EXPORT_SYMBOL(bitmap_onto);
 999
1000/**
1001 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
1002 *	@dst: resulting smaller bitmap
1003 *	@orig: original larger bitmap
1004 *	@sz: specified size
1005 *	@bits: number of bits in each of these bitmaps
1006 *
1007 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
1008 * Clear all other bits in @dst.  See further the comment and
1009 * Example [2] for bitmap_onto() for why and how to use this.
1010 */
1011void bitmap_fold(unsigned long *dst, const unsigned long *orig,
1012			int sz, int bits)
1013{
1014	int oldbit;
1015
1016	if (dst == orig)	/* following doesn't handle inplace mappings */
1017		return;
1018	bitmap_zero(dst, bits);
1019
1020	for_each_set_bit(oldbit, orig, bits)
1021		set_bit(oldbit % sz, dst);
1022}
1023EXPORT_SYMBOL(bitmap_fold);
1024
1025/*
1026 * Common code for bitmap_*_region() routines.
1027 *	bitmap: array of unsigned longs corresponding to the bitmap
1028 *	pos: the beginning of the region
1029 *	order: region size (log base 2 of number of bits)
1030 *	reg_op: operation(s) to perform on that region of bitmap
1031 *
1032 * Can set, verify and/or release a region of bits in a bitmap,
1033 * depending on which combination of REG_OP_* flag bits is set.
1034 *
1035 * A region of a bitmap is a sequence of bits in the bitmap, of
1036 * some size '1 << order' (a power of two), aligned to that same
1037 * '1 << order' power of two.
1038 *
1039 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1040 * Returns 0 in all other cases and reg_ops.
1041 */
1042
1043enum {
1044	REG_OP_ISFREE,		/* true if region is all zero bits */
1045	REG_OP_ALLOC,		/* set all bits in region */
1046	REG_OP_RELEASE,		/* clear all bits in region */
1047};
1048
1049static int __reg_op(unsigned long *bitmap, int pos, int order, int reg_op)
1050{
1051	int nbits_reg;		/* number of bits in region */
1052	int index;		/* index first long of region in bitmap */
1053	int offset;		/* bit offset region in bitmap[index] */
1054	int nlongs_reg;		/* num longs spanned by region in bitmap */
1055	int nbitsinlong;	/* num bits of region in each spanned long */
1056	unsigned long mask;	/* bitmask for one long of region */
1057	int i;			/* scans bitmap by longs */
1058	int ret = 0;		/* return value */
1059
1060	/*
1061	 * Either nlongs_reg == 1 (for small orders that fit in one long)
1062	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1063	 */
1064	nbits_reg = 1 << order;
1065	index = pos / BITS_PER_LONG;
1066	offset = pos - (index * BITS_PER_LONG);
1067	nlongs_reg = BITS_TO_LONGS(nbits_reg);
1068	nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
1069
1070	/*
1071	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1072	 * overflows if nbitsinlong == BITS_PER_LONG.
1073	 */
1074	mask = (1UL << (nbitsinlong - 1));
1075	mask += mask - 1;
1076	mask <<= offset;
1077
1078	switch (reg_op) {
1079	case REG_OP_ISFREE:
1080		for (i = 0; i < nlongs_reg; i++) {
1081			if (bitmap[index + i] & mask)
1082				goto done;
1083		}
1084		ret = 1;	/* all bits in region free (zero) */
1085		break;
1086
1087	case REG_OP_ALLOC:
1088		for (i = 0; i < nlongs_reg; i++)
1089			bitmap[index + i] |= mask;
1090		break;
1091
1092	case REG_OP_RELEASE:
1093		for (i = 0; i < nlongs_reg; i++)
1094			bitmap[index + i] &= ~mask;
1095		break;
1096	}
1097done:
1098	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1099}
 
1100
 
 
 
 
 
 
 
 
1101/**
1102 * bitmap_find_free_region - find a contiguous aligned mem region
1103 *	@bitmap: array of unsigned longs corresponding to the bitmap
1104 *	@bits: number of bits in the bitmap
1105 *	@order: region size (log base 2 of number of bits) to find
1106 *
1107 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1108 * allocate them (set them to one).  Only consider regions of length
1109 * a power (@order) of two, aligned to that power of two, which
1110 * makes the search algorithm much faster.
1111 *
1112 * Return the bit offset in bitmap of the allocated region,
1113 * or -errno on failure.
1114 */
1115int bitmap_find_free_region(unsigned long *bitmap, int bits, int order)
1116{
1117	int pos, end;		/* scans bitmap by regions of size order */
1118
1119	for (pos = 0 ; (end = pos + (1 << order)) <= bits; pos = end) {
1120		if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1121			continue;
1122		__reg_op(bitmap, pos, order, REG_OP_ALLOC);
1123		return pos;
1124	}
1125	return -ENOMEM;
 
