Loading...
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6#include <linux/ftrace_event.h>
7#include <linux/ring_buffer.h>
8#include <linux/trace_clock.h>
9#include <linux/trace_seq.h>
10#include <linux/spinlock.h>
11#include <linux/irq_work.h>
12#include <linux/debugfs.h>
13#include <linux/uaccess.h>
14#include <linux/hardirq.h>
15#include <linux/kthread.h> /* for self test */
16#include <linux/kmemcheck.h>
17#include <linux/module.h>
18#include <linux/percpu.h>
19#include <linux/mutex.h>
20#include <linux/delay.h>
21#include <linux/slab.h>
22#include <linux/init.h>
23#include <linux/hash.h>
24#include <linux/list.h>
25#include <linux/cpu.h>
26#include <linux/fs.h>
27
28#include <asm/local.h>
29
30static void update_pages_handler(struct work_struct *work);
31
32/*
33 * The ring buffer header is special. We must manually up keep it.
34 */
35int ring_buffer_print_entry_header(struct trace_seq *s)
36{
37 int ret;
38
39 ret = trace_seq_puts(s, "# compressed entry header\n");
40 ret = trace_seq_puts(s, "\ttype_len : 5 bits\n");
41 ret = trace_seq_puts(s, "\ttime_delta : 27 bits\n");
42 ret = trace_seq_puts(s, "\tarray : 32 bits\n");
43 ret = trace_seq_putc(s, '\n');
44 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
45 RINGBUF_TYPE_PADDING);
46 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
47 RINGBUF_TYPE_TIME_EXTEND);
48 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
49 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
50
51 return ret;
52}
53
54/*
55 * The ring buffer is made up of a list of pages. A separate list of pages is
56 * allocated for each CPU. A writer may only write to a buffer that is
57 * associated with the CPU it is currently executing on. A reader may read
58 * from any per cpu buffer.
59 *
60 * The reader is special. For each per cpu buffer, the reader has its own
61 * reader page. When a reader has read the entire reader page, this reader
62 * page is swapped with another page in the ring buffer.
63 *
64 * Now, as long as the writer is off the reader page, the reader can do what
65 * ever it wants with that page. The writer will never write to that page
66 * again (as long as it is out of the ring buffer).
67 *
68 * Here's some silly ASCII art.
69 *
70 * +------+
71 * |reader| RING BUFFER
72 * |page |
73 * +------+ +---+ +---+ +---+
74 * | |-->| |-->| |
75 * +---+ +---+ +---+
76 * ^ |
77 * | |
78 * +---------------+
79 *
80 *
81 * +------+
82 * |reader| RING BUFFER
83 * |page |------------------v
84 * +------+ +---+ +---+ +---+
85 * | |-->| |-->| |
86 * +---+ +---+ +---+
87 * ^ |
88 * | |
89 * +---------------+
90 *
91 *
92 * +------+
93 * |reader| RING BUFFER
94 * |page |------------------v
95 * +------+ +---+ +---+ +---+
96 * ^ | |-->| |-->| |
97 * | +---+ +---+ +---+
98 * | |
99 * | |
100 * +------------------------------+
101 *
102 *
103 * +------+
104 * |buffer| RING BUFFER
105 * |page |------------------v
106 * +------+ +---+ +---+ +---+
107 * ^ | | | |-->| |
108 * | New +---+ +---+ +---+
109 * | Reader------^ |
110 * | page |
111 * +------------------------------+
112 *
113 *
114 * After we make this swap, the reader can hand this page off to the splice
115 * code and be done with it. It can even allocate a new page if it needs to
116 * and swap that into the ring buffer.
117 *
118 * We will be using cmpxchg soon to make all this lockless.
119 *
120 */
121
122/*
123 * A fast way to enable or disable all ring buffers is to
124 * call tracing_on or tracing_off. Turning off the ring buffers
125 * prevents all ring buffers from being recorded to.
126 * Turning this switch on, makes it OK to write to the
127 * ring buffer, if the ring buffer is enabled itself.
128 *
129 * There's three layers that must be on in order to write
130 * to the ring buffer.
131 *
132 * 1) This global flag must be set.
133 * 2) The ring buffer must be enabled for recording.
134 * 3) The per cpu buffer must be enabled for recording.
135 *
136 * In case of an anomaly, this global flag has a bit set that
137 * will permantly disable all ring buffers.
138 */
139
140/*
141 * Global flag to disable all recording to ring buffers
142 * This has two bits: ON, DISABLED
143 *
144 * ON DISABLED
145 * ---- ----------
146 * 0 0 : ring buffers are off
147 * 1 0 : ring buffers are on
148 * X 1 : ring buffers are permanently disabled
149 */
150
151enum {
152 RB_BUFFERS_ON_BIT = 0,
153 RB_BUFFERS_DISABLED_BIT = 1,
154};
155
156enum {
157 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
158 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
159};
160
161static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
162
163/* Used for individual buffers (after the counter) */
164#define RB_BUFFER_OFF (1 << 20)
165
166#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
167
168/**
169 * tracing_off_permanent - permanently disable ring buffers
170 *
171 * This function, once called, will disable all ring buffers
172 * permanently.
173 */
174void tracing_off_permanent(void)
175{
176 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
177}
178
179#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
180#define RB_ALIGNMENT 4U
181#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
182#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
183
184#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
185# define RB_FORCE_8BYTE_ALIGNMENT 0
186# define RB_ARCH_ALIGNMENT RB_ALIGNMENT
187#else
188# define RB_FORCE_8BYTE_ALIGNMENT 1
189# define RB_ARCH_ALIGNMENT 8U
190#endif
191
192#define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
193
194/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
195#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
196
197enum {
198 RB_LEN_TIME_EXTEND = 8,
199 RB_LEN_TIME_STAMP = 16,
200};
201
202#define skip_time_extend(event) \
203 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
204
205static inline int rb_null_event(struct ring_buffer_event *event)
206{
207 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
208}
209
210static void rb_event_set_padding(struct ring_buffer_event *event)
211{
212 /* padding has a NULL time_delta */
213 event->type_len = RINGBUF_TYPE_PADDING;
214 event->time_delta = 0;
215}
216
217static unsigned
218rb_event_data_length(struct ring_buffer_event *event)
219{
220 unsigned length;
221
222 if (event->type_len)
223 length = event->type_len * RB_ALIGNMENT;
224 else
225 length = event->array[0];
226 return length + RB_EVNT_HDR_SIZE;
227}
228
229/*
230 * Return the length of the given event. Will return
231 * the length of the time extend if the event is a
232 * time extend.
233 */
234static inline unsigned
235rb_event_length(struct ring_buffer_event *event)
236{
237 switch (event->type_len) {
238 case RINGBUF_TYPE_PADDING:
239 if (rb_null_event(event))
240 /* undefined */
241 return -1;
242 return event->array[0] + RB_EVNT_HDR_SIZE;
243
244 case RINGBUF_TYPE_TIME_EXTEND:
245 return RB_LEN_TIME_EXTEND;
246
247 case RINGBUF_TYPE_TIME_STAMP:
248 return RB_LEN_TIME_STAMP;
249
250 case RINGBUF_TYPE_DATA:
251 return rb_event_data_length(event);
252 default:
253 BUG();
254 }
255 /* not hit */
256 return 0;
257}
258
259/*
260 * Return total length of time extend and data,
261 * or just the event length for all other events.
262 */
263static inline unsigned
264rb_event_ts_length(struct ring_buffer_event *event)
265{
266 unsigned len = 0;
267
268 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
269 /* time extends include the data event after it */
270 len = RB_LEN_TIME_EXTEND;
271 event = skip_time_extend(event);
272 }
273 return len + rb_event_length(event);
274}
275
276/**
277 * ring_buffer_event_length - return the length of the event
278 * @event: the event to get the length of
279 *
280 * Returns the size of the data load of a data event.
281 * If the event is something other than a data event, it
282 * returns the size of the event itself. With the exception
283 * of a TIME EXTEND, where it still returns the size of the
284 * data load of the data event after it.
285 */
286unsigned ring_buffer_event_length(struct ring_buffer_event *event)
287{
288 unsigned length;
289
290 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
291 event = skip_time_extend(event);
292
293 length = rb_event_length(event);
294 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
295 return length;
296 length -= RB_EVNT_HDR_SIZE;
297 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
298 length -= sizeof(event->array[0]);
299 return length;
300}
301EXPORT_SYMBOL_GPL(ring_buffer_event_length);
302
303/* inline for ring buffer fast paths */
304static void *
305rb_event_data(struct ring_buffer_event *event)
306{
307 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
308 event = skip_time_extend(event);
309 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
310 /* If length is in len field, then array[0] has the data */
311 if (event->type_len)
312 return (void *)&event->array[0];
313 /* Otherwise length is in array[0] and array[1] has the data */
314 return (void *)&event->array[1];
315}
316
317/**
318 * ring_buffer_event_data - return the data of the event
319 * @event: the event to get the data from
320 */
321void *ring_buffer_event_data(struct ring_buffer_event *event)
322{
323 return rb_event_data(event);
324}
325EXPORT_SYMBOL_GPL(ring_buffer_event_data);
326
327#define for_each_buffer_cpu(buffer, cpu) \
328 for_each_cpu(cpu, buffer->cpumask)
329
330#define TS_SHIFT 27
331#define TS_MASK ((1ULL << TS_SHIFT) - 1)
332#define TS_DELTA_TEST (~TS_MASK)
333
334/* Flag when events were overwritten */
335#define RB_MISSED_EVENTS (1 << 31)
336/* Missed count stored at end */
337#define RB_MISSED_STORED (1 << 30)
338
339struct buffer_data_page {
340 u64 time_stamp; /* page time stamp */
341 local_t commit; /* write committed index */
342 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
343};
344
345/*
346 * Note, the buffer_page list must be first. The buffer pages
347 * are allocated in cache lines, which means that each buffer
348 * page will be at the beginning of a cache line, and thus
349 * the least significant bits will be zero. We use this to
350 * add flags in the list struct pointers, to make the ring buffer
351 * lockless.
352 */
353struct buffer_page {
354 struct list_head list; /* list of buffer pages */
355 local_t write; /* index for next write */
356 unsigned read; /* index for next read */
357 local_t entries; /* entries on this page */
358 unsigned long real_end; /* real end of data */
359 struct buffer_data_page *page; /* Actual data page */
360};
361
362/*
363 * The buffer page counters, write and entries, must be reset
364 * atomically when crossing page boundaries. To synchronize this
365 * update, two counters are inserted into the number. One is
366 * the actual counter for the write position or count on the page.
367 *
368 * The other is a counter of updaters. Before an update happens
369 * the update partition of the counter is incremented. This will
370 * allow the updater to update the counter atomically.
371 *
372 * The counter is 20 bits, and the state data is 12.
373 */
374#define RB_WRITE_MASK 0xfffff
375#define RB_WRITE_INTCNT (1 << 20)
376
377static void rb_init_page(struct buffer_data_page *bpage)
378{
379 local_set(&bpage->commit, 0);
380}
381
382/**
383 * ring_buffer_page_len - the size of data on the page.
384 * @page: The page to read
385 *
386 * Returns the amount of data on the page, including buffer page header.
387 */
388size_t ring_buffer_page_len(void *page)
389{
390 return local_read(&((struct buffer_data_page *)page)->commit)
391 + BUF_PAGE_HDR_SIZE;
392}
393
394/*
395 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
396 * this issue out.
397 */
398static void free_buffer_page(struct buffer_page *bpage)
399{
400 free_page((unsigned long)bpage->page);
401 kfree(bpage);
402}
403
404/*
405 * We need to fit the time_stamp delta into 27 bits.
406 */
407static inline int test_time_stamp(u64 delta)
408{
409 if (delta & TS_DELTA_TEST)
410 return 1;
411 return 0;
412}
413
414#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
415
416/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
417#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
418
419int ring_buffer_print_page_header(struct trace_seq *s)
420{
421 struct buffer_data_page field;
422 int ret;
423
424 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
425 "offset:0;\tsize:%u;\tsigned:%u;\n",
426 (unsigned int)sizeof(field.time_stamp),
427 (unsigned int)is_signed_type(u64));
428
429 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
430 "offset:%u;\tsize:%u;\tsigned:%u;\n",
431 (unsigned int)offsetof(typeof(field), commit),
432 (unsigned int)sizeof(field.commit),
433 (unsigned int)is_signed_type(long));
434
435 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
436 "offset:%u;\tsize:%u;\tsigned:%u;\n",
437 (unsigned int)offsetof(typeof(field), commit),
438 1,
439 (unsigned int)is_signed_type(long));
440
441 ret = trace_seq_printf(s, "\tfield: char data;\t"
442 "offset:%u;\tsize:%u;\tsigned:%u;\n",
443 (unsigned int)offsetof(typeof(field), data),
444 (unsigned int)BUF_PAGE_SIZE,
445 (unsigned int)is_signed_type(char));
446
447 return ret;
448}
449
450struct rb_irq_work {
451 struct irq_work work;
452 wait_queue_head_t waiters;
453 bool waiters_pending;
454};
455
456/*
457 * head_page == tail_page && head == tail then buffer is empty.
458 */
459struct ring_buffer_per_cpu {
460 int cpu;
461 atomic_t record_disabled;
462 struct ring_buffer *buffer;
463 raw_spinlock_t reader_lock; /* serialize readers */
464 arch_spinlock_t lock;
465 struct lock_class_key lock_key;
466 unsigned int nr_pages;
467 struct list_head *pages;
468 struct buffer_page *head_page; /* read from head */
469 struct buffer_page *tail_page; /* write to tail */
470 struct buffer_page *commit_page; /* committed pages */
471 struct buffer_page *reader_page;
472 unsigned long lost_events;
473 unsigned long last_overrun;
474 local_t entries_bytes;
475 local_t entries;
476 local_t overrun;
477 local_t commit_overrun;
478 local_t dropped_events;
479 local_t committing;
480 local_t commits;
481 unsigned long read;
482 unsigned long read_bytes;
483 u64 write_stamp;
484 u64 read_stamp;
485 /* ring buffer pages to update, > 0 to add, < 0 to remove */
486 int nr_pages_to_update;
487 struct list_head new_pages; /* new pages to add */
488 struct work_struct update_pages_work;
489 struct completion update_done;
490
491 struct rb_irq_work irq_work;
492};
493
494struct ring_buffer {
495 unsigned flags;
496 int cpus;
497 atomic_t record_disabled;
498 atomic_t resize_disabled;
499 cpumask_var_t cpumask;
500
501 struct lock_class_key *reader_lock_key;
502
503 struct mutex mutex;
504
505 struct ring_buffer_per_cpu **buffers;
506
507#ifdef CONFIG_HOTPLUG_CPU
508 struct notifier_block cpu_notify;
509#endif
510 u64 (*clock)(void);
511
512 struct rb_irq_work irq_work;
513};
514
515struct ring_buffer_iter {
516 struct ring_buffer_per_cpu *cpu_buffer;
517 unsigned long head;
518 struct buffer_page *head_page;
519 struct buffer_page *cache_reader_page;
520 unsigned long cache_read;
521 u64 read_stamp;
522};
523
524/*
525 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
526 *
527 * Schedules a delayed work to wake up any task that is blocked on the
528 * ring buffer waiters queue.
529 */
530static void rb_wake_up_waiters(struct irq_work *work)
531{
532 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
533
534 wake_up_all(&rbwork->waiters);
535}
536
537/**
538 * ring_buffer_wait - wait for input to the ring buffer
539 * @buffer: buffer to wait on
540 * @cpu: the cpu buffer to wait on
541 *
542 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
543 * as data is added to any of the @buffer's cpu buffers. Otherwise
544 * it will wait for data to be added to a specific cpu buffer.
545 */
546void ring_buffer_wait(struct ring_buffer *buffer, int cpu)
547{
548 struct ring_buffer_per_cpu *cpu_buffer;
549 DEFINE_WAIT(wait);
550 struct rb_irq_work *work;
551
552 /*
553 * Depending on what the caller is waiting for, either any
554 * data in any cpu buffer, or a specific buffer, put the
555 * caller on the appropriate wait queue.
556 */
557 if (cpu == RING_BUFFER_ALL_CPUS)
558 work = &buffer->irq_work;
559 else {
560 cpu_buffer = buffer->buffers[cpu];
561 work = &cpu_buffer->irq_work;
562 }
563
564
565 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
566
567 /*
568 * The events can happen in critical sections where
569 * checking a work queue can cause deadlocks.
570 * After adding a task to the queue, this flag is set
571 * only to notify events to try to wake up the queue
572 * using irq_work.
573 *
574 * We don't clear it even if the buffer is no longer
575 * empty. The flag only causes the next event to run
576 * irq_work to do the work queue wake up. The worse
577 * that can happen if we race with !trace_empty() is that
578 * an event will cause an irq_work to try to wake up
579 * an empty queue.
580 *
581 * There's no reason to protect this flag either, as
582 * the work queue and irq_work logic will do the necessary
583 * synchronization for the wake ups. The only thing
584 * that is necessary is that the wake up happens after
585 * a task has been queued. It's OK for spurious wake ups.
586 */
587 work->waiters_pending = true;
588
589 if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) ||
590 (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu)))
591 schedule();
592
593 finish_wait(&work->waiters, &wait);
594}
595
596/**
597 * ring_buffer_poll_wait - poll on buffer input
598 * @buffer: buffer to wait on
599 * @cpu: the cpu buffer to wait on
600 * @filp: the file descriptor
601 * @poll_table: The poll descriptor
602 *
603 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
604 * as data is added to any of the @buffer's cpu buffers. Otherwise
605 * it will wait for data to be added to a specific cpu buffer.
606 *
607 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
608 * zero otherwise.
609 */
610int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
611 struct file *filp, poll_table *poll_table)
612{
613 struct ring_buffer_per_cpu *cpu_buffer;
614 struct rb_irq_work *work;
615
616 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
617 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
618 return POLLIN | POLLRDNORM;
619
620 if (cpu == RING_BUFFER_ALL_CPUS)
621 work = &buffer->irq_work;
622 else {
623 if (!cpumask_test_cpu(cpu, buffer->cpumask))
624 return -EINVAL;
625
626 cpu_buffer = buffer->buffers[cpu];
627 work = &cpu_buffer->irq_work;
628 }
629
630 work->waiters_pending = true;
631 poll_wait(filp, &work->waiters, poll_table);
632
633 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
634 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
635 return POLLIN | POLLRDNORM;
636 return 0;
637}
638
639/* buffer may be either ring_buffer or ring_buffer_per_cpu */
640#define RB_WARN_ON(b, cond) \
641 ({ \
642 int _____ret = unlikely(cond); \
643 if (_____ret) { \
644 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
645 struct ring_buffer_per_cpu *__b = \
646 (void *)b; \
647 atomic_inc(&__b->buffer->record_disabled); \
648 } else \
649 atomic_inc(&b->record_disabled); \
650 WARN_ON(1); \
651 } \
652 _____ret; \
653 })
654
655/* Up this if you want to test the TIME_EXTENTS and normalization */
656#define DEBUG_SHIFT 0
657
658static inline u64 rb_time_stamp(struct ring_buffer *buffer)
659{
660 /* shift to debug/test normalization and TIME_EXTENTS */
661 return buffer->clock() << DEBUG_SHIFT;
662}
663
664u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
665{
666 u64 time;
667
668 preempt_disable_notrace();
669 time = rb_time_stamp(buffer);
670 preempt_enable_no_resched_notrace();
671
672 return time;
673}
674EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
675
676void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
677 int cpu, u64 *ts)
678{
679 /* Just stupid testing the normalize function and deltas */
680 *ts >>= DEBUG_SHIFT;
681}
682EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
683
684/*
685 * Making the ring buffer lockless makes things tricky.
686 * Although writes only happen on the CPU that they are on,
687 * and they only need to worry about interrupts. Reads can
688 * happen on any CPU.
689 *
690 * The reader page is always off the ring buffer, but when the
691 * reader finishes with a page, it needs to swap its page with
692 * a new one from the buffer. The reader needs to take from
693 * the head (writes go to the tail). But if a writer is in overwrite
694 * mode and wraps, it must push the head page forward.
695 *
696 * Here lies the problem.
697 *
698 * The reader must be careful to replace only the head page, and
699 * not another one. As described at the top of the file in the
700 * ASCII art, the reader sets its old page to point to the next
701 * page after head. It then sets the page after head to point to
702 * the old reader page. But if the writer moves the head page
703 * during this operation, the reader could end up with the tail.
704 *
705 * We use cmpxchg to help prevent this race. We also do something
706 * special with the page before head. We set the LSB to 1.
707 *
708 * When the writer must push the page forward, it will clear the
709 * bit that points to the head page, move the head, and then set
710 * the bit that points to the new head page.
711 *
712 * We also don't want an interrupt coming in and moving the head
713 * page on another writer. Thus we use the second LSB to catch
714 * that too. Thus:
715 *
716 * head->list->prev->next bit 1 bit 0
717 * ------- -------
718 * Normal page 0 0
719 * Points to head page 0 1
720 * New head page 1 0
721 *
722 * Note we can not trust the prev pointer of the head page, because:
723 *
724 * +----+ +-----+ +-----+
725 * | |------>| T |---X--->| N |
726 * | |<------| | | |
727 * +----+ +-----+ +-----+
728 * ^ ^ |
729 * | +-----+ | |
730 * +----------| R |----------+ |
731 * | |<-----------+
732 * +-----+
733 *
734 * Key: ---X--> HEAD flag set in pointer
735 * T Tail page
736 * R Reader page
737 * N Next page
738 *
739 * (see __rb_reserve_next() to see where this happens)
740 *
741 * What the above shows is that the reader just swapped out
742 * the reader page with a page in the buffer, but before it
743 * could make the new header point back to the new page added
744 * it was preempted by a writer. The writer moved forward onto
745 * the new page added by the reader and is about to move forward
746 * again.
747 *
748 * You can see, it is legitimate for the previous pointer of
749 * the head (or any page) not to point back to itself. But only
750 * temporarially.
751 */
752
753#define RB_PAGE_NORMAL 0UL
754#define RB_PAGE_HEAD 1UL
755#define RB_PAGE_UPDATE 2UL
756
757
758#define RB_FLAG_MASK 3UL
759
760/* PAGE_MOVED is not part of the mask */
761#define RB_PAGE_MOVED 4UL
762
763/*
764 * rb_list_head - remove any bit
765 */
766static struct list_head *rb_list_head(struct list_head *list)
767{
768 unsigned long val = (unsigned long)list;
769
770 return (struct list_head *)(val & ~RB_FLAG_MASK);
771}
772
773/*
774 * rb_is_head_page - test if the given page is the head page
775 *
776 * Because the reader may move the head_page pointer, we can
777 * not trust what the head page is (it may be pointing to
778 * the reader page). But if the next page is a header page,
779 * its flags will be non zero.
780 */
781static inline int
782rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
783 struct buffer_page *page, struct list_head *list)
784{
785 unsigned long val;
786
787 val = (unsigned long)list->next;
788
789 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
790 return RB_PAGE_MOVED;
791
792 return val & RB_FLAG_MASK;
793}
794
795/*
796 * rb_is_reader_page
797 *
798 * The unique thing about the reader page, is that, if the
799 * writer is ever on it, the previous pointer never points
800 * back to the reader page.
801 */
802static int rb_is_reader_page(struct buffer_page *page)
803{
804 struct list_head *list = page->list.prev;
805
806 return rb_list_head(list->next) != &page->list;
807}
808
809/*
810 * rb_set_list_to_head - set a list_head to be pointing to head.
811 */
812static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
813 struct list_head *list)
814{
815 unsigned long *ptr;
816
817 ptr = (unsigned long *)&list->next;
818 *ptr |= RB_PAGE_HEAD;
819 *ptr &= ~RB_PAGE_UPDATE;
820}
821
822/*
823 * rb_head_page_activate - sets up head page
824 */
825static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
826{
827 struct buffer_page *head;
828
829 head = cpu_buffer->head_page;
830 if (!head)
831 return;
832
833 /*
834 * Set the previous list pointer to have the HEAD flag.
835 */
836 rb_set_list_to_head(cpu_buffer, head->list.prev);
837}
838
839static void rb_list_head_clear(struct list_head *list)
840{
841 unsigned long *ptr = (unsigned long *)&list->next;
842
843 *ptr &= ~RB_FLAG_MASK;
844}
845
846/*
847 * rb_head_page_dactivate - clears head page ptr (for free list)
848 */
849static void
850rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
851{
852 struct list_head *hd;
853
854 /* Go through the whole list and clear any pointers found. */
855 rb_list_head_clear(cpu_buffer->pages);
856
857 list_for_each(hd, cpu_buffer->pages)
858 rb_list_head_clear(hd);
859}
860
861static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
862 struct buffer_page *head,
863 struct buffer_page *prev,
864 int old_flag, int new_flag)
865{
866 struct list_head *list;
867 unsigned long val = (unsigned long)&head->list;
868 unsigned long ret;
869
870 list = &prev->list;
871
872 val &= ~RB_FLAG_MASK;
873
874 ret = cmpxchg((unsigned long *)&list->next,
875 val | old_flag, val | new_flag);
876
877 /* check if the reader took the page */
878 if ((ret & ~RB_FLAG_MASK) != val)
879 return RB_PAGE_MOVED;
880
881 return ret & RB_FLAG_MASK;
882}
883
884static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
885 struct buffer_page *head,
886 struct buffer_page *prev,
887 int old_flag)
888{
889 return rb_head_page_set(cpu_buffer, head, prev,
890 old_flag, RB_PAGE_UPDATE);
891}
892
893static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
894 struct buffer_page *head,
895 struct buffer_page *prev,
896 int old_flag)
897{
898 return rb_head_page_set(cpu_buffer, head, prev,
899 old_flag, RB_PAGE_HEAD);
900}
901
902static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
903 struct buffer_page *head,
904 struct buffer_page *prev,
905 int old_flag)
906{
907 return rb_head_page_set(cpu_buffer, head, prev,
908 old_flag, RB_PAGE_NORMAL);
909}
910
911static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
912 struct buffer_page **bpage)
913{
914 struct list_head *p = rb_list_head((*bpage)->list.next);
915
916 *bpage = list_entry(p, struct buffer_page, list);
917}
918
919static struct buffer_page *
920rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
921{
922 struct buffer_page *head;
923 struct buffer_page *page;
924 struct list_head *list;
925 int i;
926
927 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
928 return NULL;
929
930 /* sanity check */
931 list = cpu_buffer->pages;
932 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
933 return NULL;
934
935 page = head = cpu_buffer->head_page;
936 /*
937 * It is possible that the writer moves the header behind
938 * where we started, and we miss in one loop.
939 * A second loop should grab the header, but we'll do
940 * three loops just because I'm paranoid.
941 */
942 for (i = 0; i < 3; i++) {
943 do {
944 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
945 cpu_buffer->head_page = page;
946 return page;
947 }
948 rb_inc_page(cpu_buffer, &page);
949 } while (page != head);
950 }
951
952 RB_WARN_ON(cpu_buffer, 1);
953
954 return NULL;
955}
956
957static int rb_head_page_replace(struct buffer_page *old,
958 struct buffer_page *new)
959{
960 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
961 unsigned long val;
962 unsigned long ret;
963
964 val = *ptr & ~RB_FLAG_MASK;
965 val |= RB_PAGE_HEAD;
966
967 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
968
969 return ret == val;
970}
971
972/*
973 * rb_tail_page_update - move the tail page forward
974 *
975 * Returns 1 if moved tail page, 0 if someone else did.
976 */
977static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
978 struct buffer_page *tail_page,
979 struct buffer_page *next_page)
980{
981 struct buffer_page *old_tail;
982 unsigned long old_entries;
983 unsigned long old_write;
984 int ret = 0;
985
986 /*
987 * The tail page now needs to be moved forward.
988 *
989 * We need to reset the tail page, but without messing
990 * with possible erasing of data brought in by interrupts
991 * that have moved the tail page and are currently on it.
992 *
993 * We add a counter to the write field to denote this.
994 */
995 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
996 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
997
998 /*
999 * Just make sure we have seen our old_write and synchronize
1000 * with any interrupts that come in.
1001 */
1002 barrier();
1003
1004 /*
1005 * If the tail page is still the same as what we think
1006 * it is, then it is up to us to update the tail
1007 * pointer.
1008 */
1009 if (tail_page == cpu_buffer->tail_page) {
1010 /* Zero the write counter */
1011 unsigned long val = old_write & ~RB_WRITE_MASK;
1012 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1013
1014 /*
1015 * This will only succeed if an interrupt did
1016 * not come in and change it. In which case, we
1017 * do not want to modify it.
1018 *
1019 * We add (void) to let the compiler know that we do not care
1020 * about the return value of these functions. We use the
1021 * cmpxchg to only update if an interrupt did not already
1022 * do it for us. If the cmpxchg fails, we don't care.
1023 */
1024 (void)local_cmpxchg(&next_page->write, old_write, val);
1025 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1026
1027 /*
1028 * No need to worry about races with clearing out the commit.
1029 * it only can increment when a commit takes place. But that
1030 * only happens in the outer most nested commit.
1031 */
1032 local_set(&next_page->page->commit, 0);
1033
1034 old_tail = cmpxchg(&cpu_buffer->tail_page,
1035 tail_page, next_page);
1036
1037 if (old_tail == tail_page)
1038 ret = 1;
1039 }
1040
1041 return ret;
1042}
1043
1044static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1045 struct buffer_page *bpage)
1046{
1047 unsigned long val = (unsigned long)bpage;
1048
1049 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1050 return 1;
1051
1052 return 0;
1053}
1054
1055/**
1056 * rb_check_list - make sure a pointer to a list has the last bits zero
1057 */
1058static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1059 struct list_head *list)
1060{
1061 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1062 return 1;
1063 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1064 return 1;
1065 return 0;
1066}
1067
1068/**
1069 * rb_check_pages - integrity check of buffer pages
1070 * @cpu_buffer: CPU buffer with pages to test
1071 *
1072 * As a safety measure we check to make sure the data pages have not
1073 * been corrupted.
1074 */
1075static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1076{
1077 struct list_head *head = cpu_buffer->pages;
1078 struct buffer_page *bpage, *tmp;
1079
1080 /* Reset the head page if it exists */
1081 if (cpu_buffer->head_page)
1082 rb_set_head_page(cpu_buffer);
1083
1084 rb_head_page_deactivate(cpu_buffer);
1085
1086 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1087 return -1;
1088 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1089 return -1;
1090
1091 if (rb_check_list(cpu_buffer, head))
1092 return -1;
1093
1094 list_for_each_entry_safe(bpage, tmp, head, list) {
1095 if (RB_WARN_ON(cpu_buffer,
1096 bpage->list.next->prev != &bpage->list))
1097 return -1;
1098 if (RB_WARN_ON(cpu_buffer,
1099 bpage->list.prev->next != &bpage->list))
1100 return -1;
1101 if (rb_check_list(cpu_buffer, &bpage->list))
1102 return -1;
1103 }
1104
1105 rb_head_page_activate(cpu_buffer);
1106
1107 return 0;
1108}
1109
1110static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1111{
1112 int i;
1113 struct buffer_page *bpage, *tmp;
1114
1115 for (i = 0; i < nr_pages; i++) {
1116 struct page *page;
1117 /*
1118 * __GFP_NORETRY flag makes sure that the allocation fails
1119 * gracefully without invoking oom-killer and the system is
1120 * not destabilized.
1121 */
1122 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1123 GFP_KERNEL | __GFP_NORETRY,
1124 cpu_to_node(cpu));
1125 if (!bpage)
1126 goto free_pages;
1127
1128 list_add(&bpage->list, pages);
1129
1130 page = alloc_pages_node(cpu_to_node(cpu),
1131 GFP_KERNEL | __GFP_NORETRY, 0);
1132 if (!page)
1133 goto free_pages;
1134 bpage->page = page_address(page);
1135 rb_init_page(bpage->page);
1136 }
1137
1138 return 0;
1139
1140free_pages:
1141 list_for_each_entry_safe(bpage, tmp, pages, list) {
1142 list_del_init(&bpage->list);
1143 free_buffer_page(bpage);
1144 }
1145
1146 return -ENOMEM;
1147}
1148
1149static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1150 unsigned nr_pages)
1151{
1152 LIST_HEAD(pages);
1153
1154 WARN_ON(!nr_pages);
1155
1156 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1157 return -ENOMEM;
1158
1159 /*
1160 * The ring buffer page list is a circular list that does not
1161 * start and end with a list head. All page list items point to
1162 * other pages.
1163 */
1164 cpu_buffer->pages = pages.next;
1165 list_del(&pages);
1166
1167 cpu_buffer->nr_pages = nr_pages;
1168
1169 rb_check_pages(cpu_buffer);
1170
1171 return 0;
1172}
1173
1174static struct ring_buffer_per_cpu *
1175rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1176{
1177 struct ring_buffer_per_cpu *cpu_buffer;
1178 struct buffer_page *bpage;
1179 struct page *page;
1180 int ret;
1181
1182 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1183 GFP_KERNEL, cpu_to_node(cpu));
1184 if (!cpu_buffer)
1185 return NULL;
1186
1187 cpu_buffer->cpu = cpu;
1188 cpu_buffer->buffer = buffer;
1189 raw_spin_lock_init(&cpu_buffer->reader_lock);
1190 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1191 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1192 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1193 init_completion(&cpu_buffer->update_done);
1194 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1195 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1196
1197 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1198 GFP_KERNEL, cpu_to_node(cpu));
1199 if (!bpage)
1200 goto fail_free_buffer;
1201
1202 rb_check_bpage(cpu_buffer, bpage);
1203
1204 cpu_buffer->reader_page = bpage;
1205 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1206 if (!page)
1207 goto fail_free_reader;
1208 bpage->page = page_address(page);
1209 rb_init_page(bpage->page);
1210
1211 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1212 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1213
1214 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1215 if (ret < 0)
1216 goto fail_free_reader;
1217
1218 cpu_buffer->head_page
1219 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1220 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1221
1222 rb_head_page_activate(cpu_buffer);
1223
1224 return cpu_buffer;
1225
1226 fail_free_reader:
1227 free_buffer_page(cpu_buffer->reader_page);
1228
1229 fail_free_buffer:
1230 kfree(cpu_buffer);
1231 return NULL;
1232}
1233
1234static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1235{
1236 struct list_head *head = cpu_buffer->pages;
1237 struct buffer_page *bpage, *tmp;
1238
1239 free_buffer_page(cpu_buffer->reader_page);
1240
1241 rb_head_page_deactivate(cpu_buffer);
1242
1243 if (head) {
1244 list_for_each_entry_safe(bpage, tmp, head, list) {
1245 list_del_init(&bpage->list);
1246 free_buffer_page(bpage);
1247 }
1248 bpage = list_entry(head, struct buffer_page, list);
1249 free_buffer_page(bpage);
1250 }
1251
1252 kfree(cpu_buffer);
1253}
1254
1255#ifdef CONFIG_HOTPLUG_CPU
1256static int rb_cpu_notify(struct notifier_block *self,
1257 unsigned long action, void *hcpu);
1258#endif
1259
1260/**
1261 * __ring_buffer_alloc - allocate a new ring_buffer
1262 * @size: the size in bytes per cpu that is needed.
1263 * @flags: attributes to set for the ring buffer.
1264 *
1265 * Currently the only flag that is available is the RB_FL_OVERWRITE
1266 * flag. This flag means that the buffer will overwrite old data
1267 * when the buffer wraps. If this flag is not set, the buffer will
1268 * drop data when the tail hits the head.
1269 */
1270struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1271 struct lock_class_key *key)
1272{
1273 struct ring_buffer *buffer;
1274 int bsize;
1275 int cpu, nr_pages;
1276
1277 /* keep it in its own cache line */
1278 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1279 GFP_KERNEL);
1280 if (!buffer)
1281 return NULL;
1282
1283 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1284 goto fail_free_buffer;
1285
1286 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1287 buffer->flags = flags;
1288 buffer->clock = trace_clock_local;
1289 buffer->reader_lock_key = key;
1290
1291 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1292 init_waitqueue_head(&buffer->irq_work.waiters);
1293
1294 /* need at least two pages */
1295 if (nr_pages < 2)
1296 nr_pages = 2;
1297
1298 /*
1299 * In case of non-hotplug cpu, if the ring-buffer is allocated
1300 * in early initcall, it will not be notified of secondary cpus.
1301 * In that off case, we need to allocate for all possible cpus.
1302 */
1303#ifdef CONFIG_HOTPLUG_CPU
1304 cpu_notifier_register_begin();
1305 cpumask_copy(buffer->cpumask, cpu_online_mask);
1306#else
1307 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1308#endif
1309 buffer->cpus = nr_cpu_ids;
1310
1311 bsize = sizeof(void *) * nr_cpu_ids;
1312 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1313 GFP_KERNEL);
1314 if (!buffer->buffers)
1315 goto fail_free_cpumask;
1316
1317 for_each_buffer_cpu(buffer, cpu) {
1318 buffer->buffers[cpu] =
1319 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1320 if (!buffer->buffers[cpu])
1321 goto fail_free_buffers;
1322 }
1323
1324#ifdef CONFIG_HOTPLUG_CPU
1325 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1326 buffer->cpu_notify.priority = 0;
1327 __register_cpu_notifier(&buffer->cpu_notify);
1328 cpu_notifier_register_done();
1329#endif
1330
1331 mutex_init(&buffer->mutex);
1332
1333 return buffer;
1334
1335 fail_free_buffers:
1336 for_each_buffer_cpu(buffer, cpu) {
1337 if (buffer->buffers[cpu])
1338 rb_free_cpu_buffer(buffer->buffers[cpu]);
1339 }
1340 kfree(buffer->buffers);
1341
1342 fail_free_cpumask:
1343 free_cpumask_var(buffer->cpumask);
1344#ifdef CONFIG_HOTPLUG_CPU
1345 cpu_notifier_register_done();
1346#endif
1347
1348 fail_free_buffer:
1349 kfree(buffer);
1350 return NULL;
1351}
1352EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1353
1354/**
1355 * ring_buffer_free - free a ring buffer.
1356 * @buffer: the buffer to free.
1357 */
1358void
1359ring_buffer_free(struct ring_buffer *buffer)
1360{
1361 int cpu;
1362
1363#ifdef CONFIG_HOTPLUG_CPU
1364 cpu_notifier_register_begin();
1365 __unregister_cpu_notifier(&buffer->cpu_notify);
1366#endif
1367
1368 for_each_buffer_cpu(buffer, cpu)
1369 rb_free_cpu_buffer(buffer->buffers[cpu]);
1370
1371#ifdef CONFIG_HOTPLUG_CPU
1372 cpu_notifier_register_done();
1373#endif
1374
1375 kfree(buffer->buffers);
1376 free_cpumask_var(buffer->cpumask);
1377
1378 kfree(buffer);
1379}
1380EXPORT_SYMBOL_GPL(ring_buffer_free);
1381
1382void ring_buffer_set_clock(struct ring_buffer *buffer,
1383 u64 (*clock)(void))
1384{
1385 buffer->clock = clock;
1386}
1387
1388static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1389
1390static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1391{
1392 return local_read(&bpage->entries) & RB_WRITE_MASK;
1393}
1394
1395static inline unsigned long rb_page_write(struct buffer_page *bpage)
1396{
1397 return local_read(&bpage->write) & RB_WRITE_MASK;
1398}
1399
1400static int
1401rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1402{
1403 struct list_head *tail_page, *to_remove, *next_page;
1404 struct buffer_page *to_remove_page, *tmp_iter_page;
1405 struct buffer_page *last_page, *first_page;
1406 unsigned int nr_removed;
1407 unsigned long head_bit;
1408 int page_entries;
1409
1410 head_bit = 0;
1411
1412 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1413 atomic_inc(&cpu_buffer->record_disabled);
1414 /*
1415 * We don't race with the readers since we have acquired the reader
1416 * lock. We also don't race with writers after disabling recording.
