Loading...
1/*
2 * fs/f2fs/node.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13#include <linux/mpage.h>
14#include <linux/backing-dev.h>
15#include <linux/blkdev.h>
16#include <linux/pagevec.h>
17#include <linux/swap.h>
18
19#include "f2fs.h"
20#include "node.h"
21#include "segment.h"
22#include <trace/events/f2fs.h>
23
24#define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
25
26static struct kmem_cache *nat_entry_slab;
27static struct kmem_cache *free_nid_slab;
28
29static inline bool available_free_memory(struct f2fs_nm_info *nm_i, int type)
30{
31 struct sysinfo val;
32 unsigned long mem_size = 0;
33
34 si_meminfo(&val);
35 if (type == FREE_NIDS)
36 mem_size = nm_i->fcnt * sizeof(struct free_nid);
37 else if (type == NAT_ENTRIES)
38 mem_size += nm_i->nat_cnt * sizeof(struct nat_entry);
39 mem_size >>= 12;
40
41 /* give 50:50 memory for free nids and nat caches respectively */
42 return (mem_size < ((val.totalram * nm_i->ram_thresh) >> 11));
43}
44
45static void clear_node_page_dirty(struct page *page)
46{
47 struct address_space *mapping = page->mapping;
48 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
49 unsigned int long flags;
50
51 if (PageDirty(page)) {
52 spin_lock_irqsave(&mapping->tree_lock, flags);
53 radix_tree_tag_clear(&mapping->page_tree,
54 page_index(page),
55 PAGECACHE_TAG_DIRTY);
56 spin_unlock_irqrestore(&mapping->tree_lock, flags);
57
58 clear_page_dirty_for_io(page);
59 dec_page_count(sbi, F2FS_DIRTY_NODES);
60 }
61 ClearPageUptodate(page);
62}
63
64static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
65{
66 pgoff_t index = current_nat_addr(sbi, nid);
67 return get_meta_page(sbi, index);
68}
69
70static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
71{
72 struct page *src_page;
73 struct page *dst_page;
74 pgoff_t src_off;
75 pgoff_t dst_off;
76 void *src_addr;
77 void *dst_addr;
78 struct f2fs_nm_info *nm_i = NM_I(sbi);
79
80 src_off = current_nat_addr(sbi, nid);
81 dst_off = next_nat_addr(sbi, src_off);
82
83 /* get current nat block page with lock */
84 src_page = get_meta_page(sbi, src_off);
85
86 /* Dirty src_page means that it is already the new target NAT page. */
87 if (PageDirty(src_page))
88 return src_page;
89
90 dst_page = grab_meta_page(sbi, dst_off);
91
92 src_addr = page_address(src_page);
93 dst_addr = page_address(dst_page);
94 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
95 set_page_dirty(dst_page);
96 f2fs_put_page(src_page, 1);
97
98 set_to_next_nat(nm_i, nid);
99
100 return dst_page;
101}
102
103static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
104{
105 return radix_tree_lookup(&nm_i->nat_root, n);
106}
107
108static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
109 nid_t start, unsigned int nr, struct nat_entry **ep)
110{
111 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
112}
113
114static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
115{
116 list_del(&e->list);
117 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
118 nm_i->nat_cnt--;
119 kmem_cache_free(nat_entry_slab, e);
120}
121
122int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
123{
124 struct f2fs_nm_info *nm_i = NM_I(sbi);
125 struct nat_entry *e;
126 int is_cp = 1;
127
128 read_lock(&nm_i->nat_tree_lock);
129 e = __lookup_nat_cache(nm_i, nid);
130 if (e && !e->checkpointed)
131 is_cp = 0;
132 read_unlock(&nm_i->nat_tree_lock);
133 return is_cp;
134}
135
136bool fsync_mark_done(struct f2fs_sb_info *sbi, nid_t nid)
137{
138 struct f2fs_nm_info *nm_i = NM_I(sbi);
139 struct nat_entry *e;
140 bool fsync_done = false;
141
142 read_lock(&nm_i->nat_tree_lock);
143 e = __lookup_nat_cache(nm_i, nid);
144 if (e)
145 fsync_done = e->fsync_done;
146 read_unlock(&nm_i->nat_tree_lock);
147 return fsync_done;
148}
149
150static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
151{
152 struct nat_entry *new;
153
154 new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
155 if (!new)
156 return NULL;
157 if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
158 kmem_cache_free(nat_entry_slab, new);
159 return NULL;
160 }
161 memset(new, 0, sizeof(struct nat_entry));
162 nat_set_nid(new, nid);
163 new->checkpointed = true;
164 list_add_tail(&new->list, &nm_i->nat_entries);
165 nm_i->nat_cnt++;
166 return new;
167}
168
169static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
170 struct f2fs_nat_entry *ne)
171{
172 struct nat_entry *e;
173retry:
174 write_lock(&nm_i->nat_tree_lock);
175 e = __lookup_nat_cache(nm_i, nid);
176 if (!e) {
177 e = grab_nat_entry(nm_i, nid);
178 if (!e) {
179 write_unlock(&nm_i->nat_tree_lock);
180 goto retry;
181 }
182 nat_set_blkaddr(e, le32_to_cpu(ne->block_addr));
183 nat_set_ino(e, le32_to_cpu(ne->ino));
184 nat_set_version(e, ne->version);
185 }
186 write_unlock(&nm_i->nat_tree_lock);
187}
188
189static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
190 block_t new_blkaddr, bool fsync_done)
191{
192 struct f2fs_nm_info *nm_i = NM_I(sbi);
193 struct nat_entry *e;
194retry:
195 write_lock(&nm_i->nat_tree_lock);
196 e = __lookup_nat_cache(nm_i, ni->nid);
197 if (!e) {
198 e = grab_nat_entry(nm_i, ni->nid);
199 if (!e) {
200 write_unlock(&nm_i->nat_tree_lock);
201 goto retry;
202 }
203 e->ni = *ni;
204 f2fs_bug_on(ni->blk_addr == NEW_ADDR);
205 } else if (new_blkaddr == NEW_ADDR) {
206 /*
207 * when nid is reallocated,
208 * previous nat entry can be remained in nat cache.
209 * So, reinitialize it with new information.
210 */
211 e->ni = *ni;
212 f2fs_bug_on(ni->blk_addr != NULL_ADDR);
213 }
214
215 /* sanity check */
216 f2fs_bug_on(nat_get_blkaddr(e) != ni->blk_addr);
217 f2fs_bug_on(nat_get_blkaddr(e) == NULL_ADDR &&
218 new_blkaddr == NULL_ADDR);
219 f2fs_bug_on(nat_get_blkaddr(e) == NEW_ADDR &&
220 new_blkaddr == NEW_ADDR);
221 f2fs_bug_on(nat_get_blkaddr(e) != NEW_ADDR &&
222 nat_get_blkaddr(e) != NULL_ADDR &&
223 new_blkaddr == NEW_ADDR);
224
225 /* increament version no as node is removed */
226 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
227 unsigned char version = nat_get_version(e);
228 nat_set_version(e, inc_node_version(version));
229 }
230
231 /* change address */
232 nat_set_blkaddr(e, new_blkaddr);
233 __set_nat_cache_dirty(nm_i, e);
234
235 /* update fsync_mark if its inode nat entry is still alive */
236 e = __lookup_nat_cache(nm_i, ni->ino);
237 if (e)
238 e->fsync_done = fsync_done;
239 write_unlock(&nm_i->nat_tree_lock);
240}
241
242int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
243{
244 struct f2fs_nm_info *nm_i = NM_I(sbi);
245
246 if (available_free_memory(nm_i, NAT_ENTRIES))
247 return 0;
248
249 write_lock(&nm_i->nat_tree_lock);
250 while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
251 struct nat_entry *ne;
252 ne = list_first_entry(&nm_i->nat_entries,
253 struct nat_entry, list);
254 __del_from_nat_cache(nm_i, ne);
255 nr_shrink--;
256 }
257 write_unlock(&nm_i->nat_tree_lock);
258 return nr_shrink;
259}
260
261/*
262 * This function returns always success
263 */
264void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
265{
266 struct f2fs_nm_info *nm_i = NM_I(sbi);
267 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
268 struct f2fs_summary_block *sum = curseg->sum_blk;
269 nid_t start_nid = START_NID(nid);
270 struct f2fs_nat_block *nat_blk;
271 struct page *page = NULL;
272 struct f2fs_nat_entry ne;
273 struct nat_entry *e;
274 int i;
275
276 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
277 ni->nid = nid;
278
279 /* Check nat cache */
280 read_lock(&nm_i->nat_tree_lock);
281 e = __lookup_nat_cache(nm_i, nid);
282 if (e) {
283 ni->ino = nat_get_ino(e);
284 ni->blk_addr = nat_get_blkaddr(e);
285 ni->version = nat_get_version(e);
286 }
287 read_unlock(&nm_i->nat_tree_lock);
288 if (e)
289 return;
290
291 /* Check current segment summary */
292 mutex_lock(&curseg->curseg_mutex);
293 i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
294 if (i >= 0) {
295 ne = nat_in_journal(sum, i);
296 node_info_from_raw_nat(ni, &ne);
297 }
298 mutex_unlock(&curseg->curseg_mutex);
299 if (i >= 0)
300 goto cache;
301
302 /* Fill node_info from nat page */
303 page = get_current_nat_page(sbi, start_nid);
304 nat_blk = (struct f2fs_nat_block *)page_address(page);
305 ne = nat_blk->entries[nid - start_nid];
306 node_info_from_raw_nat(ni, &ne);
307 f2fs_put_page(page, 1);
308cache:
309 /* cache nat entry */
310 cache_nat_entry(NM_I(sbi), nid, &ne);
311}
312
313/*
314 * The maximum depth is four.
315 * Offset[0] will have raw inode offset.
316 */
317static int get_node_path(struct f2fs_inode_info *fi, long block,
318 int offset[4], unsigned int noffset[4])
319{
320 const long direct_index = ADDRS_PER_INODE(fi);
321 const long direct_blks = ADDRS_PER_BLOCK;
322 const long dptrs_per_blk = NIDS_PER_BLOCK;
323 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
324 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
325 int n = 0;
326 int level = 0;
327
328 noffset[0] = 0;
329
330 if (block < direct_index) {
331 offset[n] = block;
332 goto got;
333 }
334 block -= direct_index;
335 if (block < direct_blks) {
336 offset[n++] = NODE_DIR1_BLOCK;
337 noffset[n] = 1;
338 offset[n] = block;
339 level = 1;
340 goto got;
341 }
342 block -= direct_blks;
343 if (block < direct_blks) {
344 offset[n++] = NODE_DIR2_BLOCK;
345 noffset[n] = 2;
346 offset[n] = block;
347 level = 1;
348 goto got;
349 }
350 block -= direct_blks;
351 if (block < indirect_blks) {
352 offset[n++] = NODE_IND1_BLOCK;
353 noffset[n] = 3;
354 offset[n++] = block / direct_blks;
355 noffset[n] = 4 + offset[n - 1];
356 offset[n] = block % direct_blks;
357 level = 2;
358 goto got;
359 }
360 block -= indirect_blks;
361 if (block < indirect_blks) {
362 offset[n++] = NODE_IND2_BLOCK;
363 noffset[n] = 4 + dptrs_per_blk;
364 offset[n++] = block / direct_blks;
365 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
366 offset[n] = block % direct_blks;
367 level = 2;
368 goto got;
369 }
370 block -= indirect_blks;
371 if (block < dindirect_blks) {
372 offset[n++] = NODE_DIND_BLOCK;
373 noffset[n] = 5 + (dptrs_per_blk * 2);
374 offset[n++] = block / indirect_blks;
375 noffset[n] = 6 + (dptrs_per_blk * 2) +
376 offset[n - 1] * (dptrs_per_blk + 1);
377 offset[n++] = (block / direct_blks) % dptrs_per_blk;
378 noffset[n] = 7 + (dptrs_per_blk * 2) +
379 offset[n - 2] * (dptrs_per_blk + 1) +
380 offset[n - 1];
381 offset[n] = block % direct_blks;
382 level = 3;
383 goto got;
384 } else {
385 BUG();
386 }
387got:
388 return level;
389}
390
391/*
392 * Caller should call f2fs_put_dnode(dn).
393 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
394 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
395 * In the case of RDONLY_NODE, we don't need to care about mutex.
396 */
397int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
398{
399 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
400 struct page *npage[4];
401 struct page *parent;
402 int offset[4];
403 unsigned int noffset[4];
404 nid_t nids[4];
405 int level, i;
406 int err = 0;
407
408 level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
409
410 nids[0] = dn->inode->i_ino;
411 npage[0] = dn->inode_page;
412
413 if (!npage[0]) {
414 npage[0] = get_node_page(sbi, nids[0]);
415 if (IS_ERR(npage[0]))
416 return PTR_ERR(npage[0]);
417 }
418 parent = npage[0];
419 if (level != 0)
420 nids[1] = get_nid(parent, offset[0], true);
421 dn->inode_page = npage[0];
422 dn->inode_page_locked = true;
423
424 /* get indirect or direct nodes */
425 for (i = 1; i <= level; i++) {
426 bool done = false;
427
428 if (!nids[i] && mode == ALLOC_NODE) {
429 /* alloc new node */
430 if (!alloc_nid(sbi, &(nids[i]))) {
431 err = -ENOSPC;
432 goto release_pages;
433 }
434
435 dn->nid = nids[i];
436 npage[i] = new_node_page(dn, noffset[i], NULL);
437 if (IS_ERR(npage[i])) {
438 alloc_nid_failed(sbi, nids[i]);
439 err = PTR_ERR(npage[i]);
440 goto release_pages;
441 }
442
443 set_nid(parent, offset[i - 1], nids[i], i == 1);
444 alloc_nid_done(sbi, nids[i]);
445 done = true;
446 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
447 npage[i] = get_node_page_ra(parent, offset[i - 1]);
448 if (IS_ERR(npage[i])) {
449 err = PTR_ERR(npage[i]);
450 goto release_pages;
451 }
452 done = true;
453 }
454 if (i == 1) {
455 dn->inode_page_locked = false;
456 unlock_page(parent);
457 } else {
458 f2fs_put_page(parent, 1);
459 }
460
461 if (!done) {
462 npage[i] = get_node_page(sbi, nids[i]);
463 if (IS_ERR(npage[i])) {
464 err = PTR_ERR(npage[i]);
465 f2fs_put_page(npage[0], 0);
466 goto release_out;
467 }
468 }
469 if (i < level) {
470 parent = npage[i];
471 nids[i + 1] = get_nid(parent, offset[i], false);
472 }
473 }
474 dn->nid = nids[level];
475 dn->ofs_in_node = offset[level];
476 dn->node_page = npage[level];
477 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
478 return 0;
479
480release_pages:
481 f2fs_put_page(parent, 1);
482 if (i > 1)
483 f2fs_put_page(npage[0], 0);
484release_out:
485 dn->inode_page = NULL;
486 dn->node_page = NULL;
487 return err;
488}
489
490static void truncate_node(struct dnode_of_data *dn)
491{
492 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
493 struct node_info ni;
494
495 get_node_info(sbi, dn->nid, &ni);
496 if (dn->inode->i_blocks == 0) {
497 f2fs_bug_on(ni.blk_addr != NULL_ADDR);
498 goto invalidate;
499 }
500 f2fs_bug_on(ni.blk_addr == NULL_ADDR);
501
502 /* Deallocate node address */
503 invalidate_blocks(sbi, ni.blk_addr);
504 dec_valid_node_count(sbi, dn->inode);
505 set_node_addr(sbi, &ni, NULL_ADDR, false);
506
507 if (dn->nid == dn->inode->i_ino) {
508 remove_orphan_inode(sbi, dn->nid);
509 dec_valid_inode_count(sbi);
510 } else {
511 sync_inode_page(dn);
512 }
513invalidate:
514 clear_node_page_dirty(dn->node_page);
515 F2FS_SET_SB_DIRT(sbi);
516
517 f2fs_put_page(dn->node_page, 1);
518
519 invalidate_mapping_pages(NODE_MAPPING(sbi),
520 dn->node_page->index, dn->node_page->index);
521
522 dn->node_page = NULL;
523 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
524}
525
526static int truncate_dnode(struct dnode_of_data *dn)
527{
528 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
529 struct page *page;
530
531 if (dn->nid == 0)
532 return 1;
533
534 /* get direct node */
535 page = get_node_page(sbi, dn->nid);
536 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
537 return 1;
538 else if (IS_ERR(page))
539 return PTR_ERR(page);
540
541 /* Make dnode_of_data for parameter */
542 dn->node_page = page;
543 dn->ofs_in_node = 0;
544 truncate_data_blocks(dn);
545 truncate_node(dn);
546 return 1;
547}
548
549static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
550 int ofs, int depth)
551{
552 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
553 struct dnode_of_data rdn = *dn;
554 struct page *page;
555 struct f2fs_node *rn;
556 nid_t child_nid;
557 unsigned int child_nofs;
558 int freed = 0;
559 int i, ret;
560
561 if (dn->nid == 0)
562 return NIDS_PER_BLOCK + 1;
563
564 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
565
566 page = get_node_page(sbi, dn->nid);
567 if (IS_ERR(page)) {
568 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
569 return PTR_ERR(page);
570 }
571
572 rn = F2FS_NODE(page);
573 if (depth < 3) {
574 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
575 child_nid = le32_to_cpu(rn->in.nid[i]);
576 if (child_nid == 0)
577 continue;
578 rdn.nid = child_nid;
579 ret = truncate_dnode(&rdn);
580 if (ret < 0)
581 goto out_err;
582 set_nid(page, i, 0, false);
583 }
584 } else {
585 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
586 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
587 child_nid = le32_to_cpu(rn->in.nid[i]);
588 if (child_nid == 0) {
589 child_nofs += NIDS_PER_BLOCK + 1;
590 continue;
591 }
592 rdn.nid = child_nid;
593 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
594 if (ret == (NIDS_PER_BLOCK + 1)) {
595 set_nid(page, i, 0, false);
596 child_nofs += ret;
597 } else if (ret < 0 && ret != -ENOENT) {
598 goto out_err;
599 }
600 }
601 freed = child_nofs;
602 }
603
604 if (!ofs) {
605 /* remove current indirect node */
606 dn->node_page = page;
607 truncate_node(dn);
608 freed++;
609 } else {
610 f2fs_put_page(page, 1);
611 }
612 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
613 return freed;
614
615out_err:
616 f2fs_put_page(page, 1);
617 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
618 return ret;
619}
620
621static int truncate_partial_nodes(struct dnode_of_data *dn,
622 struct f2fs_inode *ri, int *offset, int depth)
623{
624 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
625 struct page *pages[2];
626 nid_t nid[3];
627 nid_t child_nid;
628 int err = 0;
629 int i;
630 int idx = depth - 2;
631
632 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
633 if (!nid[0])
634 return 0;
635
636 /* get indirect nodes in the path */
637 for (i = 0; i < idx + 1; i++) {
638 /* refernece count'll be increased */
639 pages[i] = get_node_page(sbi, nid[i]);
640 if (IS_ERR(pages[i])) {
641 err = PTR_ERR(pages[i]);
642 idx = i - 1;
643 goto fail;
644 }
645 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
646 }
647
648 /* free direct nodes linked to a partial indirect node */
649 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
650 child_nid = get_nid(pages[idx], i, false);
651 if (!child_nid)
652 continue;
653 dn->nid = child_nid;
654 err = truncate_dnode(dn);
655 if (err < 0)
656 goto fail;
657 set_nid(pages[idx], i, 0, false);
658 }
659
660 if (offset[idx + 1] == 0) {
661 dn->node_page = pages[idx];
662 dn->nid = nid[idx];
663 truncate_node(dn);
664 } else {
665 f2fs_put_page(pages[idx], 1);
666 }
667 offset[idx]++;
668 offset[idx + 1] = 0;
669 idx--;
670fail:
671 for (i = idx; i >= 0; i--)
672 f2fs_put_page(pages[i], 1);
673
674 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
675
676 return err;
677}
678
679/*
680 * All the block addresses of data and nodes should be nullified.
681 */
682int truncate_inode_blocks(struct inode *inode, pgoff_t from)
683{
684 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
685 int err = 0, cont = 1;
686 int level, offset[4], noffset[4];
687 unsigned int nofs = 0;
688 struct f2fs_inode *ri;
689 struct dnode_of_data dn;
690 struct page *page;
691
692 trace_f2fs_truncate_inode_blocks_enter(inode, from);
693
694 level = get_node_path(F2FS_I(inode), from, offset, noffset);
695restart:
696 page = get_node_page(sbi, inode->i_ino);
697 if (IS_ERR(page)) {
698 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
699 return PTR_ERR(page);
700 }
701
702 set_new_dnode(&dn, inode, page, NULL, 0);
703 unlock_page(page);
704
705 ri = F2FS_INODE(page);
706 switch (level) {
707 case 0:
708 case 1:
709 nofs = noffset[1];
710 break;
711 case 2:
712 nofs = noffset[1];
713 if (!offset[level - 1])
714 goto skip_partial;
715 err = truncate_partial_nodes(&dn, ri, offset, level);
716 if (err < 0 && err != -ENOENT)
717 goto fail;
718 nofs += 1 + NIDS_PER_BLOCK;
719 break;
720 case 3:
721 nofs = 5 + 2 * NIDS_PER_BLOCK;
722 if (!offset[level - 1])
723 goto skip_partial;
724 err = truncate_partial_nodes(&dn, ri, offset, level);
725 if (err < 0 && err != -ENOENT)
726 goto fail;
727 break;
728 default:
729 BUG();
730 }
731
732skip_partial:
733 while (cont) {
734 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
735 switch (offset[0]) {
736 case NODE_DIR1_BLOCK:
737 case NODE_DIR2_BLOCK:
738 err = truncate_dnode(&dn);
739 break;
740
741 case NODE_IND1_BLOCK:
742 case NODE_IND2_BLOCK:
743 err = truncate_nodes(&dn, nofs, offset[1], 2);
744 break;
745
746 case NODE_DIND_BLOCK:
747 err = truncate_nodes(&dn, nofs, offset[1], 3);
748 cont = 0;
749 break;
750
751 default:
752 BUG();
753 }
754 if (err < 0 && err != -ENOENT)
755 goto fail;
756 if (offset[1] == 0 &&
757 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
758 lock_page(page);
759 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
760 f2fs_put_page(page, 1);
761 goto restart;
762 }
763 f2fs_wait_on_page_writeback(page, NODE);
764 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
765 set_page_dirty(page);
766 unlock_page(page);
767 }
768 offset[1] = 0;
769 offset[0]++;
770 nofs += err;
771 }
772fail:
773 f2fs_put_page(page, 0);
774 trace_f2fs_truncate_inode_blocks_exit(inode, err);
775 return err > 0 ? 0 : err;
776}
777
778int truncate_xattr_node(struct inode *inode, struct page *page)
779{
780 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
781 nid_t nid = F2FS_I(inode)->i_xattr_nid;
782 struct dnode_of_data dn;
783 struct page *npage;
784
785 if (!nid)
786 return 0;
787
788 npage = get_node_page(sbi, nid);
789 if (IS_ERR(npage))
790 return PTR_ERR(npage);
791
792 F2FS_I(inode)->i_xattr_nid = 0;
793
794 /* need to do checkpoint during fsync */
795 F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
796
797 set_new_dnode(&dn, inode, page, npage, nid);
798
799 if (page)
800 dn.inode_page_locked = true;
801 truncate_node(&dn);
802 return 0;
803}
804
805/*
806 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
807 * f2fs_unlock_op().
808 */
809void remove_inode_page(struct inode *inode)
810{
811 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
812 struct page *page;
813 nid_t ino = inode->i_ino;
814 struct dnode_of_data dn;
815
816 page = get_node_page(sbi, ino);
817 if (IS_ERR(page))
818 return;
819
820 if (truncate_xattr_node(inode, page)) {
821 f2fs_put_page(page, 1);
822 return;
823 }
824 /* 0 is possible, after f2fs_new_inode() is failed */
825 f2fs_bug_on(inode->i_blocks != 0 && inode->i_blocks != 1);
826 set_new_dnode(&dn, inode, page, page, ino);
827 truncate_node(&dn);
828}
829
830struct page *new_inode_page(struct inode *inode, const struct qstr *name)
831{
832 struct dnode_of_data dn;
833
834 /* allocate inode page for new inode */
835 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
836
837 /* caller should f2fs_put_page(page, 1); */
838 return new_node_page(&dn, 0, NULL);
839}
840
841struct page *new_node_page(struct dnode_of_data *dn,
842 unsigned int ofs, struct page *ipage)
843{
844 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
845 struct node_info old_ni, new_ni;
846 struct page *page;
847 int err;
848
849 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
850 return ERR_PTR(-EPERM);
851
852 page = grab_cache_page_write_begin(NODE_MAPPING(sbi),
853 dn->nid, AOP_FLAG_NOFS);
854 if (!page)
855 return ERR_PTR(-ENOMEM);
856
857 if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
858 err = -ENOSPC;
859 goto fail;
860 }
861
862 get_node_info(sbi, dn->nid, &old_ni);
863
864 /* Reinitialize old_ni with new node page */
865 f2fs_bug_on(old_ni.blk_addr != NULL_ADDR);
866 new_ni = old_ni;
867 new_ni.ino = dn->inode->i_ino;
868 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
869
870 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
871 set_cold_node(dn->inode, page);
872 SetPageUptodate(page);
873 set_page_dirty(page);
874
875 if (f2fs_has_xattr_block(ofs))
876 F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
877
878 dn->node_page = page;
879 if (ipage)
880 update_inode(dn->inode, ipage);
881 else
882 sync_inode_page(dn);
883 if (ofs == 0)
884 inc_valid_inode_count(sbi);
885
886 return page;
887
888fail:
889 clear_node_page_dirty(page);
890 f2fs_put_page(page, 1);
891 return ERR_PTR(err);
892}
893
894/*
895 * Caller should do after getting the following values.
896 * 0: f2fs_put_page(page, 0)
897 * LOCKED_PAGE: f2fs_put_page(page, 1)
898 * error: nothing
899 */
900static int read_node_page(struct page *page, int rw)
901{
902 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
903 struct node_info ni;
904
905 get_node_info(sbi, page->index, &ni);
906
907 if (unlikely(ni.blk_addr == NULL_ADDR)) {
908 f2fs_put_page(page, 1);
909 return -ENOENT;
910 }
911
912 if (PageUptodate(page))
913 return LOCKED_PAGE;
914
915 return f2fs_submit_page_bio(sbi, page, ni.blk_addr, rw);
916}
917
918/*
919 * Readahead a node page
920 */
921void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
922{
923 struct page *apage;
924 int err;
925
926 apage = find_get_page(NODE_MAPPING(sbi), nid);
927 if (apage && PageUptodate(apage)) {
928 f2fs_put_page(apage, 0);
929 return;
930 }
931 f2fs_put_page(apage, 0);
932
933 apage = grab_cache_page(NODE_MAPPING(sbi), nid);
934 if (!apage)
935 return;
936
937 err = read_node_page(apage, READA);
938 if (err == 0)
939 f2fs_put_page(apage, 0);
940 else if (err == LOCKED_PAGE)
941 f2fs_put_page(apage, 1);
942}
943
944struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
945{
946 struct page *page;
947 int err;
948repeat:
949 page = grab_cache_page_write_begin(NODE_MAPPING(sbi),
950 nid, AOP_FLAG_NOFS);
951 if (!page)
952 return ERR_PTR(-ENOMEM);
953
954 err = read_node_page(page, READ_SYNC);
955 if (err < 0)
956 return ERR_PTR(err);
957 else if (err == LOCKED_PAGE)
958 goto got_it;
959
960 lock_page(page);
961 if (unlikely(!PageUptodate(page) || nid != nid_of_node(page))) {
962 f2fs_put_page(page, 1);
963 return ERR_PTR(-EIO);
964 }
965 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
966 f2fs_put_page(page, 1);
967 goto repeat;
968 }
969got_it:
970 mark_page_accessed(page);
971 return page;
972}
973
974/*
975 * Return a locked page for the desired node page.
976 * And, readahead MAX_RA_NODE number of node pages.
977 */
978struct page *get_node_page_ra(struct page *parent, int start)
979{
980 struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
981 struct blk_plug plug;
982 struct page *page;
983 int err, i, end;
984 nid_t nid;
985
986 /* First, try getting the desired direct node. */
987 nid = get_nid(parent, start, false);
988 if (!nid)
989 return ERR_PTR(-ENOENT);
990repeat:
991 page = grab_cache_page(NODE_MAPPING(sbi), nid);
992 if (!page)
993 return ERR_PTR(-ENOMEM);
994
995 err = read_node_page(page, READ_SYNC);
996 if (err < 0)
997 return ERR_PTR(err);
998 else if (err == LOCKED_PAGE)
999 goto page_hit;
1000
1001 blk_start_plug(&plug);
1002
1003 /* Then, try readahead for siblings of the desired node */
1004 end = start + MAX_RA_NODE;
1005 end = min(end, NIDS_PER_BLOCK);
1006 for (i = start + 1; i < end; i++) {
1007 nid = get_nid(parent, i, false);
1008 if (!nid)
1009 continue;
1010 ra_node_page(sbi, nid);
1011 }
1012
1013 blk_finish_plug(&plug);
1014
1015 lock_page(page);
1016 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1017 f2fs_put_page(page, 1);
1018 goto repeat;
1019 }
1020page_hit:
1021 if (unlikely(!PageUptodate(page))) {
1022 f2fs_put_page(page, 1);
1023 return ERR_PTR(-EIO);
1024 }
1025 mark_page_accessed(page);
1026 return page;
1027}
1028
1029void sync_inode_page(struct dnode_of_data *dn)
1030{
1031 if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1032 update_inode(dn->inode, dn->node_page);
1033 } else if (dn->inode_page) {
1034 if (!dn->inode_page_locked)
1035 lock_page(dn->inode_page);
1036 update_inode(dn->inode, dn->inode_page);
1037 if (!dn->inode_page_locked)
1038 unlock_page(dn->inode_page);
1039 } else {
1040 update_inode_page(dn->inode);
1041 }
1042}
1043
1044int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1045 struct writeback_control *wbc)
1046{
1047 pgoff_t index, end;
1048 struct pagevec pvec;
1049 int step = ino ? 2 : 0;
1050 int nwritten = 0, wrote = 0;
1051
1052 pagevec_init(&pvec, 0);
1053
1054next_step:
1055 index = 0;
1056 end = LONG_MAX;
1057
1058 while (index <= end) {
1059 int i, nr_pages;
1060 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1061 PAGECACHE_TAG_DIRTY,
1062 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1063 if (nr_pages == 0)
1064 break;
1065
1066 for (i = 0; i < nr_pages; i++) {
1067 struct page *page = pvec.pages[i];
1068
1069 /*
1070 * flushing sequence with step:
1071 * 0. indirect nodes
1072 * 1. dentry dnodes
1073 * 2. file dnodes
1074 */
1075 if (step == 0 && IS_DNODE(page))
1076 continue;
1077 if (step == 1 && (!IS_DNODE(page) ||
1078 is_cold_node(page)))
1079 continue;
1080 if (step == 2 && (!IS_DNODE(page) ||
1081 !is_cold_node(page)))
1082 continue;
1083
1084 /*
1085 * If an fsync mode,
1086 * we should not skip writing node pages.
1087 */
1088 if (ino && ino_of_node(page) == ino)
1089 lock_page(page);
1090 else if (!trylock_page(page))
1091 continue;
1092
1093 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1094continue_unlock:
1095 unlock_page(page);
1096 continue;
1097 }
1098 if (ino && ino_of_node(page) != ino)
1099 goto continue_unlock;
1100
1101 if (!PageDirty(page)) {
1102 /* someone wrote it for us */
1103 goto continue_unlock;
1104 }
1105
1106 if (!clear_page_dirty_for_io(page))
1107 goto continue_unlock;
1108
1109 /* called by fsync() */
1110 if (ino && IS_DNODE(page)) {
1111 int mark = !is_checkpointed_node(sbi, ino);
1112 set_fsync_mark(page, 1);
1113 if (IS_INODE(page))
1114 set_dentry_mark(page, mark);
1115 nwritten++;
1116 } else {
1117 set_fsync_mark(page, 0);
1118 set_dentry_mark(page, 0);
1119 }
1120 NODE_MAPPING(sbi)->a_ops->writepage(page, wbc);
1121 wrote++;
1122
1123 if (--wbc->nr_to_write == 0)
1124 break;
1125 }
1126 pagevec_release(&pvec);
1127 cond_resched();
1128
1129 if (wbc->nr_to_write == 0) {
1130 step = 2;
1131 break;
1132 }
1133 }
1134
1135 if (step < 2) {
1136 step++;
1137 goto next_step;
1138 }
1139
1140 if (wrote)
1141 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1142 return nwritten;
1143}
1144
1145int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1146{
1147 pgoff_t index = 0, end = LONG_MAX;
1148 struct pagevec pvec;
1149 int ret2 = 0, ret = 0;
1150
1151 pagevec_init(&pvec, 0);
1152
1153 while (index <= end) {
1154 int i, nr_pages;
1155 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1156 PAGECACHE_TAG_WRITEBACK,
1157 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1158 if (nr_pages == 0)
1159 break;
1160
1161 for (i = 0; i < nr_pages; i++) {
1162 struct page *page = pvec.pages[i];
1163
1164 /* until radix tree lookup accepts end_index */
1165 if (unlikely(page->index > end))
1166 continue;
1167
1168 if (ino && ino_of_node(page) == ino) {
1169 f2fs_wait_on_page_writeback(page, NODE);
1170 if (TestClearPageError(page))
1171 ret = -EIO;
1172 }
1173 }
1174 pagevec_release(&pvec);
1175 cond_resched();
1176 }
1177
1178 if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1179 ret2 = -ENOSPC;
1180 if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1181 ret2 = -EIO;
1182 if (!ret)
1183 ret = ret2;
1184 return ret;
1185}
1186
1187static int f2fs_write_node_page(struct page *page,
1188 struct writeback_control *wbc)
1189{
1190 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1191 nid_t nid;
1192 block_t new_addr;
1193 struct node_info ni;
1194 struct f2fs_io_info fio = {
1195 .type = NODE,
1196 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1197 };
1198
1199 if (unlikely(sbi->por_doing))
1200 goto redirty_out;
1201
1202 f2fs_wait_on_page_writeback(page, NODE);
1203
1204 /* get old block addr of this node page */
1205 nid = nid_of_node(page);
1206 f2fs_bug_on(page->index != nid);
1207
1208 get_node_info(sbi, nid, &ni);
1209
1210 /* This page is already truncated */
1211 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1212 dec_page_count(sbi, F2FS_DIRTY_NODES);
1213 unlock_page(page);
1214 return 0;
1215 }
1216
1217 if (wbc->for_reclaim)
1218 goto redirty_out;
1219
1220 mutex_lock(&sbi->node_write);
1221 set_page_writeback(page);
1222 write_node_page(sbi, page, &fio, nid, ni.blk_addr, &new_addr);
1223 set_node_addr(sbi, &ni, new_addr, is_fsync_dnode(page));
1224 dec_page_count(sbi, F2FS_DIRTY_NODES);
1225 mutex_unlock(&sbi->node_write);
1226 unlock_page(page);
1227 return 0;
1228
1229redirty_out:
1230 dec_page_count(sbi, F2FS_DIRTY_NODES);
1231 wbc->pages_skipped++;
1232 account_page_redirty(page);
1233 set_page_dirty(page);
1234 return AOP_WRITEPAGE_ACTIVATE;
1235}
1236
1237static int f2fs_write_node_pages(struct address_space *mapping,
1238 struct writeback_control *wbc)
1239{
1240 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1241 long diff;
1242
1243 /* balancing f2fs's metadata in background */
1244 f2fs_balance_fs_bg(sbi);
1245
1246 /* collect a number of dirty node pages and write together */
1247 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1248 goto skip_write;
1249
1250 diff = nr_pages_to_write(sbi, NODE, wbc);
1251 wbc->sync_mode = WB_SYNC_NONE;
1252 sync_node_pages(sbi, 0, wbc);
1253 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1254 return 0;
1255
1256skip_write:
1257 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1258 return 0;
1259}
1260
1261static int f2fs_set_node_page_dirty(struct page *page)
1262{
1263 struct address_space *mapping = page->mapping;
1264 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1265
1266 trace_f2fs_set_page_dirty(page, NODE);
1267
1268 SetPageUptodate(page);
1269 if (!PageDirty(page)) {
1270 __set_page_dirty_nobuffers(page);
1271 inc_page_count(sbi, F2FS_DIRTY_NODES);
1272 SetPagePrivate(page);
1273 return 1;
1274 }
1275 return 0;
1276}
1277
1278static void f2fs_invalidate_node_page(struct page *page, unsigned int offset,
1279 unsigned int length)
1280{
1281 struct inode *inode = page->mapping->host;
1282 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1283 if (PageDirty(page))
1284 dec_page_count(sbi, F2FS_DIRTY_NODES);
1285 ClearPagePrivate(page);
1286}
1287
1288static int f2fs_release_node_page(struct page *page, gfp_t wait)
1289{
1290 ClearPagePrivate(page);
1291 return 1;
1292}
1293
1294/*
1295 * Structure of the f2fs node operations
1296 */
1297const struct address_space_operations f2fs_node_aops = {
1298 .writepage = f2fs_write_node_page,
1299 .writepages = f2fs_write_node_pages,
1300 .set_page_dirty = f2fs_set_node_page_dirty,
1301 .invalidatepage = f2fs_invalidate_node_page,
1302 .releasepage = f2fs_release_node_page,
1303};
1304
1305static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1306 nid_t n)
1307{
1308 return radix_tree_lookup(&nm_i->free_nid_root, n);
1309}
1310
1311static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1312 struct free_nid *i)
1313{
1314 list_del(&i->list);
1315 radix_tree_delete(&nm_i->free_nid_root, i->nid);
1316}
1317
1318static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid, bool build)
1319{
1320 struct free_nid *i;
1321 struct nat_entry *ne;
1322 bool allocated = false;
1323
1324 if (!available_free_memory(nm_i, FREE_NIDS))
1325 return -1;
1326
1327 /* 0 nid should not be used */
1328 if (unlikely(nid == 0))
1329 return 0;
1330
1331 if (build) {
1332 /* do not add allocated nids */
1333 read_lock(&nm_i->nat_tree_lock);
1334 ne = __lookup_nat_cache(nm_i, nid);
1335 if (ne &&
1336 (!ne->checkpointed || nat_get_blkaddr(ne) != NULL_ADDR))
1337 allocated = true;
1338 read_unlock(&nm_i->nat_tree_lock);
1339 if (allocated)
1340 return 0;
1341 }
1342
1343 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1344 i->nid = nid;
1345 i->state = NID_NEW;
1346
1347 spin_lock(&nm_i->free_nid_list_lock);
1348 if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1349 spin_unlock(&nm_i->free_nid_list_lock);
1350 kmem_cache_free(free_nid_slab, i);
1351 return 0;
1352 }
1353 list_add_tail(&i->list, &nm_i->free_nid_list);
1354 nm_i->fcnt++;
1355 spin_unlock(&nm_i->free_nid_list_lock);
1356 return 1;
1357}
1358
1359static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1360{
1361 struct free_nid *i;
1362 bool need_free = false;
1363
1364 spin_lock(&nm_i->free_nid_list_lock);
1365 i = __lookup_free_nid_list(nm_i, nid);
1366 if (i && i->state == NID_NEW) {
1367 __del_from_free_nid_list(nm_i, i);
1368 nm_i->fcnt--;
1369 need_free = true;
1370 }
1371 spin_unlock(&nm_i->free_nid_list_lock);
1372
1373 if (need_free)
1374 kmem_cache_free(free_nid_slab, i);
1375}
1376
1377static void scan_nat_page(struct f2fs_nm_info *nm_i,
1378 struct page *nat_page, nid_t start_nid)
1379{
1380 struct f2fs_nat_block *nat_blk = page_address(nat_page);
1381 block_t blk_addr;
1382 int i;
1383
1384 i = start_nid % NAT_ENTRY_PER_BLOCK;
1385
1386 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1387
1388 if (unlikely(start_nid >= nm_i->max_nid))
1389 break;
1390
1391 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1392 f2fs_bug_on(blk_addr == NEW_ADDR);
1393 if (blk_addr == NULL_ADDR) {
1394 if (add_free_nid(nm_i, start_nid, true) < 0)
1395 break;
1396 }
1397 }
1398}
1399
1400static void build_free_nids(struct f2fs_sb_info *sbi)
1401{
1402 struct f2fs_nm_info *nm_i = NM_I(sbi);
1403 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1404 struct f2fs_summary_block *sum = curseg->sum_blk;
1405 int i = 0;
1406 nid_t nid = nm_i->next_scan_nid;
1407
1408 /* Enough entries */
1409 if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1410 return;
1411
1412 /* readahead nat pages to be scanned */
1413 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, META_NAT);
1414
1415 while (1) {
1416 struct page *page = get_current_nat_page(sbi, nid);
1417
1418 scan_nat_page(nm_i, page, nid);
1419 f2fs_put_page(page, 1);
1420
1421 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1422 if (unlikely(nid >= nm_i->max_nid))
1423 nid = 0;
1424
1425 if (i++ == FREE_NID_PAGES)
1426 break;
1427 }
1428
1429 /* go to the next free nat pages to find free nids abundantly */
1430 nm_i->next_scan_nid = nid;
1431
1432 /* find free nids from current sum_pages */
1433 mutex_lock(&curseg->curseg_mutex);
1434 for (i = 0; i < nats_in_cursum(sum); i++) {
1435 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1436 nid = le32_to_cpu(nid_in_journal(sum, i));
1437 if (addr == NULL_ADDR)
1438 add_free_nid(nm_i, nid, true);
1439 else
1440 remove_free_nid(nm_i, nid);
1441 }
1442 mutex_unlock(&curseg->curseg_mutex);
1443}
1444
1445/*
1446 * If this function returns success, caller can obtain a new nid
1447 * from second parameter of this function.
1448 * The returned nid could be used ino as well as nid when inode is created.
1449 */
1450bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1451{
1452 struct f2fs_nm_info *nm_i = NM_I(sbi);
1453 struct free_nid *i = NULL;
1454retry:
1455 if (unlikely(sbi->total_valid_node_count + 1 >= nm_i->max_nid))
1456 return false;
1457
1458 spin_lock(&nm_i->free_nid_list_lock);
1459
1460 /* We should not use stale free nids created by build_free_nids */
1461 if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1462 f2fs_bug_on(list_empty(&nm_i->free_nid_list));
1463 list_for_each_entry(i, &nm_i->free_nid_list, list)
1464 if (i->state == NID_NEW)
1465 break;
1466
1467 f2fs_bug_on(i->state != NID_NEW);
1468 *nid = i->nid;
1469 i->state = NID_ALLOC;
1470 nm_i->fcnt--;
1471 spin_unlock(&nm_i->free_nid_list_lock);
1472 return true;
1473 }
1474 spin_unlock(&nm_i->free_nid_list_lock);
1475
1476 /* Let's scan nat pages and its caches to get free nids */
1477 mutex_lock(&nm_i->build_lock);
1478 build_free_nids(sbi);
1479 mutex_unlock(&nm_i->build_lock);
1480 goto retry;
1481}
1482
1483/*
1484 * alloc_nid() should be called prior to this function.
1485 */
1486void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1487{
1488 struct f2fs_nm_info *nm_i = NM_I(sbi);
1489 struct free_nid *i;
1490
1491 spin_lock(&nm_i->free_nid_list_lock);
1492 i = __lookup_free_nid_list(nm_i, nid);
1493 f2fs_bug_on(!i || i->state != NID_ALLOC);
1494 __del_from_free_nid_list(nm_i, i);
1495 spin_unlock(&nm_i->free_nid_list_lock);
1496
1497 kmem_cache_free(free_nid_slab, i);
1498}
1499
1500/*
1501 * alloc_nid() should be called prior to this function.
1502 */
1503void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1504{
1505 struct f2fs_nm_info *nm_i = NM_I(sbi);
1506 struct free_nid *i;
1507 bool need_free = false;
1508
1509 if (!nid)
1510 return;
1511
1512 spin_lock(&nm_i->free_nid_list_lock);
1513 i = __lookup_free_nid_list(nm_i, nid);
1514 f2fs_bug_on(!i || i->state != NID_ALLOC);
1515 if (!available_free_memory(nm_i, FREE_NIDS)) {
1516 __del_from_free_nid_list(nm_i, i);
1517 need_free = true;
1518 } else {
1519 i->state = NID_NEW;
1520 nm_i->fcnt++;
1521 }
1522 spin_unlock(&nm_i->free_nid_list_lock);
1523
1524 if (need_free)
1525 kmem_cache_free(free_nid_slab, i);
1526}
1527
1528void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
1529 struct f2fs_summary *sum, struct node_info *ni,
1530 block_t new_blkaddr)
1531{
1532 rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
1533 set_node_addr(sbi, ni, new_blkaddr, false);
1534 clear_node_page_dirty(page);
1535}
1536
1537void recover_inline_xattr(struct inode *inode, struct page *page)
1538{
1539 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1540 void *src_addr, *dst_addr;
1541 size_t inline_size;
1542 struct page *ipage;
1543 struct f2fs_inode *ri;
1544
1545 if (!f2fs_has_inline_xattr(inode))
1546 return;
1547
1548 if (!IS_INODE(page))
1549 return;
1550
1551 ri = F2FS_INODE(page);
1552 if (!(ri->i_inline & F2FS_INLINE_XATTR))
1553 return;
1554
1555 ipage = get_node_page(sbi, inode->i_ino);
1556 f2fs_bug_on(IS_ERR(ipage));
1557
1558 dst_addr = inline_xattr_addr(ipage);
1559 src_addr = inline_xattr_addr(page);
1560 inline_size = inline_xattr_size(inode);
1561
1562 memcpy(dst_addr, src_addr, inline_size);
1563
1564 update_inode(inode, ipage);
1565 f2fs_put_page(ipage, 1);
1566}
1567
1568bool recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1569{
1570 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1571 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1572 nid_t new_xnid = nid_of_node(page);
1573 struct node_info ni;
1574
1575 recover_inline_xattr(inode, page);
1576
1577 if (!f2fs_has_xattr_block(ofs_of_node(page)))
1578 return false;
1579
1580 /* 1: invalidate the previous xattr nid */
1581 if (!prev_xnid)
1582 goto recover_xnid;
1583
1584 /* Deallocate node address */
1585 get_node_info(sbi, prev_xnid, &ni);
1586 f2fs_bug_on(ni.blk_addr == NULL_ADDR);
1587 invalidate_blocks(sbi, ni.blk_addr);
1588 dec_valid_node_count(sbi, inode);
1589 set_node_addr(sbi, &ni, NULL_ADDR, false);
1590
1591recover_xnid:
1592 /* 2: allocate new xattr nid */
1593 if (unlikely(!inc_valid_node_count(sbi, inode)))
1594 f2fs_bug_on(1);
1595
1596 remove_free_nid(NM_I(sbi), new_xnid);
1597 get_node_info(sbi, new_xnid, &ni);
1598 ni.ino = inode->i_ino;
1599 set_node_addr(sbi, &ni, NEW_ADDR, false);
1600 F2FS_I(inode)->i_xattr_nid = new_xnid;
1601
1602 /* 3: update xattr blkaddr */
1603 refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
1604 set_node_addr(sbi, &ni, blkaddr, false);
1605
1606 update_inode_page(inode);
1607 return true;
1608}
1609
1610int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1611{
1612 struct f2fs_inode *src, *dst;
1613 nid_t ino = ino_of_node(page);
1614 struct node_info old_ni, new_ni;
1615 struct page *ipage;
1616
1617 ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
1618 if (!ipage)
1619 return -ENOMEM;
1620
1621 /* Should not use this inode from free nid list */
1622 remove_free_nid(NM_I(sbi), ino);
1623
1624 get_node_info(sbi, ino, &old_ni);
1625 SetPageUptodate(ipage);
1626 fill_node_footer(ipage, ino, ino, 0, true);
1627
1628 src = F2FS_INODE(page);
1629 dst = F2FS_INODE(ipage);
1630
1631 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
1632 dst->i_size = 0;
1633 dst->i_blocks = cpu_to_le64(1);
1634 dst->i_links = cpu_to_le32(1);
1635 dst->i_xattr_nid = 0;
1636
1637 new_ni = old_ni;
1638 new_ni.ino = ino;
1639
1640 if (unlikely(!inc_valid_node_count(sbi, NULL)))
1641 WARN_ON(1);
1642 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1643 inc_valid_inode_count(sbi);
1644 f2fs_put_page(ipage, 1);
1645 return 0;
1646}
1647
1648/*
1649 * ra_sum_pages() merge contiguous pages into one bio and submit.
1650 * these pre-readed pages are linked in pages list.
1651 */
1652static int ra_sum_pages(struct f2fs_sb_info *sbi, struct list_head *pages,
1653 int start, int nrpages)
1654{
1655 struct page *page;
1656 int page_idx = start;
1657 struct f2fs_io_info fio = {
1658 .type = META,
1659 .rw = READ_SYNC | REQ_META | REQ_PRIO
1660 };
1661
1662 for (; page_idx < start + nrpages; page_idx++) {
1663 /* alloc temporal page for read node summary info*/
1664 page = alloc_page(GFP_F2FS_ZERO);
1665 if (!page)
1666 break;
1667
1668 lock_page(page);
1669 page->index = page_idx;
1670 list_add_tail(&page->lru, pages);
1671 }
1672
1673 list_for_each_entry(page, pages, lru)
1674 f2fs_submit_page_mbio(sbi, page, page->index, &fio);
1675
1676 f2fs_submit_merged_bio(sbi, META, READ);
1677
1678 return page_idx - start;
1679}
1680
1681int restore_node_summary(struct f2fs_sb_info *sbi,
1682 unsigned int segno, struct f2fs_summary_block *sum)
1683{
1684 struct f2fs_node *rn;
1685 struct f2fs_summary *sum_entry;
1686 struct page *page, *tmp;
1687 block_t addr;
1688 int bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
1689 int i, last_offset, nrpages, err = 0;
1690 LIST_HEAD(page_list);
1691
1692 /* scan the node segment */
1693 last_offset = sbi->blocks_per_seg;
1694 addr = START_BLOCK(sbi, segno);
1695 sum_entry = &sum->entries[0];
1696
1697 for (i = 0; !err && i < last_offset; i += nrpages, addr += nrpages) {
1698 nrpages = min(last_offset - i, bio_blocks);
1699
1700 /* read ahead node pages */
1701 nrpages = ra_sum_pages(sbi, &page_list, addr, nrpages);
1702 if (!nrpages)
1703 return -ENOMEM;
1704
1705 list_for_each_entry_safe(page, tmp, &page_list, lru) {
1706 if (err)
1707 goto skip;
1708
1709 lock_page(page);
1710 if (unlikely(!PageUptodate(page))) {
1711 err = -EIO;
1712 } else {
1713 rn = F2FS_NODE(page);
1714 sum_entry->nid = rn->footer.nid;
1715 sum_entry->version = 0;
1716 sum_entry->ofs_in_node = 0;
1717 sum_entry++;
1718 }
1719 unlock_page(page);
1720skip:
1721 list_del(&page->lru);
1722 __free_pages(page, 0);
1723 }
1724 }
1725 return err;
1726}
1727
1728static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
1729{
1730 struct f2fs_nm_info *nm_i = NM_I(sbi);
1731 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1732 struct f2fs_summary_block *sum = curseg->sum_blk;
1733 int i;
1734
1735 mutex_lock(&curseg->curseg_mutex);
1736
1737 if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
1738 mutex_unlock(&curseg->curseg_mutex);
1739 return false;
1740 }
1741
1742 for (i = 0; i < nats_in_cursum(sum); i++) {
1743 struct nat_entry *ne;
1744 struct f2fs_nat_entry raw_ne;
1745 nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1746
1747 raw_ne = nat_in_journal(sum, i);
1748retry:
1749 write_lock(&nm_i->nat_tree_lock);
1750 ne = __lookup_nat_cache(nm_i, nid);
1751 if (ne) {
1752 __set_nat_cache_dirty(nm_i, ne);
1753 write_unlock(&nm_i->nat_tree_lock);
1754 continue;
1755 }
1756 ne = grab_nat_entry(nm_i, nid);
1757 if (!ne) {
1758 write_unlock(&nm_i->nat_tree_lock);
1759 goto retry;
1760 }
1761 nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr));
1762 nat_set_ino(ne, le32_to_cpu(raw_ne.ino));
1763 nat_set_version(ne, raw_ne.version);
1764 __set_nat_cache_dirty(nm_i, ne);
1765 write_unlock(&nm_i->nat_tree_lock);
1766 }
1767 update_nats_in_cursum(sum, -i);
1768 mutex_unlock(&curseg->curseg_mutex);
1769 return true;
1770}
1771
1772/*
1773 * This function is called during the checkpointing process.
1774 */
1775void flush_nat_entries(struct f2fs_sb_info *sbi)
1776{
1777 struct f2fs_nm_info *nm_i = NM_I(sbi);
1778 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1779 struct f2fs_summary_block *sum = curseg->sum_blk;
1780 struct nat_entry *ne, *cur;
1781 struct page *page = NULL;
1782 struct f2fs_nat_block *nat_blk = NULL;
1783 nid_t start_nid = 0, end_nid = 0;
1784 bool flushed;
1785
1786 flushed = flush_nats_in_journal(sbi);
1787
1788 if (!flushed)
1789 mutex_lock(&curseg->curseg_mutex);
1790
1791 /* 1) flush dirty nat caches */
1792 list_for_each_entry_safe(ne, cur, &nm_i->dirty_nat_entries, list) {
1793 nid_t nid;
1794 struct f2fs_nat_entry raw_ne;
1795 int offset = -1;
1796 block_t new_blkaddr;
1797
1798 if (nat_get_blkaddr(ne) == NEW_ADDR)
1799 continue;
1800
1801 nid = nat_get_nid(ne);
1802
1803 if (flushed)
1804 goto to_nat_page;
1805
1806 /* if there is room for nat enries in curseg->sumpage */
1807 offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
1808 if (offset >= 0) {
1809 raw_ne = nat_in_journal(sum, offset);
1810 goto flush_now;
1811 }
1812to_nat_page:
1813 if (!page || (start_nid > nid || nid > end_nid)) {
1814 if (page) {
1815 f2fs_put_page(page, 1);
1816 page = NULL;
1817 }
1818 start_nid = START_NID(nid);
1819 end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
1820
1821 /*
1822 * get nat block with dirty flag, increased reference
1823 * count, mapped and lock
1824 */
1825 page = get_next_nat_page(sbi, start_nid);
1826 nat_blk = page_address(page);
1827 }
1828
1829 f2fs_bug_on(!nat_blk);
1830 raw_ne = nat_blk->entries[nid - start_nid];
1831flush_now:
1832 new_blkaddr = nat_get_blkaddr(ne);
1833
1834 raw_ne.ino = cpu_to_le32(nat_get_ino(ne));
1835 raw_ne.block_addr = cpu_to_le32(new_blkaddr);
1836 raw_ne.version = nat_get_version(ne);
1837
1838 if (offset < 0) {
1839 nat_blk->entries[nid - start_nid] = raw_ne;
1840 } else {
1841 nat_in_journal(sum, offset) = raw_ne;
1842 nid_in_journal(sum, offset) = cpu_to_le32(nid);
1843 }
1844
1845 if (nat_get_blkaddr(ne) == NULL_ADDR &&
1846 add_free_nid(NM_I(sbi), nid, false) <= 0) {
1847 write_lock(&nm_i->nat_tree_lock);
1848 __del_from_nat_cache(nm_i, ne);
1849 write_unlock(&nm_i->nat_tree_lock);
1850 } else {
1851 write_lock(&nm_i->nat_tree_lock);
1852 __clear_nat_cache_dirty(nm_i, ne);
1853 write_unlock(&nm_i->nat_tree_lock);
1854 }
1855 }
1856 if (!flushed)
1857 mutex_unlock(&curseg->curseg_mutex);
1858 f2fs_put_page(page, 1);
1859}
1860
1861static int init_node_manager(struct f2fs_sb_info *sbi)
1862{
1863 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1864 struct f2fs_nm_info *nm_i = NM_I(sbi);
1865 unsigned char *version_bitmap;
1866 unsigned int nat_segs, nat_blocks;
1867
1868 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1869
1870 /* segment_count_nat includes pair segment so divide to 2. */
1871 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1872 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1873
1874 /* not used nids: 0, node, meta, (and root counted as valid node) */
1875 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks - 3;
1876 nm_i->fcnt = 0;
1877 nm_i->nat_cnt = 0;
1878 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
1879
1880 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
1881 INIT_LIST_HEAD(&nm_i->free_nid_list);
1882 INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
1883 INIT_LIST_HEAD(&nm_i->nat_entries);
1884 INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
1885
1886 mutex_init(&nm_i->build_lock);
1887 spin_lock_init(&nm_i->free_nid_list_lock);
1888 rwlock_init(&nm_i->nat_tree_lock);
1889
1890 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1891 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1892 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1893 if (!version_bitmap)
1894 return -EFAULT;
1895
1896 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
1897 GFP_KERNEL);
1898 if (!nm_i->nat_bitmap)
1899 return -ENOMEM;
1900 return 0;
1901}
1902
1903int build_node_manager(struct f2fs_sb_info *sbi)
1904{
1905 int err;
1906
1907 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
1908 if (!sbi->nm_info)
1909 return -ENOMEM;
1910
1911 err = init_node_manager(sbi);
1912 if (err)
1913 return err;
1914
1915 build_free_nids(sbi);
1916 return 0;
1917}
1918
1919void destroy_node_manager(struct f2fs_sb_info *sbi)
1920{
1921 struct f2fs_nm_info *nm_i = NM_I(sbi);
1922 struct free_nid *i, *next_i;
1923 struct nat_entry *natvec[NATVEC_SIZE];
1924 nid_t nid = 0;
1925 unsigned int found;
1926
1927 if (!nm_i)
1928 return;
1929
1930 /* destroy free nid list */
1931 spin_lock(&nm_i->free_nid_list_lock);
1932 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
1933 f2fs_bug_on(i->state == NID_ALLOC);
1934 __del_from_free_nid_list(nm_i, i);
1935 nm_i->fcnt--;
1936 spin_unlock(&nm_i->free_nid_list_lock);
1937 kmem_cache_free(free_nid_slab, i);
1938 spin_lock(&nm_i->free_nid_list_lock);
1939 }
1940 f2fs_bug_on(nm_i->fcnt);
1941 spin_unlock(&nm_i->free_nid_list_lock);
1942
1943 /* destroy nat cache */
1944 write_lock(&nm_i->nat_tree_lock);
1945 while ((found = __gang_lookup_nat_cache(nm_i,
1946 nid, NATVEC_SIZE, natvec))) {
1947 unsigned idx;
1948 nid = nat_get_nid(natvec[found - 1]) + 1;
1949 for (idx = 0; idx < found; idx++)
1950 __del_from_nat_cache(nm_i, natvec[idx]);
1951 }
1952 f2fs_bug_on(nm_i->nat_cnt);
1953 write_unlock(&nm_i->nat_tree_lock);
1954
1955 kfree(nm_i->nat_bitmap);
1956 sbi->nm_info = NULL;
1957 kfree(nm_i);
1958}
1959
1960int __init create_node_manager_caches(void)
1961{
1962 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
1963 sizeof(struct nat_entry));
1964 if (!nat_entry_slab)
1965 return -ENOMEM;
1966
1967 free_nid_slab = f2fs_kmem_cache_create("free_nid",
1968 sizeof(struct free_nid));
1969 if (!free_nid_slab) {
1970 kmem_cache_destroy(nat_entry_slab);
1971 return -ENOMEM;
1972 }
1973 return 0;
1974}
1975
1976void destroy_node_manager_caches(void)
1977{
1978 kmem_cache_destroy(free_nid_slab);
1979 kmem_cache_destroy(nat_entry_slab);
1980}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/node.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8#include <linux/fs.h>
9#include <linux/f2fs_fs.h>
10#include <linux/mpage.h>
11#include <linux/sched/mm.h>
12#include <linux/blkdev.h>
13#include <linux/pagevec.h>
14#include <linux/swap.h>
15
16#include "f2fs.h"
17#include "node.h"
18#include "segment.h"
19#include "xattr.h"
20#include "iostat.h"
21#include <trace/events/f2fs.h>
22
23#define on_f2fs_build_free_nids(nm_i) mutex_is_locked(&(nm_i)->build_lock)
24
25static struct kmem_cache *nat_entry_slab;
26static struct kmem_cache *free_nid_slab;
27static struct kmem_cache *nat_entry_set_slab;
28static struct kmem_cache *fsync_node_entry_slab;
29
30/*
31 * Check whether the given nid is within node id range.
32 */
33int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34{
35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 set_sbi_flag(sbi, SBI_NEED_FSCK);
37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 __func__, nid);
39 f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE);
40 return -EFSCORRUPTED;
41 }
42 return 0;
43}
44
45bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
46{
47 struct f2fs_nm_info *nm_i = NM_I(sbi);
48 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
49 struct sysinfo val;
50 unsigned long avail_ram;
51 unsigned long mem_size = 0;
52 bool res = false;
53
54 if (!nm_i)
55 return true;
56
57 si_meminfo(&val);
58
59 /* only uses low memory */
60 avail_ram = val.totalram - val.totalhigh;
61
62 /*
63 * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively
64 */
65 if (type == FREE_NIDS) {
66 mem_size = (nm_i->nid_cnt[FREE_NID] *
67 sizeof(struct free_nid)) >> PAGE_SHIFT;
68 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
69 } else if (type == NAT_ENTRIES) {
70 mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
71 sizeof(struct nat_entry)) >> PAGE_SHIFT;
72 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
73 if (excess_cached_nats(sbi))
74 res = false;
75 } else if (type == DIRTY_DENTS) {
76 if (sbi->sb->s_bdi->wb.dirty_exceeded)
77 return false;
78 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
79 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
80 } else if (type == INO_ENTRIES) {
81 int i;
82
83 for (i = 0; i < MAX_INO_ENTRY; i++)
84 mem_size += sbi->im[i].ino_num *
85 sizeof(struct ino_entry);
86 mem_size >>= PAGE_SHIFT;
87 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
88 } else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) {
89 enum extent_type etype = type == READ_EXTENT_CACHE ?
90 EX_READ : EX_BLOCK_AGE;
91 struct extent_tree_info *eti = &sbi->extent_tree[etype];
92
93 mem_size = (atomic_read(&eti->total_ext_tree) *
94 sizeof(struct extent_tree) +
95 atomic_read(&eti->total_ext_node) *
96 sizeof(struct extent_node)) >> PAGE_SHIFT;
97 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
98 } else if (type == DISCARD_CACHE) {
99 mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
100 sizeof(struct discard_cmd)) >> PAGE_SHIFT;
101 res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
102 } else if (type == COMPRESS_PAGE) {
103#ifdef CONFIG_F2FS_FS_COMPRESSION
104 unsigned long free_ram = val.freeram;
105
106 /*
107 * free memory is lower than watermark or cached page count
108 * exceed threshold, deny caching compress page.
109 */
110 res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
111 (COMPRESS_MAPPING(sbi)->nrpages <
112 free_ram * sbi->compress_percent / 100);
113#else
114 res = false;
115#endif
116 } else {
117 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
118 return true;
119 }
120 return res;
121}
122
123static void clear_node_page_dirty(struct page *page)
124{
125 if (PageDirty(page)) {
126 f2fs_clear_page_cache_dirty_tag(page_folio(page));
127 clear_page_dirty_for_io(page);
128 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
129 }
130 ClearPageUptodate(page);
131}
132
133static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
134{
135 return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
136}
137
138static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
139{
140 struct page *src_page;
141 struct page *dst_page;
142 pgoff_t dst_off;
143 void *src_addr;
144 void *dst_addr;
145 struct f2fs_nm_info *nm_i = NM_I(sbi);
146
147 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
148
149 /* get current nat block page with lock */
150 src_page = get_current_nat_page(sbi, nid);
151 if (IS_ERR(src_page))
152 return src_page;
153 dst_page = f2fs_grab_meta_page(sbi, dst_off);
154 f2fs_bug_on(sbi, PageDirty(src_page));
155
156 src_addr = page_address(src_page);
157 dst_addr = page_address(dst_page);
158 memcpy(dst_addr, src_addr, PAGE_SIZE);
159 set_page_dirty(dst_page);
160 f2fs_put_page(src_page, 1);
161
162 set_to_next_nat(nm_i, nid);
163
164 return dst_page;
165}
166
167static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
168 nid_t nid, bool no_fail)
169{
170 struct nat_entry *new;
171
172 new = f2fs_kmem_cache_alloc(nat_entry_slab,
173 GFP_F2FS_ZERO, no_fail, sbi);
174 if (new) {
175 nat_set_nid(new, nid);
176 nat_reset_flag(new);
177 }
178 return new;
179}
180
181static void __free_nat_entry(struct nat_entry *e)
182{
183 kmem_cache_free(nat_entry_slab, e);
184}
185
186/* must be locked by nat_tree_lock */
187static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
188 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
189{
190 if (no_fail)
191 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
192 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
193 return NULL;
194
195 if (raw_ne)
196 node_info_from_raw_nat(&ne->ni, raw_ne);
197
198 spin_lock(&nm_i->nat_list_lock);
199 list_add_tail(&ne->list, &nm_i->nat_entries);
200 spin_unlock(&nm_i->nat_list_lock);
201
202 nm_i->nat_cnt[TOTAL_NAT]++;
203 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
204 return ne;
205}
206
207static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
208{
209 struct nat_entry *ne;
210
211 ne = radix_tree_lookup(&nm_i->nat_root, n);
212
213 /* for recent accessed nat entry, move it to tail of lru list */
214 if (ne && !get_nat_flag(ne, IS_DIRTY)) {
215 spin_lock(&nm_i->nat_list_lock);
216 if (!list_empty(&ne->list))
217 list_move_tail(&ne->list, &nm_i->nat_entries);
218 spin_unlock(&nm_i->nat_list_lock);
219 }
220
221 return ne;
222}
223
224static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
225 nid_t start, unsigned int nr, struct nat_entry **ep)
226{
227 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
228}
229
230static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
231{
232 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
233 nm_i->nat_cnt[TOTAL_NAT]--;
234 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
235 __free_nat_entry(e);
236}
237
238static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
239 struct nat_entry *ne)
240{
241 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
242 struct nat_entry_set *head;
243
244 head = radix_tree_lookup(&nm_i->nat_set_root, set);
245 if (!head) {
246 head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
247 GFP_NOFS, true, NULL);
248
249 INIT_LIST_HEAD(&head->entry_list);
250 INIT_LIST_HEAD(&head->set_list);
251 head->set = set;
252 head->entry_cnt = 0;
253 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
254 }
255 return head;
256}
257
258static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
259 struct nat_entry *ne)
260{
261 struct nat_entry_set *head;
262 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
263
264 if (!new_ne)
265 head = __grab_nat_entry_set(nm_i, ne);
266
267 /*
268 * update entry_cnt in below condition:
269 * 1. update NEW_ADDR to valid block address;
270 * 2. update old block address to new one;
271 */
272 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
273 !get_nat_flag(ne, IS_DIRTY)))
274 head->entry_cnt++;
275
276 set_nat_flag(ne, IS_PREALLOC, new_ne);
277
278 if (get_nat_flag(ne, IS_DIRTY))
279 goto refresh_list;
280
281 nm_i->nat_cnt[DIRTY_NAT]++;
282 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
283 set_nat_flag(ne, IS_DIRTY, true);
284refresh_list:
285 spin_lock(&nm_i->nat_list_lock);
286 if (new_ne)
287 list_del_init(&ne->list);
288 else
289 list_move_tail(&ne->list, &head->entry_list);
290 spin_unlock(&nm_i->nat_list_lock);
291}
292
293static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
294 struct nat_entry_set *set, struct nat_entry *ne)
295{
296 spin_lock(&nm_i->nat_list_lock);
297 list_move_tail(&ne->list, &nm_i->nat_entries);
298 spin_unlock(&nm_i->nat_list_lock);
299
300 set_nat_flag(ne, IS_DIRTY, false);
301 set->entry_cnt--;
302 nm_i->nat_cnt[DIRTY_NAT]--;
303 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
304}
305
306static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
307 nid_t start, unsigned int nr, struct nat_entry_set **ep)
308{
309 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
310 start, nr);
311}
312
313bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
314{
315 return NODE_MAPPING(sbi) == page->mapping &&
316 IS_DNODE(page) && is_cold_node(page);
317}
318
319void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
320{
321 spin_lock_init(&sbi->fsync_node_lock);
322 INIT_LIST_HEAD(&sbi->fsync_node_list);
323 sbi->fsync_seg_id = 0;
324 sbi->fsync_node_num = 0;
325}
326
327static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
328 struct page *page)
329{
330 struct fsync_node_entry *fn;
331 unsigned long flags;
332 unsigned int seq_id;
333
334 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
335 GFP_NOFS, true, NULL);
336
337 get_page(page);
338 fn->page = page;
339 INIT_LIST_HEAD(&fn->list);
340
341 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
342 list_add_tail(&fn->list, &sbi->fsync_node_list);
343 fn->seq_id = sbi->fsync_seg_id++;
344 seq_id = fn->seq_id;
345 sbi->fsync_node_num++;
346 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
347
348 return seq_id;
349}
350
351void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
352{
353 struct fsync_node_entry *fn;
354 unsigned long flags;
355
356 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
357 list_for_each_entry(fn, &sbi->fsync_node_list, list) {
358 if (fn->page == page) {
359 list_del(&fn->list);
360 sbi->fsync_node_num--;
361 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
362 kmem_cache_free(fsync_node_entry_slab, fn);
363 put_page(page);
364 return;
365 }
366 }
367 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
368 f2fs_bug_on(sbi, 1);
369}
370
371void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
372{
373 unsigned long flags;
374
375 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
376 sbi->fsync_seg_id = 0;
377 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
378}
379
380int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
381{
382 struct f2fs_nm_info *nm_i = NM_I(sbi);
383 struct nat_entry *e;
384 bool need = false;
385
386 f2fs_down_read(&nm_i->nat_tree_lock);
387 e = __lookup_nat_cache(nm_i, nid);
388 if (e) {
389 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
390 !get_nat_flag(e, HAS_FSYNCED_INODE))
391 need = true;
392 }
393 f2fs_up_read(&nm_i->nat_tree_lock);
394 return need;
395}
396
397bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
398{
399 struct f2fs_nm_info *nm_i = NM_I(sbi);
400 struct nat_entry *e;
401 bool is_cp = true;
402
403 f2fs_down_read(&nm_i->nat_tree_lock);
404 e = __lookup_nat_cache(nm_i, nid);
405 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
406 is_cp = false;
407 f2fs_up_read(&nm_i->nat_tree_lock);
408 return is_cp;
409}
410
411bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
412{
413 struct f2fs_nm_info *nm_i = NM_I(sbi);
414 struct nat_entry *e;
415 bool need_update = true;
416
417 f2fs_down_read(&nm_i->nat_tree_lock);
418 e = __lookup_nat_cache(nm_i, ino);
419 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
420 (get_nat_flag(e, IS_CHECKPOINTED) ||
421 get_nat_flag(e, HAS_FSYNCED_INODE)))
422 need_update = false;
423 f2fs_up_read(&nm_i->nat_tree_lock);
424 return need_update;
425}
426
427/* must be locked by nat_tree_lock */
428static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
429 struct f2fs_nat_entry *ne)
430{
431 struct f2fs_nm_info *nm_i = NM_I(sbi);
432 struct nat_entry *new, *e;
433
434 /* Let's mitigate lock contention of nat_tree_lock during checkpoint */
435 if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
436 return;
437
438 new = __alloc_nat_entry(sbi, nid, false);
439 if (!new)
440 return;
441
442 f2fs_down_write(&nm_i->nat_tree_lock);
443 e = __lookup_nat_cache(nm_i, nid);
444 if (!e)
445 e = __init_nat_entry(nm_i, new, ne, false);
446 else
447 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
448 nat_get_blkaddr(e) !=
449 le32_to_cpu(ne->block_addr) ||
450 nat_get_version(e) != ne->version);
451 f2fs_up_write(&nm_i->nat_tree_lock);
452 if (e != new)
453 __free_nat_entry(new);
454}
455
456static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
457 block_t new_blkaddr, bool fsync_done)
458{
459 struct f2fs_nm_info *nm_i = NM_I(sbi);
460 struct nat_entry *e;
461 struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
462
463 f2fs_down_write(&nm_i->nat_tree_lock);
464 e = __lookup_nat_cache(nm_i, ni->nid);
465 if (!e) {
466 e = __init_nat_entry(nm_i, new, NULL, true);
467 copy_node_info(&e->ni, ni);
468 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
469 } else if (new_blkaddr == NEW_ADDR) {
470 /*
471 * when nid is reallocated,
472 * previous nat entry can be remained in nat cache.
473 * So, reinitialize it with new information.
474 */
475 copy_node_info(&e->ni, ni);
476 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
477 }
478 /* let's free early to reduce memory consumption */
479 if (e != new)
480 __free_nat_entry(new);
481
482 /* sanity check */
483 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
484 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
485 new_blkaddr == NULL_ADDR);
486 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
487 new_blkaddr == NEW_ADDR);
488 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
489 new_blkaddr == NEW_ADDR);
490
491 /* increment version no as node is removed */
492 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
493 unsigned char version = nat_get_version(e);
494
495 nat_set_version(e, inc_node_version(version));
496 }
497
498 /* change address */
499 nat_set_blkaddr(e, new_blkaddr);
500 if (!__is_valid_data_blkaddr(new_blkaddr))
501 set_nat_flag(e, IS_CHECKPOINTED, false);
502 __set_nat_cache_dirty(nm_i, e);
503
504 /* update fsync_mark if its inode nat entry is still alive */
505 if (ni->nid != ni->ino)
506 e = __lookup_nat_cache(nm_i, ni->ino);
507 if (e) {
508 if (fsync_done && ni->nid == ni->ino)
509 set_nat_flag(e, HAS_FSYNCED_INODE, true);
510 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
511 }
512 f2fs_up_write(&nm_i->nat_tree_lock);
513}
514
515int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
516{
517 struct f2fs_nm_info *nm_i = NM_I(sbi);
518 int nr = nr_shrink;
519
520 if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
521 return 0;
522
523 spin_lock(&nm_i->nat_list_lock);
524 while (nr_shrink) {
525 struct nat_entry *ne;
526
527 if (list_empty(&nm_i->nat_entries))
528 break;
529
530 ne = list_first_entry(&nm_i->nat_entries,
531 struct nat_entry, list);
532 list_del(&ne->list);
533 spin_unlock(&nm_i->nat_list_lock);
534
535 __del_from_nat_cache(nm_i, ne);
536 nr_shrink--;
537
538 spin_lock(&nm_i->nat_list_lock);
539 }
540 spin_unlock(&nm_i->nat_list_lock);
541
542 f2fs_up_write(&nm_i->nat_tree_lock);
543 return nr - nr_shrink;
544}
545
546int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
547 struct node_info *ni, bool checkpoint_context)
548{
549 struct f2fs_nm_info *nm_i = NM_I(sbi);
550 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
551 struct f2fs_journal *journal = curseg->journal;
552 nid_t start_nid = START_NID(nid);
553 struct f2fs_nat_block *nat_blk;
554 struct page *page = NULL;
555 struct f2fs_nat_entry ne;
556 struct nat_entry *e;
557 pgoff_t index;
558 block_t blkaddr;
559 int i;
560
561 ni->nid = nid;
562retry:
563 /* Check nat cache */
564 f2fs_down_read(&nm_i->nat_tree_lock);
565 e = __lookup_nat_cache(nm_i, nid);
566 if (e) {
567 ni->ino = nat_get_ino(e);
568 ni->blk_addr = nat_get_blkaddr(e);
569 ni->version = nat_get_version(e);
570 f2fs_up_read(&nm_i->nat_tree_lock);
571 return 0;
572 }
573
574 /*
575 * Check current segment summary by trying to grab journal_rwsem first.
576 * This sem is on the critical path on the checkpoint requiring the above
577 * nat_tree_lock. Therefore, we should retry, if we failed to grab here
578 * while not bothering checkpoint.
579 */
580 if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
581 down_read(&curseg->journal_rwsem);
582 } else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
583 !down_read_trylock(&curseg->journal_rwsem)) {
584 f2fs_up_read(&nm_i->nat_tree_lock);
585 goto retry;
586 }
587
588 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
589 if (i >= 0) {
590 ne = nat_in_journal(journal, i);
591 node_info_from_raw_nat(ni, &ne);
592 }
593 up_read(&curseg->journal_rwsem);
594 if (i >= 0) {
595 f2fs_up_read(&nm_i->nat_tree_lock);
596 goto cache;
597 }
598
599 /* Fill node_info from nat page */
600 index = current_nat_addr(sbi, nid);
601 f2fs_up_read(&nm_i->nat_tree_lock);
602
603 page = f2fs_get_meta_page(sbi, index);
604 if (IS_ERR(page))
605 return PTR_ERR(page);
606
607 nat_blk = (struct f2fs_nat_block *)page_address(page);
608 ne = nat_blk->entries[nid - start_nid];
609 node_info_from_raw_nat(ni, &ne);
610 f2fs_put_page(page, 1);
611cache:
612 blkaddr = le32_to_cpu(ne.block_addr);
613 if (__is_valid_data_blkaddr(blkaddr) &&
614 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
615 return -EFAULT;
616
617 /* cache nat entry */
618 cache_nat_entry(sbi, nid, &ne);
619 return 0;
620}
621
622/*
623 * readahead MAX_RA_NODE number of node pages.
624 */
625static void f2fs_ra_node_pages(struct page *parent, int start, int n)
626{
627 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
628 struct blk_plug plug;
629 int i, end;
630 nid_t nid;
631
632 blk_start_plug(&plug);
633
634 /* Then, try readahead for siblings of the desired node */
635 end = start + n;
636 end = min(end, (int)NIDS_PER_BLOCK);
637 for (i = start; i < end; i++) {
638 nid = get_nid(parent, i, false);
639 f2fs_ra_node_page(sbi, nid);
640 }
641
642 blk_finish_plug(&plug);
643}
644
645pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
646{
647 const long direct_index = ADDRS_PER_INODE(dn->inode);
648 const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
649 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
650 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
651 int cur_level = dn->cur_level;
652 int max_level = dn->max_level;
653 pgoff_t base = 0;
654
655 if (!dn->max_level)
656 return pgofs + 1;
657
658 while (max_level-- > cur_level)
659 skipped_unit *= NIDS_PER_BLOCK;
660
661 switch (dn->max_level) {
662 case 3:
663 base += 2 * indirect_blks;
664 fallthrough;
665 case 2:
666 base += 2 * direct_blks;
667 fallthrough;
668 case 1:
669 base += direct_index;
670 break;
671 default:
672 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
673 }
674
675 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
676}
677
678/*
679 * The maximum depth is four.
680 * Offset[0] will have raw inode offset.
681 */
682static int get_node_path(struct inode *inode, long block,
683 int offset[4], unsigned int noffset[4])
684{
685 const long direct_index = ADDRS_PER_INODE(inode);
686 const long direct_blks = ADDRS_PER_BLOCK(inode);
687 const long dptrs_per_blk = NIDS_PER_BLOCK;
688 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
689 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
690 int n = 0;
691 int level = 0;
692
693 noffset[0] = 0;
694
695 if (block < direct_index) {
696 offset[n] = block;
697 goto got;
698 }
699 block -= direct_index;
700 if (block < direct_blks) {
701 offset[n++] = NODE_DIR1_BLOCK;
702 noffset[n] = 1;
703 offset[n] = block;
704 level = 1;
705 goto got;
706 }
707 block -= direct_blks;
708 if (block < direct_blks) {
709 offset[n++] = NODE_DIR2_BLOCK;
710 noffset[n] = 2;
711 offset[n] = block;
712 level = 1;
713 goto got;
714 }
715 block -= direct_blks;
716 if (block < indirect_blks) {
717 offset[n++] = NODE_IND1_BLOCK;
718 noffset[n] = 3;
719 offset[n++] = block / direct_blks;
720 noffset[n] = 4 + offset[n - 1];
721 offset[n] = block % direct_blks;
722 level = 2;
723 goto got;
724 }
725 block -= indirect_blks;
726 if (block < indirect_blks) {
727 offset[n++] = NODE_IND2_BLOCK;
728 noffset[n] = 4 + dptrs_per_blk;
729 offset[n++] = block / direct_blks;
730 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
731 offset[n] = block % direct_blks;
732 level = 2;
733 goto got;
734 }
735 block -= indirect_blks;
736 if (block < dindirect_blks) {
737 offset[n++] = NODE_DIND_BLOCK;
738 noffset[n] = 5 + (dptrs_per_blk * 2);
739 offset[n++] = block / indirect_blks;
740 noffset[n] = 6 + (dptrs_per_blk * 2) +
741 offset[n - 1] * (dptrs_per_blk + 1);
742 offset[n++] = (block / direct_blks) % dptrs_per_blk;
743 noffset[n] = 7 + (dptrs_per_blk * 2) +
744 offset[n - 2] * (dptrs_per_blk + 1) +
745 offset[n - 1];
746 offset[n] = block % direct_blks;
747 level = 3;
748 goto got;
749 } else {
750 return -E2BIG;
751 }
752got:
753 return level;
754}
755
756/*
757 * Caller should call f2fs_put_dnode(dn).
758 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
759 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
760 */
761int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
762{
763 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
764 struct page *npage[4];
765 struct page *parent = NULL;
766 int offset[4];
767 unsigned int noffset[4];
768 nid_t nids[4];
769 int level, i = 0;
770 int err = 0;
771
772 level = get_node_path(dn->inode, index, offset, noffset);
773 if (level < 0)
774 return level;
775
776 nids[0] = dn->inode->i_ino;
777 npage[0] = dn->inode_page;
778
779 if (!npage[0]) {
780 npage[0] = f2fs_get_node_page(sbi, nids[0]);
781 if (IS_ERR(npage[0]))
782 return PTR_ERR(npage[0]);
783 }
784
785 /* if inline_data is set, should not report any block indices */
786 if (f2fs_has_inline_data(dn->inode) && index) {
787 err = -ENOENT;
788 f2fs_put_page(npage[0], 1);
789 goto release_out;
790 }
791
792 parent = npage[0];
793 if (level != 0)
794 nids[1] = get_nid(parent, offset[0], true);
795 dn->inode_page = npage[0];
796 dn->inode_page_locked = true;
797
798 /* get indirect or direct nodes */
799 for (i = 1; i <= level; i++) {
800 bool done = false;
801
802 if (!nids[i] && mode == ALLOC_NODE) {
803 /* alloc new node */
804 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
805 err = -ENOSPC;
806 goto release_pages;
807 }
808
809 dn->nid = nids[i];
810 npage[i] = f2fs_new_node_page(dn, noffset[i]);
811 if (IS_ERR(npage[i])) {
812 f2fs_alloc_nid_failed(sbi, nids[i]);
813 err = PTR_ERR(npage[i]);
814 goto release_pages;
815 }
816
817 set_nid(parent, offset[i - 1], nids[i], i == 1);
818 f2fs_alloc_nid_done(sbi, nids[i]);
819 done = true;
820 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
821 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
822 if (IS_ERR(npage[i])) {
823 err = PTR_ERR(npage[i]);
824 goto release_pages;
825 }
826 done = true;
827 }
828 if (i == 1) {
829 dn->inode_page_locked = false;
830 unlock_page(parent);
831 } else {
832 f2fs_put_page(parent, 1);
833 }
834
835 if (!done) {
836 npage[i] = f2fs_get_node_page(sbi, nids[i]);
837 if (IS_ERR(npage[i])) {
838 err = PTR_ERR(npage[i]);
839 f2fs_put_page(npage[0], 0);
840 goto release_out;
841 }
842 }
843 if (i < level) {
844 parent = npage[i];
845 nids[i + 1] = get_nid(parent, offset[i], false);
846 }
847 }
848 dn->nid = nids[level];
849 dn->ofs_in_node = offset[level];
850 dn->node_page = npage[level];
851 dn->data_blkaddr = f2fs_data_blkaddr(dn);
852
853 if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
854 f2fs_sb_has_readonly(sbi)) {
855 unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
856 unsigned int ofs_in_node = dn->ofs_in_node;
857 pgoff_t fofs = index;
858 unsigned int c_len;
859 block_t blkaddr;
860
861 /* should align fofs and ofs_in_node to cluster_size */
862 if (fofs % cluster_size) {
863 fofs = round_down(fofs, cluster_size);
864 ofs_in_node = round_down(ofs_in_node, cluster_size);
865 }
866
867 c_len = f2fs_cluster_blocks_are_contiguous(dn, ofs_in_node);
868 if (!c_len)
869 goto out;
870
871 blkaddr = data_blkaddr(dn->inode, dn->node_page, ofs_in_node);
872 if (blkaddr == COMPRESS_ADDR)
873 blkaddr = data_blkaddr(dn->inode, dn->node_page,
874 ofs_in_node + 1);
875
876 f2fs_update_read_extent_tree_range_compressed(dn->inode,
877 fofs, blkaddr, cluster_size, c_len);
878 }
879out:
880 return 0;
881
882release_pages:
883 f2fs_put_page(parent, 1);
884 if (i > 1)
885 f2fs_put_page(npage[0], 0);
886release_out:
887 dn->inode_page = NULL;
888 dn->node_page = NULL;
889 if (err == -ENOENT) {
890 dn->cur_level = i;
891 dn->max_level = level;
892 dn->ofs_in_node = offset[level];
893 }
894 return err;
895}
896
897static int truncate_node(struct dnode_of_data *dn)
898{
899 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
900 struct node_info ni;
901 int err;
902 pgoff_t index;
903
904 err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
905 if (err)
906 return err;
907
908 if (ni.blk_addr != NEW_ADDR &&
909 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr, DATA_GENERIC_ENHANCE)) {
910 f2fs_err_ratelimited(sbi,
911 "nat entry is corrupted, run fsck to fix it, ino:%u, "
912 "nid:%u, blkaddr:%u", ni.ino, ni.nid, ni.blk_addr);
913 set_sbi_flag(sbi, SBI_NEED_FSCK);
914 f2fs_handle_error(sbi, ERROR_INCONSISTENT_NAT);
915 return -EFSCORRUPTED;
916 }
917
918 /* Deallocate node address */
919 f2fs_invalidate_blocks(sbi, ni.blk_addr);
920 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
921 set_node_addr(sbi, &ni, NULL_ADDR, false);
922
923 if (dn->nid == dn->inode->i_ino) {
924 f2fs_remove_orphan_inode(sbi, dn->nid);
925 dec_valid_inode_count(sbi);
926 f2fs_inode_synced(dn->inode);
927 }
928
929 clear_node_page_dirty(dn->node_page);
930 set_sbi_flag(sbi, SBI_IS_DIRTY);
931
932 index = page_folio(dn->node_page)->index;
933 f2fs_put_page(dn->node_page, 1);
934
935 invalidate_mapping_pages(NODE_MAPPING(sbi),
936 index, index);
937
938 dn->node_page = NULL;
939 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
940
941 return 0;
942}
943
944static int truncate_dnode(struct dnode_of_data *dn)
945{
946 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
947 struct page *page;
948 int err;
949
950 if (dn->nid == 0)
951 return 1;
952
953 /* get direct node */
954 page = f2fs_get_node_page(sbi, dn->nid);
955 if (PTR_ERR(page) == -ENOENT)
956 return 1;
957 else if (IS_ERR(page))
958 return PTR_ERR(page);
959
960 if (IS_INODE(page) || ino_of_node(page) != dn->inode->i_ino) {
961 f2fs_err(sbi, "incorrect node reference, ino: %lu, nid: %u, ino_of_node: %u",
962 dn->inode->i_ino, dn->nid, ino_of_node(page));
963 set_sbi_flag(sbi, SBI_NEED_FSCK);
964 f2fs_handle_error(sbi, ERROR_INVALID_NODE_REFERENCE);
965 f2fs_put_page(page, 1);
966 return -EFSCORRUPTED;
967 }
968
969 /* Make dnode_of_data for parameter */
970 dn->node_page = page;
971 dn->ofs_in_node = 0;
972 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
973 err = truncate_node(dn);
974 if (err) {
975 f2fs_put_page(page, 1);
976 return err;
977 }
978
979 return 1;
980}
981
982static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
983 int ofs, int depth)
984{
985 struct dnode_of_data rdn = *dn;
986 struct page *page;
987 struct f2fs_node *rn;
988 nid_t child_nid;
989 unsigned int child_nofs;
990 int freed = 0;
991 int i, ret;
992
993 if (dn->nid == 0)
994 return NIDS_PER_BLOCK + 1;
995
996 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
997
998 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
999 if (IS_ERR(page)) {
1000 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
1001 return PTR_ERR(page);
1002 }
1003
1004 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
1005
1006 rn = F2FS_NODE(page);
1007 if (depth < 3) {
1008 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
1009 child_nid = le32_to_cpu(rn->in.nid[i]);
1010 if (child_nid == 0)
1011 continue;
1012 rdn.nid = child_nid;
1013 ret = truncate_dnode(&rdn);
1014 if (ret < 0)
1015 goto out_err;
1016 if (set_nid(page, i, 0, false))
1017 dn->node_changed = true;
1018 }
1019 } else {
1020 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
1021 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
1022 child_nid = le32_to_cpu(rn->in.nid[i]);
1023 if (child_nid == 0) {
1024 child_nofs += NIDS_PER_BLOCK + 1;
1025 continue;
1026 }
1027 rdn.nid = child_nid;
1028 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
1029 if (ret == (NIDS_PER_BLOCK + 1)) {
1030 if (set_nid(page, i, 0, false))
1031 dn->node_changed = true;
1032 child_nofs += ret;
1033 } else if (ret < 0 && ret != -ENOENT) {
1034 goto out_err;
1035 }
1036 }
1037 freed = child_nofs;
1038 }
1039
1040 if (!ofs) {
1041 /* remove current indirect node */
1042 dn->node_page = page;
1043 ret = truncate_node(dn);
1044 if (ret)
1045 goto out_err;
1046 freed++;
1047 } else {
1048 f2fs_put_page(page, 1);
1049 }
1050 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1051 return freed;
1052
1053out_err:
1054 f2fs_put_page(page, 1);
1055 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1056 return ret;
1057}
1058
1059static int truncate_partial_nodes(struct dnode_of_data *dn,
1060 struct f2fs_inode *ri, int *offset, int depth)
1061{
1062 struct page *pages[2];
1063 nid_t nid[3];
1064 nid_t child_nid;
1065 int err = 0;
1066 int i;
1067 int idx = depth - 2;
1068
1069 nid[0] = get_nid(dn->inode_page, offset[0], true);
1070 if (!nid[0])
1071 return 0;
1072
1073 /* get indirect nodes in the path */
1074 for (i = 0; i < idx + 1; i++) {
1075 /* reference count'll be increased */
1076 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1077 if (IS_ERR(pages[i])) {
1078 err = PTR_ERR(pages[i]);
1079 idx = i - 1;
1080 goto fail;
1081 }
1082 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1083 }
1084
1085 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1086
1087 /* free direct nodes linked to a partial indirect node */
1088 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1089 child_nid = get_nid(pages[idx], i, false);
1090 if (!child_nid)
1091 continue;
1092 dn->nid = child_nid;
1093 err = truncate_dnode(dn);
1094 if (err < 0)
1095 goto fail;
1096 if (set_nid(pages[idx], i, 0, false))
1097 dn->node_changed = true;
1098 }
1099
1100 if (offset[idx + 1] == 0) {
1101 dn->node_page = pages[idx];
1102 dn->nid = nid[idx];
1103 err = truncate_node(dn);
1104 if (err)
1105 goto fail;
1106 } else {
1107 f2fs_put_page(pages[idx], 1);
1108 }
1109 offset[idx]++;
1110 offset[idx + 1] = 0;
1111 idx--;
1112fail:
1113 for (i = idx; i >= 0; i--)
1114 f2fs_put_page(pages[i], 1);
1115
1116 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1117
1118 return err;
1119}
1120
1121/*
1122 * All the block addresses of data and nodes should be nullified.
1123 */
1124int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1125{
1126 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1127 int err = 0, cont = 1;
1128 int level, offset[4], noffset[4];
1129 unsigned int nofs = 0;
1130 struct f2fs_inode *ri;
1131 struct dnode_of_data dn;
1132 struct page *page;
1133
1134 trace_f2fs_truncate_inode_blocks_enter(inode, from);
1135
1136 level = get_node_path(inode, from, offset, noffset);
1137 if (level < 0) {
1138 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1139 return level;
1140 }
1141
1142 page = f2fs_get_node_page(sbi, inode->i_ino);
1143 if (IS_ERR(page)) {
1144 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1145 return PTR_ERR(page);
1146 }
1147
1148 set_new_dnode(&dn, inode, page, NULL, 0);
1149 unlock_page(page);
1150
1151 ri = F2FS_INODE(page);
1152 switch (level) {
1153 case 0:
1154 case 1:
1155 nofs = noffset[1];
1156 break;
1157 case 2:
1158 nofs = noffset[1];
1159 if (!offset[level - 1])
1160 goto skip_partial;
1161 err = truncate_partial_nodes(&dn, ri, offset, level);
1162 if (err < 0 && err != -ENOENT)
1163 goto fail;
1164 nofs += 1 + NIDS_PER_BLOCK;
1165 break;
1166 case 3:
1167 nofs = 5 + 2 * NIDS_PER_BLOCK;
1168 if (!offset[level - 1])
1169 goto skip_partial;
1170 err = truncate_partial_nodes(&dn, ri, offset, level);
1171 if (err < 0 && err != -ENOENT)
1172 goto fail;
1173 break;
1174 default:
1175 BUG();
1176 }
1177
1178skip_partial:
1179 while (cont) {
1180 dn.nid = get_nid(page, offset[0], true);
1181 switch (offset[0]) {
1182 case NODE_DIR1_BLOCK:
1183 case NODE_DIR2_BLOCK:
1184 err = truncate_dnode(&dn);
1185 break;
1186
1187 case NODE_IND1_BLOCK:
1188 case NODE_IND2_BLOCK:
1189 err = truncate_nodes(&dn, nofs, offset[1], 2);
1190 break;
1191
1192 case NODE_DIND_BLOCK:
1193 err = truncate_nodes(&dn, nofs, offset[1], 3);
1194 cont = 0;
1195 break;
1196
1197 default:
1198 BUG();
1199 }
1200 if (err == -ENOENT) {
1201 set_sbi_flag(F2FS_P_SB(page), SBI_NEED_FSCK);
1202 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1203 f2fs_err_ratelimited(sbi,
1204 "truncate node fail, ino:%lu, nid:%u, "
1205 "offset[0]:%d, offset[1]:%d, nofs:%d",
1206 inode->i_ino, dn.nid, offset[0],
1207 offset[1], nofs);
1208 err = 0;
1209 }
1210 if (err < 0)
1211 goto fail;
1212 if (offset[1] == 0 && get_nid(page, offset[0], true)) {
1213 lock_page(page);
1214 BUG_ON(page->mapping != NODE_MAPPING(sbi));
1215 set_nid(page, offset[0], 0, true);
1216 unlock_page(page);
1217 }
1218 offset[1] = 0;
1219 offset[0]++;
1220 nofs += err;
1221 }
1222fail:
1223 f2fs_put_page(page, 0);
1224 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1225 return err > 0 ? 0 : err;
1226}
1227
1228/* caller must lock inode page */
1229int f2fs_truncate_xattr_node(struct inode *inode)
1230{
1231 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1232 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1233 struct dnode_of_data dn;
1234 struct page *npage;
1235 int err;
1236
1237 if (!nid)
1238 return 0;
1239
1240 npage = f2fs_get_node_page(sbi, nid);
1241 if (IS_ERR(npage))
1242 return PTR_ERR(npage);
1243
1244 set_new_dnode(&dn, inode, NULL, npage, nid);
1245 err = truncate_node(&dn);
1246 if (err) {
1247 f2fs_put_page(npage, 1);
1248 return err;
1249 }
1250
1251 f2fs_i_xnid_write(inode, 0);
1252
1253 return 0;
1254}
1255
1256/*
1257 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1258 * f2fs_unlock_op().
1259 */
1260int f2fs_remove_inode_page(struct inode *inode)
1261{
1262 struct dnode_of_data dn;
1263 int err;
1264
1265 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1266 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1267 if (err)
1268 return err;
1269
1270 err = f2fs_truncate_xattr_node(inode);
1271 if (err) {
1272 f2fs_put_dnode(&dn);
1273 return err;
1274 }
1275
1276 /* remove potential inline_data blocks */
1277 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1278 S_ISLNK(inode->i_mode))
1279 f2fs_truncate_data_blocks_range(&dn, 1);
1280
1281 /* 0 is possible, after f2fs_new_inode() has failed */
1282 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1283 f2fs_put_dnode(&dn);
1284 return -EIO;
1285 }
1286
1287 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1288 f2fs_warn(F2FS_I_SB(inode),
1289 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1290 inode->i_ino, (unsigned long long)inode->i_blocks);
1291 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1292 }
1293
1294 /* will put inode & node pages */
1295 err = truncate_node(&dn);
1296 if (err) {
1297 f2fs_put_dnode(&dn);
1298 return err;
1299 }
1300 return 0;
1301}
1302
1303struct page *f2fs_new_inode_page(struct inode *inode)
1304{
1305 struct dnode_of_data dn;
1306
1307 /* allocate inode page for new inode */
1308 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1309
1310 /* caller should f2fs_put_page(page, 1); */
1311 return f2fs_new_node_page(&dn, 0);
1312}
1313
1314struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1315{
1316 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1317 struct node_info new_ni;
1318 struct page *page;
1319 int err;
1320
1321 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1322 return ERR_PTR(-EPERM);
1323
1324 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1325 if (!page)
1326 return ERR_PTR(-ENOMEM);
1327
1328 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1329 goto fail;
1330
1331#ifdef CONFIG_F2FS_CHECK_FS
1332 err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1333 if (err) {
1334 dec_valid_node_count(sbi, dn->inode, !ofs);
1335 goto fail;
1336 }
1337 if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1338 err = -EFSCORRUPTED;
1339 dec_valid_node_count(sbi, dn->inode, !ofs);
1340 set_sbi_flag(sbi, SBI_NEED_FSCK);
1341 f2fs_warn_ratelimited(sbi,
1342 "f2fs_new_node_page: inconsistent nat entry, "
1343 "ino:%u, nid:%u, blkaddr:%u, ver:%u, flag:%u",
1344 new_ni.ino, new_ni.nid, new_ni.blk_addr,
1345 new_ni.version, new_ni.flag);
1346 f2fs_handle_error(sbi, ERROR_INCONSISTENT_NAT);
1347 goto fail;
1348 }
1349#endif
1350 new_ni.nid = dn->nid;
1351 new_ni.ino = dn->inode->i_ino;
1352 new_ni.blk_addr = NULL_ADDR;
1353 new_ni.flag = 0;
1354 new_ni.version = 0;
1355 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1356
1357 f2fs_wait_on_page_writeback(page, NODE, true, true);
1358 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1359 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1360 if (!PageUptodate(page))
1361 SetPageUptodate(page);
1362 if (set_page_dirty(page))
1363 dn->node_changed = true;
1364
1365 if (f2fs_has_xattr_block(ofs))
1366 f2fs_i_xnid_write(dn->inode, dn->nid);
1367
1368 if (ofs == 0)
1369 inc_valid_inode_count(sbi);
1370 return page;
1371fail:
1372 clear_node_page_dirty(page);
1373 f2fs_put_page(page, 1);
1374 return ERR_PTR(err);
1375}
1376
1377/*
1378 * Caller should do after getting the following values.
1379 * 0: f2fs_put_page(page, 0)
1380 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1381 */
1382static int read_node_page(struct page *page, blk_opf_t op_flags)
1383{
1384 struct folio *folio = page_folio(page);
1385 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1386 struct node_info ni;
1387 struct f2fs_io_info fio = {
1388 .sbi = sbi,
1389 .type = NODE,
1390 .op = REQ_OP_READ,
1391 .op_flags = op_flags,
1392 .page = page,
1393 .encrypted_page = NULL,
1394 };
1395 int err;
1396
1397 if (folio_test_uptodate(folio)) {
1398 if (!f2fs_inode_chksum_verify(sbi, page)) {
1399 folio_clear_uptodate(folio);
1400 return -EFSBADCRC;
1401 }
1402 return LOCKED_PAGE;
1403 }
1404
1405 err = f2fs_get_node_info(sbi, folio->index, &ni, false);
1406 if (err)
1407 return err;
1408
1409 /* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1410 if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) {
1411 folio_clear_uptodate(folio);
1412 return -ENOENT;
1413 }
1414
1415 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1416
1417 err = f2fs_submit_page_bio(&fio);
1418
1419 if (!err)
1420 f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE);
1421
1422 return err;
1423}
1424
1425/*
1426 * Readahead a node page
1427 */
1428void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1429{
1430 struct page *apage;
1431 int err;
1432
1433 if (!nid)
1434 return;
1435 if (f2fs_check_nid_range(sbi, nid))
1436 return;
1437
1438 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1439 if (apage)
1440 return;
1441
1442 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1443 if (!apage)
1444 return;
1445
1446 err = read_node_page(apage, REQ_RAHEAD);
1447 f2fs_put_page(apage, err ? 1 : 0);
1448}
1449
1450static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1451 struct page *parent, int start)
1452{
1453 struct page *page;
1454 int err;
1455
1456 if (!nid)
1457 return ERR_PTR(-ENOENT);
1458 if (f2fs_check_nid_range(sbi, nid))
1459 return ERR_PTR(-EINVAL);
1460repeat:
1461 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1462 if (!page)
1463 return ERR_PTR(-ENOMEM);
1464
1465 err = read_node_page(page, 0);
1466 if (err < 0) {
1467 goto out_put_err;
1468 } else if (err == LOCKED_PAGE) {
1469 err = 0;
1470 goto page_hit;
1471 }
1472
1473 if (parent)
1474 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1475
1476 lock_page(page);
1477
1478 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1479 f2fs_put_page(page, 1);
1480 goto repeat;
1481 }
1482
1483 if (unlikely(!PageUptodate(page))) {
1484 err = -EIO;
1485 goto out_err;
1486 }
1487
1488 if (!f2fs_inode_chksum_verify(sbi, page)) {
1489 err = -EFSBADCRC;
1490 goto out_err;
1491 }
1492page_hit:
1493 if (likely(nid == nid_of_node(page)))
1494 return page;
1495
1496 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1497 nid, nid_of_node(page), ino_of_node(page),
1498 ofs_of_node(page), cpver_of_node(page),
1499 next_blkaddr_of_node(page));
1500 set_sbi_flag(sbi, SBI_NEED_FSCK);
1501 f2fs_handle_error(sbi, ERROR_INCONSISTENT_FOOTER);
1502 err = -EFSCORRUPTED;
1503out_err:
1504 ClearPageUptodate(page);
1505out_put_err:
1506 /* ENOENT comes from read_node_page which is not an error. */
1507 if (err != -ENOENT)
1508 f2fs_handle_page_eio(sbi, page_folio(page), NODE);
1509 f2fs_put_page(page, 1);
1510 return ERR_PTR(err);
1511}
1512
1513struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1514{
1515 return __get_node_page(sbi, nid, NULL, 0);
1516}
1517
1518struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1519{
1520 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1521 nid_t nid = get_nid(parent, start, false);
1522
1523 return __get_node_page(sbi, nid, parent, start);
1524}
1525
1526static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1527{
1528 struct inode *inode;
1529 struct page *page;
1530 int ret;
1531
1532 /* should flush inline_data before evict_inode */
1533 inode = ilookup(sbi->sb, ino);
1534 if (!inode)
1535 return;
1536
1537 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1538 FGP_LOCK|FGP_NOWAIT, 0);
1539 if (!page)
1540 goto iput_out;
1541
1542 if (!PageUptodate(page))
1543 goto page_out;
1544
1545 if (!PageDirty(page))
1546 goto page_out;
1547
1548 if (!clear_page_dirty_for_io(page))
1549 goto page_out;
1550
1551 ret = f2fs_write_inline_data(inode, page_folio(page));
1552 inode_dec_dirty_pages(inode);
1553 f2fs_remove_dirty_inode(inode);
1554 if (ret)
1555 set_page_dirty(page);
1556page_out:
1557 f2fs_put_page(page, 1);
1558iput_out:
1559 iput(inode);
1560}
1561
1562static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1563{
1564 pgoff_t index;
1565 struct folio_batch fbatch;
1566 struct page *last_page = NULL;
1567 int nr_folios;
1568
1569 folio_batch_init(&fbatch);
1570 index = 0;
1571
1572 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1573 (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1574 &fbatch))) {
1575 int i;
1576
1577 for (i = 0; i < nr_folios; i++) {
1578 struct page *page = &fbatch.folios[i]->page;
1579
1580 if (unlikely(f2fs_cp_error(sbi))) {
1581 f2fs_put_page(last_page, 0);
1582 folio_batch_release(&fbatch);
1583 return ERR_PTR(-EIO);
1584 }
1585
1586 if (!IS_DNODE(page) || !is_cold_node(page))
1587 continue;
1588 if (ino_of_node(page) != ino)
1589 continue;
1590
1591 lock_page(page);
1592
1593 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1594continue_unlock:
1595 unlock_page(page);
1596 continue;
1597 }
1598 if (ino_of_node(page) != ino)
1599 goto continue_unlock;
1600
1601 if (!PageDirty(page)) {
1602 /* someone wrote it for us */
1603 goto continue_unlock;
1604 }
1605
1606 if (last_page)
1607 f2fs_put_page(last_page, 0);
1608
1609 get_page(page);
1610 last_page = page;
1611 unlock_page(page);
1612 }
1613 folio_batch_release(&fbatch);
1614 cond_resched();
1615 }
1616 return last_page;
1617}
1618
1619static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1620 struct writeback_control *wbc, bool do_balance,
1621 enum iostat_type io_type, unsigned int *seq_id)
1622{
1623 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1624 struct folio *folio = page_folio(page);
1625 nid_t nid;
1626 struct node_info ni;
1627 struct f2fs_io_info fio = {
1628 .sbi = sbi,
1629 .ino = ino_of_node(page),
1630 .type = NODE,
1631 .op = REQ_OP_WRITE,
1632 .op_flags = wbc_to_write_flags(wbc),
1633 .page = page,
1634 .encrypted_page = NULL,
1635 .submitted = 0,
1636 .io_type = io_type,
1637 .io_wbc = wbc,
1638 };
1639 unsigned int seq;
1640
1641 trace_f2fs_writepage(folio, NODE);
1642
1643 if (unlikely(f2fs_cp_error(sbi))) {
1644 /* keep node pages in remount-ro mode */
1645 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
1646 goto redirty_out;
1647 folio_clear_uptodate(folio);
1648 dec_page_count(sbi, F2FS_DIRTY_NODES);
1649 folio_unlock(folio);
1650 return 0;
1651 }
1652
1653 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1654 goto redirty_out;
1655
1656 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1657 wbc->sync_mode == WB_SYNC_NONE &&
1658 IS_DNODE(page) && is_cold_node(page))
1659 goto redirty_out;
1660
1661 /* get old block addr of this node page */
1662 nid = nid_of_node(page);
1663 f2fs_bug_on(sbi, folio->index != nid);
1664
1665 if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1666 goto redirty_out;
1667
1668 if (wbc->for_reclaim) {
1669 if (!f2fs_down_read_trylock(&sbi->node_write))
1670 goto redirty_out;
1671 } else {
1672 f2fs_down_read(&sbi->node_write);
1673 }
1674
1675 /* This page is already truncated */
1676 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1677 folio_clear_uptodate(folio);
1678 dec_page_count(sbi, F2FS_DIRTY_NODES);
1679 f2fs_up_read(&sbi->node_write);
1680 folio_unlock(folio);
1681 return 0;
1682 }
1683
1684 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1685 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1686 DATA_GENERIC_ENHANCE)) {
1687 f2fs_up_read(&sbi->node_write);
1688 goto redirty_out;
1689 }
1690
1691 if (atomic && !test_opt(sbi, NOBARRIER))
1692 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1693
1694 /* should add to global list before clearing PAGECACHE status */
1695 if (f2fs_in_warm_node_list(sbi, page)) {
1696 seq = f2fs_add_fsync_node_entry(sbi, page);
1697 if (seq_id)
1698 *seq_id = seq;
1699 }
1700
1701 folio_start_writeback(folio);
1702
1703 fio.old_blkaddr = ni.blk_addr;
1704 f2fs_do_write_node_page(nid, &fio);
1705 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1706 dec_page_count(sbi, F2FS_DIRTY_NODES);
1707 f2fs_up_read(&sbi->node_write);
1708
1709 if (wbc->for_reclaim) {
1710 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1711 submitted = NULL;
1712 }
1713
1714 folio_unlock(folio);
1715
1716 if (unlikely(f2fs_cp_error(sbi))) {
1717 f2fs_submit_merged_write(sbi, NODE);
1718 submitted = NULL;
1719 }
1720 if (submitted)
1721 *submitted = fio.submitted;
1722
1723 if (do_balance)
1724 f2fs_balance_fs(sbi, false);
1725 return 0;
1726
1727redirty_out:
1728 folio_redirty_for_writepage(wbc, folio);
1729 return AOP_WRITEPAGE_ACTIVATE;
1730}
1731
1732int f2fs_move_node_page(struct page *node_page, int gc_type)
1733{
1734 int err = 0;
1735
1736 if (gc_type == FG_GC) {
1737 struct writeback_control wbc = {
1738 .sync_mode = WB_SYNC_ALL,
1739 .nr_to_write = 1,
1740 .for_reclaim = 0,
1741 };
1742
1743 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1744
1745 set_page_dirty(node_page);
1746
1747 if (!clear_page_dirty_for_io(node_page)) {
1748 err = -EAGAIN;
1749 goto out_page;
1750 }
1751
1752 if (__write_node_page(node_page, false, NULL,
1753 &wbc, false, FS_GC_NODE_IO, NULL)) {
1754 err = -EAGAIN;
1755 unlock_page(node_page);
1756 }
1757 goto release_page;
1758 } else {
1759 /* set page dirty and write it */
1760 if (!folio_test_writeback(page_folio(node_page)))
1761 set_page_dirty(node_page);
1762 }
1763out_page:
1764 unlock_page(node_page);
1765release_page:
1766 f2fs_put_page(node_page, 0);
1767 return err;
1768}
1769
1770static int f2fs_write_node_page(struct page *page,
1771 struct writeback_control *wbc)
1772{
1773 return __write_node_page(page, false, NULL, wbc, false,
1774 FS_NODE_IO, NULL);
1775}
1776
1777int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1778 struct writeback_control *wbc, bool atomic,
1779 unsigned int *seq_id)
1780{
1781 pgoff_t index;
1782 struct folio_batch fbatch;
1783 int ret = 0;
1784 struct page *last_page = NULL;
1785 bool marked = false;
1786 nid_t ino = inode->i_ino;
1787 int nr_folios;
1788 int nwritten = 0;
1789
1790 if (atomic) {
1791 last_page = last_fsync_dnode(sbi, ino);
1792 if (IS_ERR_OR_NULL(last_page))
1793 return PTR_ERR_OR_ZERO(last_page);
1794 }
1795retry:
1796 folio_batch_init(&fbatch);
1797 index = 0;
1798
1799 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1800 (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1801 &fbatch))) {
1802 int i;
1803
1804 for (i = 0; i < nr_folios; i++) {
1805 struct page *page = &fbatch.folios[i]->page;
1806 bool submitted = false;
1807
1808 if (unlikely(f2fs_cp_error(sbi))) {
1809 f2fs_put_page(last_page, 0);
1810 folio_batch_release(&fbatch);
1811 ret = -EIO;
1812 goto out;
1813 }
1814
1815 if (!IS_DNODE(page) || !is_cold_node(page))
1816 continue;
1817 if (ino_of_node(page) != ino)
1818 continue;
1819
1820 lock_page(page);
1821
1822 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1823continue_unlock:
1824 unlock_page(page);
1825 continue;
1826 }
1827 if (ino_of_node(page) != ino)
1828 goto continue_unlock;
1829
1830 if (!PageDirty(page) && page != last_page) {
1831 /* someone wrote it for us */
1832 goto continue_unlock;
1833 }
1834
1835 f2fs_wait_on_page_writeback(page, NODE, true, true);
1836
1837 set_fsync_mark(page, 0);
1838 set_dentry_mark(page, 0);
1839
1840 if (!atomic || page == last_page) {
1841 set_fsync_mark(page, 1);
1842 percpu_counter_inc(&sbi->rf_node_block_count);
1843 if (IS_INODE(page)) {
1844 if (is_inode_flag_set(inode,
1845 FI_DIRTY_INODE))
1846 f2fs_update_inode(inode, page);
1847 set_dentry_mark(page,
1848 f2fs_need_dentry_mark(sbi, ino));
1849 }
1850 /* may be written by other thread */
1851 if (!PageDirty(page))
1852 set_page_dirty(page);
1853 }
1854
1855 if (!clear_page_dirty_for_io(page))
1856 goto continue_unlock;
1857
1858 ret = __write_node_page(page, atomic &&
1859 page == last_page,
1860 &submitted, wbc, true,
1861 FS_NODE_IO, seq_id);
1862 if (ret) {
1863 unlock_page(page);
1864 f2fs_put_page(last_page, 0);
1865 break;
1866 } else if (submitted) {
1867 nwritten++;
1868 }
1869
1870 if (page == last_page) {
1871 f2fs_put_page(page, 0);
1872 marked = true;
1873 break;
1874 }
1875 }
1876 folio_batch_release(&fbatch);
1877 cond_resched();
1878
1879 if (ret || marked)
1880 break;
1881 }
1882 if (!ret && atomic && !marked) {
1883 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1884 ino, page_folio(last_page)->index);
1885 lock_page(last_page);
1886 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1887 set_page_dirty(last_page);
1888 unlock_page(last_page);
1889 goto retry;
1890 }
1891out:
1892 if (nwritten)
1893 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1894 return ret ? -EIO : 0;
1895}
1896
1897static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1898{
1899 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1900 bool clean;
1901
1902 if (inode->i_ino != ino)
1903 return 0;
1904
1905 if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1906 return 0;
1907
1908 spin_lock(&sbi->inode_lock[DIRTY_META]);
1909 clean = list_empty(&F2FS_I(inode)->gdirty_list);
1910 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1911
1912 if (clean)
1913 return 0;
1914
1915 inode = igrab(inode);
1916 if (!inode)
1917 return 0;
1918 return 1;
1919}
1920
1921static bool flush_dirty_inode(struct page *page)
1922{
1923 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1924 struct inode *inode;
1925 nid_t ino = ino_of_node(page);
1926
1927 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1928 if (!inode)
1929 return false;
1930
1931 f2fs_update_inode(inode, page);
1932 unlock_page(page);
1933
1934 iput(inode);
1935 return true;
1936}
1937
1938void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1939{
1940 pgoff_t index = 0;
1941 struct folio_batch fbatch;
1942 int nr_folios;
1943
1944 folio_batch_init(&fbatch);
1945
1946 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1947 (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1948 &fbatch))) {
1949 int i;
1950
1951 for (i = 0; i < nr_folios; i++) {
1952 struct page *page = &fbatch.folios[i]->page;
1953
1954 if (!IS_INODE(page))
1955 continue;
1956
1957 lock_page(page);
1958
1959 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1960continue_unlock:
1961 unlock_page(page);
1962 continue;
1963 }
1964
1965 if (!PageDirty(page)) {
1966 /* someone wrote it for us */
1967 goto continue_unlock;
1968 }
1969
1970 /* flush inline_data, if it's async context. */
1971 if (page_private_inline(page)) {
1972 clear_page_private_inline(page);
1973 unlock_page(page);
1974 flush_inline_data(sbi, ino_of_node(page));
1975 continue;
1976 }
1977 unlock_page(page);
1978 }
1979 folio_batch_release(&fbatch);
1980 cond_resched();
1981 }
1982}
1983
1984int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1985 struct writeback_control *wbc,
1986 bool do_balance, enum iostat_type io_type)
1987{
1988 pgoff_t index;
1989 struct folio_batch fbatch;
1990 int step = 0;
1991 int nwritten = 0;
1992 int ret = 0;
1993 int nr_folios, done = 0;
1994
1995 folio_batch_init(&fbatch);
1996
1997next_step:
1998 index = 0;
1999
2000 while (!done && (nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi),
2001 &index, (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
2002 &fbatch))) {
2003 int i;
2004
2005 for (i = 0; i < nr_folios; i++) {
2006 struct page *page = &fbatch.folios[i]->page;
2007 bool submitted = false;
2008
2009 /* give a priority to WB_SYNC threads */
2010 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
2011 wbc->sync_mode == WB_SYNC_NONE) {
2012 done = 1;
2013 break;
2014 }
2015
2016 /*
2017 * flushing sequence with step:
2018 * 0. indirect nodes
2019 * 1. dentry dnodes
2020 * 2. file dnodes
2021 */
2022 if (step == 0 && IS_DNODE(page))
2023 continue;
2024 if (step == 1 && (!IS_DNODE(page) ||
2025 is_cold_node(page)))
2026 continue;
2027 if (step == 2 && (!IS_DNODE(page) ||
2028 !is_cold_node(page)))
2029 continue;
2030lock_node:
2031 if (wbc->sync_mode == WB_SYNC_ALL)
2032 lock_page(page);
2033 else if (!trylock_page(page))
2034 continue;
2035
2036 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
2037continue_unlock:
2038 unlock_page(page);
2039 continue;
2040 }
2041
2042 if (!PageDirty(page)) {
2043 /* someone wrote it for us */
2044 goto continue_unlock;
2045 }
2046
2047 /* flush inline_data/inode, if it's async context. */
2048 if (!do_balance)
2049 goto write_node;
2050
2051 /* flush inline_data */
2052 if (page_private_inline(page)) {
2053 clear_page_private_inline(page);
2054 unlock_page(page);
2055 flush_inline_data(sbi, ino_of_node(page));
2056 goto lock_node;
2057 }
2058
2059 /* flush dirty inode */
2060 if (IS_INODE(page) && flush_dirty_inode(page))
2061 goto lock_node;
2062write_node:
2063 f2fs_wait_on_page_writeback(page, NODE, true, true);
2064
2065 if (!clear_page_dirty_for_io(page))
2066 goto continue_unlock;
2067
2068 set_fsync_mark(page, 0);
2069 set_dentry_mark(page, 0);
2070
2071 ret = __write_node_page(page, false, &submitted,
2072 wbc, do_balance, io_type, NULL);
2073 if (ret)
2074 unlock_page(page);
2075 else if (submitted)
2076 nwritten++;
2077
2078 if (--wbc->nr_to_write == 0)
2079 break;
2080 }
2081 folio_batch_release(&fbatch);
2082 cond_resched();
2083
2084 if (wbc->nr_to_write == 0) {
2085 step = 2;
2086 break;
2087 }
2088 }
2089
2090 if (step < 2) {
2091 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2092 wbc->sync_mode == WB_SYNC_NONE && step == 1)
2093 goto out;
2094 step++;
2095 goto next_step;
2096 }
2097out:
2098 if (nwritten)
2099 f2fs_submit_merged_write(sbi, NODE);
2100
2101 if (unlikely(f2fs_cp_error(sbi)))
2102 return -EIO;
2103 return ret;
2104}
2105
2106int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2107 unsigned int seq_id)
2108{
2109 struct fsync_node_entry *fn;
2110 struct page *page;
2111 struct list_head *head = &sbi->fsync_node_list;
2112 unsigned long flags;
2113 unsigned int cur_seq_id = 0;
2114
2115 while (seq_id && cur_seq_id < seq_id) {
2116 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2117 if (list_empty(head)) {
2118 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2119 break;
2120 }
2121 fn = list_first_entry(head, struct fsync_node_entry, list);
2122 if (fn->seq_id > seq_id) {
2123 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2124 break;
2125 }
2126 cur_seq_id = fn->seq_id;
2127 page = fn->page;
2128 get_page(page);
2129 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2130
2131 f2fs_wait_on_page_writeback(page, NODE, true, false);
2132
2133 put_page(page);
2134 }
2135
2136 return filemap_check_errors(NODE_MAPPING(sbi));
2137}
2138
2139static int f2fs_write_node_pages(struct address_space *mapping,
2140 struct writeback_control *wbc)
2141{
2142 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2143 struct blk_plug plug;
2144 long diff;
2145
2146 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2147 goto skip_write;
2148
2149 /* balancing f2fs's metadata in background */
2150 f2fs_balance_fs_bg(sbi, true);
2151
2152 /* collect a number of dirty node pages and write together */
2153 if (wbc->sync_mode != WB_SYNC_ALL &&
2154 get_pages(sbi, F2FS_DIRTY_NODES) <
2155 nr_pages_to_skip(sbi, NODE))
2156 goto skip_write;
2157
2158 if (wbc->sync_mode == WB_SYNC_ALL)
2159 atomic_inc(&sbi->wb_sync_req[NODE]);
2160 else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2161 /* to avoid potential deadlock */
2162 if (current->plug)
2163 blk_finish_plug(current->plug);
2164 goto skip_write;
2165 }
2166
2167 trace_f2fs_writepages(mapping->host, wbc, NODE);
2168
2169 diff = nr_pages_to_write(sbi, NODE, wbc);
2170 blk_start_plug(&plug);
2171 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2172 blk_finish_plug(&plug);
2173 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2174
2175 if (wbc->sync_mode == WB_SYNC_ALL)
2176 atomic_dec(&sbi->wb_sync_req[NODE]);
2177 return 0;
2178
2179skip_write:
2180 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2181 trace_f2fs_writepages(mapping->host, wbc, NODE);
2182 return 0;
2183}
2184
2185static bool f2fs_dirty_node_folio(struct address_space *mapping,
2186 struct folio *folio)
2187{
2188 trace_f2fs_set_page_dirty(folio, NODE);
2189
2190 if (!folio_test_uptodate(folio))
2191 folio_mark_uptodate(folio);
2192#ifdef CONFIG_F2FS_CHECK_FS
2193 if (IS_INODE(&folio->page))
2194 f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page);
2195#endif
2196 if (filemap_dirty_folio(mapping, folio)) {
2197 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
2198 set_page_private_reference(&folio->page);
2199 return true;
2200 }
2201 return false;
2202}
2203
2204/*
2205 * Structure of the f2fs node operations
2206 */
2207const struct address_space_operations f2fs_node_aops = {
2208 .writepage = f2fs_write_node_page,
2209 .writepages = f2fs_write_node_pages,
2210 .dirty_folio = f2fs_dirty_node_folio,
2211 .invalidate_folio = f2fs_invalidate_folio,
2212 .release_folio = f2fs_release_folio,
2213 .migrate_folio = filemap_migrate_folio,
2214};
2215
2216static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2217 nid_t n)
2218{
2219 return radix_tree_lookup(&nm_i->free_nid_root, n);
2220}
2221
2222static int __insert_free_nid(struct f2fs_sb_info *sbi,
2223 struct free_nid *i)
2224{
2225 struct f2fs_nm_info *nm_i = NM_I(sbi);
2226 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2227
2228 if (err)
2229 return err;
2230
2231 nm_i->nid_cnt[FREE_NID]++;
2232 list_add_tail(&i->list, &nm_i->free_nid_list);
2233 return 0;
2234}
2235
2236static void __remove_free_nid(struct f2fs_sb_info *sbi,
2237 struct free_nid *i, enum nid_state state)
2238{
2239 struct f2fs_nm_info *nm_i = NM_I(sbi);
2240
2241 f2fs_bug_on(sbi, state != i->state);
2242 nm_i->nid_cnt[state]--;
2243 if (state == FREE_NID)
2244 list_del(&i->list);
2245 radix_tree_delete(&nm_i->free_nid_root, i->nid);
2246}
2247
2248static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2249 enum nid_state org_state, enum nid_state dst_state)
2250{
2251 struct f2fs_nm_info *nm_i = NM_I(sbi);
2252
2253 f2fs_bug_on(sbi, org_state != i->state);
2254 i->state = dst_state;
2255 nm_i->nid_cnt[org_state]--;
2256 nm_i->nid_cnt[dst_state]++;
2257
2258 switch (dst_state) {
2259 case PREALLOC_NID:
2260 list_del(&i->list);
2261 break;
2262 case FREE_NID:
2263 list_add_tail(&i->list, &nm_i->free_nid_list);
2264 break;
2265 default:
2266 BUG_ON(1);
2267 }
2268}
2269
2270bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi)
2271{
2272 struct f2fs_nm_info *nm_i = NM_I(sbi);
2273 unsigned int i;
2274 bool ret = true;
2275
2276 f2fs_down_read(&nm_i->nat_tree_lock);
2277 for (i = 0; i < nm_i->nat_blocks; i++) {
2278 if (!test_bit_le(i, nm_i->nat_block_bitmap)) {
2279 ret = false;
2280 break;
2281 }
2282 }
2283 f2fs_up_read(&nm_i->nat_tree_lock);
2284
2285 return ret;
2286}
2287
2288static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2289 bool set, bool build)
2290{
2291 struct f2fs_nm_info *nm_i = NM_I(sbi);
2292 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2293 unsigned int nid_ofs = nid - START_NID(nid);
2294
2295 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2296 return;
2297
2298 if (set) {
2299 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2300 return;
2301 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2302 nm_i->free_nid_count[nat_ofs]++;
2303 } else {
2304 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2305 return;
2306 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2307 if (!build)
2308 nm_i->free_nid_count[nat_ofs]--;
2309 }
2310}
2311
2312/* return if the nid is recognized as free */
2313static bool add_free_nid(struct f2fs_sb_info *sbi,
2314 nid_t nid, bool build, bool update)
2315{
2316 struct f2fs_nm_info *nm_i = NM_I(sbi);
2317 struct free_nid *i, *e;
2318 struct nat_entry *ne;
2319 int err = -EINVAL;
2320 bool ret = false;
2321
2322 /* 0 nid should not be used */
2323 if (unlikely(nid == 0))
2324 return false;
2325
2326 if (unlikely(f2fs_check_nid_range(sbi, nid)))
2327 return false;
2328
2329 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2330 i->nid = nid;
2331 i->state = FREE_NID;
2332
2333 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2334
2335 spin_lock(&nm_i->nid_list_lock);
2336
2337 if (build) {
2338 /*
2339 * Thread A Thread B
2340 * - f2fs_create
2341 * - f2fs_new_inode
2342 * - f2fs_alloc_nid
2343 * - __insert_nid_to_list(PREALLOC_NID)
2344 * - f2fs_balance_fs_bg
2345 * - f2fs_build_free_nids
2346 * - __f2fs_build_free_nids
2347 * - scan_nat_page
2348 * - add_free_nid
2349 * - __lookup_nat_cache
2350 * - f2fs_add_link
2351 * - f2fs_init_inode_metadata
2352 * - f2fs_new_inode_page
2353 * - f2fs_new_node_page
2354 * - set_node_addr
2355 * - f2fs_alloc_nid_done
2356 * - __remove_nid_from_list(PREALLOC_NID)
2357 * - __insert_nid_to_list(FREE_NID)
2358 */
2359 ne = __lookup_nat_cache(nm_i, nid);
2360 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2361 nat_get_blkaddr(ne) != NULL_ADDR))
2362 goto err_out;
2363
2364 e = __lookup_free_nid_list(nm_i, nid);
2365 if (e) {
2366 if (e->state == FREE_NID)
2367 ret = true;
2368 goto err_out;
2369 }
2370 }
2371 ret = true;
2372 err = __insert_free_nid(sbi, i);
2373err_out:
2374 if (update) {
2375 update_free_nid_bitmap(sbi, nid, ret, build);
2376 if (!build)
2377 nm_i->available_nids++;
2378 }
2379 spin_unlock(&nm_i->nid_list_lock);
2380 radix_tree_preload_end();
2381
2382 if (err)
2383 kmem_cache_free(free_nid_slab, i);
2384 return ret;
2385}
2386
2387static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2388{
2389 struct f2fs_nm_info *nm_i = NM_I(sbi);
2390 struct free_nid *i;
2391 bool need_free = false;
2392
2393 spin_lock(&nm_i->nid_list_lock);
2394 i = __lookup_free_nid_list(nm_i, nid);
2395 if (i && i->state == FREE_NID) {
2396 __remove_free_nid(sbi, i, FREE_NID);
2397 need_free = true;
2398 }
2399 spin_unlock(&nm_i->nid_list_lock);
2400
2401 if (need_free)
2402 kmem_cache_free(free_nid_slab, i);
2403}
2404
2405static int scan_nat_page(struct f2fs_sb_info *sbi,
2406 struct page *nat_page, nid_t start_nid)
2407{
2408 struct f2fs_nm_info *nm_i = NM_I(sbi);
2409 struct f2fs_nat_block *nat_blk = page_address(nat_page);
2410 block_t blk_addr;
2411 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2412 int i;
2413
2414 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2415
2416 i = start_nid % NAT_ENTRY_PER_BLOCK;
2417
2418 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2419 if (unlikely(start_nid >= nm_i->max_nid))
2420 break;
2421
2422 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2423
2424 if (blk_addr == NEW_ADDR)
2425 return -EFSCORRUPTED;
2426
2427 if (blk_addr == NULL_ADDR) {
2428 add_free_nid(sbi, start_nid, true, true);
2429 } else {
2430 spin_lock(&NM_I(sbi)->nid_list_lock);
2431 update_free_nid_bitmap(sbi, start_nid, false, true);
2432 spin_unlock(&NM_I(sbi)->nid_list_lock);
2433 }
2434 }
2435
2436 return 0;
2437}
2438
2439static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2440{
2441 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2442 struct f2fs_journal *journal = curseg->journal;
2443 int i;
2444
2445 down_read(&curseg->journal_rwsem);
2446 for (i = 0; i < nats_in_cursum(journal); i++) {
2447 block_t addr;
2448 nid_t nid;
2449
2450 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2451 nid = le32_to_cpu(nid_in_journal(journal, i));
2452 if (addr == NULL_ADDR)
2453 add_free_nid(sbi, nid, true, false);
2454 else
2455 remove_free_nid(sbi, nid);
2456 }
2457 up_read(&curseg->journal_rwsem);
2458}
2459
2460static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2461{
2462 struct f2fs_nm_info *nm_i = NM_I(sbi);
2463 unsigned int i, idx;
2464 nid_t nid;
2465
2466 f2fs_down_read(&nm_i->nat_tree_lock);
2467
2468 for (i = 0; i < nm_i->nat_blocks; i++) {
2469 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2470 continue;
2471 if (!nm_i->free_nid_count[i])
2472 continue;
2473 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2474 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2475 NAT_ENTRY_PER_BLOCK, idx);
2476 if (idx >= NAT_ENTRY_PER_BLOCK)
2477 break;
2478
2479 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2480 add_free_nid(sbi, nid, true, false);
2481
2482 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2483 goto out;
2484 }
2485 }
2486out:
2487 scan_curseg_cache(sbi);
2488
2489 f2fs_up_read(&nm_i->nat_tree_lock);
2490}
2491
2492static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2493 bool sync, bool mount)
2494{
2495 struct f2fs_nm_info *nm_i = NM_I(sbi);
2496 int i = 0, ret;
2497 nid_t nid = nm_i->next_scan_nid;
2498
2499 if (unlikely(nid >= nm_i->max_nid))
2500 nid = 0;
2501
2502 if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2503 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2504
2505 /* Enough entries */
2506 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2507 return 0;
2508
2509 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2510 return 0;
2511
2512 if (!mount) {
2513 /* try to find free nids in free_nid_bitmap */
2514 scan_free_nid_bits(sbi);
2515
2516 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2517 return 0;
2518 }
2519
2520 /* readahead nat pages to be scanned */
2521 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2522 META_NAT, true);
2523
2524 f2fs_down_read(&nm_i->nat_tree_lock);
2525
2526 while (1) {
2527 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2528 nm_i->nat_block_bitmap)) {
2529 struct page *page = get_current_nat_page(sbi, nid);
2530
2531 if (IS_ERR(page)) {
2532 ret = PTR_ERR(page);
2533 } else {
2534 ret = scan_nat_page(sbi, page, nid);
2535 f2fs_put_page(page, 1);
2536 }
2537
2538 if (ret) {
2539 f2fs_up_read(&nm_i->nat_tree_lock);
2540
2541 if (ret == -EFSCORRUPTED) {
2542 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2543 set_sbi_flag(sbi, SBI_NEED_FSCK);
2544 f2fs_handle_error(sbi,
2545 ERROR_INCONSISTENT_NAT);
2546 }
2547
2548 return ret;
2549 }
2550 }
2551
2552 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2553 if (unlikely(nid >= nm_i->max_nid))
2554 nid = 0;
2555
2556 if (++i >= FREE_NID_PAGES)
2557 break;
2558 }
2559
2560 /* go to the next free nat pages to find free nids abundantly */
2561 nm_i->next_scan_nid = nid;
2562
2563 /* find free nids from current sum_pages */
2564 scan_curseg_cache(sbi);
2565
2566 f2fs_up_read(&nm_i->nat_tree_lock);
2567
2568 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2569 nm_i->ra_nid_pages, META_NAT, false);
2570
2571 return 0;
2572}
2573
2574int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2575{
2576 int ret;
2577
2578 mutex_lock(&NM_I(sbi)->build_lock);
2579 ret = __f2fs_build_free_nids(sbi, sync, mount);
2580 mutex_unlock(&NM_I(sbi)->build_lock);
2581
2582 return ret;
2583}
2584
2585/*
2586 * If this function returns success, caller can obtain a new nid
2587 * from second parameter of this function.
2588 * The returned nid could be used ino as well as nid when inode is created.
2589 */
2590bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2591{
2592 struct f2fs_nm_info *nm_i = NM_I(sbi);
2593 struct free_nid *i = NULL;
2594retry:
2595 if (time_to_inject(sbi, FAULT_ALLOC_NID))
2596 return false;
2597
2598 spin_lock(&nm_i->nid_list_lock);
2599
2600 if (unlikely(nm_i->available_nids == 0)) {
2601 spin_unlock(&nm_i->nid_list_lock);
2602 return false;
2603 }
2604
2605 /* We should not use stale free nids created by f2fs_build_free_nids */
2606 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2607 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2608 i = list_first_entry(&nm_i->free_nid_list,
2609 struct free_nid, list);
2610 *nid = i->nid;
2611
2612 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2613 nm_i->available_nids--;
2614
2615 update_free_nid_bitmap(sbi, *nid, false, false);
2616
2617 spin_unlock(&nm_i->nid_list_lock);
2618 return true;
2619 }
2620 spin_unlock(&nm_i->nid_list_lock);
2621
2622 /* Let's scan nat pages and its caches to get free nids */
2623 if (!f2fs_build_free_nids(sbi, true, false))
2624 goto retry;
2625 return false;
2626}
2627
2628/*
2629 * f2fs_alloc_nid() should be called prior to this function.
2630 */
2631void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2632{
2633 struct f2fs_nm_info *nm_i = NM_I(sbi);
2634 struct free_nid *i;
2635
2636 spin_lock(&nm_i->nid_list_lock);
2637 i = __lookup_free_nid_list(nm_i, nid);
2638 f2fs_bug_on(sbi, !i);
2639 __remove_free_nid(sbi, i, PREALLOC_NID);
2640 spin_unlock(&nm_i->nid_list_lock);
2641
2642 kmem_cache_free(free_nid_slab, i);
2643}
2644
2645/*
2646 * f2fs_alloc_nid() should be called prior to this function.
2647 */
2648void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2649{
2650 struct f2fs_nm_info *nm_i = NM_I(sbi);
2651 struct free_nid *i;
2652 bool need_free = false;
2653
2654 if (!nid)
2655 return;
2656
2657 spin_lock(&nm_i->nid_list_lock);
2658 i = __lookup_free_nid_list(nm_i, nid);
2659 f2fs_bug_on(sbi, !i);
2660
2661 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2662 __remove_free_nid(sbi, i, PREALLOC_NID);
2663 need_free = true;
2664 } else {
2665 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2666 }
2667
2668 nm_i->available_nids++;
2669
2670 update_free_nid_bitmap(sbi, nid, true, false);
2671
2672 spin_unlock(&nm_i->nid_list_lock);
2673
2674 if (need_free)
2675 kmem_cache_free(free_nid_slab, i);
2676}
2677
2678int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2679{
2680 struct f2fs_nm_info *nm_i = NM_I(sbi);
2681 int nr = nr_shrink;
2682
2683 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2684 return 0;
2685
2686 if (!mutex_trylock(&nm_i->build_lock))
2687 return 0;
2688
2689 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2690 struct free_nid *i, *next;
2691 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2692
2693 spin_lock(&nm_i->nid_list_lock);
2694 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2695 if (!nr_shrink || !batch ||
2696 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2697 break;
2698 __remove_free_nid(sbi, i, FREE_NID);
2699 kmem_cache_free(free_nid_slab, i);
2700 nr_shrink--;
2701 batch--;
2702 }
2703 spin_unlock(&nm_i->nid_list_lock);
2704 }
2705
2706 mutex_unlock(&nm_i->build_lock);
2707
2708 return nr - nr_shrink;
2709}
2710
2711int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2712{
2713 void *src_addr, *dst_addr;
2714 size_t inline_size;
2715 struct page *ipage;
2716 struct f2fs_inode *ri;
2717
2718 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2719 if (IS_ERR(ipage))
2720 return PTR_ERR(ipage);
2721
2722 ri = F2FS_INODE(page);
2723 if (ri->i_inline & F2FS_INLINE_XATTR) {
2724 if (!f2fs_has_inline_xattr(inode)) {
2725 set_inode_flag(inode, FI_INLINE_XATTR);
2726 stat_inc_inline_xattr(inode);
2727 }
2728 } else {
2729 if (f2fs_has_inline_xattr(inode)) {
2730 stat_dec_inline_xattr(inode);
2731 clear_inode_flag(inode, FI_INLINE_XATTR);
2732 }
2733 goto update_inode;
2734 }
2735
2736 dst_addr = inline_xattr_addr(inode, ipage);
2737 src_addr = inline_xattr_addr(inode, page);
2738 inline_size = inline_xattr_size(inode);
2739
2740 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2741 memcpy(dst_addr, src_addr, inline_size);
2742update_inode:
2743 f2fs_update_inode(inode, ipage);
2744 f2fs_put_page(ipage, 1);
2745 return 0;
2746}
2747
2748int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2749{
2750 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2751 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2752 nid_t new_xnid;
2753 struct dnode_of_data dn;
2754 struct node_info ni;
2755 struct page *xpage;
2756 int err;
2757
2758 if (!prev_xnid)
2759 goto recover_xnid;
2760
2761 /* 1: invalidate the previous xattr nid */
2762 err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2763 if (err)
2764 return err;
2765
2766 f2fs_invalidate_blocks(sbi, ni.blk_addr);
2767 dec_valid_node_count(sbi, inode, false);
2768 set_node_addr(sbi, &ni, NULL_ADDR, false);
2769
2770recover_xnid:
2771 /* 2: update xattr nid in inode */
2772 if (!f2fs_alloc_nid(sbi, &new_xnid))
2773 return -ENOSPC;
2774
2775 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2776 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2777 if (IS_ERR(xpage)) {
2778 f2fs_alloc_nid_failed(sbi, new_xnid);
2779 return PTR_ERR(xpage);
2780 }
2781
2782 f2fs_alloc_nid_done(sbi, new_xnid);
2783 f2fs_update_inode_page(inode);
2784
2785 /* 3: update and set xattr node page dirty */
2786 if (page) {
2787 memcpy(F2FS_NODE(xpage), F2FS_NODE(page),
2788 VALID_XATTR_BLOCK_SIZE);
2789 set_page_dirty(xpage);
2790 }
2791 f2fs_put_page(xpage, 1);
2792
2793 return 0;
2794}
2795
2796int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2797{
2798 struct f2fs_inode *src, *dst;
2799 nid_t ino = ino_of_node(page);
2800 struct node_info old_ni, new_ni;
2801 struct page *ipage;
2802 int err;
2803
2804 err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2805 if (err)
2806 return err;
2807
2808 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2809 return -EINVAL;
2810retry:
2811 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2812 if (!ipage) {
2813 memalloc_retry_wait(GFP_NOFS);
2814 goto retry;
2815 }
2816
2817 /* Should not use this inode from free nid list */
2818 remove_free_nid(sbi, ino);
2819
2820 if (!PageUptodate(ipage))
2821 SetPageUptodate(ipage);
2822 fill_node_footer(ipage, ino, ino, 0, true);
2823 set_cold_node(ipage, false);
2824
2825 src = F2FS_INODE(page);
2826 dst = F2FS_INODE(ipage);
2827
2828 memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2829 dst->i_size = 0;
2830 dst->i_blocks = cpu_to_le64(1);
2831 dst->i_links = cpu_to_le32(1);
2832 dst->i_xattr_nid = 0;
2833 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2834 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2835 dst->i_extra_isize = src->i_extra_isize;
2836
2837 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2838 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2839 i_inline_xattr_size))
2840 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2841
2842 if (f2fs_sb_has_project_quota(sbi) &&
2843 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2844 i_projid))
2845 dst->i_projid = src->i_projid;
2846
2847 if (f2fs_sb_has_inode_crtime(sbi) &&
2848 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2849 i_crtime_nsec)) {
2850 dst->i_crtime = src->i_crtime;
2851 dst->i_crtime_nsec = src->i_crtime_nsec;
2852 }
2853 }
2854
2855 new_ni = old_ni;
2856 new_ni.ino = ino;
2857
2858 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2859 WARN_ON(1);
2860 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2861 inc_valid_inode_count(sbi);
2862 set_page_dirty(ipage);
2863 f2fs_put_page(ipage, 1);
2864 return 0;
2865}
2866
2867int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2868 unsigned int segno, struct f2fs_summary_block *sum)
2869{
2870 struct f2fs_node *rn;
2871 struct f2fs_summary *sum_entry;
2872 block_t addr;
2873 int i, idx, last_offset, nrpages;
2874
2875 /* scan the node segment */
2876 last_offset = BLKS_PER_SEG(sbi);
2877 addr = START_BLOCK(sbi, segno);
2878 sum_entry = &sum->entries[0];
2879
2880 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2881 nrpages = bio_max_segs(last_offset - i);
2882
2883 /* readahead node pages */
2884 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2885
2886 for (idx = addr; idx < addr + nrpages; idx++) {
2887 struct page *page = f2fs_get_tmp_page(sbi, idx);
2888
2889 if (IS_ERR(page))
2890 return PTR_ERR(page);
2891
2892 rn = F2FS_NODE(page);
2893 sum_entry->nid = rn->footer.nid;
2894 sum_entry->version = 0;
2895 sum_entry->ofs_in_node = 0;
2896 sum_entry++;
2897 f2fs_put_page(page, 1);
2898 }
2899
2900 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2901 addr + nrpages);
2902 }
2903 return 0;
2904}
2905
2906static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2907{
2908 struct f2fs_nm_info *nm_i = NM_I(sbi);
2909 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2910 struct f2fs_journal *journal = curseg->journal;
2911 int i;
2912
2913 down_write(&curseg->journal_rwsem);
2914 for (i = 0; i < nats_in_cursum(journal); i++) {
2915 struct nat_entry *ne;
2916 struct f2fs_nat_entry raw_ne;
2917 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2918
2919 if (f2fs_check_nid_range(sbi, nid))
2920 continue;
2921
2922 raw_ne = nat_in_journal(journal, i);
2923
2924 ne = __lookup_nat_cache(nm_i, nid);
2925 if (!ne) {
2926 ne = __alloc_nat_entry(sbi, nid, true);
2927 __init_nat_entry(nm_i, ne, &raw_ne, true);
2928 }
2929
2930 /*
2931 * if a free nat in journal has not been used after last
2932 * checkpoint, we should remove it from available nids,
2933 * since later we will add it again.
2934 */
2935 if (!get_nat_flag(ne, IS_DIRTY) &&
2936 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2937 spin_lock(&nm_i->nid_list_lock);
2938 nm_i->available_nids--;
2939 spin_unlock(&nm_i->nid_list_lock);
2940 }
2941
2942 __set_nat_cache_dirty(nm_i, ne);
2943 }
2944 update_nats_in_cursum(journal, -i);
2945 up_write(&curseg->journal_rwsem);
2946}
2947
2948static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2949 struct list_head *head, int max)
2950{
2951 struct nat_entry_set *cur;
2952
2953 if (nes->entry_cnt >= max)
2954 goto add_out;
2955
2956 list_for_each_entry(cur, head, set_list) {
2957 if (cur->entry_cnt >= nes->entry_cnt) {
2958 list_add(&nes->set_list, cur->set_list.prev);
2959 return;
2960 }
2961 }
2962add_out:
2963 list_add_tail(&nes->set_list, head);
2964}
2965
2966static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs,
2967 unsigned int valid)
2968{
2969 if (valid == 0) {
2970 __set_bit_le(nat_ofs, nm_i->empty_nat_bits);
2971 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2972 return;
2973 }
2974
2975 __clear_bit_le(nat_ofs, nm_i->empty_nat_bits);
2976 if (valid == NAT_ENTRY_PER_BLOCK)
2977 __set_bit_le(nat_ofs, nm_i->full_nat_bits);
2978 else
2979 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2980}
2981
2982static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2983 struct page *page)
2984{
2985 struct f2fs_nm_info *nm_i = NM_I(sbi);
2986 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2987 struct f2fs_nat_block *nat_blk = page_address(page);
2988 int valid = 0;
2989 int i = 0;
2990
2991 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
2992 return;
2993
2994 if (nat_index == 0) {
2995 valid = 1;
2996 i = 1;
2997 }
2998 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2999 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
3000 valid++;
3001 }
3002
3003 __update_nat_bits(nm_i, nat_index, valid);
3004}
3005
3006void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi)
3007{
3008 struct f2fs_nm_info *nm_i = NM_I(sbi);
3009 unsigned int nat_ofs;
3010
3011 f2fs_down_read(&nm_i->nat_tree_lock);
3012
3013 for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) {
3014 unsigned int valid = 0, nid_ofs = 0;
3015
3016 /* handle nid zero due to it should never be used */
3017 if (unlikely(nat_ofs == 0)) {
3018 valid = 1;
3019 nid_ofs = 1;
3020 }
3021
3022 for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) {
3023 if (!test_bit_le(nid_ofs,
3024 nm_i->free_nid_bitmap[nat_ofs]))
3025 valid++;
3026 }
3027
3028 __update_nat_bits(nm_i, nat_ofs, valid);
3029 }
3030
3031 f2fs_up_read(&nm_i->nat_tree_lock);
3032}
3033
3034static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
3035 struct nat_entry_set *set, struct cp_control *cpc)
3036{
3037 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3038 struct f2fs_journal *journal = curseg->journal;
3039 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
3040 bool to_journal = true;
3041 struct f2fs_nat_block *nat_blk;
3042 struct nat_entry *ne, *cur;
3043 struct page *page = NULL;
3044
3045 /*
3046 * there are two steps to flush nat entries:
3047 * #1, flush nat entries to journal in current hot data summary block.
3048 * #2, flush nat entries to nat page.
3049 */
3050 if ((cpc->reason & CP_UMOUNT) ||
3051 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
3052 to_journal = false;
3053
3054 if (to_journal) {
3055 down_write(&curseg->journal_rwsem);
3056 } else {
3057 page = get_next_nat_page(sbi, start_nid);
3058 if (IS_ERR(page))
3059 return PTR_ERR(page);
3060
3061 nat_blk = page_address(page);
3062 f2fs_bug_on(sbi, !nat_blk);
3063 }
3064
3065 /* flush dirty nats in nat entry set */
3066 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3067 struct f2fs_nat_entry *raw_ne;
3068 nid_t nid = nat_get_nid(ne);
3069 int offset;
3070
3071 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
3072
3073 if (to_journal) {
3074 offset = f2fs_lookup_journal_in_cursum(journal,
3075 NAT_JOURNAL, nid, 1);
3076 f2fs_bug_on(sbi, offset < 0);
3077 raw_ne = &nat_in_journal(journal, offset);
3078 nid_in_journal(journal, offset) = cpu_to_le32(nid);
3079 } else {
3080 raw_ne = &nat_blk->entries[nid - start_nid];
3081 }
3082 raw_nat_from_node_info(raw_ne, &ne->ni);
3083 nat_reset_flag(ne);
3084 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
3085 if (nat_get_blkaddr(ne) == NULL_ADDR) {
3086 add_free_nid(sbi, nid, false, true);
3087 } else {
3088 spin_lock(&NM_I(sbi)->nid_list_lock);
3089 update_free_nid_bitmap(sbi, nid, false, false);
3090 spin_unlock(&NM_I(sbi)->nid_list_lock);
3091 }
3092 }
3093
3094 if (to_journal) {
3095 up_write(&curseg->journal_rwsem);
3096 } else {
3097 update_nat_bits(sbi, start_nid, page);
3098 f2fs_put_page(page, 1);
3099 }
3100
3101 /* Allow dirty nats by node block allocation in write_begin */
3102 if (!set->entry_cnt) {
3103 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3104 kmem_cache_free(nat_entry_set_slab, set);
3105 }
3106 return 0;
3107}
3108
3109/*
3110 * This function is called during the checkpointing process.
3111 */
3112int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3113{
3114 struct f2fs_nm_info *nm_i = NM_I(sbi);
3115 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3116 struct f2fs_journal *journal = curseg->journal;
3117 struct nat_entry_set *setvec[NAT_VEC_SIZE];
3118 struct nat_entry_set *set, *tmp;
3119 unsigned int found;
3120 nid_t set_idx = 0;
3121 LIST_HEAD(sets);
3122 int err = 0;
3123
3124 /*
3125 * during unmount, let's flush nat_bits before checking
3126 * nat_cnt[DIRTY_NAT].
3127 */
3128 if (cpc->reason & CP_UMOUNT) {
3129 f2fs_down_write(&nm_i->nat_tree_lock);
3130 remove_nats_in_journal(sbi);
3131 f2fs_up_write(&nm_i->nat_tree_lock);
3132 }
3133
3134 if (!nm_i->nat_cnt[DIRTY_NAT])
3135 return 0;
3136
3137 f2fs_down_write(&nm_i->nat_tree_lock);
3138
3139 /*
3140 * if there are no enough space in journal to store dirty nat
3141 * entries, remove all entries from journal and merge them
3142 * into nat entry set.
3143 */
3144 if (cpc->reason & CP_UMOUNT ||
3145 !__has_cursum_space(journal,
3146 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3147 remove_nats_in_journal(sbi);
3148
3149 while ((found = __gang_lookup_nat_set(nm_i,
3150 set_idx, NAT_VEC_SIZE, setvec))) {
3151 unsigned idx;
3152
3153 set_idx = setvec[found - 1]->set + 1;
3154 for (idx = 0; idx < found; idx++)
3155 __adjust_nat_entry_set(setvec[idx], &sets,
3156 MAX_NAT_JENTRIES(journal));
3157 }
3158
3159 /* flush dirty nats in nat entry set */
3160 list_for_each_entry_safe(set, tmp, &sets, set_list) {
3161 err = __flush_nat_entry_set(sbi, set, cpc);
3162 if (err)
3163 break;
3164 }
3165
3166 f2fs_up_write(&nm_i->nat_tree_lock);
3167 /* Allow dirty nats by node block allocation in write_begin */
3168
3169 return err;
3170}
3171
3172static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3173{
3174 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3175 struct f2fs_nm_info *nm_i = NM_I(sbi);
3176 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3177 unsigned int i;
3178 __u64 cp_ver = cur_cp_version(ckpt);
3179 block_t nat_bits_addr;
3180
3181 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3182 nm_i->nat_bits = f2fs_kvzalloc(sbi,
3183 F2FS_BLK_TO_BYTES(nm_i->nat_bits_blocks), GFP_KERNEL);
3184 if (!nm_i->nat_bits)
3185 return -ENOMEM;
3186
3187 nm_i->full_nat_bits = nm_i->nat_bits + 8;
3188 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3189
3190 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3191 return 0;
3192
3193 nat_bits_addr = __start_cp_addr(sbi) + BLKS_PER_SEG(sbi) -
3194 nm_i->nat_bits_blocks;
3195 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3196 struct page *page;
3197
3198 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3199 if (IS_ERR(page))
3200 return PTR_ERR(page);
3201
3202 memcpy(nm_i->nat_bits + F2FS_BLK_TO_BYTES(i),
3203 page_address(page), F2FS_BLKSIZE);
3204 f2fs_put_page(page, 1);
3205 }
3206
3207 cp_ver |= (cur_cp_crc(ckpt) << 32);
3208 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3209 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
3210 f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)",
3211 cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits));
3212 return 0;
3213 }
3214
3215 f2fs_notice(sbi, "Found nat_bits in checkpoint");
3216 return 0;
3217}
3218
3219static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3220{
3221 struct f2fs_nm_info *nm_i = NM_I(sbi);
3222 unsigned int i = 0;
3223 nid_t nid, last_nid;
3224
3225 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3226 return;
3227
3228 for (i = 0; i < nm_i->nat_blocks; i++) {
3229 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3230 if (i >= nm_i->nat_blocks)
3231 break;
3232
3233 __set_bit_le(i, nm_i->nat_block_bitmap);
3234
3235 nid = i * NAT_ENTRY_PER_BLOCK;
3236 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3237
3238 spin_lock(&NM_I(sbi)->nid_list_lock);
3239 for (; nid < last_nid; nid++)
3240 update_free_nid_bitmap(sbi, nid, true, true);
3241 spin_unlock(&NM_I(sbi)->nid_list_lock);
3242 }
3243
3244 for (i = 0; i < nm_i->nat_blocks; i++) {
3245 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3246 if (i >= nm_i->nat_blocks)
3247 break;
3248
3249 __set_bit_le(i, nm_i->nat_block_bitmap);
3250 }
3251}
3252
3253static int init_node_manager(struct f2fs_sb_info *sbi)
3254{
3255 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3256 struct f2fs_nm_info *nm_i = NM_I(sbi);
3257 unsigned char *version_bitmap;
3258 unsigned int nat_segs;
3259 int err;
3260
3261 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3262
3263 /* segment_count_nat includes pair segment so divide to 2. */
3264 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3265 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3266 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3267
3268 /* not used nids: 0, node, meta, (and root counted as valid node) */
3269 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3270 F2FS_RESERVED_NODE_NUM;
3271 nm_i->nid_cnt[FREE_NID] = 0;
3272 nm_i->nid_cnt[PREALLOC_NID] = 0;
3273 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3274 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3275 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3276 nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS;
3277
3278 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3279 INIT_LIST_HEAD(&nm_i->free_nid_list);
3280 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3281 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3282 INIT_LIST_HEAD(&nm_i->nat_entries);
3283 spin_lock_init(&nm_i->nat_list_lock);
3284
3285 mutex_init(&nm_i->build_lock);
3286 spin_lock_init(&nm_i->nid_list_lock);
3287 init_f2fs_rwsem(&nm_i->nat_tree_lock);
3288
3289 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3290 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3291 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3292 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3293 GFP_KERNEL);
3294 if (!nm_i->nat_bitmap)
3295 return -ENOMEM;
3296
3297 err = __get_nat_bitmaps(sbi);
3298 if (err)
3299 return err;
3300
3301#ifdef CONFIG_F2FS_CHECK_FS
3302 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3303 GFP_KERNEL);
3304 if (!nm_i->nat_bitmap_mir)
3305 return -ENOMEM;
3306#endif
3307
3308 return 0;
3309}
3310
3311static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3312{
3313 struct f2fs_nm_info *nm_i = NM_I(sbi);
3314 int i;
3315
3316 nm_i->free_nid_bitmap =
3317 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3318 nm_i->nat_blocks),
3319 GFP_KERNEL);
3320 if (!nm_i->free_nid_bitmap)
3321 return -ENOMEM;
3322
3323 for (i = 0; i < nm_i->nat_blocks; i++) {
3324 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3325 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3326 if (!nm_i->free_nid_bitmap[i])
3327 return -ENOMEM;
3328 }
3329
3330 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3331 GFP_KERNEL);
3332 if (!nm_i->nat_block_bitmap)
3333 return -ENOMEM;
3334
3335 nm_i->free_nid_count =
3336 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3337 nm_i->nat_blocks),
3338 GFP_KERNEL);
3339 if (!nm_i->free_nid_count)
3340 return -ENOMEM;
3341 return 0;
3342}
3343
3344int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3345{
3346 int err;
3347
3348 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3349 GFP_KERNEL);
3350 if (!sbi->nm_info)
3351 return -ENOMEM;
3352
3353 err = init_node_manager(sbi);
3354 if (err)
3355 return err;
3356
3357 err = init_free_nid_cache(sbi);
3358 if (err)
3359 return err;
3360
3361 /* load free nid status from nat_bits table */
3362 load_free_nid_bitmap(sbi);
3363
3364 return f2fs_build_free_nids(sbi, true, true);
3365}
3366
3367void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3368{
3369 struct f2fs_nm_info *nm_i = NM_I(sbi);
3370 struct free_nid *i, *next_i;
3371 void *vec[NAT_VEC_SIZE];
3372 struct nat_entry **natvec = (struct nat_entry **)vec;
3373 struct nat_entry_set **setvec = (struct nat_entry_set **)vec;
3374 nid_t nid = 0;
3375 unsigned int found;
3376
3377 if (!nm_i)
3378 return;
3379
3380 /* destroy free nid list */
3381 spin_lock(&nm_i->nid_list_lock);
3382 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3383 __remove_free_nid(sbi, i, FREE_NID);
3384 spin_unlock(&nm_i->nid_list_lock);
3385 kmem_cache_free(free_nid_slab, i);
3386 spin_lock(&nm_i->nid_list_lock);
3387 }
3388 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3389 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3390 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3391 spin_unlock(&nm_i->nid_list_lock);
3392
3393 /* destroy nat cache */
3394 f2fs_down_write(&nm_i->nat_tree_lock);
3395 while ((found = __gang_lookup_nat_cache(nm_i,
3396 nid, NAT_VEC_SIZE, natvec))) {
3397 unsigned idx;
3398
3399 nid = nat_get_nid(natvec[found - 1]) + 1;
3400 for (idx = 0; idx < found; idx++) {
3401 spin_lock(&nm_i->nat_list_lock);
3402 list_del(&natvec[idx]->list);
3403 spin_unlock(&nm_i->nat_list_lock);
3404
3405 __del_from_nat_cache(nm_i, natvec[idx]);
3406 }
3407 }
3408 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3409
3410 /* destroy nat set cache */
3411 nid = 0;
3412 memset(vec, 0, sizeof(void *) * NAT_VEC_SIZE);
3413 while ((found = __gang_lookup_nat_set(nm_i,
3414 nid, NAT_VEC_SIZE, setvec))) {
3415 unsigned idx;
3416
3417 nid = setvec[found - 1]->set + 1;
3418 for (idx = 0; idx < found; idx++) {
3419 /* entry_cnt is not zero, when cp_error was occurred */
3420 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3421 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3422 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3423 }
3424 }
3425 f2fs_up_write(&nm_i->nat_tree_lock);
3426
3427 kvfree(nm_i->nat_block_bitmap);
3428 if (nm_i->free_nid_bitmap) {
3429 int i;
3430
3431 for (i = 0; i < nm_i->nat_blocks; i++)
3432 kvfree(nm_i->free_nid_bitmap[i]);
3433 kvfree(nm_i->free_nid_bitmap);
3434 }
3435 kvfree(nm_i->free_nid_count);
3436
3437 kvfree(nm_i->nat_bitmap);
3438 kvfree(nm_i->nat_bits);
3439#ifdef CONFIG_F2FS_CHECK_FS
3440 kvfree(nm_i->nat_bitmap_mir);
3441#endif
3442 sbi->nm_info = NULL;
3443 kfree(nm_i);
3444}
3445
3446int __init f2fs_create_node_manager_caches(void)
3447{
3448 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3449 sizeof(struct nat_entry));
3450 if (!nat_entry_slab)
3451 goto fail;
3452
3453 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3454 sizeof(struct free_nid));
3455 if (!free_nid_slab)
3456 goto destroy_nat_entry;
3457
3458 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3459 sizeof(struct nat_entry_set));
3460 if (!nat_entry_set_slab)
3461 goto destroy_free_nid;
3462
3463 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3464 sizeof(struct fsync_node_entry));
3465 if (!fsync_node_entry_slab)
3466 goto destroy_nat_entry_set;
3467 return 0;
3468
3469destroy_nat_entry_set:
3470 kmem_cache_destroy(nat_entry_set_slab);
3471destroy_free_nid:
3472 kmem_cache_destroy(free_nid_slab);
3473destroy_nat_entry:
3474 kmem_cache_destroy(nat_entry_slab);
3475fail:
3476 return -ENOMEM;
3477}
3478
3479void f2fs_destroy_node_manager_caches(void)
3480{
3481 kmem_cache_destroy(fsync_node_entry_slab);
3482 kmem_cache_destroy(nat_entry_set_slab);
3483 kmem_cache_destroy(free_nid_slab);
3484 kmem_cache_destroy(nat_entry_slab);
3485}