 
 
1126}
1127EXPORT_SYMBOL(bitmap_find_free_region);
1128
1129/**
1130 * bitmap_release_region - release allocated bitmap region
1131 *	@bitmap: array of unsigned longs corresponding to the bitmap
1132 *	@pos: beginning of bit region to release
1133 *	@order: region size (log base 2 of number of bits) to release
1134 *
1135 * This is the complement to __bitmap_find_free_region() and releases
1136 * the found region (by clearing it in the bitmap).
1137 *
1138 * No return value.
1139 */
1140void bitmap_release_region(unsigned long *bitmap, int pos, int order)
1141{
1142	__reg_op(bitmap, pos, order, REG_OP_RELEASE);
 
 
 
 
 
 
 
 
 
 
 
1143}
1144EXPORT_SYMBOL(bitmap_release_region);
 
1145
 
1146/**
1147 * bitmap_allocate_region - allocate bitmap region
1148 *	@bitmap: array of unsigned longs corresponding to the bitmap
1149 *	@pos: beginning of bit region to allocate
1150 *	@order: region size (log base 2 of number of bits) to allocate
1151 *
1152 * Allocate (set bits in) a specified region of a bitmap.
1153 *
1154 * Return 0 on success, or %-EBUSY if specified region wasn't
1155 * free (not all bits were zero).
1156 */
1157int bitmap_allocate_region(unsigned long *bitmap, int pos, int order)
1158{
1159	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1160		return -EBUSY;
1161	__reg_op(bitmap, pos, order, REG_OP_ALLOC);
1162	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1163}
1164EXPORT_SYMBOL(bitmap_allocate_region);
1165
1166/**
1167 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1168 * @dst:   destination buffer
1169 * @src:   bitmap to copy
1170 * @nbits: number of bits in the bitmap
1171 *
1172 * Require nbits % BITS_PER_LONG == 0.
1173 */
1174void bitmap_copy_le(void *dst, const unsigned long *src, int nbits)
1175{
1176	unsigned long *d = dst;
1177	int i;
1178
1179	for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1180		if (BITS_PER_LONG == 64)
1181			d[i] = cpu_to_le64(src[i]);
1182		else
1183			d[i] = cpu_to_le32(src[i]);
1184	}
 
 
 
 
1185}
1186EXPORT_SYMBOL(bitmap_copy_le);
 
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * lib/bitmap.c
  4 * Helper functions for bitmap.h.
 
 
 
  5 */
  6
 
 
 
  7#include <linux/bitmap.h>
  8#include <linux/bitops.h>
  9#include <linux/ctype.h>
 10#include <linux/device.h>
 11#include <linux/export.h>
 12#include <linux/slab.h>
 13
 14/**
 15 * DOC: bitmap introduction
 16 *
 17 * bitmaps provide an array of bits, implemented using an
 18 * array of unsigned longs.  The number of valid bits in a
 19 * given bitmap does _not_ need to be an exact multiple of
 20 * BITS_PER_LONG.
 21 *
 22 * The possible unused bits in the last, partially used word
 23 * of a bitmap are 'don't care'.  The implementation makes
 24 * no particular effort to keep them zero.  It ensures that
 25 * their value will not affect the results of any operation.
 26 * The bitmap operations that return Boolean (bitmap_empty,
 27 * for example) or scalar (bitmap_weight, for example) results
 28 * carefully filter out these unused bits from impacting their
 29 * results.
 30 *
 
 
 
 
 
 31 * The byte ordering of bitmaps is more natural on little
 32 * endian architectures.  See the big-endian headers
 33 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
 34 * for the best explanations of this ordering.
 35 */
 36
 37bool __bitmap_equal(const unsigned long *bitmap1,
 38		    const unsigned long *bitmap2, unsigned int bits)
 39{
 40	unsigned int k, lim = bits/BITS_PER_LONG;
 41	for (k = 0; k < lim; ++k)
 42		if (bitmap1[k] != bitmap2[k])
 43			return false;
 44
 45	if (bits % BITS_PER_LONG)
 46		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
 47			return false;
 48
 49	return true;
 50}
 51EXPORT_SYMBOL(__bitmap_equal);
 52
 53bool __bitmap_or_equal(const unsigned long *bitmap1,
 54		       const unsigned long *bitmap2,
 55		       const unsigned long *bitmap3,
 56		       unsigned int bits)
 57{
 58	unsigned int k, lim = bits / BITS_PER_LONG;
 59	unsigned long tmp;
 
 
 
 
 
 
 60
 61	for (k = 0; k < lim; ++k) {
 62		if ((bitmap1[k] | bitmap2[k]) != bitmap3[k])
 63			return false;
 64	}
 
 
 
 
 
 
 
 65
 66	if (!(bits % BITS_PER_LONG))
 67		return true;
 
 68
 69	tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k];
 70	return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0;
 71}
 
 72
 73void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
 74{
 75	unsigned int k, lim = BITS_TO_LONGS(bits);
 76	for (k = 0; k < lim; ++k)
 77		dst[k] = ~src[k];
 
 
 
 78}
 79EXPORT_SYMBOL(__bitmap_complement);
 80
 81/**
 82 * __bitmap_shift_right - logical right shift of the bits in a bitmap
 83 *   @dst : destination bitmap
 84 *   @src : source bitmap
 85 *   @shift : shift by this many bits
 86 *   @nbits : bitmap size, in bits
 87 *
 88 * Shifting right (dividing) means moving bits in the MS -> LS bit
 89 * direction.  Zeros are fed into the vacated MS positions and the
 90 * LS bits shifted off the bottom are lost.
 91 */
 92void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
 93			unsigned shift, unsigned nbits)
 94{
 95	unsigned k, lim = BITS_TO_LONGS(nbits);
 96	unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
 97	unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
 98	for (k = 0; off + k < lim; ++k) {
 99		unsigned long upper, lower;
100
101		/*
102		 * If shift is not word aligned, take lower rem bits of
103		 * word above and make them the top rem bits of result.
104		 */
105		if (!rem || off + k + 1 >= lim)
106			upper = 0;
107		else {
108			upper = src[off + k + 1];
109			if (off + k + 1 == lim - 1)
110				upper &= mask;
111			upper <<= (BITS_PER_LONG - rem);
112		}
113		lower = src[off + k];
114		if (off + k == lim - 1)
115			lower &= mask;
116		lower >>= rem;
117		dst[k] = lower | upper;
 
118	}
119	if (off)
120		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
121}
122EXPORT_SYMBOL(__bitmap_shift_right);
123
124
125/**
126 * __bitmap_shift_left - logical left shift of the bits in a bitmap
127 *   @dst : destination bitmap
128 *   @src : source bitmap
129 *   @shift : shift by this many bits
130 *   @nbits : bitmap size, in bits
131 *
132 * Shifting left (multiplying) means moving bits in the LS -> MS
133 * direction.  Zeros are fed into the vacated LS bit positions
134 * and those MS bits shifted off the top are lost.
135 */
136
137void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
138			unsigned int shift, unsigned int nbits)
139{
140	int k;
141	unsigned int lim = BITS_TO_LONGS(nbits);
142	unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
143	for (k = lim - off - 1; k >= 0; --k) {
144		unsigned long upper, lower;
145
146		/*
147		 * If shift is not word aligned, take upper rem bits of
148		 * word below and make them the bottom rem bits of result.
149		 */
150		if (rem && k > 0)
151			lower = src[k - 1] >> (BITS_PER_LONG - rem);
152		else
153			lower = 0;
154		upper = src[k] << rem;
155		dst[k + off] = lower | upper;
 
 
 
 
156	}
157	if (off)
158		memset(dst, 0, off*sizeof(unsigned long));
159}
160EXPORT_SYMBOL(__bitmap_shift_left);
161
162/**
163 * bitmap_cut() - remove bit region from bitmap and right shift remaining bits
164 * @dst: destination bitmap, might overlap with src
165 * @src: source bitmap
166 * @first: start bit of region to be removed
167 * @cut: number of bits to remove
168 * @nbits: bitmap size, in bits
169 *
170 * Set the n-th bit of @dst iff the n-th bit of @src is set and
171 * n is less than @first, or the m-th bit of @src is set for any
172 * m such that @first <= n < nbits, and m = n + @cut.
173 *
174 * In pictures, example for a big-endian 32-bit architecture:
175 *
176 * The @src bitmap is::
177 *
178 *   31                                   63
179 *   |                                    |
180 *   10000000 11000001 11110010 00010101  10000000 11000001 01110010 00010101
181 *                   |  |              |                                    |
182 *                  16  14             0                                   32
183 *
184 * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is::
185 *
186 *   31                                   63
187 *   |                                    |
188 *   10110000 00011000 00110010 00010101  00010000 00011000 00101110 01000010
189 *                      |              |                                    |
190 *                      14 (bit 17     0                                   32
191 *                          from @src)
192 *
193 * Note that @dst and @src might overlap partially or entirely.
194 *
195 * This is implemented in the obvious way, with a shift and carry
196 * step for each moved bit. Optimisation is left as an exercise
197 * for the compiler.
198 */
199void bitmap_cut(unsigned long *dst, const unsigned long *src,
200		unsigned int first, unsigned int cut, unsigned int nbits)
201{
202	unsigned int len = BITS_TO_LONGS(nbits);
203	unsigned long keep = 0, carry;
204	int i;
205
206	if (first % BITS_PER_LONG) {
207		keep = src[first / BITS_PER_LONG] &
208		       (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG));
209	}
210
211	memmove(dst, src, len * sizeof(*dst));
212
213	while (cut--) {
214		for (i = first / BITS_PER_LONG; i < len; i++) {
215			if (i < len - 1)
216				carry = dst[i + 1] & 1UL;
217			else
218				carry = 0;
219
220			dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1));
221		}
222	}
223
224	dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG);
225	dst[first / BITS_PER_LONG] |= keep;
226}
227EXPORT_SYMBOL(bitmap_cut);
228
229bool __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
230				const unsigned long *bitmap2, unsigned int bits)
231{
232	unsigned int k;
233	unsigned int lim = bits/BITS_PER_LONG;
234	unsigned long result = 0;
235
236	for (k = 0; k < lim; k++)
237		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
238	if (bits % BITS_PER_LONG)
239		result |= (dst[k] = bitmap1[k] & bitmap2[k] &
240			   BITMAP_LAST_WORD_MASK(bits));
241	return result != 0;
242}
243EXPORT_SYMBOL(__bitmap_and);
244
245void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
246				const unsigned long *bitmap2, unsigned int bits)
247{
248	unsigned int k;
249	unsigned int nr = BITS_TO_LONGS(bits);
250
251	for (k = 0; k < nr; k++)
252		dst[k] = bitmap1[k] | bitmap2[k];
253}
254EXPORT_SYMBOL(__bitmap_or);
255
256void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
257				const unsigned long *bitmap2, unsigned int bits)
258{
259	unsigned int k;
260	unsigned int nr = BITS_TO_LONGS(bits);
261
262	for (k = 0; k < nr; k++)
263		dst[k] = bitmap1[k] ^ bitmap2[k];
264}
265EXPORT_SYMBOL(__bitmap_xor);
266
267bool __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
268				const unsigned long *bitmap2, unsigned int bits)
269{
270	unsigned int k;
271	unsigned int lim = bits/BITS_PER_LONG;
272	unsigned long result = 0;
273
274	for (k = 0; k < lim; k++)
275		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
276	if (bits % BITS_PER_LONG)
277		result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
278			   BITMAP_LAST_WORD_MASK(bits));
279	return result != 0;
280}
281EXPORT_SYMBOL(__bitmap_andnot);
282
283void __bitmap_replace(unsigned long *dst,
284		      const unsigned long *old, const unsigned long *new,
285		      const unsigned long *mask, unsigned int nbits)
286{
287	unsigned int k;
288	unsigned int nr = BITS_TO_LONGS(nbits);
289
290	for (k = 0; k < nr; k++)
291		dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]);
292}
293EXPORT_SYMBOL(__bitmap_replace);
294
295bool __bitmap_intersects(const unsigned long *bitmap1,
296			 const unsigned long *bitmap2, unsigned int bits)
297{
298	unsigned int k, lim = bits/BITS_PER_LONG;
299	for (k = 0; k < lim; ++k)
300		if (bitmap1[k] & bitmap2[k])
301			return true;
302
303	if (bits % BITS_PER_LONG)
304		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
305			return true;
306	return false;
307}
308EXPORT_SYMBOL(__bitmap_intersects);
309
310bool __bitmap_subset(const unsigned long *bitmap1,
311		     const unsigned long *bitmap2, unsigned int bits)
312{
313	unsigned int k, lim = bits/BITS_PER_LONG;
314	for (k = 0; k < lim; ++k)
315		if (bitmap1[k] & ~bitmap2[k])
316			return false;
317
318	if (bits % BITS_PER_LONG)
319		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
320			return false;
321	return true;
322}
323EXPORT_SYMBOL(__bitmap_subset);
324
325#define BITMAP_WEIGHT(FETCH, bits)	\
326({										\
327	unsigned int __bits = (bits), idx, w = 0;				\
328										\
329	for (idx = 0; idx < __bits / BITS_PER_LONG; idx++)			\
330		w += hweight_long(FETCH);					\
331										\
332	if (__bits % BITS_PER_LONG)						\
333		w += hweight_long((FETCH) & BITMAP_LAST_WORD_MASK(__bits));	\
334										\
335	w;									\
336})
337
338unsigned int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
339{
340	return BITMAP_WEIGHT(bitmap[idx], bits);
341}
342EXPORT_SYMBOL(__bitmap_weight);
343
344unsigned int __bitmap_weight_and(const unsigned long *bitmap1,
345				const unsigned long *bitmap2, unsigned int bits)
346{
347	return BITMAP_WEIGHT(bitmap1[idx] & bitmap2[idx], bits);
348}
349EXPORT_SYMBOL(__bitmap_weight_and);
350
351unsigned int __bitmap_weight_andnot(const unsigned long *bitmap1,
352				const unsigned long *bitmap2, unsigned int bits)
353{
354	return BITMAP_WEIGHT(bitmap1[idx] & ~bitmap2[idx], bits);
355}
356EXPORT_SYMBOL(__bitmap_weight_andnot);
357
358void __bitmap_set(unsigned long *map, unsigned int start, int len)
359{
360	unsigned long *p = map + BIT_WORD(start);
361	const unsigned int size = start + len;
362	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
363	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
364
365	while (len - bits_to_set >= 0) {
366		*p |= mask_to_set;
367		len -= bits_to_set;
368		bits_to_set = BITS_PER_LONG;
369		mask_to_set = ~0UL;
370		p++;
371	}
372	if (len) {
373		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
374		*p |= mask_to_set;
375	}
376}
377EXPORT_SYMBOL(__bitmap_set);
378
379void __bitmap_clear(unsigned long *map, unsigned int start, int len)
380{
381	unsigned long *p = map + BIT_WORD(start);
382	const unsigned int size = start + len;
383	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
384	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
385
386	while (len - bits_to_clear >= 0) {
387		*p &= ~mask_to_clear;
388		len -= bits_to_clear;
389		bits_to_clear = BITS_PER_LONG;
390		mask_to_clear = ~0UL;
391		p++;
392	}
393	if (len) {
394		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
395		*p &= ~mask_to_clear;
396	}
397}
398EXPORT_SYMBOL(__bitmap_clear);
399
400/**
401 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
402 * @map: The address to base the search on
403 * @size: The bitmap size in bits
404 * @start: The bitnumber to start searching at
405 * @nr: The number of zeroed bits we're looking for
406 * @align_mask: Alignment mask for zero area
407 * @align_offset: Alignment offset for zero area.
408 *
409 * The @align_mask should be one less than a power of 2; the effect is that
410 * the bit offset of all zero areas this function finds plus @align_offset
411 * is multiple of that power of 2.
412 */
413unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
414					     unsigned long size,
415					     unsigned long start,
416					     unsigned int nr,
417					     unsigned long align_mask,
418					     unsigned long align_offset)
419{
420	unsigned long index, end, i;
421again:
422	index = find_next_zero_bit(map, size, start);
423
424	/* Align allocation */
425	index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
426
427	end = index + nr;
428	if (end > size)
429		return end;
430	i = find_next_bit(map, end, index);
431	if (i < end) {
432		start = i + 1;
433		goto again;
434	}
435	return index;
436}
437EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
438
439/**
440 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
441 *	@buf: pointer to a bitmap
442 *	@pos: a bit position in @buf (0 <= @pos < @nbits)
443 *	@nbits: number of valid bit positions in @buf
444 *
445 * Map the bit at position @pos in @buf (of length @nbits) to the
446 * ordinal of which set bit it is.  If it is not set or if @pos
447 * is not a valid bit position, map to -1.
448 *
449 * If for example, just bits 4 through 7 are set in @buf, then @pos
450 * values 4 through 7 will get mapped to 0 through 3, respectively,
451 * and other @pos values will get mapped to -1.  When @pos value 7
452 * gets mapped to (returns) @ord value 3 in this example, that means
453 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
454 *
455 * The bit positions 0 through @bits are valid positions in @buf.
456 */
457static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
458{
459	if (pos >= nbits || !test_bit(pos, buf))
 
 
460		return -1;
461
462	return bitmap_weight(buf, pos);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
463}
464
465/**
466 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
467 *	@dst: remapped result
468 *	@src: subset to be remapped
469 *	@old: defines domain of map
470 *	@new: defines range of map
471 *	@nbits: number of bits in each of these bitmaps
472 *
473 * Let @old and @new define a mapping of bit positions, such that
474 * whatever position is held by the n-th set bit in @old is mapped
475 * to the n-th set bit in @new.  In the more general case, allowing
476 * for the possibility that the weight 'w' of @new is less than the
477 * weight of @old, map the position of the n-th set bit in @old to
478 * the position of the m-th set bit in @new, where m == n % w.
479 *
480 * If either of the @old and @new bitmaps are empty, or if @src and
481 * @dst point to the same location, then this routine copies @src
482 * to @dst.
483 *
484 * The positions of unset bits in @old are mapped to themselves
485 * (the identity map).
486 *
487 * Apply the above specified mapping to @src, placing the result in
488 * @dst, clearing any bits previously set in @dst.
489 *
490 * For example, lets say that @old has bits 4 through 7 set, and
491 * @new has bits 12 through 15 set.  This defines the mapping of bit
492 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
493 * bit positions unchanged.  So if say @src comes into this routine
494 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
495 * 13 and 15 set.
496 */
497void bitmap_remap(unsigned long *dst, const unsigned long *src,
498		const unsigned long *old, const unsigned long *new,
499		unsigned int nbits)
500{
501	unsigned int oldbit, w;
502
503	if (dst == src)		/* following doesn't handle inplace remaps */
504		return;
505	bitmap_zero(dst, nbits);
506
507	w = bitmap_weight(new, nbits);
508	for_each_set_bit(oldbit, src, nbits) {
509		int n = bitmap_pos_to_ord(old, oldbit, nbits);
510
511		if (n < 0 || w == 0)
512			set_bit(oldbit, dst);	/* identity map */
513		else
514			set_bit(find_nth_bit(new, nbits, n % w), dst);
515	}
516}
517EXPORT_SYMBOL(bitmap_remap);
518
519/**
520 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
521 *	@oldbit: bit position to be mapped
522 *	@old: defines domain of map
523 *	@new: defines range of map
524 *	@bits: number of bits in each of these bitmaps
525 *
526 * Let @old and @new define a mapping of bit positions, such that
527 * whatever position is held by the n-th set bit in @old is mapped
528 * to the n-th set bit in @new.  In the more general case, allowing
529 * for the possibility that the weight 'w' of @new is less than the
530 * weight of @old, map the position of the n-th set bit in @old to
531 * the position of the m-th set bit in @new, where m == n % w.
532 *
533 * The positions of unset bits in @old are mapped to themselves
534 * (the identity map).
535 *
536 * Apply the above specified mapping to bit position @oldbit, returning
537 * the new bit position.
538 *
539 * For example, lets say that @old has bits 4 through 7 set, and
540 * @new has bits 12 through 15 set.  This defines the mapping of bit
541 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
542 * bit positions unchanged.  So if say @oldbit is 5, then this routine
543 * returns 13.
544 */
545int bitmap_bitremap(int oldbit, const unsigned long *old,
546				const unsigned long *new, int bits)
547{
548	int w = bitmap_weight(new, bits);
549	int n = bitmap_pos_to_ord(old, oldbit, bits);
550	if (n < 0 || w == 0)
551		return oldbit;
552	else
553		return find_nth_bit(new, bits, n % w);
554}
555EXPORT_SYMBOL(bitmap_bitremap);
556
557#ifdef CONFIG_NUMA
558/**
559 * bitmap_onto - translate one bitmap relative to another
560 *	@dst: resulting translated bitmap
561 * 	@orig: original untranslated bitmap
562 * 	@relmap: bitmap relative to which translated
563 *	@bits: number of bits in each of these bitmaps
564 *
565 * Set the n-th bit of @dst iff there exists some m such that the
566 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
567 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
568 * (If you understood the previous sentence the first time your
569 * read it, you're overqualified for your current job.)
570 *
571 * In other words, @orig is mapped onto (surjectively) @dst,
572 * using the map { <n, m> | the n-th bit of @relmap is the
573 * m-th set bit of @relmap }.
574 *
575 * Any set bits in @orig above bit number W, where W is the
576 * weight of (number of set bits in) @relmap are mapped nowhere.
577 * In particular, if for all bits m set in @orig, m >= W, then
578 * @dst will end up empty.  In situations where the possibility
579 * of such an empty result is not desired, one way to avoid it is
580 * to use the bitmap_fold() operator, below, to first fold the
581 * @orig bitmap over itself so that all its set bits x are in the
582 * range 0 <= x < W.  The bitmap_fold() operator does this by
583 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
584 *
585 * Example [1] for bitmap_onto():
586 *  Let's say @relmap has bits 30-39 set, and @orig has bits
587 *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
588 *  @dst will have bits 31, 33, 35, 37 and 39 set.
589 *
590 *  When bit 0 is set in @orig, it means turn on the bit in
591 *  @dst corresponding to whatever is the first bit (if any)
592 *  that is turned on in @relmap.  Since bit 0 was off in the
593 *  above example, we leave off that bit (bit 30) in @dst.
594 *
595 *  When bit 1 is set in @orig (as in the above example), it
596 *  means turn on the bit in @dst corresponding to whatever
597 *  is the second bit that is turned on in @relmap.  The second
598 *  bit in @relmap that was turned on in the above example was
599 *  bit 31, so we turned on bit 31 in @dst.
600 *
601 *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
602 *  because they were the 4th, 6th, 8th and 10th set bits
603 *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
604 *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
605 *
606 *  When bit 11 is set in @orig, it means turn on the bit in
607 *  @dst corresponding to whatever is the twelfth bit that is
608 *  turned on in @relmap.  In the above example, there were
609 *  only ten bits turned on in @relmap (30..39), so that bit
610 *  11 was set in @orig had no affect on @dst.
611 *
612 * Example [2] for bitmap_fold() + bitmap_onto():
613 *  Let's say @relmap has these ten bits set::
614 *
615 *		40 41 42 43 45 48 53 61 74 95
616 *
617 *  (for the curious, that's 40 plus the first ten terms of the
618 *  Fibonacci sequence.)
619 *
620 *  Further lets say we use the following code, invoking
621 *  bitmap_fold() then bitmap_onto, as suggested above to
622 *  avoid the possibility of an empty @dst result::
623 *
624 *	unsigned long *tmp;	// a temporary bitmap's bits
625 *
626 *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
627 *	bitmap_onto(dst, tmp, relmap, bits);
628 *
629 *  Then this table shows what various values of @dst would be, for
630 *  various @orig's.  I list the zero-based positions of each set bit.
631 *  The tmp column shows the intermediate result, as computed by
632 *  using bitmap_fold() to fold the @orig bitmap modulo ten
633 *  (the weight of @relmap):
634 *
635 *      =============== ============== =================
636 *      @orig           tmp            @dst
637 *      0                0             40
638 *      1                1             41
639 *      9                9             95
640 *      10               0             40 [#f1]_
641 *      1 3 5 7          1 3 5 7       41 43 48 61
642 *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
643 *      0 9 18 27        0 9 8 7       40 61 74 95
644 *      0 10 20 30       0             40
645 *      0 11 22 33       0 1 2 3       40 41 42 43
646 *      0 12 24 36       0 2 4 6       40 42 45 53
647 *      78 102 211       1 2 8         41 42 74 [#f1]_
648 *      =============== ============== =================
649 *
650 * .. [#f1]
651 *
652 *     For these marked lines, if we hadn't first done bitmap_fold()
653 *     into tmp, then the @dst result would have been empty.
654 *
655 * If either of @orig or @relmap is empty (no set bits), then @dst
656 * will be returned empty.
657 *
658 * If (as explained above) the only set bits in @orig are in positions
659 * m where m >= W, (where W is the weight of @relmap) then @dst will
660 * once again be returned empty.
661 *
662 * All bits in @dst not set by the above rule are cleared.
663 */
664void bitmap_onto(unsigned long *dst, const unsigned long *orig,
665			const unsigned long *relmap, unsigned int bits)
666{
667	unsigned int n, m;	/* same meaning as in above comment */
668
669	if (dst == orig)	/* following doesn't handle inplace mappings */
670		return;
671	bitmap_zero(dst, bits);
672
673	/*
674	 * The following code is a more efficient, but less
675	 * obvious, equivalent to the loop:
676	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
677	 *		n = find_nth_bit(orig, bits, m);
678	 *		if (test_bit(m, orig))
679	 *			set_bit(n, dst);
680	 *	}
681	 */
682
683	m = 0;
684	for_each_set_bit(n, relmap, bits) {
685		/* m == bitmap_pos_to_ord(relmap, n, bits) */
686		if (test_bit(m, orig))
687			set_bit(n, dst);
688		m++;
689	}
690}
 
691
692/**
693 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
694 *	@dst: resulting smaller bitmap
695 *	@orig: original larger bitmap
696 *	@sz: specified size
697 *	@nbits: number of bits in each of these bitmaps
698 *
699 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
700 * Clear all other bits in @dst.  See further the comment and
701 * Example [2] for bitmap_onto() for why and how to use this.
702 */
703void bitmap_fold(unsigned long *dst, const unsigned long *orig,
704			unsigned int sz, unsigned int nbits)
705{
706	unsigned int oldbit;
707
708	if (dst == orig)	/* following doesn't handle inplace mappings */
709		return;
710	bitmap_zero(dst, nbits);
711
712	for_each_set_bit(oldbit, orig, nbits)
713		set_bit(oldbit % sz, dst);
714}
715#endif /* CONFIG_NUMA */
716
717unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
718{
719	return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
720			     flags);
721}
722EXPORT_SYMBOL(bitmap_alloc);
 
 
 
 
 
 
 
 
 
 
 
723
724unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
725{
726	return bitmap_alloc(nbits, flags | __GFP_ZERO);
727}
728EXPORT_SYMBOL(bitmap_zalloc);
 
 
 
 
 
 
 
 
 
 
 
729
730unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node)
731{
732	return kmalloc_array_node(BITS_TO_LONGS(nbits), sizeof(unsigned long),
733				  flags, node);
734}
735EXPORT_SYMBOL(bitmap_alloc_node);
 
 
 
736
737unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node)
738{
739	return bitmap_alloc_node(nbits, flags | __GFP_ZERO, node);
740}
741EXPORT_SYMBOL(bitmap_zalloc_node);
 
 
 
 
 
 
 
 
 
 
 
742
743void bitmap_free(const unsigned long *bitmap)
744{
745	kfree(bitmap);
746}
747EXPORT_SYMBOL(bitmap_free);
748
749static void devm_bitmap_free(void *data)
750{
751	unsigned long *bitmap = data;
752
753	bitmap_free(bitmap);
754}
755
756unsigned long *devm_bitmap_alloc(struct device *dev,
757				 unsigned int nbits, gfp_t flags)
758{
759	unsigned long *bitmap;
760	int ret;
761
762	bitmap = bitmap_alloc(nbits, flags);
763	if (!bitmap)
764		return NULL;
765
766	ret = devm_add_action_or_reset(dev, devm_bitmap_free, bitmap);
767	if (ret)
768		return NULL;
769
770	return bitmap;
771}
772EXPORT_SYMBOL_GPL(devm_bitmap_alloc);
773
774unsigned long *devm_bitmap_zalloc(struct device *dev,
775				  unsigned int nbits, gfp_t flags)
776{
777	return devm_bitmap_alloc(dev, nbits, flags | __GFP_ZERO);
778}
779EXPORT_SYMBOL_GPL(devm_bitmap_zalloc);
780
781#if BITS_PER_LONG == 64
782/**
783 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
784 *	@bitmap: array of unsigned longs, the destination bitmap
785 *	@buf: array of u32 (in host byte order), the source bitmap
786 *	@nbits: number of bits in @bitmap
 
 
 
 
 
 
 
 
787 */
788void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
789{
790	unsigned int i, halfwords;
791
792	halfwords = DIV_ROUND_UP(nbits, 32);
793	for (i = 0; i < halfwords; i++) {
794		bitmap[i/2] = (unsigned long) buf[i];
795		if (++i < halfwords)
796			bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
797	}
798
799	/* Clear tail bits in last word beyond nbits. */
800	if (nbits % BITS_PER_LONG)
801		bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
802}
803EXPORT_SYMBOL(bitmap_from_arr32);
804
805/**
806 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
807 *	@buf: array of u32 (in host byte order), the dest bitmap
808 *	@bitmap: array of unsigned longs, the source bitmap
809 *	@nbits: number of bits in @bitmap
 
 
 
 
 
810 */
811void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
812{
813	unsigned int i, halfwords;
814
815	halfwords = DIV_ROUND_UP(nbits, 32);
816	for (i = 0; i < halfwords; i++) {
817		buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
818		if (++i < halfwords)
819			buf[i] = (u32) (bitmap[i/2] >> 32);
820	}
821
822	/* Clear tail bits in last element of array beyond nbits. */
823	if (nbits % BITS_PER_LONG)
824		buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
825}
826EXPORT_SYMBOL(bitmap_to_arr32);
827#endif
828
829#if BITS_PER_LONG == 32
830/**
831 * bitmap_from_arr64 - copy the contents of u64 array of bits to bitmap
832 *	@bitmap: array of unsigned longs, the destination bitmap
833 *	@buf: array of u64 (in host byte order), the source bitmap
834 *	@nbits: number of bits in @bitmap
 
 
 
 
 
835 */
836void bitmap_from_arr64(unsigned long *bitmap, const u64 *buf, unsigned int nbits)
837{
838	int n;
839
840	for (n = nbits; n > 0; n -= 64) {
841		u64 val = *buf++;
842
843		*bitmap++ = val;
844		if (n > 32)
845			*bitmap++ = val >> 32;
846	}
847
848	/*
849	 * Clear tail bits in the last word beyond nbits.
850	 *
851	 * Negative index is OK because here we point to the word next
852	 * to the last word of the bitmap, except for nbits == 0, which
853	 * is tested implicitly.
854	 */
855	if (nbits % BITS_PER_LONG)
856		bitmap[-1] &= BITMAP_LAST_WORD_MASK(nbits);
857}
858EXPORT_SYMBOL(bitmap_from_arr64);
859
860/**
861 * bitmap_to_arr64 - copy the contents of bitmap to a u64 array of bits
862 *	@buf: array of u64 (in host byte order), the dest bitmap
863 *	@bitmap: array of unsigned longs, the source bitmap
864 *	@nbits: number of bits in @bitmap
 
 
865 */
866void bitmap_to_arr64(u64 *buf, const unsigned long *bitmap, unsigned int nbits)
867{
868	const unsigned long *end = bitmap + BITS_TO_LONGS(nbits);
 
869
870	while (bitmap < end) {
871		*buf = *bitmap++;
872		if (bitmap < end)
873			*buf |= (u64)(*bitmap++) << 32;
874		buf++;
875	}
876
877	/* Clear tail bits in the last element of array beyond nbits. */
878	if (nbits % 64)
879		buf[-1] &= GENMASK_ULL((nbits - 1) % 64, 0);
880}
881EXPORT_SYMBOL(bitmap_to_arr64);
882#endif