1417 * This makes it easy to figure out the first and the last page to be
1418 * removed from the list. We unlink all the pages in between including
1419 * the first and last pages. This is done in a busy loop so that we
1420 * lose the least number of traces.
1421 * The pages are freed after we restart recording and unlock readers.
1422 */
1423 tail_page = &cpu_buffer->tail_page->list;
1424
1425 /*
1426 * tail page might be on reader page, we remove the next page
1427 * from the ring buffer
1428 */
1429 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1430 tail_page = rb_list_head(tail_page->next);
1431 to_remove = tail_page;
1432
1433 /* start of pages to remove */
1434 first_page = list_entry(rb_list_head(to_remove->next),
1435 struct buffer_page, list);
1436
1437 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1438 to_remove = rb_list_head(to_remove)->next;
1439 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1440 }
1441
1442 next_page = rb_list_head(to_remove)->next;
1443
1444 /*
1445 * Now we remove all pages between tail_page and next_page.
1446 * Make sure that we have head_bit value preserved for the
1447 * next page
1448 */
1449 tail_page->next = (struct list_head *)((unsigned long)next_page |
1450 head_bit);
1451 next_page = rb_list_head(next_page);
1452 next_page->prev = tail_page;
1453
1454 /* make sure pages points to a valid page in the ring buffer */
1455 cpu_buffer->pages = next_page;
1456
1457 /* update head page */
1458 if (head_bit)
1459 cpu_buffer->head_page = list_entry(next_page,
1460 struct buffer_page, list);
1461
1462 /*
1463 * change read pointer to make sure any read iterators reset
1464 * themselves
1465 */
1466 cpu_buffer->read = 0;
1467
1468 /* pages are removed, resume tracing and then free the pages */
1469 atomic_dec(&cpu_buffer->record_disabled);
1470 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1471
1472 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1473
1474 /* last buffer page to remove */
1475 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1476 list);
1477 tmp_iter_page = first_page;
1478
1479 do {
1480 to_remove_page = tmp_iter_page;
1481 rb_inc_page(cpu_buffer, &tmp_iter_page);
1482
1483 /* update the counters */
1484 page_entries = rb_page_entries(to_remove_page);
1485 if (page_entries) {
1486 /*
1487 * If something was added to this page, it was full
1488 * since it is not the tail page. So we deduct the
1489 * bytes consumed in ring buffer from here.
1490 * Increment overrun to account for the lost events.
1491 */
1492 local_add(page_entries, &cpu_buffer->overrun);
1493 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1494 }
1495
1496 /*
1497 * We have already removed references to this list item, just
1498 * free up the buffer_page and its page
1499 */
1500 free_buffer_page(to_remove_page);
1501 nr_removed--;
1502
1503 } while (to_remove_page != last_page);
1504
1505 RB_WARN_ON(cpu_buffer, nr_removed);
1506
1507 return nr_removed == 0;
1508}
1509
1510static int
1511rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1512{
1513 struct list_head *pages = &cpu_buffer->new_pages;
1514 int retries, success;
1515
1516 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1517 /*
1518 * We are holding the reader lock, so the reader page won't be swapped
1519 * in the ring buffer. Now we are racing with the writer trying to
1520 * move head page and the tail page.
1521 * We are going to adapt the reader page update process where:
1522 * 1. We first splice the start and end of list of new pages between
1523 * the head page and its previous page.
1524 * 2. We cmpxchg the prev_page->next to point from head page to the
1525 * start of new pages list.
1526 * 3. Finally, we update the head->prev to the end of new list.
1527 *
1528 * We will try this process 10 times, to make sure that we don't keep
1529 * spinning.
1530 */
1531 retries = 10;
1532 success = 0;
1533 while (retries--) {
1534 struct list_head *head_page, *prev_page, *r;
1535 struct list_head *last_page, *first_page;
1536 struct list_head *head_page_with_bit;
1537
1538 head_page = &rb_set_head_page(cpu_buffer)->list;
1539 if (!head_page)
1540 break;
1541 prev_page = head_page->prev;
1542
1543 first_page = pages->next;
1544 last_page = pages->prev;
1545
1546 head_page_with_bit = (struct list_head *)
1547 ((unsigned long)head_page | RB_PAGE_HEAD);
1548
1549 last_page->next = head_page_with_bit;
1550 first_page->prev = prev_page;
1551
1552 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1553
1554 if (r == head_page_with_bit) {
1555 /*
1556 * yay, we replaced the page pointer to our new list,
1557 * now, we just have to update to head page's prev
1558 * pointer to point to end of list
1559 */
1560 head_page->prev = last_page;
1561 success = 1;
1562 break;
1563 }
1564 }
1565
1566 if (success)
1567 INIT_LIST_HEAD(pages);
1568 /*
1569 * If we weren't successful in adding in new pages, warn and stop
1570 * tracing
1571 */
1572 RB_WARN_ON(cpu_buffer, !success);
1573 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1574
1575 /* free pages if they weren't inserted */
1576 if (!success) {
1577 struct buffer_page *bpage, *tmp;
1578 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1579 list) {
1580 list_del_init(&bpage->list);
1581 free_buffer_page(bpage);
1582 }
1583 }
1584 return success;
1585}
1586
1587static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1588{
1589 int success;
1590
1591 if (cpu_buffer->nr_pages_to_update > 0)
1592 success = rb_insert_pages(cpu_buffer);
1593 else
1594 success = rb_remove_pages(cpu_buffer,
1595 -cpu_buffer->nr_pages_to_update);
1596
1597 if (success)
1598 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1599}
1600
1601static void update_pages_handler(struct work_struct *work)
1602{
1603 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1604 struct ring_buffer_per_cpu, update_pages_work);
1605 rb_update_pages(cpu_buffer);
1606 complete(&cpu_buffer->update_done);
1607}
1608
1609/**
1610 * ring_buffer_resize - resize the ring buffer
1611 * @buffer: the buffer to resize.
1612 * @size: the new size.
1613 * @cpu_id: the cpu buffer to resize
1614 *
1615 * Minimum size is 2 * BUF_PAGE_SIZE.
1616 *
1617 * Returns 0 on success and < 0 on failure.
1618 */
1619int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1620 int cpu_id)
1621{
1622 struct ring_buffer_per_cpu *cpu_buffer;
1623 unsigned nr_pages;
1624 int cpu, err = 0;
1625
1626 /*
1627 * Always succeed at resizing a non-existent buffer:
1628 */
1629 if (!buffer)
1630 return size;
1631
1632 /* Make sure the requested buffer exists */
1633 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1634 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1635 return size;
1636
1637 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1638 size *= BUF_PAGE_SIZE;
1639
1640 /* we need a minimum of two pages */
1641 if (size < BUF_PAGE_SIZE * 2)
1642 size = BUF_PAGE_SIZE * 2;
1643
1644 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1645
1646 /*
1647 * Don't succeed if resizing is disabled, as a reader might be
1648 * manipulating the ring buffer and is expecting a sane state while
1649 * this is true.
1650 */
1651 if (atomic_read(&buffer->resize_disabled))
1652 return -EBUSY;
1653
1654 /* prevent another thread from changing buffer sizes */
1655 mutex_lock(&buffer->mutex);
1656
1657 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1658 /* calculate the pages to update */
1659 for_each_buffer_cpu(buffer, cpu) {
1660 cpu_buffer = buffer->buffers[cpu];
1661
1662 cpu_buffer->nr_pages_to_update = nr_pages -
1663 cpu_buffer->nr_pages;
1664 /*
1665 * nothing more to do for removing pages or no update
1666 */
1667 if (cpu_buffer->nr_pages_to_update <= 0)
1668 continue;
1669 /*
1670 * to add pages, make sure all new pages can be
1671 * allocated without receiving ENOMEM
1672 */
1673 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1674 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1675 &cpu_buffer->new_pages, cpu)) {
1676 /* not enough memory for new pages */
1677 err = -ENOMEM;
1678 goto out_err;
1679 }
1680 }
1681
1682 get_online_cpus();
1683 /*
1684 * Fire off all the required work handlers
1685 * We can't schedule on offline CPUs, but it's not necessary
1686 * since we can change their buffer sizes without any race.
1687 */
1688 for_each_buffer_cpu(buffer, cpu) {
1689 cpu_buffer = buffer->buffers[cpu];
1690 if (!cpu_buffer->nr_pages_to_update)
1691 continue;
1692
1693 /* The update must run on the CPU that is being updated. */
1694 preempt_disable();
1695 if (cpu == smp_processor_id() || !cpu_online(cpu)) {
1696 rb_update_pages(cpu_buffer);
1697 cpu_buffer->nr_pages_to_update = 0;
1698 } else {
1699 /*
1700 * Can not disable preemption for schedule_work_on()
1701 * on PREEMPT_RT.
1702 */
1703 preempt_enable();
1704 schedule_work_on(cpu,
1705 &cpu_buffer->update_pages_work);
1706 preempt_disable();
1707 }
1708 preempt_enable();
1709 }
1710
1711 /* wait for all the updates to complete */
1712 for_each_buffer_cpu(buffer, cpu) {
1713 cpu_buffer = buffer->buffers[cpu];
1714 if (!cpu_buffer->nr_pages_to_update)
1715 continue;
1716
1717 if (cpu_online(cpu))
1718 wait_for_completion(&cpu_buffer->update_done);
1719 cpu_buffer->nr_pages_to_update = 0;
1720 }
1721
1722 put_online_cpus();
1723 } else {
1724 /* Make sure this CPU has been intitialized */
1725 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1726 goto out;
1727
1728 cpu_buffer = buffer->buffers[cpu_id];
1729
1730 if (nr_pages == cpu_buffer->nr_pages)
1731 goto out;
1732
1733 cpu_buffer->nr_pages_to_update = nr_pages -
1734 cpu_buffer->nr_pages;
1735
1736 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1737 if (cpu_buffer->nr_pages_to_update > 0 &&
1738 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1739 &cpu_buffer->new_pages, cpu_id)) {
1740 err = -ENOMEM;
1741 goto out_err;
1742 }
1743
1744 get_online_cpus();
1745
1746 preempt_disable();
1747 /* The update must run on the CPU that is being updated. */
1748 if (cpu_id == smp_processor_id() || !cpu_online(cpu_id))
1749 rb_update_pages(cpu_buffer);
1750 else {
1751 /*
1752 * Can not disable preemption for schedule_work_on()
1753 * on PREEMPT_RT.
1754 */
1755 preempt_enable();
1756 schedule_work_on(cpu_id,
1757 &cpu_buffer->update_pages_work);
1758 wait_for_completion(&cpu_buffer->update_done);
1759 preempt_disable();
1760 }
1761 preempt_enable();
1762
1763 cpu_buffer->nr_pages_to_update = 0;
1764 put_online_cpus();
1765 }
1766
1767 out:
1768 /*
1769 * The ring buffer resize can happen with the ring buffer
1770 * enabled, so that the update disturbs the tracing as little
1771 * as possible. But if the buffer is disabled, we do not need
1772 * to worry about that, and we can take the time to verify
1773 * that the buffer is not corrupt.
1774 */
1775 if (atomic_read(&buffer->record_disabled)) {
1776 atomic_inc(&buffer->record_disabled);
1777 /*
1778 * Even though the buffer was disabled, we must make sure
1779 * that it is truly disabled before calling rb_check_pages.
1780 * There could have been a race between checking
1781 * record_disable and incrementing it.
1782 */
1783 synchronize_sched();
1784 for_each_buffer_cpu(buffer, cpu) {
1785 cpu_buffer = buffer->buffers[cpu];
1786 rb_check_pages(cpu_buffer);
1787 }
1788 atomic_dec(&buffer->record_disabled);
1789 }
1790
1791 mutex_unlock(&buffer->mutex);
1792 return size;
1793
1794 out_err:
1795 for_each_buffer_cpu(buffer, cpu) {
1796 struct buffer_page *bpage, *tmp;
1797
1798 cpu_buffer = buffer->buffers[cpu];
1799 cpu_buffer->nr_pages_to_update = 0;
1800
1801 if (list_empty(&cpu_buffer->new_pages))
1802 continue;
1803
1804 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1805 list) {
1806 list_del_init(&bpage->list);
1807 free_buffer_page(bpage);
1808 }
1809 }
1810 mutex_unlock(&buffer->mutex);
1811 return err;
1812}
1813EXPORT_SYMBOL_GPL(ring_buffer_resize);
1814
1815void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1816{
1817 mutex_lock(&buffer->mutex);
1818 if (val)
1819 buffer->flags |= RB_FL_OVERWRITE;
1820 else
1821 buffer->flags &= ~RB_FL_OVERWRITE;
1822 mutex_unlock(&buffer->mutex);
1823}
1824EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1825
1826static inline void *
1827__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1828{
1829 return bpage->data + index;
1830}
1831
1832static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1833{
1834 return bpage->page->data + index;
1835}
1836
1837static inline struct ring_buffer_event *
1838rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1839{
1840 return __rb_page_index(cpu_buffer->reader_page,
1841 cpu_buffer->reader_page->read);
1842}
1843
1844static inline struct ring_buffer_event *
1845rb_iter_head_event(struct ring_buffer_iter *iter)
1846{
1847 return __rb_page_index(iter->head_page, iter->head);
1848}
1849
1850static inline unsigned rb_page_commit(struct buffer_page *bpage)
1851{
1852 return local_read(&bpage->page->commit);
1853}
1854
1855/* Size is determined by what has been committed */
1856static inline unsigned rb_page_size(struct buffer_page *bpage)
1857{
1858 return rb_page_commit(bpage);
1859}
1860
1861static inline unsigned
1862rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1863{
1864 return rb_page_commit(cpu_buffer->commit_page);
1865}
1866
1867static inline unsigned
1868rb_event_index(struct ring_buffer_event *event)
1869{
1870 unsigned long addr = (unsigned long)event;
1871
1872 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1873}
1874
1875static inline int
1876rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1877 struct ring_buffer_event *event)
1878{
1879 unsigned long addr = (unsigned long)event;
1880 unsigned long index;
1881
1882 index = rb_event_index(event);
1883 addr &= PAGE_MASK;
1884
1885 return cpu_buffer->commit_page->page == (void *)addr &&
1886 rb_commit_index(cpu_buffer) == index;
1887}
1888
1889static void
1890rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1891{
1892 unsigned long max_count;
1893
1894 /*
1895 * We only race with interrupts and NMIs on this CPU.
1896 * If we own the commit event, then we can commit
1897 * all others that interrupted us, since the interruptions
1898 * are in stack format (they finish before they come
1899 * back to us). This allows us to do a simple loop to
1900 * assign the commit to the tail.
1901 */
1902 again:
1903 max_count = cpu_buffer->nr_pages * 100;
1904
1905 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1906 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1907 return;
1908 if (RB_WARN_ON(cpu_buffer,
1909 rb_is_reader_page(cpu_buffer->tail_page)))
1910 return;
1911 local_set(&cpu_buffer->commit_page->page->commit,
1912 rb_page_write(cpu_buffer->commit_page));
1913 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1914 cpu_buffer->write_stamp =
1915 cpu_buffer->commit_page->page->time_stamp;
1916 /* add barrier to keep gcc from optimizing too much */
1917 barrier();
1918 }
1919 while (rb_commit_index(cpu_buffer) !=
1920 rb_page_write(cpu_buffer->commit_page)) {
1921
1922 local_set(&cpu_buffer->commit_page->page->commit,
1923 rb_page_write(cpu_buffer->commit_page));
1924 RB_WARN_ON(cpu_buffer,
1925 local_read(&cpu_buffer->commit_page->page->commit) &
1926 ~RB_WRITE_MASK);
1927 barrier();
1928 }
1929
1930 /* again, keep gcc from optimizing */
1931 barrier();
1932
1933 /*
1934 * If an interrupt came in just after the first while loop
1935 * and pushed the tail page forward, we will be left with
1936 * a dangling commit that will never go forward.
1937 */
1938 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1939 goto again;
1940}
1941
1942static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1943{
1944 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1945 cpu_buffer->reader_page->read = 0;
1946}
1947
1948static void rb_inc_iter(struct ring_buffer_iter *iter)
1949{
1950 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1951
1952 /*
1953 * The iterator could be on the reader page (it starts there).
1954 * But the head could have moved, since the reader was
1955 * found. Check for this case and assign the iterator
1956 * to the head page instead of next.
1957 */
1958 if (iter->head_page == cpu_buffer->reader_page)
1959 iter->head_page = rb_set_head_page(cpu_buffer);
1960 else
1961 rb_inc_page(cpu_buffer, &iter->head_page);
1962
1963 iter->read_stamp = iter->head_page->page->time_stamp;
1964 iter->head = 0;
1965}
1966
1967/* Slow path, do not inline */
1968static noinline struct ring_buffer_event *
1969rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1970{
1971 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1972
1973 /* Not the first event on the page? */
1974 if (rb_event_index(event)) {
1975 event->time_delta = delta & TS_MASK;
1976 event->array[0] = delta >> TS_SHIFT;
1977 } else {
1978 /* nope, just zero it */
1979 event->time_delta = 0;
1980 event->array[0] = 0;
1981 }
1982
1983 return skip_time_extend(event);
1984}
1985
1986/**
1987 * rb_update_event - update event type and data
1988 * @event: the even to update
1989 * @type: the type of event
1990 * @length: the size of the event field in the ring buffer
1991 *
1992 * Update the type and data fields of the event. The length
1993 * is the actual size that is written to the ring buffer,
1994 * and with this, we can determine what to place into the
1995 * data field.
1996 */
1997static void
1998rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1999 struct ring_buffer_event *event, unsigned length,
2000 int add_timestamp, u64 delta)
2001{
2002 /* Only a commit updates the timestamp */
2003 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2004 delta = 0;
2005
2006 /*
2007 * If we need to add a timestamp, then we
2008 * add it to the start of the resevered space.
2009 */
2010 if (unlikely(add_timestamp)) {
2011 event = rb_add_time_stamp(event, delta);
2012 length -= RB_LEN_TIME_EXTEND;
2013 delta = 0;
2014 }
2015
2016 event->time_delta = delta;
2017 length -= RB_EVNT_HDR_SIZE;
2018 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2019 event->type_len = 0;
2020 event->array[0] = length;
2021 } else
2022 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2023}
2024
2025/*
2026 * rb_handle_head_page - writer hit the head page
2027 *
2028 * Returns: +1 to retry page
2029 * 0 to continue
2030 * -1 on error
2031 */
2032static int
2033rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2034 struct buffer_page *tail_page,
2035 struct buffer_page *next_page)
2036{
2037 struct buffer_page *new_head;
2038 int entries;
2039 int type;
2040 int ret;
2041
2042 entries = rb_page_entries(next_page);
2043
2044 /*
2045 * The hard part is here. We need to move the head
2046 * forward, and protect against both readers on
2047 * other CPUs and writers coming in via interrupts.
2048 */
2049 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2050 RB_PAGE_HEAD);
2051
2052 /*
2053 * type can be one of four:
2054 * NORMAL - an interrupt already moved it for us
2055 * HEAD - we are the first to get here.
2056 * UPDATE - we are the interrupt interrupting
2057 * a current move.
2058 * MOVED - a reader on another CPU moved the next
2059 * pointer to its reader page. Give up
2060 * and try again.
2061 */
2062
2063 switch (type) {
2064 case RB_PAGE_HEAD:
2065 /*
2066 * We changed the head to UPDATE, thus
2067 * it is our responsibility to update
2068 * the counters.
2069 */
2070 local_add(entries, &cpu_buffer->overrun);
2071 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2072
2073 /*
2074 * The entries will be zeroed out when we move the
2075 * tail page.
2076 */
2077
2078 /* still more to do */
2079 break;
2080
2081 case RB_PAGE_UPDATE:
2082 /*
2083 * This is an interrupt that interrupt the
2084 * previous update. Still more to do.
2085 */
2086 break;
2087 case RB_PAGE_NORMAL:
2088 /*
2089 * An interrupt came in before the update
2090 * and processed this for us.
2091 * Nothing left to do.
2092 */
2093 return 1;
2094 case RB_PAGE_MOVED:
2095 /*
2096 * The reader is on another CPU and just did
2097 * a swap with our next_page.
2098 * Try again.
2099 */
2100 return 1;
2101 default:
2102 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2103 return -1;
2104 }
2105
2106 /*
2107 * Now that we are here, the old head pointer is
2108 * set to UPDATE. This will keep the reader from
2109 * swapping the head page with the reader page.
2110 * The reader (on another CPU) will spin till
2111 * we are finished.
2112 *
2113 * We just need to protect against interrupts
2114 * doing the job. We will set the next pointer
2115 * to HEAD. After that, we set the old pointer
2116 * to NORMAL, but only if it was HEAD before.
2117 * otherwise we are an interrupt, and only
2118 * want the outer most commit to reset it.
2119 */
2120 new_head = next_page;
2121 rb_inc_page(cpu_buffer, &new_head);
2122
2123 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2124 RB_PAGE_NORMAL);
2125
2126 /*
2127 * Valid returns are:
2128 * HEAD - an interrupt came in and already set it.
2129 * NORMAL - One of two things:
2130 * 1) We really set it.
2131 * 2) A bunch of interrupts came in and moved
2132 * the page forward again.
2133 */
2134 switch (ret) {
2135 case RB_PAGE_HEAD:
2136 case RB_PAGE_NORMAL:
2137 /* OK */
2138 break;
2139 default:
2140 RB_WARN_ON(cpu_buffer, 1);
2141 return -1;
2142 }
2143
2144 /*
2145 * It is possible that an interrupt came in,
2146 * set the head up, then more interrupts came in
2147 * and moved it again. When we get back here,
2148 * the page would have been set to NORMAL but we
2149 * just set it back to HEAD.
2150 *
2151 * How do you detect this? Well, if that happened
2152 * the tail page would have moved.
2153 */
2154 if (ret == RB_PAGE_NORMAL) {
2155 /*
2156 * If the tail had moved passed next, then we need
2157 * to reset the pointer.
2158 */
2159 if (cpu_buffer->tail_page != tail_page &&
2160 cpu_buffer->tail_page != next_page)
2161 rb_head_page_set_normal(cpu_buffer, new_head,
2162 next_page,
2163 RB_PAGE_HEAD);
2164 }
2165
2166 /*
2167 * If this was the outer most commit (the one that
2168 * changed the original pointer from HEAD to UPDATE),
2169 * then it is up to us to reset it to NORMAL.
2170 */
2171 if (type == RB_PAGE_HEAD) {
2172 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2173 tail_page,
2174 RB_PAGE_UPDATE);
2175 if (RB_WARN_ON(cpu_buffer,
2176 ret != RB_PAGE_UPDATE))
2177 return -1;
2178 }
2179
2180 return 0;
2181}
2182
2183static unsigned rb_calculate_event_length(unsigned length)
2184{
2185 struct ring_buffer_event event; /* Used only for sizeof array */
2186
2187 /* zero length can cause confusions */
2188 if (!length)
2189 length = 1;
2190
2191 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2192 length += sizeof(event.array[0]);
2193
2194 length += RB_EVNT_HDR_SIZE;
2195 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2196
2197 return length;
2198}
2199
2200static inline void
2201rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2202 struct buffer_page *tail_page,
2203 unsigned long tail, unsigned long length)
2204{
2205 struct ring_buffer_event *event;
2206
2207 /*
2208 * Only the event that crossed the page boundary
2209 * must fill the old tail_page with padding.
2210 */
2211 if (tail >= BUF_PAGE_SIZE) {
2212 /*
2213 * If the page was filled, then we still need
2214 * to update the real_end. Reset it to zero
2215 * and the reader will ignore it.
2216 */
2217 if (tail == BUF_PAGE_SIZE)
2218 tail_page->real_end = 0;
2219
2220 local_sub(length, &tail_page->write);
2221 return;
2222 }
2223
2224 event = __rb_page_index(tail_page, tail);
2225 kmemcheck_annotate_bitfield(event, bitfield);
2226
2227 /* account for padding bytes */
2228 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2229
2230 /*
2231 * Save the original length to the meta data.
2232 * This will be used by the reader to add lost event
2233 * counter.
2234 */
2235 tail_page->real_end = tail;
2236
2237 /*
2238 * If this event is bigger than the minimum size, then
2239 * we need to be careful that we don't subtract the
2240 * write counter enough to allow another writer to slip
2241 * in on this page.
2242 * We put in a discarded commit instead, to make sure
2243 * that this space is not used again.
2244 *
2245 * If we are less than the minimum size, we don't need to
2246 * worry about it.
2247 */
2248 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2249 /* No room for any events */
2250
2251 /* Mark the rest of the page with padding */
2252 rb_event_set_padding(event);
2253
2254 /* Set the write back to the previous setting */
2255 local_sub(length, &tail_page->write);
2256 return;
2257 }
2258
2259 /* Put in a discarded event */
2260 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2261 event->type_len = RINGBUF_TYPE_PADDING;
2262 /* time delta must be non zero */
2263 event->time_delta = 1;
2264
2265 /* Set write to end of buffer */
2266 length = (tail + length) - BUF_PAGE_SIZE;
2267 local_sub(length, &tail_page->write);
2268}
2269
2270/*
2271 * This is the slow path, force gcc not to inline it.
2272 */
2273static noinline struct ring_buffer_event *
2274rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2275 unsigned long length, unsigned long tail,
2276 struct buffer_page *tail_page, u64 ts)
2277{
2278 struct buffer_page *commit_page = cpu_buffer->commit_page;
2279 struct ring_buffer *buffer = cpu_buffer->buffer;
2280 struct buffer_page *next_page;
2281 int ret;
2282
2283 next_page = tail_page;
2284
2285 rb_inc_page(cpu_buffer, &next_page);
2286
2287 /*
2288 * If for some reason, we had an interrupt storm that made
2289 * it all the way around the buffer, bail, and warn
2290 * about it.
2291 */
2292 if (unlikely(next_page == commit_page)) {
2293 local_inc(&cpu_buffer->commit_overrun);
2294 goto out_reset;
2295 }
2296
2297 /*
2298 * This is where the fun begins!
2299 *
2300 * We are fighting against races between a reader that
2301 * could be on another CPU trying to swap its reader
2302 * page with the buffer head.
2303 *
2304 * We are also fighting against interrupts coming in and
2305 * moving the head or tail on us as well.
2306 *
2307 * If the next page is the head page then we have filled
2308 * the buffer, unless the commit page is still on the
2309 * reader page.
2310 */
2311 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2312
2313 /*
2314 * If the commit is not on the reader page, then
2315 * move the header page.
2316 */
2317 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2318 /*
2319 * If we are not in overwrite mode,
2320 * this is easy, just stop here.
2321 */
2322 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2323 local_inc(&cpu_buffer->dropped_events);
2324 goto out_reset;
2325 }
2326
2327 ret = rb_handle_head_page(cpu_buffer,
2328 tail_page,
2329 next_page);
2330 if (ret < 0)
2331 goto out_reset;
2332 if (ret)
2333 goto out_again;
2334 } else {
2335 /*
2336 * We need to be careful here too. The
2337 * commit page could still be on the reader
2338 * page. We could have a small buffer, and
2339 * have filled up the buffer with events
2340 * from interrupts and such, and wrapped.
2341 *
2342 * Note, if the tail page is also the on the
2343 * reader_page, we let it move out.
2344 */
2345 if (unlikely((cpu_buffer->commit_page !=
2346 cpu_buffer->tail_page) &&
2347 (cpu_buffer->commit_page ==
2348 cpu_buffer->reader_page))) {
2349 local_inc(&cpu_buffer->commit_overrun);
2350 goto out_reset;
2351 }
2352 }
2353 }
2354
2355 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2356 if (ret) {
2357 /*
2358 * Nested commits always have zero deltas, so
2359 * just reread the time stamp
2360 */
2361 ts = rb_time_stamp(buffer);
2362 next_page->page->time_stamp = ts;
2363 }
2364
2365 out_again:
2366
2367 rb_reset_tail(cpu_buffer, tail_page, tail, length);
2368
2369 /* fail and let the caller try again */
2370 return ERR_PTR(-EAGAIN);
2371
2372 out_reset:
2373 /* reset write */
2374 rb_reset_tail(cpu_buffer, tail_page, tail, length);
2375
2376 return NULL;
2377}
2378
2379static struct ring_buffer_event *
2380__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2381 unsigned long length, u64 ts,
2382 u64 delta, int add_timestamp)
2383{
2384 struct buffer_page *tail_page;
2385 struct ring_buffer_event *event;
2386 unsigned long tail, write;
2387
2388 /*
2389 * If the time delta since the last event is too big to
2390 * hold in the time field of the event, then we append a
2391 * TIME EXTEND event ahead of the data event.
2392 */
2393 if (unlikely(add_timestamp))
2394 length += RB_LEN_TIME_EXTEND;
2395
2396 tail_page = cpu_buffer->tail_page;
2397 write = local_add_return(length, &tail_page->write);
2398
2399 /* set write to only the index of the write */
2400 write &= RB_WRITE_MASK;
2401 tail = write - length;
2402
2403 /*
2404 * If this is the first commit on the page, then it has the same
2405 * timestamp as the page itself.
2406 */
2407 if (!tail)
2408 delta = 0;
2409
2410 /* See if we shot pass the end of this buffer page */
2411 if (unlikely(write > BUF_PAGE_SIZE))
2412 return rb_move_tail(cpu_buffer, length, tail,
2413 tail_page, ts);
2414
2415 /* We reserved something on the buffer */
2416
2417 event = __rb_page_index(tail_page, tail);
2418 kmemcheck_annotate_bitfield(event, bitfield);
2419 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2420
2421 local_inc(&tail_page->entries);
2422
2423 /*
2424 * If this is the first commit on the page, then update
2425 * its timestamp.
2426 */
2427 if (!tail)
2428 tail_page->page->time_stamp = ts;
2429
2430 /* account for these added bytes */
2431 local_add(length, &cpu_buffer->entries_bytes);
2432
2433 return event;
2434}
2435
2436static inline int
2437rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2438 struct ring_buffer_event *event)
2439{
2440 unsigned long new_index, old_index;
2441 struct buffer_page *bpage;
2442 unsigned long index;
2443 unsigned long addr;
2444
2445 new_index = rb_event_index(event);
2446 old_index = new_index + rb_event_ts_length(event);
2447 addr = (unsigned long)event;
2448 addr &= PAGE_MASK;
2449
2450 bpage = cpu_buffer->tail_page;
2451
2452 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2453 unsigned long write_mask =
2454 local_read(&bpage->write) & ~RB_WRITE_MASK;
2455 unsigned long event_length = rb_event_length(event);
2456 /*
2457 * This is on the tail page. It is possible that
2458 * a write could come in and move the tail page
2459 * and write to the next page. That is fine
2460 * because we just shorten what is on this page.
2461 */
2462 old_index += write_mask;
2463 new_index += write_mask;
2464 index = local_cmpxchg(&bpage->write, old_index, new_index);
2465 if (index == old_index) {
2466 /* update counters */
2467 local_sub(event_length, &cpu_buffer->entries_bytes);
2468 return 1;
2469 }
2470 }
2471
2472 /* could not discard */
2473 return 0;
2474}
2475
2476static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2477{
2478 local_inc(&cpu_buffer->committing);
2479 local_inc(&cpu_buffer->commits);
2480}
2481
2482static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2483{
2484 unsigned long commits;
2485
2486 if (RB_WARN_ON(cpu_buffer,
2487 !local_read(&cpu_buffer->committing)))
2488 return;
2489
2490 again:
2491 commits = local_read(&cpu_buffer->commits);
2492 /* synchronize with interrupts */
2493 barrier();
2494 if (local_read(&cpu_buffer->committing) == 1)
2495 rb_set_commit_to_write(cpu_buffer);
2496
2497 local_dec(&cpu_buffer->committing);
2498
2499 /* synchronize with interrupts */
2500 barrier();
2501
2502 /*
2503 * Need to account for interrupts coming in between the
2504 * updating of the commit page and the clearing of the
2505 * committing counter.
2506 */
2507 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2508 !local_read(&cpu_buffer->committing)) {
2509 local_inc(&cpu_buffer->committing);
2510 goto again;
2511 }
2512}
2513
2514static struct ring_buffer_event *
2515rb_reserve_next_event(struct ring_buffer *buffer,
2516 struct ring_buffer_per_cpu *cpu_buffer,
2517 unsigned long length)
2518{
2519 struct ring_buffer_event *event;
2520 u64 ts, delta;
2521 int nr_loops = 0;
2522 int add_timestamp;
2523 u64 diff;
2524
2525 rb_start_commit(cpu_buffer);
2526
2527#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2528 /*
2529 * Due to the ability to swap a cpu buffer from a buffer
2530 * it is possible it was swapped before we committed.
2531 * (committing stops a swap). We check for it here and
2532 * if it happened, we have to fail the write.
2533 */
2534 barrier();
2535 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2536 local_dec(&cpu_buffer->committing);
2537 local_dec(&cpu_buffer->commits);
2538 return NULL;
2539 }
2540#endif
2541
2542 length = rb_calculate_event_length(length);
2543 again:
2544 add_timestamp = 0;
2545 delta = 0;
2546
2547 /*
2548 * We allow for interrupts to reenter here and do a trace.
2549 * If one does, it will cause this original code to loop
2550 * back here. Even with heavy interrupts happening, this
2551 * should only happen a few times in a row. If this happens
2552 * 1000 times in a row, there must be either an interrupt
2553 * storm or we have something buggy.
2554 * Bail!
2555 */
2556 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2557 goto out_fail;
2558
2559 ts = rb_time_stamp(cpu_buffer->buffer);
2560 diff = ts - cpu_buffer->write_stamp;
2561
2562 /* make sure this diff is calculated here */
2563 barrier();
2564
2565 /* Did the write stamp get updated already? */
2566 if (likely(ts >= cpu_buffer->write_stamp)) {
2567 delta = diff;
2568 if (unlikely(test_time_stamp(delta))) {
2569 int local_clock_stable = 1;
2570#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2571 local_clock_stable = sched_clock_stable();
2572#endif
2573 WARN_ONCE(delta > (1ULL << 59),
2574 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2575 (unsigned long long)delta,
2576 (unsigned long long)ts,
2577 (unsigned long long)cpu_buffer->write_stamp,
2578 local_clock_stable ? "" :
2579 "If you just came from a suspend/resume,\n"
2580 "please switch to the trace global clock:\n"
2581 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2582 add_timestamp = 1;
2583 }
2584 }
2585
2586 event = __rb_reserve_next(cpu_buffer, length, ts,
2587 delta, add_timestamp);
2588 if (unlikely(PTR_ERR(event) == -EAGAIN))
2589 goto again;
2590
2591 if (!event)
2592 goto out_fail;
2593
2594 return event;
2595
2596 out_fail:
2597 rb_end_commit(cpu_buffer);
2598 return NULL;
2599}
2600
2601#ifdef CONFIG_TRACING
2602
2603/*
2604 * The lock and unlock are done within a preempt disable section.
2605 * The current_context per_cpu variable can only be modified
2606 * by the current task between lock and unlock. But it can
2607 * be modified more than once via an interrupt. To pass this
2608 * information from the lock to the unlock without having to
2609 * access the 'in_interrupt()' functions again (which do show
2610 * a bit of overhead in something as critical as function tracing,
2611 * we use a bitmask trick.
2612 *
2613 * bit 0 = NMI context
2614 * bit 1 = IRQ context
2615 * bit 2 = SoftIRQ context
2616 * bit 3 = normal context.
2617 *
2618 * This works because this is the order of contexts that can
2619 * preempt other contexts. A SoftIRQ never preempts an IRQ
2620 * context.
2621 *
2622 * When the context is determined, the corresponding bit is
2623 * checked and set (if it was set, then a recursion of that context
2624 * happened).
2625 *
2626 * On unlock, we need to clear this bit. To do so, just subtract
2627 * 1 from the current_context and AND it to itself.
2628 *
2629 * (binary)
2630 * 101 - 1 = 100
2631 * 101 & 100 = 100 (clearing bit zero)
2632 *
2633 * 1010 - 1 = 1001
2634 * 1010 & 1001 = 1000 (clearing bit 1)
2635 *
2636 * The least significant bit can be cleared this way, and it
2637 * just so happens that it is the same bit corresponding to
2638 * the current context.
2639 */
2640static DEFINE_PER_CPU(unsigned int, current_context);
2641
2642static __always_inline int trace_recursive_lock(void)
2643{
2644 unsigned int val = this_cpu_read(current_context);
2645 int bit;
2646
2647 if (in_interrupt()) {
2648 if (in_nmi())
2649 bit = 0;
2650 else if (in_irq())
2651 bit = 1;
2652 else
2653 bit = 2;
2654 } else
2655 bit = 3;
2656
2657 if (unlikely(val & (1 << bit)))
2658 return 1;
2659
2660 val |= (1 << bit);
2661 this_cpu_write(current_context, val);
2662
2663 return 0;
2664}
2665
2666static __always_inline void trace_recursive_unlock(void)
2667{
2668 unsigned int val = this_cpu_read(current_context);
2669
2670 val--;
2671 val &= this_cpu_read(current_context);
2672 this_cpu_write(current_context, val);
2673}
2674
2675#else
2676
2677#define trace_recursive_lock() (0)
2678#define trace_recursive_unlock() do { } while (0)
2679
2680#endif
2681
2682/**
2683 * ring_buffer_lock_reserve - reserve a part of the buffer
2684 * @buffer: the ring buffer to reserve from
2685 * @length: the length of the data to reserve (excluding event header)
2686 *
2687 * Returns a reseverd event on the ring buffer to copy directly to.
2688 * The user of this interface will need to get the body to write into
2689 * and can use the ring_buffer_event_data() interface.
2690 *
2691 * The length is the length of the data needed, not the event length
2692 * which also includes the event header.
2693 *
2694 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2695 * If NULL is returned, then nothing has been allocated or locked.
2696 */
2697struct ring_buffer_event *
2698ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2699{
2700 struct ring_buffer_per_cpu *cpu_buffer;
2701 struct ring_buffer_event *event;
2702 int cpu;
2703
2704 if (ring_buffer_flags != RB_BUFFERS_ON)
2705 return NULL;
2706
2707 /* If we are tracing schedule, we don't want to recurse */
2708 preempt_disable_notrace();
2709
2710 if (atomic_read(&buffer->record_disabled))
2711 goto out_nocheck;
2712
2713 if (trace_recursive_lock())
2714 goto out_nocheck;
2715
2716 cpu = raw_smp_processor_id();
2717
2718 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2719 goto out;
2720
2721 cpu_buffer = buffer->buffers[cpu];
2722
2723 if (atomic_read(&cpu_buffer->record_disabled))
2724 goto out;
2725
2726 if (length > BUF_MAX_DATA_SIZE)
2727 goto out;
2728
2729 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2730 if (!event)
2731 goto out;
2732
2733 return event;
2734
2735 out:
2736 trace_recursive_unlock();
2737
2738 out_nocheck:
2739 preempt_enable_notrace();
2740 return NULL;
2741}
2742EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2743
2744static void
2745rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2746 struct ring_buffer_event *event)
2747{
2748 u64 delta;
2749
2750 /*
2751 * The event first in the commit queue updates the
2752 * time stamp.
