Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
   1/* SPDX-License-Identifier: GPL-2.0+ */
   2/*
   3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
   4 * Internal non-public definitions that provide either classic
   5 * or preemptible semantics.
   6 *
   7 * Copyright Red Hat, 2009
   8 * Copyright IBM Corporation, 2009
   9 * Copyright SUSE, 2021
  10 *
  11 * Author: Ingo Molnar <mingo@elte.hu>
  12 *	   Paul E. McKenney <paulmck@linux.ibm.com>
  13 *	   Frederic Weisbecker <frederic@kernel.org>
  14 */
  15
  16#ifdef CONFIG_RCU_NOCB_CPU
  17static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
  18static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
  19
  20static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
  21{
  22	/* Race on early boot between thread creation and assignment */
  23	if (!rdp->nocb_cb_kthread || !rdp->nocb_gp_kthread)
  24		return true;
  25
  26	if (current == rdp->nocb_cb_kthread || current == rdp->nocb_gp_kthread)
  27		if (in_task())
  28			return true;
  29	return false;
  30}
  31
  32/*
  33 * Offload callback processing from the boot-time-specified set of CPUs
  34 * specified by rcu_nocb_mask.  For the CPUs in the set, there are kthreads
  35 * created that pull the callbacks from the corresponding CPU, wait for
  36 * a grace period to elapse, and invoke the callbacks.  These kthreads
  37 * are organized into GP kthreads, which manage incoming callbacks, wait for
  38 * grace periods, and awaken CB kthreads, and the CB kthreads, which only
  39 * invoke callbacks.  Each GP kthread invokes its own CBs.  The no-CBs CPUs
  40 * do a wake_up() on their GP kthread when they insert a callback into any
  41 * empty list, unless the rcu_nocb_poll boot parameter has been specified,
  42 * in which case each kthread actively polls its CPU.  (Which isn't so great
  43 * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
  44 *
  45 * This is intended to be used in conjunction with Frederic Weisbecker's
  46 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
  47 * running CPU-bound user-mode computations.
  48 *
  49 * Offloading of callbacks can also be used as an energy-efficiency
  50 * measure because CPUs with no RCU callbacks queued are more aggressive
  51 * about entering dyntick-idle mode.
  52 */
  53
  54
  55/*
  56 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
  57 * If the list is invalid, a warning is emitted and all CPUs are offloaded.
  58 */
  59static int __init rcu_nocb_setup(char *str)
  60{
  61	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
  62	if (*str == '=') {
  63		if (cpulist_parse(++str, rcu_nocb_mask)) {
  64			pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
  65			cpumask_setall(rcu_nocb_mask);
  66		}
  67	}
  68	rcu_state.nocb_is_setup = true;
  69	return 1;
  70}
  71__setup("rcu_nocbs", rcu_nocb_setup);
  72
  73static int __init parse_rcu_nocb_poll(char *arg)
  74{
  75	rcu_nocb_poll = true;
  76	return 1;
  77}
  78__setup("rcu_nocb_poll", parse_rcu_nocb_poll);
  79
  80/*
  81 * Don't bother bypassing ->cblist if the call_rcu() rate is low.
  82 * After all, the main point of bypassing is to avoid lock contention
  83 * on ->nocb_lock, which only can happen at high call_rcu() rates.
  84 */
  85static int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
  86module_param(nocb_nobypass_lim_per_jiffy, int, 0);
  87
  88/*
  89 * Acquire the specified rcu_data structure's ->nocb_bypass_lock.  If the
  90 * lock isn't immediately available, perform minimal sanity check.
  91 */
  92static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
  93	__acquires(&rdp->nocb_bypass_lock)
  94{
  95	lockdep_assert_irqs_disabled();
  96	if (raw_spin_trylock(&rdp->nocb_bypass_lock))
  97		return;
  98	/*
  99	 * Contention expected only when local enqueue collide with
 100	 * remote flush from kthreads.
 101	 */
 102	WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
 103	raw_spin_lock(&rdp->nocb_bypass_lock);
 104}
 105
 106/*
 107 * Conditionally acquire the specified rcu_data structure's
 108 * ->nocb_bypass_lock.
 109 */
 110static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
 111{
 112	lockdep_assert_irqs_disabled();
 113	return raw_spin_trylock(&rdp->nocb_bypass_lock);
 114}
 115
 116/*
 117 * Release the specified rcu_data structure's ->nocb_bypass_lock.
 118 */
 119static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
 120	__releases(&rdp->nocb_bypass_lock)
 121{
 122	lockdep_assert_irqs_disabled();
 123	raw_spin_unlock(&rdp->nocb_bypass_lock);
 124}
 125
 126/*
 127 * Acquire the specified rcu_data structure's ->nocb_lock, but only
 128 * if it corresponds to a no-CBs CPU.
 129 */
 130static void rcu_nocb_lock(struct rcu_data *rdp)
 131{
 132	lockdep_assert_irqs_disabled();
 133	if (!rcu_rdp_is_offloaded(rdp))
 134		return;
 135	raw_spin_lock(&rdp->nocb_lock);
 136}
 137
 138/*
 139 * Release the specified rcu_data structure's ->nocb_lock, but only
 140 * if it corresponds to a no-CBs CPU.
 141 */
 142static void rcu_nocb_unlock(struct rcu_data *rdp)
 143{
 144	if (rcu_rdp_is_offloaded(rdp)) {
 145		lockdep_assert_irqs_disabled();
 146		raw_spin_unlock(&rdp->nocb_lock);
 147	}
 148}
 149
 150/*
 151 * Release the specified rcu_data structure's ->nocb_lock and restore
 152 * interrupts, but only if it corresponds to a no-CBs CPU.
 153 */
 154static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
 155				       unsigned long flags)
 156{
 157	if (rcu_rdp_is_offloaded(rdp)) {
 158		lockdep_assert_irqs_disabled();
 159		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
 160	} else {
 161		local_irq_restore(flags);
 162	}
 163}
 164
 165/* Lockdep check that ->cblist may be safely accessed. */
 166static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
 167{
 168	lockdep_assert_irqs_disabled();
 169	if (rcu_rdp_is_offloaded(rdp))
 170		lockdep_assert_held(&rdp->nocb_lock);
 171}
 172
 173/*
 174 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
 175 * grace period.
 176 */
 177static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
 178{
 179	swake_up_all(sq);
 180}
 181
 182static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
 183{
 184	return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
 185}
 186
 187static void rcu_init_one_nocb(struct rcu_node *rnp)
 188{
 189	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
 190	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
 191}
 192
 193static bool __wake_nocb_gp(struct rcu_data *rdp_gp,
 194			   struct rcu_data *rdp,
 195			   bool force, unsigned long flags)
 196	__releases(rdp_gp->nocb_gp_lock)
 197{
 198	bool needwake = false;
 199
 200	if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
 201		raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
 202		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
 203				    TPS("AlreadyAwake"));
 204		return false;
 205	}
 206
 207	if (rdp_gp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
 208		WRITE_ONCE(rdp_gp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
 209		del_timer(&rdp_gp->nocb_timer);
 210	}
 211
 212	if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
 213		WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
 214		needwake = true;
 215	}
 216	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
 217	if (needwake) {
 218		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
 219		swake_up_one_online(&rdp_gp->nocb_gp_wq);
 220	}
 221
 222	return needwake;
 223}
 224
 225/*
 226 * Kick the GP kthread for this NOCB group.
 227 */
 228static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
 229{
 230	unsigned long flags;
 231	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
 232
 233	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
 234	return __wake_nocb_gp(rdp_gp, rdp, force, flags);
 235}
 236
 237#ifdef CONFIG_RCU_LAZY
 238/*
 239 * LAZY_FLUSH_JIFFIES decides the maximum amount of time that
 240 * can elapse before lazy callbacks are flushed. Lazy callbacks
 241 * could be flushed much earlier for a number of other reasons
 242 * however, LAZY_FLUSH_JIFFIES will ensure no lazy callbacks are
 243 * left unsubmitted to RCU after those many jiffies.
 244 */
 245#define LAZY_FLUSH_JIFFIES (10 * HZ)
 246static unsigned long jiffies_lazy_flush = LAZY_FLUSH_JIFFIES;
 247
 248// To be called only from test code.
 249void rcu_set_jiffies_lazy_flush(unsigned long jif)
 250{
 251	jiffies_lazy_flush = jif;
 252}
 253EXPORT_SYMBOL(rcu_set_jiffies_lazy_flush);
 254
 255unsigned long rcu_get_jiffies_lazy_flush(void)
 256{
 257	return jiffies_lazy_flush;
 258}
 259EXPORT_SYMBOL(rcu_get_jiffies_lazy_flush);
 260#endif
 261
 262/*
 263 * Arrange to wake the GP kthread for this NOCB group at some future
 264 * time when it is safe to do so.
 265 */
 266static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
 267			       const char *reason)
 268{
 269	unsigned long flags;
 270	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
 271
 272	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
 273
 274	/*
 275	 * Bypass wakeup overrides previous deferments. In case of
 276	 * callback storms, no need to wake up too early.
 277	 */
 278	if (waketype == RCU_NOCB_WAKE_LAZY &&
 279	    rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT) {
 280		mod_timer(&rdp_gp->nocb_timer, jiffies + rcu_get_jiffies_lazy_flush());
 281		WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
 282	} else if (waketype == RCU_NOCB_WAKE_BYPASS) {
 283		mod_timer(&rdp_gp->nocb_timer, jiffies + 2);
 284		WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
 285	} else {
 286		if (rdp_gp->nocb_defer_wakeup < RCU_NOCB_WAKE)
 287			mod_timer(&rdp_gp->nocb_timer, jiffies + 1);
 288		if (rdp_gp->nocb_defer_wakeup < waketype)
 289			WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
 290	}
 291
 292	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
 293
 294	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
 295}
 296
 297/*
 298 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
 299 * However, if there is a callback to be enqueued and if ->nocb_bypass
 300 * proves to be initially empty, just return false because the no-CB GP
 301 * kthread may need to be awakened in this case.
 302 *
 303 * Return true if there was something to be flushed and it succeeded, otherwise
 304 * false.
 305 *
 306 * Note that this function always returns true if rhp is NULL.
 307 */
 308static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp_in,
 309				     unsigned long j, bool lazy)
 310{
 311	struct rcu_cblist rcl;
 312	struct rcu_head *rhp = rhp_in;
 313
 314	WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp));
 315	rcu_lockdep_assert_cblist_protected(rdp);
 316	lockdep_assert_held(&rdp->nocb_bypass_lock);
 317	if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
 318		raw_spin_unlock(&rdp->nocb_bypass_lock);
 319		return false;
 320	}
 321	/* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
 322	if (rhp)
 323		rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
 324
 325	/*
 326	 * If the new CB requested was a lazy one, queue it onto the main
 327	 * ->cblist so that we can take advantage of the grace-period that will
 328	 * happen regardless. But queue it onto the bypass list first so that
 329	 * the lazy CB is ordered with the existing CBs in the bypass list.
 330	 */
 331	if (lazy && rhp) {
 332		rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
 333		rhp = NULL;
 334	}
 335	rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
 336	WRITE_ONCE(rdp->lazy_len, 0);
 337
 338	rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
 339	WRITE_ONCE(rdp->nocb_bypass_first, j);
 340	rcu_nocb_bypass_unlock(rdp);
 341	return true;
 342}
 343
 344/*
 345 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
 346 * However, if there is a callback to be enqueued and if ->nocb_bypass
 347 * proves to be initially empty, just return false because the no-CB GP
 348 * kthread may need to be awakened in this case.
 349 *
 350 * Note that this function always returns true if rhp is NULL.
 351 */
 352static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
 353				  unsigned long j, bool lazy)
 354{
 355	if (!rcu_rdp_is_offloaded(rdp))
 356		return true;
 357	rcu_lockdep_assert_cblist_protected(rdp);
 358	rcu_nocb_bypass_lock(rdp);
 359	return rcu_nocb_do_flush_bypass(rdp, rhp, j, lazy);
 360}
 361
 362/*
 363 * If the ->nocb_bypass_lock is immediately available, flush the
 364 * ->nocb_bypass queue into ->cblist.
 365 */
 366static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
 367{
 368	rcu_lockdep_assert_cblist_protected(rdp);
 369	if (!rcu_rdp_is_offloaded(rdp) ||
 370	    !rcu_nocb_bypass_trylock(rdp))
 371		return;
 372	WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j, false));
 373}
 374
 375/*
 376 * See whether it is appropriate to use the ->nocb_bypass list in order
 377 * to control contention on ->nocb_lock.  A limited number of direct
 378 * enqueues are permitted into ->cblist per jiffy.  If ->nocb_bypass
 379 * is non-empty, further callbacks must be placed into ->nocb_bypass,
 380 * otherwise rcu_barrier() breaks.  Use rcu_nocb_flush_bypass() to switch
 381 * back to direct use of ->cblist.  However, ->nocb_bypass should not be
 382 * used if ->cblist is empty, because otherwise callbacks can be stranded
 383 * on ->nocb_bypass because we cannot count on the current CPU ever again
 384 * invoking call_rcu().  The general rule is that if ->nocb_bypass is
 385 * non-empty, the corresponding no-CBs grace-period kthread must not be
 386 * in an indefinite sleep state.
 387 *
 388 * Finally, it is not permitted to use the bypass during early boot,
 389 * as doing so would confuse the auto-initialization code.  Besides
 390 * which, there is no point in worrying about lock contention while
 391 * there is only one CPU in operation.
 392 */
 393static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
 394				bool *was_alldone, unsigned long flags,
 395				bool lazy)
 396{
 397	unsigned long c;
 398	unsigned long cur_gp_seq;
 399	unsigned long j = jiffies;
 400	long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
 401	bool bypass_is_lazy = (ncbs == READ_ONCE(rdp->lazy_len));
 402
 403	lockdep_assert_irqs_disabled();
 404
 405	// Pure softirq/rcuc based processing: no bypassing, no
 406	// locking.
 407	if (!rcu_rdp_is_offloaded(rdp)) {
 408		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
 409		return false;
 410	}
 411
 412	// Don't use ->nocb_bypass during early boot.
 413	if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
 414		rcu_nocb_lock(rdp);
 415		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
 416		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
 417		return false;
 418	}
 419
 420	// If we have advanced to a new jiffy, reset counts to allow
 421	// moving back from ->nocb_bypass to ->cblist.
 422	if (j == rdp->nocb_nobypass_last) {
 423		c = rdp->nocb_nobypass_count + 1;
 424	} else {
 425		WRITE_ONCE(rdp->nocb_nobypass_last, j);
 426		c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
 427		if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
 428				 nocb_nobypass_lim_per_jiffy))
 429			c = 0;
 430		else if (c > nocb_nobypass_lim_per_jiffy)
 431			c = nocb_nobypass_lim_per_jiffy;
 432	}
 433	WRITE_ONCE(rdp->nocb_nobypass_count, c);
 434
 435	// If there hasn't yet been all that many ->cblist enqueues
 436	// this jiffy, tell the caller to enqueue onto ->cblist.  But flush
 437	// ->nocb_bypass first.
 438	// Lazy CBs throttle this back and do immediate bypass queuing.
 439	if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy && !lazy) {
 440		rcu_nocb_lock(rdp);
 441		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
 442		if (*was_alldone)
 443			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
 444					    TPS("FirstQ"));
 445
 446		WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j, false));
 447		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
 448		return false; // Caller must enqueue the callback.
 449	}
 450
 451	// If ->nocb_bypass has been used too long or is too full,
 452	// flush ->nocb_bypass to ->cblist.
 453	if ((ncbs && !bypass_is_lazy && j != READ_ONCE(rdp->nocb_bypass_first)) ||
 454	    (ncbs &&  bypass_is_lazy &&
 455	     (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + rcu_get_jiffies_lazy_flush()))) ||
 456	    ncbs >= qhimark) {
 457		rcu_nocb_lock(rdp);
 458		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
 459
 460		if (!rcu_nocb_flush_bypass(rdp, rhp, j, lazy)) {
 461			if (*was_alldone)
 462				trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
 463						    TPS("FirstQ"));
 464			WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
 465			return false; // Caller must enqueue the callback.
 466		}
 467		if (j != rdp->nocb_gp_adv_time &&
 468		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
 469		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
 470			rcu_advance_cbs_nowake(rdp->mynode, rdp);
 471			rdp->nocb_gp_adv_time = j;
 472		}
 473
 474		// The flush succeeded and we moved CBs into the regular list.
 475		// Don't wait for the wake up timer as it may be too far ahead.
 476		// Wake up the GP thread now instead, if the cblist was empty.
 477		__call_rcu_nocb_wake(rdp, *was_alldone, flags);
 478
 479		return true; // Callback already enqueued.
 480	}
 481
 482	// We need to use the bypass.
 483	rcu_nocb_bypass_lock(rdp);
 484	ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
 485	rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
 486	rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
 487
 488	if (lazy)
 489		WRITE_ONCE(rdp->lazy_len, rdp->lazy_len + 1);
 490
 491	if (!ncbs) {
 492		WRITE_ONCE(rdp->nocb_bypass_first, j);
 493		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
 494	}
 495	rcu_nocb_bypass_unlock(rdp);
 496
 497	// A wake up of the grace period kthread or timer adjustment
 498	// needs to be done only if:
 499	// 1. Bypass list was fully empty before (this is the first
 500	//    bypass list entry), or:
 501	// 2. Both of these conditions are met:
 502	//    a. The bypass list previously had only lazy CBs, and:
 503	//    b. The new CB is non-lazy.
 504	if (!ncbs || (bypass_is_lazy && !lazy)) {
 505		// No-CBs GP kthread might be indefinitely asleep, if so, wake.
 506		rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
 507		if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
 508			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
 509					    TPS("FirstBQwake"));
 510			__call_rcu_nocb_wake(rdp, true, flags);
 511		} else {
 512			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
 513					    TPS("FirstBQnoWake"));
 514			rcu_nocb_unlock(rdp);
 515		}
 516	}
 517	return true; // Callback already enqueued.
 518}
 519
 520/*
 521 * Awaken the no-CBs grace-period kthread if needed, either due to it
 522 * legitimately being asleep or due to overload conditions.
 523 *
 524 * If warranted, also wake up the kthread servicing this CPUs queues.
 525 */
 526static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
 527				 unsigned long flags)
 528				 __releases(rdp->nocb_lock)
 529{
 530	long bypass_len;
 531	unsigned long cur_gp_seq;
 532	unsigned long j;
 533	long lazy_len;
 534	long len;
 535	struct task_struct *t;
 536	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
 537
 538	// If we are being polled or there is no kthread, just leave.
 539	t = READ_ONCE(rdp->nocb_gp_kthread);
 540	if (rcu_nocb_poll || !t) {
 541		rcu_nocb_unlock(rdp);
 542		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
 543				    TPS("WakeNotPoll"));
 544		return;
 545	}
 546	// Need to actually to a wakeup.
 547	len = rcu_segcblist_n_cbs(&rdp->cblist);
 548	bypass_len = rcu_cblist_n_cbs(&rdp->nocb_bypass);
 549	lazy_len = READ_ONCE(rdp->lazy_len);
 550	if (was_alldone) {
 551		rdp->qlen_last_fqs_check = len;
 552		// Only lazy CBs in bypass list
 553		if (lazy_len && bypass_len == lazy_len) {
 554			rcu_nocb_unlock(rdp);
 555			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_LAZY,
 556					   TPS("WakeLazy"));
 557		} else if (!irqs_disabled_flags(flags) && cpu_online(rdp->cpu)) {
 558			/* ... if queue was empty ... */
 559			rcu_nocb_unlock(rdp);
 560			wake_nocb_gp(rdp, false);
 561			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
 562					    TPS("WakeEmpty"));
 563		} else {
 564			/*
 565			 * Don't do the wake-up upfront on fragile paths.
 566			 * Also offline CPUs can't call swake_up_one_online() from
 567			 * (soft-)IRQs. Rely on the final deferred wake-up from
 568			 * rcutree_report_cpu_dead()
 569			 */
 570			rcu_nocb_unlock(rdp);
 571			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
 572					   TPS("WakeEmptyIsDeferred"));
 573		}
 574	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
 575		/* ... or if many callbacks queued. */
 576		rdp->qlen_last_fqs_check = len;
 577		j = jiffies;
 578		if (j != rdp->nocb_gp_adv_time &&
 579		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
 580		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
 581			rcu_advance_cbs_nowake(rdp->mynode, rdp);
 582			rdp->nocb_gp_adv_time = j;
 583		}
 584		smp_mb(); /* Enqueue before timer_pending(). */
 585		if ((rdp->nocb_cb_sleep ||
 586		     !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
 587		    !timer_pending(&rdp_gp->nocb_timer)) {
 588			rcu_nocb_unlock(rdp);
 589			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
 590					   TPS("WakeOvfIsDeferred"));
 591		} else {
 592			rcu_nocb_unlock(rdp);
 593			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
 594		}
 595	} else {
 596		rcu_nocb_unlock(rdp);
 597		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
 598	}
 599}
 600
 601static void call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *head,
 602			  rcu_callback_t func, unsigned long flags, bool lazy)
 603{
 604	bool was_alldone;
 605
 606	if (!rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy)) {
 607		/* Not enqueued on bypass but locked, do regular enqueue */
 608		rcutree_enqueue(rdp, head, func);
 609		__call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
 610	}
 611}
 612
 613static void nocb_gp_toggle_rdp(struct rcu_data *rdp_gp, struct rcu_data *rdp)
 614{
 615	struct rcu_segcblist *cblist = &rdp->cblist;
 616	unsigned long flags;
 617
 618	/*
 619	 * Locking orders future de-offloaded callbacks enqueue against previous
 620	 * handling of this rdp. Ie: Make sure rcuog is done with this rdp before
 621	 * deoffloaded callbacks can be enqueued.
 622	 */
 623	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
 624	if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) {
 625		/*
 626		 * Offloading. Set our flag and notify the offload worker.
 627		 * We will handle this rdp until it ever gets de-offloaded.
 628		 */
 629		list_add_tail(&rdp->nocb_entry_rdp, &rdp_gp->nocb_head_rdp);
 630		rcu_segcblist_set_flags(cblist, SEGCBLIST_OFFLOADED);
 631	} else {
 632		/*
 633		 * De-offloading. Clear our flag and notify the de-offload worker.
 634		 * We will ignore this rdp until it ever gets re-offloaded.
 635		 */
 636		list_del(&rdp->nocb_entry_rdp);
 637		rcu_segcblist_clear_flags(cblist, SEGCBLIST_OFFLOADED);
 638	}
 639	raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
 640}
 641
 642static void nocb_gp_sleep(struct rcu_data *my_rdp, int cpu)
 643{
 644	trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
 645	swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
 646					!READ_ONCE(my_rdp->nocb_gp_sleep));
 647	trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
 648}
 649
 650/*
 651 * No-CBs GP kthreads come here to wait for additional callbacks to show up
 652 * or for grace periods to end.
 653 */
 654static void nocb_gp_wait(struct rcu_data *my_rdp)
 655{
 656	bool bypass = false;
 657	int __maybe_unused cpu = my_rdp->cpu;
 658	unsigned long cur_gp_seq;
 659	unsigned long flags;
 660	bool gotcbs = false;
 661	unsigned long j = jiffies;
 662	bool lazy = false;
 663	bool needwait_gp = false; // This prevents actual uninitialized use.
 664	bool needwake;
 665	bool needwake_gp;
 666	struct rcu_data *rdp, *rdp_toggling = NULL;
 667	struct rcu_node *rnp;
 668	unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
 669	bool wasempty = false;
 670
 671	/*
 672	 * Each pass through the following loop checks for CBs and for the
 673	 * nearest grace period (if any) to wait for next.  The CB kthreads
 674	 * and the global grace-period kthread are awakened if needed.
 675	 */
 676	WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp);
 677	/*
 678	 * An rcu_data structure is removed from the list after its
 679	 * CPU is de-offloaded and added to the list before that CPU is
 680	 * (re-)offloaded.  If the following loop happens to be referencing
 681	 * that rcu_data structure during the time that the corresponding
 682	 * CPU is de-offloaded and then immediately re-offloaded, this
 683	 * loop's rdp pointer will be carried to the end of the list by
 684	 * the resulting pair of list operations.  This can cause the loop
 685	 * to skip over some of the rcu_data structures that were supposed
 686	 * to have been scanned.  Fortunately a new iteration through the
 687	 * entire loop is forced after a given CPU's rcu_data structure
 688	 * is added to the list, so the skipped-over rcu_data structures
 689	 * won't be ignored for long.
 690	 */
 691	list_for_each_entry(rdp, &my_rdp->nocb_head_rdp, nocb_entry_rdp) {
 692		long bypass_ncbs;
 693		bool flush_bypass = false;
 694		long lazy_ncbs;
 695
 696		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
 697		rcu_nocb_lock_irqsave(rdp, flags);
 698		lockdep_assert_held(&rdp->nocb_lock);
 699		bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
 700		lazy_ncbs = READ_ONCE(rdp->lazy_len);
 701
 702		if (bypass_ncbs && (lazy_ncbs == bypass_ncbs) &&
 703		    (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + rcu_get_jiffies_lazy_flush()) ||
 704		     bypass_ncbs > 2 * qhimark)) {
 705			flush_bypass = true;
 706		} else if (bypass_ncbs && (lazy_ncbs != bypass_ncbs) &&
 707		    (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
 708		     bypass_ncbs > 2 * qhimark)) {
 709			flush_bypass = true;
 710		} else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
 711			rcu_nocb_unlock_irqrestore(rdp, flags);
 712			continue; /* No callbacks here, try next. */
 713		}
 714
 715		if (flush_bypass) {
 716			// Bypass full or old, so flush it.
 717			(void)rcu_nocb_try_flush_bypass(rdp, j);
 718			bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
 719			lazy_ncbs = READ_ONCE(rdp->lazy_len);
 720		}
 721
 722		if (bypass_ncbs) {
 723			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
 724					    bypass_ncbs == lazy_ncbs ? TPS("Lazy") : TPS("Bypass"));
 725			if (bypass_ncbs == lazy_ncbs)
 726				lazy = true;
 727			else
 728				bypass = true;
 729		}
 730		rnp = rdp->mynode;
 731
 732		// Advance callbacks if helpful and low contention.
 733		needwake_gp = false;
 734		if (!rcu_segcblist_restempty(&rdp->cblist,
 735					     RCU_NEXT_READY_TAIL) ||
 736		    (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
 737		     rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
 738			raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
 739			needwake_gp = rcu_advance_cbs(rnp, rdp);
 740			wasempty = rcu_segcblist_restempty(&rdp->cblist,
 741							   RCU_NEXT_READY_TAIL);
 742			raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
 743		}
 744		// Need to wait on some grace period?
 745		WARN_ON_ONCE(wasempty &&
 746			     !rcu_segcblist_restempty(&rdp->cblist,
 747						      RCU_NEXT_READY_TAIL));
 748		if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
 749			if (!needwait_gp ||
 750			    ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
 751				wait_gp_seq = cur_gp_seq;
 752			needwait_gp = true;
 753			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
 754					    TPS("NeedWaitGP"));
 755		}
 756		if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
 757			needwake = rdp->nocb_cb_sleep;
 758			WRITE_ONCE(rdp->nocb_cb_sleep, false);
 759		} else {
 760			needwake = false;
 761		}
 762		rcu_nocb_unlock_irqrestore(rdp, flags);
 763		if (needwake) {
 764			swake_up_one(&rdp->nocb_cb_wq);
 765			gotcbs = true;
 766		}
 767		if (needwake_gp)
 768			rcu_gp_kthread_wake();
 769	}
 770
 771	my_rdp->nocb_gp_bypass = bypass;
 772	my_rdp->nocb_gp_gp = needwait_gp;
 773	my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
 774
 775	// At least one child with non-empty ->nocb_bypass, so set
 776	// timer in order to avoid stranding its callbacks.
 777	if (!rcu_nocb_poll) {
 778		// If bypass list only has lazy CBs. Add a deferred lazy wake up.
 779		if (lazy && !bypass) {
 780			wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_LAZY,
 781					TPS("WakeLazyIsDeferred"));
 782		// Otherwise add a deferred bypass wake up.
 783		} else if (bypass) {
 784			wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS,
 785					TPS("WakeBypassIsDeferred"));
 786		}
 787	}
 788
 789	if (rcu_nocb_poll) {
 790		/* Polling, so trace if first poll in the series. */
 791		if (gotcbs)
 792			trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
 793		if (list_empty(&my_rdp->nocb_head_rdp)) {
 794			raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
 795			if (!my_rdp->nocb_toggling_rdp)
 796				WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
 797			raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
 798			/* Wait for any offloading rdp */
 799			nocb_gp_sleep(my_rdp, cpu);
 800		} else {
 801			schedule_timeout_idle(1);
 802		}
 803	} else if (!needwait_gp) {
 804		/* Wait for callbacks to appear. */
 805		nocb_gp_sleep(my_rdp, cpu);
 806	} else {
 807		rnp = my_rdp->mynode;
 808		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
 809		swait_event_interruptible_exclusive(
 810			rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
 811			rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
 812			!READ_ONCE(my_rdp->nocb_gp_sleep));
 813		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
 814	}
 815
 816	if (!rcu_nocb_poll) {
 817		raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
 818		// (De-)queue an rdp to/from the group if its nocb state is changing
 819		rdp_toggling = my_rdp->nocb_toggling_rdp;
 820		if (rdp_toggling)
 821			my_rdp->nocb_toggling_rdp = NULL;
 822
 823		if (my_rdp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
 824			WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
 825			del_timer(&my_rdp->nocb_timer);
 826		}
 827		WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
 828		raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
 829	} else {
 830		rdp_toggling = READ_ONCE(my_rdp->nocb_toggling_rdp);
 831		if (rdp_toggling) {
 832			/*
 833			 * Paranoid locking to make sure nocb_toggling_rdp is well
 834			 * reset *before* we (re)set SEGCBLIST_KTHREAD_GP or we could
 835			 * race with another round of nocb toggling for this rdp.
 836			 * Nocb locking should prevent from that already but we stick
 837			 * to paranoia, especially in rare path.
 838			 */
 839			raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
 840			my_rdp->nocb_toggling_rdp = NULL;
 841			raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
 842		}
 843	}
 844
 845	if (rdp_toggling) {
 846		nocb_gp_toggle_rdp(my_rdp, rdp_toggling);
 847		swake_up_one(&rdp_toggling->nocb_state_wq);
 848	}
 849
 850	my_rdp->nocb_gp_seq = -1;
 851	WARN_ON(signal_pending(current));
 852}
 853
 854/*
 855 * No-CBs grace-period-wait kthread.  There is one of these per group
 856 * of CPUs, but only once at least one CPU in that group has come online
 857 * at least once since boot.  This kthread checks for newly posted
 858 * callbacks from any of the CPUs it is responsible for, waits for a
 859 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
 860 * that then have callback-invocation work to do.
 861 */
 862static int rcu_nocb_gp_kthread(void *arg)
 863{
 864	struct rcu_data *rdp = arg;
 865
 866	for (;;) {
 867		WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
 868		nocb_gp_wait(rdp);
 869		cond_resched_tasks_rcu_qs();
 870	}
 871	return 0;
 872}
 873
 874static inline bool nocb_cb_wait_cond(struct rcu_data *rdp)
 875{
 876	return !READ_ONCE(rdp->nocb_cb_sleep) || kthread_should_park();
 877}
 878
 879/*
 880 * Invoke any ready callbacks from the corresponding no-CBs CPU,
 881 * then, if there are no more, wait for more to appear.
 882 */
 883static void nocb_cb_wait(struct rcu_data *rdp)
 884{
 885	struct rcu_segcblist *cblist = &rdp->cblist;
 886	unsigned long cur_gp_seq;
 887	unsigned long flags;
 888	bool needwake_gp = false;
 889	struct rcu_node *rnp = rdp->mynode;
 890
 891	swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
 892					    nocb_cb_wait_cond(rdp));
 893	if (kthread_should_park()) {
 894		/*
 895		 * kthread_park() must be preceded by an rcu_barrier().
 896		 * But yet another rcu_barrier() might have sneaked in between
 897		 * the barrier callback execution and the callbacks counter
 898		 * decrement.
 899		 */
 900		if (rdp->nocb_cb_sleep) {
 901			rcu_nocb_lock_irqsave(rdp, flags);
 902			WARN_ON_ONCE(rcu_segcblist_n_cbs(&rdp->cblist));
 903			rcu_nocb_unlock_irqrestore(rdp, flags);
 904			kthread_parkme();
 905		}
 906	} else if (READ_ONCE(rdp->nocb_cb_sleep)) {
 907		WARN_ON(signal_pending(current));
 908		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
 909	}
 910
 911	WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp));
 912
 913	local_irq_save(flags);
 914	rcu_momentary_eqs();
 915	local_irq_restore(flags);
 916	/*
 917	 * Disable BH to provide the expected environment.  Also, when
 918	 * transitioning to/from NOCB mode, a self-requeuing callback might
 919	 * be invoked from softirq.  A short grace period could cause both
 920	 * instances of this callback would execute concurrently.
 921	 */
 922	local_bh_disable();
 923	rcu_do_batch(rdp);
 924	local_bh_enable();
 925	lockdep_assert_irqs_enabled();
 926	rcu_nocb_lock_irqsave(rdp, flags);
 927	if (rcu_segcblist_nextgp(cblist, &cur_gp_seq) &&
 928	    rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
 929	    raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
 930		needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
 931		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
 932	}
 933
 934	if (!rcu_segcblist_ready_cbs(cblist)) {
 935		WRITE_ONCE(rdp->nocb_cb_sleep, true);
 936		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
 937	} else {
 938		WRITE_ONCE(rdp->nocb_cb_sleep, false);
 939	}
 940
 941	rcu_nocb_unlock_irqrestore(rdp, flags);
 942	if (needwake_gp)
 943		rcu_gp_kthread_wake();
 944}
 945
 946/*
 947 * Per-rcu_data kthread, but only for no-CBs CPUs.  Repeatedly invoke
 948 * nocb_cb_wait() to do the dirty work.
 949 */
 950static int rcu_nocb_cb_kthread(void *arg)
 951{
 952	struct rcu_data *rdp = arg;
 953
 954	// Each pass through this loop does one callback batch, and,
 955	// if there are no more ready callbacks, waits for them.
 956	for (;;) {
 957		nocb_cb_wait(rdp);
 958		cond_resched_tasks_rcu_qs();
 959	}
 960	return 0;
 961}
 962
 963/* Is a deferred wakeup of rcu_nocb_kthread() required? */
 964static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
 965{
 966	return READ_ONCE(rdp->nocb_defer_wakeup) >= level;
 967}
 968
 969/* Do a deferred wakeup of rcu_nocb_kthread(). */
 970static bool do_nocb_deferred_wakeup_common(struct rcu_data *rdp_gp,
 971					   struct rcu_data *rdp, int level,
 972					   unsigned long flags)
 973	__releases(rdp_gp->nocb_gp_lock)
 974{
 975	int ndw;
 976	int ret;
 977
 978	if (!rcu_nocb_need_deferred_wakeup(rdp_gp, level)) {
 979		raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
 980		return false;
 981	}
 982
 983	ndw = rdp_gp->nocb_defer_wakeup;
 984	ret = __wake_nocb_gp(rdp_gp, rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
 985	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
 986
 987	return ret;
 988}
 989
 990/* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
 991static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
 992{
 993	unsigned long flags;
 994	struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
 995
 996	WARN_ON_ONCE(rdp->nocb_gp_rdp != rdp);
 997	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
 998
 999	raw_spin_lock_irqsave(&rdp->nocb_gp_lock, flags);
1000	smp_mb__after_spinlock(); /* Timer expire before wakeup. */
1001	do_nocb_deferred_wakeup_common(rdp, rdp, RCU_NOCB_WAKE_BYPASS, flags);
1002}
1003
1004/*
1005 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
1006 * This means we do an inexact common-case check.  Note that if
1007 * we miss, ->nocb_timer will eventually clean things up.
1008 */
1009static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
1010{
1011	unsigned long flags;
1012	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1013
1014	if (!rdp_gp || !rcu_nocb_need_deferred_wakeup(rdp_gp, RCU_NOCB_WAKE))
1015		return false;
1016
1017	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1018	return do_nocb_deferred_wakeup_common(rdp_gp, rdp, RCU_NOCB_WAKE, flags);
1019}
1020
1021void rcu_nocb_flush_deferred_wakeup(void)
1022{
1023	do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data));
1024}
1025EXPORT_SYMBOL_GPL(rcu_nocb_flush_deferred_wakeup);
1026
1027static int rcu_nocb_queue_toggle_rdp(struct rcu_data *rdp)
1028{
1029	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1030	bool wake_gp = false;
1031	unsigned long flags;
1032
1033	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1034	// Queue this rdp for add/del to/from the list to iterate on rcuog
1035	WRITE_ONCE(rdp_gp->nocb_toggling_rdp, rdp);
1036	if (rdp_gp->nocb_gp_sleep) {
1037		rdp_gp->nocb_gp_sleep = false;
1038		wake_gp = true;
1039	}
1040	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1041
1042	return wake_gp;
1043}
1044
1045static bool rcu_nocb_rdp_deoffload_wait_cond(struct rcu_data *rdp)
1046{
1047	unsigned long flags;
1048	bool ret;
1049
1050	/*
1051	 * Locking makes sure rcuog is done handling this rdp before deoffloaded
1052	 * enqueue can happen. Also it keeps the SEGCBLIST_OFFLOADED flag stable
1053	 * while the ->nocb_lock is held.
1054	 */
1055	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1056	ret = !rcu_segcblist_test_flags(&rdp->cblist, SEGCBLIST_OFFLOADED);
1057	raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1058
1059	return ret;
1060}
1061
1062static int rcu_nocb_rdp_deoffload(struct rcu_data *rdp)
1063{
1064	unsigned long flags;
1065	int wake_gp;
1066	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1067
1068	/* CPU must be offline, unless it's early boot */
1069	WARN_ON_ONCE(cpu_online(rdp->cpu) && rdp->cpu != raw_smp_processor_id());
1070
1071	pr_info("De-offloading %d\n", rdp->cpu);
1072
1073	/* Flush all callbacks from segcblist and bypass */
1074	rcu_barrier();
1075
1076	/*
1077	 * Make sure the rcuoc kthread isn't in the middle of a nocb locked
1078	 * sequence while offloading is deactivated, along with nocb locking.
1079	 */
1080	if (rdp->nocb_cb_kthread)
1081		kthread_park(rdp->nocb_cb_kthread);
1082
1083	rcu_nocb_lock_irqsave(rdp, flags);
1084	WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1085	WARN_ON_ONCE(rcu_segcblist_n_cbs(&rdp->cblist));
1086	rcu_nocb_unlock_irqrestore(rdp, flags);
1087
1088	wake_gp = rcu_nocb_queue_toggle_rdp(rdp);
1089
1090	mutex_lock(&rdp_gp->nocb_gp_kthread_mutex);
1091
1092	if (rdp_gp->nocb_gp_kthread) {
1093		if (wake_gp)
1094			wake_up_process(rdp_gp->nocb_gp_kthread);
1095
1096		swait_event_exclusive(rdp->nocb_state_wq,
1097				      rcu_nocb_rdp_deoffload_wait_cond(rdp));
1098	} else {
1099		/*
1100		 * No kthread to clear the flags for us or remove the rdp from the nocb list
1101		 * to iterate. Do it here instead. Locking doesn't look stricly necessary
1102		 * but we stick to paranoia in this rare path.
1103		 */
1104		raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1105		rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_OFFLOADED);
1106		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1107
1108		list_del(&rdp->nocb_entry_rdp);
1109	}
1110
1111	mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1112
1113	return 0;
1114}
1115
1116int rcu_nocb_cpu_deoffload(int cpu)
1117{
1118	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1119	int ret = 0;
1120
1121	cpus_read_lock();
1122	mutex_lock(&rcu_state.nocb_mutex);
1123	if (rcu_rdp_is_offloaded(rdp)) {
1124		if (!cpu_online(cpu)) {
1125			ret = rcu_nocb_rdp_deoffload(rdp);
1126			if (!ret)
1127				cpumask_clear_cpu(cpu, rcu_nocb_mask);
1128		} else {
1129			pr_info("NOCB: Cannot CB-deoffload online CPU %d\n", rdp->cpu);
1130			ret = -EINVAL;
1131		}
1132	}
1133	mutex_unlock(&rcu_state.nocb_mutex);
1134	cpus_read_unlock();
1135
1136	return ret;
1137}
1138EXPORT_SYMBOL_GPL(rcu_nocb_cpu_deoffload);
1139
1140static bool rcu_nocb_rdp_offload_wait_cond(struct rcu_data *rdp)
1141{
1142	unsigned long flags;
1143	bool ret;
1144
1145	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1146	ret = rcu_segcblist_test_flags(&rdp->cblist, SEGCBLIST_OFFLOADED);
1147	raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1148
1149	return ret;
1150}
1151
1152static int rcu_nocb_rdp_offload(struct rcu_data *rdp)
1153{
1154	int wake_gp;
1155	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1156
1157	WARN_ON_ONCE(cpu_online(rdp->cpu));
1158	/*
1159	 * For now we only support re-offload, ie: the rdp must have been
1160	 * offloaded on boot first.
1161	 */
1162	if (!rdp->nocb_gp_rdp)
1163		return -EINVAL;
1164
1165	if (WARN_ON_ONCE(!rdp_gp->nocb_gp_kthread))
1166		return -EINVAL;
1167
1168	pr_info("Offloading %d\n", rdp->cpu);
1169
1170	WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1171	WARN_ON_ONCE(rcu_segcblist_n_cbs(&rdp->cblist));
1172
1173	wake_gp = rcu_nocb_queue_toggle_rdp(rdp);
1174	if (wake_gp)
1175		wake_up_process(rdp_gp->nocb_gp_kthread);
1176
1177	swait_event_exclusive(rdp->nocb_state_wq,
1178			      rcu_nocb_rdp_offload_wait_cond(rdp));
1179
1180	kthread_unpark(rdp->nocb_cb_kthread);
1181
1182	return 0;
1183}
1184
1185int rcu_nocb_cpu_offload(int cpu)
1186{
1187	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1188	int ret = 0;
1189
1190	cpus_read_lock();
1191	mutex_lock(&rcu_state.nocb_mutex);
1192	if (!rcu_rdp_is_offloaded(rdp)) {
1193		if (!cpu_online(cpu)) {
1194			ret = rcu_nocb_rdp_offload(rdp);
1195			if (!ret)
1196				cpumask_set_cpu(cpu, rcu_nocb_mask);
1197		} else {
1198			pr_info("NOCB: Cannot CB-offload online CPU %d\n", rdp->cpu);
1199			ret = -EINVAL;
1200		}
1201	}
1202	mutex_unlock(&rcu_state.nocb_mutex);
1203	cpus_read_unlock();
1204
1205	return ret;
1206}
1207EXPORT_SYMBOL_GPL(rcu_nocb_cpu_offload);
1208
1209#ifdef CONFIG_RCU_LAZY
1210static unsigned long
1211lazy_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1212{
1213	int cpu;
1214	unsigned long count = 0;
1215
1216	if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask)))
1217		return 0;
1218
1219	/*  Protect rcu_nocb_mask against concurrent (de-)offloading. */
1220	if (!mutex_trylock(&rcu_state.nocb_mutex))
1221		return 0;
1222
1223	/* Snapshot count of all CPUs */
1224	for_each_cpu(cpu, rcu_nocb_mask) {
1225		struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1226
1227		count +=  READ_ONCE(rdp->lazy_len);
1228	}
1229
1230	mutex_unlock(&rcu_state.nocb_mutex);
1231
1232	return count ? count : SHRINK_EMPTY;
1233}
1234
1235static unsigned long
1236lazy_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1237{
1238	int cpu;
1239	unsigned long flags;
1240	unsigned long count = 0;
1241
1242	if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask)))
1243		return 0;
1244	/*
1245	 * Protect against concurrent (de-)offloading. Otherwise nocb locking
1246	 * may be ignored or imbalanced.
1247	 */
1248	if (!mutex_trylock(&rcu_state.nocb_mutex)) {
1249		/*
1250		 * But really don't insist if nocb_mutex is contended since we
1251		 * can't guarantee that it will never engage in a dependency
1252		 * chain involving memory allocation. The lock is seldom contended
1253		 * anyway.
1254		 */
1255		return 0;
1256	}
1257
1258	/* Snapshot count of all CPUs */
1259	for_each_cpu(cpu, rcu_nocb_mask) {
1260		struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1261		int _count;
1262
1263		if (WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp)))
1264			continue;
1265
1266		if (!READ_ONCE(rdp->lazy_len))
1267			continue;
1268
1269		rcu_nocb_lock_irqsave(rdp, flags);
1270		/*
1271		 * Recheck under the nocb lock. Since we are not holding the bypass
1272		 * lock we may still race with increments from the enqueuer but still
1273		 * we know for sure if there is at least one lazy callback.
1274		 */
1275		_count = READ_ONCE(rdp->lazy_len);
1276		if (!_count) {
1277			rcu_nocb_unlock_irqrestore(rdp, flags);
1278			continue;
1279		}
1280		rcu_nocb_try_flush_bypass(rdp, jiffies);
1281		rcu_nocb_unlock_irqrestore(rdp, flags);
1282		wake_nocb_gp(rdp, false);
1283		sc->nr_to_scan -= _count;
1284		count += _count;
1285		if (sc->nr_to_scan <= 0)
1286			break;
1287	}
1288
1289	mutex_unlock(&rcu_state.nocb_mutex);
1290
1291	return count ? count : SHRINK_STOP;
1292}
1293#endif // #ifdef CONFIG_RCU_LAZY
1294
1295void __init rcu_init_nohz(void)
1296{
1297	int cpu;
1298	struct rcu_data *rdp;
1299	const struct cpumask *cpumask = NULL;
1300	struct shrinker * __maybe_unused lazy_rcu_shrinker;
1301
1302#if defined(CONFIG_NO_HZ_FULL)
1303	if (tick_nohz_full_running && !cpumask_empty(tick_nohz_full_mask))
1304		cpumask = tick_nohz_full_mask;
1305#endif
1306
1307	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_DEFAULT_ALL) &&
1308	    !rcu_state.nocb_is_setup && !cpumask)
1309		cpumask = cpu_possible_mask;
1310
1311	if (cpumask) {
1312		if (!cpumask_available(rcu_nocb_mask)) {
1313			if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
1314				pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
1315				return;
1316			}
1317		}
1318
1319		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, cpumask);
1320		rcu_state.nocb_is_setup = true;
1321	}
1322
1323	if (!rcu_state.nocb_is_setup)
1324		return;
1325
1326#ifdef CONFIG_RCU_LAZY
1327	lazy_rcu_shrinker = shrinker_alloc(0, "rcu-lazy");
1328	if (!lazy_rcu_shrinker) {
1329		pr_err("Failed to allocate lazy_rcu shrinker!\n");
1330	} else {
1331		lazy_rcu_shrinker->count_objects = lazy_rcu_shrink_count;
1332		lazy_rcu_shrinker->scan_objects = lazy_rcu_shrink_scan;
1333
1334		shrinker_register(lazy_rcu_shrinker);
1335	}
1336#endif // #ifdef CONFIG_RCU_LAZY
1337
1338	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
1339		pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
1340		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
1341			    rcu_nocb_mask);
1342	}
1343	if (cpumask_empty(rcu_nocb_mask))
1344		pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
1345	else
1346		pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
1347			cpumask_pr_args(rcu_nocb_mask));
1348	if (rcu_nocb_poll)
1349		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
1350
1351	for_each_cpu(cpu, rcu_nocb_mask) {
1352		rdp = per_cpu_ptr(&rcu_data, cpu);
1353		if (rcu_segcblist_empty(&rdp->cblist))
1354			rcu_segcblist_init(&rdp->cblist);
1355		rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_OFFLOADED);
1356	}
1357	rcu_organize_nocb_kthreads();
1358}
1359
1360/* Initialize per-rcu_data variables for no-CBs CPUs. */
1361static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
1362{
1363	init_swait_queue_head(&rdp->nocb_cb_wq);
1364	init_swait_queue_head(&rdp->nocb_gp_wq);
1365	init_swait_queue_head(&rdp->nocb_state_wq);
1366	raw_spin_lock_init(&rdp->nocb_lock);
1367	raw_spin_lock_init(&rdp->nocb_bypass_lock);
1368	raw_spin_lock_init(&rdp->nocb_gp_lock);
1369	timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
1370	rcu_cblist_init(&rdp->nocb_bypass);
1371	WRITE_ONCE(rdp->lazy_len, 0);
1372	mutex_init(&rdp->nocb_gp_kthread_mutex);
1373}
1374
1375/*
1376 * If the specified CPU is a no-CBs CPU that does not already have its
1377 * rcuo CB kthread, spawn it.  Additionally, if the rcuo GP kthread
1378 * for this CPU's group has not yet been created, spawn it as well.
1379 */
1380static void rcu_spawn_cpu_nocb_kthread(int cpu)
1381{
1382	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1383	struct rcu_data *rdp_gp;
1384	struct task_struct *t;
1385	struct sched_param sp;
1386
1387	if (!rcu_scheduler_fully_active || !rcu_state.nocb_is_setup)
1388		return;
1389
1390	/* If there already is an rcuo kthread, then nothing to do. */
1391	if (rdp->nocb_cb_kthread)
1392		return;
1393
1394	/* If we didn't spawn the GP kthread first, reorganize! */
1395	sp.sched_priority = kthread_prio;
1396	rdp_gp = rdp->nocb_gp_rdp;
1397	mutex_lock(&rdp_gp->nocb_gp_kthread_mutex);
1398	if (!rdp_gp->nocb_gp_kthread) {
1399		t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
1400				"rcuog/%d", rdp_gp->cpu);
1401		if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__)) {
1402			mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1403			goto err;
1404		}
1405		WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
1406		if (kthread_prio)
1407			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1408	}
1409	mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1410
1411	/* Spawn the kthread for this CPU. */
1412	t = kthread_create(rcu_nocb_cb_kthread, rdp,
1413			   "rcuo%c/%d", rcu_state.abbr, cpu);
1414	if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
1415		goto err;
1416
1417	if (rcu_rdp_is_offloaded(rdp))
1418		wake_up_process(t);
1419	else
1420		kthread_park(t);
1421
1422	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_CB_BOOST) && kthread_prio)
1423		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1424
1425	WRITE_ONCE(rdp->nocb_cb_kthread, t);
1426	WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
1427	return;
1428
1429err:
1430	/*
1431	 * No need to protect against concurrent rcu_barrier()
1432	 * because the number of callbacks should be 0 for a non-boot CPU,
1433	 * therefore rcu_barrier() shouldn't even try to grab the nocb_lock.
1434	 * But hold nocb_mutex to avoid nocb_lock imbalance from shrinker.
1435	 */
1436	WARN_ON_ONCE(system_state > SYSTEM_BOOTING && rcu_segcblist_n_cbs(&rdp->cblist));
1437	mutex_lock(&rcu_state.nocb_mutex);
1438	if (rcu_rdp_is_offloaded(rdp)) {
1439		rcu_nocb_rdp_deoffload(rdp);
1440		cpumask_clear_cpu(cpu, rcu_nocb_mask);
1441	}
1442	mutex_unlock(&rcu_state.nocb_mutex);
1443}
1444
1445/* How many CB CPU IDs per GP kthread?  Default of -1 for sqrt(nr_cpu_ids). */
1446static int rcu_nocb_gp_stride = -1;
1447module_param(rcu_nocb_gp_stride, int, 0444);
1448
1449/*
1450 * Initialize GP-CB relationships for all no-CBs CPU.
1451 */
1452static void __init rcu_organize_nocb_kthreads(void)
1453{
1454	int cpu;
1455	bool firsttime = true;
1456	bool gotnocbs = false;
1457	bool gotnocbscbs = true;
1458	int ls = rcu_nocb_gp_stride;
1459	int nl = 0;  /* Next GP kthread. */
1460	struct rcu_data *rdp;
1461	struct rcu_data *rdp_gp = NULL;  /* Suppress misguided gcc warn. */
1462
1463	if (!cpumask_available(rcu_nocb_mask))
1464		return;
1465	if (ls == -1) {
1466		ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
1467		rcu_nocb_gp_stride = ls;
1468	}
1469
1470	/*
1471	 * Each pass through this loop sets up one rcu_data structure.
1472	 * Should the corresponding CPU come online in the future, then
1473	 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
1474	 */
1475	for_each_possible_cpu(cpu) {
1476		rdp = per_cpu_ptr(&rcu_data, cpu);
1477		if (rdp->cpu >= nl) {
1478			/* New GP kthread, set up for CBs & next GP. */
1479			gotnocbs = true;
1480			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
1481			rdp_gp = rdp;
1482			INIT_LIST_HEAD(&rdp->nocb_head_rdp);
1483			if (dump_tree) {
1484				if (!firsttime)
1485					pr_cont("%s\n", gotnocbscbs
1486							? "" : " (self only)");
1487				gotnocbscbs = false;
1488				firsttime = false;
1489				pr_alert("%s: No-CB GP kthread CPU %d:",
1490					 __func__, cpu);
1491			}
1492		} else {
1493			/* Another CB kthread, link to previous GP kthread. */
1494			gotnocbscbs = true;
1495			if (dump_tree)
1496				pr_cont(" %d", cpu);
1497		}
1498		rdp->nocb_gp_rdp = rdp_gp;
1499		if (cpumask_test_cpu(cpu, rcu_nocb_mask))
1500			list_add_tail(&rdp->nocb_entry_rdp, &rdp_gp->nocb_head_rdp);
1501	}
1502	if (gotnocbs && dump_tree)
1503		pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
1504}
1505
1506/*
1507 * Bind the current task to the offloaded CPUs.  If there are no offloaded
1508 * CPUs, leave the task unbound.  Splat if the bind attempt fails.
1509 */
1510void rcu_bind_current_to_nocb(void)
1511{
1512	if (cpumask_available(rcu_nocb_mask) && !cpumask_empty(rcu_nocb_mask))
1513		WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
1514}
1515EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
1516
1517// The ->on_cpu field is available only in CONFIG_SMP=y, so...
1518#ifdef CONFIG_SMP
1519static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
1520{
1521	return tsp && task_is_running(tsp) && !tsp->on_cpu ? "!" : "";
1522}
1523#else // #ifdef CONFIG_SMP
1524static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
1525{
1526	return "";
1527}
1528#endif // #else #ifdef CONFIG_SMP
1529
1530/*
1531 * Dump out nocb grace-period kthread state for the specified rcu_data
1532 * structure.
1533 */
1534static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
1535{
1536	struct rcu_node *rnp = rdp->mynode;
1537
1538	pr_info("nocb GP %d %c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu %c CPU %d%s\n",
1539		rdp->cpu,
1540		"kK"[!!rdp->nocb_gp_kthread],
1541		"lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
1542		"dD"[!!rdp->nocb_defer_wakeup],
1543		"tT"[timer_pending(&rdp->nocb_timer)],
1544		"sS"[!!rdp->nocb_gp_sleep],
1545		".W"[swait_active(&rdp->nocb_gp_wq)],
1546		".W"[swait_active(&rnp->nocb_gp_wq[0])],
1547		".W"[swait_active(&rnp->nocb_gp_wq[1])],
1548		".B"[!!rdp->nocb_gp_bypass],
1549		".G"[!!rdp->nocb_gp_gp],
1550		(long)rdp->nocb_gp_seq,
1551		rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops),
1552		rdp->nocb_gp_kthread ? task_state_to_char(rdp->nocb_gp_kthread) : '.',
1553		rdp->nocb_gp_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1,
1554		show_rcu_should_be_on_cpu(rdp->nocb_gp_kthread));
1555}
1556
1557/* Dump out nocb kthread state for the specified rcu_data structure. */
1558static void show_rcu_nocb_state(struct rcu_data *rdp)
1559{
1560	char bufw[20];
1561	char bufr[20];
1562	struct rcu_data *nocb_next_rdp;
1563	struct rcu_segcblist *rsclp = &rdp->cblist;
1564	bool waslocked;
1565	bool wassleep;
1566
1567	if (rdp->nocb_gp_rdp == rdp)
1568		show_rcu_nocb_gp_state(rdp);
1569
1570	nocb_next_rdp = list_next_or_null_rcu(&rdp->nocb_gp_rdp->nocb_head_rdp,
1571					      &rdp->nocb_entry_rdp,
1572					      typeof(*rdp),
1573					      nocb_entry_rdp);
1574
1575	sprintf(bufw, "%ld", rsclp->gp_seq[RCU_WAIT_TAIL]);
1576	sprintf(bufr, "%ld", rsclp->gp_seq[RCU_NEXT_READY_TAIL]);
1577	pr_info("   CB %d^%d->%d %c%c%c%c%c F%ld L%ld C%d %c%c%s%c%s%c%c q%ld %c CPU %d%s\n",
1578		rdp->cpu, rdp->nocb_gp_rdp->cpu,
1579		nocb_next_rdp ? nocb_next_rdp->cpu : -1,
1580		"kK"[!!rdp->nocb_cb_kthread],
1581		"bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
1582		"lL"[raw_spin_is_locked(&rdp->nocb_lock)],
1583		"sS"[!!rdp->nocb_cb_sleep],
1584		".W"[swait_active(&rdp->nocb_cb_wq)],
1585		jiffies - rdp->nocb_bypass_first,
1586		jiffies - rdp->nocb_nobypass_last,
1587		rdp->nocb_nobypass_count,
1588		".D"[rcu_segcblist_ready_cbs(rsclp)],
1589		".W"[!rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL)],
1590		rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL) ? "" : bufw,
1591		".R"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL)],
1592		rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL) ? "" : bufr,
1593		".N"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_TAIL)],
1594		".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
1595		rcu_segcblist_n_cbs(&rdp->cblist),
1596		rdp->nocb_cb_kthread ? task_state_to_char(rdp->nocb_cb_kthread) : '.',
1597		rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_cb_kthread) : -1,
1598		show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread));
1599
1600	/* It is OK for GP kthreads to have GP state. */
1601	if (rdp->nocb_gp_rdp == rdp)
1602		return;
1603
1604	waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
1605	wassleep = swait_active(&rdp->nocb_gp_wq);
1606	if (!rdp->nocb_gp_sleep && !waslocked && !wassleep)
1607		return;  /* Nothing untoward. */
1608
1609	pr_info("   nocb GP activity on CB-only CPU!!! %c%c%c %c\n",
1610		"lL"[waslocked],
1611		"dD"[!!rdp->nocb_defer_wakeup],
1612		"sS"[!!rdp->nocb_gp_sleep],
1613		".W"[wassleep]);
1614}
1615
1616#else /* #ifdef CONFIG_RCU_NOCB_CPU */
1617
1618/* No ->nocb_lock to acquire.  */
1619static void rcu_nocb_lock(struct rcu_data *rdp)
1620{
1621}
1622
1623/* No ->nocb_lock to release.  */
1624static void rcu_nocb_unlock(struct rcu_data *rdp)
1625{
1626}
1627
1628/* No ->nocb_lock to release.  */
1629static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1630				       unsigned long flags)
1631{
1632	local_irq_restore(flags);
1633}
1634
1635/* Lockdep check that ->cblist may be safely accessed. */
1636static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1637{
1638	lockdep_assert_irqs_disabled();
1639}
1640
1641static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1642{
1643}
1644
1645static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1646{
1647	return NULL;
1648}
1649
1650static void rcu_init_one_nocb(struct rcu_node *rnp)
1651{
1652}
1653
1654static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
1655{
1656	return false;
1657}
1658
1659static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1660				  unsigned long j, bool lazy)
1661{
1662	return true;
1663}
1664
1665static void call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *head,
1666			  rcu_callback_t func, unsigned long flags, bool lazy)
1667{
1668	WARN_ON_ONCE(1);  /* Should be dead code! */
1669}
1670
1671static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
1672				 unsigned long flags)
1673{
1674	WARN_ON_ONCE(1);  /* Should be dead code! */
1675}
1676
1677static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
1678{
1679}
1680
1681static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
1682{
1683	return false;
1684}
1685
1686static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
1687{
1688	return false;
1689}
1690
1691static void rcu_spawn_cpu_nocb_kthread(int cpu)
1692{
1693}
1694
1695static void show_rcu_nocb_state(struct rcu_data *rdp)
1696{
1697}
1698
1699#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */