Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * Copyright (c) 2013 Red Hat, Inc.
   4 * All Rights Reserved.
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License as
   8 * published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it would be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write the Free Software Foundation,
  17 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  18 */
  19#include "xfs.h"
  20#include "xfs_fs.h"
  21#include "xfs_shared.h"
  22#include "xfs_format.h"
  23#include "xfs_log_format.h"
  24#include "xfs_trans_resv.h"
  25#include "xfs_bit.h"
  26#include "xfs_sb.h"
  27#include "xfs_ag.h"
  28#include "xfs_mount.h"
  29#include "xfs_da_format.h"
  30#include "xfs_da_btree.h"
  31#include "xfs_dir2.h"
  32#include "xfs_dir2_priv.h"
  33#include "xfs_inode.h"
  34#include "xfs_trans.h"
  35#include "xfs_inode_item.h"
  36#include "xfs_alloc.h"
  37#include "xfs_bmap.h"
  38#include "xfs_attr.h"
  39#include "xfs_attr_leaf.h"
  40#include "xfs_error.h"
  41#include "xfs_trace.h"
  42#include "xfs_cksum.h"
  43#include "xfs_buf_item.h"
  44
  45/*
  46 * xfs_da_btree.c
  47 *
  48 * Routines to implement directories as Btrees of hashed names.
  49 */
  50
  51/*========================================================================
  52 * Function prototypes for the kernel.
  53 *========================================================================*/
  54
  55/*
  56 * Routines used for growing the Btree.
  57 */
  58STATIC int xfs_da3_root_split(xfs_da_state_t *state,
  59					    xfs_da_state_blk_t *existing_root,
  60					    xfs_da_state_blk_t *new_child);
  61STATIC int xfs_da3_node_split(xfs_da_state_t *state,
  62					    xfs_da_state_blk_t *existing_blk,
  63					    xfs_da_state_blk_t *split_blk,
  64					    xfs_da_state_blk_t *blk_to_add,
  65					    int treelevel,
  66					    int *result);
  67STATIC void xfs_da3_node_rebalance(xfs_da_state_t *state,
  68					 xfs_da_state_blk_t *node_blk_1,
  69					 xfs_da_state_blk_t *node_blk_2);
  70STATIC void xfs_da3_node_add(xfs_da_state_t *state,
  71				   xfs_da_state_blk_t *old_node_blk,
  72				   xfs_da_state_blk_t *new_node_blk);
  73
  74/*
  75 * Routines used for shrinking the Btree.
  76 */
  77STATIC int xfs_da3_root_join(xfs_da_state_t *state,
  78					   xfs_da_state_blk_t *root_blk);
  79STATIC int xfs_da3_node_toosmall(xfs_da_state_t *state, int *retval);
  80STATIC void xfs_da3_node_remove(xfs_da_state_t *state,
  81					      xfs_da_state_blk_t *drop_blk);
  82STATIC void xfs_da3_node_unbalance(xfs_da_state_t *state,
  83					 xfs_da_state_blk_t *src_node_blk,
  84					 xfs_da_state_blk_t *dst_node_blk);
  85
  86/*
  87 * Utility routines.
  88 */
  89STATIC int	xfs_da3_blk_unlink(xfs_da_state_t *state,
  90				  xfs_da_state_blk_t *drop_blk,
  91				  xfs_da_state_blk_t *save_blk);
  92
  93
  94kmem_zone_t *xfs_da_state_zone;	/* anchor for state struct zone */
  95
  96/*
  97 * Allocate a dir-state structure.
  98 * We don't put them on the stack since they're large.
  99 */
 100xfs_da_state_t *
 101xfs_da_state_alloc(void)
 102{
 103	return kmem_zone_zalloc(xfs_da_state_zone, KM_NOFS);
 104}
 105
 106/*
 107 * Kill the altpath contents of a da-state structure.
 108 */
 109STATIC void
 110xfs_da_state_kill_altpath(xfs_da_state_t *state)
 111{
 112	int	i;
 113
 114	for (i = 0; i < state->altpath.active; i++)
 115		state->altpath.blk[i].bp = NULL;
 116	state->altpath.active = 0;
 117}
 118
 119/*
 120 * Free a da-state structure.
 121 */
 122void
 123xfs_da_state_free(xfs_da_state_t *state)
 124{
 125	xfs_da_state_kill_altpath(state);
 126#ifdef DEBUG
 127	memset((char *)state, 0, sizeof(*state));
 128#endif /* DEBUG */
 129	kmem_zone_free(xfs_da_state_zone, state);
 130}
 131
 132static bool
 133xfs_da3_node_verify(
 134	struct xfs_buf		*bp)
 135{
 136	struct xfs_mount	*mp = bp->b_target->bt_mount;
 137	struct xfs_da_intnode	*hdr = bp->b_addr;
 138	struct xfs_da3_icnode_hdr ichdr;
 139	const struct xfs_dir_ops *ops;
 140
 141	ops = xfs_dir_get_ops(mp, NULL);
 142
 143	ops->node_hdr_from_disk(&ichdr, hdr);
 144
 145	if (xfs_sb_version_hascrc(&mp->m_sb)) {
 146		struct xfs_da3_node_hdr *hdr3 = bp->b_addr;
 147
 148		if (ichdr.magic != XFS_DA3_NODE_MAGIC)
 149			return false;
 150
 151		if (!uuid_equal(&hdr3->info.uuid, &mp->m_sb.sb_uuid))
 152			return false;
 153		if (be64_to_cpu(hdr3->info.blkno) != bp->b_bn)
 154			return false;
 155	} else {
 156		if (ichdr.magic != XFS_DA_NODE_MAGIC)
 157			return false;
 158	}
 159	if (ichdr.level == 0)
 160		return false;
 161	if (ichdr.level > XFS_DA_NODE_MAXDEPTH)
 162		return false;
 163	if (ichdr.count == 0)
 164		return false;
 165
 166	/*
 167	 * we don't know if the node is for and attribute or directory tree,
 168	 * so only fail if the count is outside both bounds
 169	 */
 170	if (ichdr.count > mp->m_dir_node_ents &&
 171	    ichdr.count > mp->m_attr_node_ents)
 172		return false;
 173
 174	/* XXX: hash order check? */
 175
 176	return true;
 177}
 178
 179static void
 180xfs_da3_node_write_verify(
 181	struct xfs_buf	*bp)
 182{
 183	struct xfs_mount	*mp = bp->b_target->bt_mount;
 184	struct xfs_buf_log_item	*bip = bp->b_fspriv;
 185	struct xfs_da3_node_hdr *hdr3 = bp->b_addr;
 186
 187	if (!xfs_da3_node_verify(bp)) {
 188		xfs_buf_ioerror(bp, EFSCORRUPTED);
 189		xfs_verifier_error(bp);
 190		return;
 191	}
 192
 193	if (!xfs_sb_version_hascrc(&mp->m_sb))
 194		return;
 195
 196	if (bip)
 197		hdr3->info.lsn = cpu_to_be64(bip->bli_item.li_lsn);
 198
 199	xfs_buf_update_cksum(bp, XFS_DA3_NODE_CRC_OFF);
 200}
 201
 202/*
 203 * leaf/node format detection on trees is sketchy, so a node read can be done on
 204 * leaf level blocks when detection identifies the tree as a node format tree
 205 * incorrectly. In this case, we need to swap the verifier to match the correct
 206 * format of the block being read.
 207 */
 208static void
 209xfs_da3_node_read_verify(
 210	struct xfs_buf		*bp)
 211{
 212	struct xfs_da_blkinfo	*info = bp->b_addr;
 213
 214	switch (be16_to_cpu(info->magic)) {
 215		case XFS_DA3_NODE_MAGIC:
 216			if (!xfs_buf_verify_cksum(bp, XFS_DA3_NODE_CRC_OFF)) {
 217				xfs_buf_ioerror(bp, EFSBADCRC);
 218				break;
 219			}
 220			/* fall through */
 221		case XFS_DA_NODE_MAGIC:
 222			if (!xfs_da3_node_verify(bp)) {
 223				xfs_buf_ioerror(bp, EFSCORRUPTED);
 224				break;
 225			}
 226			return;
 227		case XFS_ATTR_LEAF_MAGIC:
 228		case XFS_ATTR3_LEAF_MAGIC:
 229			bp->b_ops = &xfs_attr3_leaf_buf_ops;
 230			bp->b_ops->verify_read(bp);
 231			return;
 232		case XFS_DIR2_LEAFN_MAGIC:
 233		case XFS_DIR3_LEAFN_MAGIC:
 234			bp->b_ops = &xfs_dir3_leafn_buf_ops;
 235			bp->b_ops->verify_read(bp);
 236			return;
 237		default:
 238			break;
 239	}
 240
 241	/* corrupt block */
 242	xfs_verifier_error(bp);
 243}
 244
 245const struct xfs_buf_ops xfs_da3_node_buf_ops = {
 246	.verify_read = xfs_da3_node_read_verify,
 247	.verify_write = xfs_da3_node_write_verify,
 248};
 249
 250int
 251xfs_da3_node_read(
 252	struct xfs_trans	*tp,
 253	struct xfs_inode	*dp,
 254	xfs_dablk_t		bno,
 255	xfs_daddr_t		mappedbno,
 256	struct xfs_buf		**bpp,
 257	int			which_fork)
 258{
 259	int			err;
 260
 261	err = xfs_da_read_buf(tp, dp, bno, mappedbno, bpp,
 262					which_fork, &xfs_da3_node_buf_ops);
 263	if (!err && tp) {
 264		struct xfs_da_blkinfo	*info = (*bpp)->b_addr;
 265		int			type;
 266
 267		switch (be16_to_cpu(info->magic)) {
 268		case XFS_DA_NODE_MAGIC:
 269		case XFS_DA3_NODE_MAGIC:
 270			type = XFS_BLFT_DA_NODE_BUF;
 271			break;
 272		case XFS_ATTR_LEAF_MAGIC:
 273		case XFS_ATTR3_LEAF_MAGIC:
 274			type = XFS_BLFT_ATTR_LEAF_BUF;
 275			break;
 276		case XFS_DIR2_LEAFN_MAGIC:
 277		case XFS_DIR3_LEAFN_MAGIC:
 278			type = XFS_BLFT_DIR_LEAFN_BUF;
 279			break;
 280		default:
 281			type = 0;
 282			ASSERT(0);
 283			break;
 284		}
 285		xfs_trans_buf_set_type(tp, *bpp, type);
 286	}
 287	return err;
 288}
 289
 290/*========================================================================
 291 * Routines used for growing the Btree.
 292 *========================================================================*/
 293
 294/*
 295 * Create the initial contents of an intermediate node.
 296 */
 297int
 298xfs_da3_node_create(
 299	struct xfs_da_args	*args,
 300	xfs_dablk_t		blkno,
 301	int			level,
 302	struct xfs_buf		**bpp,
 303	int			whichfork)
 304{
 305	struct xfs_da_intnode	*node;
 306	struct xfs_trans	*tp = args->trans;
 307	struct xfs_mount	*mp = tp->t_mountp;
 308	struct xfs_da3_icnode_hdr ichdr = {0};
 309	struct xfs_buf		*bp;
 310	int			error;
 311	struct xfs_inode	*dp = args->dp;
 312
 313	trace_xfs_da_node_create(args);
 314	ASSERT(level <= XFS_DA_NODE_MAXDEPTH);
 315
 316	error = xfs_da_get_buf(tp, dp, blkno, -1, &bp, whichfork);
 317	if (error)
 318		return(error);
 319	bp->b_ops = &xfs_da3_node_buf_ops;
 320	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DA_NODE_BUF);
 321	node = bp->b_addr;
 322
 323	if (xfs_sb_version_hascrc(&mp->m_sb)) {
 324		struct xfs_da3_node_hdr *hdr3 = bp->b_addr;
 325
 326		ichdr.magic = XFS_DA3_NODE_MAGIC;
 327		hdr3->info.blkno = cpu_to_be64(bp->b_bn);
 328		hdr3->info.owner = cpu_to_be64(args->dp->i_ino);
 329		uuid_copy(&hdr3->info.uuid, &mp->m_sb.sb_uuid);
 330	} else {
 331		ichdr.magic = XFS_DA_NODE_MAGIC;
 332	}
 333	ichdr.level = level;
 334
 335	dp->d_ops->node_hdr_to_disk(node, &ichdr);
 336	xfs_trans_log_buf(tp, bp,
 337		XFS_DA_LOGRANGE(node, &node->hdr, dp->d_ops->node_hdr_size));
 338
 339	*bpp = bp;
 340	return(0);
 341}
 342
 343/*
 344 * Split a leaf node, rebalance, then possibly split
 345 * intermediate nodes, rebalance, etc.
 346 */
 347int							/* error */
 348xfs_da3_split(
 349	struct xfs_da_state	*state)
 350{
 351	struct xfs_da_state_blk	*oldblk;
 352	struct xfs_da_state_blk	*newblk;
 353	struct xfs_da_state_blk	*addblk;
 354	struct xfs_da_intnode	*node;
 355	struct xfs_buf		*bp;
 356	int			max;
 357	int			action = 0;
 358	int			error;
 359	int			i;
 360
 361	trace_xfs_da_split(state->args);
 362
 363	/*
 364	 * Walk back up the tree splitting/inserting/adjusting as necessary.
 365	 * If we need to insert and there isn't room, split the node, then
 366	 * decide which fragment to insert the new block from below into.
 367	 * Note that we may split the root this way, but we need more fixup.
 368	 */
 369	max = state->path.active - 1;
 370	ASSERT((max >= 0) && (max < XFS_DA_NODE_MAXDEPTH));
 371	ASSERT(state->path.blk[max].magic == XFS_ATTR_LEAF_MAGIC ||
 372	       state->path.blk[max].magic == XFS_DIR2_LEAFN_MAGIC);
 373
 374	addblk = &state->path.blk[max];		/* initial dummy value */
 375	for (i = max; (i >= 0) && addblk; state->path.active--, i--) {
 376		oldblk = &state->path.blk[i];
 377		newblk = &state->altpath.blk[i];
 378
 379		/*
 380		 * If a leaf node then
 381		 *     Allocate a new leaf node, then rebalance across them.
 382		 * else if an intermediate node then
 383		 *     We split on the last layer, must we split the node?
 384		 */
 385		switch (oldblk->magic) {
 386		case XFS_ATTR_LEAF_MAGIC:
 387			error = xfs_attr3_leaf_split(state, oldblk, newblk);
 388			if ((error != 0) && (error != ENOSPC)) {
 389				return(error);	/* GROT: attr is inconsistent */
 390			}
 391			if (!error) {
 392				addblk = newblk;
 393				break;
 394			}
 395			/*
 396			 * Entry wouldn't fit, split the leaf again.
 397			 */
 398			state->extravalid = 1;
 399			if (state->inleaf) {
 400				state->extraafter = 0;	/* before newblk */
 401				trace_xfs_attr_leaf_split_before(state->args);
 402				error = xfs_attr3_leaf_split(state, oldblk,
 403							    &state->extrablk);
 404			} else {
 405				state->extraafter = 1;	/* after newblk */
 406				trace_xfs_attr_leaf_split_after(state->args);
 407				error = xfs_attr3_leaf_split(state, newblk,
 408							    &state->extrablk);
 409			}
 410			if (error)
 411				return(error);	/* GROT: attr inconsistent */
 412			addblk = newblk;
 413			break;
 414		case XFS_DIR2_LEAFN_MAGIC:
 415			error = xfs_dir2_leafn_split(state, oldblk, newblk);
 416			if (error)
 417				return error;
 418			addblk = newblk;
 419			break;
 420		case XFS_DA_NODE_MAGIC:
 421			error = xfs_da3_node_split(state, oldblk, newblk, addblk,
 422							 max - i, &action);
 423			addblk->bp = NULL;
 424			if (error)
 425				return(error);	/* GROT: dir is inconsistent */
 426			/*
 427			 * Record the newly split block for the next time thru?
 428			 */
 429			if (action)
 430				addblk = newblk;
 431			else
 432				addblk = NULL;
 433			break;
 434		}
 435
 436		/*
 437		 * Update the btree to show the new hashval for this child.
 438		 */
 439		xfs_da3_fixhashpath(state, &state->path);
 440	}
 441	if (!addblk)
 442		return(0);
 443
 444	/*
 445	 * Split the root node.
 446	 */
 447	ASSERT(state->path.active == 0);
 448	oldblk = &state->path.blk[0];
 449	error = xfs_da3_root_split(state, oldblk, addblk);
 450	if (error) {
 451		addblk->bp = NULL;
 452		return(error);	/* GROT: dir is inconsistent */
 453	}
 454
 455	/*
 456	 * Update pointers to the node which used to be block 0 and
 457	 * just got bumped because of the addition of a new root node.
 458	 * There might be three blocks involved if a double split occurred,
 459	 * and the original block 0 could be at any position in the list.
 460	 *
 461	 * Note: the magic numbers and sibling pointers are in the same
 462	 * physical place for both v2 and v3 headers (by design). Hence it
 463	 * doesn't matter which version of the xfs_da_intnode structure we use
 464	 * here as the result will be the same using either structure.
 465	 */
 466	node = oldblk->bp->b_addr;
 467	if (node->hdr.info.forw) {
 468		if (be32_to_cpu(node->hdr.info.forw) == addblk->blkno) {
 469			bp = addblk->bp;
 470		} else {
 471			ASSERT(state->extravalid);
 472			bp = state->extrablk.bp;
 473		}
 474		node = bp->b_addr;
 475		node->hdr.info.back = cpu_to_be32(oldblk->blkno);
 476		xfs_trans_log_buf(state->args->trans, bp,
 477		    XFS_DA_LOGRANGE(node, &node->hdr.info,
 478		    sizeof(node->hdr.info)));
 479	}
 480	node = oldblk->bp->b_addr;
 481	if (node->hdr.info.back) {
 482		if (be32_to_cpu(node->hdr.info.back) == addblk->blkno) {
 483			bp = addblk->bp;
 484		} else {
 485			ASSERT(state->extravalid);
 486			bp = state->extrablk.bp;
 487		}
 488		node = bp->b_addr;
 489		node->hdr.info.forw = cpu_to_be32(oldblk->blkno);
 490		xfs_trans_log_buf(state->args->trans, bp,
 491		    XFS_DA_LOGRANGE(node, &node->hdr.info,
 492		    sizeof(node->hdr.info)));
 493	}
 494	addblk->bp = NULL;
 495	return(0);
 496}
 497
 498/*
 499 * Split the root.  We have to create a new root and point to the two
 500 * parts (the split old root) that we just created.  Copy block zero to
 501 * the EOF, extending the inode in process.
 502 */
 503STATIC int						/* error */
 504xfs_da3_root_split(
 505	struct xfs_da_state	*state,
 506	struct xfs_da_state_blk	*blk1,
 507	struct xfs_da_state_blk	*blk2)
 508{
 509	struct xfs_da_intnode	*node;
 510	struct xfs_da_intnode	*oldroot;
 511	struct xfs_da_node_entry *btree;
 512	struct xfs_da3_icnode_hdr nodehdr;
 513	struct xfs_da_args	*args;
 514	struct xfs_buf		*bp;
 515	struct xfs_inode	*dp;
 516	struct xfs_trans	*tp;
 517	struct xfs_mount	*mp;
 518	struct xfs_dir2_leaf	*leaf;
 519	xfs_dablk_t		blkno;
 520	int			level;
 521	int			error;
 522	int			size;
 523
 524	trace_xfs_da_root_split(state->args);
 525
 526	/*
 527	 * Copy the existing (incorrect) block from the root node position
 528	 * to a free space somewhere.
 529	 */
 530	args = state->args;
 531	error = xfs_da_grow_inode(args, &blkno);
 532	if (error)
 533		return error;
 534
 535	dp = args->dp;
 536	tp = args->trans;
 537	mp = state->mp;
 538	error = xfs_da_get_buf(tp, dp, blkno, -1, &bp, args->whichfork);
 539	if (error)
 540		return error;
 541	node = bp->b_addr;
 542	oldroot = blk1->bp->b_addr;
 543	if (oldroot->hdr.info.magic == cpu_to_be16(XFS_DA_NODE_MAGIC) ||
 544	    oldroot->hdr.info.magic == cpu_to_be16(XFS_DA3_NODE_MAGIC)) {
 545		struct xfs_da3_icnode_hdr nodehdr;
 546
 547		dp->d_ops->node_hdr_from_disk(&nodehdr, oldroot);
 548		btree = dp->d_ops->node_tree_p(oldroot);
 549		size = (int)((char *)&btree[nodehdr.count] - (char *)oldroot);
 550		level = nodehdr.level;
 551
 552		/*
 553		 * we are about to copy oldroot to bp, so set up the type
 554		 * of bp while we know exactly what it will be.
 555		 */
 556		xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DA_NODE_BUF);
 557	} else {
 558		struct xfs_dir3_icleaf_hdr leafhdr;
 559		struct xfs_dir2_leaf_entry *ents;
 560
 561		leaf = (xfs_dir2_leaf_t *)oldroot;
 562		dp->d_ops->leaf_hdr_from_disk(&leafhdr, leaf);
 563		ents = dp->d_ops->leaf_ents_p(leaf);
 564
 565		ASSERT(leafhdr.magic == XFS_DIR2_LEAFN_MAGIC ||
 566		       leafhdr.magic == XFS_DIR3_LEAFN_MAGIC);
 567		size = (int)((char *)&ents[leafhdr.count] - (char *)leaf);
 568		level = 0;
 569
 570		/*
 571		 * we are about to copy oldroot to bp, so set up the type
 572		 * of bp while we know exactly what it will be.
 573		 */
 574		xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DIR_LEAFN_BUF);
 575	}
 576
 577	/*
 578	 * we can copy most of the information in the node from one block to
 579	 * another, but for CRC enabled headers we have to make sure that the
 580	 * block specific identifiers are kept intact. We update the buffer
 581	 * directly for this.
 582	 */
 583	memcpy(node, oldroot, size);
 584	if (oldroot->hdr.info.magic == cpu_to_be16(XFS_DA3_NODE_MAGIC) ||
 585	    oldroot->hdr.info.magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC)) {
 586		struct xfs_da3_intnode *node3 = (struct xfs_da3_intnode *)node;
 587
 588		node3->hdr.info.blkno = cpu_to_be64(bp->b_bn);
 589	}
 590	xfs_trans_log_buf(tp, bp, 0, size - 1);
 591
 592	bp->b_ops = blk1->bp->b_ops;
 593	xfs_trans_buf_copy_type(bp, blk1->bp);
 594	blk1->bp = bp;
 595	blk1->blkno = blkno;
 596
 597	/*
 598	 * Set up the new root node.
 599	 */
 600	error = xfs_da3_node_create(args,
 601		(args->whichfork == XFS_DATA_FORK) ? mp->m_dirleafblk : 0,
 602		level + 1, &bp, args->whichfork);
 603	if (error)
 604		return error;
 605
 606	node = bp->b_addr;
 607	dp->d_ops->node_hdr_from_disk(&nodehdr, node);
 608	btree = dp->d_ops->node_tree_p(node);
 609	btree[0].hashval = cpu_to_be32(blk1->hashval);
 610	btree[0].before = cpu_to_be32(blk1->blkno);
 611	btree[1].hashval = cpu_to_be32(blk2->hashval);
 612	btree[1].before = cpu_to_be32(blk2->blkno);
 613	nodehdr.count = 2;
 614	dp->d_ops->node_hdr_to_disk(node, &nodehdr);
 615
 616#ifdef DEBUG
 617	if (oldroot->hdr.info.magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) ||
 618	    oldroot->hdr.info.magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC)) {
 619		ASSERT(blk1->blkno >= mp->m_dirleafblk &&
 620		       blk1->blkno < mp->m_dirfreeblk);
 621		ASSERT(blk2->blkno >= mp->m_dirleafblk &&
 622		       blk2->blkno < mp->m_dirfreeblk);
 623	}
 624#endif
 625
 626	/* Header is already logged by xfs_da_node_create */
 627	xfs_trans_log_buf(tp, bp,
 628		XFS_DA_LOGRANGE(node, btree, sizeof(xfs_da_node_entry_t) * 2));
 629
 630	return 0;
 631}
 632
 633/*
 634 * Split the node, rebalance, then add the new entry.
 635 */
 636STATIC int						/* error */
 637xfs_da3_node_split(
 638	struct xfs_da_state	*state,
 639	struct xfs_da_state_blk	*oldblk,
 640	struct xfs_da_state_blk	*newblk,
 641	struct xfs_da_state_blk	*addblk,
 642	int			treelevel,
 643	int			*result)
 644{
 645	struct xfs_da_intnode	*node;
 646	struct xfs_da3_icnode_hdr nodehdr;
 647	xfs_dablk_t		blkno;
 648	int			newcount;
 649	int			error;
 650	int			useextra;
 651	struct xfs_inode	*dp = state->args->dp;
 652
 653	trace_xfs_da_node_split(state->args);
 654
 655	node = oldblk->bp->b_addr;
 656	dp->d_ops->node_hdr_from_disk(&nodehdr, node);
 657
 658	/*
 659	 * With V2 dirs the extra block is data or freespace.
 660	 */
 661	useextra = state->extravalid && state->args->whichfork == XFS_ATTR_FORK;
 662	newcount = 1 + useextra;
 663	/*
 664	 * Do we have to split the node?
 665	 */
 666	if (nodehdr.count + newcount > state->node_ents) {
 667		/*
 668		 * Allocate a new node, add to the doubly linked chain of
 669		 * nodes, then move some of our excess entries into it.
 670		 */
 671		error = xfs_da_grow_inode(state->args, &blkno);
 672		if (error)
 673			return(error);	/* GROT: dir is inconsistent */
 674
 675		error = xfs_da3_node_create(state->args, blkno, treelevel,
 676					   &newblk->bp, state->args->whichfork);
 677		if (error)
 678			return(error);	/* GROT: dir is inconsistent */
 679		newblk->blkno = blkno;
 680		newblk->magic = XFS_DA_NODE_MAGIC;
 681		xfs_da3_node_rebalance(state, oldblk, newblk);
 682		error = xfs_da3_blk_link(state, oldblk, newblk);
 683		if (error)
 684			return(error);
 685		*result = 1;
 686	} else {
 687		*result = 0;
 688	}
 689
 690	/*
 691	 * Insert the new entry(s) into the correct block
 692	 * (updating last hashval in the process).
 693	 *
 694	 * xfs_da3_node_add() inserts BEFORE the given index,
 695	 * and as a result of using node_lookup_int() we always
 696	 * point to a valid entry (not after one), but a split
 697	 * operation always results in a new block whose hashvals
 698	 * FOLLOW the current block.
 699	 *
 700	 * If we had double-split op below us, then add the extra block too.
 701	 */
 702	node = oldblk->bp->b_addr;
 703	dp->d_ops->node_hdr_from_disk(&nodehdr, node);
 704	if (oldblk->index <= nodehdr.count) {
 705		oldblk->index++;
 706		xfs_da3_node_add(state, oldblk, addblk);
 707		if (useextra) {
 708			if (state->extraafter)
 709				oldblk->index++;
 710			xfs_da3_node_add(state, oldblk, &state->extrablk);
 711			state->extravalid = 0;
 712		}
 713	} else {
 714		newblk->index++;
 715		xfs_da3_node_add(state, newblk, addblk);
 716		if (useextra) {
 717			if (state->extraafter)
 718				newblk->index++;
 719			xfs_da3_node_add(state, newblk, &state->extrablk);
 720			state->extravalid = 0;
 721		}
 722	}
 723
 724	return(0);
 725}
 726
 727/*
 728 * Balance the btree elements between two intermediate nodes,
 729 * usually one full and one empty.
 730 *
 731 * NOTE: if blk2 is empty, then it will get the upper half of blk1.
 732 */
 733STATIC void
 734xfs_da3_node_rebalance(
 735	struct xfs_da_state	*state,
 736	struct xfs_da_state_blk	*blk1,
 737	struct xfs_da_state_blk	*blk2)
 738{
 739	struct xfs_da_intnode	*node1;
 740	struct xfs_da_intnode	*node2;
 741	struct xfs_da_intnode	*tmpnode;
 742	struct xfs_da_node_entry *btree1;
 743	struct xfs_da_node_entry *btree2;
 744	struct xfs_da_node_entry *btree_s;
 745	struct xfs_da_node_entry *btree_d;
 746	struct xfs_da3_icnode_hdr nodehdr1;
 747	struct xfs_da3_icnode_hdr nodehdr2;
 748	struct xfs_trans	*tp;
 749	int			count;
 750	int			tmp;
 751	int			swap = 0;
 752	struct xfs_inode	*dp = state->args->dp;
 753
 754	trace_xfs_da_node_rebalance(state->args);
 755
 756	node1 = blk1->bp->b_addr;
 757	node2 = blk2->bp->b_addr;
 758	dp->d_ops->node_hdr_from_disk(&nodehdr1, node1);
 759	dp->d_ops->node_hdr_from_disk(&nodehdr2, node2);
 760	btree1 = dp->d_ops->node_tree_p(node1);
 761	btree2 = dp->d_ops->node_tree_p(node2);
 762
 763	/*
 764	 * Figure out how many entries need to move, and in which direction.
 765	 * Swap the nodes around if that makes it simpler.
 766	 */
 767	if (nodehdr1.count > 0 && nodehdr2.count > 0 &&
 768	    ((be32_to_cpu(btree2[0].hashval) < be32_to_cpu(btree1[0].hashval)) ||
 769	     (be32_to_cpu(btree2[nodehdr2.count - 1].hashval) <
 770			be32_to_cpu(btree1[nodehdr1.count - 1].hashval)))) {
 771		tmpnode = node1;
 772		node1 = node2;
 773		node2 = tmpnode;
 774		dp->d_ops->node_hdr_from_disk(&nodehdr1, node1);
 775		dp->d_ops->node_hdr_from_disk(&nodehdr2, node2);
 776		btree1 = dp->d_ops->node_tree_p(node1);
 777		btree2 = dp->d_ops->node_tree_p(node2);
 778		swap = 1;
 779	}
 780
 781	count = (nodehdr1.count - nodehdr2.count) / 2;
 782	if (count == 0)
 783		return;
 784	tp = state->args->trans;
 785	/*
 786	 * Two cases: high-to-low and low-to-high.
 787	 */
 788	if (count > 0) {
 789		/*
 790		 * Move elements in node2 up to make a hole.
 791		 */
 792		tmp = nodehdr2.count;
 793		if (tmp > 0) {
 794			tmp *= (uint)sizeof(xfs_da_node_entry_t);
 795			btree_s = &btree2[0];
 796			btree_d = &btree2[count];
 797			memmove(btree_d, btree_s, tmp);
 798		}
 799
 800		/*
 801		 * Move the req'd B-tree elements from high in node1 to
 802		 * low in node2.
 803		 */
 804		nodehdr2.count += count;
 805		tmp = count * (uint)sizeof(xfs_da_node_entry_t);
 806		btree_s = &btree1[nodehdr1.count - count];
 807		btree_d = &btree2[0];
 808		memcpy(btree_d, btree_s, tmp);
 809		nodehdr1.count -= count;
 810	} else {
 811		/*
 812		 * Move the req'd B-tree elements from low in node2 to
 813		 * high in node1.
 814		 */
 815		count = -count;
 816		tmp = count * (uint)sizeof(xfs_da_node_entry_t);
 817		btree_s = &btree2[0];
 818		btree_d = &btree1[nodehdr1.count];
 819		memcpy(btree_d, btree_s, tmp);
 820		nodehdr1.count += count;
 821
 822		xfs_trans_log_buf(tp, blk1->bp,
 823			XFS_DA_LOGRANGE(node1, btree_d, tmp));
 824
 825		/*
 826		 * Move elements in node2 down to fill the hole.
 827		 */
 828		tmp  = nodehdr2.count - count;
 829		tmp *= (uint)sizeof(xfs_da_node_entry_t);
 830		btree_s = &btree2[count];
 831		btree_d = &btree2[0];
 832		memmove(btree_d, btree_s, tmp);
 833		nodehdr2.count -= count;
 834	}
 835
 836	/*
 837	 * Log header of node 1 and all current bits of node 2.
 838	 */
 839	dp->d_ops->node_hdr_to_disk(node1, &nodehdr1);
 840	xfs_trans_log_buf(tp, blk1->bp,
 841		XFS_DA_LOGRANGE(node1, &node1->hdr, dp->d_ops->node_hdr_size));
 842
 843	dp->d_ops->node_hdr_to_disk(node2, &nodehdr2);
 844	xfs_trans_log_buf(tp, blk2->bp,
 845		XFS_DA_LOGRANGE(node2, &node2->hdr,
 846				dp->d_ops->node_hdr_size +
 847				(sizeof(btree2[0]) * nodehdr2.count)));
 848
 849	/*
 850	 * Record the last hashval from each block for upward propagation.
 851	 * (note: don't use the swapped node pointers)
 852	 */
 853	if (swap) {
 854		node1 = blk1->bp->b_addr;
 855		node2 = blk2->bp->b_addr;
 856		dp->d_ops->node_hdr_from_disk(&nodehdr1, node1);
 857		dp->d_ops->node_hdr_from_disk(&nodehdr2, node2);
 858		btree1 = dp->d_ops->node_tree_p(node1);
 859		btree2 = dp->d_ops->node_tree_p(node2);
 860	}
 861	blk1->hashval = be32_to_cpu(btree1[nodehdr1.count - 1].hashval);
 862	blk2->hashval = be32_to_cpu(btree2[nodehdr2.count - 1].hashval);
 863
 864	/*
 865	 * Adjust the expected index for insertion.
 866	 */
 867	if (blk1->index >= nodehdr1.count) {
 868		blk2->index = blk1->index - nodehdr1.count;
 869		blk1->index = nodehdr1.count + 1;	/* make it invalid */
 870	}
 871}
 872
 873/*
 874 * Add a new entry to an intermediate node.
 875 */
 876STATIC void
 877xfs_da3_node_add(
 878	struct xfs_da_state	*state,
 879	struct xfs_da_state_blk	*oldblk,
 880	struct xfs_da_state_blk	*newblk)
 881{
 882	struct xfs_da_intnode	*node;
 883	struct xfs_da3_icnode_hdr nodehdr;
 884	struct xfs_da_node_entry *btree;
 885	int			tmp;
 886	struct xfs_inode	*dp = state->args->dp;
 887
 888	trace_xfs_da_node_add(state->args);
 889
 890	node = oldblk->bp->b_addr;
 891	dp->d_ops->node_hdr_from_disk(&nodehdr, node);
 892	btree = dp->d_ops->node_tree_p(node);
 893
 894	ASSERT(oldblk->index >= 0 && oldblk->index <= nodehdr.count);
 895	ASSERT(newblk->blkno != 0);
 896	if (state->args->whichfork == XFS_DATA_FORK)
 897		ASSERT(newblk->blkno >= state->mp->m_dirleafblk &&
 898		       newblk->blkno < state->mp->m_dirfreeblk);
 899
 900	/*
 901	 * We may need to make some room before we insert the new node.
 902	 */
 903	tmp = 0;
 904	if (oldblk->index < nodehdr.count) {
 905		tmp = (nodehdr.count - oldblk->index) * (uint)sizeof(*btree);
 906		memmove(&btree[oldblk->index + 1], &btree[oldblk->index], tmp);
 907	}
 908	btree[oldblk->index].hashval = cpu_to_be32(newblk->hashval);
 909	btree[oldblk->index].before = cpu_to_be32(newblk->blkno);
 910	xfs_trans_log_buf(state->args->trans, oldblk->bp,
 911		XFS_DA_LOGRANGE(node, &btree[oldblk->index],
 912				tmp + sizeof(*btree)));
 913
 914	nodehdr.count += 1;
 915	dp->d_ops->node_hdr_to_disk(node, &nodehdr);
 916	xfs_trans_log_buf(state->args->trans, oldblk->bp,
 917		XFS_DA_LOGRANGE(node, &node->hdr, dp->d_ops->node_hdr_size));
 918
 919	/*
 920	 * Copy the last hash value from the oldblk to propagate upwards.
 921	 */
 922	oldblk->hashval = be32_to_cpu(btree[nodehdr.count - 1].hashval);
 923}
 924
 925/*========================================================================
 926 * Routines used for shrinking the Btree.
 927 *========================================================================*/
 928
 929/*
 930 * Deallocate an empty leaf node, remove it from its parent,
 931 * possibly deallocating that block, etc...
 932 */
 933int
 934xfs_da3_join(
 935	struct xfs_da_state	*state)
 936{
 937	struct xfs_da_state_blk	*drop_blk;
 938	struct xfs_da_state_blk	*save_blk;
 939	int			action = 0;
 940	int			error;
 941
 942	trace_xfs_da_join(state->args);
 943
 944	drop_blk = &state->path.blk[ state->path.active-1 ];
 945	save_blk = &state->altpath.blk[ state->path.active-1 ];
 946	ASSERT(state->path.blk[0].magic == XFS_DA_NODE_MAGIC);
 947	ASSERT(drop_blk->magic == XFS_ATTR_LEAF_MAGIC ||
 948	       drop_blk->magic == XFS_DIR2_LEAFN_MAGIC);
 949
 950	/*
 951	 * Walk back up the tree joining/deallocating as necessary.
 952	 * When we stop dropping blocks, break out.
 953	 */
 954	for (  ; state->path.active >= 2; drop_blk--, save_blk--,
 955		 state->path.active--) {
 956		/*
 957		 * See if we can combine the block with a neighbor.
 958		 *   (action == 0) => no options, just leave
 959		 *   (action == 1) => coalesce, then unlink
 960		 *   (action == 2) => block empty, unlink it
 961		 */
 962		switch (drop_blk->magic) {
 963		case XFS_ATTR_LEAF_MAGIC:
 964			error = xfs_attr3_leaf_toosmall(state, &action);
 965			if (error)
 966				return(error);
 967			if (action == 0)
 968				return(0);
 969			xfs_attr3_leaf_unbalance(state, drop_blk, save_blk);
 970			break;
 971		case XFS_DIR2_LEAFN_MAGIC:
 972			error = xfs_dir2_leafn_toosmall(state, &action);
 973			if (error)
 974				return error;
 975			if (action == 0)
 976				return 0;
 977			xfs_dir2_leafn_unbalance(state, drop_blk, save_blk);
 978			break;
 979		case XFS_DA_NODE_MAGIC:
 980			/*
 981			 * Remove the offending node, fixup hashvals,
 982			 * check for a toosmall neighbor.
 983			 */
 984			xfs_da3_node_remove(state, drop_blk);
 985			xfs_da3_fixhashpath(state, &state->path);
 986			error = xfs_da3_node_toosmall(state, &action);
 987			if (error)
 988				return(error);
 989			if (action == 0)
 990				return 0;
 991			xfs_da3_node_unbalance(state, drop_blk, save_blk);
 992			break;
 993		}
 994		xfs_da3_fixhashpath(state, &state->altpath);
 995		error = xfs_da3_blk_unlink(state, drop_blk, save_blk);
 996		xfs_da_state_kill_altpath(state);
 997		if (error)
 998			return(error);
 999		error = xfs_da_shrink_inode(state->args, drop_blk->blkno,
1000							 drop_blk->bp);
1001		drop_blk->bp = NULL;
1002		if (error)
1003			return(error);
1004	}
1005	/*
1006	 * We joined all the way to the top.  If it turns out that
1007	 * we only have one entry in the root, make the child block
1008	 * the new root.
1009	 */
1010	xfs_da3_node_remove(state, drop_blk);
1011	xfs_da3_fixhashpath(state, &state->path);
1012	error = xfs_da3_root_join(state, &state->path.blk[0]);
1013	return(error);
1014}
1015
1016#ifdef	DEBUG
1017static void
1018xfs_da_blkinfo_onlychild_validate(struct xfs_da_blkinfo *blkinfo, __u16 level)
1019{
1020	__be16	magic = blkinfo->magic;
1021
1022	if (level == 1) {
1023		ASSERT(magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) ||
1024		       magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC) ||
1025		       magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) ||
1026		       magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC));
1027	} else {
1028		ASSERT(magic == cpu_to_be16(XFS_DA_NODE_MAGIC) ||
1029		       magic == cpu_to_be16(XFS_DA3_NODE_MAGIC));
1030	}
1031	ASSERT(!blkinfo->forw);
1032	ASSERT(!blkinfo->back);
1033}
1034#else	/* !DEBUG */
1035#define	xfs_da_blkinfo_onlychild_validate(blkinfo, level)
1036#endif	/* !DEBUG */
1037
1038/*
1039 * We have only one entry in the root.  Copy the only remaining child of
1040 * the old root to block 0 as the new root node.
1041 */
1042STATIC int
1043xfs_da3_root_join(
1044	struct xfs_da_state	*state,
1045	struct xfs_da_state_blk	*root_blk)
1046{
1047	struct xfs_da_intnode	*oldroot;
1048	struct xfs_da_args	*args;
1049	xfs_dablk_t		child;
1050	struct xfs_buf		*bp;
1051	struct xfs_da3_icnode_hdr oldroothdr;
1052	struct xfs_da_node_entry *btree;
1053	int			error;
1054	struct xfs_inode	*dp = state->args->dp;
1055
1056	trace_xfs_da_root_join(state->args);
1057
1058	ASSERT(root_blk->magic == XFS_DA_NODE_MAGIC);
1059
1060	args = state->args;
1061	oldroot = root_blk->bp->b_addr;
1062	dp->d_ops->node_hdr_from_disk(&oldroothdr, oldroot);
1063	ASSERT(oldroothdr.forw == 0);
1064	ASSERT(oldroothdr.back == 0);
1065
1066	/*
1067	 * If the root has more than one child, then don't do anything.
1068	 */
1069	if (oldroothdr.count > 1)
1070		return 0;
1071
1072	/*
1073	 * Read in the (only) child block, then copy those bytes into
1074	 * the root block's buffer and free the original child block.
1075	 */
1076	btree = dp->d_ops->node_tree_p(oldroot);
1077	child = be32_to_cpu(btree[0].before);
1078	ASSERT(child != 0);
1079	error = xfs_da3_node_read(args->trans, dp, child, -1, &bp,
1080					     args->whichfork);
1081	if (error)
1082		return error;
1083	xfs_da_blkinfo_onlychild_validate(bp->b_addr, oldroothdr.level);
1084
1085	/*
1086	 * This could be copying a leaf back into the root block in the case of
1087	 * there only being a single leaf block left in the tree. Hence we have
1088	 * to update the b_ops pointer as well to match the buffer type change
1089	 * that could occur. For dir3 blocks we also need to update the block
1090	 * number in the buffer header.
1091	 */
1092	memcpy(root_blk->bp->b_addr, bp->b_addr, state->blocksize);
1093	root_blk->bp->b_ops = bp->b_ops;
1094	xfs_trans_buf_copy_type(root_blk->bp, bp);
1095	if (oldroothdr.magic == XFS_DA3_NODE_MAGIC) {
1096		struct xfs_da3_blkinfo *da3 = root_blk->bp->b_addr;
1097		da3->blkno = cpu_to_be64(root_blk->bp->b_bn);
1098	}
1099	xfs_trans_log_buf(args->trans, root_blk->bp, 0, state->blocksize - 1);
1100	error = xfs_da_shrink_inode(args, child, bp);
1101	return(error);
1102}
1103
1104/*
1105 * Check a node block and its neighbors to see if the block should be
1106 * collapsed into one or the other neighbor.  Always keep the block
1107 * with the smaller block number.
1108 * If the current block is over 50% full, don't try to join it, return 0.
1109 * If the block is empty, fill in the state structure and return 2.
1110 * If it can be collapsed, fill in the state structure and return 1.
1111 * If nothing can be done, return 0.
1112 */
1113STATIC int
1114xfs_da3_node_toosmall(
1115	struct xfs_da_state	*state,
1116	int			*action)
1117{
1118	struct xfs_da_intnode	*node;
1119	struct xfs_da_state_blk	*blk;
1120	struct xfs_da_blkinfo	*info;
1121	xfs_dablk_t		blkno;
1122	struct xfs_buf		*bp;
1123	struct xfs_da3_icnode_hdr nodehdr;
1124	int			count;
1125	int			forward;
1126	int			error;
1127	int			retval;
1128	int			i;
1129	struct xfs_inode	*dp = state->args->dp;
1130
1131	trace_xfs_da_node_toosmall(state->args);
1132
1133	/*
1134	 * Check for the degenerate case of the block being over 50% full.
1135	 * If so, it's not worth even looking to see if we might be able
1136	 * to coalesce with a sibling.
1137	 */
1138	blk = &state->path.blk[ state->path.active-1 ];
1139	info = blk->bp->b_addr;
1140	node = (xfs_da_intnode_t *)info;
1141	dp->d_ops->node_hdr_from_disk(&nodehdr, node);
1142	if (nodehdr.count > (state->node_ents >> 1)) {
1143		*action = 0;	/* blk over 50%, don't try to join */
1144		return(0);	/* blk over 50%, don't try to join */
1145	}
1146
1147	/*
1148	 * Check for the degenerate case of the block being empty.
1149	 * If the block is empty, we'll simply delete it, no need to
1150	 * coalesce it with a sibling block.  We choose (arbitrarily)
1151	 * to merge with the forward block unless it is NULL.
1152	 */
1153	if (nodehdr.count == 0) {
1154		/*
1155		 * Make altpath point to the block we want to keep and
1156		 * path point to the block we want to drop (this one).
1157		 */
1158		forward = (info->forw != 0);
1159		memcpy(&state->altpath, &state->path, sizeof(state->path));
1160		error = xfs_da3_path_shift(state, &state->altpath, forward,
1161						 0, &retval);
1162		if (error)
1163			return(error);
1164		if (retval) {
1165			*action = 0;
1166		} else {
1167			*action = 2;
1168		}
1169		return(0);
1170	}
1171
1172	/*
1173	 * Examine each sibling block to see if we can coalesce with
1174	 * at least 25% free space to spare.  We need to figure out
1175	 * whether to merge with the forward or the backward block.
1176	 * We prefer coalescing with the lower numbered sibling so as
1177	 * to shrink a directory over time.
1178	 */
1179	count  = state->node_ents;
1180	count -= state->node_ents >> 2;
1181	count -= nodehdr.count;
1182
1183	/* start with smaller blk num */
1184	forward = nodehdr.forw < nodehdr.back;
1185	for (i = 0; i < 2; forward = !forward, i++) {
1186		struct xfs_da3_icnode_hdr thdr;
1187		if (forward)
1188			blkno = nodehdr.forw;
1189		else
1190			blkno = nodehdr.back;
1191		if (blkno == 0)
1192			continue;
1193		error = xfs_da3_node_read(state->args->trans, dp,
1194					blkno, -1, &bp, state->args->whichfork);
1195		if (error)
1196			return(error);
1197
1198		node = bp->b_addr;
1199		dp->d_ops->node_hdr_from_disk(&thdr, node);
1200		xfs_trans_brelse(state->args->trans, bp);
1201
1202		if (count - thdr.count >= 0)
1203			break;	/* fits with at least 25% to spare */
1204	}
1205	if (i >= 2) {
1206		*action = 0;
1207		return 0;
1208	}
1209
1210	/*
1211	 * Make altpath point to the block we want to keep (the lower
1212	 * numbered block) and path point to the block we want to drop.
1213	 */
1214	memcpy(&state->altpath, &state->path, sizeof(state->path));
1215	if (blkno < blk->blkno) {
1216		error = xfs_da3_path_shift(state, &state->altpath, forward,
1217						 0, &retval);
1218	} else {
1219		error = xfs_da3_path_shift(state, &state->path, forward,
1220						 0, &retval);
1221	}
1222	if (error)
1223		return error;
1224	if (retval) {
1225		*action = 0;
1226		return 0;
1227	}
1228	*action = 1;
1229	return 0;
1230}
1231
1232/*
1233 * Pick up the last hashvalue from an intermediate node.
1234 */
1235STATIC uint
1236xfs_da3_node_lasthash(
1237	struct xfs_inode	*dp,
1238	struct xfs_buf		*bp,
1239	int			*count)
1240{
1241	struct xfs_da_intnode	 *node;
1242	struct xfs_da_node_entry *btree;
1243	struct xfs_da3_icnode_hdr nodehdr;
1244
1245	node = bp->b_addr;
1246	dp->d_ops->node_hdr_from_disk(&nodehdr, node);
1247	if (count)
1248		*count = nodehdr.count;
1249	if (!nodehdr.count)
1250		return 0;
1251	btree = dp->d_ops->node_tree_p(node);
1252	return be32_to_cpu(btree[nodehdr.count - 1].hashval);
1253}
1254
1255/*
1256 * Walk back up the tree adjusting hash values as necessary,
1257 * when we stop making changes, return.
1258 */
1259void
1260xfs_da3_fixhashpath(
1261	struct xfs_da_state	*state,
1262	struct xfs_da_state_path *path)
1263{
1264	struct xfs_da_state_blk	*blk;
1265	struct xfs_da_intnode	*node;
1266	struct xfs_da_node_entry *btree;
1267	xfs_dahash_t		lasthash=0;
1268	int			level;
1269	int			count;
1270	struct xfs_inode	*dp = state->args->dp;
1271
1272	trace_xfs_da_fixhashpath(state->args);
1273
1274	level = path->active-1;
1275	blk = &path->blk[ level ];
1276	switch (blk->magic) {
1277	case XFS_ATTR_LEAF_MAGIC:
1278		lasthash = xfs_attr_leaf_lasthash(blk->bp, &count);
1279		if (count == 0)
1280			return;
1281		break;
1282	case XFS_DIR2_LEAFN_MAGIC:
1283		lasthash = xfs_dir2_leafn_lasthash(dp, blk->bp, &count);
1284		if (count == 0)
1285			return;
1286		break;
1287	case XFS_DA_NODE_MAGIC:
1288		lasthash = xfs_da3_node_lasthash(dp, blk->bp, &count);
1289		if (count == 0)
1290			return;
1291		break;
1292	}
1293	for (blk--, level--; level >= 0; blk--, level--) {
1294		struct xfs_da3_icnode_hdr nodehdr;
1295
1296		node = blk->bp->b_addr;
1297		dp->d_ops->node_hdr_from_disk(&nodehdr, node);
1298		btree = dp->d_ops->node_tree_p(node);
1299		if (be32_to_cpu(btree[blk->index].hashval) == lasthash)
1300			break;
1301		blk->hashval = lasthash;
1302		btree[blk->index].hashval = cpu_to_be32(lasthash);
1303		xfs_trans_log_buf(state->args->trans, blk->bp,
1304				  XFS_DA_LOGRANGE(node, &btree[blk->index],
1305						  sizeof(*btree)));
1306
1307		lasthash = be32_to_cpu(btree[nodehdr.count - 1].hashval);
1308	}
1309}
1310
1311/*
1312 * Remove an entry from an intermediate node.
1313 */
1314STATIC void
1315xfs_da3_node_remove(
1316	struct xfs_da_state	*state,
1317	struct xfs_da_state_blk	*drop_blk)
1318{
1319	struct xfs_da_intnode	*node;
1320	struct xfs_da3_icnode_hdr nodehdr;
1321	struct xfs_da_node_entry *btree;
1322	int			index;
1323	int			tmp;
1324	struct xfs_inode	*dp = state->args->dp;
1325
1326	trace_xfs_da_node_remove(state->args);
1327
1328	node = drop_blk->bp->b_addr;
1329	dp->d_ops->node_hdr_from_disk(&nodehdr, node);
1330	ASSERT(drop_blk->index < nodehdr.count);
1331	ASSERT(drop_blk->index >= 0);
1332
1333	/*
1334	 * Copy over the offending entry, or just zero it out.
1335	 */
1336	index = drop_blk->index;
1337	btree = dp->d_ops->node_tree_p(node);
1338	if (index < nodehdr.count - 1) {
1339		tmp  = nodehdr.count - index - 1;
1340		tmp *= (uint)sizeof(xfs_da_node_entry_t);
1341		memmove(&btree[index], &btree[index + 1], tmp);
1342		xfs_trans_log_buf(state->args->trans, drop_blk->bp,
1343		    XFS_DA_LOGRANGE(node, &btree[index], tmp));
1344		index = nodehdr.count - 1;
1345	}
1346	memset(&btree[index], 0, sizeof(xfs_da_node_entry_t));
1347	xfs_trans_log_buf(state->args->trans, drop_blk->bp,
1348	    XFS_DA_LOGRANGE(node, &btree[index], sizeof(btree[index])));
1349	nodehdr.count -= 1;
1350	dp->d_ops->node_hdr_to_disk(node, &nodehdr);
1351	xfs_trans_log_buf(state->args->trans, drop_blk->bp,
1352	    XFS_DA_LOGRANGE(node, &node->hdr, dp->d_ops->node_hdr_size));
1353
1354	/*
1355	 * Copy the last hash value from the block to propagate upwards.
1356	 */
1357	drop_blk->hashval = be32_to_cpu(btree[index - 1].hashval);
1358}
1359
1360/*
1361 * Unbalance the elements between two intermediate nodes,
1362 * move all Btree elements from one node into another.
1363 */
1364STATIC void
1365xfs_da3_node_unbalance(
1366	struct xfs_da_state	*state,
1367	struct xfs_da_state_blk	*drop_blk,
1368	struct xfs_da_state_blk	*save_blk)
1369{
1370	struct xfs_da_intnode	*drop_node;
1371	struct xfs_da_intnode	*save_node;
1372	struct xfs_da_node_entry *drop_btree;
1373	struct xfs_da_node_entry *save_btree;
1374	struct xfs_da3_icnode_hdr drop_hdr;
1375	struct xfs_da3_icnode_hdr save_hdr;
1376	struct xfs_trans	*tp;
1377	int			sindex;
1378	int			tmp;
1379	struct xfs_inode	*dp = state->args->dp;
1380
1381	trace_xfs_da_node_unbalance(state->args);
1382
1383	drop_node = drop_blk->bp->b_addr;
1384	save_node = save_blk->bp->b_addr;
1385	dp->d_ops->node_hdr_from_disk(&drop_hdr, drop_node);
1386	dp->d_ops->node_hdr_from_disk(&save_hdr, save_node);
1387	drop_btree = dp->d_ops->node_tree_p(drop_node);
1388	save_btree = dp->d_ops->node_tree_p(save_node);
1389	tp = state->args->trans;
1390
1391	/*
1392	 * If the dying block has lower hashvals, then move all the
1393	 * elements in the remaining block up to make a hole.
1394	 */
1395	if ((be32_to_cpu(drop_btree[0].hashval) <
1396			be32_to_cpu(save_btree[0].hashval)) ||
1397	    (be32_to_cpu(drop_btree[drop_hdr.count - 1].hashval) <
1398			be32_to_cpu(save_btree[save_hdr.count - 1].hashval))) {
1399		/* XXX: check this - is memmove dst correct? */
1400		tmp = save_hdr.count * sizeof(xfs_da_node_entry_t);
1401		memmove(&save_btree[drop_hdr.count], &save_btree[0], tmp);
1402
1403		sindex = 0;
1404		xfs_trans_log_buf(tp, save_blk->bp,
1405			XFS_DA_LOGRANGE(save_node, &save_btree[0],
1406				(save_hdr.count + drop_hdr.count) *
1407						sizeof(xfs_da_node_entry_t)));
1408	} else {
1409		sindex = save_hdr.count;
1410		xfs_trans_log_buf(tp, save_blk->bp,
1411			XFS_DA_LOGRANGE(save_node, &save_btree[sindex],
1412				drop_hdr.count * sizeof(xfs_da_node_entry_t)));
1413	}
1414
1415	/*
1416	 * Move all the B-tree elements from drop_blk to save_blk.
1417	 */
1418	tmp = drop_hdr.count * (uint)sizeof(xfs_da_node_entry_t);
1419	memcpy(&save_btree[sindex], &drop_btree[0], tmp);
1420	save_hdr.count += drop_hdr.count;
1421
1422	dp->d_ops->node_hdr_to_disk(save_node, &save_hdr);
1423	xfs_trans_log_buf(tp, save_blk->bp,
1424		XFS_DA_LOGRANGE(save_node, &save_node->hdr,
1425				dp->d_ops->node_hdr_size));
1426
1427	/*
1428	 * Save the last hashval in the remaining block for upward propagation.
1429	 */
1430	save_blk->hashval = be32_to_cpu(save_btree[save_hdr.count - 1].hashval);
1431}
1432
1433/*========================================================================
1434 * Routines used for finding things in the Btree.
1435 *========================================================================*/
1436
1437/*
1438 * Walk down the Btree looking for a particular filename, filling
1439 * in the state structure as we go.
1440 *
1441 * We will set the state structure to point to each of the elements
1442 * in each of the nodes where either the hashval is or should be.
1443 *
1444 * We support duplicate hashval's so for each entry in the current
1445 * node that could contain the desired hashval, descend.  This is a
1446 * pruned depth-first tree search.
1447 */
1448int							/* error */
1449xfs_da3_node_lookup_int(
1450	struct xfs_da_state	*state,
1451	int			*result)
1452{
1453	struct xfs_da_state_blk	*blk;
1454	struct xfs_da_blkinfo	*curr;
1455	struct xfs_da_intnode	*node;
1456	struct xfs_da_node_entry *btree;
1457	struct xfs_da3_icnode_hdr nodehdr;
1458	struct xfs_da_args	*args;
1459	xfs_dablk_t		blkno;
1460	xfs_dahash_t		hashval;
1461	xfs_dahash_t		btreehashval;
1462	int			probe;
1463	int			span;
1464	int			max;
1465	int			error;
1466	int			retval;
1467	struct xfs_inode	*dp = state->args->dp;
1468
1469	args = state->args;
1470
1471	/*
1472	 * Descend thru the B-tree searching each level for the right
1473	 * node to use, until the right hashval is found.
1474	 */
1475	blkno = (args->whichfork == XFS_DATA_FORK)? state->mp->m_dirleafblk : 0;
1476	for (blk = &state->path.blk[0], state->path.active = 1;
1477			 state->path.active <= XFS_DA_NODE_MAXDEPTH;
1478			 blk++, state->path.active++) {
1479		/*
1480		 * Read the next node down in the tree.
1481		 */
1482		blk->blkno = blkno;
1483		error = xfs_da3_node_read(args->trans, args->dp, blkno,
1484					-1, &blk->bp, args->whichfork);
1485		if (error) {
1486			blk->blkno = 0;
1487			state->path.active--;
1488			return(error);
1489		}
1490		curr = blk->bp->b_addr;
1491		blk->magic = be16_to_cpu(curr->magic);
1492
1493		if (blk->magic == XFS_ATTR_LEAF_MAGIC ||
1494		    blk->magic == XFS_ATTR3_LEAF_MAGIC) {
1495			blk->magic = XFS_ATTR_LEAF_MAGIC;
1496			blk->hashval = xfs_attr_leaf_lasthash(blk->bp, NULL);
1497			break;
1498		}
1499
1500		if (blk->magic == XFS_DIR2_LEAFN_MAGIC ||
1501		    blk->magic == XFS_DIR3_LEAFN_MAGIC) {
1502			blk->magic = XFS_DIR2_LEAFN_MAGIC;
1503			blk->hashval = xfs_dir2_leafn_lasthash(args->dp,
1504							       blk->bp, NULL);
1505			break;
1506		}
1507
1508		blk->magic = XFS_DA_NODE_MAGIC;
1509
1510
1511		/*
1512		 * Search an intermediate node for a match.
1513		 */
1514		node = blk->bp->b_addr;
1515		dp->d_ops->node_hdr_from_disk(&nodehdr, node);
1516		btree = dp->d_ops->node_tree_p(node);
1517
1518		max = nodehdr.count;
1519		blk->hashval = be32_to_cpu(btree[max - 1].hashval);
1520
1521		/*
1522		 * Binary search.  (note: small blocks will skip loop)
1523		 */
1524		probe = span = max / 2;
1525		hashval = args->hashval;
1526		while (span > 4) {
1527			span /= 2;
1528			btreehashval = be32_to_cpu(btree[probe].hashval);
1529			if (btreehashval < hashval)
1530				probe += span;
1531			else if (btreehashval > hashval)
1532				probe -= span;
1533			else
1534				break;
1535		}
1536		ASSERT((probe >= 0) && (probe < max));
1537		ASSERT((span <= 4) ||
1538			(be32_to_cpu(btree[probe].hashval) == hashval));
1539
1540		/*
1541		 * Since we may have duplicate hashval's, find the first
1542		 * matching hashval in the node.
1543		 */
1544		while (probe > 0 &&
1545		       be32_to_cpu(btree[probe].hashval) >= hashval) {
1546			probe--;
1547		}
1548		while (probe < max &&
1549		       be32_to_cpu(btree[probe].hashval) < hashval) {
1550			probe++;
1551		}
1552
1553		/*
1554		 * Pick the right block to descend on.
1555		 */
1556		if (probe == max) {
1557			blk->index = max - 1;
1558			blkno = be32_to_cpu(btree[max - 1].before);
1559		} else {
1560			blk->index = probe;
1561			blkno = be32_to_cpu(btree[probe].before);
1562		}
1563	}
1564
1565	/*
1566	 * A leaf block that ends in the hashval that we are interested in
1567	 * (final hashval == search hashval) means that the next block may
1568	 * contain more entries with the same hashval, shift upward to the
1569	 * next leaf and keep searching.
1570	 */
1571	for (;;) {
1572		if (blk->magic == XFS_DIR2_LEAFN_MAGIC) {
1573			retval = xfs_dir2_leafn_lookup_int(blk->bp, args,
1574							&blk->index, state);
1575		} else if (blk->magic == XFS_ATTR_LEAF_MAGIC) {
1576			retval = xfs_attr3_leaf_lookup_int(blk->bp, args);
1577			blk->index = args->index;
1578			args->blkno = blk->blkno;
1579		} else {
1580			ASSERT(0);
1581			return XFS_ERROR(EFSCORRUPTED);
1582		}
1583		if (((retval == ENOENT) || (retval == ENOATTR)) &&
1584		    (blk->hashval == args->hashval)) {
1585			error = xfs_da3_path_shift(state, &state->path, 1, 1,
1586							 &retval);
1587			if (error)
1588				return(error);
1589			if (retval == 0) {
1590				continue;
1591			} else if (blk->magic == XFS_ATTR_LEAF_MAGIC) {
1592				/* path_shift() gives ENOENT */
1593				retval = XFS_ERROR(ENOATTR);
1594			}
1595		}
1596		break;
1597	}
1598	*result = retval;
1599	return(0);
1600}
1601
1602/*========================================================================
1603 * Utility routines.
1604 *========================================================================*/
1605
1606/*
1607 * Compare two intermediate nodes for "order".
1608 */
1609STATIC int
1610xfs_da3_node_order(
1611	struct xfs_inode *dp,
1612	struct xfs_buf	*node1_bp,
1613	struct xfs_buf	*node2_bp)
1614{
1615	struct xfs_da_intnode	*node1;
1616	struct xfs_da_intnode	*node2;
1617	struct xfs_da_node_entry *btree1;
1618	struct xfs_da_node_entry *btree2;
1619	struct xfs_da3_icnode_hdr node1hdr;
1620	struct xfs_da3_icnode_hdr node2hdr;
1621
1622	node1 = node1_bp->b_addr;
1623	node2 = node2_bp->b_addr;
1624	dp->d_ops->node_hdr_from_disk(&node1hdr, node1);
1625	dp->d_ops->node_hdr_from_disk(&node2hdr, node2);
1626	btree1 = dp->d_ops->node_tree_p(node1);
1627	btree2 = dp->d_ops->node_tree_p(node2);
1628
1629	if (node1hdr.count > 0 && node2hdr.count > 0 &&
1630	    ((be32_to_cpu(btree2[0].hashval) < be32_to_cpu(btree1[0].hashval)) ||
1631	     (be32_to_cpu(btree2[node2hdr.count - 1].hashval) <
1632	      be32_to_cpu(btree1[node1hdr.count - 1].hashval)))) {
1633		return 1;
1634	}
1635	return 0;
1636}
1637
1638/*
1639 * Link a new block into a doubly linked list of blocks (of whatever type).
1640 */
1641int							/* error */
1642xfs_da3_blk_link(
1643	struct xfs_da_state	*state,
1644	struct xfs_da_state_blk	*old_blk,
1645	struct xfs_da_state_blk	*new_blk)
1646{
1647	struct xfs_da_blkinfo	*old_info;
1648	struct xfs_da_blkinfo	*new_info;
1649	struct xfs_da_blkinfo	*tmp_info;
1650	struct xfs_da_args	*args;
1651	struct xfs_buf		*bp;
1652	int			before = 0;
1653	int			error;
1654	struct xfs_inode	*dp = state->args->dp;
1655
1656	/*
1657	 * Set up environment.
1658	 */
1659	args = state->args;
1660	ASSERT(args != NULL);
1661	old_info = old_blk->bp->b_addr;
1662	new_info = new_blk->bp->b_addr;
1663	ASSERT(old_blk->magic == XFS_DA_NODE_MAGIC ||
1664	       old_blk->magic == XFS_DIR2_LEAFN_MAGIC ||
1665	       old_blk->magic == XFS_ATTR_LEAF_MAGIC);
1666
1667	switch (old_blk->magic) {
1668	case XFS_ATTR_LEAF_MAGIC:
1669		before = xfs_attr_leaf_order(old_blk->bp, new_blk->bp);
1670		break;
1671	case XFS_DIR2_LEAFN_MAGIC:
1672		before = xfs_dir2_leafn_order(dp, old_blk->bp, new_blk->bp);
1673		break;
1674	case XFS_DA_NODE_MAGIC:
1675		before = xfs_da3_node_order(dp, old_blk->bp, new_blk->bp);
1676		break;
1677	}
1678
1679	/*
1680	 * Link blocks in appropriate order.
1681	 */
1682	if (before) {
1683		/*
1684		 * Link new block in before existing block.
1685		 */
1686		trace_xfs_da_link_before(args);
1687		new_info->forw = cpu_to_be32(old_blk->blkno);
1688		new_info->back = old_info->back;
1689		if (old_info->back) {
1690			error = xfs_da3_node_read(args->trans, dp,
1691						be32_to_cpu(old_info->back),
1692						-1, &bp, args->whichfork);
1693			if (error)
1694				return(error);
1695			ASSERT(bp != NULL);
1696			tmp_info = bp->b_addr;
1697			ASSERT(tmp_info->magic == old_info->magic);
1698			ASSERT(be32_to_cpu(tmp_info->forw) == old_blk->blkno);
1699			tmp_info->forw = cpu_to_be32(new_blk->blkno);
1700			xfs_trans_log_buf(args->trans, bp, 0, sizeof(*tmp_info)-1);
1701		}
1702		old_info->back = cpu_to_be32(new_blk->blkno);
1703	} else {
1704		/*
1705		 * Link new block in after existing block.
1706		 */
1707		trace_xfs_da_link_after(args);
1708		new_info->forw = old_info->forw;
1709		new_info->back = cpu_to_be32(old_blk->blkno);
1710		if (old_info->forw) {
1711			error = xfs_da3_node_read(args->trans, dp,
1712						be32_to_cpu(old_info->forw),
1713						-1, &bp, args->whichfork);
1714			if (error)
1715				return(error);
1716			ASSERT(bp != NULL);
1717			tmp_info = bp->b_addr;
1718			ASSERT(tmp_info->magic == old_info->magic);
1719			ASSERT(be32_to_cpu(tmp_info->back) == old_blk->blkno);
1720			tmp_info->back = cpu_to_be32(new_blk->blkno);
1721			xfs_trans_log_buf(args->trans, bp, 0, sizeof(*tmp_info)-1);
1722		}
1723		old_info->forw = cpu_to_be32(new_blk->blkno);
1724	}
1725
1726	xfs_trans_log_buf(args->trans, old_blk->bp, 0, sizeof(*tmp_info) - 1);
1727	xfs_trans_log_buf(args->trans, new_blk->bp, 0, sizeof(*tmp_info) - 1);
1728	return(0);
1729}
1730
1731/*
1732 * Unlink a block from a doubly linked list of blocks.
1733 */
1734STATIC int						/* error */
1735xfs_da3_blk_unlink(
1736	struct xfs_da_state	*state,
1737	struct xfs_da_state_blk	*drop_blk,
1738	struct xfs_da_state_blk	*save_blk)
1739{
1740	struct xfs_da_blkinfo	*drop_info;
1741	struct xfs_da_blkinfo	*save_info;
1742	struct xfs_da_blkinfo	*tmp_info;
1743	struct xfs_da_args	*args;
1744	struct xfs_buf		*bp;
1745	int			error;
1746
1747	/*
1748	 * Set up environment.
1749	 */
1750	args = state->args;
1751	ASSERT(args != NULL);
1752	save_info = save_blk->bp->b_addr;
1753	drop_info = drop_blk->bp->b_addr;
1754	ASSERT(save_blk->magic == XFS_DA_NODE_MAGIC ||
1755	       save_blk->magic == XFS_DIR2_LEAFN_MAGIC ||
1756	       save_blk->magic == XFS_ATTR_LEAF_MAGIC);
1757	ASSERT(save_blk->magic == drop_blk->magic);
1758	ASSERT((be32_to_cpu(save_info->forw) == drop_blk->blkno) ||
1759	       (be32_to_cpu(save_info->back) == drop_blk->blkno));
1760	ASSERT((be32_to_cpu(drop_info->forw) == save_blk->blkno) ||
1761	       (be32_to_cpu(drop_info->back) == save_blk->blkno));
1762
1763	/*
1764	 * Unlink the leaf block from the doubly linked chain of leaves.
1765	 */
1766	if (be32_to_cpu(save_info->back) == drop_blk->blkno) {
1767		trace_xfs_da_unlink_back(args);
1768		save_info->back = drop_info->back;
1769		if (drop_info->back) {
1770			error = xfs_da3_node_read(args->trans, args->dp,
1771						be32_to_cpu(drop_info->back),
1772						-1, &bp, args->whichfork);
1773			if (error)
1774				return(error);
1775			ASSERT(bp != NULL);
1776			tmp_info = bp->b_addr;
1777			ASSERT(tmp_info->magic == save_info->magic);
1778			ASSERT(be32_to_cpu(tmp_info->forw) == drop_blk->blkno);
1779			tmp_info->forw = cpu_to_be32(save_blk->blkno);
1780			xfs_trans_log_buf(args->trans, bp, 0,
1781						    sizeof(*tmp_info) - 1);
1782		}
1783	} else {
1784		trace_xfs_da_unlink_forward(args);
1785		save_info->forw = drop_info->forw;
1786		if (drop_info->forw) {
1787			error = xfs_da3_node_read(args->trans, args->dp,
1788						be32_to_cpu(drop_info->forw),
1789						-1, &bp, args->whichfork);
1790			if (error)
1791				return(error);
1792			ASSERT(bp != NULL);
1793			tmp_info = bp->b_addr;
1794			ASSERT(tmp_info->magic == save_info->magic);
1795			ASSERT(be32_to_cpu(tmp_info->back) == drop_blk->blkno);
1796			tmp_info->back = cpu_to_be32(save_blk->blkno);
1797			xfs_trans_log_buf(args->trans, bp, 0,
1798						    sizeof(*tmp_info) - 1);
1799		}
1800	}
1801
1802	xfs_trans_log_buf(args->trans, save_blk->bp, 0, sizeof(*save_info) - 1);
1803	return(0);
1804}
1805
1806/*
1807 * Move a path "forward" or "!forward" one block at the current level.
1808 *
1809 * This routine will adjust a "path" to point to the next block
1810 * "forward" (higher hashvalues) or "!forward" (lower hashvals) in the
1811 * Btree, including updating pointers to the intermediate nodes between
1812 * the new bottom and the root.
1813 */
1814int							/* error */
1815xfs_da3_path_shift(
1816	struct xfs_da_state	*state,
1817	struct xfs_da_state_path *path,
1818	int			forward,
1819	int			release,
1820	int			*result)
1821{
1822	struct xfs_da_state_blk	*blk;
1823	struct xfs_da_blkinfo	*info;
1824	struct xfs_da_intnode	*node;
1825	struct xfs_da_args	*args;
1826	struct xfs_da_node_entry *btree;
1827	struct xfs_da3_icnode_hdr nodehdr;
1828	xfs_dablk_t		blkno = 0;
1829	int			level;
1830	int			error;
1831	struct xfs_inode	*dp = state->args->dp;
1832
1833	trace_xfs_da_path_shift(state->args);
1834
1835	/*
1836	 * Roll up the Btree looking for the first block where our
1837	 * current index is not at the edge of the block.  Note that
1838	 * we skip the bottom layer because we want the sibling block.
1839	 */
1840	args = state->args;
1841	ASSERT(args != NULL);
1842	ASSERT(path != NULL);
1843	ASSERT((path->active > 0) && (path->active < XFS_DA_NODE_MAXDEPTH));
1844	level = (path->active-1) - 1;	/* skip bottom layer in path */
1845	for (blk = &path->blk[level]; level >= 0; blk--, level--) {
1846		node = blk->bp->b_addr;
1847		dp->d_ops->node_hdr_from_disk(&nodehdr, node);
1848		btree = dp->d_ops->node_tree_p(node);
1849
1850		if (forward && (blk->index < nodehdr.count - 1)) {
1851			blk->index++;
1852			blkno = be32_to_cpu(btree[blk->index].before);
1853			break;
1854		} else if (!forward && (blk->index > 0)) {
1855			blk->index--;
1856			blkno = be32_to_cpu(btree[blk->index].before);
1857			break;
1858		}
1859	}
1860	if (level < 0) {
1861		*result = XFS_ERROR(ENOENT);	/* we're out of our tree */
1862		ASSERT(args->op_flags & XFS_DA_OP_OKNOENT);
1863		return(0);
1864	}
1865
1866	/*
1867	 * Roll down the edge of the subtree until we reach the
1868	 * same depth we were at originally.
1869	 */
1870	for (blk++, level++; level < path->active; blk++, level++) {
1871		/*
1872		 * Release the old block.
1873		 * (if it's dirty, trans won't actually let go)
1874		 */
1875		if (release)
1876			xfs_trans_brelse(args->trans, blk->bp);
1877
1878		/*
1879		 * Read the next child block.
1880		 */
1881		blk->blkno = blkno;
1882		error = xfs_da3_node_read(args->trans, dp, blkno, -1,
1883					&blk->bp, args->whichfork);
1884		if (error)
1885			return(error);
1886		info = blk->bp->b_addr;
1887		ASSERT(info->magic == cpu_to_be16(XFS_DA_NODE_MAGIC) ||
1888		       info->magic == cpu_to_be16(XFS_DA3_NODE_MAGIC) ||
1889		       info->magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) ||
1890		       info->magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC) ||
1891		       info->magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) ||
1892		       info->magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC));
1893
1894
1895		/*
1896		 * Note: we flatten the magic number to a single type so we
1897		 * don't have to compare against crc/non-crc types elsewhere.
1898		 */
1899		switch (be16_to_cpu(info->magic)) {
1900		case XFS_DA_NODE_MAGIC:
1901		case XFS_DA3_NODE_MAGIC:
1902			blk->magic = XFS_DA_NODE_MAGIC;
1903			node = (xfs_da_intnode_t *)info;
1904			dp->d_ops->node_hdr_from_disk(&nodehdr, node);
1905			btree = dp->d_ops->node_tree_p(node);
1906			blk->hashval = be32_to_cpu(btree[nodehdr.count - 1].hashval);
1907			if (forward)
1908				blk->index = 0;
1909			else
1910				blk->index = nodehdr.count - 1;
1911			blkno = be32_to_cpu(btree[blk->index].before);
1912			break;
1913		case XFS_ATTR_LEAF_MAGIC:
1914		case XFS_ATTR3_LEAF_MAGIC:
1915			blk->magic = XFS_ATTR_LEAF_MAGIC;
1916			ASSERT(level == path->active-1);
1917			blk->index = 0;
1918			blk->hashval = xfs_attr_leaf_lasthash(blk->bp, NULL);
1919			break;
1920		case XFS_DIR2_LEAFN_MAGIC:
1921		case XFS_DIR3_LEAFN_MAGIC:
1922			blk->magic = XFS_DIR2_LEAFN_MAGIC;
1923			ASSERT(level == path->active-1);
1924			blk->index = 0;
1925			blk->hashval = xfs_dir2_leafn_lasthash(args->dp,
1926							       blk->bp, NULL);
1927			break;
1928		default:
1929			ASSERT(0);
1930			break;
1931		}
1932	}
1933	*result = 0;
1934	return 0;
1935}
1936
1937
1938/*========================================================================
1939 * Utility routines.
1940 *========================================================================*/
1941
1942/*
1943 * Implement a simple hash on a character string.
1944 * Rotate the hash value by 7 bits, then XOR each character in.
1945 * This is implemented with some source-level loop unrolling.
1946 */
1947xfs_dahash_t
1948xfs_da_hashname(const __uint8_t *name, int namelen)
1949{
1950	xfs_dahash_t hash;
1951
1952	/*
1953	 * Do four characters at a time as long as we can.
1954	 */
1955	for (hash = 0; namelen >= 4; namelen -= 4, name += 4)
1956		hash = (name[0] << 21) ^ (name[1] << 14) ^ (name[2] << 7) ^
1957		       (name[3] << 0) ^ rol32(hash, 7 * 4);
1958
1959	/*
1960	 * Now do the rest of the characters.
1961	 */
1962	switch (namelen) {
1963	case 3:
1964		return (name[0] << 14) ^ (name[1] << 7) ^ (name[2] << 0) ^
1965		       rol32(hash, 7 * 3);
1966	case 2:
1967		return (name[0] << 7) ^ (name[1] << 0) ^ rol32(hash, 7 * 2);
1968	case 1:
1969		return (name[0] << 0) ^ rol32(hash, 7 * 1);
1970	default: /* case 0: */
1971		return hash;
1972	}
1973}
1974
1975enum xfs_dacmp
1976xfs_da_compname(
1977	struct xfs_da_args *args,
1978	const unsigned char *name,
1979	int		len)
1980{
1981	return (args->namelen == len && memcmp(args->name, name, len) == 0) ?
1982					XFS_CMP_EXACT : XFS_CMP_DIFFERENT;
1983}
1984
1985static xfs_dahash_t
1986xfs_default_hashname(
1987	struct xfs_name	*name)
1988{
1989	return xfs_da_hashname(name->name, name->len);
1990}
1991
1992const struct xfs_nameops xfs_default_nameops = {
1993	.hashname	= xfs_default_hashname,
1994	.compname	= xfs_da_compname
1995};
1996
1997int
1998xfs_da_grow_inode_int(
1999	struct xfs_da_args	*args,
2000	xfs_fileoff_t		*bno,
2001	int			count)
2002{
2003	struct xfs_trans	*tp = args->trans;
2004	struct xfs_inode	*dp = args->dp;
2005	int			w = args->whichfork;
2006	xfs_drfsbno_t		nblks = dp->i_d.di_nblocks;
2007	struct xfs_bmbt_irec	map, *mapp;
2008	int			nmap, error, got, i, mapi;
2009
2010	/*
2011	 * Find a spot in the file space to put the new block.
2012	 */
2013	error = xfs_bmap_first_unused(tp, dp, count, bno, w);
2014	if (error)
2015		return error;
2016
2017	/*
2018	 * Try mapping it in one filesystem block.
2019	 */
2020	nmap = 1;
2021	ASSERT(args->firstblock != NULL);
2022	error = xfs_bmapi_write(tp, dp, *bno, count,
2023			xfs_bmapi_aflag(w)|XFS_BMAPI_METADATA|XFS_BMAPI_CONTIG,
2024			args->firstblock, args->total, &map, &nmap,
2025			args->flist);
2026	if (error)
2027		return error;
2028
2029	ASSERT(nmap <= 1);
2030	if (nmap == 1) {
2031		mapp = &map;
2032		mapi = 1;
2033	} else if (nmap == 0 && count > 1) {
2034		xfs_fileoff_t		b;
2035		int			c;
2036
2037		/*
2038		 * If we didn't get it and the block might work if fragmented,
2039		 * try without the CONTIG flag.  Loop until we get it all.
2040		 */
2041		mapp = kmem_alloc(sizeof(*mapp) * count, KM_SLEEP);
2042		for (b = *bno, mapi = 0; b < *bno + count; ) {
2043			nmap = MIN(XFS_BMAP_MAX_NMAP, count);
2044			c = (int)(*bno + count - b);
2045			error = xfs_bmapi_write(tp, dp, b, c,
2046					xfs_bmapi_aflag(w)|XFS_BMAPI_METADATA,
2047					args->firstblock, args->total,
2048					&mapp[mapi], &nmap, args->flist);
2049			if (error)
2050				goto out_free_map;
2051			if (nmap < 1)
2052				break;
2053			mapi += nmap;
2054			b = mapp[mapi - 1].br_startoff +
2055			    mapp[mapi - 1].br_blockcount;
2056		}
2057	} else {
2058		mapi = 0;
2059		mapp = NULL;
2060	}
2061
2062	/*
2063	 * Count the blocks we got, make sure it matches the total.
2064	 */
2065	for (i = 0, got = 0; i < mapi; i++)
2066		got += mapp[i].br_blockcount;
2067	if (got != count || mapp[0].br_startoff != *bno ||
2068	    mapp[mapi - 1].br_startoff + mapp[mapi - 1].br_blockcount !=
2069	    *bno + count) {
2070		error = XFS_ERROR(ENOSPC);
2071		goto out_free_map;
2072	}
2073
2074	/* account for newly allocated blocks in reserved blocks total */
2075	args->total -= dp->i_d.di_nblocks - nblks;
2076
2077out_free_map:
2078	if (mapp != &map)
2079		kmem_free(mapp);
2080	return error;
2081}
2082
2083/*
2084 * Add a block to the btree ahead of the file.
2085 * Return the new block number to the caller.
2086 */
2087int
2088xfs_da_grow_inode(
2089	struct xfs_da_args	*args,
2090	xfs_dablk_t		*new_blkno)
2091{
2092	xfs_fileoff_t		bno;
2093	int			count;
2094	int			error;
2095
2096	trace_xfs_da_grow_inode(args);
2097
2098	if (args->whichfork == XFS_DATA_FORK) {
2099		bno = args->dp->i_mount->m_dirleafblk;
2100		count = args->dp->i_mount->m_dirblkfsbs;
2101	} else {
2102		bno = 0;
2103		count = 1;
2104	}
2105
2106	error = xfs_da_grow_inode_int(args, &bno, count);
2107	if (!error)
2108		*new_blkno = (xfs_dablk_t)bno;
2109	return error;
2110}
2111
2112/*
2113 * Ick.  We need to always be able to remove a btree block, even
2114 * if there's no space reservation because the filesystem is full.
2115 * This is called if xfs_bunmapi on a btree block fails due to ENOSPC.
2116 * It swaps the target block with the last block in the file.  The
2117 * last block in the file can always be removed since it can't cause
2118 * a bmap btree split to do that.
2119 */
2120STATIC int
2121xfs_da3_swap_lastblock(
2122	struct xfs_da_args	*args,
2123	xfs_dablk_t		*dead_blknop,
2124	struct xfs_buf		**dead_bufp)
2125{
2126	struct xfs_da_blkinfo	*dead_info;
2127	struct xfs_da_blkinfo	*sib_info;
2128	struct xfs_da_intnode	*par_node;
2129	struct xfs_da_intnode	*dead_node;
2130	struct xfs_dir2_leaf	*dead_leaf2;
2131	struct xfs_da_node_entry *btree;
2132	struct xfs_da3_icnode_hdr par_hdr;
2133	struct xfs_inode	*dp;
2134	struct xfs_trans	*tp;
2135	struct xfs_mount	*mp;
2136	struct xfs_buf		*dead_buf;
2137	struct xfs_buf		*last_buf;
2138	struct xfs_buf		*sib_buf;
2139	struct xfs_buf		*par_buf;
2140	xfs_dahash_t		dead_hash;
2141	xfs_fileoff_t		lastoff;
2142	xfs_dablk_t		dead_blkno;
2143	xfs_dablk_t		last_blkno;
2144	xfs_dablk_t		sib_blkno;
2145	xfs_dablk_t		par_blkno;
2146	int			error;
2147	int			w;
2148	int			entno;
2149	int			level;
2150	int			dead_level;
2151
2152	trace_xfs_da_swap_lastblock(args);
2153
2154	dead_buf = *dead_bufp;
2155	dead_blkno = *dead_blknop;
2156	tp = args->trans;
2157	dp = args->dp;
2158	w = args->whichfork;
2159	ASSERT(w == XFS_DATA_FORK);
2160	mp = dp->i_mount;
2161	lastoff = mp->m_dirfreeblk;
2162	error = xfs_bmap_last_before(tp, dp, &lastoff, w);
2163	if (error)
2164		return error;
2165	if (unlikely(lastoff == 0)) {
2166		XFS_ERROR_REPORT("xfs_da_swap_lastblock(1)", XFS_ERRLEVEL_LOW,
2167				 mp);
2168		return XFS_ERROR(EFSCORRUPTED);
2169	}
2170	/*
2171	 * Read the last block in the btree space.
2172	 */
2173	last_blkno = (xfs_dablk_t)lastoff - mp->m_dirblkfsbs;
2174	error = xfs_da3_node_read(tp, dp, last_blkno, -1, &last_buf, w);
2175	if (error)
2176		return error;
2177	/*
2178	 * Copy the last block into the dead buffer and log it.
2179	 */
2180	memcpy(dead_buf->b_addr, last_buf->b_addr, mp->m_dirblksize);
2181	xfs_trans_log_buf(tp, dead_buf, 0, mp->m_dirblksize - 1);
2182	dead_info = dead_buf->b_addr;
2183	/*
2184	 * Get values from the moved block.
2185	 */
2186	if (dead_info->magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) ||
2187	    dead_info->magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC)) {
2188		struct xfs_dir3_icleaf_hdr leafhdr;
2189		struct xfs_dir2_leaf_entry *ents;
2190
2191		dead_leaf2 = (xfs_dir2_leaf_t *)dead_info;
2192		dp->d_ops->leaf_hdr_from_disk(&leafhdr, dead_leaf2);
2193		ents = dp->d_ops->leaf_ents_p(dead_leaf2);
2194		dead_level = 0;
2195		dead_hash = be32_to_cpu(ents[leafhdr.count - 1].hashval);
2196	} else {
2197		struct xfs_da3_icnode_hdr deadhdr;
2198
2199		dead_node = (xfs_da_intnode_t *)dead_info;
2200		dp->d_ops->node_hdr_from_disk(&deadhdr, dead_node);
2201		btree = dp->d_ops->node_tree_p(dead_node);
2202		dead_level = deadhdr.level;
2203		dead_hash = be32_to_cpu(btree[deadhdr.count - 1].hashval);
2204	}
2205	sib_buf = par_buf = NULL;
2206	/*
2207	 * If the moved block has a left sibling, fix up the pointers.
2208	 */
2209	if ((sib_blkno = be32_to_cpu(dead_info->back))) {
2210		error = xfs_da3_node_read(tp, dp, sib_blkno, -1, &sib_buf, w);
2211		if (error)
2212			goto done;
2213		sib_info = sib_buf->b_addr;
2214		if (unlikely(
2215		    be32_to_cpu(sib_info->forw) != last_blkno ||
2216		    sib_info->magic != dead_info->magic)) {
2217			XFS_ERROR_REPORT("xfs_da_swap_lastblock(2)",
2218					 XFS_ERRLEVEL_LOW, mp);
2219			error = XFS_ERROR(EFSCORRUPTED);
2220			goto done;
2221		}
2222		sib_info->forw = cpu_to_be32(dead_blkno);
2223		xfs_trans_log_buf(tp, sib_buf,
2224			XFS_DA_LOGRANGE(sib_info, &sib_info->forw,
2225					sizeof(sib_info->forw)));
2226		sib_buf = NULL;
2227	}
2228	/*
2229	 * If the moved block has a right sibling, fix up the pointers.
2230	 */
2231	if ((sib_blkno = be32_to_cpu(dead_info->forw))) {
2232		error = xfs_da3_node_read(tp, dp, sib_blkno, -1, &sib_buf, w);
2233		if (error)
2234			goto done;
2235		sib_info = sib_buf->b_addr;
2236		if (unlikely(
2237		       be32_to_cpu(sib_info->back) != last_blkno ||
2238		       sib_info->magic != dead_info->magic)) {
2239			XFS_ERROR_REPORT("xfs_da_swap_lastblock(3)",
2240					 XFS_ERRLEVEL_LOW, mp);
2241			error = XFS_ERROR(EFSCORRUPTED);
2242			goto done;
2243		}
2244		sib_info->back = cpu_to_be32(dead_blkno);
2245		xfs_trans_log_buf(tp, sib_buf,
2246			XFS_DA_LOGRANGE(sib_info, &sib_info->back,
2247					sizeof(sib_info->back)));
2248		sib_buf = NULL;
2249	}
2250	par_blkno = mp->m_dirleafblk;
2251	level = -1;
2252	/*
2253	 * Walk down the tree looking for the parent of the moved block.
2254	 */
2255	for (;;) {
2256		error = xfs_da3_node_read(tp, dp, par_blkno, -1, &par_buf, w);
2257		if (error)
2258			goto done;
2259		par_node = par_buf->b_addr;
2260		dp->d_ops->node_hdr_from_disk(&par_hdr, par_node);
2261		if (level >= 0 && level != par_hdr.level + 1) {
2262			XFS_ERROR_REPORT("xfs_da_swap_lastblock(4)",
2263					 XFS_ERRLEVEL_LOW, mp);
2264			error = XFS_ERROR(EFSCORRUPTED);
2265			goto done;
2266		}
2267		level = par_hdr.level;
2268		btree = dp->d_ops->node_tree_p(par_node);
2269		for (entno = 0;
2270		     entno < par_hdr.count &&
2271		     be32_to_cpu(btree[entno].hashval) < dead_hash;
2272		     entno++)
2273			continue;
2274		if (entno == par_hdr.count) {
2275			XFS_ERROR_REPORT("xfs_da_swap_lastblock(5)",
2276					 XFS_ERRLEVEL_LOW, mp);
2277			error = XFS_ERROR(EFSCORRUPTED);
2278			goto done;
2279		}
2280		par_blkno = be32_to_cpu(btree[entno].before);
2281		if (level == dead_level + 1)
2282			break;
2283		xfs_trans_brelse(tp, par_buf);
2284		par_buf = NULL;
2285	}
2286	/*
2287	 * We're in the right parent block.
2288	 * Look for the right entry.
2289	 */
2290	for (;;) {
2291		for (;
2292		     entno < par_hdr.count &&
2293		     be32_to_cpu(btree[entno].before) != last_blkno;
2294		     entno++)
2295			continue;
2296		if (entno < par_hdr.count)
2297			break;
2298		par_blkno = par_hdr.forw;
2299		xfs_trans_brelse(tp, par_buf);
2300		par_buf = NULL;
2301		if (unlikely(par_blkno == 0)) {
2302			XFS_ERROR_REPORT("xfs_da_swap_lastblock(6)",
2303					 XFS_ERRLEVEL_LOW, mp);
2304			error = XFS_ERROR(EFSCORRUPTED);
2305			goto done;
2306		}
2307		error = xfs_da3_node_read(tp, dp, par_blkno, -1, &par_buf, w);
2308		if (error)
2309			goto done;
2310		par_node = par_buf->b_addr;
2311		dp->d_ops->node_hdr_from_disk(&par_hdr, par_node);
2312		if (par_hdr.level != level) {
2313			XFS_ERROR_REPORT("xfs_da_swap_lastblock(7)",
2314					 XFS_ERRLEVEL_LOW, mp);
2315			error = XFS_ERROR(EFSCORRUPTED);
2316			goto done;
2317		}
2318		btree = dp->d_ops->node_tree_p(par_node);
2319		entno = 0;
2320	}
2321	/*
2322	 * Update the parent entry pointing to the moved block.
2323	 */
2324	btree[entno].before = cpu_to_be32(dead_blkno);
2325	xfs_trans_log_buf(tp, par_buf,
2326		XFS_DA_LOGRANGE(par_node, &btree[entno].before,
2327				sizeof(btree[entno].before)));
2328	*dead_blknop = last_blkno;
2329	*dead_bufp = last_buf;
2330	return 0;
2331done:
2332	if (par_buf)
2333		xfs_trans_brelse(tp, par_buf);
2334	if (sib_buf)
2335		xfs_trans_brelse(tp, sib_buf);
2336	xfs_trans_brelse(tp, last_buf);
2337	return error;
2338}
2339
2340/*
2341 * Remove a btree block from a directory or attribute.
2342 */
2343int
2344xfs_da_shrink_inode(
2345	xfs_da_args_t	*args,
2346	xfs_dablk_t	dead_blkno,
2347	struct xfs_buf	*dead_buf)
2348{
2349	xfs_inode_t *dp;
2350	int done, error, w, count;
2351	xfs_trans_t *tp;
2352	xfs_mount_t *mp;
2353
2354	trace_xfs_da_shrink_inode(args);
2355
2356	dp = args->dp;
2357	w = args->whichfork;
2358	tp = args->trans;
2359	mp = dp->i_mount;
2360	if (w == XFS_DATA_FORK)
2361		count = mp->m_dirblkfsbs;
2362	else
2363		count = 1;
2364	for (;;) {
2365		/*
2366		 * Remove extents.  If we get ENOSPC for a dir we have to move
2367		 * the last block to the place we want to kill.
2368		 */
2369		error = xfs_bunmapi(tp, dp, dead_blkno, count,
2370				    xfs_bmapi_aflag(w)|XFS_BMAPI_METADATA,
2371				    0, args->firstblock, args->flist, &done);
2372		if (error == ENOSPC) {
2373			if (w != XFS_DATA_FORK)
2374				break;
2375			error = xfs_da3_swap_lastblock(args, &dead_blkno,
2376						      &dead_buf);
2377			if (error)
2378				break;
2379		} else {
2380			break;
2381		}
2382	}
2383	xfs_trans_binval(tp, dead_buf);
2384	return error;
2385}
2386
2387/*
2388 * See if the mapping(s) for this btree block are valid, i.e.
2389 * don't contain holes, are logically contiguous, and cover the whole range.
2390 */
2391STATIC int
2392xfs_da_map_covers_blocks(
2393	int		nmap,
2394	xfs_bmbt_irec_t	*mapp,
2395	xfs_dablk_t	bno,
2396	int		count)
2397{
2398	int		i;
2399	xfs_fileoff_t	off;
2400
2401	for (i = 0, off = bno; i < nmap; i++) {
2402		if (mapp[i].br_startblock == HOLESTARTBLOCK ||
2403		    mapp[i].br_startblock == DELAYSTARTBLOCK) {
2404			return 0;
2405		}
2406		if (off != mapp[i].br_startoff) {
2407			return 0;
2408		}
2409		off += mapp[i].br_blockcount;
2410	}
2411	return off == bno + count;
2412}
2413
2414/*
2415 * Convert a struct xfs_bmbt_irec to a struct xfs_buf_map.
2416 *
2417 * For the single map case, it is assumed that the caller has provided a pointer
2418 * to a valid xfs_buf_map.  For the multiple map case, this function will
2419 * allocate the xfs_buf_map to hold all the maps and replace the caller's single
2420 * map pointer with the allocated map.
2421 */
2422static int
2423xfs_buf_map_from_irec(
2424	struct xfs_mount	*mp,
2425	struct xfs_buf_map	**mapp,
2426	int			*nmaps,
2427	struct xfs_bmbt_irec	*irecs,
2428	int			nirecs)
2429{
2430	struct xfs_buf_map	*map;
2431	int			i;
2432
2433	ASSERT(*nmaps == 1);
2434	ASSERT(nirecs >= 1);
2435
2436	if (nirecs > 1) {
2437		map = kmem_zalloc(nirecs * sizeof(struct xfs_buf_map),
2438				  KM_SLEEP | KM_NOFS);
2439		if (!map)
2440			return ENOMEM;
2441		*mapp = map;
2442	}
2443
2444	*nmaps = nirecs;
2445	map = *mapp;
2446	for (i = 0; i < *nmaps; i++) {
2447		ASSERT(irecs[i].br_startblock != DELAYSTARTBLOCK &&
2448		       irecs[i].br_startblock != HOLESTARTBLOCK);
2449		map[i].bm_bn = XFS_FSB_TO_DADDR(mp, irecs[i].br_startblock);
2450		map[i].bm_len = XFS_FSB_TO_BB(mp, irecs[i].br_blockcount);
2451	}
2452	return 0;
2453}
2454
2455/*
2456 * Map the block we are given ready for reading. There are three possible return
2457 * values:
2458 *	-1 - will be returned if we land in a hole and mappedbno == -2 so the
2459 *	     caller knows not to execute a subsequent read.
2460 *	 0 - if we mapped the block successfully
2461 *	>0 - positive error number if there was an error.
2462 */
2463static int
2464xfs_dabuf_map(
2465	struct xfs_trans	*trans,
2466	struct xfs_inode	*dp,
2467	xfs_dablk_t		bno,
2468	xfs_daddr_t		mappedbno,
2469	int			whichfork,
2470	struct xfs_buf_map	**map,
2471	int			*nmaps)
2472{
2473	struct xfs_mount	*mp = dp->i_mount;
2474	int			nfsb;
2475	int			error = 0;
2476	struct xfs_bmbt_irec	irec;
2477	struct xfs_bmbt_irec	*irecs = &irec;
2478	int			nirecs;
2479
2480	ASSERT(map && *map);
2481	ASSERT(*nmaps == 1);
2482
2483	nfsb = (whichfork == XFS_DATA_FORK) ? mp->m_dirblkfsbs : 1;
2484
2485	/*
2486	 * Caller doesn't have a mapping.  -2 means don't complain
2487	 * if we land in a hole.
2488	 */
2489	if (mappedbno == -1 || mappedbno == -2) {
2490		/*
2491		 * Optimize the one-block case.
2492		 */
2493		if (nfsb != 1)
2494			irecs = kmem_zalloc(sizeof(irec) * nfsb,
2495					    KM_SLEEP | KM_NOFS);
2496
2497		nirecs = nfsb;
2498		error = xfs_bmapi_read(dp, (xfs_fileoff_t)bno, nfsb, irecs,
2499				       &nirecs, xfs_bmapi_aflag(whichfork));
2500		if (error)
2501			goto out;
2502	} else {
2503		irecs->br_startblock = XFS_DADDR_TO_FSB(mp, mappedbno);
2504		irecs->br_startoff = (xfs_fileoff_t)bno;
2505		irecs->br_blockcount = nfsb;
2506		irecs->br_state = 0;
2507		nirecs = 1;
2508	}
2509
2510	if (!xfs_da_map_covers_blocks(nirecs, irecs, bno, nfsb)) {
2511		error = mappedbno == -2 ? -1 : XFS_ERROR(EFSCORRUPTED);
2512		if (unlikely(error == EFSCORRUPTED)) {
2513			if (xfs_error_level >= XFS_ERRLEVEL_LOW) {
2514				int i;
2515				xfs_alert(mp, "%s: bno %lld dir: inode %lld",
2516					__func__, (long long)bno,
2517					(long long)dp->i_ino);
2518				for (i = 0; i < *nmaps; i++) {
2519					xfs_alert(mp,
2520"[%02d] br_startoff %lld br_startblock %lld br_blockcount %lld br_state %d",
2521						i,
2522						(long long)irecs[i].br_startoff,
2523						(long long)irecs[i].br_startblock,
2524						(long long)irecs[i].br_blockcount,
2525						irecs[i].br_state);
2526				}
2527			}
2528			XFS_ERROR_REPORT("xfs_da_do_buf(1)",
2529					 XFS_ERRLEVEL_LOW, mp);
2530		}
2531		goto out;
2532	}
2533	error = xfs_buf_map_from_irec(mp, map, nmaps, irecs, nirecs);
2534out:
2535	if (irecs != &irec)
2536		kmem_free(irecs);
2537	return error;
2538}
2539
2540/*
2541 * Get a buffer for the dir/attr block.
2542 */
2543int
2544xfs_da_get_buf(
2545	struct xfs_trans	*trans,
2546	struct xfs_inode	*dp,
2547	xfs_dablk_t		bno,
2548	xfs_daddr_t		mappedbno,
2549	struct xfs_buf		**bpp,
2550	int			whichfork)
2551{
2552	struct xfs_buf		*bp;
2553	struct xfs_buf_map	map;
2554	struct xfs_buf_map	*mapp;
2555	int			nmap;
2556	int			error;
2557
2558	*bpp = NULL;
2559	mapp = &map;
2560	nmap = 1;
2561	error = xfs_dabuf_map(trans, dp, bno, mappedbno, whichfork,
2562				&mapp, &nmap);
2563	if (error) {
2564		/* mapping a hole is not an error, but we don't continue */
2565		if (error == -1)
2566			error = 0;
2567		goto out_free;
2568	}
2569
2570	bp = xfs_trans_get_buf_map(trans, dp->i_mount->m_ddev_targp,
2571				    mapp, nmap, 0);
2572	error = bp ? bp->b_error : XFS_ERROR(EIO);
2573	if (error) {
2574		xfs_trans_brelse(trans, bp);
2575		goto out_free;
2576	}
2577
2578	*bpp = bp;
2579
2580out_free:
2581	if (mapp != &map)
2582		kmem_free(mapp);
2583
2584	return error;
2585}
2586
2587/*
2588 * Get a buffer for the dir/attr block, fill in the contents.
2589 */
2590int
2591xfs_da_read_buf(
2592	struct xfs_trans	*trans,
2593	struct xfs_inode	*dp,
2594	xfs_dablk_t		bno,
2595	xfs_daddr_t		mappedbno,
2596	struct xfs_buf		**bpp,
2597	int			whichfork,
2598	const struct xfs_buf_ops *ops)
2599{
2600	struct xfs_buf		*bp;
2601	struct xfs_buf_map	map;
2602	struct xfs_buf_map	*mapp;
2603	int			nmap;
2604	int			error;
2605
2606	*bpp = NULL;
2607	mapp = &map;
2608	nmap = 1;
2609	error = xfs_dabuf_map(trans, dp, bno, mappedbno, whichfork,
2610				&mapp, &nmap);
2611	if (error) {
2612		/* mapping a hole is not an error, but we don't continue */
2613		if (error == -1)
2614			error = 0;
2615		goto out_free;
2616	}
2617
2618	error = xfs_trans_read_buf_map(dp->i_mount, trans,
2619					dp->i_mount->m_ddev_targp,
2620					mapp, nmap, 0, &bp, ops);
2621	if (error)
2622		goto out_free;
2623
2624	if (whichfork == XFS_ATTR_FORK)
2625		xfs_buf_set_ref(bp, XFS_ATTR_BTREE_REF);
2626	else
2627		xfs_buf_set_ref(bp, XFS_DIR_BTREE_REF);
2628
2629	/*
2630	 * This verification code will be moved to a CRC verification callback
2631	 * function so just leave it here unchanged until then.
2632	 */
2633	{
2634		xfs_dir2_data_hdr_t	*hdr = bp->b_addr;
2635		xfs_dir2_free_t		*free = bp->b_addr;
2636		xfs_da_blkinfo_t	*info = bp->b_addr;
2637		uint			magic, magic1;
2638		struct xfs_mount	*mp = dp->i_mount;
2639
2640		magic = be16_to_cpu(info->magic);
2641		magic1 = be32_to_cpu(hdr->magic);
2642		if (unlikely(
2643		    XFS_TEST_ERROR((magic != XFS_DA_NODE_MAGIC) &&
2644				   (magic != XFS_DA3_NODE_MAGIC) &&
2645				   (magic != XFS_ATTR_LEAF_MAGIC) &&
2646				   (magic != XFS_ATTR3_LEAF_MAGIC) &&
2647				   (magic != XFS_DIR2_LEAF1_MAGIC) &&
2648				   (magic != XFS_DIR3_LEAF1_MAGIC) &&
2649				   (magic != XFS_DIR2_LEAFN_MAGIC) &&
2650				   (magic != XFS_DIR3_LEAFN_MAGIC) &&
2651				   (magic1 != XFS_DIR2_BLOCK_MAGIC) &&
2652				   (magic1 != XFS_DIR3_BLOCK_MAGIC) &&
2653				   (magic1 != XFS_DIR2_DATA_MAGIC) &&
2654				   (magic1 != XFS_DIR3_DATA_MAGIC) &&
2655				   (free->hdr.magic !=
2656					cpu_to_be32(XFS_DIR2_FREE_MAGIC)) &&
2657				   (free->hdr.magic !=
2658					cpu_to_be32(XFS_DIR3_FREE_MAGIC)),
2659				mp, XFS_ERRTAG_DA_READ_BUF,
2660				XFS_RANDOM_DA_READ_BUF))) {
2661			trace_xfs_da_btree_corrupt(bp, _RET_IP_);
2662			XFS_CORRUPTION_ERROR("xfs_da_do_buf(2)",
2663					     XFS_ERRLEVEL_LOW, mp, info);
2664			error = XFS_ERROR(EFSCORRUPTED);
2665			xfs_trans_brelse(trans, bp);
2666			goto out_free;
2667		}
2668	}
2669	*bpp = bp;
2670out_free:
2671	if (mapp != &map)
2672		kmem_free(mapp);
2673
2674	return error;
2675}
2676
2677/*
2678 * Readahead the dir/attr block.
2679 */
2680xfs_daddr_t
2681xfs_da_reada_buf(
2682	struct xfs_trans	*trans,
2683	struct xfs_inode	*dp,
2684	xfs_dablk_t		bno,
2685	xfs_daddr_t		mappedbno,
2686	int			whichfork,
2687	const struct xfs_buf_ops *ops)
2688{
2689	struct xfs_buf_map	map;
2690	struct xfs_buf_map	*mapp;
2691	int			nmap;
2692	int			error;
2693
2694	mapp = &map;
2695	nmap = 1;
2696	error = xfs_dabuf_map(trans, dp, bno, mappedbno, whichfork,
2697				&mapp, &nmap);
2698	if (error) {
2699		/* mapping a hole is not an error, but we don't continue */
2700		if (error == -1)
2701			error = 0;
2702		goto out_free;
2703	}
2704
2705	mappedbno = mapp[0].bm_bn;
2706	xfs_buf_readahead_map(dp->i_mount->m_ddev_targp, mapp, nmap, ops);
2707
2708out_free:
2709	if (mapp != &map)
2710		kmem_free(mapp);
2711
2712	if (error)
2713		return -1;
2714	return mappedbno;
2715}