2753 */
2754 if (rb_event_is_commit(cpu_buffer, event)) {
2755 /*
2756 * A commit event that is first on a page
2757 * updates the write timestamp with the page stamp
2758 */
2759 if (!rb_event_index(event))
2760 cpu_buffer->write_stamp =
2761 cpu_buffer->commit_page->page->time_stamp;
2762 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2763 delta = event->array[0];
2764 delta <<= TS_SHIFT;
2765 delta += event->time_delta;
2766 cpu_buffer->write_stamp += delta;
2767 } else
2768 cpu_buffer->write_stamp += event->time_delta;
2769 }
2770}
2771
2772static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2773 struct ring_buffer_event *event)
2774{
2775 local_inc(&cpu_buffer->entries);
2776 rb_update_write_stamp(cpu_buffer, event);
2777 rb_end_commit(cpu_buffer);
2778}
2779
2780static __always_inline void
2781rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2782{
2783 if (buffer->irq_work.waiters_pending) {
2784 buffer->irq_work.waiters_pending = false;
2785 /* irq_work_queue() supplies it's own memory barriers */
2786 irq_work_queue(&buffer->irq_work.work);
2787 }
2788
2789 if (cpu_buffer->irq_work.waiters_pending) {
2790 cpu_buffer->irq_work.waiters_pending = false;
2791 /* irq_work_queue() supplies it's own memory barriers */
2792 irq_work_queue(&cpu_buffer->irq_work.work);
2793 }
2794}
2795
2796/**
2797 * ring_buffer_unlock_commit - commit a reserved
2798 * @buffer: The buffer to commit to
2799 * @event: The event pointer to commit.
2800 *
2801 * This commits the data to the ring buffer, and releases any locks held.
2802 *
2803 * Must be paired with ring_buffer_lock_reserve.
2804 */
2805int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2806 struct ring_buffer_event *event)
2807{
2808 struct ring_buffer_per_cpu *cpu_buffer;
2809 int cpu = raw_smp_processor_id();
2810
2811 cpu_buffer = buffer->buffers[cpu];
2812
2813 rb_commit(cpu_buffer, event);
2814
2815 rb_wakeups(buffer, cpu_buffer);
2816
2817 trace_recursive_unlock();
2818
2819 preempt_enable_notrace();
2820
2821 return 0;
2822}
2823EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2824
2825static inline void rb_event_discard(struct ring_buffer_event *event)
2826{
2827 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2828 event = skip_time_extend(event);
2829
2830 /* array[0] holds the actual length for the discarded event */
2831 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2832 event->type_len = RINGBUF_TYPE_PADDING;
2833 /* time delta must be non zero */
2834 if (!event->time_delta)
2835 event->time_delta = 1;
2836}
2837
2838/*
2839 * Decrement the entries to the page that an event is on.
2840 * The event does not even need to exist, only the pointer
2841 * to the page it is on. This may only be called before the commit
2842 * takes place.
2843 */
2844static inline void
2845rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2846 struct ring_buffer_event *event)
2847{
2848 unsigned long addr = (unsigned long)event;
2849 struct buffer_page *bpage = cpu_buffer->commit_page;
2850 struct buffer_page *start;
2851
2852 addr &= PAGE_MASK;
2853
2854 /* Do the likely case first */
2855 if (likely(bpage->page == (void *)addr)) {
2856 local_dec(&bpage->entries);
2857 return;
2858 }
2859
2860 /*
2861 * Because the commit page may be on the reader page we
2862 * start with the next page and check the end loop there.
2863 */
2864 rb_inc_page(cpu_buffer, &bpage);
2865 start = bpage;
2866 do {
2867 if (bpage->page == (void *)addr) {
2868 local_dec(&bpage->entries);
2869 return;
2870 }
2871 rb_inc_page(cpu_buffer, &bpage);
2872 } while (bpage != start);
2873
2874 /* commit not part of this buffer?? */
2875 RB_WARN_ON(cpu_buffer, 1);
2876}
2877
2878/**
2879 * ring_buffer_commit_discard - discard an event that has not been committed
2880 * @buffer: the ring buffer
2881 * @event: non committed event to discard
2882 *
2883 * Sometimes an event that is in the ring buffer needs to be ignored.
2884 * This function lets the user discard an event in the ring buffer
2885 * and then that event will not be read later.
2886 *
2887 * This function only works if it is called before the the item has been
2888 * committed. It will try to free the event from the ring buffer
2889 * if another event has not been added behind it.
2890 *
2891 * If another event has been added behind it, it will set the event
2892 * up as discarded, and perform the commit.
2893 *
2894 * If this function is called, do not call ring_buffer_unlock_commit on
2895 * the event.
2896 */
2897void ring_buffer_discard_commit(struct ring_buffer *buffer,
2898 struct ring_buffer_event *event)
2899{
2900 struct ring_buffer_per_cpu *cpu_buffer;
2901 int cpu;
2902
2903 /* The event is discarded regardless */
2904 rb_event_discard(event);
2905
2906 cpu = smp_processor_id();
2907 cpu_buffer = buffer->buffers[cpu];
2908
2909 /*
2910 * This must only be called if the event has not been
2911 * committed yet. Thus we can assume that preemption
2912 * is still disabled.
2913 */
2914 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2915
2916 rb_decrement_entry(cpu_buffer, event);
2917 if (rb_try_to_discard(cpu_buffer, event))
2918 goto out;
2919
2920 /*
2921 * The commit is still visible by the reader, so we
2922 * must still update the timestamp.
2923 */
2924 rb_update_write_stamp(cpu_buffer, event);
2925 out:
2926 rb_end_commit(cpu_buffer);
2927
2928 trace_recursive_unlock();
2929
2930 preempt_enable_notrace();
2931
2932}
2933EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2934
2935/**
2936 * ring_buffer_write - write data to the buffer without reserving
2937 * @buffer: The ring buffer to write to.
2938 * @length: The length of the data being written (excluding the event header)
2939 * @data: The data to write to the buffer.
2940 *
2941 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2942 * one function. If you already have the data to write to the buffer, it
2943 * may be easier to simply call this function.
2944 *
2945 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2946 * and not the length of the event which would hold the header.
2947 */
2948int ring_buffer_write(struct ring_buffer *buffer,
2949 unsigned long length,
2950 void *data)
2951{
2952 struct ring_buffer_per_cpu *cpu_buffer;
2953 struct ring_buffer_event *event;
2954 void *body;
2955 int ret = -EBUSY;
2956 int cpu;
2957
2958 if (ring_buffer_flags != RB_BUFFERS_ON)
2959 return -EBUSY;
2960
2961 preempt_disable_notrace();
2962
2963 if (atomic_read(&buffer->record_disabled))
2964 goto out;
2965
2966 cpu = raw_smp_processor_id();
2967
2968 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2969 goto out;
2970
2971 cpu_buffer = buffer->buffers[cpu];
2972
2973 if (atomic_read(&cpu_buffer->record_disabled))
2974 goto out;
2975
2976 if (length > BUF_MAX_DATA_SIZE)
2977 goto out;
2978
2979 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2980 if (!event)
2981 goto out;
2982
2983 body = rb_event_data(event);
2984
2985 memcpy(body, data, length);
2986
2987 rb_commit(cpu_buffer, event);
2988
2989 rb_wakeups(buffer, cpu_buffer);
2990
2991 ret = 0;
2992 out:
2993 preempt_enable_notrace();
2994
2995 return ret;
2996}
2997EXPORT_SYMBOL_GPL(ring_buffer_write);
2998
2999static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3000{
3001 struct buffer_page *reader = cpu_buffer->reader_page;
3002 struct buffer_page *head = rb_set_head_page(cpu_buffer);
3003 struct buffer_page *commit = cpu_buffer->commit_page;
3004
3005 /* In case of error, head will be NULL */
3006 if (unlikely(!head))
3007 return 1;
3008
3009 return reader->read == rb_page_commit(reader) &&
3010 (commit == reader ||
3011 (commit == head &&
3012 head->read == rb_page_commit(commit)));
3013}
3014
3015/**
3016 * ring_buffer_record_disable - stop all writes into the buffer
3017 * @buffer: The ring buffer to stop writes to.
3018 *
3019 * This prevents all writes to the buffer. Any attempt to write
3020 * to the buffer after this will fail and return NULL.
3021 *
3022 * The caller should call synchronize_sched() after this.
3023 */
3024void ring_buffer_record_disable(struct ring_buffer *buffer)
3025{
3026 atomic_inc(&buffer->record_disabled);
3027}
3028EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3029
3030/**
3031 * ring_buffer_record_enable - enable writes to the buffer
3032 * @buffer: The ring buffer to enable writes
3033 *
3034 * Note, multiple disables will need the same number of enables
3035 * to truly enable the writing (much like preempt_disable).
3036 */
3037void ring_buffer_record_enable(struct ring_buffer *buffer)
3038{
3039 atomic_dec(&buffer->record_disabled);
3040}
3041EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3042
3043/**
3044 * ring_buffer_record_off - stop all writes into the buffer
3045 * @buffer: The ring buffer to stop writes to.
3046 *
3047 * This prevents all writes to the buffer. Any attempt to write
3048 * to the buffer after this will fail and return NULL.
3049 *
3050 * This is different than ring_buffer_record_disable() as
3051 * it works like an on/off switch, where as the disable() version
3052 * must be paired with a enable().
3053 */
3054void ring_buffer_record_off(struct ring_buffer *buffer)
3055{
3056 unsigned int rd;
3057 unsigned int new_rd;
3058
3059 do {
3060 rd = atomic_read(&buffer->record_disabled);
3061 new_rd = rd | RB_BUFFER_OFF;
3062 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3063}
3064EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3065
3066/**
3067 * ring_buffer_record_on - restart writes into the buffer
3068 * @buffer: The ring buffer to start writes to.
3069 *
3070 * This enables all writes to the buffer that was disabled by
3071 * ring_buffer_record_off().
3072 *
3073 * This is different than ring_buffer_record_enable() as
3074 * it works like an on/off switch, where as the enable() version
3075 * must be paired with a disable().
3076 */
3077void ring_buffer_record_on(struct ring_buffer *buffer)
3078{
3079 unsigned int rd;
3080 unsigned int new_rd;
3081
3082 do {
3083 rd = atomic_read(&buffer->record_disabled);
3084 new_rd = rd & ~RB_BUFFER_OFF;
3085 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3086}
3087EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3088
3089/**
3090 * ring_buffer_record_is_on - return true if the ring buffer can write
3091 * @buffer: The ring buffer to see if write is enabled
3092 *
3093 * Returns true if the ring buffer is in a state that it accepts writes.
3094 */
3095int ring_buffer_record_is_on(struct ring_buffer *buffer)
3096{
3097 return !atomic_read(&buffer->record_disabled);
3098}
3099
3100/**
3101 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3102 * @buffer: The ring buffer to stop writes to.
3103 * @cpu: The CPU buffer to stop
3104 *
3105 * This prevents all writes to the buffer. Any attempt to write
3106 * to the buffer after this will fail and return NULL.
3107 *
3108 * The caller should call synchronize_sched() after this.
3109 */
3110void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3111{
3112 struct ring_buffer_per_cpu *cpu_buffer;
3113
3114 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3115 return;
3116
3117 cpu_buffer = buffer->buffers[cpu];
3118 atomic_inc(&cpu_buffer->record_disabled);
3119}
3120EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3121
3122/**
3123 * ring_buffer_record_enable_cpu - enable writes to the buffer
3124 * @buffer: The ring buffer to enable writes
3125 * @cpu: The CPU to enable.
3126 *
3127 * Note, multiple disables will need the same number of enables
3128 * to truly enable the writing (much like preempt_disable).
3129 */
3130void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3131{
3132 struct ring_buffer_per_cpu *cpu_buffer;
3133
3134 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3135 return;
3136
3137 cpu_buffer = buffer->buffers[cpu];
3138 atomic_dec(&cpu_buffer->record_disabled);
3139}
3140EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3141
3142/*
3143 * The total entries in the ring buffer is the running counter
3144 * of entries entered into the ring buffer, minus the sum of
3145 * the entries read from the ring buffer and the number of
3146 * entries that were overwritten.
3147 */
3148static inline unsigned long
3149rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3150{
3151 return local_read(&cpu_buffer->entries) -
3152 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3153}
3154
3155/**
3156 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3157 * @buffer: The ring buffer
3158 * @cpu: The per CPU buffer to read from.
3159 */
3160u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3161{
3162 unsigned long flags;
3163 struct ring_buffer_per_cpu *cpu_buffer;
3164 struct buffer_page *bpage;
3165 u64 ret = 0;
3166
3167 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3168 return 0;
3169
3170 cpu_buffer = buffer->buffers[cpu];
3171 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3172 /*
3173 * if the tail is on reader_page, oldest time stamp is on the reader
3174 * page
3175 */
3176 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3177 bpage = cpu_buffer->reader_page;
3178 else
3179 bpage = rb_set_head_page(cpu_buffer);
3180 if (bpage)
3181 ret = bpage->page->time_stamp;
3182 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3183
3184 return ret;
3185}
3186EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3187
3188/**
3189 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3190 * @buffer: The ring buffer
3191 * @cpu: The per CPU buffer to read from.
3192 */
3193unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3194{
3195 struct ring_buffer_per_cpu *cpu_buffer;
3196 unsigned long ret;
3197
3198 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3199 return 0;
3200
3201 cpu_buffer = buffer->buffers[cpu];
3202 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3203
3204 return ret;
3205}
3206EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3207
3208/**
3209 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3210 * @buffer: The ring buffer
3211 * @cpu: The per CPU buffer to get the entries from.
3212 */
3213unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3214{
3215 struct ring_buffer_per_cpu *cpu_buffer;
3216
3217 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3218 return 0;
3219
3220 cpu_buffer = buffer->buffers[cpu];
3221
3222 return rb_num_of_entries(cpu_buffer);
3223}
3224EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3225
3226/**
3227 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3228 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3229 * @buffer: The ring buffer
3230 * @cpu: The per CPU buffer to get the number of overruns from
3231 */
3232unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3233{
3234 struct ring_buffer_per_cpu *cpu_buffer;
3235 unsigned long ret;
3236
3237 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3238 return 0;
3239
3240 cpu_buffer = buffer->buffers[cpu];
3241 ret = local_read(&cpu_buffer->overrun);
3242
3243 return ret;
3244}
3245EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3246
3247/**
3248 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3249 * commits failing due to the buffer wrapping around while there are uncommitted
3250 * events, such as during an interrupt storm.
3251 * @buffer: The ring buffer
3252 * @cpu: The per CPU buffer to get the number of overruns from
3253 */
3254unsigned long
3255ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3256{
3257 struct ring_buffer_per_cpu *cpu_buffer;
3258 unsigned long ret;
3259
3260 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3261 return 0;
3262
3263 cpu_buffer = buffer->buffers[cpu];
3264 ret = local_read(&cpu_buffer->commit_overrun);
3265
3266 return ret;
3267}
3268EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3269
3270/**
3271 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3272 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3273 * @buffer: The ring buffer
3274 * @cpu: The per CPU buffer to get the number of overruns from
3275 */
3276unsigned long
3277ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3278{
3279 struct ring_buffer_per_cpu *cpu_buffer;
3280 unsigned long ret;
3281
3282 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3283 return 0;
3284
3285 cpu_buffer = buffer->buffers[cpu];
3286 ret = local_read(&cpu_buffer->dropped_events);
3287
3288 return ret;
3289}
3290EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3291
3292/**
3293 * ring_buffer_read_events_cpu - get the number of events successfully read
3294 * @buffer: The ring buffer
3295 * @cpu: The per CPU buffer to get the number of events read
3296 */
3297unsigned long
3298ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3299{
3300 struct ring_buffer_per_cpu *cpu_buffer;
3301
3302 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3303 return 0;
3304
3305 cpu_buffer = buffer->buffers[cpu];
3306 return cpu_buffer->read;
3307}
3308EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3309
3310/**
3311 * ring_buffer_entries - get the number of entries in a buffer
3312 * @buffer: The ring buffer
3313 *
3314 * Returns the total number of entries in the ring buffer
3315 * (all CPU entries)
3316 */
3317unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3318{
3319 struct ring_buffer_per_cpu *cpu_buffer;
3320 unsigned long entries = 0;
3321 int cpu;
3322
3323 /* if you care about this being correct, lock the buffer */
3324 for_each_buffer_cpu(buffer, cpu) {
3325 cpu_buffer = buffer->buffers[cpu];
3326 entries += rb_num_of_entries(cpu_buffer);
3327 }
3328
3329 return entries;
3330}
3331EXPORT_SYMBOL_GPL(ring_buffer_entries);
3332
3333/**
3334 * ring_buffer_overruns - get the number of overruns in buffer
3335 * @buffer: The ring buffer
3336 *
3337 * Returns the total number of overruns in the ring buffer
3338 * (all CPU entries)
3339 */
3340unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3341{
3342 struct ring_buffer_per_cpu *cpu_buffer;
3343 unsigned long overruns = 0;
3344 int cpu;
3345
3346 /* if you care about this being correct, lock the buffer */
3347 for_each_buffer_cpu(buffer, cpu) {
3348 cpu_buffer = buffer->buffers[cpu];
3349 overruns += local_read(&cpu_buffer->overrun);
3350 }
3351
3352 return overruns;
3353}
3354EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3355
3356static void rb_iter_reset(struct ring_buffer_iter *iter)
3357{
3358 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3359
3360 /* Iterator usage is expected to have record disabled */
3361 if (list_empty(&cpu_buffer->reader_page->list)) {
3362 iter->head_page = rb_set_head_page(cpu_buffer);
3363 if (unlikely(!iter->head_page))
3364 return;
3365 iter->head = iter->head_page->read;
3366 } else {
3367 iter->head_page = cpu_buffer->reader_page;
3368 iter->head = cpu_buffer->reader_page->read;
3369 }
3370 if (iter->head)
3371 iter->read_stamp = cpu_buffer->read_stamp;
3372 else
3373 iter->read_stamp = iter->head_page->page->time_stamp;
3374 iter->cache_reader_page = cpu_buffer->reader_page;
3375 iter->cache_read = cpu_buffer->read;
3376}
3377
3378/**
3379 * ring_buffer_iter_reset - reset an iterator
3380 * @iter: The iterator to reset
3381 *
3382 * Resets the iterator, so that it will start from the beginning
3383 * again.
3384 */
3385void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3386{
3387 struct ring_buffer_per_cpu *cpu_buffer;
3388 unsigned long flags;
3389
3390 if (!iter)
3391 return;
3392
3393 cpu_buffer = iter->cpu_buffer;
3394
3395 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3396 rb_iter_reset(iter);
3397 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3398}
3399EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3400
3401/**
3402 * ring_buffer_iter_empty - check if an iterator has no more to read
3403 * @iter: The iterator to check
3404 */
3405int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3406{
3407 struct ring_buffer_per_cpu *cpu_buffer;
3408
3409 cpu_buffer = iter->cpu_buffer;
3410
3411 return iter->head_page == cpu_buffer->commit_page &&
3412 iter->head == rb_commit_index(cpu_buffer);
3413}
3414EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3415
3416static void
3417rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3418 struct ring_buffer_event *event)
3419{
3420 u64 delta;
3421
3422 switch (event->type_len) {
3423 case RINGBUF_TYPE_PADDING:
3424 return;
3425
3426 case RINGBUF_TYPE_TIME_EXTEND:
3427 delta = event->array[0];
3428 delta <<= TS_SHIFT;
3429 delta += event->time_delta;
3430 cpu_buffer->read_stamp += delta;
3431 return;
3432
3433 case RINGBUF_TYPE_TIME_STAMP:
3434 /* FIXME: not implemented */
3435 return;
3436
3437 case RINGBUF_TYPE_DATA:
3438 cpu_buffer->read_stamp += event->time_delta;
3439 return;
3440
3441 default:
3442 BUG();
3443 }
3444 return;
3445}
3446
3447static void
3448rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3449 struct ring_buffer_event *event)
3450{
3451 u64 delta;
3452
3453 switch (event->type_len) {
3454 case RINGBUF_TYPE_PADDING:
3455 return;
3456
3457 case RINGBUF_TYPE_TIME_EXTEND:
3458 delta = event->array[0];
3459 delta <<= TS_SHIFT;
3460 delta += event->time_delta;
3461 iter->read_stamp += delta;
3462 return;
3463
3464 case RINGBUF_TYPE_TIME_STAMP:
3465 /* FIXME: not implemented */
3466 return;
3467
3468 case RINGBUF_TYPE_DATA:
3469 iter->read_stamp += event->time_delta;
3470 return;
3471
3472 default:
3473 BUG();
3474 }
3475 return;
3476}
3477
3478static struct buffer_page *
3479rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3480{
3481 struct buffer_page *reader = NULL;
3482 unsigned long overwrite;
3483 unsigned long flags;
3484 int nr_loops = 0;
3485 int ret;
3486
3487 local_irq_save(flags);
3488 arch_spin_lock(&cpu_buffer->lock);
3489
3490 again:
3491 /*
3492 * This should normally only loop twice. But because the
3493 * start of the reader inserts an empty page, it causes
3494 * a case where we will loop three times. There should be no
3495 * reason to loop four times (that I know of).
3496 */
3497 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3498 reader = NULL;
3499 goto out;
3500 }
3501
3502 reader = cpu_buffer->reader_page;
3503
3504 /* If there's more to read, return this page */
3505 if (cpu_buffer->reader_page->read < rb_page_size(reader))
3506 goto out;
3507
3508 /* Never should we have an index greater than the size */
3509 if (RB_WARN_ON(cpu_buffer,
3510 cpu_buffer->reader_page->read > rb_page_size(reader)))
3511 goto out;
3512
3513 /* check if we caught up to the tail */
3514 reader = NULL;
3515 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3516 goto out;
3517
3518 /* Don't bother swapping if the ring buffer is empty */
3519 if (rb_num_of_entries(cpu_buffer) == 0)
3520 goto out;
3521
3522 /*
3523 * Reset the reader page to size zero.
3524 */
3525 local_set(&cpu_buffer->reader_page->write, 0);
3526 local_set(&cpu_buffer->reader_page->entries, 0);
3527 local_set(&cpu_buffer->reader_page->page->commit, 0);
3528 cpu_buffer->reader_page->real_end = 0;
3529
3530 spin:
3531 /*
3532 * Splice the empty reader page into the list around the head.
3533 */
3534 reader = rb_set_head_page(cpu_buffer);
3535 if (!reader)
3536 goto out;
3537 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3538 cpu_buffer->reader_page->list.prev = reader->list.prev;
3539
3540 /*
3541 * cpu_buffer->pages just needs to point to the buffer, it
3542 * has no specific buffer page to point to. Lets move it out
3543 * of our way so we don't accidentally swap it.
3544 */
3545 cpu_buffer->pages = reader->list.prev;
3546
3547 /* The reader page will be pointing to the new head */
3548 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3549
3550 /*
3551 * We want to make sure we read the overruns after we set up our
3552 * pointers to the next object. The writer side does a
3553 * cmpxchg to cross pages which acts as the mb on the writer
3554 * side. Note, the reader will constantly fail the swap
3555 * while the writer is updating the pointers, so this
3556 * guarantees that the overwrite recorded here is the one we
3557 * want to compare with the last_overrun.
3558 */
3559 smp_mb();
3560 overwrite = local_read(&(cpu_buffer->overrun));
3561
3562 /*
3563 * Here's the tricky part.
3564 *
3565 * We need to move the pointer past the header page.
3566 * But we can only do that if a writer is not currently
3567 * moving it. The page before the header page has the
3568 * flag bit '1' set if it is pointing to the page we want.
3569 * but if the writer is in the process of moving it
3570 * than it will be '2' or already moved '0'.
3571 */
3572
3573 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3574
3575 /*
3576 * If we did not convert it, then we must try again.
3577 */
3578 if (!ret)
3579 goto spin;
3580
3581 /*
3582 * Yeah! We succeeded in replacing the page.
3583 *
3584 * Now make the new head point back to the reader page.
3585 */
3586 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3587 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3588
3589 /* Finally update the reader page to the new head */
3590 cpu_buffer->reader_page = reader;
3591 rb_reset_reader_page(cpu_buffer);
3592
3593 if (overwrite != cpu_buffer->last_overrun) {
3594 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3595 cpu_buffer->last_overrun = overwrite;
3596 }
3597
3598 goto again;
3599
3600 out:
3601 arch_spin_unlock(&cpu_buffer->lock);
3602 local_irq_restore(flags);
3603
3604 return reader;
3605}
3606
3607static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3608{
3609 struct ring_buffer_event *event;
3610 struct buffer_page *reader;
3611 unsigned length;
3612
3613 reader = rb_get_reader_page(cpu_buffer);
3614
3615 /* This function should not be called when buffer is empty */
3616 if (RB_WARN_ON(cpu_buffer, !reader))
3617 return;
3618
3619 event = rb_reader_event(cpu_buffer);
3620
3621 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3622 cpu_buffer->read++;
3623
3624 rb_update_read_stamp(cpu_buffer, event);
3625
3626 length = rb_event_length(event);
3627 cpu_buffer->reader_page->read += length;
3628}
3629
3630static void rb_advance_iter(struct ring_buffer_iter *iter)
3631{
3632 struct ring_buffer_per_cpu *cpu_buffer;
3633 struct ring_buffer_event *event;
3634 unsigned length;
3635
3636 cpu_buffer = iter->cpu_buffer;
3637
3638 /*
3639 * Check if we are at the end of the buffer.
3640 */
3641 if (iter->head >= rb_page_size(iter->head_page)) {
3642 /* discarded commits can make the page empty */
3643 if (iter->head_page == cpu_buffer->commit_page)
3644 return;
3645 rb_inc_iter(iter);
3646 return;
3647 }
3648
3649 event = rb_iter_head_event(iter);
3650
3651 length = rb_event_length(event);
3652
3653 /*
3654 * This should not be called to advance the header if we are
3655 * at the tail of the buffer.
3656 */
3657 if (RB_WARN_ON(cpu_buffer,
3658 (iter->head_page == cpu_buffer->commit_page) &&
3659 (iter->head + length > rb_commit_index(cpu_buffer))))
3660 return;
3661
3662 rb_update_iter_read_stamp(iter, event);
3663
3664 iter->head += length;
3665
3666 /* check for end of page padding */
3667 if ((iter->head >= rb_page_size(iter->head_page)) &&
3668 (iter->head_page != cpu_buffer->commit_page))
3669 rb_inc_iter(iter);
3670}
3671
3672static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3673{
3674 return cpu_buffer->lost_events;
3675}
3676
3677static struct ring_buffer_event *
3678rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3679 unsigned long *lost_events)
3680{
3681 struct ring_buffer_event *event;
3682 struct buffer_page *reader;
3683 int nr_loops = 0;
3684
3685 again:
3686 /*
3687 * We repeat when a time extend is encountered.
3688 * Since the time extend is always attached to a data event,
3689 * we should never loop more than once.
3690 * (We never hit the following condition more than twice).
3691 */
3692 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3693 return NULL;
3694
3695 reader = rb_get_reader_page(cpu_buffer);
3696 if (!reader)
3697 return NULL;
3698
3699 event = rb_reader_event(cpu_buffer);
3700
3701 switch (event->type_len) {
3702 case RINGBUF_TYPE_PADDING:
3703 if (rb_null_event(event))
3704 RB_WARN_ON(cpu_buffer, 1);
3705 /*
3706 * Because the writer could be discarding every
3707 * event it creates (which would probably be bad)
3708 * if we were to go back to "again" then we may never
3709 * catch up, and will trigger the warn on, or lock
3710 * the box. Return the padding, and we will release
3711 * the current locks, and try again.
3712 */
3713 return event;
3714
3715 case RINGBUF_TYPE_TIME_EXTEND:
3716 /* Internal data, OK to advance */
3717 rb_advance_reader(cpu_buffer);
3718 goto again;
3719
3720 case RINGBUF_TYPE_TIME_STAMP:
3721 /* FIXME: not implemented */
3722 rb_advance_reader(cpu_buffer);
3723 goto again;
3724
3725 case RINGBUF_TYPE_DATA:
3726 if (ts) {
3727 *ts = cpu_buffer->read_stamp + event->time_delta;
3728 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3729 cpu_buffer->cpu, ts);
3730 }
3731 if (lost_events)
3732 *lost_events = rb_lost_events(cpu_buffer);
3733 return event;
3734
3735 default:
3736 BUG();
3737 }
3738
3739 return NULL;
3740}
3741EXPORT_SYMBOL_GPL(ring_buffer_peek);
3742
3743static struct ring_buffer_event *
3744rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3745{
3746 struct ring_buffer *buffer;
3747 struct ring_buffer_per_cpu *cpu_buffer;
3748 struct ring_buffer_event *event;
3749 int nr_loops = 0;
3750
3751 cpu_buffer = iter->cpu_buffer;
3752 buffer = cpu_buffer->buffer;
3753
3754 /*
3755 * Check if someone performed a consuming read to
3756 * the buffer. A consuming read invalidates the iterator
3757 * and we need to reset the iterator in this case.
3758 */
3759 if (unlikely(iter->cache_read != cpu_buffer->read ||
3760 iter->cache_reader_page != cpu_buffer->reader_page))
3761 rb_iter_reset(iter);
3762
3763 again:
3764 if (ring_buffer_iter_empty(iter))
3765 return NULL;
3766
3767 /*
3768 * We repeat when a time extend is encountered.
3769 * Since the time extend is always attached to a data event,
3770 * we should never loop more than once.
3771 * (We never hit the following condition more than twice).
3772 */
3773 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3774 return NULL;
3775
3776 if (rb_per_cpu_empty(cpu_buffer))
3777 return NULL;
3778
3779 if (iter->head >= local_read(&iter->head_page->page->commit)) {
3780 rb_inc_iter(iter);
3781 goto again;
3782 }
3783
3784 event = rb_iter_head_event(iter);
3785
3786 switch (event->type_len) {
3787 case RINGBUF_TYPE_PADDING:
3788 if (rb_null_event(event)) {
3789 rb_inc_iter(iter);
3790 goto again;
3791 }
3792 rb_advance_iter(iter);
3793 return event;
3794
3795 case RINGBUF_TYPE_TIME_EXTEND:
3796 /* Internal data, OK to advance */
3797 rb_advance_iter(iter);
3798 goto again;
3799
3800 case RINGBUF_TYPE_TIME_STAMP:
3801 /* FIXME: not implemented */
3802 rb_advance_iter(iter);
3803 goto again;
3804
3805 case RINGBUF_TYPE_DATA:
3806 if (ts) {
3807 *ts = iter->read_stamp + event->time_delta;
3808 ring_buffer_normalize_time_stamp(buffer,
3809 cpu_buffer->cpu, ts);
3810 }
3811 return event;
3812
3813 default:
3814 BUG();
3815 }
3816
3817 return NULL;
3818}
3819EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3820
3821static inline int rb_ok_to_lock(void)
3822{
3823 /*
3824 * If an NMI die dumps out the content of the ring buffer
3825 * do not grab locks. We also permanently disable the ring
3826 * buffer too. A one time deal is all you get from reading
3827 * the ring buffer from an NMI.
3828 */
3829 if (likely(!in_nmi()))
3830 return 1;
3831
3832 tracing_off_permanent();
3833 return 0;
3834}
3835
3836/**
3837 * ring_buffer_peek - peek at the next event to be read
3838 * @buffer: The ring buffer to read
3839 * @cpu: The cpu to peak at
3840 * @ts: The timestamp counter of this event.
3841 * @lost_events: a variable to store if events were lost (may be NULL)
3842 *
3843 * This will return the event that will be read next, but does
3844 * not consume the data.
3845 */
3846struct ring_buffer_event *
3847ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3848 unsigned long *lost_events)
3849{
3850 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3851 struct ring_buffer_event *event;
3852 unsigned long flags;
3853 int dolock;
3854
3855 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3856 return NULL;
3857
3858 dolock = rb_ok_to_lock();
3859 again:
3860 local_irq_save(flags);
3861 if (dolock)
3862 raw_spin_lock(&cpu_buffer->reader_lock);
3863 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3864 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3865 rb_advance_reader(cpu_buffer);
3866 if (dolock)
3867 raw_spin_unlock(&cpu_buffer->reader_lock);
3868 local_irq_restore(flags);
3869
3870 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3871 goto again;
3872
3873 return event;
3874}
3875
3876/**
3877 * ring_buffer_iter_peek - peek at the next event to be read
3878 * @iter: The ring buffer iterator
3879 * @ts: The timestamp counter of this event.
3880 *
3881 * This will return the event that will be read next, but does
3882 * not increment the iterator.
3883 */
3884struct ring_buffer_event *
3885ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3886{
3887 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3888 struct ring_buffer_event *event;
3889 unsigned long flags;
3890
3891 again:
3892 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3893 event = rb_iter_peek(iter, ts);
3894 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3895
3896 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3897 goto again;
3898
3899 return event;
3900}
3901
3902/**
3903 * ring_buffer_consume - return an event and consume it
3904 * @buffer: The ring buffer to get the next event from
3905 * @cpu: the cpu to read the buffer from
3906 * @ts: a variable to store the timestamp (may be NULL)
3907 * @lost_events: a variable to store if events were lost (may be NULL)
3908 *
3909 * Returns the next event in the ring buffer, and that event is consumed.
3910 * Meaning, that sequential reads will keep returning a different event,
3911 * and eventually empty the ring buffer if the producer is slower.
3912 */
3913struct ring_buffer_event *
3914ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3915 unsigned long *lost_events)
3916{
3917 struct ring_buffer_per_cpu *cpu_buffer;
3918 struct ring_buffer_event *event = NULL;
3919 unsigned long flags;
3920 int dolock;
3921
3922 dolock = rb_ok_to_lock();
3923
3924 again:
3925 /* might be called in atomic */
3926 preempt_disable();
3927
3928 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3929 goto out;
3930
3931 cpu_buffer = buffer->buffers[cpu];
3932 local_irq_save(flags);
3933 if (dolock)
3934 raw_spin_lock(&cpu_buffer->reader_lock);
3935
3936 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3937 if (event) {
3938 cpu_buffer->lost_events = 0;
3939 rb_advance_reader(cpu_buffer);
3940 }
3941
3942 if (dolock)
3943 raw_spin_unlock(&cpu_buffer->reader_lock);
3944 local_irq_restore(flags);
3945
3946 out:
3947 preempt_enable();
3948
3949 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3950 goto again;
3951
3952 return event;
3953}
3954EXPORT_SYMBOL_GPL(ring_buffer_consume);
3955
3956/**
3957 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3958 * @buffer: The ring buffer to read from
3959 * @cpu: The cpu buffer to iterate over
3960 *
3961 * This performs the initial preparations necessary to iterate
3962 * through the buffer. Memory is allocated, buffer recording
3963 * is disabled, and the iterator pointer is returned to the caller.
3964 *
3965 * Disabling buffer recordng prevents the reading from being
3966 * corrupted. This is not a consuming read, so a producer is not
3967 * expected.
3968 *
3969 * After a sequence of ring_buffer_read_prepare calls, the user is
3970 * expected to make at least one call to ring_buffer_read_prepare_sync.
3971 * Afterwards, ring_buffer_read_start is invoked to get things going
3972 * for real.
3973 *
3974 * This overall must be paired with ring_buffer_read_finish.
3975 */
3976struct ring_buffer_iter *
3977ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3978{
3979 struct ring_buffer_per_cpu *cpu_buffer;
3980 struct ring_buffer_iter *iter;
3981
3982 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3983 return NULL;
3984
3985 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3986 if (!iter)
3987 return NULL;
3988
3989 cpu_buffer = buffer->buffers[cpu];
3990
3991 iter->cpu_buffer = cpu_buffer;
3992
3993 atomic_inc(&buffer->resize_disabled);
3994 atomic_inc(&cpu_buffer->record_disabled);
3995
3996 return iter;
3997}
3998EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3999
4000/**
4001 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4002 *
4003 * All previously invoked ring_buffer_read_prepare calls to prepare
4004 * iterators will be synchronized. Afterwards, read_buffer_read_start
4005 * calls on those iterators are allowed.
4006 */
4007void
4008ring_buffer_read_prepare_sync(void)
4009{
4010 synchronize_sched();
4011}
4012EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4013
4014/**
4015 * ring_buffer_read_start - start a non consuming read of the buffer
4016 * @iter: The iterator returned by ring_buffer_read_prepare
4017 *
4018 * This finalizes the startup of an iteration through the buffer.
4019 * The iterator comes from a call to ring_buffer_read_prepare and
4020 * an intervening ring_buffer_read_prepare_sync must have been
4021 * performed.
4022 *
4023 * Must be paired with ring_buffer_read_finish.
4024 */
4025void
4026ring_buffer_read_start(struct ring_buffer_iter *iter)
4027{
4028 struct ring_buffer_per_cpu *cpu_buffer;
4029 unsigned long flags;
4030
4031 if (!iter)
4032 return;
4033
4034 cpu_buffer = iter->cpu_buffer;
4035
4036 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4037 arch_spin_lock(&cpu_buffer->lock);
4038 rb_iter_reset(iter);
4039 arch_spin_unlock(&cpu_buffer->lock);
4040 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4041}
4042EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4043
4044/**
4045 * ring_buffer_read_finish - finish reading the iterator of the buffer
4046 * @iter: The iterator retrieved by ring_buffer_start
4047 *
4048 * This re-enables the recording to the buffer, and frees the
4049 * iterator.
4050 */
4051void
4052ring_buffer_read_finish(struct ring_buffer_iter *iter)
4053{
4054 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4055 unsigned long flags;
4056
4057 /*
4058 * Ring buffer is disabled from recording, here's a good place
4059 * to check the integrity of the ring buffer.
4060 * Must prevent readers from trying to read, as the check
4061 * clears the HEAD page and readers require it.
4062 */
4063 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4064 rb_check_pages(cpu_buffer);
4065 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4066
4067 atomic_dec(&cpu_buffer->record_disabled);
4068 atomic_dec(&cpu_buffer->buffer->resize_disabled);
4069 kfree(iter);
4070}
4071EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4072
4073/**
4074 * ring_buffer_read - read the next item in the ring buffer by the iterator
4075 * @iter: The ring buffer iterator
4076 * @ts: The time stamp of the event read.
4077 *
4078 * This reads the next event in the ring buffer and increments the iterator.
