Linux Audio

Check our new training course

Loading...
v3.15
 
 
 
  1
  2#ifdef CONFIG_SCHEDSTATS
  3
 
 
  4/*
  5 * Expects runqueue lock to be held for atomicity of update
  6 */
  7static inline void
  8rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
  9{
 10	if (rq) {
 11		rq->rq_sched_info.run_delay += delta;
 12		rq->rq_sched_info.pcount++;
 13	}
 14}
 15
 16/*
 17 * Expects runqueue lock to be held for atomicity of update
 18 */
 19static inline void
 20rq_sched_info_depart(struct rq *rq, unsigned long long delta)
 21{
 22	if (rq)
 23		rq->rq_cpu_time += delta;
 24}
 25
 26static inline void
 27rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
 28{
 29	if (rq)
 30		rq->rq_sched_info.run_delay += delta;
 31}
 32# define schedstat_inc(rq, field)	do { (rq)->field++; } while (0)
 33# define schedstat_add(rq, field, amt)	do { (rq)->field += (amt); } while (0)
 34# define schedstat_set(var, val)	do { var = (val); } while (0)
 35#else /* !CONFIG_SCHEDSTATS */
 36static inline void
 37rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
 38{}
 39static inline void
 40rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
 41{}
 
 
 
 
 
 
 
 
 42static inline void
 43rq_sched_info_depart(struct rq *rq, unsigned long long delta)
 44{}
 45# define schedstat_inc(rq, field)	do { } while (0)
 46# define schedstat_add(rq, field, amt)	do { } while (0)
 47# define schedstat_set(var, val)	do { } while (0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 48#endif
 49
 50#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
 51static inline void sched_info_reset_dequeued(struct task_struct *t)
 52{
 53	t->sched_info.last_queued = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 54}
 55
 
 
 
 
 
 
 
 
 
 
 
 
 56/*
 57 * We are interested in knowing how long it was from the *first* time a
 58 * task was queued to the time that it finally hit a cpu, we call this routine
 59 * from dequeue_task() to account for possible rq->clock skew across cpus. The
 60 * delta taken on each cpu would annul the skew.
 61 */
 62static inline void sched_info_dequeued(struct rq *rq, struct task_struct *t)
 63{
 64	unsigned long long now = rq_clock(rq), delta = 0;
 
 
 
 65
 66	if (unlikely(sched_info_on()))
 67		if (t->sched_info.last_queued)
 68			delta = now - t->sched_info.last_queued;
 69	sched_info_reset_dequeued(t);
 70	t->sched_info.run_delay += delta;
 71
 72	rq_sched_info_dequeued(rq, delta);
 73}
 74
 75/*
 76 * Called when a task finally hits the cpu.  We can now calculate how
 77 * long it was waiting to run.  We also note when it began so that we
 78 * can keep stats on how long its timeslice is.
 79 */
 80static void sched_info_arrive(struct rq *rq, struct task_struct *t)
 81{
 82	unsigned long long now = rq_clock(rq), delta = 0;
 
 
 
 83
 84	if (t->sched_info.last_queued)
 85		delta = now - t->sched_info.last_queued;
 86	sched_info_reset_dequeued(t);
 87	t->sched_info.run_delay += delta;
 88	t->sched_info.last_arrival = now;
 89	t->sched_info.pcount++;
 90
 91	rq_sched_info_arrive(rq, delta);
 92}
 93
 94/*
 95 * This function is only called from enqueue_task(), but also only updates
 96 * the timestamp if it is already not set.  It's assumed that
 97 * sched_info_dequeued() will clear that stamp when appropriate.
 98 */
 99static inline void sched_info_queued(struct rq *rq, struct task_struct *t)
100{
101	if (unlikely(sched_info_on()))
102		if (!t->sched_info.last_queued)
103			t->sched_info.last_queued = rq_clock(rq);
104}
105
106/*
107 * Called when a process ceases being the active-running process involuntarily
108 * due, typically, to expiring its time slice (this may also be called when
109 * switching to the idle task).  Now we can calculate how long we ran.
110 * Also, if the process is still in the TASK_RUNNING state, call
111 * sched_info_queued() to mark that it has now again started waiting on
112 * the runqueue.
113 */
114static inline void sched_info_depart(struct rq *rq, struct task_struct *t)
115{
116	unsigned long long delta = rq_clock(rq) -
117					t->sched_info.last_arrival;
118
119	rq_sched_info_depart(rq, delta);
120
121	if (t->state == TASK_RUNNING)
122		sched_info_queued(rq, t);
123}
124
125/*
126 * Called when tasks are switched involuntarily due, typically, to expiring
127 * their time slice.  (This may also be called when switching to or from
128 * the idle task.)  We are only called when prev != next.
129 */
130static inline void
131__sched_info_switch(struct rq *rq,
132		    struct task_struct *prev, struct task_struct *next)
133{
134	/*
135	 * prev now departs the cpu.  It's not interesting to record
136	 * stats about how efficient we were at scheduling the idle
137	 * process, however.
138	 */
139	if (prev != rq->idle)
140		sched_info_depart(rq, prev);
141
142	if (next != rq->idle)
143		sched_info_arrive(rq, next);
144}
145static inline void
146sched_info_switch(struct rq *rq,
147		  struct task_struct *prev, struct task_struct *next)
148{
149	if (unlikely(sched_info_on()))
150		__sched_info_switch(rq, prev, next);
151}
152#else
153#define sched_info_queued(rq, t)		do { } while (0)
154#define sched_info_reset_dequeued(t)	do { } while (0)
155#define sched_info_dequeued(rq, t)		do { } while (0)
156#define sched_info_depart(rq, t)		do { } while (0)
157#define sched_info_arrive(rq, next)		do { } while (0)
158#define sched_info_switch(rq, t, next)		do { } while (0)
159#endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
160
161/*
162 * The following are functions that support scheduler-internal time accounting.
163 * These functions are generally called at the timer tick.  None of this depends
164 * on CONFIG_SCHEDSTATS.
165 */
166
167/**
168 * cputimer_running - return true if cputimer is running
169 *
170 * @tsk:	Pointer to target task.
171 */
172static inline bool cputimer_running(struct task_struct *tsk)
173
174{
175	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
176
177	if (!cputimer->running)
178		return false;
 
 
 
179
180	/*
181	 * After we flush the task's sum_exec_runtime to sig->sum_sched_runtime
182	 * in __exit_signal(), we won't account to the signal struct further
183	 * cputime consumed by that task, even though the task can still be
184	 * ticking after __exit_signal().
185	 *
186	 * In order to keep a consistent behaviour between thread group cputime
187	 * and thread group cputimer accounting, lets also ignore the cputime
188	 * elapsing after __exit_signal() in any thread group timer running.
189	 *
190	 * This makes sure that POSIX CPU clocks and timers are synchronized, so
191	 * that a POSIX CPU timer won't expire while the corresponding POSIX CPU
192	 * clock delta is behind the expiring timer value.
193	 */
194	if (unlikely(!tsk->sighand))
195		return false;
196
197	return true;
198}
199
200/**
201 * account_group_user_time - Maintain utime for a thread group.
202 *
203 * @tsk:	Pointer to task structure.
204 * @cputime:	Time value by which to increment the utime field of the
205 *		thread_group_cputime structure.
206 *
207 * If thread group time is being maintained, get the structure for the
208 * running CPU and update the utime field there.
209 */
210static inline void account_group_user_time(struct task_struct *tsk,
211					   cputime_t cputime)
212{
213	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
214
215	if (!cputimer_running(tsk))
216		return;
217
218	raw_spin_lock(&cputimer->lock);
219	cputimer->cputime.utime += cputime;
220	raw_spin_unlock(&cputimer->lock);
221}
222
223/**
224 * account_group_system_time - Maintain stime for a thread group.
225 *
226 * @tsk:	Pointer to task structure.
227 * @cputime:	Time value by which to increment the stime field of the
228 *		thread_group_cputime structure.
229 *
230 * If thread group time is being maintained, get the structure for the
231 * running CPU and update the stime field there.
232 */
233static inline void account_group_system_time(struct task_struct *tsk,
234					     cputime_t cputime)
235{
236	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
237
238	if (!cputimer_running(tsk))
239		return;
240
241	raw_spin_lock(&cputimer->lock);
242	cputimer->cputime.stime += cputime;
243	raw_spin_unlock(&cputimer->lock);
244}
245
246/**
247 * account_group_exec_runtime - Maintain exec runtime for a thread group.
248 *
249 * @tsk:	Pointer to task structure.
250 * @ns:		Time value by which to increment the sum_exec_runtime field
251 *		of the thread_group_cputime structure.
252 *
253 * If thread group time is being maintained, get the structure for the
254 * running CPU and update the sum_exec_runtime field there.
255 */
256static inline void account_group_exec_runtime(struct task_struct *tsk,
257					      unsigned long long ns)
258{
259	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
260
261	if (!cputimer_running(tsk))
262		return;
263
264	raw_spin_lock(&cputimer->lock);
265	cputimer->cputime.sum_exec_runtime += ns;
266	raw_spin_unlock(&cputimer->lock);
267}
v6.13.7
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef _KERNEL_STATS_H
  3#define _KERNEL_STATS_H
  4
  5#ifdef CONFIG_SCHEDSTATS
  6
  7extern struct static_key_false sched_schedstats;
  8
  9/*
 10 * Expects runqueue lock to be held for atomicity of update
 11 */
 12static inline void
 13rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
 14{
 15	if (rq) {
 16		rq->rq_sched_info.run_delay += delta;
 17		rq->rq_sched_info.pcount++;
 18	}
 19}
 20
 21/*
 22 * Expects runqueue lock to be held for atomicity of update
 23 */
 24static inline void
 25rq_sched_info_depart(struct rq *rq, unsigned long long delta)
 26{
 27	if (rq)
 28		rq->rq_cpu_time += delta;
 29}
 30
 31static inline void
 32rq_sched_info_dequeue(struct rq *rq, unsigned long long delta)
 33{
 34	if (rq)
 35		rq->rq_sched_info.run_delay += delta;
 36}
 37#define   schedstat_enabled()		static_branch_unlikely(&sched_schedstats)
 38#define __schedstat_inc(var)		do { var++; } while (0)
 39#define   schedstat_inc(var)		do { if (schedstat_enabled()) { var++; } } while (0)
 40#define __schedstat_add(var, amt)	do { var += (amt); } while (0)
 41#define   schedstat_add(var, amt)	do { if (schedstat_enabled()) { var += (amt); } } while (0)
 42#define __schedstat_set(var, val)	do { var = (val); } while (0)
 43#define   schedstat_set(var, val)	do { if (schedstat_enabled()) { var = (val); } } while (0)
 44#define   schedstat_val(var)		(var)
 45#define   schedstat_val_or_zero(var)	((schedstat_enabled()) ? (var) : 0)
 46
 47void __update_stats_wait_start(struct rq *rq, struct task_struct *p,
 48			       struct sched_statistics *stats);
 49
 50void __update_stats_wait_end(struct rq *rq, struct task_struct *p,
 51			     struct sched_statistics *stats);
 52void __update_stats_enqueue_sleeper(struct rq *rq, struct task_struct *p,
 53				    struct sched_statistics *stats);
 54
 55static inline void
 56check_schedstat_required(void)
 57{
 58	if (schedstat_enabled())
 59		return;
 60
 61	/* Force schedstat enabled if a dependent tracepoint is active */
 62	if (trace_sched_stat_wait_enabled()    ||
 63	    trace_sched_stat_sleep_enabled()   ||
 64	    trace_sched_stat_iowait_enabled()  ||
 65	    trace_sched_stat_blocked_enabled() ||
 66	    trace_sched_stat_runtime_enabled())
 67		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, stat_blocked and stat_runtime require the kernel parameter schedstats=enable or kernel.sched_schedstats=1\n");
 68}
 69
 70#else /* !CONFIG_SCHEDSTATS: */
 71
 72static inline void rq_sched_info_arrive  (struct rq *rq, unsigned long long delta) { }
 73static inline void rq_sched_info_dequeue(struct rq *rq, unsigned long long delta) { }
 74static inline void rq_sched_info_depart  (struct rq *rq, unsigned long long delta) { }
 75# define   schedstat_enabled()		0
 76# define __schedstat_inc(var)		do { } while (0)
 77# define   schedstat_inc(var)		do { } while (0)
 78# define __schedstat_add(var, amt)	do { } while (0)
 79# define   schedstat_add(var, amt)	do { } while (0)
 80# define __schedstat_set(var, val)	do { } while (0)
 81# define   schedstat_set(var, val)	do { } while (0)
 82# define   schedstat_val(var)		0
 83# define   schedstat_val_or_zero(var)	0
 84
 85# define __update_stats_wait_start(rq, p, stats)       do { } while (0)
 86# define __update_stats_wait_end(rq, p, stats)         do { } while (0)
 87# define __update_stats_enqueue_sleeper(rq, p, stats)  do { } while (0)
 88# define check_schedstat_required()                    do { } while (0)
 89
 90#endif /* CONFIG_SCHEDSTATS */
 91
 92#ifdef CONFIG_FAIR_GROUP_SCHED
 93struct sched_entity_stats {
 94	struct sched_entity     se;
 95	struct sched_statistics stats;
 96} __no_randomize_layout;
 97#endif
 98
 99static inline struct sched_statistics *
100__schedstats_from_se(struct sched_entity *se)
101{
102#ifdef CONFIG_FAIR_GROUP_SCHED
103	if (!entity_is_task(se))
104		return &container_of(se, struct sched_entity_stats, se)->stats;
105#endif
106	return &task_of(se)->stats;
107}
108
109#ifdef CONFIG_PSI
110void psi_task_change(struct task_struct *task, int clear, int set);
111void psi_task_switch(struct task_struct *prev, struct task_struct *next,
112		     bool sleep);
113#ifdef CONFIG_IRQ_TIME_ACCOUNTING
114void psi_account_irqtime(struct rq *rq, struct task_struct *curr, struct task_struct *prev);
115#else
116static inline void psi_account_irqtime(struct rq *rq, struct task_struct *curr,
117				       struct task_struct *prev) {}
118#endif /*CONFIG_IRQ_TIME_ACCOUNTING */
119/*
120 * PSI tracks state that persists across sleeps, such as iowaits and
121 * memory stalls. As a result, it has to distinguish between sleeps,
122 * where a task's runnable state changes, and migrations, where a task
123 * and its runnable state are being moved between CPUs and runqueues.
124 *
125 * A notable case is a task whose dequeue is delayed. PSI considers
126 * those sleeping, but because they are still on the runqueue they can
127 * go through migration requeues. In this case, *sleeping* states need
128 * to be transferred.
129 */
130static inline void psi_enqueue(struct task_struct *p, int flags)
131{
132	int clear = 0, set = 0;
133
134	if (static_branch_likely(&psi_disabled))
135		return;
136
137	/* Same runqueue, nothing changed for psi */
138	if (flags & ENQUEUE_RESTORE)
139		return;
140
141	/* psi_sched_switch() will handle the flags */
142	if (task_on_cpu(task_rq(p), p))
143		return;
144
145	if (p->se.sched_delayed) {
146		/* CPU migration of "sleeping" task */
147		SCHED_WARN_ON(!(flags & ENQUEUE_MIGRATED));
148		if (p->in_memstall)
149			set |= TSK_MEMSTALL;
150		if (p->in_iowait)
151			set |= TSK_IOWAIT;
152	} else if (flags & ENQUEUE_MIGRATED) {
153		/* CPU migration of runnable task */
154		set = TSK_RUNNING;
155		if (p->in_memstall)
156			set |= TSK_MEMSTALL | TSK_MEMSTALL_RUNNING;
157	} else {
158		/* Wakeup of new or sleeping task */
159		if (p->in_iowait)
160			clear |= TSK_IOWAIT;
161		set = TSK_RUNNING;
162		if (p->in_memstall)
163			set |= TSK_MEMSTALL_RUNNING;
164	}
165
166	psi_task_change(p, clear, set);
167}
168
169static inline void psi_dequeue(struct task_struct *p, int flags)
170{
171	if (static_branch_likely(&psi_disabled))
172		return;
173
174	/* Same runqueue, nothing changed for psi */
175	if (flags & DEQUEUE_SAVE)
176		return;
177
178	/*
179	 * A voluntary sleep is a dequeue followed by a task switch. To
180	 * avoid walking all ancestors twice, psi_task_switch() handles
181	 * TSK_RUNNING and TSK_IOWAIT for us when it moves TSK_ONCPU.
182	 * Do nothing here.
183	 */
184	if (flags & DEQUEUE_SLEEP)
185		return;
186
187	/*
188	 * When migrating a task to another CPU, clear all psi
189	 * state. The enqueue callback above will work it out.
190	 */
191	psi_task_change(p, p->psi_flags, 0);
192}
193
194static inline void psi_ttwu_dequeue(struct task_struct *p)
195{
196	if (static_branch_likely(&psi_disabled))
197		return;
198	/*
199	 * Is the task being migrated during a wakeup? Make sure to
200	 * deregister its sleep-persistent psi states from the old
201	 * queue, and let psi_enqueue() know it has to requeue.
202	 */
203	if (unlikely(p->psi_flags)) {
204		struct rq_flags rf;
205		struct rq *rq;
206
207		rq = __task_rq_lock(p, &rf);
208		psi_task_change(p, p->psi_flags, 0);
209		__task_rq_unlock(rq, &rf);
210	}
211}
212
213static inline void psi_sched_switch(struct task_struct *prev,
214				    struct task_struct *next,
215				    bool sleep)
216{
217	if (static_branch_likely(&psi_disabled))
218		return;
219
220	psi_task_switch(prev, next, sleep);
221}
222
223#else /* CONFIG_PSI */
224static inline void psi_enqueue(struct task_struct *p, bool migrate) {}
225static inline void psi_dequeue(struct task_struct *p, bool migrate) {}
226static inline void psi_ttwu_dequeue(struct task_struct *p) {}
227static inline void psi_sched_switch(struct task_struct *prev,
228				    struct task_struct *next,
229				    bool sleep) {}
230static inline void psi_account_irqtime(struct rq *rq, struct task_struct *curr,
231				       struct task_struct *prev) {}
232#endif /* CONFIG_PSI */
233
234#ifdef CONFIG_SCHED_INFO
235/*
236 * We are interested in knowing how long it was from the *first* time a
237 * task was queued to the time that it finally hit a CPU, we call this routine
238 * from dequeue_task() to account for possible rq->clock skew across CPUs. The
239 * delta taken on each CPU would annul the skew.
240 */
241static inline void sched_info_dequeue(struct rq *rq, struct task_struct *t)
242{
243	unsigned long long delta = 0;
244
245	if (!t->sched_info.last_queued)
246		return;
247
248	delta = rq_clock(rq) - t->sched_info.last_queued;
249	t->sched_info.last_queued = 0;
 
 
250	t->sched_info.run_delay += delta;
251
252	rq_sched_info_dequeue(rq, delta);
253}
254
255/*
256 * Called when a task finally hits the CPU.  We can now calculate how
257 * long it was waiting to run.  We also note when it began so that we
258 * can keep stats on how long its time-slice is.
259 */
260static void sched_info_arrive(struct rq *rq, struct task_struct *t)
261{
262	unsigned long long now, delta = 0;
263
264	if (!t->sched_info.last_queued)
265		return;
266
267	now = rq_clock(rq);
268	delta = now - t->sched_info.last_queued;
269	t->sched_info.last_queued = 0;
270	t->sched_info.run_delay += delta;
271	t->sched_info.last_arrival = now;
272	t->sched_info.pcount++;
273
274	rq_sched_info_arrive(rq, delta);
275}
276
277/*
278 * This function is only called from enqueue_task(), but also only updates
279 * the timestamp if it is already not set.  It's assumed that
280 * sched_info_dequeue() will clear that stamp when appropriate.
281 */
282static inline void sched_info_enqueue(struct rq *rq, struct task_struct *t)
283{
284	if (!t->sched_info.last_queued)
285		t->sched_info.last_queued = rq_clock(rq);
 
286}
287
288/*
289 * Called when a process ceases being the active-running process involuntarily
290 * due, typically, to expiring its time slice (this may also be called when
291 * switching to the idle task).  Now we can calculate how long we ran.
292 * Also, if the process is still in the TASK_RUNNING state, call
293 * sched_info_enqueue() to mark that it has now again started waiting on
294 * the runqueue.
295 */
296static inline void sched_info_depart(struct rq *rq, struct task_struct *t)
297{
298	unsigned long long delta = rq_clock(rq) - t->sched_info.last_arrival;
 
299
300	rq_sched_info_depart(rq, delta);
301
302	if (task_is_running(t))
303		sched_info_enqueue(rq, t);
304}
305
306/*
307 * Called when tasks are switched involuntarily due, typically, to expiring
308 * their time slice.  (This may also be called when switching to or from
309 * the idle task.)  We are only called when prev != next.
310 */
311static inline void
312sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next)
 
313{
314	/*
315	 * prev now departs the CPU.  It's not interesting to record
316	 * stats about how efficient we were at scheduling the idle
317	 * process, however.
318	 */
319	if (prev != rq->idle)
320		sched_info_depart(rq, prev);
321
322	if (next != rq->idle)
323		sched_info_arrive(rq, next);
324}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325
326#else /* !CONFIG_SCHED_INFO: */
327# define sched_info_enqueue(rq, t)	do { } while (0)
328# define sched_info_dequeue(rq, t)	do { } while (0)
329# define sched_info_switch(rq, t, next)	do { } while (0)
330#endif /* CONFIG_SCHED_INFO */
331
332#endif /* _KERNEL_STATS_H */