4079 */
4080struct ring_buffer_event *
4081ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4082{
4083 struct ring_buffer_event *event;
4084 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4085 unsigned long flags;
4086
4087 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4088 again:
4089 event = rb_iter_peek(iter, ts);
4090 if (!event)
4091 goto out;
4092
4093 if (event->type_len == RINGBUF_TYPE_PADDING)
4094 goto again;
4095
4096 rb_advance_iter(iter);
4097 out:
4098 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4099
4100 return event;
4101}
4102EXPORT_SYMBOL_GPL(ring_buffer_read);
4103
4104/**
4105 * ring_buffer_size - return the size of the ring buffer (in bytes)
4106 * @buffer: The ring buffer.
4107 */
4108unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4109{
4110 /*
4111 * Earlier, this method returned
4112 * BUF_PAGE_SIZE * buffer->nr_pages
4113 * Since the nr_pages field is now removed, we have converted this to
4114 * return the per cpu buffer value.
4115 */
4116 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4117 return 0;
4118
4119 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4120}
4121EXPORT_SYMBOL_GPL(ring_buffer_size);
4122
4123static void
4124rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4125{
4126 rb_head_page_deactivate(cpu_buffer);
4127
4128 cpu_buffer->head_page
4129 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4130 local_set(&cpu_buffer->head_page->write, 0);
4131 local_set(&cpu_buffer->head_page->entries, 0);
4132 local_set(&cpu_buffer->head_page->page->commit, 0);
4133
4134 cpu_buffer->head_page->read = 0;
4135
4136 cpu_buffer->tail_page = cpu_buffer->head_page;
4137 cpu_buffer->commit_page = cpu_buffer->head_page;
4138
4139 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4140 INIT_LIST_HEAD(&cpu_buffer->new_pages);
4141 local_set(&cpu_buffer->reader_page->write, 0);
4142 local_set(&cpu_buffer->reader_page->entries, 0);
4143 local_set(&cpu_buffer->reader_page->page->commit, 0);
4144 cpu_buffer->reader_page->read = 0;
4145
4146 local_set(&cpu_buffer->entries_bytes, 0);
4147 local_set(&cpu_buffer->overrun, 0);
4148 local_set(&cpu_buffer->commit_overrun, 0);
4149 local_set(&cpu_buffer->dropped_events, 0);
4150 local_set(&cpu_buffer->entries, 0);
4151 local_set(&cpu_buffer->committing, 0);
4152 local_set(&cpu_buffer->commits, 0);
4153 cpu_buffer->read = 0;
4154 cpu_buffer->read_bytes = 0;
4155
4156 cpu_buffer->write_stamp = 0;
4157 cpu_buffer->read_stamp = 0;
4158
4159 cpu_buffer->lost_events = 0;
4160 cpu_buffer->last_overrun = 0;
4161
4162 rb_head_page_activate(cpu_buffer);
4163}
4164
4165/**
4166 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4167 * @buffer: The ring buffer to reset a per cpu buffer of
4168 * @cpu: The CPU buffer to be reset
4169 */
4170void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4171{
4172 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4173 unsigned long flags;
4174
4175 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4176 return;
4177
4178 atomic_inc(&buffer->resize_disabled);
4179 atomic_inc(&cpu_buffer->record_disabled);
4180
4181 /* Make sure all commits have finished */
4182 synchronize_sched();
4183
4184 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4185
4186 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4187 goto out;
4188
4189 arch_spin_lock(&cpu_buffer->lock);
4190
4191 rb_reset_cpu(cpu_buffer);
4192
4193 arch_spin_unlock(&cpu_buffer->lock);
4194
4195 out:
4196 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4197
4198 atomic_dec(&cpu_buffer->record_disabled);
4199 atomic_dec(&buffer->resize_disabled);
4200}
4201EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4202
4203/**
4204 * ring_buffer_reset - reset a ring buffer
4205 * @buffer: The ring buffer to reset all cpu buffers
4206 */
4207void ring_buffer_reset(struct ring_buffer *buffer)
4208{
4209 int cpu;
4210
4211 for_each_buffer_cpu(buffer, cpu)
4212 ring_buffer_reset_cpu(buffer, cpu);
4213}
4214EXPORT_SYMBOL_GPL(ring_buffer_reset);
4215
4216/**
4217 * rind_buffer_empty - is the ring buffer empty?
4218 * @buffer: The ring buffer to test
4219 */
4220int ring_buffer_empty(struct ring_buffer *buffer)
4221{
4222 struct ring_buffer_per_cpu *cpu_buffer;
4223 unsigned long flags;
4224 int dolock;
4225 int cpu;
4226 int ret;
4227
4228 dolock = rb_ok_to_lock();
4229
4230 /* yes this is racy, but if you don't like the race, lock the buffer */
4231 for_each_buffer_cpu(buffer, cpu) {
4232 cpu_buffer = buffer->buffers[cpu];
4233 local_irq_save(flags);
4234 if (dolock)
4235 raw_spin_lock(&cpu_buffer->reader_lock);
4236 ret = rb_per_cpu_empty(cpu_buffer);
4237 if (dolock)
4238 raw_spin_unlock(&cpu_buffer->reader_lock);
4239 local_irq_restore(flags);
4240
4241 if (!ret)
4242 return 0;
4243 }
4244
4245 return 1;
4246}
4247EXPORT_SYMBOL_GPL(ring_buffer_empty);
4248
4249/**
4250 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4251 * @buffer: The ring buffer
4252 * @cpu: The CPU buffer to test
4253 */
4254int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4255{
4256 struct ring_buffer_per_cpu *cpu_buffer;
4257 unsigned long flags;
4258 int dolock;
4259 int ret;
4260
4261 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4262 return 1;
4263
4264 dolock = rb_ok_to_lock();
4265
4266 cpu_buffer = buffer->buffers[cpu];
4267 local_irq_save(flags);
4268 if (dolock)
4269 raw_spin_lock(&cpu_buffer->reader_lock);
4270 ret = rb_per_cpu_empty(cpu_buffer);
4271 if (dolock)
4272 raw_spin_unlock(&cpu_buffer->reader_lock);
4273 local_irq_restore(flags);
4274
4275 return ret;
4276}
4277EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4278
4279#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4280/**
4281 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4282 * @buffer_a: One buffer to swap with
4283 * @buffer_b: The other buffer to swap with
4284 *
4285 * This function is useful for tracers that want to take a "snapshot"
4286 * of a CPU buffer and has another back up buffer lying around.
4287 * it is expected that the tracer handles the cpu buffer not being
4288 * used at the moment.
4289 */
4290int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4291 struct ring_buffer *buffer_b, int cpu)
4292{
4293 struct ring_buffer_per_cpu *cpu_buffer_a;
4294 struct ring_buffer_per_cpu *cpu_buffer_b;
4295 int ret = -EINVAL;
4296
4297 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4298 !cpumask_test_cpu(cpu, buffer_b->cpumask))
4299 goto out;
4300
4301 cpu_buffer_a = buffer_a->buffers[cpu];
4302 cpu_buffer_b = buffer_b->buffers[cpu];
4303
4304 /* At least make sure the two buffers are somewhat the same */
4305 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4306 goto out;
4307
4308 ret = -EAGAIN;
4309
4310 if (ring_buffer_flags != RB_BUFFERS_ON)
4311 goto out;
4312
4313 if (atomic_read(&buffer_a->record_disabled))
4314 goto out;
4315
4316 if (atomic_read(&buffer_b->record_disabled))
4317 goto out;
4318
4319 if (atomic_read(&cpu_buffer_a->record_disabled))
4320 goto out;
4321
4322 if (atomic_read(&cpu_buffer_b->record_disabled))
4323 goto out;
4324
4325 /*
4326 * We can't do a synchronize_sched here because this
4327 * function can be called in atomic context.
4328 * Normally this will be called from the same CPU as cpu.
4329 * If not it's up to the caller to protect this.
4330 */
4331 atomic_inc(&cpu_buffer_a->record_disabled);
4332 atomic_inc(&cpu_buffer_b->record_disabled);
4333
4334 ret = -EBUSY;
4335 if (local_read(&cpu_buffer_a->committing))
4336 goto out_dec;
4337 if (local_read(&cpu_buffer_b->committing))
4338 goto out_dec;
4339
4340 buffer_a->buffers[cpu] = cpu_buffer_b;
4341 buffer_b->buffers[cpu] = cpu_buffer_a;
4342
4343 cpu_buffer_b->buffer = buffer_a;
4344 cpu_buffer_a->buffer = buffer_b;
4345
4346 ret = 0;
4347
4348out_dec:
4349 atomic_dec(&cpu_buffer_a->record_disabled);
4350 atomic_dec(&cpu_buffer_b->record_disabled);
4351out:
4352 return ret;
4353}
4354EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4355#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4356
4357/**
4358 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4359 * @buffer: the buffer to allocate for.
4360 * @cpu: the cpu buffer to allocate.
4361 *
4362 * This function is used in conjunction with ring_buffer_read_page.
4363 * When reading a full page from the ring buffer, these functions
4364 * can be used to speed up the process. The calling function should
4365 * allocate a few pages first with this function. Then when it
4366 * needs to get pages from the ring buffer, it passes the result
4367 * of this function into ring_buffer_read_page, which will swap
4368 * the page that was allocated, with the read page of the buffer.
4369 *
4370 * Returns:
4371 * The page allocated, or NULL on error.
4372 */
4373void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4374{
4375 struct buffer_data_page *bpage;
4376 struct page *page;
4377
4378 page = alloc_pages_node(cpu_to_node(cpu),
4379 GFP_KERNEL | __GFP_NORETRY, 0);
4380 if (!page)
4381 return NULL;
4382
4383 bpage = page_address(page);
4384
4385 rb_init_page(bpage);
4386
4387 return bpage;
4388}
4389EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4390
4391/**
4392 * ring_buffer_free_read_page - free an allocated read page
4393 * @buffer: the buffer the page was allocate for
4394 * @data: the page to free
4395 *
4396 * Free a page allocated from ring_buffer_alloc_read_page.
4397 */
4398void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4399{
4400 free_page((unsigned long)data);
4401}
4402EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4403
4404/**
4405 * ring_buffer_read_page - extract a page from the ring buffer
4406 * @buffer: buffer to extract from
4407 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4408 * @len: amount to extract
4409 * @cpu: the cpu of the buffer to extract
4410 * @full: should the extraction only happen when the page is full.
4411 *
4412 * This function will pull out a page from the ring buffer and consume it.
4413 * @data_page must be the address of the variable that was returned
4414 * from ring_buffer_alloc_read_page. This is because the page might be used
4415 * to swap with a page in the ring buffer.
4416 *
4417 * for example:
4418 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
4419 * if (!rpage)
4420 * return error;
4421 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4422 * if (ret >= 0)
4423 * process_page(rpage, ret);
4424 *
4425 * When @full is set, the function will not return true unless
4426 * the writer is off the reader page.
4427 *
4428 * Note: it is up to the calling functions to handle sleeps and wakeups.
4429 * The ring buffer can be used anywhere in the kernel and can not
4430 * blindly call wake_up. The layer that uses the ring buffer must be
4431 * responsible for that.
4432 *
4433 * Returns:
4434 * >=0 if data has been transferred, returns the offset of consumed data.
4435 * <0 if no data has been transferred.
4436 */
4437int ring_buffer_read_page(struct ring_buffer *buffer,
4438 void **data_page, size_t len, int cpu, int full)
4439{
4440 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4441 struct ring_buffer_event *event;
4442 struct buffer_data_page *bpage;
4443 struct buffer_page *reader;
4444 unsigned long missed_events;
4445 unsigned long flags;
4446 unsigned int commit;
4447 unsigned int read;
4448 u64 save_timestamp;
4449 int ret = -1;
4450
4451 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4452 goto out;
4453
4454 /*
4455 * If len is not big enough to hold the page header, then
4456 * we can not copy anything.
4457 */
4458 if (len <= BUF_PAGE_HDR_SIZE)
4459 goto out;
4460
4461 len -= BUF_PAGE_HDR_SIZE;
4462
4463 if (!data_page)
4464 goto out;
4465
4466 bpage = *data_page;
4467 if (!bpage)
4468 goto out;
4469
4470 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4471
4472 reader = rb_get_reader_page(cpu_buffer);
4473 if (!reader)
4474 goto out_unlock;
4475
4476 event = rb_reader_event(cpu_buffer);
4477
4478 read = reader->read;
4479 commit = rb_page_commit(reader);
4480
4481 /* Check if any events were dropped */
4482 missed_events = cpu_buffer->lost_events;
4483
4484 /*
4485 * If this page has been partially read or
4486 * if len is not big enough to read the rest of the page or
4487 * a writer is still on the page, then
4488 * we must copy the data from the page to the buffer.
4489 * Otherwise, we can simply swap the page with the one passed in.
4490 */
4491 if (read || (len < (commit - read)) ||
4492 cpu_buffer->reader_page == cpu_buffer->commit_page) {
4493 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4494 unsigned int rpos = read;
4495 unsigned int pos = 0;
4496 unsigned int size;
4497
4498 if (full)
4499 goto out_unlock;
4500
4501 if (len > (commit - read))
4502 len = (commit - read);
4503
4504 /* Always keep the time extend and data together */
4505 size = rb_event_ts_length(event);
4506
4507 if (len < size)
4508 goto out_unlock;
4509
4510 /* save the current timestamp, since the user will need it */
4511 save_timestamp = cpu_buffer->read_stamp;
4512
4513 /* Need to copy one event at a time */
4514 do {
4515 /* We need the size of one event, because
4516 * rb_advance_reader only advances by one event,
4517 * whereas rb_event_ts_length may include the size of
4518 * one or two events.
4519 * We have already ensured there's enough space if this
4520 * is a time extend. */
4521 size = rb_event_length(event);
4522 memcpy(bpage->data + pos, rpage->data + rpos, size);
4523
4524 len -= size;
4525
4526 rb_advance_reader(cpu_buffer);
4527 rpos = reader->read;
4528 pos += size;
4529
4530 if (rpos >= commit)
4531 break;
4532
4533 event = rb_reader_event(cpu_buffer);
4534 /* Always keep the time extend and data together */
4535 size = rb_event_ts_length(event);
4536 } while (len >= size);
4537
4538 /* update bpage */
4539 local_set(&bpage->commit, pos);
4540 bpage->time_stamp = save_timestamp;
4541
4542 /* we copied everything to the beginning */
4543 read = 0;
4544 } else {
4545 /* update the entry counter */
4546 cpu_buffer->read += rb_page_entries(reader);
4547 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4548
4549 /* swap the pages */
4550 rb_init_page(bpage);
4551 bpage = reader->page;
4552 reader->page = *data_page;
4553 local_set(&reader->write, 0);
4554 local_set(&reader->entries, 0);
4555 reader->read = 0;
4556 *data_page = bpage;
4557
4558 /*
4559 * Use the real_end for the data size,
4560 * This gives us a chance to store the lost events
4561 * on the page.
4562 */
4563 if (reader->real_end)
4564 local_set(&bpage->commit, reader->real_end);
4565 }
4566 ret = read;
4567
4568 cpu_buffer->lost_events = 0;
4569
4570 commit = local_read(&bpage->commit);
4571 /*
4572 * Set a flag in the commit field if we lost events
4573 */
4574 if (missed_events) {
4575 /* If there is room at the end of the page to save the
4576 * missed events, then record it there.
4577 */
4578 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4579 memcpy(&bpage->data[commit], &missed_events,
4580 sizeof(missed_events));
4581 local_add(RB_MISSED_STORED, &bpage->commit);
4582 commit += sizeof(missed_events);
4583 }
4584 local_add(RB_MISSED_EVENTS, &bpage->commit);
4585 }
4586
4587 /*
4588 * This page may be off to user land. Zero it out here.
4589 */
4590 if (commit < BUF_PAGE_SIZE)
4591 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4592
4593 out_unlock:
4594 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4595
4596 out:
4597 return ret;
4598}
4599EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4600
4601#ifdef CONFIG_HOTPLUG_CPU
4602static int rb_cpu_notify(struct notifier_block *self,
4603 unsigned long action, void *hcpu)
4604{
4605 struct ring_buffer *buffer =
4606 container_of(self, struct ring_buffer, cpu_notify);
4607 long cpu = (long)hcpu;
4608 int cpu_i, nr_pages_same;
4609 unsigned int nr_pages;
4610
4611 switch (action) {
4612 case CPU_UP_PREPARE:
4613 case CPU_UP_PREPARE_FROZEN:
4614 if (cpumask_test_cpu(cpu, buffer->cpumask))
4615 return NOTIFY_OK;
4616
4617 nr_pages = 0;
4618 nr_pages_same = 1;
4619 /* check if all cpu sizes are same */
4620 for_each_buffer_cpu(buffer, cpu_i) {
4621 /* fill in the size from first enabled cpu */
4622 if (nr_pages == 0)
4623 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4624 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4625 nr_pages_same = 0;
4626 break;
4627 }
4628 }
4629 /* allocate minimum pages, user can later expand it */
4630 if (!nr_pages_same)
4631 nr_pages = 2;
4632 buffer->buffers[cpu] =
4633 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4634 if (!buffer->buffers[cpu]) {
4635 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4636 cpu);
4637 return NOTIFY_OK;
4638 }
4639 smp_wmb();
4640 cpumask_set_cpu(cpu, buffer->cpumask);
4641 break;
4642 case CPU_DOWN_PREPARE:
4643 case CPU_DOWN_PREPARE_FROZEN:
4644 /*
4645 * Do nothing.
4646 * If we were to free the buffer, then the user would
4647 * lose any trace that was in the buffer.
4648 */
4649 break;
4650 default:
4651 break;
4652 }
4653 return NOTIFY_OK;
4654}
4655#endif
4656
4657#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4658/*
4659 * This is a basic integrity check of the ring buffer.
4660 * Late in the boot cycle this test will run when configured in.
4661 * It will kick off a thread per CPU that will go into a loop
4662 * writing to the per cpu ring buffer various sizes of data.
4663 * Some of the data will be large items, some small.
4664 *
4665 * Another thread is created that goes into a spin, sending out
4666 * IPIs to the other CPUs to also write into the ring buffer.
4667 * this is to test the nesting ability of the buffer.
4668 *
4669 * Basic stats are recorded and reported. If something in the
4670 * ring buffer should happen that's not expected, a big warning
4671 * is displayed and all ring buffers are disabled.
4672 */
4673static struct task_struct *rb_threads[NR_CPUS] __initdata;
4674
4675struct rb_test_data {
4676 struct ring_buffer *buffer;
4677 unsigned long events;
4678 unsigned long bytes_written;
4679 unsigned long bytes_alloc;
4680 unsigned long bytes_dropped;
4681 unsigned long events_nested;
4682 unsigned long bytes_written_nested;
4683 unsigned long bytes_alloc_nested;
4684 unsigned long bytes_dropped_nested;
4685 int min_size_nested;
4686 int max_size_nested;
4687 int max_size;
4688 int min_size;
4689 int cpu;
4690 int cnt;
4691};
4692
4693static struct rb_test_data rb_data[NR_CPUS] __initdata;
4694
4695/* 1 meg per cpu */
4696#define RB_TEST_BUFFER_SIZE 1048576
4697
4698static char rb_string[] __initdata =
4699 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4700 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4701 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4702
4703static bool rb_test_started __initdata;
4704
4705struct rb_item {
4706 int size;
4707 char str[];
4708};
4709
4710static __init int rb_write_something(struct rb_test_data *data, bool nested)
4711{
4712 struct ring_buffer_event *event;
4713 struct rb_item *item;
4714 bool started;
4715 int event_len;
4716 int size;
4717 int len;
4718 int cnt;
4719
4720 /* Have nested writes different that what is written */
4721 cnt = data->cnt + (nested ? 27 : 0);
4722
4723 /* Multiply cnt by ~e, to make some unique increment */
4724 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4725
4726 len = size + sizeof(struct rb_item);
4727
4728 started = rb_test_started;
4729 /* read rb_test_started before checking buffer enabled */
4730 smp_rmb();
4731
4732 event = ring_buffer_lock_reserve(data->buffer, len);
4733 if (!event) {
4734 /* Ignore dropped events before test starts. */
4735 if (started) {
4736 if (nested)
4737 data->bytes_dropped += len;
4738 else
4739 data->bytes_dropped_nested += len;
4740 }
4741 return len;
4742 }
4743
4744 event_len = ring_buffer_event_length(event);
4745
4746 if (RB_WARN_ON(data->buffer, event_len < len))
4747 goto out;
4748
4749 item = ring_buffer_event_data(event);
4750 item->size = size;
4751 memcpy(item->str, rb_string, size);
4752
4753 if (nested) {
4754 data->bytes_alloc_nested += event_len;
4755 data->bytes_written_nested += len;
4756 data->events_nested++;
4757 if (!data->min_size_nested || len < data->min_size_nested)
4758 data->min_size_nested = len;
4759 if (len > data->max_size_nested)
4760 data->max_size_nested = len;
4761 } else {
4762 data->bytes_alloc += event_len;
4763 data->bytes_written += len;
4764 data->events++;
4765 if (!data->min_size || len < data->min_size)
4766 data->max_size = len;
4767 if (len > data->max_size)
4768 data->max_size = len;
4769 }
4770
4771 out:
4772 ring_buffer_unlock_commit(data->buffer, event);
4773
4774 return 0;
4775}
4776
4777static __init int rb_test(void *arg)
4778{
4779 struct rb_test_data *data = arg;
4780
4781 while (!kthread_should_stop()) {
4782 rb_write_something(data, false);
4783 data->cnt++;
4784
4785 set_current_state(TASK_INTERRUPTIBLE);
4786 /* Now sleep between a min of 100-300us and a max of 1ms */
4787 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4788 }
4789
4790 return 0;
4791}
4792
4793static __init void rb_ipi(void *ignore)
4794{
4795 struct rb_test_data *data;
4796 int cpu = smp_processor_id();
4797
4798 data = &rb_data[cpu];
4799 rb_write_something(data, true);
4800}
4801
4802static __init int rb_hammer_test(void *arg)
4803{
4804 while (!kthread_should_stop()) {
4805
4806 /* Send an IPI to all cpus to write data! */
4807 smp_call_function(rb_ipi, NULL, 1);
4808 /* No sleep, but for non preempt, let others run */
4809 schedule();
4810 }
4811
4812 return 0;
4813}
4814
4815static __init int test_ringbuffer(void)
4816{
4817 struct task_struct *rb_hammer;
4818 struct ring_buffer *buffer;
4819 int cpu;
4820 int ret = 0;
4821
4822 pr_info("Running ring buffer tests...\n");
4823
4824 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4825 if (WARN_ON(!buffer))
4826 return 0;
4827
4828 /* Disable buffer so that threads can't write to it yet */
4829 ring_buffer_record_off(buffer);
4830
4831 for_each_online_cpu(cpu) {
4832 rb_data[cpu].buffer = buffer;
4833 rb_data[cpu].cpu = cpu;
4834 rb_data[cpu].cnt = cpu;
4835 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4836 "rbtester/%d", cpu);
4837 if (WARN_ON(!rb_threads[cpu])) {
4838 pr_cont("FAILED\n");
4839 ret = -1;
4840 goto out_free;
4841 }
4842
4843 kthread_bind(rb_threads[cpu], cpu);
4844 wake_up_process(rb_threads[cpu]);
4845 }
4846
4847 /* Now create the rb hammer! */
4848 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4849 if (WARN_ON(!rb_hammer)) {
4850 pr_cont("FAILED\n");
4851 ret = -1;
4852 goto out_free;
4853 }
4854
4855 ring_buffer_record_on(buffer);
4856 /*
4857 * Show buffer is enabled before setting rb_test_started.
4858 * Yes there's a small race window where events could be
4859 * dropped and the thread wont catch it. But when a ring
4860 * buffer gets enabled, there will always be some kind of
4861 * delay before other CPUs see it. Thus, we don't care about
4862 * those dropped events. We care about events dropped after
4863 * the threads see that the buffer is active.
4864 */
4865 smp_wmb();
4866 rb_test_started = true;
4867
4868 set_current_state(TASK_INTERRUPTIBLE);
4869 /* Just run for 10 seconds */;
4870 schedule_timeout(10 * HZ);
4871
4872 kthread_stop(rb_hammer);
4873
4874 out_free:
4875 for_each_online_cpu(cpu) {
4876 if (!rb_threads[cpu])
4877 break;
4878 kthread_stop(rb_threads[cpu]);
4879 }
4880 if (ret) {
4881 ring_buffer_free(buffer);
4882 return ret;
4883 }
4884
4885 /* Report! */
4886 pr_info("finished\n");
4887 for_each_online_cpu(cpu) {
4888 struct ring_buffer_event *event;
4889 struct rb_test_data *data = &rb_data[cpu];
4890 struct rb_item *item;
4891 unsigned long total_events;
4892 unsigned long total_dropped;
4893 unsigned long total_written;
4894 unsigned long total_alloc;
4895 unsigned long total_read = 0;
4896 unsigned long total_size = 0;
4897 unsigned long total_len = 0;
4898 unsigned long total_lost = 0;
4899 unsigned long lost;
4900 int big_event_size;
4901 int small_event_size;
4902
4903 ret = -1;
4904
4905 total_events = data->events + data->events_nested;
4906 total_written = data->bytes_written + data->bytes_written_nested;
4907 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4908 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4909
4910 big_event_size = data->max_size + data->max_size_nested;
4911 small_event_size = data->min_size + data->min_size_nested;
4912
4913 pr_info("CPU %d:\n", cpu);
4914 pr_info(" events: %ld\n", total_events);
4915 pr_info(" dropped bytes: %ld\n", total_dropped);
4916 pr_info(" alloced bytes: %ld\n", total_alloc);
4917 pr_info(" written bytes: %ld\n", total_written);
4918 pr_info(" biggest event: %d\n", big_event_size);
4919 pr_info(" smallest event: %d\n", small_event_size);
4920
4921 if (RB_WARN_ON(buffer, total_dropped))
4922 break;
4923
4924 ret = 0;
4925
4926 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4927 total_lost += lost;
4928 item = ring_buffer_event_data(event);
4929 total_len += ring_buffer_event_length(event);
4930 total_size += item->size + sizeof(struct rb_item);
4931 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4932 pr_info("FAILED!\n");
4933 pr_info("buffer had: %.*s\n", item->size, item->str);
4934 pr_info("expected: %.*s\n", item->size, rb_string);
4935 RB_WARN_ON(buffer, 1);
4936 ret = -1;
4937 break;
4938 }
4939 total_read++;
4940 }
4941 if (ret)
4942 break;
4943
4944 ret = -1;
4945
4946 pr_info(" read events: %ld\n", total_read);
4947 pr_info(" lost events: %ld\n", total_lost);
4948 pr_info(" total events: %ld\n", total_lost + total_read);
4949 pr_info(" recorded len bytes: %ld\n", total_len);
4950 pr_info(" recorded size bytes: %ld\n", total_size);
4951 if (total_lost)
4952 pr_info(" With dropped events, record len and size may not match\n"
4953 " alloced and written from above\n");
4954 if (!total_lost) {
4955 if (RB_WARN_ON(buffer, total_len != total_alloc ||
4956 total_size != total_written))
4957 break;
4958 }
4959 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4960 break;
4961
4962 ret = 0;
4963 }
4964 if (!ret)
4965 pr_info("Ring buffer PASSED!\n");
4966
4967 ring_buffer_free(buffer);
4968 return 0;
4969}
4970
4971late_initcall(test_ringbuffer);
4972#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Generic ring buffer
4 *
5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 */
7#include <linux/trace_events.h>
8#include <linux/ring_buffer.h>
9#include <linux/trace_clock.h>
10#include <linux/sched/clock.h>
11#include <linux/trace_seq.h>
12#include <linux/spinlock.h>
13#include <linux/irq_work.h>
14#include <linux/security.h>
15#include <linux/uaccess.h>
16#include <linux/hardirq.h>
17#include <linux/kthread.h> /* for self test */
18#include <linux/module.h>
19#include <linux/percpu.h>
20#include <linux/mutex.h>
21#include <linux/delay.h>
22#include <linux/slab.h>
23#include <linux/init.h>
24#include <linux/hash.h>
25#include <linux/list.h>
26#include <linux/cpu.h>
27#include <linux/oom.h>
28
29#include <asm/local.h>
30
31static void update_pages_handler(struct work_struct *work);
32
33/*
34 * The ring buffer header is special. We must manually up keep it.
35 */
36int ring_buffer_print_entry_header(struct trace_seq *s)
37{
38 trace_seq_puts(s, "# compressed entry header\n");
39 trace_seq_puts(s, "\ttype_len : 5 bits\n");
40 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
41 trace_seq_puts(s, "\tarray : 32 bits\n");
42 trace_seq_putc(s, '\n');
43 trace_seq_printf(s, "\tpadding : type == %d\n",
44 RINGBUF_TYPE_PADDING);
45 trace_seq_printf(s, "\ttime_extend : type == %d\n",
46 RINGBUF_TYPE_TIME_EXTEND);
47 trace_seq_printf(s, "\ttime_stamp : type == %d\n",
48 RINGBUF_TYPE_TIME_STAMP);
49 trace_seq_printf(s, "\tdata max type_len == %d\n",
50 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
51
52 return !trace_seq_has_overflowed(s);
53}
54
55/*
56 * The ring buffer is made up of a list of pages. A separate list of pages is
57 * allocated for each CPU. A writer may only write to a buffer that is
58 * associated with the CPU it is currently executing on. A reader may read
59 * from any per cpu buffer.
60 *
61 * The reader is special. For each per cpu buffer, the reader has its own
62 * reader page. When a reader has read the entire reader page, this reader
63 * page is swapped with another page in the ring buffer.
64 *
65 * Now, as long as the writer is off the reader page, the reader can do what
66 * ever it wants with that page. The writer will never write to that page
67 * again (as long as it is out of the ring buffer).
68 *
69 * Here's some silly ASCII art.
70 *
71 * +------+
72 * |reader| RING BUFFER
73 * |page |
74 * +------+ +---+ +---+ +---+
75 * | |-->| |-->| |
76 * +---+ +---+ +---+
77 * ^ |
78 * | |
79 * +---------------+
80 *
81 *
82 * +------+
83 * |reader| RING BUFFER
84 * |page |------------------v
85 * +------+ +---+ +---+ +---+
86 * | |-->| |-->| |
87 * +---+ +---+ +---+
88 * ^ |
89 * | |
90 * +---------------+
91 *
92 *
93 * +------+
94 * |reader| RING BUFFER
95 * |page |------------------v
96 * +------+ +---+ +---+ +---+
97 * ^ | |-->| |-->| |
98 * | +---+ +---+ +---+
99 * | |
100 * | |
101 * +------------------------------+
102 *
103 *
104 * +------+
105 * |buffer| RING BUFFER
106 * |page |------------------v
107 * +------+ +---+ +---+ +---+
108 * ^ | | | |-->| |
109 * | New +---+ +---+ +---+
110 * | Reader------^ |
111 * | page |
112 * +------------------------------+
113 *
114 *
115 * After we make this swap, the reader can hand this page off to the splice
116 * code and be done with it. It can even allocate a new page if it needs to
117 * and swap that into the ring buffer.
118 *
119 * We will be using cmpxchg soon to make all this lockless.
120 *
121 */
122
123/* Used for individual buffers (after the counter) */
124#define RB_BUFFER_OFF (1 << 20)
125
126#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
127
128#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
129#define RB_ALIGNMENT 4U
130#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
131#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
132#define RB_ALIGN_DATA __aligned(RB_ALIGNMENT)
133
134/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
135#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
136
137enum {
138 RB_LEN_TIME_EXTEND = 8,
139 RB_LEN_TIME_STAMP = 8,
140};
141
142#define skip_time_extend(event) \
143 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
144
145#define extended_time(event) \
146 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
147
148static inline int rb_null_event(struct ring_buffer_event *event)
149{
150 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
151}
152
153static void rb_event_set_padding(struct ring_buffer_event *event)
154{
155 /* padding has a NULL time_delta */
156 event->type_len = RINGBUF_TYPE_PADDING;
157 event->time_delta = 0;
158}
159
160static unsigned
161rb_event_data_length(struct ring_buffer_event *event)
162{
163 unsigned length;
164
165 if (event->type_len)
166 length = event->type_len * RB_ALIGNMENT;
167 else
168 length = event->array[0];
169 return length + RB_EVNT_HDR_SIZE;
170}
171
172/*
173 * Return the length of the given event. Will return
174 * the length of the time extend if the event is a
175 * time extend.
176 */
177static inline unsigned
178rb_event_length(struct ring_buffer_event *event)
179{
180 switch (event->type_len) {
181 case RINGBUF_TYPE_PADDING:
182 if (rb_null_event(event))
183 /* undefined */
184 return -1;
185 return event->array[0] + RB_EVNT_HDR_SIZE;
186
187 case RINGBUF_TYPE_TIME_EXTEND:
188 return RB_LEN_TIME_EXTEND;
189
190 case RINGBUF_TYPE_TIME_STAMP:
191 return RB_LEN_TIME_STAMP;
192
193 case RINGBUF_TYPE_DATA:
194 return rb_event_data_length(event);
195 default:
196 WARN_ON_ONCE(1);
197 }
198 /* not hit */
199 return 0;
200}
201
202/*
203 * Return total length of time extend and data,
204 * or just the event length for all other events.
205 */
206static inline unsigned
207rb_event_ts_length(struct ring_buffer_event *event)
208{
209 unsigned len = 0;
210
211 if (extended_time(event)) {
212 /* time extends include the data event after it */
213 len = RB_LEN_TIME_EXTEND;
214 event = skip_time_extend(event);
215 }
216 return len + rb_event_length(event);
217}
218
219/**
220 * ring_buffer_event_length - return the length of the event
221 * @event: the event to get the length of
222 *
223 * Returns the size of the data load of a data event.
224 * If the event is something other than a data event, it
225 * returns the size of the event itself. With the exception
226 * of a TIME EXTEND, where it still returns the size of the
227 * data load of the data event after it.
228 */
229unsigned ring_buffer_event_length(struct ring_buffer_event *event)
230{
231 unsigned length;
232
233 if (extended_time(event))
234 event = skip_time_extend(event);
235
236 length = rb_event_length(event);
237 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
238 return length;
239 length -= RB_EVNT_HDR_SIZE;
240 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
241 length -= sizeof(event->array[0]);
242 return length;
243}
244EXPORT_SYMBOL_GPL(ring_buffer_event_length);
245
246/* inline for ring buffer fast paths */
247static __always_inline void *
248rb_event_data(struct ring_buffer_event *event)
249{
250 if (extended_time(event))
251 event = skip_time_extend(event);
252 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
253 /* If length is in len field, then array[0] has the data */
254 if (event->type_len)
255 return (void *)&event->array[0];
256 /* Otherwise length is in array[0] and array[1] has the data */
257 return (void *)&event->array[1];
258}
259
260/**
261 * ring_buffer_event_data - return the data of the event
262 * @event: the event to get the data from
263 */
264void *ring_buffer_event_data(struct ring_buffer_event *event)
265{
266 return rb_event_data(event);
267}
268EXPORT_SYMBOL_GPL(ring_buffer_event_data);
269
270#define for_each_buffer_cpu(buffer, cpu) \
271 for_each_cpu(cpu, buffer->cpumask)
272
273#define for_each_online_buffer_cpu(buffer, cpu) \
274 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
275
276#define TS_SHIFT 27
277#define TS_MASK ((1ULL << TS_SHIFT) - 1)
278#define TS_DELTA_TEST (~TS_MASK)
279
280/**
281 * ring_buffer_event_time_stamp - return the event's extended timestamp
282 * @event: the event to get the timestamp of
283 *
284 * Returns the extended timestamp associated with a data event.
285 * An extended time_stamp is a 64-bit timestamp represented
286 * internally in a special way that makes the best use of space
287 * contained within a ring buffer event. This function decodes
288 * it and maps it to a straight u64 value.
289 */
290u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
291{
292 u64 ts;
293
294 ts = event->array[0];
295 ts <<= TS_SHIFT;
296 ts += event->time_delta;
297
298 return ts;
299}
300
301/* Flag when events were overwritten */
302#define RB_MISSED_EVENTS (1 << 31)
303/* Missed count stored at end */
304#define RB_MISSED_STORED (1 << 30)
305
306struct buffer_data_page {
307 u64 time_stamp; /* page time stamp */
308 local_t commit; /* write committed index */
309 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
310};
311
312/*
313 * Note, the buffer_page list must be first. The buffer pages
314 * are allocated in cache lines, which means that each buffer
315 * page will be at the beginning of a cache line, and thus
316 * the least significant bits will be zero. We use this to
317 * add flags in the list struct pointers, to make the ring buffer
318 * lockless.
319 */
320struct buffer_page {
321 struct list_head list; /* list of buffer pages */
322 local_t write; /* index for next write */
323 unsigned read; /* index for next read */
324 local_t entries; /* entries on this page */
325 unsigned long real_end; /* real end of data */
326 struct buffer_data_page *page; /* Actual data page */
327};
328
329/*
330 * The buffer page counters, write and entries, must be reset
331 * atomically when crossing page boundaries. To synchronize this
332 * update, two counters are inserted into the number. One is
333 * the actual counter for the write position or count on the page.
334 *
335 * The other is a counter of updaters. Before an update happens
336 * the update partition of the counter is incremented. This will
337 * allow the updater to update the counter atomically.
338 *
339 * The counter is 20 bits, and the state data is 12.
340 */
341#define RB_WRITE_MASK 0xfffff
342#define RB_WRITE_INTCNT (1 << 20)
343
344static void rb_init_page(struct buffer_data_page *bpage)
345{
346 local_set(&bpage->commit, 0);
347}
348
349/*
350 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
351 * this issue out.
352 */
353static void free_buffer_page(struct buffer_page *bpage)
354{
355 free_page((unsigned long)bpage->page);
356 kfree(bpage);
357}
358
359/*
360 * We need to fit the time_stamp delta into 27 bits.
361 */
362static inline int test_time_stamp(u64 delta)
363{
364 if (delta & TS_DELTA_TEST)
365 return 1;
366 return 0;
367}
368
369#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
370
371/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
372#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
373
374int ring_buffer_print_page_header(struct trace_seq *s)
375{
376 struct buffer_data_page field;
377
378 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
379 "offset:0;\tsize:%u;\tsigned:%u;\n",
380 (unsigned int)sizeof(field.time_stamp),
381 (unsigned int)is_signed_type(u64));
382
383 trace_seq_printf(s, "\tfield: local_t commit;\t"
384 "offset:%u;\tsize:%u;\tsigned:%u;\n",
385 (unsigned int)offsetof(typeof(field), commit),
386 (unsigned int)sizeof(field.commit),
387 (unsigned int)is_signed_type(long));
388
389 trace_seq_printf(s, "\tfield: int overwrite;\t"
390 "offset:%u;\tsize:%u;\tsigned:%u;\n",
391 (unsigned int)offsetof(typeof(field), commit),
392 1,
393 (unsigned int)is_signed_type(long));
394
395 trace_seq_printf(s, "\tfield: char data;\t"
396 "offset:%u;\tsize:%u;\tsigned:%u;\n",
397 (unsigned int)offsetof(typeof(field), data),
398 (unsigned int)BUF_PAGE_SIZE,
399 (unsigned int)is_signed_type(char));
400
401 return !trace_seq_has_overflowed(s);
402}
403
404struct rb_irq_work {
405 struct irq_work work;
406 wait_queue_head_t waiters;
407 wait_queue_head_t full_waiters;
408 bool waiters_pending;
409 bool full_waiters_pending;
410 bool wakeup_full;
411};
412
413/*
414 * Structure to hold event state and handle nested events.
415 */
416struct rb_event_info {
417 u64 ts;
418 u64 delta;
419 u64 before;
420 u64 after;
421 unsigned long length;
422 struct buffer_page *tail_page;
423 int add_timestamp;
424};
425
426/*
427 * Used for the add_timestamp
428 * NONE
429 * EXTEND - wants a time extend
430 * ABSOLUTE - the buffer requests all events to have absolute time stamps
431 * FORCE - force a full time stamp.
432 */
433enum {
434 RB_ADD_STAMP_NONE = 0,
435 RB_ADD_STAMP_EXTEND = BIT(1),
436 RB_ADD_STAMP_ABSOLUTE = BIT(2),
437 RB_ADD_STAMP_FORCE = BIT(3)
438};
439/*
440 * Used for which event context the event is in.
441 * NMI = 0
442 * IRQ = 1
443 * SOFTIRQ = 2
444 * NORMAL = 3
445 *
446 * See trace_recursive_lock() comment below for more details.
447 */
448enum {
449 RB_CTX_NMI,
450 RB_CTX_IRQ,
451 RB_CTX_SOFTIRQ,
452 RB_CTX_NORMAL,
453 RB_CTX_MAX
454};
455
456#if BITS_PER_LONG == 32
457#define RB_TIME_32
458#endif
459
460/* To test on 64 bit machines */
461//#define RB_TIME_32
462
463#ifdef RB_TIME_32
464
465struct rb_time_struct {
466 local_t cnt;
467 local_t top;
468 local_t bottom;
469};
470#else
471#include <asm/local64.h>
472struct rb_time_struct {
473 local64_t time;
474};
475#endif
476typedef struct rb_time_struct rb_time_t;
477
478/*
479 * head_page == tail_page && head == tail then buffer is empty.
480 */
481struct ring_buffer_per_cpu {
482 int cpu;
483 atomic_t record_disabled;
484 atomic_t resize_disabled;
485 struct trace_buffer *buffer;
486 raw_spinlock_t reader_lock; /* serialize readers */
487 arch_spinlock_t lock;
488 struct lock_class_key lock_key;
489 struct buffer_data_page *free_page;
490 unsigned long nr_pages;
491 unsigned int current_context;
492 struct list_head *pages;
493 struct buffer_page *head_page; /* read from head */
494 struct buffer_page *tail_page; /* write to tail */
495 struct buffer_page *commit_page; /* committed pages */
496 struct buffer_page *reader_page;
497 unsigned long lost_events;
498 unsigned long last_overrun;
499 unsigned long nest;
500 local_t entries_bytes;
501 local_t entries;
502 local_t overrun;
503 local_t commit_overrun;
504 local_t dropped_events;
505 local_t committing;
506 local_t commits;
507 local_t pages_touched;
508 local_t pages_read;
509 long last_pages_touch;
510 size_t shortest_full;
511 unsigned long read;
512 unsigned long read_bytes;
513 rb_time_t write_stamp;
514 rb_time_t before_stamp;
515 u64 read_stamp;
516 /* ring buffer pages to update, > 0 to add, < 0 to remove */
517 long nr_pages_to_update;
518 struct list_head new_pages; /* new pages to add */
519 struct work_struct update_pages_work;
520 struct completion update_done;
521
522 struct rb_irq_work irq_work;
523};
524
525struct trace_buffer {
526 unsigned flags;
527 int cpus;
528 atomic_t record_disabled;
529 cpumask_var_t cpumask;
530
531 struct lock_class_key *reader_lock_key;
532
533 struct mutex mutex;
534
535 struct ring_buffer_per_cpu **buffers;
536
537 struct hlist_node node;
538 u64 (*clock)(void);
539
540 struct rb_irq_work irq_work;
541 bool time_stamp_abs;
542};
543
544struct ring_buffer_iter {
545 struct ring_buffer_per_cpu *cpu_buffer;
546 unsigned long head;
547 unsigned long next_event;
548 struct buffer_page *head_page;
549 struct buffer_page *cache_reader_page;
550 unsigned long cache_read;
551 u64 read_stamp;
552 u64 page_stamp;
553 struct ring_buffer_event *event;
554 int missed_events;
555};
556
557#ifdef RB_TIME_32
558
559/*
560 * On 32 bit machines, local64_t is very expensive. As the ring
561 * buffer doesn't need all the features of a true 64 bit atomic,
562 * on 32 bit, it uses these functions (64 still uses local64_t).
563 *
564 * For the ring buffer, 64 bit required operations for the time is
565 * the following:
566 *
567 * - Only need 59 bits (uses 60 to make it even).
568 * - Reads may fail if it interrupted a modification of the time stamp.
569 * It will succeed if it did not interrupt another write even if
570 * the read itself is interrupted by a write.
571 * It returns whether it was successful or not.
572 *
573 * - Writes always succeed and will overwrite other writes and writes
574 * that were done by events interrupting the current write.
575 *
576 * - A write followed by a read of the same time stamp will always succeed,
577 * but may not contain the same value.
578 *
579 * - A cmpxchg will fail if it interrupted another write or cmpxchg.
580 * Other than that, it acts like a normal cmpxchg.
581 *
582 * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
583 * (bottom being the least significant 30 bits of the 60 bit time stamp).
584 *
585 * The two most significant bits of each half holds a 2 bit counter (0-3).
586 * Each update will increment this counter by one.
587 * When reading the top and bottom, if the two counter bits match then the
588 * top and bottom together make a valid 60 bit number.
589 */
590#define RB_TIME_SHIFT 30
591#define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
592
593static inline int rb_time_cnt(unsigned long val)
594{
595 return (val >> RB_TIME_SHIFT) & 3;
596}
597
598static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
599{
600 u64 val;
601
602 val = top & RB_TIME_VAL_MASK;
603 val <<= RB_TIME_SHIFT;
604 val |= bottom & RB_TIME_VAL_MASK;
605
606 return val;
607}
608
609static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
610{
611 unsigned long top, bottom;
612 unsigned long c;
613
614 /*
615 * If the read is interrupted by a write, then the cnt will
616 * be different. Loop until both top and bottom have been read
617 * without interruption.
618 */
619 do {
620 c = local_read(&t->cnt);
621 top = local_read(&t->top);
622 bottom = local_read(&t->bottom);
623 } while (c != local_read(&t->cnt));
624
625 *cnt = rb_time_cnt(top);
626
627 /* If top and bottom counts don't match, this interrupted a write */
628 if (*cnt != rb_time_cnt(bottom))
629 return false;
630
631 *ret = rb_time_val(top, bottom);
632 return true;
633}
634
635static bool rb_time_read(rb_time_t *t, u64 *ret)
636{
637 unsigned long cnt;
638
639 return __rb_time_read(t, ret, &cnt);
640}
641
642static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
643{
644 return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
645}
646
647static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom)
648{
649 *top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
650 *bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
651}
652
653static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
654{
655 val = rb_time_val_cnt(val, cnt);
656 local_set(t, val);
657}
658
659static void rb_time_set(rb_time_t *t, u64 val)
660{
661 unsigned long cnt, top, bottom;
662
663 rb_time_split(val, &top, &bottom);
664
665 /* Writes always succeed with a valid number even if it gets interrupted. */
666 do {
667 cnt = local_inc_return(&t->cnt);
668 rb_time_val_set(&t->top, top, cnt);
669 rb_time_val_set(&t->bottom, bottom, cnt);
670 } while (cnt != local_read(&t->cnt));
671}
672
673static inline bool
674rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
675{
676 unsigned long ret;
677
678 ret = local_cmpxchg(l, expect, set);
679 return ret == expect;
680}
681
682static int rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
683{
684 unsigned long cnt, top, bottom;
685 unsigned long cnt2, top2, bottom2;
686 u64 val;
687
688 /* The cmpxchg always fails if it interrupted an update */
689 if (!__rb_time_read(t, &val, &cnt2))
690 return false;
691
692 if (val != expect)
693 return false;
694
695 cnt = local_read(&t->cnt);
696 if ((cnt & 3) != cnt2)
697 return false;
698
699 cnt2 = cnt + 1;
700
701 rb_time_split(val, &top, &bottom);
702 top = rb_time_val_cnt(top, cnt);
703 bottom = rb_time_val_cnt(bottom, cnt);
704
705 rb_time_split(set, &top2, &bottom2);
706 top2 = rb_time_val_cnt(top2, cnt2);
707 bottom2 = rb_time_val_cnt(bottom2, cnt2);
708
709 if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
710 return false;
711 if (!rb_time_read_cmpxchg(&t->top, top, top2))
712 return false;
713 if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
714 return false;
715 return true;
716}
717
718#else /* 64 bits */
719
720/* local64_t always succeeds */
721
722static inline bool rb_time_read(rb_time_t *t, u64 *ret)
723{
724 *ret = local64_read(&t->time);
725 return true;
726}
727static void rb_time_set(rb_time_t *t, u64 val)
728{
729 local64_set(&t->time, val);
730}
731
732static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
733{
734 u64 val;
735 val = local64_cmpxchg(&t->time, expect, set);
736 return val == expect;
737}
738#endif
739
740/**
741 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
742 * @buffer: The ring_buffer to get the number of pages from
743 * @cpu: The cpu of the ring_buffer to get the number of pages from
744 *
745 * Returns the number of pages used by a per_cpu buffer of the ring buffer.
746 */
747size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
748{
749 return buffer->buffers[cpu]->nr_pages;
750}
751
752/**
753 * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer
754 * @buffer: The ring_buffer to get the number of pages from
755 * @cpu: The cpu of the ring_buffer to get the number of pages from
756 *
757 * Returns the number of pages that have content in the ring buffer.
758 */
759size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
760{
761 size_t read;
762 size_t cnt;
763
764 read = local_read(&buffer->buffers[cpu]->pages_read);
765 cnt = local_read(&buffer->buffers[cpu]->pages_touched);
766 /* The reader can read an empty page, but not more than that */
767 if (cnt < read) {
768 WARN_ON_ONCE(read > cnt + 1);
769 return 0;
770 }
771
772 return cnt - read;
773}
774
775/*
776 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
777 *
778 * Schedules a delayed work to wake up any task that is blocked on the
779 * ring buffer waiters queue.
780 */
781static void rb_wake_up_waiters(struct irq_work *work)
782{
783 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
784
785 wake_up_all(&rbwork->waiters);
786 if (rbwork->wakeup_full) {
787 rbwork->wakeup_full = false;
788 wake_up_all(&rbwork->full_waiters);
789 }
790}
791
792/**
793 * ring_buffer_wait - wait for input to the ring buffer
794 * @buffer: buffer to wait on
795 * @cpu: the cpu buffer to wait on
796 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
797 *
798 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
799 * as data is added to any of the @buffer's cpu buffers. Otherwise
800 * it will wait for data to be added to a specific cpu buffer.
801 */
802int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
803{
804 struct ring_buffer_per_cpu *cpu_buffer;
805 DEFINE_WAIT(wait);
806 struct rb_irq_work *work;
807 int ret = 0;
808
809 /*
810 * Depending on what the caller is waiting for, either any
811 * data in any cpu buffer, or a specific buffer, put the
812 * caller on the appropriate wait queue.
813 */
814 if (cpu == RING_BUFFER_ALL_CPUS) {
815 work = &buffer->irq_work;
816 /* Full only makes sense on per cpu reads */
817 full = 0;
818 } else {
819 if (!cpumask_test_cpu(cpu, buffer->cpumask))
820 return -ENODEV;
821 cpu_buffer = buffer->buffers[cpu];
822 work = &cpu_buffer->irq_work;
823 }
824
825
826 while (true) {
827 if (full)
828 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
829 else
830 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
831
832 /*
833 * The events can happen in critical sections where
834 * checking a work queue can cause deadlocks.
835 * After adding a task to the queue, this flag is set
836 * only to notify events to try to wake up the queue
837 * using irq_work.
838 *
839 * We don't clear it even if the buffer is no longer
840 * empty. The flag only causes the next event to run
841 * irq_work to do the work queue wake up. The worse
842 * that can happen if we race with !trace_empty() is that
843 * an event will cause an irq_work to try to wake up
844 * an empty queue.
845 *
846 * There's no reason to protect this flag either, as
847 * the work queue and irq_work logic will do the necessary
848 * synchronization for the wake ups. The only thing
849 * that is necessary is that the wake up happens after
850 * a task has been queued. It's OK for spurious wake ups.
851 */
852 if (full)
853 work->full_waiters_pending = true;
854 else
855 work->waiters_pending = true;
856
857 if (signal_pending(current)) {
858 ret = -EINTR;
859 break;
860 }
861
862 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
863 break;
864
865 if (cpu != RING_BUFFER_ALL_CPUS &&
866 !ring_buffer_empty_cpu(buffer, cpu)) {
867 unsigned long flags;
868 bool pagebusy;
869 size_t nr_pages;
870 size_t dirty;
871
872 if (!full)
873 break;
874
875 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
876 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
877 nr_pages = cpu_buffer->nr_pages;
878 dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
879 if (!cpu_buffer->shortest_full ||
880 cpu_buffer->shortest_full < full)
881 cpu_buffer->shortest_full = full;
882 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
883 if (!pagebusy &&
884 (!nr_pages || (dirty * 100) > full * nr_pages))
885 break;
886 }
887
888 schedule();
889 }
890
891 if (full)
892 finish_wait(&work->full_waiters, &wait);
893 else
894 finish_wait(&work->waiters, &wait);
895
896 return ret;
897}
898
899/**
900 * ring_buffer_poll_wait - poll on buffer input
901 * @buffer: buffer to wait on
902 * @cpu: the cpu buffer to wait on
903 * @filp: the file descriptor
904 * @poll_table: The poll descriptor
905 *
906 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
907 * as data is added to any of the @buffer's cpu buffers. Otherwise
908 * it will wait for data to be added to a specific cpu buffer.
909 *
910 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
911 * zero otherwise.
912 */
913__poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
914 struct file *filp, poll_table *poll_table)
915{
916 struct ring_buffer_per_cpu *cpu_buffer;
917 struct rb_irq_work *work;
918
919 if (cpu == RING_BUFFER_ALL_CPUS)
920 work = &buffer->irq_work;
921 else {
922 if (!cpumask_test_cpu(cpu, buffer->cpumask))
923 return -EINVAL;
924
925 cpu_buffer = buffer->buffers[cpu];
926 work = &cpu_buffer->irq_work;
927 }
928
929 poll_wait(filp, &work->waiters, poll_table);
930 work->waiters_pending = true;
931 /*
932 * There's a tight race between setting the waiters_pending and
933 * checking if the ring buffer is empty. Once the waiters_pending bit
934 * is set, the next event will wake the task up, but we can get stuck
935 * if there's only a single event in.
936 *
937 * FIXME: Ideally, we need a memory barrier on the writer side as well,
938 * but adding a memory barrier to all events will cause too much of a
939 * performance hit in the fast path. We only need a memory barrier when
940 * the buffer goes from empty to having content. But as this race is
941 * extremely small, and it's not a problem if another event comes in, we
942 * will fix it later.
943 */
944 smp_mb();
945
946 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
947 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
948 return EPOLLIN | EPOLLRDNORM;
949 return 0;
950}
951
952/* buffer may be either ring_buffer or ring_buffer_per_cpu */
953#define RB_WARN_ON(b, cond) \
954 ({ \
955 int _____ret = unlikely(cond); \
956 if (_____ret) { \
957 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
958 struct ring_buffer_per_cpu *__b = \
959 (void *)b; \
960 atomic_inc(&__b->buffer->record_disabled); \
961 } else \
962 atomic_inc(&b->record_disabled); \
963 WARN_ON(1); \
964 } \
965 _____ret; \
966 })
967
968/* Up this if you want to test the TIME_EXTENTS and normalization */
969#define DEBUG_SHIFT 0
970
971static inline u64 rb_time_stamp(struct trace_buffer *buffer)
972{
973 u64 ts;
974
975 /* Skip retpolines :-( */
976 if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
977 ts = trace_clock_local();
978 else
979 ts = buffer->clock();
980
981 /* shift to debug/test normalization and TIME_EXTENTS */
982 return ts << DEBUG_SHIFT;
983}
984
985u64 ring_buffer_time_stamp(struct trace_buffer *buffer, int cpu)
986{
987 u64 time;
988
989 preempt_disable_notrace();
990 time = rb_time_stamp(buffer);
991 preempt_enable_notrace();
992
993 return time;
994}
995EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
996
997void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
998 int cpu, u64 *ts)
999{
1000 /* Just stupid testing the normalize function and deltas */
1001 *ts >>= DEBUG_SHIFT;
1002}
1003EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1004
1005/*
1006 * Making the ring buffer lockless makes things tricky.
1007 * Although writes only happen on the CPU that they are on,
1008 * and they only need to worry about interrupts. Reads can
1009 * happen on any CPU.
1010 *
1011 * The reader page is always off the ring buffer, but when the
1012 * reader finishes with a page, it needs to swap its page with
1013 * a new one from the buffer. The reader needs to take from
1014 * the head (writes go to the tail). But if a writer is in overwrite
1015 * mode and wraps, it must push the head page forward.
1016 *
1017 * Here lies the problem.
1018 *
1019 * The reader must be careful to replace only the head page, and
1020 * not another one. As described at the top of the file in the
1021 * ASCII art, the reader sets its old page to point to the next
1022 * page after head. It then sets the page after head to point to
1023 * the old reader page. But if the writer moves the head page
1024 * during this operation, the reader could end up with the tail.
1025 *
1026 * We use cmpxchg to help prevent this race. We also do something
1027 * special with the page before head. We set the LSB to 1.
1028 *
1029 * When the writer must push the page forward, it will clear the
1030 * bit that points to the head page, move the head, and then set
1031 * the bit that points to the new head page.
1032 *
1033 * We also don't want an interrupt coming in and moving the head
1034 * page on another writer. Thus we use the second LSB to catch
1035 * that too. Thus:
1036 *
1037 * head->list->prev->next bit 1 bit 0
1038 * ------- -------
1039 * Normal page 0 0
1040 * Points to head page 0 1
1041 * New head page 1 0
1042 *
1043 * Note we can not trust the prev pointer of the head page, because:
1044 *
1045 * +----+ +-----+ +-----+
1046 * | |------>| T |---X--->| N |
1047 * | |<------| | | |
1048 * +----+ +-----+ +-----+
1049 * ^ ^ |
1050 * | +-----+ | |
1051 * +----------| R |----------+ |
1052 * | |<-----------+
1053 * +-----+
1054 *
1055 * Key: ---X--> HEAD flag set in pointer
1056 * T Tail page
1057 * R Reader page
1058 * N Next page
1059 *
1060 * (see __rb_reserve_next() to see where this happens)
1061 *
1062 * What the above shows is that the reader just swapped out
1063 * the reader page with a page in the buffer, but before it
1064 * could make the new header point back to the new page added
1065 * it was preempted by a writer. The writer moved forward onto
1066 * the new page added by the reader and is about to move forward
1067 * again.
1068 *
1069 * You can see, it is legitimate for the previous pointer of
1070 * the head (or any page) not to point back to itself. But only
1071 * temporarily.
1072 */
1073
1074#define RB_PAGE_NORMAL 0UL
1075#define RB_PAGE_HEAD 1UL
1076#define RB_PAGE_UPDATE 2UL
1077
1078
1079#define RB_FLAG_MASK 3UL
1080
1081/* PAGE_MOVED is not part of the mask */
1082#define RB_PAGE_MOVED 4UL
1083
1084/*
1085 * rb_list_head - remove any bit
1086 */
1087static struct list_head *rb_list_head(struct list_head *list)
1088{
1089 unsigned long val = (unsigned long)list;
1090
1091 return (struct list_head *)(val & ~RB_FLAG_MASK);
1092}
1093
1094/*
1095 * rb_is_head_page - test if the given page is the head page
1096 *
1097 * Because the reader may move the head_page pointer, we can
1098 * not trust what the head page is (it may be pointing to
1099 * the reader page). But if the next page is a header page,
1100 * its flags will be non zero.
1101 */
1102static inline int
1103rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1104 struct buffer_page *page, struct list_head *list)
1105{
1106 unsigned long val;
1107
1108 val = (unsigned long)list->next;
1109
1110 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1111 return RB_PAGE_MOVED;
1112
1113 return val & RB_FLAG_MASK;
1114}
1115
1116/*
1117 * rb_is_reader_page
1118 *
1119 * The unique thing about the reader page, is that, if the
1120 * writer is ever on it, the previous pointer never points
1121 * back to the reader page.
1122 */
1123static bool rb_is_reader_page(struct buffer_page *page)
1124{
1125 struct list_head *list = page->list.prev;
1126
1127 return rb_list_head(list->next) != &page->list;
1128}
1129
1130/*
1131 * rb_set_list_to_head - set a list_head to be pointing to head.
1132 */
1133static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
1134 struct list_head *list)
1135{
1136 unsigned long *ptr;
1137
1138 ptr = (unsigned long *)&list->next;
1139 *ptr |= RB_PAGE_HEAD;
1140 *ptr &= ~RB_PAGE_UPDATE;
1141}
1142
1143/*
1144 * rb_head_page_activate - sets up head page
1145 */
1146static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1147{
1148 struct buffer_page *head;
1149
1150 head = cpu_buffer->head_page;
1151 if (!head)
1152 return;
1153
1154 /*
1155 * Set the previous list pointer to have the HEAD flag.
1156 */
1157 rb_set_list_to_head(cpu_buffer, head->list.prev);
1158}
1159
1160static void rb_list_head_clear(struct list_head *list)
1161{
1162 unsigned long *ptr = (unsigned long *)&list->next;
1163
1164 *ptr &= ~RB_FLAG_MASK;
1165}
1166
1167/*
1168 * rb_head_page_deactivate - clears head page ptr (for free list)
1169 */
1170static void
1171rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1172{
1173 struct list_head *hd;
1174
1175 /* Go through the whole list and clear any pointers found. */
1176 rb_list_head_clear(cpu_buffer->pages);
1177
1178 list_for_each(hd, cpu_buffer->pages)
1179 rb_list_head_clear(hd);
1180}
1181
1182static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1183 struct buffer_page *head,
1184 struct buffer_page *prev,
1185 int old_flag, int new_flag)
1186{
1187 struct list_head *list;
1188 unsigned long val = (unsigned long)&head->list;
1189 unsigned long ret;
1190
1191 list = &prev->list;
1192
1193 val &= ~RB_FLAG_MASK;
1194
1195 ret = cmpxchg((unsigned long *)&list->next,
1196 val | old_flag, val | new_flag);
1197
1198 /* check if the reader took the page */
1199 if ((ret & ~RB_FLAG_MASK) != val)
1200 return RB_PAGE_MOVED;
1201
1202 return ret & RB_FLAG_MASK;
1203}
1204
1205static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1206 struct buffer_page *head,
1207 struct buffer_page *prev,
1208 int old_flag)
1209{
1210 return rb_head_page_set(cpu_buffer, head, prev,
1211 old_flag, RB_PAGE_UPDATE);
1212}
1213
1214static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1215 struct buffer_page *head,
1216 struct buffer_page *prev,
1217 int old_flag)
1218{
1219 return rb_head_page_set(cpu_buffer, head, prev,
1220 old_flag, RB_PAGE_HEAD);
1221}
1222
1223static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1224 struct buffer_page *head,
1225 struct buffer_page *prev,
1226 int old_flag)
1227{
1228 return rb_head_page_set(cpu_buffer, head, prev,
1229 old_flag, RB_PAGE_NORMAL);
1230}
1231
1232static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
1233 struct buffer_page **bpage)
1234{
1235 struct list_head *p = rb_list_head((*bpage)->list.next);
1236
1237 *bpage = list_entry(p, struct buffer_page, list);
1238}
1239
1240static struct buffer_page *
1241rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1242{
1243 struct buffer_page *head;
1244 struct buffer_page *page;
1245 struct list_head *list;
1246 int i;
1247
1248 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1249 return NULL;
1250
1251 /* sanity check */
1252 list = cpu_buffer->pages;
1253 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1254 return NULL;
1255
1256 page = head = cpu_buffer->head_page;
1257 /*
1258 * It is possible that the writer moves the header behind
1259 * where we started, and we miss in one loop.
1260 * A second loop should grab the header, but we'll do
1261 * three loops just because I'm paranoid.
1262 */
1263 for (i = 0; i < 3; i++) {
1264 do {
1265 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
1266 cpu_buffer->head_page = page;
1267 return page;
1268 }
1269 rb_inc_page(cpu_buffer, &page);
1270 } while (page != head);
1271 }
1272
1273 RB_WARN_ON(cpu_buffer, 1);
1274
1275 return NULL;
1276}
1277
1278static int rb_head_page_replace(struct buffer_page *old,
1279 struct buffer_page *new)
1280{
1281 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1282 unsigned long val;
1283 unsigned long ret;
1284
1285 val = *ptr & ~RB_FLAG_MASK;
1286 val |= RB_PAGE_HEAD;
1287
1288 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1289
1290 return ret == val;
1291}
1292
1293/*
1294 * rb_tail_page_update - move the tail page forward
1295 */
1296static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1297 struct buffer_page *tail_page,
1298 struct buffer_page *next_page)
1299{
1300 unsigned long old_entries;
1301 unsigned long old_write;
1302
1303 /*
1304 * The tail page now needs to be moved forward.
1305 *
1306 * We need to reset the tail page, but without messing
1307 * with possible erasing of data brought in by interrupts
1308 * that have moved the tail page and are currently on it.
1309 *
1310 * We add a counter to the write field to denote this.
1311 */
1312 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1313 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1314
1315 local_inc(&cpu_buffer->pages_touched);
1316 /*
1317 * Just make sure we have seen our old_write and synchronize
1318 * with any interrupts that come in.
1319 */
1320 barrier();
1321
1322 /*
1323 * If the tail page is still the same as what we think
1324 * it is, then it is up to us to update the tail
1325 * pointer.
1326 */
1327 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1328 /* Zero the write counter */
1329 unsigned long val = old_write & ~RB_WRITE_MASK;
1330 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1331
1332 /*
1333 * This will only succeed if an interrupt did
1334 * not come in and change it. In which case, we
1335 * do not want to modify it.
1336 *
1337 * We add (void) to let the compiler know that we do not care
1338 * about the return value of these functions. We use the
1339 * cmpxchg to only update if an interrupt did not already
1340 * do it for us. If the cmpxchg fails, we don't care.
1341 */
1342 (void)local_cmpxchg(&next_page->write, old_write, val);
1343 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1344
1345 /*
1346 * No need to worry about races with clearing out the commit.
1347 * it only can increment when a commit takes place. But that
1348 * only happens in the outer most nested commit.
1349 */
1350 local_set(&next_page->page->commit, 0);
1351
1352 /* Again, either we update tail_page or an interrupt does */
1353 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1354 }
1355}
1356
1357static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1358 struct buffer_page *bpage)
1359{
1360 unsigned long val = (unsigned long)bpage;
1361
1362 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1363 return 1;
1364
1365 return 0;
1366}
1367
1368/**
1369 * rb_check_list - make sure a pointer to a list has the last bits zero
1370 */
1371static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1372 struct list_head *list)
1373{
1374 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1375 return 1;
1376 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1377 return 1;
1378 return 0;
1379}
1380
1381/**
1382 * rb_check_pages - integrity check of buffer pages
1383 * @cpu_buffer: CPU buffer with pages to test
1384 *
1385 * As a safety measure we check to make sure the data pages have not
1386 * been corrupted.
1387 */
1388static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1389{
1390 struct list_head *head = cpu_buffer->pages;
1391 struct buffer_page *bpage, *tmp;
1392
1393 /* Reset the head page if it exists */
1394 if (cpu_buffer->head_page)
1395 rb_set_head_page(cpu_buffer);
1396
1397 rb_head_page_deactivate(cpu_buffer);
1398
1399 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1400 return -1;
1401 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1402 return -1;
1403
1404 if (rb_check_list(cpu_buffer, head))
1405 return -1;
1406
1407 list_for_each_entry_safe(bpage, tmp, head, list) {
1408 if (RB_WARN_ON(cpu_buffer,
1409 bpage->list.next->prev != &bpage->list))
1410 return -1;
1411 if (RB_WARN_ON(cpu_buffer,
1412 bpage->list.prev->next != &bpage->list))
1413 return -1;
1414 if (rb_check_list(cpu_buffer, &bpage->list))
1415 return -1;
1416 }
1417
1418 rb_head_page_activate(cpu_buffer);
1419
1420 return 0;
1421}
1422
1423static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1424{
1425 struct buffer_page *bpage, *tmp;
1426 bool user_thread = current->mm != NULL;
1427 gfp_t mflags;
1428 long i;
1429
1430 /*
1431 * Check if the available memory is there first.
1432 * Note, si_mem_available() only gives us a rough estimate of available
1433 * memory. It may not be accurate. But we don't care, we just want
1434 * to prevent doing any allocation when it is obvious that it is
1435 * not going to succeed.
1436 */
1437 i = si_mem_available();
1438 if (i < nr_pages)
1439 return -ENOMEM;
1440
1441 /*
1442 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1443 * gracefully without invoking oom-killer and the system is not
1444 * destabilized.
1445 */
1446 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1447
1448 /*
1449 * If a user thread allocates too much, and si_mem_available()
1450 * reports there's enough memory, even though there is not.
1451 * Make sure the OOM killer kills this thread. This can happen
1452 * even with RETRY_MAYFAIL because another task may be doing
1453 * an allocation after this task has taken all memory.
1454 * This is the task the OOM killer needs to take out during this
1455 * loop, even if it was triggered by an allocation somewhere else.
1456 */
1457 if (user_thread)
1458 set_current_oom_origin();
1459 for (i = 0; i < nr_pages; i++) {
1460 struct page *page;
1461
1462 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1463 mflags, cpu_to_node(cpu));
1464 if (!bpage)
1465 goto free_pages;
1466
1467 list_add(&bpage->list, pages);
1468
1469 page = alloc_pages_node(cpu_to_node(cpu), mflags, 0);
1470 if (!page)
1471 goto free_pages;
1472 bpage->page = page_address(page);
1473 rb_init_page(bpage->page);
1474
1475 if (user_thread && fatal_signal_pending(current))
1476 goto free_pages;
1477 }
1478 if (user_thread)
1479 clear_current_oom_origin();
1480
1481 return 0;
1482
1483free_pages:
1484 list_for_each_entry_safe(bpage, tmp, pages, list) {
1485 list_del_init(&bpage->list);
1486 free_buffer_page(bpage);
1487 }
1488 if (user_thread)
1489 clear_current_oom_origin();
1490
1491 return -ENOMEM;
1492}
1493
1494static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1495 unsigned long nr_pages)
1496{
1497 LIST_HEAD(pages);
1498
1499 WARN_ON(!nr_pages);
1500
1501 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1502 return -ENOMEM;
1503
1504 /*
1505 * The ring buffer page list is a circular list that does not
1506 * start and end with a list head. All page list items point to
1507 * other pages.
1508 */
1509 cpu_buffer->pages = pages.next;
1510 list_del(&pages);
1511
1512 cpu_buffer->nr_pages = nr_pages;
1513
1514 rb_check_pages(cpu_buffer);
1515
1516 return 0;
1517}
1518
1519static struct ring_buffer_per_cpu *
1520rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1521{
1522 struct ring_buffer_per_cpu *cpu_buffer;
1523 struct buffer_page *bpage;
1524 struct page *page;
1525 int ret;
1526
1527 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1528 GFP_KERNEL, cpu_to_node(cpu));
1529 if (!cpu_buffer)
1530 return NULL;
1531
1532 cpu_buffer->cpu = cpu;
1533 cpu_buffer->buffer = buffer;
1534 raw_spin_lock_init(&cpu_buffer->reader_lock);
1535 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1536 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1537 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1538 init_completion(&cpu_buffer->update_done);
1539 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1540 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1541 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1542
1543 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1544 GFP_KERNEL, cpu_to_node(cpu));
1545 if (!bpage)
1546 goto fail_free_buffer;
1547
1548 rb_check_bpage(cpu_buffer, bpage);
1549
1550 cpu_buffer->reader_page = bpage;
1551 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1552 if (!page)
1553 goto fail_free_reader;
1554 bpage->page = page_address(page);
1555 rb_init_page(bpage->page);
1556
1557 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1558 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1559
1560 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1561 if (ret < 0)
1562 goto fail_free_reader;
1563
1564 cpu_buffer->head_page
1565 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1566 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1567
1568 rb_head_page_activate(cpu_buffer);
1569
1570 return cpu_buffer;
1571
1572 fail_free_reader:
1573 free_buffer_page(cpu_buffer->reader_page);
1574
1575 fail_free_buffer:
1576 kfree(cpu_buffer);
1577 return NULL;
1578}
1579
1580static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1581{
1582 struct list_head *head = cpu_buffer->pages;
1583 struct buffer_page *bpage, *tmp;
1584
1585 free_buffer_page(cpu_buffer->reader_page);
1586
1587 rb_head_page_deactivate(cpu_buffer);
1588
1589 if (head) {
1590 list_for_each_entry_safe(bpage, tmp, head, list) {
1591 list_del_init(&bpage->list);
1592 free_buffer_page(bpage);
1593 }
1594 bpage = list_entry(head, struct buffer_page, list);
1595 free_buffer_page(bpage);
1596 }
1597
1598 kfree(cpu_buffer);
1599}
1600
1601/**
1602 * __ring_buffer_alloc - allocate a new ring_buffer
1603 * @size: the size in bytes per cpu that is needed.
1604 * @flags: attributes to set for the ring buffer.
1605 * @key: ring buffer reader_lock_key.
1606 *
1607 * Currently the only flag that is available is the RB_FL_OVERWRITE
1608 * flag. This flag means that the buffer will overwrite old data
1609 * when the buffer wraps. If this flag is not set, the buffer will
1610 * drop data when the tail hits the head.
1611 */
1612struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1613 struct lock_class_key *key)
1614{
1615 struct trace_buffer *buffer;
1616 long nr_pages;
1617 int bsize;
1618 int cpu;
1619 int ret;
1620
1621 /* keep it in its own cache line */
1622 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1623 GFP_KERNEL);
1624 if (!buffer)
1625 return NULL;
1626
1627 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1628 goto fail_free_buffer;
1629
1630 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1631 buffer->flags = flags;
1632 buffer->clock = trace_clock_local;
1633 buffer->reader_lock_key = key;
1634
1635 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1636 init_waitqueue_head(&buffer->irq_work.waiters);
1637
1638 /* need at least two pages */
1639 if (nr_pages < 2)
1640 nr_pages = 2;
1641
1642 buffer->cpus = nr_cpu_ids;
1643
1644 bsize = sizeof(void *) * nr_cpu_ids;
1645 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1646 GFP_KERNEL);
1647 if (!buffer->buffers)
1648 goto fail_free_cpumask;
1649
1650 cpu = raw_smp_processor_id();
1651 cpumask_set_cpu(cpu, buffer->cpumask);
1652 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1653 if (!buffer->buffers[cpu])
1654 goto fail_free_buffers;
1655
1656 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1657 if (ret < 0)
1658 goto fail_free_buffers;
1659
1660 mutex_init(&buffer->mutex);
1661
1662 return buffer;
1663
1664 fail_free_buffers:
1665 for_each_buffer_cpu(buffer, cpu) {
1666 if (buffer->buffers[cpu])
1667 rb_free_cpu_buffer(buffer->buffers[cpu]);
1668 }
1669 kfree(buffer->buffers);
1670
1671 fail_free_cpumask:
1672 free_cpumask_var(buffer->cpumask);
1673
1674 fail_free_buffer:
1675 kfree(buffer);
1676 return NULL;
1677}
1678EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1679
1680/**
1681 * ring_buffer_free - free a ring buffer.
1682 * @buffer: the buffer to free.
1683 */
1684void
1685ring_buffer_free(struct trace_buffer *buffer)
1686{
1687 int cpu;
1688
1689 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1690
1691 for_each_buffer_cpu(buffer, cpu)
1692 rb_free_cpu_buffer(buffer->buffers[cpu]);
1693
1694 kfree(buffer->buffers);
1695 free_cpumask_var(buffer->cpumask);
1696
1697 kfree(buffer);
1698}
1699EXPORT_SYMBOL_GPL(ring_buffer_free);
1700
1701void ring_buffer_set_clock(struct trace_buffer *buffer,
1702 u64 (*clock)(void))
1703{
1704 buffer->clock = clock;
1705}
1706
1707void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1708{
1709 buffer->time_stamp_abs = abs;
1710}
1711
1712bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1713{
1714 return buffer->time_stamp_abs;
1715}
1716
1717static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1718
1719static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1720{
1721 return local_read(&bpage->entries) & RB_WRITE_MASK;
1722}
1723
1724static inline unsigned long rb_page_write(struct buffer_page *bpage)
1725{
1726 return local_read(&bpage->write) & RB_WRITE_MASK;
1727}
1728
1729static int
1730rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1731{
1732 struct list_head *tail_page, *to_remove, *next_page;
1733 struct buffer_page *to_remove_page, *tmp_iter_page;
1734 struct buffer_page *last_page, *first_page;
1735 unsigned long nr_removed;
1736 unsigned long head_bit;
1737 int page_entries;
1738
1739 head_bit = 0;
1740
1741 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1742 atomic_inc(&cpu_buffer->record_disabled);
1743 /*
1744 * We don't race with the readers since we have acquired the reader
1745 * lock. We also don't race with writers after disabling recording.
1746 * This makes it easy to figure out the first and the last page to be
1747 * removed from the list. We unlink all the pages in between including
1748 * the first and last pages. This is done in a busy loop so that we
1749 * lose the least number of traces.
1750 * The pages are freed after we restart recording and unlock readers.
1751 */
1752 tail_page = &cpu_buffer->tail_page->list;
1753
1754 /*
1755 * tail page might be on reader page, we remove the next page
1756 * from the ring buffer
1757 */
1758 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1759 tail_page = rb_list_head(tail_page->next);
1760 to_remove = tail_page;
1761
1762 /* start of pages to remove */
1763 first_page = list_entry(rb_list_head(to_remove->next),
1764 struct buffer_page, list);
1765
1766 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1767 to_remove = rb_list_head(to_remove)->next;
1768 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1769 }
1770
1771 next_page = rb_list_head(to_remove)->next;
1772
1773 /*
1774 * Now we remove all pages between tail_page and next_page.
1775 * Make sure that we have head_bit value preserved for the
1776 * next page
1777 */
1778 tail_page->next = (struct list_head *)((unsigned long)next_page |
1779 head_bit);
1780 next_page = rb_list_head(next_page);
1781 next_page->prev = tail_page;
1782
1783 /* make sure pages points to a valid page in the ring buffer */
1784 cpu_buffer->pages = next_page;
1785
1786 /* update head page */
1787 if (head_bit)
1788 cpu_buffer->head_page = list_entry(next_page,
1789 struct buffer_page, list);
1790
1791 /*
1792 * change read pointer to make sure any read iterators reset
1793 * themselves
1794 */
1795 cpu_buffer->read = 0;
1796
1797 /* pages are removed, resume tracing and then free the pages */
1798 atomic_dec(&cpu_buffer->record_disabled);
1799 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1800
1801 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1802
1803 /* last buffer page to remove */
1804 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1805 list);
1806 tmp_iter_page = first_page;
1807
1808 do {
1809 cond_resched();
1810
1811 to_remove_page = tmp_iter_page;
1812 rb_inc_page(cpu_buffer, &tmp_iter_page);
1813
1814 /* update the counters */
1815 page_entries = rb_page_entries(to_remove_page);
1816 if (page_entries) {
1817 /*
1818 * If something was added to this page, it was full
1819 * since it is not the tail page. So we deduct the
1820 * bytes consumed in ring buffer from here.
1821 * Increment overrun to account for the lost events.
1822 */
1823 local_add(page_entries, &cpu_buffer->overrun);
1824 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1825 }
1826
1827 /*
1828 * We have already removed references to this list item, just
1829 * free up the buffer_page and its page
1830 */
1831 free_buffer_page(to_remove_page);
1832 nr_removed--;
1833
1834 } while (to_remove_page != last_page);
1835
1836 RB_WARN_ON(cpu_buffer, nr_removed);
1837
1838 return nr_removed == 0;
1839}
1840
1841static int
1842rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1843{
1844 struct list_head *pages = &cpu_buffer->new_pages;
1845 int retries, success;
1846
1847 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1848 /*
1849 * We are holding the reader lock, so the reader page won't be swapped
1850 * in the ring buffer. Now we are racing with the writer trying to
1851 * move head page and the tail page.
1852 * We are going to adapt the reader page update process where:
1853 * 1. We first splice the start and end of list of new pages between
1854 * the head page and its previous page.
1855 * 2. We cmpxchg the prev_page->next to point from head page to the
1856 * start of new pages list.
1857 * 3. Finally, we update the head->prev to the end of new list.
1858 *
1859 * We will try this process 10 times, to make sure that we don't keep
1860 * spinning.
1861 */
1862 retries = 10;
1863 success = 0;
1864 while (retries--) {
1865 struct list_head *head_page, *prev_page, *r;
1866 struct list_head *last_page, *first_page;
1867 struct list_head *head_page_with_bit;
1868
1869 head_page = &rb_set_head_page(cpu_buffer)->list;
1870 if (!head_page)
1871 break;
1872 prev_page = head_page->prev;
1873
1874 first_page = pages->next;
1875 last_page = pages->prev;
1876
1877 head_page_with_bit = (struct list_head *)
1878 ((unsigned long)head_page | RB_PAGE_HEAD);
1879
1880 last_page->next = head_page_with_bit;
1881 first_page->prev = prev_page;
1882
1883 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1884
1885 if (r == head_page_with_bit) {
1886 /*
1887 * yay, we replaced the page pointer to our new list,
1888 * now, we just have to update to head page's prev
1889 * pointer to point to end of list
1890 */
1891 head_page->prev = last_page;
1892 success = 1;
1893 break;
1894 }
1895 }
1896
1897 if (success)
1898 INIT_LIST_HEAD(pages);
1899 /*
1900 * If we weren't successful in adding in new pages, warn and stop
1901 * tracing
1902 */
1903 RB_WARN_ON(cpu_buffer, !success);
1904 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1905
1906 /* free pages if they weren't inserted */
1907 if (!success) {
1908 struct buffer_page *bpage, *tmp;
1909 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1910 list) {
1911 list_del_init(&bpage->list);
1912 free_buffer_page(bpage);
1913 }
1914 }
1915 return success;
1916}
1917
1918static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1919{
1920 int success;
1921
1922 if (cpu_buffer->nr_pages_to_update > 0)
1923 success = rb_insert_pages(cpu_buffer);
1924 else
1925 success = rb_remove_pages(cpu_buffer,
1926 -cpu_buffer->nr_pages_to_update);
1927
1928 if (success)
1929 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1930}
1931
1932static void update_pages_handler(struct work_struct *work)
1933{
1934 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1935 struct ring_buffer_per_cpu, update_pages_work);
1936 rb_update_pages(cpu_buffer);
1937 complete(&cpu_buffer->update_done);
1938}
1939
1940/**
1941 * ring_buffer_resize - resize the ring buffer
1942 * @buffer: the buffer to resize.
1943 * @size: the new size.
1944 * @cpu_id: the cpu buffer to resize
1945 *
1946 * Minimum size is 2 * BUF_PAGE_SIZE.
1947 *
1948 * Returns 0 on success and < 0 on failure.
1949 */
1950int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
1951 int cpu_id)
1952{
1953 struct ring_buffer_per_cpu *cpu_buffer;
1954 unsigned long nr_pages;
1955 int cpu, err = 0;
1956
1957 /*
1958 * Always succeed at resizing a non-existent buffer:
1959 */
1960 if (!buffer)
1961 return size;
1962
1963 /* Make sure the requested buffer exists */
1964 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1965 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1966 return size;
1967
1968 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1969
1970 /* we need a minimum of two pages */
1971 if (nr_pages < 2)
1972 nr_pages = 2;
1973
1974 size = nr_pages * BUF_PAGE_SIZE;
1975
1976 /* prevent another thread from changing buffer sizes */
1977 mutex_lock(&buffer->mutex);
1978
1979
1980 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1981 /*
1982 * Don't succeed if resizing is disabled, as a reader might be
1983 * manipulating the ring buffer and is expecting a sane state while
1984 * this is true.
1985 */
1986 for_each_buffer_cpu(buffer, cpu) {
1987 cpu_buffer = buffer->buffers[cpu];
1988 if (atomic_read(&cpu_buffer->resize_disabled)) {
1989 err = -EBUSY;
1990 goto out_err_unlock;
1991 }
1992 }
1993
1994 /* calculate the pages to update */
1995 for_each_buffer_cpu(buffer, cpu) {
1996 cpu_buffer = buffer->buffers[cpu];
1997
1998 cpu_buffer->nr_pages_to_update = nr_pages -
1999 cpu_buffer->nr_pages;
2000 /*
2001 * nothing more to do for removing pages or no update
2002 */
2003 if (cpu_buffer->nr_pages_to_update <= 0)
2004 continue;
2005 /*
2006 * to add pages, make sure all new pages can be
2007 * allocated without receiving ENOMEM
2008 */
2009 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2010 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
2011 &cpu_buffer->new_pages, cpu)) {
2012 /* not enough memory for new pages */
2013 err = -ENOMEM;
2014 goto out_err;
2015 }
2016 }
2017
2018 get_online_cpus();
2019 /*
2020 * Fire off all the required work handlers
2021 * We can't schedule on offline CPUs, but it's not necessary
2022 * since we can change their buffer sizes without any race.
2023 */
2024 for_each_buffer_cpu(buffer, cpu) {
2025 cpu_buffer = buffer->buffers[cpu];
2026 if (!cpu_buffer->nr_pages_to_update)
2027 continue;
2028
2029 /* Can't run something on an offline CPU. */
2030 if (!cpu_online(cpu)) {
2031 rb_update_pages(cpu_buffer);
2032 cpu_buffer->nr_pages_to_update = 0;
2033 } else {
2034 schedule_work_on(cpu,
2035 &cpu_buffer->update_pages_work);
2036 }
2037 }
2038
2039 /* wait for all the updates to complete */
2040 for_each_buffer_cpu(buffer, cpu) {
2041 cpu_buffer = buffer->buffers[cpu];
2042 if (!cpu_buffer->nr_pages_to_update)
2043 continue;
2044
2045 if (cpu_online(cpu))
2046 wait_for_completion(&cpu_buffer->update_done);
2047 cpu_buffer->nr_pages_to_update = 0;
2048 }
2049
2050 put_online_cpus();
2051 } else {
2052 /* Make sure this CPU has been initialized */
2053 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
2054 goto out;
2055
2056 cpu_buffer = buffer->buffers[cpu_id];
2057
2058 if (nr_pages == cpu_buffer->nr_pages)
2059 goto out;
2060
2061 /*
2062 * Don't succeed if resizing is disabled, as a reader might be
2063 * manipulating the ring buffer and is expecting a sane state while
2064 * this is true.
2065 */
2066 if (atomic_read(&cpu_buffer->resize_disabled)) {
2067 err = -EBUSY;
2068 goto out_err_unlock;
2069 }
2070
2071 cpu_buffer->nr_pages_to_update = nr_pages -
2072 cpu_buffer->nr_pages;
2073
2074 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2075 if (cpu_buffer->nr_pages_to_update > 0 &&
2076 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
2077 &cpu_buffer->new_pages, cpu_id)) {
2078 err = -ENOMEM;
2079 goto out_err;
2080 }
2081
2082 get_online_cpus();
2083
2084 /* Can't run something on an offline CPU. */
2085 if (!cpu_online(cpu_id))
2086 rb_update_pages(cpu_buffer);
2087 else {
2088 schedule_work_on(cpu_id,
2089 &cpu_buffer->update_pages_work);
2090 wait_for_completion(&cpu_buffer->update_done);
2091 }
2092
2093 cpu_buffer->nr_pages_to_update = 0;
2094 put_online_cpus();
2095 }
2096
2097 out:
2098 /*
2099 * The ring buffer resize can happen with the ring buffer
2100 * enabled, so that the update disturbs the tracing as little
2101 * as possible. But if the buffer is disabled, we do not need
2102 * to worry about that, and we can take the time to verify
2103 * that the buffer is not corrupt.
2104 */
2105 if (atomic_read(&buffer->record_disabled)) {
2106 atomic_inc(&buffer->record_disabled);
2107 /*
2108 * Even though the buffer was disabled, we must make sure
2109 * that it is truly disabled before calling rb_check_pages.
2110 * There could have been a race between checking
2111 * record_disable and incrementing it.
2112 */
2113 synchronize_rcu();
2114 for_each_buffer_cpu(buffer, cpu) {
2115 cpu_buffer = buffer->buffers[cpu];
2116 rb_check_pages(cpu_buffer);
2117 }
2118 atomic_dec(&buffer->record_disabled);
2119 }
2120
2121 mutex_unlock(&buffer->mutex);
2122 return size;
2123
2124 out_err:
2125 for_each_buffer_cpu(buffer, cpu) {
2126 struct buffer_page *bpage, *tmp;
2127
2128 cpu_buffer = buffer->buffers[cpu];
2129 cpu_buffer->nr_pages_to_update = 0;
2130
2131 if (list_empty(&cpu_buffer->new_pages))
2132 continue;
2133
2134 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2135 list) {
2136 list_del_init(&bpage->list);
2137 free_buffer_page(bpage);
2138 }
2139 }
2140 out_err_unlock:
2141 mutex_unlock(&buffer->mutex);
2142 return err;
2143}
2144EXPORT_SYMBOL_GPL(ring_buffer_resize);
2145
2146void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2147{
2148 mutex_lock(&buffer->mutex);
2149 if (val)
2150 buffer->flags |= RB_FL_OVERWRITE;
2151 else
2152 buffer->flags &= ~RB_FL_OVERWRITE;
2153 mutex_unlock(&buffer->mutex);
2154}
2155EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2156
2157static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2158{
2159 return bpage->page->data + index;
2160}
2161
2162static __always_inline struct ring_buffer_event *
2163rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2164{
2165 return __rb_page_index(cpu_buffer->reader_page,
2166 cpu_buffer->reader_page->read);
2167}
2168
2169static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
2170{
2171 return local_read(&bpage->page->commit);
2172}
2173
2174static struct ring_buffer_event *
2175rb_iter_head_event(struct ring_buffer_iter *iter)
2176{
2177 struct ring_buffer_event *event;
2178 struct buffer_page *iter_head_page = iter->head_page;
2179 unsigned long commit;
2180 unsigned length;
2181
2182 if (iter->head != iter->next_event)
2183 return iter->event;
2184
2185 /*
2186 * When the writer goes across pages, it issues a cmpxchg which
2187 * is a mb(), which will synchronize with the rmb here.
2188 * (see rb_tail_page_update() and __rb_reserve_next())
2189 */
2190 commit = rb_page_commit(iter_head_page);
2191 smp_rmb();
2192 event = __rb_page_index(iter_head_page, iter->head);
2193 length = rb_event_length(event);
2194
2195 /*
2196 * READ_ONCE() doesn't work on functions and we don't want the
2197 * compiler doing any crazy optimizations with length.
2198 */
2199 barrier();
2200
2201 if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE)
2202 /* Writer corrupted the read? */
2203 goto reset;
2204
2205 memcpy(iter->event, event, length);
2206 /*
2207 * If the page stamp is still the same after this rmb() then the
2208 * event was safely copied without the writer entering the page.
2209 */
2210 smp_rmb();
2211
2212 /* Make sure the page didn't change since we read this */
2213 if (iter->page_stamp != iter_head_page->page->time_stamp ||
2214 commit > rb_page_commit(iter_head_page))
2215 goto reset;
2216
2217 iter->next_event = iter->head + length;
2218 return iter->event;
2219 reset:
2220 /* Reset to the beginning */
2221 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2222 iter->head = 0;
2223 iter->next_event = 0;
2224 iter->missed_events = 1;
2225 return NULL;
2226}
2227
2228/* Size is determined by what has been committed */
2229static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2230{
2231 return rb_page_commit(bpage);
2232}
2233
2234static __always_inline unsigned
2235rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2236{
2237 return rb_page_commit(cpu_buffer->commit_page);
2238}
2239
2240static __always_inline unsigned
2241rb_event_index(struct ring_buffer_event *event)
2242{
2243 unsigned long addr = (unsigned long)event;
2244
2245 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2246}
2247
2248static void rb_inc_iter(struct ring_buffer_iter *iter)
2249{
2250 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2251
2252 /*
2253 * The iterator could be on the reader page (it starts there).
2254 * But the head could have moved, since the reader was
2255 * found. Check for this case and assign the iterator
2256 * to the head page instead of next.
2257 */
2258 if (iter->head_page == cpu_buffer->reader_page)
2259 iter->head_page = rb_set_head_page(cpu_buffer);
2260 else
2261 rb_inc_page(cpu_buffer, &iter->head_page);
2262
2263 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2264 iter->head = 0;
2265 iter->next_event = 0;
2266}
2267
2268/*
2269 * rb_handle_head_page - writer hit the head page
2270 *
2271 * Returns: +1 to retry page
2272 * 0 to continue
2273 * -1 on error
2274 */
2275static int
2276rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2277 struct buffer_page *tail_page,
2278 struct buffer_page *next_page)
2279{
2280 struct buffer_page *new_head;
2281 int entries;
2282 int type;
2283 int ret;
2284
2285 entries = rb_page_entries(next_page);
2286
2287 /*
2288 * The hard part is here. We need to move the head
2289 * forward, and protect against both readers on
2290 * other CPUs and writers coming in via interrupts.
2291 */
2292 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2293 RB_PAGE_HEAD);
2294
2295 /*
2296 * type can be one of four:
2297 * NORMAL - an interrupt already moved it for us
2298 * HEAD - we are the first to get here.
2299 * UPDATE - we are the interrupt interrupting
2300 * a current move.
2301 * MOVED - a reader on another CPU moved the next
2302 * pointer to its reader page. Give up
2303 * and try again.
2304 */
2305
2306 switch (type) {
2307 case RB_PAGE_HEAD:
2308 /*
2309 * We changed the head to UPDATE, thus
2310 * it is our responsibility to update
2311 * the counters.
2312 */
2313 local_add(entries, &cpu_buffer->overrun);
2314 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2315
2316 /*
2317 * The entries will be zeroed out when we move the
2318 * tail page.
2319 */
2320
2321 /* still more to do */
2322 break;
2323
2324 case RB_PAGE_UPDATE:
2325 /*
2326 * This is an interrupt that interrupt the
2327 * previous update. Still more to do.
2328 */
2329 break;
2330 case RB_PAGE_NORMAL:
2331 /*
2332 * An interrupt came in before the update
2333 * and processed this for us.
2334 * Nothing left to do.
2335 */
2336 return 1;
2337 case RB_PAGE_MOVED:
2338 /*
2339 * The reader is on another CPU and just did
2340 * a swap with our next_page.
2341 * Try again.
2342 */
2343 return 1;
2344 default:
2345 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2346 return -1;
2347 }
2348
2349 /*
2350 * Now that we are here, the old head pointer is
2351 * set to UPDATE. This will keep the reader from
2352 * swapping the head page with the reader page.
2353 * The reader (on another CPU) will spin till
2354 * we are finished.
2355 *
2356 * We just need to protect against interrupts
2357 * doing the job. We will set the next pointer
2358 * to HEAD. After that, we set the old pointer
2359 * to NORMAL, but only if it was HEAD before.
2360 * otherwise we are an interrupt, and only
2361 * want the outer most commit to reset it.
2362 */
2363 new_head = next_page;
2364 rb_inc_page(cpu_buffer, &new_head);
2365
2366 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2367 RB_PAGE_NORMAL);
2368
2369 /*
2370 * Valid returns are:
2371 * HEAD - an interrupt came in and already set it.
2372 * NORMAL - One of two things:
2373 * 1) We really set it.
2374 * 2) A bunch of interrupts came in and moved
2375 * the page forward again.
2376 */
2377 switch (ret) {
2378 case RB_PAGE_HEAD:
2379 case RB_PAGE_NORMAL:
2380 /* OK */
2381 break;
2382 default:
2383 RB_WARN_ON(cpu_buffer, 1);
2384 return -1;
2385 }
2386
2387 /*
2388 * It is possible that an interrupt came in,
2389 * set the head up, then more interrupts came in
2390 * and moved it again. When we get back here,
2391 * the page would have been set to NORMAL but we
2392 * just set it back to HEAD.
2393 *
2394 * How do you detect this? Well, if that happened
2395 * the tail page would have moved.
2396 */
2397 if (ret == RB_PAGE_NORMAL) {
2398 struct buffer_page *buffer_tail_page;
2399
2400 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2401 /*
2402 * If the tail had moved passed next, then we need
2403 * to reset the pointer.
2404 */
2405 if (buffer_tail_page != tail_page &&
2406 buffer_tail_page != next_page)
2407 rb_head_page_set_normal(cpu_buffer, new_head,
2408 next_page,
2409 RB_PAGE_HEAD);
2410 }
2411
2412 /*
2413 * If this was the outer most commit (the one that
2414 * changed the original pointer from HEAD to UPDATE),
2415 * then it is up to us to reset it to NORMAL.
2416 */
2417 if (type == RB_PAGE_HEAD) {
2418 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2419 tail_page,
2420 RB_PAGE_UPDATE);
2421 if (RB_WARN_ON(cpu_buffer,
2422 ret != RB_PAGE_UPDATE))
2423 return -1;
2424 }
2425
2426 return 0;
2427}
2428
2429static inline void
2430rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2431 unsigned long tail, struct rb_event_info *info)
2432{
2433 struct buffer_page *tail_page = info->tail_page;
2434 struct ring_buffer_event *event;
2435 unsigned long length = info->length;
2436
2437 /*
2438 * Only the event that crossed the page boundary
2439 * must fill the old tail_page with padding.
2440 */
2441 if (tail >= BUF_PAGE_SIZE) {
2442 /*
2443 * If the page was filled, then we still need
2444 * to update the real_end. Reset it to zero
2445 * and the reader will ignore it.
2446 */
2447 if (tail == BUF_PAGE_SIZE)
2448 tail_page->real_end = 0;
2449
2450 local_sub(length, &tail_page->write);
2451 return;
2452 }
2453
2454 event = __rb_page_index(tail_page, tail);
2455
2456 /* account for padding bytes */
2457 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2458
2459 /*
2460 * Save the original length to the meta data.
2461 * This will be used by the reader to add lost event
2462 * counter.
2463 */
2464 tail_page->real_end = tail;
2465
2466 /*
2467 * If this event is bigger than the minimum size, then
2468 * we need to be careful that we don't subtract the
2469 * write counter enough to allow another writer to slip
2470 * in on this page.
2471 * We put in a discarded commit instead, to make sure
2472 * that this space is not used again.
2473 *
2474 * If we are less than the minimum size, we don't need to
2475 * worry about it.
2476 */
2477 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2478 /* No room for any events */
2479
2480 /* Mark the rest of the page with padding */
2481 rb_event_set_padding(event);
2482
2483 /* Set the write back to the previous setting */
2484 local_sub(length, &tail_page->write);
2485 return;
2486 }
2487
2488 /* Put in a discarded event */
2489 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2490 event->type_len = RINGBUF_TYPE_PADDING;
2491 /* time delta must be non zero */
2492 event->time_delta = 1;
2493
2494 /* Set write to end of buffer */
2495 length = (tail + length) - BUF_PAGE_SIZE;
2496 local_sub(length, &tail_page->write);
2497}
2498
2499static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2500
2501/*
2502 * This is the slow path, force gcc not to inline it.
2503 */
2504static noinline struct ring_buffer_event *
2505rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2506 unsigned long tail, struct rb_event_info *info)
2507{
2508 struct buffer_page *tail_page = info->tail_page;
2509 struct buffer_page *commit_page = cpu_buffer->commit_page;
2510 struct trace_buffer *buffer = cpu_buffer->buffer;
2511 struct buffer_page *next_page;
2512 int ret;
2513
2514 next_page = tail_page;
2515
2516 rb_inc_page(cpu_buffer, &next_page);
2517
2518 /*
2519 * If for some reason, we had an interrupt storm that made
2520 * it all the way around the buffer, bail, and warn
2521 * about it.
2522 */
2523 if (unlikely(next_page == commit_page)) {
2524 local_inc(&cpu_buffer->commit_overrun);
2525 goto out_reset;
2526 }
2527
2528 /*
2529 * This is where the fun begins!
2530 *
2531 * We are fighting against races between a reader that
2532 * could be on another CPU trying to swap its reader
2533 * page with the buffer head.
2534 *
2535 * We are also fighting against interrupts coming in and
2536 * moving the head or tail on us as well.
2537 *
2538 * If the next page is the head page then we have filled
2539 * the buffer, unless the commit page is still on the
2540 * reader page.
2541 */
2542 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2543
2544 /*
2545 * If the commit is not on the reader page, then
2546 * move the header page.
2547 */
2548 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2549 /*
2550 * If we are not in overwrite mode,
2551 * this is easy, just stop here.
2552 */
2553 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2554 local_inc(&cpu_buffer->dropped_events);
2555 goto out_reset;
2556 }
2557
2558 ret = rb_handle_head_page(cpu_buffer,
2559 tail_page,
2560 next_page);
2561 if (ret < 0)
2562 goto out_reset;
2563 if (ret)
2564 goto out_again;
2565 } else {
2566 /*
2567 * We need to be careful here too. The
2568 * commit page could still be on the reader
2569 * page. We could have a small buffer, and
2570 * have filled up the buffer with events
2571 * from interrupts and such, and wrapped.
2572 *
2573 * Note, if the tail page is also the on the
2574 * reader_page, we let it move out.
2575 */
2576 if (unlikely((cpu_buffer->commit_page !=
2577 cpu_buffer->tail_page) &&
2578 (cpu_buffer->commit_page ==
2579 cpu_buffer->reader_page))) {
2580 local_inc(&cpu_buffer->commit_overrun);
2581 goto out_reset;
2582 }
2583 }
2584 }
2585
2586 rb_tail_page_update(cpu_buffer, tail_page, next_page);
2587
2588 out_again:
2589
2590 rb_reset_tail(cpu_buffer, tail, info);
2591
2592 /* Commit what we have for now. */
2593 rb_end_commit(cpu_buffer);
2594 /* rb_end_commit() decs committing */
2595 local_inc(&cpu_buffer->committing);
2596
2597 /* fail and let the caller try again */
2598 return ERR_PTR(-EAGAIN);
2599
2600 out_reset:
2601 /* reset write */
2602 rb_reset_tail(cpu_buffer, tail, info);
2603
2604 return NULL;
2605}
2606
2607/* Slow path */
2608static struct ring_buffer_event *
2609rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2610{
2611 if (abs)
2612 event->type_len = RINGBUF_TYPE_TIME_STAMP;
2613 else
2614 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2615
2616 /* Not the first event on the page, or not delta? */
2617 if (abs || rb_event_index(event)) {
2618 event->time_delta = delta & TS_MASK;
2619 event->array[0] = delta >> TS_SHIFT;
2620 } else {
2621 /* nope, just zero it */
2622 event->time_delta = 0;
2623 event->array[0] = 0;
2624 }
2625
2626 return skip_time_extend(event);
2627}
2628
2629static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2630 struct ring_buffer_event *event);
2631
2632#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2633static inline bool sched_clock_stable(void)
2634{
2635 return true;
2636}
2637#endif
2638
2639static void
2640rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2641 struct rb_event_info *info)
2642{
2643 u64 write_stamp;
2644
2645 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2646 (unsigned long long)info->delta,
2647 (unsigned long long)info->ts,
2648 (unsigned long long)info->before,
2649 (unsigned long long)info->after,
2650 (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2651 sched_clock_stable() ? "" :
2652 "If you just came from a suspend/resume,\n"
2653 "please switch to the trace global clock:\n"
2654 " echo global > /sys/kernel/debug/tracing/trace_clock\n"
2655 "or add trace_clock=global to the kernel command line\n");
2656}
2657
2658static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2659 struct ring_buffer_event **event,
2660 struct rb_event_info *info,
2661 u64 *delta,
2662 unsigned int *length)
2663{
2664 bool abs = info->add_timestamp &
2665 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2666
2667 if (unlikely(info->delta > (1ULL << 59))) {
2668 /* did the clock go backwards */
2669 if (info->before == info->after && info->before > info->ts) {
2670 /* not interrupted */
2671 static int once;
2672
2673 /*
2674 * This is possible with a recalibrating of the TSC.
2675 * Do not produce a call stack, but just report it.
2676 */
2677 if (!once) {
2678 once++;
2679 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2680 info->before, info->ts);
2681 }
2682 } else
2683 rb_check_timestamp(cpu_buffer, info);
2684 if (!abs)
2685 info->delta = 0;
2686 }
2687 *event = rb_add_time_stamp(*event, info->delta, abs);
2688 *length -= RB_LEN_TIME_EXTEND;
2689 *delta = 0;
2690}
2691
2692/**
2693 * rb_update_event - update event type and data
2694 * @cpu_buffer: The per cpu buffer of the @event
2695 * @event: the event to update
2696 * @info: The info to update the @event with (contains length and delta)
2697 *
2698 * Update the type and data fields of the @event. The length
2699 * is the actual size that is written to the ring buffer,
2700 * and with this, we can determine what to place into the
2701 * data field.
2702 */
2703static void
2704rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2705 struct ring_buffer_event *event,
2706 struct rb_event_info *info)
2707{
2708 unsigned length = info->length;
2709 u64 delta = info->delta;
2710
2711 /*
2712 * If we need to add a timestamp, then we
2713 * add it to the start of the reserved space.
2714 */
2715 if (unlikely(info->add_timestamp))
2716 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2717
2718 event->time_delta = delta;
2719 length -= RB_EVNT_HDR_SIZE;
2720 if (length > RB_MAX_SMALL_DATA) {
2721 event->type_len = 0;
2722 event->array[0] = length;
2723 } else
2724 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2725}
2726
2727static unsigned rb_calculate_event_length(unsigned length)
2728{
2729 struct ring_buffer_event event; /* Used only for sizeof array */
2730
2731 /* zero length can cause confusions */
2732 if (!length)
2733 length++;
2734
2735 if (length > RB_MAX_SMALL_DATA)
2736 length += sizeof(event.array[0]);
2737
2738 length += RB_EVNT_HDR_SIZE;
2739 length = ALIGN(length, RB_ALIGNMENT);
2740
2741 /*
2742 * In case the time delta is larger than the 27 bits for it
2743 * in the header, we need to add a timestamp. If another
2744 * event comes in when trying to discard this one to increase
2745 * the length, then the timestamp will be added in the allocated
2746 * space of this event. If length is bigger than the size needed
2747 * for the TIME_EXTEND, then padding has to be used. The events
2748 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2749 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2750 * As length is a multiple of 4, we only need to worry if it
2751 * is 12 (RB_LEN_TIME_EXTEND + 4).
2752 */
2753 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2754 length += RB_ALIGNMENT;
2755
2756 return length;
2757}
2758
2759static __always_inline bool
2760rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2761 struct ring_buffer_event *event)
2762{
2763 unsigned long addr = (unsigned long)event;
2764 unsigned long index;
2765
2766 index = rb_event_index(event);
2767 addr &= PAGE_MASK;
2768
2769 return cpu_buffer->commit_page->page == (void *)addr &&
2770 rb_commit_index(cpu_buffer) == index;
2771}
2772
2773static u64 rb_time_delta(struct ring_buffer_event *event)
2774{
2775 switch (event->type_len) {
2776 case RINGBUF_TYPE_PADDING:
2777 return 0;
2778
2779 case RINGBUF_TYPE_TIME_EXTEND:
2780 return ring_buffer_event_time_stamp(event);
2781
2782 case RINGBUF_TYPE_TIME_STAMP:
2783 return 0;
2784
2785 case RINGBUF_TYPE_DATA:
2786 return event->time_delta;
2787 default:
2788 return 0;
2789 }
2790}
2791
2792static inline int
2793rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2794 struct ring_buffer_event *event)
2795{
2796 unsigned long new_index, old_index;
2797 struct buffer_page *bpage;
2798 unsigned long index;
2799 unsigned long addr;
2800 u64 write_stamp;
2801 u64 delta;
2802
2803 new_index = rb_event_index(event);
2804 old_index = new_index + rb_event_ts_length(event);
2805 addr = (unsigned long)event;
2806 addr &= PAGE_MASK;
2807
2808 bpage = READ_ONCE(cpu_buffer->tail_page);
2809
2810 delta = rb_time_delta(event);
2811
2812 if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
2813 return 0;
2814
2815 /* Make sure the write stamp is read before testing the location */
2816 barrier();
2817
2818 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2819 unsigned long write_mask =
2820 local_read(&bpage->write) & ~RB_WRITE_MASK;
2821 unsigned long event_length = rb_event_length(event);
2822
2823 /* Something came in, can't discard */
2824 if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
2825 write_stamp, write_stamp - delta))
2826 return 0;
2827
2828 /*
2829 * If an event were to come in now, it would see that the
2830 * write_stamp and the before_stamp are different, and assume
2831 * that this event just added itself before updating
2832 * the write stamp. The interrupting event will fix the
2833 * write stamp for us, and use the before stamp as its delta.
2834 */
2835
2836 /*
2837 * This is on the tail page. It is possible that
2838 * a write could come in and move the tail page
2839 * and write to the next page. That is fine
2840 * because we just shorten what is on this page.
2841 */
2842 old_index += write_mask;
2843 new_index += write_mask;
2844 index = local_cmpxchg(&bpage->write, old_index, new_index);
2845 if (index == old_index) {
2846 /* update counters */
2847 local_sub(event_length, &cpu_buffer->entries_bytes);
2848 return 1;
2849 }
2850 }
2851
2852 /* could not discard */
2853 return 0;
2854}
2855
2856static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2857{
2858 local_inc(&cpu_buffer->committing);
2859 local_inc(&cpu_buffer->commits);
2860}
2861
2862static __always_inline void
2863rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2864{
2865 unsigned long max_count;
2866
2867 /*
2868 * We only race with interrupts and NMIs on this CPU.
2869 * If we own the commit event, then we can commit
2870 * all others that interrupted us, since the interruptions
2871 * are in stack format (they finish before they come
2872 * back to us). This allows us to do a simple loop to
2873 * assign the commit to the tail.
2874 */
2875 again:
2876 max_count = cpu_buffer->nr_pages * 100;
2877
2878 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2879 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2880 return;
2881 if (RB_WARN_ON(cpu_buffer,
2882 rb_is_reader_page(cpu_buffer->tail_page)))
2883 return;
2884 local_set(&cpu_buffer->commit_page->page->commit,
2885 rb_page_write(cpu_buffer->commit_page));
2886 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2887 /* add barrier to keep gcc from optimizing too much */
2888 barrier();
2889 }
2890 while (rb_commit_index(cpu_buffer) !=
2891 rb_page_write(cpu_buffer->commit_page)) {
2892
2893 local_set(&cpu_buffer->commit_page->page->commit,
2894 rb_page_write(cpu_buffer->commit_page));
2895 RB_WARN_ON(cpu_buffer,
2896 local_read(&cpu_buffer->commit_page->page->commit) &
2897 ~RB_WRITE_MASK);
2898 barrier();
2899 }
2900
2901 /* again, keep gcc from optimizing */
2902 barrier();
2903
2904 /*
2905 * If an interrupt came in just after the first while loop
2906 * and pushed the tail page forward, we will be left with
2907 * a dangling commit that will never go forward.
2908 */
2909 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2910 goto again;
2911}
2912
2913static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2914{
2915 unsigned long commits;
2916
2917 if (RB_WARN_ON(cpu_buffer,
2918 !local_read(&cpu_buffer->committing)))
2919 return;
2920
2921 again:
2922 commits = local_read(&cpu_buffer->commits);
2923 /* synchronize with interrupts */
2924 barrier();
2925 if (local_read(&cpu_buffer->committing) == 1)
2926 rb_set_commit_to_write(cpu_buffer);
2927
2928 local_dec(&cpu_buffer->committing);
2929
2930 /* synchronize with interrupts */
2931 barrier();
2932
2933 /*
2934 * Need to account for interrupts coming in between the
2935 * updating of the commit page and the clearing of the
2936 * committing counter.
2937 */
2938 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2939 !local_read(&cpu_buffer->committing)) {
2940 local_inc(&cpu_buffer->committing);
2941 goto again;
2942 }
2943}
2944
2945static inline void rb_event_discard(struct ring_buffer_event *event)
2946{
2947 if (extended_time(event))
2948 event = skip_time_extend(event);
2949
2950 /* array[0] holds the actual length for the discarded event */
2951 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2952 event->type_len = RINGBUF_TYPE_PADDING;
2953 /* time delta must be non zero */
2954 if (!event->time_delta)
2955 event->time_delta = 1;
2956}
2957
2958static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2959 struct ring_buffer_event *event)
2960{
2961 local_inc(&cpu_buffer->entries);
2962 rb_end_commit(cpu_buffer);
2963}
2964
2965static __always_inline void
2966rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2967{
2968 size_t nr_pages;
2969 size_t dirty;
2970 size_t full;
2971
2972 if (buffer->irq_work.waiters_pending) {
2973 buffer->irq_work.waiters_pending = false;
2974 /* irq_work_queue() supplies it's own memory barriers */
2975 irq_work_queue(&buffer->irq_work.work);
2976 }
2977
2978 if (cpu_buffer->irq_work.waiters_pending) {
2979 cpu_buffer->irq_work.waiters_pending = false;
2980 /* irq_work_queue() supplies it's own memory barriers */
2981 irq_work_queue(&cpu_buffer->irq_work.work);
2982 }
2983
2984 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
2985 return;
2986
2987 if (cpu_buffer->reader_page == cpu_buffer->commit_page)
2988 return;
2989
2990 if (!cpu_buffer->irq_work.full_waiters_pending)
2991 return;
2992
2993 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
2994
2995 full = cpu_buffer->shortest_full;
2996 nr_pages = cpu_buffer->nr_pages;
2997 dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu);
2998 if (full && nr_pages && (dirty * 100) <= full * nr_pages)
2999 return;
3000
3001 cpu_buffer->irq_work.wakeup_full = true;
3002 cpu_buffer->irq_work.full_waiters_pending = false;
3003 /* irq_work_queue() supplies it's own memory barriers */
3004 irq_work_queue(&cpu_buffer->irq_work.work);
3005}
3006
3007/*
3008 * The lock and unlock are done within a preempt disable section.
3009 * The current_context per_cpu variable can only be modified
3010 * by the current task between lock and unlock. But it can
3011 * be modified more than once via an interrupt. To pass this
3012 * information from the lock to the unlock without having to
3013 * access the 'in_interrupt()' functions again (which do show
3014 * a bit of overhead in something as critical as function tracing,
3015 * we use a bitmask trick.
3016 *
3017 * bit 0 = NMI context
3018 * bit 1 = IRQ context
3019 * bit 2 = SoftIRQ context
3020 * bit 3 = normal context.
3021 *
3022 * This works because this is the order of contexts that can
3023 * preempt other contexts. A SoftIRQ never preempts an IRQ
3024 * context.
3025 *
3026 * When the context is determined, the corresponding bit is
3027 * checked and set (if it was set, then a recursion of that context
3028 * happened).
3029 *
3030 * On unlock, we need to clear this bit. To do so, just subtract
3031 * 1 from the current_context and AND it to itself.
3032 *
3033 * (binary)
3034 * 101 - 1 = 100
3035 * 101 & 100 = 100 (clearing bit zero)
3036 *
3037 * 1010 - 1 = 1001
3038 * 1010 & 1001 = 1000 (clearing bit 1)
3039 *
3040 * The least significant bit can be cleared this way, and it
3041 * just so happens that it is the same bit corresponding to
3042 * the current context.
3043 */
3044
3045static __always_inline int
3046trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3047{
3048 unsigned int val = cpu_buffer->current_context;
3049 unsigned long pc = preempt_count();
3050 int bit;
3051
3052 if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
3053 bit = RB_CTX_NORMAL;
3054 else
3055 bit = pc & NMI_MASK ? RB_CTX_NMI :
3056 pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
3057
3058 if (unlikely(val & (1 << (bit + cpu_buffer->nest))))
3059 return 1;
3060
3061 val |= (1 << (bit + cpu_buffer->nest));
3062 cpu_buffer->current_context = val;
3063
3064 return 0;
3065}
3066
3067static __always_inline void
3068trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3069{
3070 cpu_buffer->current_context &=
3071 cpu_buffer->current_context - (1 << cpu_buffer->nest);
3072}
3073
3074/* The recursive locking above uses 4 bits */
3075#define NESTED_BITS 4
3076
3077/**
3078 * ring_buffer_nest_start - Allow to trace while nested
3079 * @buffer: The ring buffer to modify
3080 *
3081 * The ring buffer has a safety mechanism to prevent recursion.
3082 * But there may be a case where a trace needs to be done while
3083 * tracing something else. In this case, calling this function
3084 * will allow this function to nest within a currently active
3085 * ring_buffer_lock_reserve().
3086 *
3087 * Call this function before calling another ring_buffer_lock_reserve() and
3088 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3089 */
3090void ring_buffer_nest_start(struct trace_buffer *buffer)
3091{
3092 struct ring_buffer_per_cpu *cpu_buffer;
3093 int cpu;
3094
3095 /* Enabled by ring_buffer_nest_end() */
3096 preempt_disable_notrace();
3097 cpu = raw_smp_processor_id();
3098 cpu_buffer = buffer->buffers[cpu];
3099 /* This is the shift value for the above recursive locking */
3100 cpu_buffer->nest += NESTED_BITS;
3101}
3102
3103/**
3104 * ring_buffer_nest_end - Allow to trace while nested
3105 * @buffer: The ring buffer to modify
3106 *
3107 * Must be called after ring_buffer_nest_start() and after the
3108 * ring_buffer_unlock_commit().
3109 */
3110void ring_buffer_nest_end(struct trace_buffer *buffer)
3111{
3112 struct ring_buffer_per_cpu *cpu_buffer;
3113 int cpu;
3114
3115 /* disabled by ring_buffer_nest_start() */
3116 cpu = raw_smp_processor_id();
3117 cpu_buffer = buffer->buffers[cpu];
3118 /* This is the shift value for the above recursive locking */
3119 cpu_buffer->nest -= NESTED_BITS;
3120 preempt_enable_notrace();
3121}
3122
3123/**
3124 * ring_buffer_unlock_commit - commit a reserved
3125 * @buffer: The buffer to commit to
3126 * @event: The event pointer to commit.
3127 *
3128 * This commits the data to the ring buffer, and releases any locks held.
3129 *
3130 * Must be paired with ring_buffer_lock_reserve.
3131 */
3132int ring_buffer_unlock_commit(struct trace_buffer *buffer,
3133 struct ring_buffer_event *event)
3134{
3135 struct ring_buffer_per_cpu *cpu_buffer;
3136 int cpu = raw_smp_processor_id();
3137
3138 cpu_buffer = buffer->buffers[cpu];
3139
3140 rb_commit(cpu_buffer, event);
3141
3142 rb_wakeups(buffer, cpu_buffer);
3143
3144 trace_recursive_unlock(cpu_buffer);
3145
3146 preempt_enable_notrace();
3147
3148 return 0;
3149}
3150EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3151
3152static struct ring_buffer_event *
3153__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3154 struct rb_event_info *info)
3155{
3156 struct ring_buffer_event *event;
3157 struct buffer_page *tail_page;
3158 unsigned long tail, write, w;
3159 bool a_ok;
3160 bool b_ok;
3161
3162 /* Don't let the compiler play games with cpu_buffer->tail_page */
3163 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3164
3165 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK;
3166 barrier();
3167 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3168 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3169 barrier();
3170 info->ts = rb_time_stamp(cpu_buffer->buffer);
3171
3172 if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3173 info->delta = info->ts;
3174 } else {
3175 /*
3176 * If interrupting an event time update, we may need an
3177 * absolute timestamp.
3178 * Don't bother if this is the start of a new page (w == 0).
3179 */
3180 if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) {
3181 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3182 info->length += RB_LEN_TIME_EXTEND;
3183 } else {
3184 info->delta = info->ts - info->after;
3185 if (unlikely(test_time_stamp(info->delta))) {
3186 info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3187 info->length += RB_LEN_TIME_EXTEND;
3188 }
3189 }
3190 }
3191
3192 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts);
3193
3194 /*C*/ write = local_add_return(info->length, &tail_page->write);
3195
3196 /* set write to only the index of the write */
3197 write &= RB_WRITE_MASK;
3198
3199 tail = write - info->length;
3200
3201 /* See if we shot pass the end of this buffer page */
3202 if (unlikely(write > BUF_PAGE_SIZE)) {
3203 if (tail != w) {
3204 /* before and after may now different, fix it up*/
3205 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3206 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3207 if (a_ok && b_ok && info->before != info->after)
3208 (void)rb_time_cmpxchg(&cpu_buffer->before_stamp,
3209 info->before, info->after);
3210 }
3211 return rb_move_tail(cpu_buffer, tail, info);
3212 }
3213
3214 if (likely(tail == w)) {
3215 u64 save_before;
3216 bool s_ok;
3217
3218 /* Nothing interrupted us between A and C */
3219 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts);
3220 barrier();
3221 /*E*/ s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before);
3222 RB_WARN_ON(cpu_buffer, !s_ok);
3223 if (likely(!(info->add_timestamp &
3224 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3225 /* This did not interrupt any time update */
3226 info->delta = info->ts - info->after;
3227 else
3228 /* Just use full timestamp for inerrupting event */
3229 info->delta = info->ts;
3230 barrier();
3231 if (unlikely(info->ts != save_before)) {
3232 /* SLOW PATH - Interrupted between C and E */
3233
3234 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3235 RB_WARN_ON(cpu_buffer, !a_ok);
3236
3237 /* Write stamp must only go forward */
3238 if (save_before > info->after) {
3239 /*
3240 * We do not care about the result, only that
3241 * it gets updated atomically.
3242 */
3243 (void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3244 info->after, save_before);
3245 }
3246 }
3247 } else {
3248 u64 ts;
3249 /* SLOW PATH - Interrupted between A and C */
3250 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3251 /* Was interrupted before here, write_stamp must be valid */
3252 RB_WARN_ON(cpu_buffer, !a_ok);
3253 ts = rb_time_stamp(cpu_buffer->buffer);
3254 barrier();
3255 /*E*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3256 info->after < ts) {
3257 /* Nothing came after this event between C and E */
3258 info->delta = ts - info->after;
3259 (void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3260 info->after, info->ts);
3261 info->ts = ts;
3262 } else {
3263 /*
3264 * Interrupted beween C and E:
3265 * Lost the previous events time stamp. Just set the
3266 * delta to zero, and this will be the same time as
3267 * the event this event interrupted. And the events that
3268 * came after this will still be correct (as they would
3269 * have built their delta on the previous event.
3270 */
3271 info->delta = 0;
3272 }
3273 info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3274 }
3275
3276 /*
3277 * If this is the first commit on the page, then it has the same
3278 * timestamp as the page itself.
3279 */
3280 if (unlikely(!tail && !(info->add_timestamp &
3281 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3282 info->delta = 0;
3283
3284 /* We reserved something on the buffer */
3285
3286 event = __rb_page_index(tail_page, tail);
3287 rb_update_event(cpu_buffer, event, info);
3288
3289 local_inc(&tail_page->entries);
3290
3291 /*
3292 * If this is the first commit on the page, then update
3293 * its timestamp.
3294 */
3295 if (unlikely(!tail))
3296 tail_page->page->time_stamp = info->ts;
3297
3298 /* account for these added bytes */
3299 local_add(info->length, &cpu_buffer->entries_bytes);
3300
3301 return event;
3302}
3303
3304static __always_inline struct ring_buffer_event *
3305rb_reserve_next_event(struct trace_buffer *buffer,
3306 struct ring_buffer_per_cpu *cpu_buffer,
3307 unsigned long length)
3308{
3309 struct ring_buffer_event *event;
3310 struct rb_event_info info;
3311 int nr_loops = 0;
3312 int add_ts_default;
3313
3314 rb_start_commit(cpu_buffer);
3315 /* The commit page can not change after this */
3316
3317#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3318 /*
3319 * Due to the ability to swap a cpu buffer from a buffer
3320 * it is possible it was swapped before we committed.
3321 * (committing stops a swap). We check for it here and
3322 * if it happened, we have to fail the write.
3323 */
3324 barrier();
3325 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3326 local_dec(&cpu_buffer->committing);
3327 local_dec(&cpu_buffer->commits);
3328 return NULL;
3329 }
3330#endif
3331
3332 info.length = rb_calculate_event_length(length);
3333
3334 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3335 add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3336 info.length += RB_LEN_TIME_EXTEND;
3337 } else {
3338 add_ts_default = RB_ADD_STAMP_NONE;
3339 }
3340
3341 again:
3342 info.add_timestamp = add_ts_default;
3343 info.delta = 0;
3344
3345 /*
3346 * We allow for interrupts to reenter here and do a trace.
3347 * If one does, it will cause this original code to loop
3348 * back here. Even with heavy interrupts happening, this
3349 * should only happen a few times in a row. If this happens
3350 * 1000 times in a row, there must be either an interrupt
3351 * storm or we have something buggy.
3352 * Bail!
3353 */
3354 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3355 goto out_fail;
3356
3357 event = __rb_reserve_next(cpu_buffer, &info);
3358
3359 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3360 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3361 info.length -= RB_LEN_TIME_EXTEND;
3362 goto again;
3363 }
3364
3365 if (likely(event))
3366 return event;
3367 out_fail:
3368 rb_end_commit(cpu_buffer);
3369 return NULL;
3370}
3371
3372/**
3373 * ring_buffer_lock_reserve - reserve a part of the buffer
3374 * @buffer: the ring buffer to reserve from
3375 * @length: the length of the data to reserve (excluding event header)
3376 *
3377 * Returns a reserved event on the ring buffer to copy directly to.
3378 * The user of this interface will need to get the body to write into
3379 * and can use the ring_buffer_event_data() interface.
3380 *
3381 * The length is the length of the data needed, not the event length
3382 * which also includes the event header.
3383 *
3384 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3385 * If NULL is returned, then nothing has been allocated or locked.
3386 */
3387struct ring_buffer_event *
3388ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3389{
3390 struct ring_buffer_per_cpu *cpu_buffer;
3391 struct ring_buffer_event *event;
3392 int cpu;
3393
3394 /* If we are tracing schedule, we don't want to recurse */
3395 preempt_disable_notrace();
3396
3397 if (unlikely(atomic_read(&buffer->record_disabled)))
3398 goto out;
3399
3400 cpu = raw_smp_processor_id();
3401
3402 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3403 goto out;
3404
3405 cpu_buffer = buffer->buffers[cpu];
3406
3407 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3408 goto out;
3409
3410 if (unlikely(length > BUF_MAX_DATA_SIZE))
3411 goto out;
3412
3413 if (unlikely(trace_recursive_lock(cpu_buffer)))
3414 goto out;
3415
3416 event = rb_reserve_next_event(buffer, cpu_buffer, length);
3417 if (!event)
3418 goto out_unlock;
3419
3420 return event;
3421
3422 out_unlock:
3423 trace_recursive_unlock(cpu_buffer);
3424 out:
3425 preempt_enable_notrace();
3426 return NULL;
3427}
3428EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3429
3430/*
3431 * Decrement the entries to the page that an event is on.
3432 * The event does not even need to exist, only the pointer
3433 * to the page it is on. This may only be called before the commit
3434 * takes place.
3435 */
3436static inline void
3437rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3438 struct ring_buffer_event *event)
3439{
3440 unsigned long addr = (unsigned long)event;
3441 struct buffer_page *bpage = cpu_buffer->commit_page;
3442 struct buffer_page *start;
3443
3444 addr &= PAGE_MASK;
3445
3446 /* Do the likely case first */
3447 if (likely(bpage->page == (void *)addr)) {
3448 local_dec(&bpage->entries);
3449 return;
3450 }
3451
3452 /*
3453 * Because the commit page may be on the reader page we
3454 * start with the next page and check the end loop there.
3455 */
3456 rb_inc_page(cpu_buffer, &bpage);
3457 start = bpage;
3458 do {
3459 if (bpage->page == (void *)addr) {
3460 local_dec(&bpage->entries);
3461 return;
3462 }
3463 rb_inc_page(cpu_buffer, &bpage);
3464 } while (bpage != start);
3465
3466 /* commit not part of this buffer?? */
3467 RB_WARN_ON(cpu_buffer, 1);
3468}
3469
3470/**
3471 * ring_buffer_commit_discard - discard an event that has not been committed
3472 * @buffer: the ring buffer
3473 * @event: non committed event to discard
3474 *
3475 * Sometimes an event that is in the ring buffer needs to be ignored.
3476 * This function lets the user discard an event in the ring buffer
3477 * and then that event will not be read later.
3478 *
3479 * This function only works if it is called before the item has been
3480 * committed. It will try to free the event from the ring buffer
3481 * if another event has not been added behind it.
3482 *
3483 * If another event has been added behind it, it will set the event
3484 * up as discarded, and perform the commit.
3485 *
3486 * If this function is called, do not call ring_buffer_unlock_commit on
3487 * the event.
3488 */
3489void ring_buffer_discard_commit(struct trace_buffer *buffer,
3490 struct ring_buffer_event *event)
3491{
3492 struct ring_buffer_per_cpu *cpu_buffer;
3493 int cpu;
3494
3495 /* The event is discarded regardless */
3496 rb_event_discard(event);
3497
3498 cpu = smp_processor_id();
3499 cpu_buffer = buffer->buffers[cpu];
3500
3501 /*
3502 * This must only be called if the event has not been
3503 * committed yet. Thus we can assume that preemption
3504 * is still disabled.
3505 */
3506 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3507
3508 rb_decrement_entry(cpu_buffer, event);
3509 if (rb_try_to_discard(cpu_buffer, event))
3510 goto out;
3511
3512 out:
3513 rb_end_commit(cpu_buffer);
3514
3515 trace_recursive_unlock(cpu_buffer);
3516
3517 preempt_enable_notrace();
3518
3519}
3520EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3521
3522/**
3523 * ring_buffer_write - write data to the buffer without reserving
3524 * @buffer: The ring buffer to write to.
3525 * @length: The length of the data being written (excluding the event header)
3526 * @data: The data to write to the buffer.
3527 *
3528 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3529 * one function. If you already have the data to write to the buffer, it
3530 * may be easier to simply call this function.
3531 *
3532 * Note, like ring_buffer_lock_reserve, the length is the length of the data
3533 * and not the length of the event which would hold the header.
3534 */
3535int ring_buffer_write(struct trace_buffer *buffer,
3536 unsigned long length,
3537 void *data)
3538{
3539 struct ring_buffer_per_cpu *cpu_buffer;
3540 struct ring_buffer_event *event;
3541 void *body;
3542 int ret = -EBUSY;
3543 int cpu;
3544
3545 preempt_disable_notrace();
3546
3547 if (atomic_read(&buffer->record_disabled))
3548 goto out;
3549
3550 cpu = raw_smp_processor_id();
3551
3552 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3553 goto out;
3554
3555 cpu_buffer = buffer->buffers[cpu];
3556
3557 if (atomic_read(&cpu_buffer->record_disabled))
3558 goto out;
3559
3560 if (length > BUF_MAX_DATA_SIZE)
3561 goto out;
3562
3563 if (unlikely(trace_recursive_lock(cpu_buffer)))
3564 goto out;
3565
3566 event = rb_reserve_next_event(buffer, cpu_buffer, length);
3567 if (!event)
3568 goto out_unlock;
3569
3570 body = rb_event_data(event);
3571
3572 memcpy(body, data, length);
3573
3574 rb_commit(cpu_buffer, event);
3575
3576 rb_wakeups(buffer, cpu_buffer);
3577
3578 ret = 0;
3579
3580 out_unlock:
3581 trace_recursive_unlock(cpu_buffer);
3582
3583 out:
3584 preempt_enable_notrace();
3585
3586 return ret;
3587}
3588EXPORT_SYMBOL_GPL(ring_buffer_write);
3589
3590static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3591{
3592 struct buffer_page *reader = cpu_buffer->reader_page;
3593 struct buffer_page *head = rb_set_head_page(cpu_buffer);
3594 struct buffer_page *commit = cpu_buffer->commit_page;
3595
3596 /* In case of error, head will be NULL */
3597 if (unlikely(!head))
3598 return true;
3599
3600 return reader->read == rb_page_commit(reader) &&
3601 (commit == reader ||
3602 (commit == head &&
3603 head->read == rb_page_commit(commit)));
3604}
3605
3606/**
3607 * ring_buffer_record_disable - stop all writes into the buffer
3608 * @buffer: The ring buffer to stop writes to.
3609 *
3610 * This prevents all writes to the buffer. Any attempt to write
3611 * to the buffer after this will fail and return NULL.
3612 *
3613 * The caller should call synchronize_rcu() after this.
3614 */
3615void ring_buffer_record_disable(struct trace_buffer *buffer)
3616{
3617 atomic_inc(&buffer->record_disabled);
3618}
3619EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3620
3621/**
3622 * ring_buffer_record_enable - enable writes to the buffer
3623 * @buffer: The ring buffer to enable writes
3624 *
3625 * Note, multiple disables will need the same number of enables
3626 * to truly enable the writing (much like preempt_disable).
3627 */
3628void ring_buffer_record_enable(struct trace_buffer *buffer)
3629{
3630 atomic_dec(&buffer->record_disabled);
3631}
3632EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3633
3634/**
3635 * ring_buffer_record_off - stop all writes into the buffer
3636 * @buffer: The ring buffer to stop writes to.
3637 *
3638 * This prevents all writes to the buffer. Any attempt to write
3639 * to the buffer after this will fail and return NULL.
3640 *
3641 * This is different than ring_buffer_record_disable() as
3642 * it works like an on/off switch, where as the disable() version
3643 * must be paired with a enable().
3644 */
3645void ring_buffer_record_off(struct trace_buffer *buffer)
3646{
3647 unsigned int rd;
3648 unsigned int new_rd;
3649
3650 do {
3651 rd = atomic_read(&buffer->record_disabled);
3652 new_rd = rd | RB_BUFFER_OFF;
3653 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3654}
3655EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3656
3657/**
3658 * ring_buffer_record_on - restart writes into the buffer
3659 * @buffer: The ring buffer to start writes to.
3660 *
3661 * This enables all writes to the buffer that was disabled by
3662 * ring_buffer_record_off().
3663 *
3664 * This is different than ring_buffer_record_enable() as
3665 * it works like an on/off switch, where as the enable() version
3666 * must be paired with a disable().
3667 */
3668void ring_buffer_record_on(struct trace_buffer *buffer)
3669{
3670 unsigned int rd;
3671 unsigned int new_rd;
3672
3673 do {
3674 rd = atomic_read(&buffer->record_disabled);
3675 new_rd = rd & ~RB_BUFFER_OFF;
3676 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3677}
3678EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3679
3680/**
3681 * ring_buffer_record_is_on - return true if the ring buffer can write
3682 * @buffer: The ring buffer to see if write is enabled
3683 *
3684 * Returns true if the ring buffer is in a state that it accepts writes.
3685 */
3686bool ring_buffer_record_is_on(struct trace_buffer *buffer)
3687{
3688 return !atomic_read(&buffer->record_disabled);
3689}
3690
3691/**
3692 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3693 * @buffer: The ring buffer to see if write is set enabled
3694 *
3695 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3696 * Note that this does NOT mean it is in a writable state.
3697 *
3698 * It may return true when the ring buffer has been disabled by
3699 * ring_buffer_record_disable(), as that is a temporary disabling of
3700 * the ring buffer.
3701 */
3702bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
3703{
3704 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3705}
3706
3707/**
3708 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3709 * @buffer: The ring buffer to stop writes to.
3710 * @cpu: The CPU buffer to stop
3711 *
3712 * This prevents all writes to the buffer. Any attempt to write
3713 * to the buffer after this will fail and return NULL.
3714 *
3715 * The caller should call synchronize_rcu() after this.
3716 */
3717void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
3718{
3719 struct ring_buffer_per_cpu *cpu_buffer;
3720
3721 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3722 return;
3723
3724 cpu_buffer = buffer->buffers[cpu];
3725 atomic_inc(&cpu_buffer->record_disabled);
3726}
3727EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3728
3729/**
3730 * ring_buffer_record_enable_cpu - enable writes to the buffer
3731 * @buffer: The ring buffer to enable writes
3732 * @cpu: The CPU to enable.
3733 *
3734 * Note, multiple disables will need the same number of enables
3735 * to truly enable the writing (much like preempt_disable).
3736 */
3737void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
3738{
3739 struct ring_buffer_per_cpu *cpu_buffer;
3740
3741 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3742 return;
3743
3744 cpu_buffer = buffer->buffers[cpu];
3745 atomic_dec(&cpu_buffer->record_disabled);
3746}
3747EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3748
3749/*
3750 * The total entries in the ring buffer is the running counter
3751 * of entries entered into the ring buffer, minus the sum of
3752 * the entries read from the ring buffer and the number of
3753 * entries that were overwritten.
3754 */
3755static inline unsigned long
3756rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3757{
3758 return local_read(&cpu_buffer->entries) -
3759 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3760}
3761
3762/**
3763 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3764 * @buffer: The ring buffer
3765 * @cpu: The per CPU buffer to read from.
3766 */
3767u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
3768{
3769 unsigned long flags;
3770 struct ring_buffer_per_cpu *cpu_buffer;
3771 struct buffer_page *bpage;
3772 u64 ret = 0;
3773
3774 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3775 return 0;
3776
3777 cpu_buffer = buffer->buffers[cpu];
3778 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3779 /*
3780 * if the tail is on reader_page, oldest time stamp is on the reader
3781 * page
3782 */
3783 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3784 bpage = cpu_buffer->reader_page;
3785 else
3786 bpage = rb_set_head_page(cpu_buffer);
3787 if (bpage)
3788 ret = bpage->page->time_stamp;
3789 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3790
3791 return ret;
3792}
3793EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3794
3795/**
3796 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3797 * @buffer: The ring buffer
3798 * @cpu: The per CPU buffer to read from.
3799 */
3800unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
3801{
3802 struct ring_buffer_per_cpu *cpu_buffer;
3803 unsigned long ret;
3804
3805 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3806 return 0;
3807
3808 cpu_buffer = buffer->buffers[cpu];
3809 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3810
3811 return ret;
3812}
3813EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3814
3815/**
3816 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3817 * @buffer: The ring buffer
3818 * @cpu: The per CPU buffer to get the entries from.
3819 */
3820unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
3821{
3822 struct ring_buffer_per_cpu *cpu_buffer;
3823
3824 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3825 return 0;
3826
3827 cpu_buffer = buffer->buffers[cpu];
3828
3829 return rb_num_of_entries(cpu_buffer);
3830}
3831EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3832
3833/**
3834 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3835 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3836 * @buffer: The ring buffer
3837 * @cpu: The per CPU buffer to get the number of overruns from
3838 */
3839unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
3840{
3841 struct ring_buffer_per_cpu *cpu_buffer;
3842 unsigned long ret;
3843
3844 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3845 return 0;
3846
3847 cpu_buffer = buffer->buffers[cpu];
3848 ret = local_read(&cpu_buffer->overrun);
3849
3850 return ret;
3851}
3852EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3853
3854/**
3855 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3856 * commits failing due to the buffer wrapping around while there are uncommitted
3857 * events, such as during an interrupt storm.
3858 * @buffer: The ring buffer
3859 * @cpu: The per CPU buffer to get the number of overruns from
3860 */
3861unsigned long
3862ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
3863{
3864 struct ring_buffer_per_cpu *cpu_buffer;
3865 unsigned long ret;
3866
3867 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3868 return 0;
3869
3870 cpu_buffer = buffer->buffers[cpu];
3871 ret = local_read(&cpu_buffer->commit_overrun);
3872
3873 return ret;
3874}
3875EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3876
3877/**
3878 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3879 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3880 * @buffer: The ring buffer
3881 * @cpu: The per CPU buffer to get the number of overruns from
3882 */
3883unsigned long
3884ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
3885{
3886 struct ring_buffer_per_cpu *cpu_buffer;
3887 unsigned long ret;
3888
3889 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3890 return 0;
3891
3892 cpu_buffer = buffer->buffers[cpu];
3893 ret = local_read(&cpu_buffer->dropped_events);
3894
3895 return ret;
3896}
3897EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3898
3899/**
3900 * ring_buffer_read_events_cpu - get the number of events successfully read
3901 * @buffer: The ring buffer
3902 * @cpu: The per CPU buffer to get the number of events read
3903 */
3904unsigned long
3905ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
3906{
3907 struct ring_buffer_per_cpu *cpu_buffer;
3908
3909 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3910 return 0;
3911
3912 cpu_buffer = buffer->buffers[cpu];
3913 return cpu_buffer->read;
3914}
3915EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3916
3917/**
3918 * ring_buffer_entries - get the number of entries in a buffer
3919 * @buffer: The ring buffer
3920 *
3921 * Returns the total number of entries in the ring buffer
3922 * (all CPU entries)
3923 */
3924unsigned long ring_buffer_entries(struct trace_buffer *buffer)
3925{
3926 struct ring_buffer_per_cpu *cpu_buffer;
3927 unsigned long entries = 0;
3928 int cpu;
3929
3930 /* if you care about this being correct, lock the buffer */
3931 for_each_buffer_cpu(buffer, cpu) {
3932 cpu_buffer = buffer->buffers[cpu];
3933 entries += rb_num_of_entries(cpu_buffer);
3934 }
3935
3936 return entries;
3937}
3938EXPORT_SYMBOL_GPL(ring_buffer_entries);
3939
3940/**
3941 * ring_buffer_overruns - get the number of overruns in buffer
3942 * @buffer: The ring buffer
3943 *
3944 * Returns the total number of overruns in the ring buffer
3945 * (all CPU entries)
3946 */
3947unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
3948{
3949 struct ring_buffer_per_cpu *cpu_buffer;
3950 unsigned long overruns = 0;
3951 int cpu;
3952
3953 /* if you care about this being correct, lock the buffer */
3954 for_each_buffer_cpu(buffer, cpu) {
3955 cpu_buffer = buffer->buffers[cpu];
3956 overruns += local_read(&cpu_buffer->overrun);
3957 }
3958
3959 return overruns;
3960}
3961EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3962
3963static void rb_iter_reset(struct ring_buffer_iter *iter)
3964{
3965 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3966
3967 /* Iterator usage is expected to have record disabled */
3968 iter->head_page = cpu_buffer->reader_page;
3969 iter->head = cpu_buffer->reader_page->read;
3970 iter->next_event = iter->head;
3971
3972 iter->cache_reader_page = iter->head_page;
3973 iter->cache_read = cpu_buffer->read;
3974
3975 if (iter->head) {
3976 iter->read_stamp = cpu_buffer->read_stamp;
3977 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
3978 } else {
3979 iter->read_stamp = iter->head_page->page->time_stamp;
3980 iter->page_stamp = iter->read_stamp;
3981 }
3982}
3983
3984/**
3985 * ring_buffer_iter_reset - reset an iterator
3986 * @iter: The iterator to reset
3987 *
3988 * Resets the iterator, so that it will start from the beginning
3989 * again.
3990 */
3991void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3992{
3993 struct ring_buffer_per_cpu *cpu_buffer;
3994 unsigned long flags;
3995
3996 if (!iter)
3997 return;
3998
3999 cpu_buffer = iter->cpu_buffer;
4000
4001 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4002 rb_iter_reset(iter);
4003 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4004}
4005EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4006
4007/**
4008 * ring_buffer_iter_empty - check if an iterator has no more to read
4009 * @iter: The iterator to check
4010 */
4011int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4012{
4013 struct ring_buffer_per_cpu *cpu_buffer;
4014 struct buffer_page *reader;
4015 struct buffer_page *head_page;
4016 struct buffer_page *commit_page;
4017 struct buffer_page *curr_commit_page;
4018 unsigned commit;
4019 u64 curr_commit_ts;
4020 u64 commit_ts;
4021
4022 cpu_buffer = iter->cpu_buffer;
4023 reader = cpu_buffer->reader_page;
4024 head_page = cpu_buffer->head_page;
4025 commit_page = cpu_buffer->commit_page;
4026 commit_ts = commit_page->page->time_stamp;
4027
4028 /*
4029 * When the writer goes across pages, it issues a cmpxchg which
4030 * is a mb(), which will synchronize with the rmb here.
4031 * (see rb_tail_page_update())
4032 */
4033 smp_rmb();
4034 commit = rb_page_commit(commit_page);
4035 /* We want to make sure that the commit page doesn't change */
4036 smp_rmb();
4037
4038 /* Make sure commit page didn't change */
4039 curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4040 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4041
4042 /* If the commit page changed, then there's more data */
4043 if (curr_commit_page != commit_page ||
4044 curr_commit_ts != commit_ts)
4045 return 0;
4046
4047 /* Still racy, as it may return a false positive, but that's OK */
4048 return ((iter->head_page == commit_page && iter->head >= commit) ||
4049 (iter->head_page == reader && commit_page == head_page &&
4050 head_page->read == commit &&
4051 iter->head == rb_page_commit(cpu_buffer->reader_page)));
4052}
4053EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4054
4055static void
4056rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4057 struct ring_buffer_event *event)
4058{
4059 u64 delta;
4060
4061 switch (event->type_len) {
4062 case RINGBUF_TYPE_PADDING:
4063 return;
4064
4065 case RINGBUF_TYPE_TIME_EXTEND:
4066 delta = ring_buffer_event_time_stamp(event);
4067 cpu_buffer->read_stamp += delta;
4068 return;
4069
4070 case RINGBUF_TYPE_TIME_STAMP:
4071 delta = ring_buffer_event_time_stamp(event);
4072 cpu_buffer->read_stamp = delta;
4073 return;
4074
4075 case RINGBUF_TYPE_DATA:
4076 cpu_buffer->read_stamp += event->time_delta;
4077 return;
4078
4079 default:
4080 RB_WARN_ON(cpu_buffer, 1);
4081 }
4082 return;
4083}
4084
4085static void
4086rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4087 struct ring_buffer_event *event)
4088{
4089 u64 delta;
4090
4091 switch (event->type_len) {
4092 case RINGBUF_TYPE_PADDING:
4093 return;
4094
4095 case RINGBUF_TYPE_TIME_EXTEND:
4096 delta = ring_buffer_event_time_stamp(event);
4097 iter->read_stamp += delta;
4098 return;
4099
4100 case RINGBUF_TYPE_TIME_STAMP:
4101 delta = ring_buffer_event_time_stamp(event);
4102 iter->read_stamp = delta;
4103 return;
4104
4105 case RINGBUF_TYPE_DATA:
4106 iter->read_stamp += event->time_delta;
4107 return;
4108
4109 default:
4110 RB_WARN_ON(iter->cpu_buffer, 1);
4111 }
4112 return;
4113}
4114
4115static struct buffer_page *
4116rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4117{
4118 struct buffer_page *reader = NULL;
4119 unsigned long overwrite;
4120 unsigned long flags;
4121 int nr_loops = 0;
4122 int ret;
4123
4124 local_irq_save(flags);
4125 arch_spin_lock(&cpu_buffer->lock);
4126
4127 again:
4128 /*
4129 * This should normally only loop twice. But because the
4130 * start of the reader inserts an empty page, it causes
4131 * a case where we will loop three times. There should be no
4132 * reason to loop four times (that I know of).
4133 */
4134 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4135 reader = NULL;
4136 goto out;
4137 }
4138
4139 reader = cpu_buffer->reader_page;
4140
4141 /* If there's more to read, return this page */
4142 if (cpu_buffer->reader_page->read < rb_page_size(reader))
4143 goto out;
4144
4145 /* Never should we have an index greater than the size */
4146 if (RB_WARN_ON(cpu_buffer,
4147 cpu_buffer->reader_page->read > rb_page_size(reader)))
4148 goto out;
4149
4150 /* check if we caught up to the tail */
4151 reader = NULL;
4152 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4153 goto out;
4154
4155 /* Don't bother swapping if the ring buffer is empty */
4156 if (rb_num_of_entries(cpu_buffer) == 0)
4157 goto out;
4158
4159 /*
4160 * Reset the reader page to size zero.
4161 */
4162 local_set(&cpu_buffer->reader_page->write, 0);
4163 local_set(&cpu_buffer->reader_page->entries, 0);
4164 local_set(&cpu_buffer->reader_page->page->commit, 0);
4165 cpu_buffer->reader_page->real_end = 0;
4166
4167 spin:
4168 /*
4169 * Splice the empty reader page into the list around the head.
4170 */
4171 reader = rb_set_head_page(cpu_buffer);
4172 if (!reader)
4173 goto out;
4174 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4175 cpu_buffer->reader_page->list.prev = reader->list.prev;
4176
4177 /*
4178 * cpu_buffer->pages just needs to point to the buffer, it
4179 * has no specific buffer page to point to. Lets move it out
4180 * of our way so we don't accidentally swap it.
4181 */
4182 cpu_buffer->pages = reader->list.prev;
4183
4184 /* The reader page will be pointing to the new head */
4185 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
4186
4187 /*
4188 * We want to make sure we read the overruns after we set up our
4189 * pointers to the next object. The writer side does a
4190 * cmpxchg to cross pages which acts as the mb on the writer
4191 * side. Note, the reader will constantly fail the swap
4192 * while the writer is updating the pointers, so this
4193 * guarantees that the overwrite recorded here is the one we
4194 * want to compare with the last_overrun.
4195 */
4196 smp_mb();
4197 overwrite = local_read(&(cpu_buffer->overrun));
4198
4199 /*
4200 * Here's the tricky part.
4201 *
4202 * We need to move the pointer past the header page.
4203 * But we can only do that if a writer is not currently
4204 * moving it. The page before the header page has the
4205 * flag bit '1' set if it is pointing to the page we want.
4206 * but if the writer is in the process of moving it
4207 * than it will be '2' or already moved '0'.
4208 */
4209
4210 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4211
4212 /*
4213 * If we did not convert it, then we must try again.
4214 */
4215 if (!ret)
4216 goto spin;
4217
4218 /*
4219 * Yay! We succeeded in replacing the page.
4220 *
4221 * Now make the new head point back to the reader page.
4222 */
4223 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4224 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
4225
4226 local_inc(&cpu_buffer->pages_read);
4227
4228 /* Finally update the reader page to the new head */
4229 cpu_buffer->reader_page = reader;
4230 cpu_buffer->reader_page->read = 0;
4231
4232 if (overwrite != cpu_buffer->last_overrun) {
4233 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4234 cpu_buffer->last_overrun = overwrite;
4235 }
4236
4237 goto again;
4238
4239 out:
4240 /* Update the read_stamp on the first event */
4241 if (reader && reader->read == 0)
4242 cpu_buffer->read_stamp = reader->page->time_stamp;
4243
4244 arch_spin_unlock(&cpu_buffer->lock);
4245 local_irq_restore(flags);
4246
4247 return reader;
4248}
4249
4250static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4251{
4252 struct ring_buffer_event *event;
4253 struct buffer_page *reader;
4254 unsigned length;
4255
4256 reader = rb_get_reader_page(cpu_buffer);
4257
4258 /* This function should not be called when buffer is empty */
4259 if (RB_WARN_ON(cpu_buffer, !reader))
4260 return;
4261
4262 event = rb_reader_event(cpu_buffer);
4263
4264 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4265 cpu_buffer->read++;
4266
4267 rb_update_read_stamp(cpu_buffer, event);
4268
4269 length = rb_event_length(event);
4270 cpu_buffer->reader_page->read += length;
4271}
4272
4273static void rb_advance_iter(struct ring_buffer_iter *iter)
4274{
4275 struct ring_buffer_per_cpu *cpu_buffer;
4276
4277 cpu_buffer = iter->cpu_buffer;
4278
4279 /* If head == next_event then we need to jump to the next event */
4280 if (iter->head == iter->next_event) {
4281 /* If the event gets overwritten again, there's nothing to do */
4282 if (rb_iter_head_event(iter) == NULL)
4283 return;
4284 }
4285
4286 iter->head = iter->next_event;
4287
4288 /*
4289 * Check if we are at the end of the buffer.
4290 */
4291 if (iter->next_event >= rb_page_size(iter->head_page)) {
4292 /* discarded commits can make the page empty */
4293 if (iter->head_page == cpu_buffer->commit_page)
4294 return;
4295 rb_inc_iter(iter);
4296 return;
4297 }
4298
4299 rb_update_iter_read_stamp(iter, iter->event);
4300}
4301
4302static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4303{
4304 return cpu_buffer->lost_events;
4305}
4306
4307static struct ring_buffer_event *
4308rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4309 unsigned long *lost_events)
4310{
4311 struct ring_buffer_event *event;
4312 struct buffer_page *reader;
4313 int nr_loops = 0;
4314
4315 if (ts)
4316 *ts = 0;
4317 again:
4318 /*
4319 * We repeat when a time extend is encountered.
4320 * Since the time extend is always attached to a data event,
4321 * we should never loop more than once.
4322 * (We never hit the following condition more than twice).
4323 */
4324 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4325 return NULL;
4326
4327 reader = rb_get_reader_page(cpu_buffer);
4328 if (!reader)
4329 return NULL;
4330
4331 event = rb_reader_event(cpu_buffer);
4332
4333 switch (event->type_len) {
4334 case RINGBUF_TYPE_PADDING:
4335 if (rb_null_event(event))
4336 RB_WARN_ON(cpu_buffer, 1);
4337 /*
4338 * Because the writer could be discarding every
4339 * event it creates (which would probably be bad)
4340 * if we were to go back to "again" then we may never
4341 * catch up, and will trigger the warn on, or lock
4342 * the box. Return the padding, and we will release
4343 * the current locks, and try again.
4344 */
4345 return event;
4346
4347 case RINGBUF_TYPE_TIME_EXTEND:
4348 /* Internal data, OK to advance */
4349 rb_advance_reader(cpu_buffer);
4350 goto again;
4351
4352 case RINGBUF_TYPE_TIME_STAMP:
4353 if (ts) {
4354 *ts = ring_buffer_event_time_stamp(event);
4355 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4356 cpu_buffer->cpu, ts);
4357 }
4358 /* Internal data, OK to advance */
4359 rb_advance_reader(cpu_buffer);
4360 goto again;
4361
4362 case RINGBUF_TYPE_DATA:
4363 if (ts && !(*ts)) {
4364 *ts = cpu_buffer->read_stamp + event->time_delta;
4365 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4366 cpu_buffer->cpu, ts);
4367 }
4368 if (lost_events)
4369 *lost_events = rb_lost_events(cpu_buffer);
4370 return event;
4371
4372 default:
4373 RB_WARN_ON(cpu_buffer, 1);
4374 }
4375
4376 return NULL;
4377}
4378EXPORT_SYMBOL_GPL(ring_buffer_peek);
4379
4380static struct ring_buffer_event *
4381rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4382{
4383 struct trace_buffer *buffer;
4384 struct ring_buffer_per_cpu *cpu_buffer;
4385 struct ring_buffer_event *event;
4386 int nr_loops = 0;
4387
4388 if (ts)
4389 *ts = 0;
4390
4391 cpu_buffer = iter->cpu_buffer;
4392 buffer = cpu_buffer->buffer;
4393
4394 /*
4395 * Check if someone performed a consuming read to
4396 * the buffer. A consuming read invalidates the iterator
4397 * and we need to reset the iterator in this case.
4398 */
4399 if (unlikely(iter->cache_read != cpu_buffer->read ||
4400 iter->cache_reader_page != cpu_buffer->reader_page))
4401 rb_iter_reset(iter);
4402
4403 again:
4404 if (ring_buffer_iter_empty(iter))
4405 return NULL;
4406
4407 /*
4408 * As the writer can mess with what the iterator is trying
4409 * to read, just give up if we fail to get an event after
4410 * three tries. The iterator is not as reliable when reading
4411 * the ring buffer with an active write as the consumer is.
4412 * Do not warn if the three failures is reached.
4413 */
4414 if (++nr_loops > 3)
4415 return NULL;
4416
4417 if (rb_per_cpu_empty(cpu_buffer))
4418 return NULL;
4419
4420 if (iter->head >= rb_page_size(iter->head_page)) {
4421 rb_inc_iter(iter);
4422 goto again;
4423 }
4424
4425 event = rb_iter_head_event(iter);
4426 if (!event)
4427 goto again;
4428
4429 switch (event->type_len) {
4430 case RINGBUF_TYPE_PADDING:
4431 if (rb_null_event(event)) {
4432 rb_inc_iter(iter);
4433 goto again;
4434 }
4435 rb_advance_iter(iter);
4436 return event;
4437
4438 case RINGBUF_TYPE_TIME_EXTEND:
4439 /* Internal data, OK to advance */
4440 rb_advance_iter(iter);
4441 goto again;
4442
4443 case RINGBUF_TYPE_TIME_STAMP:
4444 if (ts) {
4445 *ts = ring_buffer_event_time_stamp(event);
4446 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4447 cpu_buffer->cpu, ts);
4448 }
4449 /* Internal data, OK to advance */
4450 rb_advance_iter(iter);
4451 goto again;
4452
4453 case RINGBUF_TYPE_DATA:
4454 if (ts && !(*ts)) {
4455 *ts = iter->read_stamp + event->time_delta;
4456 ring_buffer_normalize_time_stamp(buffer,
4457 cpu_buffer->cpu, ts);
4458 }
4459 return event;
4460
4461 default:
4462 RB_WARN_ON(cpu_buffer, 1);
4463 }
4464
4465 return NULL;
4466}
4467EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4468
4469static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4470{
4471 if (likely(!in_nmi())) {
4472 raw_spin_lock(&cpu_buffer->reader_lock);
4473 return true;
4474 }
4475
4476 /*
4477 * If an NMI die dumps out the content of the ring buffer
4478 * trylock must be used to prevent a deadlock if the NMI
4479 * preempted a task that holds the ring buffer locks. If
4480 * we get the lock then all is fine, if not, then continue
4481 * to do the read, but this can corrupt the ring buffer,
4482 * so it must be permanently disabled from future writes.
4483 * Reading from NMI is a oneshot deal.
4484 */
4485 if (raw_spin_trylock(&cpu_buffer->reader_lock))
4486 return true;
4487
4488 /* Continue without locking, but disable the ring buffer */
4489 atomic_inc(&cpu_buffer->record_disabled);
4490 return false;
4491}
4492
4493static inline void
4494rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4495{
4496 if (likely(locked))
4497 raw_spin_unlock(&cpu_buffer->reader_lock);
4498 return;
4499}
4500
4501/**
4502 * ring_buffer_peek - peek at the next event to be read
4503 * @buffer: The ring buffer to read
4504 * @cpu: The cpu to peak at
4505 * @ts: The timestamp counter of this event.
4506 * @lost_events: a variable to store if events were lost (may be NULL)
4507 *
4508 * This will return the event that will be read next, but does
4509 * not consume the data.
4510 */
4511struct ring_buffer_event *
4512ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4513 unsigned long *lost_events)
4514{
4515 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4516 struct ring_buffer_event *event;
4517 unsigned long flags;
4518 bool dolock;
4519
4520 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4521 return NULL;
4522
4523 again:
4524 local_irq_save(flags);
4525 dolock = rb_reader_lock(cpu_buffer);
4526 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4527 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4528 rb_advance_reader(cpu_buffer);
4529 rb_reader_unlock(cpu_buffer, dolock);
4530 local_irq_restore(flags);
4531
4532 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4533 goto again;
4534
4535 return event;
4536}
4537
4538/** ring_buffer_iter_dropped - report if there are dropped events
4539 * @iter: The ring buffer iterator
4540 *
4541 * Returns true if there was dropped events since the last peek.
4542 */
4543bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4544{
4545 bool ret = iter->missed_events != 0;
4546
4547 iter->missed_events = 0;
4548 return ret;
4549}
4550EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4551
4552/**
4553 * ring_buffer_iter_peek - peek at the next event to be read
4554 * @iter: The ring buffer iterator
4555 * @ts: The timestamp counter of this event.
4556 *
4557 * This will return the event that will be read next, but does
4558 * not increment the iterator.
4559 */
4560struct ring_buffer_event *
4561ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4562{
4563 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4564 struct ring_buffer_event *event;
4565 unsigned long flags;
4566
4567 again:
4568 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4569 event = rb_iter_peek(iter, ts);
4570 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4571
4572 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4573 goto again;
4574
4575 return event;
4576}
4577
4578/**
4579 * ring_buffer_consume - return an event and consume it
4580 * @buffer: The ring buffer to get the next event from
4581 * @cpu: the cpu to read the buffer from
4582 * @ts: a variable to store the timestamp (may be NULL)
4583 * @lost_events: a variable to store if events were lost (may be NULL)
4584 *
4585 * Returns the next event in the ring buffer, and that event is consumed.
4586 * Meaning, that sequential reads will keep returning a different event,
4587 * and eventually empty the ring buffer if the producer is slower.
4588 */
4589struct ring_buffer_event *
4590ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
4591 unsigned long *lost_events)
4592{
4593 struct ring_buffer_per_cpu *cpu_buffer;
4594 struct ring_buffer_event *event = NULL;
4595 unsigned long flags;
4596 bool dolock;
4597
4598 again:
4599 /* might be called in atomic */
4600 preempt_disable();
4601
4602 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4603 goto out;
4604
4605 cpu_buffer = buffer->buffers[cpu];
4606 local_irq_save(flags);
4607 dolock = rb_reader_lock(cpu_buffer);
4608
4609 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4610 if (event) {
4611 cpu_buffer->lost_events = 0;
4612 rb_advance_reader(cpu_buffer);
4613 }
4614
4615 rb_reader_unlock(cpu_buffer, dolock);
4616 local_irq_restore(flags);
4617
4618 out:
4619 preempt_enable();
4620
4621 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4622 goto again;
4623
4624 return event;
4625}
4626EXPORT_SYMBOL_GPL(ring_buffer_consume);
4627
4628/**
4629 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4630 * @buffer: The ring buffer to read from
4631 * @cpu: The cpu buffer to iterate over
4632 * @flags: gfp flags to use for memory allocation
4633 *
4634 * This performs the initial preparations necessary to iterate
4635 * through the buffer. Memory is allocated, buffer recording
4636 * is disabled, and the iterator pointer is returned to the caller.
4637 *
4638 * Disabling buffer recording prevents the reading from being
4639 * corrupted. This is not a consuming read, so a producer is not
4640 * expected.
4641 *
4642 * After a sequence of ring_buffer_read_prepare calls, the user is
4643 * expected to make at least one call to ring_buffer_read_prepare_sync.
4644 * Afterwards, ring_buffer_read_start is invoked to get things going
4645 * for real.
4646 *
4647 * This overall must be paired with ring_buffer_read_finish.
4648 */
4649struct ring_buffer_iter *
4650ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
4651{
4652 struct ring_buffer_per_cpu *cpu_buffer;
4653 struct ring_buffer_iter *iter;
4654
4655 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4656 return NULL;
4657
4658 iter = kzalloc(sizeof(*iter), flags);
4659 if (!iter)
4660 return NULL;
4661
4662 iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags);
4663 if (!iter->event) {
4664 kfree(iter);
4665 return NULL;
4666 }
4667
4668 cpu_buffer = buffer->buffers[cpu];
4669
4670 iter->cpu_buffer = cpu_buffer;
4671
4672 atomic_inc(&cpu_buffer->resize_disabled);
4673
4674 return iter;
4675}
4676EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4677
4678/**
4679 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4680 *
4681 * All previously invoked ring_buffer_read_prepare calls to prepare
4682 * iterators will be synchronized. Afterwards, read_buffer_read_start
4683 * calls on those iterators are allowed.
4684 */
4685void
4686ring_buffer_read_prepare_sync(void)
4687{
4688 synchronize_rcu();
4689}
4690EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4691
4692/**
4693 * ring_buffer_read_start - start a non consuming read of the buffer
4694 * @iter: The iterator returned by ring_buffer_read_prepare
4695 *
4696 * This finalizes the startup of an iteration through the buffer.
4697 * The iterator comes from a call to ring_buffer_read_prepare and
4698 * an intervening ring_buffer_read_prepare_sync must have been
4699 * performed.
4700 *
4701 * Must be paired with ring_buffer_read_finish.
4702 */
4703void
4704ring_buffer_read_start(struct ring_buffer_iter *iter)
4705{
4706 struct ring_buffer_per_cpu *cpu_buffer;
4707 unsigned long flags;
4708
4709 if (!iter)
4710 return;
4711
4712 cpu_buffer = iter->cpu_buffer;
4713
4714 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4715 arch_spin_lock(&cpu_buffer->lock);
4716 rb_iter_reset(iter);
4717 arch_spin_unlock(&cpu_buffer->lock);
4718 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4719}
4720EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4721
4722/**
4723 * ring_buffer_read_finish - finish reading the iterator of the buffer
4724 * @iter: The iterator retrieved by ring_buffer_start
4725 *
4726 * This re-enables the recording to the buffer, and frees the
4727 * iterator.
4728 */
4729void
4730ring_buffer_read_finish(struct ring_buffer_iter *iter)
4731{
4732 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4733 unsigned long flags;
4734
4735 /*
4736 * Ring buffer is disabled from recording, here's a good place
4737 * to check the integrity of the ring buffer.
4738 * Must prevent readers from trying to read, as the check
4739 * clears the HEAD page and readers require it.
4740 */
4741 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4742 rb_check_pages(cpu_buffer);
4743 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4744
4745 atomic_dec(&cpu_buffer->resize_disabled);
4746 kfree(iter->event);
4747 kfree(iter);
4748}
4749EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4750
4751/**
4752 * ring_buffer_iter_advance - advance the iterator to the next location
4753 * @iter: The ring buffer iterator
4754 *
4755 * Move the location of the iterator such that the next read will
4756 * be the next location of the iterator.
4757 */
4758void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
4759{
4760 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4761 unsigned long flags;
4762
4763 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4764
4765 rb_advance_iter(iter);
4766
4767 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4768}
4769EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
4770
4771/**
4772 * ring_buffer_size - return the size of the ring buffer (in bytes)
4773 * @buffer: The ring buffer.
4774 * @cpu: The CPU to get ring buffer size from.
4775 */
4776unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
4777{
4778 /*
4779 * Earlier, this method returned
4780 * BUF_PAGE_SIZE * buffer->nr_pages
4781 * Since the nr_pages field is now removed, we have converted this to
4782 * return the per cpu buffer value.
4783 */
4784 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4785 return 0;
4786
4787 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4788}
4789EXPORT_SYMBOL_GPL(ring_buffer_size);
4790
4791static void
4792rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4793{
4794 rb_head_page_deactivate(cpu_buffer);
4795
4796 cpu_buffer->head_page
4797 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4798 local_set(&cpu_buffer->head_page->write, 0);
4799 local_set(&cpu_buffer->head_page->entries, 0);
4800 local_set(&cpu_buffer->head_page->page->commit, 0);
4801
4802 cpu_buffer->head_page->read = 0;
4803
4804 cpu_buffer->tail_page = cpu_buffer->head_page;
4805 cpu_buffer->commit_page = cpu_buffer->head_page;
4806
4807 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4808 INIT_LIST_HEAD(&cpu_buffer->new_pages);
4809 local_set(&cpu_buffer->reader_page->write, 0);
4810 local_set(&cpu_buffer->reader_page->entries, 0);
4811 local_set(&cpu_buffer->reader_page->page->commit, 0);
4812 cpu_buffer->reader_page->read = 0;
4813
4814 local_set(&cpu_buffer->entries_bytes, 0);
4815 local_set(&cpu_buffer->overrun, 0);
4816 local_set(&cpu_buffer->commit_overrun, 0);
4817 local_set(&cpu_buffer->dropped_events, 0);
4818 local_set(&cpu_buffer->entries, 0);
4819 local_set(&cpu_buffer->committing, 0);
4820 local_set(&cpu_buffer->commits, 0);
4821 local_set(&cpu_buffer->pages_touched, 0);
4822 local_set(&cpu_buffer->pages_read, 0);
4823 cpu_buffer->last_pages_touch = 0;
4824 cpu_buffer->shortest_full = 0;
4825 cpu_buffer->read = 0;
4826 cpu_buffer->read_bytes = 0;
4827
4828 rb_time_set(&cpu_buffer->write_stamp, 0);
4829 rb_time_set(&cpu_buffer->before_stamp, 0);
4830
4831 cpu_buffer->lost_events = 0;
4832 cpu_buffer->last_overrun = 0;
4833
4834 rb_head_page_activate(cpu_buffer);
4835}
4836
4837/* Must have disabled the cpu buffer then done a synchronize_rcu */
4838static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
4839{
4840 unsigned long flags;
4841
4842 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4843
4844 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4845 goto out;
4846
4847 arch_spin_lock(&cpu_buffer->lock);
4848
4849 rb_reset_cpu(cpu_buffer);
4850
4851 arch_spin_unlock(&cpu_buffer->lock);
4852
4853 out:
4854 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4855}
4856
4857/**
4858 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4859 * @buffer: The ring buffer to reset a per cpu buffer of
4860 * @cpu: The CPU buffer to be reset
4861 */
4862void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
4863{
4864 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4865
4866 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4867 return;
4868
4869 atomic_inc(&cpu_buffer->resize_disabled);
4870 atomic_inc(&cpu_buffer->record_disabled);
4871
4872 /* Make sure all commits have finished */
4873 synchronize_rcu();
4874
4875 reset_disabled_cpu_buffer(cpu_buffer);
4876
4877 atomic_dec(&cpu_buffer->record_disabled);
4878 atomic_dec(&cpu_buffer->resize_disabled);
4879}
4880EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4881
4882/**
4883 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4884 * @buffer: The ring buffer to reset a per cpu buffer of
4885 * @cpu: The CPU buffer to be reset
4886 */
4887void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
4888{
4889 struct ring_buffer_per_cpu *cpu_buffer;
4890 int cpu;
4891
4892 for_each_online_buffer_cpu(buffer, cpu) {
4893 cpu_buffer = buffer->buffers[cpu];
4894
4895 atomic_inc(&cpu_buffer->resize_disabled);
4896 atomic_inc(&cpu_buffer->record_disabled);
4897 }
4898
4899 /* Make sure all commits have finished */
4900 synchronize_rcu();
4901
4902 for_each_online_buffer_cpu(buffer, cpu) {
4903 cpu_buffer = buffer->buffers[cpu];
4904
4905 reset_disabled_cpu_buffer(cpu_buffer);
4906
4907 atomic_dec(&cpu_buffer->record_disabled);
4908 atomic_dec(&cpu_buffer->resize_disabled);
4909 }
4910}
4911
4912/**
4913 * ring_buffer_reset - reset a ring buffer
4914 * @buffer: The ring buffer to reset all cpu buffers
4915 */
4916void ring_buffer_reset(struct trace_buffer *buffer)
4917{
4918 struct ring_buffer_per_cpu *cpu_buffer;
4919 int cpu;
4920
4921 for_each_buffer_cpu(buffer, cpu) {
4922 cpu_buffer = buffer->buffers[cpu];
4923
4924 atomic_inc(&cpu_buffer->resize_disabled);
4925 atomic_inc(&cpu_buffer->record_disabled);
4926 }
4927
4928 /* Make sure all commits have finished */
4929 synchronize_rcu();
4930
4931 for_each_buffer_cpu(buffer, cpu) {
4932 cpu_buffer = buffer->buffers[cpu];
4933
4934 reset_disabled_cpu_buffer(cpu_buffer);
4935
4936 atomic_dec(&cpu_buffer->record_disabled);
4937 atomic_dec(&cpu_buffer->resize_disabled);
4938 }
4939}
4940EXPORT_SYMBOL_GPL(ring_buffer_reset);
4941
4942/**
4943 * rind_buffer_empty - is the ring buffer empty?
4944 * @buffer: The ring buffer to test
4945 */
4946bool ring_buffer_empty(struct trace_buffer *buffer)
4947{
4948 struct ring_buffer_per_cpu *cpu_buffer;
4949 unsigned long flags;
4950 bool dolock;
4951 int cpu;
4952 int ret;
4953
4954 /* yes this is racy, but if you don't like the race, lock the buffer */
4955 for_each_buffer_cpu(buffer, cpu) {
4956 cpu_buffer = buffer->buffers[cpu];
4957 local_irq_save(flags);
4958 dolock = rb_reader_lock(cpu_buffer);
4959 ret = rb_per_cpu_empty(cpu_buffer);
4960 rb_reader_unlock(cpu_buffer, dolock);
4961 local_irq_restore(flags);
4962
4963 if (!ret)
4964 return false;
4965 }
4966
4967 return true;
4968}
4969EXPORT_SYMBOL_GPL(ring_buffer_empty);
4970
4971/**
4972 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4973 * @buffer: The ring buffer
4974 * @cpu: The CPU buffer to test
4975 */
4976bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
4977{
4978 struct ring_buffer_per_cpu *cpu_buffer;
4979 unsigned long flags;
4980 bool dolock;
4981 int ret;
4982
4983 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4984 return true;
4985
4986 cpu_buffer = buffer->buffers[cpu];
4987 local_irq_save(flags);
4988 dolock = rb_reader_lock(cpu_buffer);
4989 ret = rb_per_cpu_empty(cpu_buffer);
4990 rb_reader_unlock(cpu_buffer, dolock);
4991 local_irq_restore(flags);
4992
4993 return ret;
4994}
4995EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4996
4997#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4998/**
4999 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5000 * @buffer_a: One buffer to swap with
5001 * @buffer_b: The other buffer to swap with
5002 * @cpu: the CPU of the buffers to swap
5003 *
5004 * This function is useful for tracers that want to take a "snapshot"
5005 * of a CPU buffer and has another back up buffer lying around.
5006 * it is expected that the tracer handles the cpu buffer not being
5007 * used at the moment.
5008 */
5009int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5010 struct trace_buffer *buffer_b, int cpu)
5011{
5012 struct ring_buffer_per_cpu *cpu_buffer_a;
5013 struct ring_buffer_per_cpu *cpu_buffer_b;
5014 int ret = -EINVAL;
5015
5016 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5017 !cpumask_test_cpu(cpu, buffer_b->cpumask))
5018 goto out;
5019
5020 cpu_buffer_a = buffer_a->buffers[cpu];
5021 cpu_buffer_b = buffer_b->buffers[cpu];
5022
5023 /* At least make sure the two buffers are somewhat the same */
5024 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5025 goto out;
5026
5027 ret = -EAGAIN;
5028
5029 if (atomic_read(&buffer_a->record_disabled))
5030 goto out;
5031
5032 if (atomic_read(&buffer_b->record_disabled))
5033 goto out;
5034
5035 if (atomic_read(&cpu_buffer_a->record_disabled))
5036 goto out;
5037
5038 if (atomic_read(&cpu_buffer_b->record_disabled))
5039 goto out;
5040
5041 /*
5042 * We can't do a synchronize_rcu here because this
5043 * function can be called in atomic context.
5044 * Normally this will be called from the same CPU as cpu.
5045 * If not it's up to the caller to protect this.
5046 */
5047 atomic_inc(&cpu_buffer_a->record_disabled);
5048 atomic_inc(&cpu_buffer_b->record_disabled);
5049
5050 ret = -EBUSY;
5051 if (local_read(&cpu_buffer_a->committing))
5052 goto out_dec;
5053 if (local_read(&cpu_buffer_b->committing))
5054 goto out_dec;
5055
5056 buffer_a->buffers[cpu] = cpu_buffer_b;
5057 buffer_b->buffers[cpu] = cpu_buffer_a;
5058
5059 cpu_buffer_b->buffer = buffer_a;
5060 cpu_buffer_a->buffer = buffer_b;
5061
5062 ret = 0;
5063
5064out_dec:
5065 atomic_dec(&cpu_buffer_a->record_disabled);
5066 atomic_dec(&cpu_buffer_b->record_disabled);
5067out:
5068 return ret;
5069}
5070EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5071#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5072
5073/**
5074 * ring_buffer_alloc_read_page - allocate a page to read from buffer
5075 * @buffer: the buffer to allocate for.
5076 * @cpu: the cpu buffer to allocate.
5077 *
5078 * This function is used in conjunction with ring_buffer_read_page.
5079 * When reading a full page from the ring buffer, these functions
5080 * can be used to speed up the process. The calling function should
5081 * allocate a few pages first with this function. Then when it
5082 * needs to get pages from the ring buffer, it passes the result
5083 * of this function into ring_buffer_read_page, which will swap
5084 * the page that was allocated, with the read page of the buffer.
5085 *
5086 * Returns:
5087 * The page allocated, or ERR_PTR
5088 */
5089void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5090{
5091 struct ring_buffer_per_cpu *cpu_buffer;
5092 struct buffer_data_page *bpage = NULL;
5093 unsigned long flags;
5094 struct page *page;
5095
5096 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5097 return ERR_PTR(-ENODEV);
5098
5099 cpu_buffer = buffer->buffers[cpu];
5100 local_irq_save(flags);
5101 arch_spin_lock(&cpu_buffer->lock);
5102
5103 if (cpu_buffer->free_page) {
5104 bpage = cpu_buffer->free_page;
5105 cpu_buffer->free_page = NULL;
5106 }
5107
5108 arch_spin_unlock(&cpu_buffer->lock);
5109 local_irq_restore(flags);
5110
5111 if (bpage)
5112 goto out;
5113
5114 page = alloc_pages_node(cpu_to_node(cpu),
5115 GFP_KERNEL | __GFP_NORETRY, 0);
5116 if (!page)
5117 return ERR_PTR(-ENOMEM);
5118
5119 bpage = page_address(page);
5120
5121 out:
5122 rb_init_page(bpage);
5123
5124 return bpage;
5125}
5126EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5127
5128/**
5129 * ring_buffer_free_read_page - free an allocated read page
5130 * @buffer: the buffer the page was allocate for
5131 * @cpu: the cpu buffer the page came from
5132 * @data: the page to free
5133 *
5134 * Free a page allocated from ring_buffer_alloc_read_page.
5135 */
5136void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5137{
5138 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5139 struct buffer_data_page *bpage = data;
5140 struct page *page = virt_to_page(bpage);
5141 unsigned long flags;
5142
5143 /* If the page is still in use someplace else, we can't reuse it */
5144 if (page_ref_count(page) > 1)
5145 goto out;
5146
5147 local_irq_save(flags);
5148 arch_spin_lock(&cpu_buffer->lock);
5149
5150 if (!cpu_buffer->free_page) {
5151 cpu_buffer->free_page = bpage;
5152 bpage = NULL;
5153 }
5154
5155 arch_spin_unlock(&cpu_buffer->lock);
5156 local_irq_restore(flags);
5157
5158 out:
5159 free_page((unsigned long)bpage);
5160}
5161EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5162
5163/**
5164 * ring_buffer_read_page - extract a page from the ring buffer
5165 * @buffer: buffer to extract from
5166 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5167 * @len: amount to extract
5168 * @cpu: the cpu of the buffer to extract
5169 * @full: should the extraction only happen when the page is full.
5170 *
5171 * This function will pull out a page from the ring buffer and consume it.
5172 * @data_page must be the address of the variable that was returned
5173 * from ring_buffer_alloc_read_page. This is because the page might be used
5174 * to swap with a page in the ring buffer.
5175 *
5176 * for example:
5177 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
5178 * if (IS_ERR(rpage))
5179 * return PTR_ERR(rpage);
5180 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5181 * if (ret >= 0)
5182 * process_page(rpage, ret);
5183 *
5184 * When @full is set, the function will not return true unless
5185 * the writer is off the reader page.
5186 *
5187 * Note: it is up to the calling functions to handle sleeps and wakeups.
5188 * The ring buffer can be used anywhere in the kernel and can not
5189 * blindly call wake_up. The layer that uses the ring buffer must be
5190 * responsible for that.
5191 *
5192 * Returns:
5193 * >=0 if data has been transferred, returns the offset of consumed data.
5194 * <0 if no data has been transferred.
5195 */
5196int ring_buffer_read_page(struct trace_buffer *buffer,
5197 void **data_page, size_t len, int cpu, int full)
5198{
5199 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5200 struct ring_buffer_event *event;
5201 struct buffer_data_page *bpage;
5202 struct buffer_page *reader;
5203 unsigned long missed_events;
5204 unsigned long flags;
5205 unsigned int commit;
5206 unsigned int read;
5207 u64 save_timestamp;
5208 int ret = -1;
5209
5210 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5211 goto out;
5212
5213 /*
5214 * If len is not big enough to hold the page header, then
5215 * we can not copy anything.
5216 */
5217 if (len <= BUF_PAGE_HDR_SIZE)
5218 goto out;
5219
5220 len -= BUF_PAGE_HDR_SIZE;
5221
5222 if (!data_page)
5223 goto out;
5224
5225 bpage = *data_page;
5226 if (!bpage)
5227 goto out;
5228
5229 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5230
5231 reader = rb_get_reader_page(cpu_buffer);
5232 if (!reader)
5233 goto out_unlock;
5234
5235 event = rb_reader_event(cpu_buffer);
5236
5237 read = reader->read;
5238 commit = rb_page_commit(reader);
5239
5240 /* Check if any events were dropped */
5241 missed_events = cpu_buffer->lost_events;
5242
5243 /*
5244 * If this page has been partially read or
5245 * if len is not big enough to read the rest of the page or
5246 * a writer is still on the page, then
5247 * we must copy the data from the page to the buffer.
5248 * Otherwise, we can simply swap the page with the one passed in.
5249 */
5250 if (read || (len < (commit - read)) ||
5251 cpu_buffer->reader_page == cpu_buffer->commit_page) {
5252 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5253 unsigned int rpos = read;
5254 unsigned int pos = 0;
5255 unsigned int size;
5256
5257 if (full)
5258 goto out_unlock;
5259
5260 if (len > (commit - read))
5261 len = (commit - read);
5262
5263 /* Always keep the time extend and data together */
5264 size = rb_event_ts_length(event);
5265
5266 if (len < size)
5267 goto out_unlock;
5268
5269 /* save the current timestamp, since the user will need it */
5270 save_timestamp = cpu_buffer->read_stamp;
5271
5272 /* Need to copy one event at a time */
5273 do {
5274 /* We need the size of one event, because
5275 * rb_advance_reader only advances by one event,
5276 * whereas rb_event_ts_length may include the size of
5277 * one or two events.
5278 * We have already ensured there's enough space if this
5279 * is a time extend. */
5280 size = rb_event_length(event);
5281 memcpy(bpage->data + pos, rpage->data + rpos, size);
5282
5283 len -= size;
5284
5285 rb_advance_reader(cpu_buffer);
5286 rpos = reader->read;
5287 pos += size;
5288
5289 if (rpos >= commit)
5290 break;
5291
5292 event = rb_reader_event(cpu_buffer);
5293 /* Always keep the time extend and data together */
5294 size = rb_event_ts_length(event);
5295 } while (len >= size);
5296
5297 /* update bpage */
5298 local_set(&bpage->commit, pos);
5299 bpage->time_stamp = save_timestamp;
5300
5301 /* we copied everything to the beginning */
5302 read = 0;
5303 } else {
5304 /* update the entry counter */
5305 cpu_buffer->read += rb_page_entries(reader);
5306 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
5307
5308 /* swap the pages */
5309 rb_init_page(bpage);
5310 bpage = reader->page;
5311 reader->page = *data_page;
5312 local_set(&reader->write, 0);
5313 local_set(&reader->entries, 0);
5314 reader->read = 0;
5315 *data_page = bpage;
5316
5317 /*
5318 * Use the real_end for the data size,
5319 * This gives us a chance to store the lost events
5320 * on the page.
5321 */
5322 if (reader->real_end)
5323 local_set(&bpage->commit, reader->real_end);
5324 }
5325 ret = read;
5326
5327 cpu_buffer->lost_events = 0;
5328
5329 commit = local_read(&bpage->commit);
5330 /*
5331 * Set a flag in the commit field if we lost events
5332 */
5333 if (missed_events) {
5334 /* If there is room at the end of the page to save the
5335 * missed events, then record it there.
5336 */
5337 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5338 memcpy(&bpage->data[commit], &missed_events,
5339 sizeof(missed_events));
5340 local_add(RB_MISSED_STORED, &bpage->commit);
5341 commit += sizeof(missed_events);
5342 }
5343 local_add(RB_MISSED_EVENTS, &bpage->commit);
5344 }
5345
5346 /*
5347 * This page may be off to user land. Zero it out here.
5348 */
5349 if (commit < BUF_PAGE_SIZE)
5350 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5351
5352 out_unlock:
5353 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5354
5355 out:
5356 return ret;
5357}
5358EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5359
5360/*
5361 * We only allocate new buffers, never free them if the CPU goes down.
5362 * If we were to free the buffer, then the user would lose any trace that was in
5363 * the buffer.
5364 */
5365int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5366{
5367 struct trace_buffer *buffer;
5368 long nr_pages_same;
5369 int cpu_i;
5370 unsigned long nr_pages;
5371
5372 buffer = container_of(node, struct trace_buffer, node);
5373 if (cpumask_test_cpu(cpu, buffer->cpumask))
5374 return 0;
5375
5376 nr_pages = 0;
5377 nr_pages_same = 1;
5378 /* check if all cpu sizes are same */
5379 for_each_buffer_cpu(buffer, cpu_i) {
5380 /* fill in the size from first enabled cpu */
5381 if (nr_pages == 0)
5382 nr_pages = buffer->buffers[cpu_i]->nr_pages;
5383 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5384 nr_pages_same = 0;
5385 break;
5386 }
5387 }
5388 /* allocate minimum pages, user can later expand it */
5389 if (!nr_pages_same)
5390 nr_pages = 2;
5391 buffer->buffers[cpu] =
5392 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5393 if (!buffer->buffers[cpu]) {
5394 WARN(1, "failed to allocate ring buffer on CPU %u\n",
5395 cpu);
5396 return -ENOMEM;
5397 }
5398 smp_wmb();
5399 cpumask_set_cpu(cpu, buffer->cpumask);
5400 return 0;
5401}
5402
5403#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5404/*
5405 * This is a basic integrity check of the ring buffer.
5406 * Late in the boot cycle this test will run when configured in.
5407 * It will kick off a thread per CPU that will go into a loop
5408 * writing to the per cpu ring buffer various sizes of data.
5409 * Some of the data will be large items, some small.
5410 *
5411 * Another thread is created that goes into a spin, sending out
5412 * IPIs to the other CPUs to also write into the ring buffer.
5413 * this is to test the nesting ability of the buffer.
5414 *
5415 * Basic stats are recorded and reported. If something in the
5416 * ring buffer should happen that's not expected, a big warning
5417 * is displayed and all ring buffers are disabled.
5418 */
5419static struct task_struct *rb_threads[NR_CPUS] __initdata;
5420
5421struct rb_test_data {
5422 struct trace_buffer *buffer;
5423 unsigned long events;
5424 unsigned long bytes_written;
5425 unsigned long bytes_alloc;
5426 unsigned long bytes_dropped;
5427 unsigned long events_nested;
5428 unsigned long bytes_written_nested;
5429 unsigned long bytes_alloc_nested;
5430 unsigned long bytes_dropped_nested;
5431 int min_size_nested;
5432 int max_size_nested;
5433 int max_size;
5434 int min_size;
5435 int cpu;
5436 int cnt;
5437};
5438
5439static struct rb_test_data rb_data[NR_CPUS] __initdata;
5440
5441/* 1 meg per cpu */
5442#define RB_TEST_BUFFER_SIZE 1048576
5443
5444static char rb_string[] __initdata =
5445 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5446 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5447 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5448
5449static bool rb_test_started __initdata;
5450
5451struct rb_item {
5452 int size;
5453 char str[];
5454};
5455
5456static __init int rb_write_something(struct rb_test_data *data, bool nested)
5457{
5458 struct ring_buffer_event *event;
5459 struct rb_item *item;
5460 bool started;
5461 int event_len;
5462 int size;
5463 int len;
5464 int cnt;
5465
5466 /* Have nested writes different that what is written */
5467 cnt = data->cnt + (nested ? 27 : 0);
5468
5469 /* Multiply cnt by ~e, to make some unique increment */
5470 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5471
5472 len = size + sizeof(struct rb_item);
5473
5474 started = rb_test_started;
5475 /* read rb_test_started before checking buffer enabled */
5476 smp_rmb();
5477
5478 event = ring_buffer_lock_reserve(data->buffer, len);
5479 if (!event) {
5480 /* Ignore dropped events before test starts. */
5481 if (started) {
5482 if (nested)
5483 data->bytes_dropped += len;
5484 else
5485 data->bytes_dropped_nested += len;
5486 }
5487 return len;
5488 }
5489
5490 event_len = ring_buffer_event_length(event);
5491
5492 if (RB_WARN_ON(data->buffer, event_len < len))
5493 goto out;
5494
5495 item = ring_buffer_event_data(event);
5496 item->size = size;
5497 memcpy(item->str, rb_string, size);
5498
5499 if (nested) {
5500 data->bytes_alloc_nested += event_len;
5501 data->bytes_written_nested += len;
5502 data->events_nested++;
5503 if (!data->min_size_nested || len < data->min_size_nested)
5504 data->min_size_nested = len;
5505 if (len > data->max_size_nested)
5506 data->max_size_nested = len;
5507 } else {
5508 data->bytes_alloc += event_len;
5509 data->bytes_written += len;
5510 data->events++;
5511 if (!data->min_size || len < data->min_size)
5512 data->max_size = len;
5513 if (len > data->max_size)
5514 data->max_size = len;
5515 }
5516
5517 out:
5518 ring_buffer_unlock_commit(data->buffer, event);
5519
5520 return 0;
5521}
5522
5523static __init int rb_test(void *arg)
5524{
5525 struct rb_test_data *data = arg;
5526
5527 while (!kthread_should_stop()) {
5528 rb_write_something(data, false);
5529 data->cnt++;
5530
5531 set_current_state(TASK_INTERRUPTIBLE);
5532 /* Now sleep between a min of 100-300us and a max of 1ms */
5533 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5534 }
5535
5536 return 0;
5537}
5538
5539static __init void rb_ipi(void *ignore)
5540{
5541 struct rb_test_data *data;
5542 int cpu = smp_processor_id();
5543
5544 data = &rb_data[cpu];
5545 rb_write_something(data, true);
5546}
5547
5548static __init int rb_hammer_test(void *arg)
5549{
5550 while (!kthread_should_stop()) {
5551
5552 /* Send an IPI to all cpus to write data! */
5553 smp_call_function(rb_ipi, NULL, 1);
5554 /* No sleep, but for non preempt, let others run */
5555 schedule();
5556 }
5557
5558 return 0;
5559}
5560
5561static __init int test_ringbuffer(void)
5562{
5563 struct task_struct *rb_hammer;
5564 struct trace_buffer *buffer;
5565 int cpu;
5566 int ret = 0;
5567
5568 if (security_locked_down(LOCKDOWN_TRACEFS)) {
5569 pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
5570 return 0;
5571 }
5572
5573 pr_info("Running ring buffer tests...\n");
5574
5575 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5576 if (WARN_ON(!buffer))
5577 return 0;
5578
5579 /* Disable buffer so that threads can't write to it yet */
5580 ring_buffer_record_off(buffer);
5581
5582 for_each_online_cpu(cpu) {
5583 rb_data[cpu].buffer = buffer;
5584 rb_data[cpu].cpu = cpu;
5585 rb_data[cpu].cnt = cpu;
5586 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5587 "rbtester/%d", cpu);
5588 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5589 pr_cont("FAILED\n");
5590 ret = PTR_ERR(rb_threads[cpu]);
5591 goto out_free;
5592 }
5593
5594 kthread_bind(rb_threads[cpu], cpu);
5595 wake_up_process(rb_threads[cpu]);
5596 }
5597
5598 /* Now create the rb hammer! */
5599 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5600 if (WARN_ON(IS_ERR(rb_hammer))) {
5601 pr_cont("FAILED\n");
5602 ret = PTR_ERR(rb_hammer);
5603 goto out_free;
5604 }
5605
5606 ring_buffer_record_on(buffer);
5607 /*
5608 * Show buffer is enabled before setting rb_test_started.
5609 * Yes there's a small race window where events could be
5610 * dropped and the thread wont catch it. But when a ring
5611 * buffer gets enabled, there will always be some kind of
5612 * delay before other CPUs see it. Thus, we don't care about
5613 * those dropped events. We care about events dropped after
5614 * the threads see that the buffer is active.
5615 */
5616 smp_wmb();
5617 rb_test_started = true;
5618
5619 set_current_state(TASK_INTERRUPTIBLE);
5620 /* Just run for 10 seconds */;
5621 schedule_timeout(10 * HZ);
5622
5623 kthread_stop(rb_hammer);
5624
5625 out_free:
5626 for_each_online_cpu(cpu) {
5627 if (!rb_threads[cpu])
5628 break;
5629 kthread_stop(rb_threads[cpu]);
5630 }
5631 if (ret) {
5632 ring_buffer_free(buffer);
5633 return ret;
5634 }
5635
5636 /* Report! */
5637 pr_info("finished\n");
5638 for_each_online_cpu(cpu) {
5639 struct ring_buffer_event *event;
5640 struct rb_test_data *data = &rb_data[cpu];
5641 struct rb_item *item;
5642 unsigned long total_events;
5643 unsigned long total_dropped;
5644 unsigned long total_written;
5645 unsigned long total_alloc;
5646 unsigned long total_read = 0;
5647 unsigned long total_size = 0;
5648 unsigned long total_len = 0;
5649 unsigned long total_lost = 0;
5650 unsigned long lost;
5651 int big_event_size;
5652 int small_event_size;
5653
5654 ret = -1;
5655
5656 total_events = data->events + data->events_nested;
5657 total_written = data->bytes_written + data->bytes_written_nested;
5658 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5659 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5660
5661 big_event_size = data->max_size + data->max_size_nested;
5662 small_event_size = data->min_size + data->min_size_nested;
5663
5664 pr_info("CPU %d:\n", cpu);
5665 pr_info(" events: %ld\n", total_events);
5666 pr_info(" dropped bytes: %ld\n", total_dropped);
5667 pr_info(" alloced bytes: %ld\n", total_alloc);
5668 pr_info(" written bytes: %ld\n", total_written);
5669 pr_info(" biggest event: %d\n", big_event_size);
5670 pr_info(" smallest event: %d\n", small_event_size);
5671
5672 if (RB_WARN_ON(buffer, total_dropped))
5673 break;
5674
5675 ret = 0;
5676
5677 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5678 total_lost += lost;
5679 item = ring_buffer_event_data(event);
5680 total_len += ring_buffer_event_length(event);
5681 total_size += item->size + sizeof(struct rb_item);
5682 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5683 pr_info("FAILED!\n");
5684 pr_info("buffer had: %.*s\n", item->size, item->str);
5685 pr_info("expected: %.*s\n", item->size, rb_string);
5686 RB_WARN_ON(buffer, 1);
5687 ret = -1;
5688 break;
5689 }
5690 total_read++;
5691 }
5692 if (ret)
5693 break;
5694
5695 ret = -1;
5696
5697 pr_info(" read events: %ld\n", total_read);
5698 pr_info(" lost events: %ld\n", total_lost);
5699 pr_info(" total events: %ld\n", total_lost + total_read);
5700 pr_info(" recorded len bytes: %ld\n", total_len);
5701 pr_info(" recorded size bytes: %ld\n", total_size);
5702 if (total_lost)
5703 pr_info(" With dropped events, record len and size may not match\n"
5704 " alloced and written from above\n");
5705 if (!total_lost) {
5706 if (RB_WARN_ON(buffer, total_len != total_alloc ||
5707 total_size != total_written))
5708 break;
5709 }
5710 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5711 break;
5712
5713 ret = 0;
5714 }
5715 if (!ret)
5716 pr_info("Ring buffer PASSED!\n");
5717
5718 ring_buffer_free(buffer);
5719 return 0;
5720}
5721
5722late_initcall(test_ringbuffer);
5723#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */