Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 * Generic ring buffer
   3 *
   4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
   5 */
   6#include <linux/ftrace_event.h>
   7#include <linux/ring_buffer.h>
   8#include <linux/trace_clock.h>
 
   9#include <linux/trace_seq.h>
  10#include <linux/spinlock.h>
  11#include <linux/irq_work.h>
  12#include <linux/debugfs.h>
  13#include <linux/uaccess.h>
  14#include <linux/hardirq.h>
  15#include <linux/kthread.h>	/* for self test */
  16#include <linux/kmemcheck.h>
  17#include <linux/module.h>
  18#include <linux/percpu.h>
  19#include <linux/mutex.h>
  20#include <linux/delay.h>
  21#include <linux/slab.h>
  22#include <linux/init.h>
  23#include <linux/hash.h>
  24#include <linux/list.h>
  25#include <linux/cpu.h>
  26#include <linux/fs.h>
  27
  28#include <asm/local.h>
  29
  30static void update_pages_handler(struct work_struct *work);
  31
  32/*
  33 * The ring buffer header is special. We must manually up keep it.
  34 */
  35int ring_buffer_print_entry_header(struct trace_seq *s)
  36{
  37	int ret;
  38
  39	ret = trace_seq_puts(s, "# compressed entry header\n");
  40	ret = trace_seq_puts(s, "\ttype_len    :    5 bits\n");
  41	ret = trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
  42	ret = trace_seq_puts(s, "\tarray       :   32 bits\n");
  43	ret = trace_seq_putc(s, '\n');
  44	ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
  45			       RINGBUF_TYPE_PADDING);
  46	ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
  47			       RINGBUF_TYPE_TIME_EXTEND);
  48	ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
  49			       RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
  50
  51	return ret;
  52}
  53
  54/*
  55 * The ring buffer is made up of a list of pages. A separate list of pages is
  56 * allocated for each CPU. A writer may only write to a buffer that is
  57 * associated with the CPU it is currently executing on.  A reader may read
  58 * from any per cpu buffer.
  59 *
  60 * The reader is special. For each per cpu buffer, the reader has its own
  61 * reader page. When a reader has read the entire reader page, this reader
  62 * page is swapped with another page in the ring buffer.
  63 *
  64 * Now, as long as the writer is off the reader page, the reader can do what
  65 * ever it wants with that page. The writer will never write to that page
  66 * again (as long as it is out of the ring buffer).
  67 *
  68 * Here's some silly ASCII art.
  69 *
  70 *   +------+
  71 *   |reader|          RING BUFFER
  72 *   |page  |
  73 *   +------+        +---+   +---+   +---+
  74 *                   |   |-->|   |-->|   |
  75 *                   +---+   +---+   +---+
  76 *                     ^               |
  77 *                     |               |
  78 *                     +---------------+
  79 *
  80 *
  81 *   +------+
  82 *   |reader|          RING BUFFER
  83 *   |page  |------------------v
  84 *   +------+        +---+   +---+   +---+
  85 *                   |   |-->|   |-->|   |
  86 *                   +---+   +---+   +---+
  87 *                     ^               |
  88 *                     |               |
  89 *                     +---------------+
  90 *
  91 *
  92 *   +------+
  93 *   |reader|          RING BUFFER
  94 *   |page  |------------------v
  95 *   +------+        +---+   +---+   +---+
  96 *      ^            |   |-->|   |-->|   |
  97 *      |            +---+   +---+   +---+
  98 *      |                              |
  99 *      |                              |
 100 *      +------------------------------+
 101 *
 102 *
 103 *   +------+
 104 *   |buffer|          RING BUFFER
 105 *   |page  |------------------v
 106 *   +------+        +---+   +---+   +---+
 107 *      ^            |   |   |   |-->|   |
 108 *      |   New      +---+   +---+   +---+
 109 *      |  Reader------^               |
 110 *      |   page                       |
 111 *      +------------------------------+
 112 *
 113 *
 114 * After we make this swap, the reader can hand this page off to the splice
 115 * code and be done with it. It can even allocate a new page if it needs to
 116 * and swap that into the ring buffer.
 117 *
 118 * We will be using cmpxchg soon to make all this lockless.
 119 *
 120 */
 121
 122/*
 123 * A fast way to enable or disable all ring buffers is to
 124 * call tracing_on or tracing_off. Turning off the ring buffers
 125 * prevents all ring buffers from being recorded to.
 126 * Turning this switch on, makes it OK to write to the
 127 * ring buffer, if the ring buffer is enabled itself.
 128 *
 129 * There's three layers that must be on in order to write
 130 * to the ring buffer.
 131 *
 132 * 1) This global flag must be set.
 133 * 2) The ring buffer must be enabled for recording.
 134 * 3) The per cpu buffer must be enabled for recording.
 135 *
 136 * In case of an anomaly, this global flag has a bit set that
 137 * will permantly disable all ring buffers.
 138 */
 139
 140/*
 141 * Global flag to disable all recording to ring buffers
 142 *  This has two bits: ON, DISABLED
 143 *
 144 *  ON   DISABLED
 145 * ---- ----------
 146 *   0      0        : ring buffers are off
 147 *   1      0        : ring buffers are on
 148 *   X      1        : ring buffers are permanently disabled
 149 */
 150
 151enum {
 152	RB_BUFFERS_ON_BIT	= 0,
 153	RB_BUFFERS_DISABLED_BIT	= 1,
 154};
 155
 156enum {
 157	RB_BUFFERS_ON		= 1 << RB_BUFFERS_ON_BIT,
 158	RB_BUFFERS_DISABLED	= 1 << RB_BUFFERS_DISABLED_BIT,
 159};
 160
 161static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
 162
 163/* Used for individual buffers (after the counter) */
 164#define RB_BUFFER_OFF		(1 << 20)
 165
 166#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
 167
 168/**
 169 * tracing_off_permanent - permanently disable ring buffers
 170 *
 171 * This function, once called, will disable all ring buffers
 172 * permanently.
 173 */
 174void tracing_off_permanent(void)
 175{
 176	set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
 177}
 178
 179#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
 180#define RB_ALIGNMENT		4U
 181#define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 182#define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
 183
 184#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
 185# define RB_FORCE_8BYTE_ALIGNMENT	0
 186# define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
 187#else
 188# define RB_FORCE_8BYTE_ALIGNMENT	1
 189# define RB_ARCH_ALIGNMENT		8U
 190#endif
 191
 192#define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
 193
 194/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
 195#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
 196
 197enum {
 198	RB_LEN_TIME_EXTEND = 8,
 199	RB_LEN_TIME_STAMP = 16,
 200};
 201
 202#define skip_time_extend(event) \
 203	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
 204
 
 
 
 205static inline int rb_null_event(struct ring_buffer_event *event)
 206{
 207	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
 208}
 209
 210static void rb_event_set_padding(struct ring_buffer_event *event)
 211{
 212	/* padding has a NULL time_delta */
 213	event->type_len = RINGBUF_TYPE_PADDING;
 214	event->time_delta = 0;
 215}
 216
 217static unsigned
 218rb_event_data_length(struct ring_buffer_event *event)
 219{
 220	unsigned length;
 221
 222	if (event->type_len)
 223		length = event->type_len * RB_ALIGNMENT;
 224	else
 225		length = event->array[0];
 226	return length + RB_EVNT_HDR_SIZE;
 227}
 228
 229/*
 230 * Return the length of the given event. Will return
 231 * the length of the time extend if the event is a
 232 * time extend.
 233 */
 234static inline unsigned
 235rb_event_length(struct ring_buffer_event *event)
 236{
 237	switch (event->type_len) {
 238	case RINGBUF_TYPE_PADDING:
 239		if (rb_null_event(event))
 240			/* undefined */
 241			return -1;
 242		return  event->array[0] + RB_EVNT_HDR_SIZE;
 243
 244	case RINGBUF_TYPE_TIME_EXTEND:
 245		return RB_LEN_TIME_EXTEND;
 246
 247	case RINGBUF_TYPE_TIME_STAMP:
 248		return RB_LEN_TIME_STAMP;
 249
 250	case RINGBUF_TYPE_DATA:
 251		return rb_event_data_length(event);
 252	default:
 253		BUG();
 254	}
 255	/* not hit */
 256	return 0;
 257}
 258
 259/*
 260 * Return total length of time extend and data,
 261 *   or just the event length for all other events.
 262 */
 263static inline unsigned
 264rb_event_ts_length(struct ring_buffer_event *event)
 265{
 266	unsigned len = 0;
 267
 268	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
 269		/* time extends include the data event after it */
 270		len = RB_LEN_TIME_EXTEND;
 271		event = skip_time_extend(event);
 272	}
 273	return len + rb_event_length(event);
 274}
 275
 276/**
 277 * ring_buffer_event_length - return the length of the event
 278 * @event: the event to get the length of
 279 *
 280 * Returns the size of the data load of a data event.
 281 * If the event is something other than a data event, it
 282 * returns the size of the event itself. With the exception
 283 * of a TIME EXTEND, where it still returns the size of the
 284 * data load of the data event after it.
 285 */
 286unsigned ring_buffer_event_length(struct ring_buffer_event *event)
 287{
 288	unsigned length;
 289
 290	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
 291		event = skip_time_extend(event);
 292
 293	length = rb_event_length(event);
 294	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 295		return length;
 296	length -= RB_EVNT_HDR_SIZE;
 297	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
 298                length -= sizeof(event->array[0]);
 299	return length;
 300}
 301EXPORT_SYMBOL_GPL(ring_buffer_event_length);
 302
 303/* inline for ring buffer fast paths */
 304static void *
 305rb_event_data(struct ring_buffer_event *event)
 306{
 307	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
 308		event = skip_time_extend(event);
 309	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
 310	/* If length is in len field, then array[0] has the data */
 311	if (event->type_len)
 312		return (void *)&event->array[0];
 313	/* Otherwise length is in array[0] and array[1] has the data */
 314	return (void *)&event->array[1];
 315}
 316
 317/**
 318 * ring_buffer_event_data - return the data of the event
 319 * @event: the event to get the data from
 320 */
 321void *ring_buffer_event_data(struct ring_buffer_event *event)
 322{
 323	return rb_event_data(event);
 324}
 325EXPORT_SYMBOL_GPL(ring_buffer_event_data);
 326
 327#define for_each_buffer_cpu(buffer, cpu)		\
 328	for_each_cpu(cpu, buffer->cpumask)
 329
 
 
 
 330#define TS_SHIFT	27
 331#define TS_MASK		((1ULL << TS_SHIFT) - 1)
 332#define TS_DELTA_TEST	(~TS_MASK)
 333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 334/* Flag when events were overwritten */
 335#define RB_MISSED_EVENTS	(1 << 31)
 336/* Missed count stored at end */
 337#define RB_MISSED_STORED	(1 << 30)
 338
 339struct buffer_data_page {
 340	u64		 time_stamp;	/* page time stamp */
 341	local_t		 commit;	/* write committed index */
 342	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
 343};
 344
 345/*
 346 * Note, the buffer_page list must be first. The buffer pages
 347 * are allocated in cache lines, which means that each buffer
 348 * page will be at the beginning of a cache line, and thus
 349 * the least significant bits will be zero. We use this to
 350 * add flags in the list struct pointers, to make the ring buffer
 351 * lockless.
 352 */
 353struct buffer_page {
 354	struct list_head list;		/* list of buffer pages */
 355	local_t		 write;		/* index for next write */
 356	unsigned	 read;		/* index for next read */
 357	local_t		 entries;	/* entries on this page */
 358	unsigned long	 real_end;	/* real end of data */
 359	struct buffer_data_page *page;	/* Actual data page */
 360};
 361
 362/*
 363 * The buffer page counters, write and entries, must be reset
 364 * atomically when crossing page boundaries. To synchronize this
 365 * update, two counters are inserted into the number. One is
 366 * the actual counter for the write position or count on the page.
 367 *
 368 * The other is a counter of updaters. Before an update happens
 369 * the update partition of the counter is incremented. This will
 370 * allow the updater to update the counter atomically.
 371 *
 372 * The counter is 20 bits, and the state data is 12.
 373 */
 374#define RB_WRITE_MASK		0xfffff
 375#define RB_WRITE_INTCNT		(1 << 20)
 376
 377static void rb_init_page(struct buffer_data_page *bpage)
 378{
 379	local_set(&bpage->commit, 0);
 380}
 381
 382/**
 383 * ring_buffer_page_len - the size of data on the page.
 384 * @page: The page to read
 385 *
 386 * Returns the amount of data on the page, including buffer page header.
 387 */
 388size_t ring_buffer_page_len(void *page)
 389{
 390	return local_read(&((struct buffer_data_page *)page)->commit)
 391		+ BUF_PAGE_HDR_SIZE;
 392}
 393
 394/*
 395 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
 396 * this issue out.
 397 */
 398static void free_buffer_page(struct buffer_page *bpage)
 399{
 400	free_page((unsigned long)bpage->page);
 401	kfree(bpage);
 402}
 403
 404/*
 405 * We need to fit the time_stamp delta into 27 bits.
 406 */
 407static inline int test_time_stamp(u64 delta)
 408{
 409	if (delta & TS_DELTA_TEST)
 410		return 1;
 411	return 0;
 412}
 413
 414#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
 415
 416/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
 417#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
 418
 419int ring_buffer_print_page_header(struct trace_seq *s)
 420{
 421	struct buffer_data_page field;
 422	int ret;
 423
 424	ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
 425			       "offset:0;\tsize:%u;\tsigned:%u;\n",
 426			       (unsigned int)sizeof(field.time_stamp),
 427			       (unsigned int)is_signed_type(u64));
 428
 429	ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
 430			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
 431			       (unsigned int)offsetof(typeof(field), commit),
 432			       (unsigned int)sizeof(field.commit),
 433			       (unsigned int)is_signed_type(long));
 434
 435	ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
 436			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
 437			       (unsigned int)offsetof(typeof(field), commit),
 438			       1,
 439			       (unsigned int)is_signed_type(long));
 440
 441	ret = trace_seq_printf(s, "\tfield: char data;\t"
 442			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
 443			       (unsigned int)offsetof(typeof(field), data),
 444			       (unsigned int)BUF_PAGE_SIZE,
 445			       (unsigned int)is_signed_type(char));
 446
 447	return ret;
 448}
 449
 450struct rb_irq_work {
 451	struct irq_work			work;
 452	wait_queue_head_t		waiters;
 
 453	bool				waiters_pending;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 454};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 455
 456/*
 457 * head_page == tail_page && head == tail then buffer is empty.
 458 */
 459struct ring_buffer_per_cpu {
 460	int				cpu;
 461	atomic_t			record_disabled;
 462	struct ring_buffer		*buffer;
 
 463	raw_spinlock_t			reader_lock;	/* serialize readers */
 464	arch_spinlock_t			lock;
 465	struct lock_class_key		lock_key;
 466	unsigned int			nr_pages;
 
 
 467	struct list_head		*pages;
 468	struct buffer_page		*head_page;	/* read from head */
 469	struct buffer_page		*tail_page;	/* write to tail */
 470	struct buffer_page		*commit_page;	/* committed pages */
 471	struct buffer_page		*reader_page;
 472	unsigned long			lost_events;
 473	unsigned long			last_overrun;
 
 474	local_t				entries_bytes;
 475	local_t				entries;
 476	local_t				overrun;
 477	local_t				commit_overrun;
 478	local_t				dropped_events;
 479	local_t				committing;
 480	local_t				commits;
 
 
 
 
 481	unsigned long			read;
 482	unsigned long			read_bytes;
 483	u64				write_stamp;
 
 484	u64				read_stamp;
 485	/* ring buffer pages to update, > 0 to add, < 0 to remove */
 486	int				nr_pages_to_update;
 487	struct list_head		new_pages; /* new pages to add */
 488	struct work_struct		update_pages_work;
 489	struct completion		update_done;
 490
 491	struct rb_irq_work		irq_work;
 492};
 493
 494struct ring_buffer {
 495	unsigned			flags;
 496	int				cpus;
 497	atomic_t			record_disabled;
 498	atomic_t			resize_disabled;
 499	cpumask_var_t			cpumask;
 500
 501	struct lock_class_key		*reader_lock_key;
 502
 503	struct mutex			mutex;
 504
 505	struct ring_buffer_per_cpu	**buffers;
 506
 507#ifdef CONFIG_HOTPLUG_CPU
 508	struct notifier_block		cpu_notify;
 509#endif
 510	u64				(*clock)(void);
 511
 512	struct rb_irq_work		irq_work;
 
 513};
 514
 515struct ring_buffer_iter {
 516	struct ring_buffer_per_cpu	*cpu_buffer;
 517	unsigned long			head;
 
 518	struct buffer_page		*head_page;
 519	struct buffer_page		*cache_reader_page;
 520	unsigned long			cache_read;
 521	u64				read_stamp;
 
 
 
 522};
 523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 524/*
 525 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
 526 *
 527 * Schedules a delayed work to wake up any task that is blocked on the
 528 * ring buffer waiters queue.
 529 */
 530static void rb_wake_up_waiters(struct irq_work *work)
 531{
 532	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
 533
 534	wake_up_all(&rbwork->waiters);
 
 
 
 
 535}
 536
 537/**
 538 * ring_buffer_wait - wait for input to the ring buffer
 539 * @buffer: buffer to wait on
 540 * @cpu: the cpu buffer to wait on
 
 541 *
 542 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 543 * as data is added to any of the @buffer's cpu buffers. Otherwise
 544 * it will wait for data to be added to a specific cpu buffer.
 545 */
 546void ring_buffer_wait(struct ring_buffer *buffer, int cpu)
 547{
 548	struct ring_buffer_per_cpu *cpu_buffer;
 549	DEFINE_WAIT(wait);
 550	struct rb_irq_work *work;
 
 551
 552	/*
 553	 * Depending on what the caller is waiting for, either any
 554	 * data in any cpu buffer, or a specific buffer, put the
 555	 * caller on the appropriate wait queue.
 556	 */
 557	if (cpu == RING_BUFFER_ALL_CPUS)
 558		work = &buffer->irq_work;
 559	else {
 
 
 
 
 560		cpu_buffer = buffer->buffers[cpu];
 561		work = &cpu_buffer->irq_work;
 562	}
 563
 564
 565	prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
 
 
 
 
 566
 567	/*
 568	 * The events can happen in critical sections where
 569	 * checking a work queue can cause deadlocks.
 570	 * After adding a task to the queue, this flag is set
 571	 * only to notify events to try to wake up the queue
 572	 * using irq_work.
 573	 *
 574	 * We don't clear it even if the buffer is no longer
 575	 * empty. The flag only causes the next event to run
 576	 * irq_work to do the work queue wake up. The worse
 577	 * that can happen if we race with !trace_empty() is that
 578	 * an event will cause an irq_work to try to wake up
 579	 * an empty queue.
 580	 *
 581	 * There's no reason to protect this flag either, as
 582	 * the work queue and irq_work logic will do the necessary
 583	 * synchronization for the wake ups. The only thing
 584	 * that is necessary is that the wake up happens after
 585	 * a task has been queued. It's OK for spurious wake ups.
 586	 */
 587	work->waiters_pending = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 588
 589	if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) ||
 590	    (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu)))
 591		schedule();
 
 
 
 
 
 
 592
 593	finish_wait(&work->waiters, &wait);
 594}
 595
 596/**
 597 * ring_buffer_poll_wait - poll on buffer input
 598 * @buffer: buffer to wait on
 599 * @cpu: the cpu buffer to wait on
 600 * @filp: the file descriptor
 601 * @poll_table: The poll descriptor
 602 *
 603 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 604 * as data is added to any of the @buffer's cpu buffers. Otherwise
 605 * it will wait for data to be added to a specific cpu buffer.
 606 *
 607 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
 608 * zero otherwise.
 609 */
 610int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
 611			  struct file *filp, poll_table *poll_table)
 612{
 613	struct ring_buffer_per_cpu *cpu_buffer;
 614	struct rb_irq_work *work;
 615
 616	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
 617	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
 618		return POLLIN | POLLRDNORM;
 619
 620	if (cpu == RING_BUFFER_ALL_CPUS)
 621		work = &buffer->irq_work;
 622	else {
 623		if (!cpumask_test_cpu(cpu, buffer->cpumask))
 624			return -EINVAL;
 625
 626		cpu_buffer = buffer->buffers[cpu];
 627		work = &cpu_buffer->irq_work;
 628	}
 629
 630	work->waiters_pending = true;
 631	poll_wait(filp, &work->waiters, poll_table);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 632
 633	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
 634	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
 635		return POLLIN | POLLRDNORM;
 636	return 0;
 637}
 638
 639/* buffer may be either ring_buffer or ring_buffer_per_cpu */
 640#define RB_WARN_ON(b, cond)						\
 641	({								\
 642		int _____ret = unlikely(cond);				\
 643		if (_____ret) {						\
 644			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
 645				struct ring_buffer_per_cpu *__b =	\
 646					(void *)b;			\
 647				atomic_inc(&__b->buffer->record_disabled); \
 648			} else						\
 649				atomic_inc(&b->record_disabled);	\
 650			WARN_ON(1);					\
 651		}							\
 652		_____ret;						\
 653	})
 654
 655/* Up this if you want to test the TIME_EXTENTS and normalization */
 656#define DEBUG_SHIFT 0
 657
 658static inline u64 rb_time_stamp(struct ring_buffer *buffer)
 659{
 
 
 
 
 
 
 
 
 660	/* shift to debug/test normalization and TIME_EXTENTS */
 661	return buffer->clock() << DEBUG_SHIFT;
 662}
 663
 664u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
 665{
 666	u64 time;
 667
 668	preempt_disable_notrace();
 669	time = rb_time_stamp(buffer);
 670	preempt_enable_no_resched_notrace();
 671
 672	return time;
 673}
 674EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
 675
 676void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
 677				      int cpu, u64 *ts)
 678{
 679	/* Just stupid testing the normalize function and deltas */
 680	*ts >>= DEBUG_SHIFT;
 681}
 682EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
 683
 684/*
 685 * Making the ring buffer lockless makes things tricky.
 686 * Although writes only happen on the CPU that they are on,
 687 * and they only need to worry about interrupts. Reads can
 688 * happen on any CPU.
 689 *
 690 * The reader page is always off the ring buffer, but when the
 691 * reader finishes with a page, it needs to swap its page with
 692 * a new one from the buffer. The reader needs to take from
 693 * the head (writes go to the tail). But if a writer is in overwrite
 694 * mode and wraps, it must push the head page forward.
 695 *
 696 * Here lies the problem.
 697 *
 698 * The reader must be careful to replace only the head page, and
 699 * not another one. As described at the top of the file in the
 700 * ASCII art, the reader sets its old page to point to the next
 701 * page after head. It then sets the page after head to point to
 702 * the old reader page. But if the writer moves the head page
 703 * during this operation, the reader could end up with the tail.
 704 *
 705 * We use cmpxchg to help prevent this race. We also do something
 706 * special with the page before head. We set the LSB to 1.
 707 *
 708 * When the writer must push the page forward, it will clear the
 709 * bit that points to the head page, move the head, and then set
 710 * the bit that points to the new head page.
 711 *
 712 * We also don't want an interrupt coming in and moving the head
 713 * page on another writer. Thus we use the second LSB to catch
 714 * that too. Thus:
 715 *
 716 * head->list->prev->next        bit 1          bit 0
 717 *                              -------        -------
 718 * Normal page                     0              0
 719 * Points to head page             0              1
 720 * New head page                   1              0
 721 *
 722 * Note we can not trust the prev pointer of the head page, because:
 723 *
 724 * +----+       +-----+        +-----+
 725 * |    |------>|  T  |---X--->|  N  |
 726 * |    |<------|     |        |     |
 727 * +----+       +-----+        +-----+
 728 *   ^                           ^ |
 729 *   |          +-----+          | |
 730 *   +----------|  R  |----------+ |
 731 *              |     |<-----------+
 732 *              +-----+
 733 *
 734 * Key:  ---X-->  HEAD flag set in pointer
 735 *         T      Tail page
 736 *         R      Reader page
 737 *         N      Next page
 738 *
 739 * (see __rb_reserve_next() to see where this happens)
 740 *
 741 *  What the above shows is that the reader just swapped out
 742 *  the reader page with a page in the buffer, but before it
 743 *  could make the new header point back to the new page added
 744 *  it was preempted by a writer. The writer moved forward onto
 745 *  the new page added by the reader and is about to move forward
 746 *  again.
 747 *
 748 *  You can see, it is legitimate for the previous pointer of
 749 *  the head (or any page) not to point back to itself. But only
 750 *  temporarially.
 751 */
 752
 753#define RB_PAGE_NORMAL		0UL
 754#define RB_PAGE_HEAD		1UL
 755#define RB_PAGE_UPDATE		2UL
 756
 757
 758#define RB_FLAG_MASK		3UL
 759
 760/* PAGE_MOVED is not part of the mask */
 761#define RB_PAGE_MOVED		4UL
 762
 763/*
 764 * rb_list_head - remove any bit
 765 */
 766static struct list_head *rb_list_head(struct list_head *list)
 767{
 768	unsigned long val = (unsigned long)list;
 769
 770	return (struct list_head *)(val & ~RB_FLAG_MASK);
 771}
 772
 773/*
 774 * rb_is_head_page - test if the given page is the head page
 775 *
 776 * Because the reader may move the head_page pointer, we can
 777 * not trust what the head page is (it may be pointing to
 778 * the reader page). But if the next page is a header page,
 779 * its flags will be non zero.
 780 */
 781static inline int
 782rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
 783		struct buffer_page *page, struct list_head *list)
 784{
 785	unsigned long val;
 786
 787	val = (unsigned long)list->next;
 788
 789	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
 790		return RB_PAGE_MOVED;
 791
 792	return val & RB_FLAG_MASK;
 793}
 794
 795/*
 796 * rb_is_reader_page
 797 *
 798 * The unique thing about the reader page, is that, if the
 799 * writer is ever on it, the previous pointer never points
 800 * back to the reader page.
 801 */
 802static int rb_is_reader_page(struct buffer_page *page)
 803{
 804	struct list_head *list = page->list.prev;
 805
 806	return rb_list_head(list->next) != &page->list;
 807}
 808
 809/*
 810 * rb_set_list_to_head - set a list_head to be pointing to head.
 811 */
 812static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
 813				struct list_head *list)
 814{
 815	unsigned long *ptr;
 816
 817	ptr = (unsigned long *)&list->next;
 818	*ptr |= RB_PAGE_HEAD;
 819	*ptr &= ~RB_PAGE_UPDATE;
 820}
 821
 822/*
 823 * rb_head_page_activate - sets up head page
 824 */
 825static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
 826{
 827	struct buffer_page *head;
 828
 829	head = cpu_buffer->head_page;
 830	if (!head)
 831		return;
 832
 833	/*
 834	 * Set the previous list pointer to have the HEAD flag.
 835	 */
 836	rb_set_list_to_head(cpu_buffer, head->list.prev);
 837}
 838
 839static void rb_list_head_clear(struct list_head *list)
 840{
 841	unsigned long *ptr = (unsigned long *)&list->next;
 842
 843	*ptr &= ~RB_FLAG_MASK;
 844}
 845
 846/*
 847 * rb_head_page_dactivate - clears head page ptr (for free list)
 848 */
 849static void
 850rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
 851{
 852	struct list_head *hd;
 853
 854	/* Go through the whole list and clear any pointers found. */
 855	rb_list_head_clear(cpu_buffer->pages);
 856
 857	list_for_each(hd, cpu_buffer->pages)
 858		rb_list_head_clear(hd);
 859}
 860
 861static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
 862			    struct buffer_page *head,
 863			    struct buffer_page *prev,
 864			    int old_flag, int new_flag)
 865{
 866	struct list_head *list;
 867	unsigned long val = (unsigned long)&head->list;
 868	unsigned long ret;
 869
 870	list = &prev->list;
 871
 872	val &= ~RB_FLAG_MASK;
 873
 874	ret = cmpxchg((unsigned long *)&list->next,
 875		      val | old_flag, val | new_flag);
 876
 877	/* check if the reader took the page */
 878	if ((ret & ~RB_FLAG_MASK) != val)
 879		return RB_PAGE_MOVED;
 880
 881	return ret & RB_FLAG_MASK;
 882}
 883
 884static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
 885				   struct buffer_page *head,
 886				   struct buffer_page *prev,
 887				   int old_flag)
 888{
 889	return rb_head_page_set(cpu_buffer, head, prev,
 890				old_flag, RB_PAGE_UPDATE);
 891}
 892
 893static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
 894				 struct buffer_page *head,
 895				 struct buffer_page *prev,
 896				 int old_flag)
 897{
 898	return rb_head_page_set(cpu_buffer, head, prev,
 899				old_flag, RB_PAGE_HEAD);
 900}
 901
 902static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
 903				   struct buffer_page *head,
 904				   struct buffer_page *prev,
 905				   int old_flag)
 906{
 907	return rb_head_page_set(cpu_buffer, head, prev,
 908				old_flag, RB_PAGE_NORMAL);
 909}
 910
 911static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
 912			       struct buffer_page **bpage)
 913{
 914	struct list_head *p = rb_list_head((*bpage)->list.next);
 915
 916	*bpage = list_entry(p, struct buffer_page, list);
 917}
 918
 919static struct buffer_page *
 920rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
 921{
 922	struct buffer_page *head;
 923	struct buffer_page *page;
 924	struct list_head *list;
 925	int i;
 926
 927	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
 928		return NULL;
 929
 930	/* sanity check */
 931	list = cpu_buffer->pages;
 932	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
 933		return NULL;
 934
 935	page = head = cpu_buffer->head_page;
 936	/*
 937	 * It is possible that the writer moves the header behind
 938	 * where we started, and we miss in one loop.
 939	 * A second loop should grab the header, but we'll do
 940	 * three loops just because I'm paranoid.
 941	 */
 942	for (i = 0; i < 3; i++) {
 943		do {
 944			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
 945				cpu_buffer->head_page = page;
 946				return page;
 947			}
 948			rb_inc_page(cpu_buffer, &page);
 949		} while (page != head);
 950	}
 951
 952	RB_WARN_ON(cpu_buffer, 1);
 953
 954	return NULL;
 955}
 956
 957static int rb_head_page_replace(struct buffer_page *old,
 958				struct buffer_page *new)
 959{
 960	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
 961	unsigned long val;
 962	unsigned long ret;
 963
 964	val = *ptr & ~RB_FLAG_MASK;
 965	val |= RB_PAGE_HEAD;
 966
 967	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
 968
 969	return ret == val;
 970}
 971
 972/*
 973 * rb_tail_page_update - move the tail page forward
 974 *
 975 * Returns 1 if moved tail page, 0 if someone else did.
 976 */
 977static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
 978			       struct buffer_page *tail_page,
 979			       struct buffer_page *next_page)
 980{
 981	struct buffer_page *old_tail;
 982	unsigned long old_entries;
 983	unsigned long old_write;
 984	int ret = 0;
 985
 986	/*
 987	 * The tail page now needs to be moved forward.
 988	 *
 989	 * We need to reset the tail page, but without messing
 990	 * with possible erasing of data brought in by interrupts
 991	 * that have moved the tail page and are currently on it.
 992	 *
 993	 * We add a counter to the write field to denote this.
 994	 */
 995	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
 996	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
 997
 
 998	/*
 999	 * Just make sure we have seen our old_write and synchronize
1000	 * with any interrupts that come in.
1001	 */
1002	barrier();
1003
1004	/*
1005	 * If the tail page is still the same as what we think
1006	 * it is, then it is up to us to update the tail
1007	 * pointer.
1008	 */
1009	if (tail_page == cpu_buffer->tail_page) {
1010		/* Zero the write counter */
1011		unsigned long val = old_write & ~RB_WRITE_MASK;
1012		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1013
1014		/*
1015		 * This will only succeed if an interrupt did
1016		 * not come in and change it. In which case, we
1017		 * do not want to modify it.
1018		 *
1019		 * We add (void) to let the compiler know that we do not care
1020		 * about the return value of these functions. We use the
1021		 * cmpxchg to only update if an interrupt did not already
1022		 * do it for us. If the cmpxchg fails, we don't care.
1023		 */
1024		(void)local_cmpxchg(&next_page->write, old_write, val);
1025		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1026
1027		/*
1028		 * No need to worry about races with clearing out the commit.
1029		 * it only can increment when a commit takes place. But that
1030		 * only happens in the outer most nested commit.
1031		 */
1032		local_set(&next_page->page->commit, 0);
1033
1034		old_tail = cmpxchg(&cpu_buffer->tail_page,
1035				   tail_page, next_page);
1036
1037		if (old_tail == tail_page)
1038			ret = 1;
1039	}
1040
1041	return ret;
1042}
1043
1044static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1045			  struct buffer_page *bpage)
1046{
1047	unsigned long val = (unsigned long)bpage;
1048
1049	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1050		return 1;
1051
1052	return 0;
1053}
1054
1055/**
1056 * rb_check_list - make sure a pointer to a list has the last bits zero
1057 */
1058static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1059			 struct list_head *list)
1060{
1061	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1062		return 1;
1063	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1064		return 1;
1065	return 0;
1066}
1067
1068/**
1069 * rb_check_pages - integrity check of buffer pages
1070 * @cpu_buffer: CPU buffer with pages to test
1071 *
1072 * As a safety measure we check to make sure the data pages have not
1073 * been corrupted.
1074 */
1075static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1076{
1077	struct list_head *head = cpu_buffer->pages;
1078	struct buffer_page *bpage, *tmp;
1079
1080	/* Reset the head page if it exists */
1081	if (cpu_buffer->head_page)
1082		rb_set_head_page(cpu_buffer);
1083
1084	rb_head_page_deactivate(cpu_buffer);
1085
1086	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1087		return -1;
1088	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1089		return -1;
1090
1091	if (rb_check_list(cpu_buffer, head))
1092		return -1;
1093
1094	list_for_each_entry_safe(bpage, tmp, head, list) {
1095		if (RB_WARN_ON(cpu_buffer,
1096			       bpage->list.next->prev != &bpage->list))
1097			return -1;
1098		if (RB_WARN_ON(cpu_buffer,
1099			       bpage->list.prev->next != &bpage->list))
1100			return -1;
1101		if (rb_check_list(cpu_buffer, &bpage->list))
1102			return -1;
1103	}
1104
1105	rb_head_page_activate(cpu_buffer);
1106
1107	return 0;
1108}
1109
1110static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1111{
1112	int i;
1113	struct buffer_page *bpage, *tmp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1114
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1115	for (i = 0; i < nr_pages; i++) {
1116		struct page *page;
1117		/*
1118		 * __GFP_NORETRY flag makes sure that the allocation fails
1119		 * gracefully without invoking oom-killer and the system is
1120		 * not destabilized.
1121		 */
1122		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1123				    GFP_KERNEL | __GFP_NORETRY,
1124				    cpu_to_node(cpu));
1125		if (!bpage)
1126			goto free_pages;
1127
1128		list_add(&bpage->list, pages);
1129
1130		page = alloc_pages_node(cpu_to_node(cpu),
1131					GFP_KERNEL | __GFP_NORETRY, 0);
1132		if (!page)
1133			goto free_pages;
1134		bpage->page = page_address(page);
1135		rb_init_page(bpage->page);
 
 
 
1136	}
 
 
1137
1138	return 0;
1139
1140free_pages:
1141	list_for_each_entry_safe(bpage, tmp, pages, list) {
1142		list_del_init(&bpage->list);
1143		free_buffer_page(bpage);
1144	}
 
 
1145
1146	return -ENOMEM;
1147}
1148
1149static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1150			     unsigned nr_pages)
1151{
1152	LIST_HEAD(pages);
1153
1154	WARN_ON(!nr_pages);
1155
1156	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1157		return -ENOMEM;
1158
1159	/*
1160	 * The ring buffer page list is a circular list that does not
1161	 * start and end with a list head. All page list items point to
1162	 * other pages.
1163	 */
1164	cpu_buffer->pages = pages.next;
1165	list_del(&pages);
1166
1167	cpu_buffer->nr_pages = nr_pages;
1168
1169	rb_check_pages(cpu_buffer);
1170
1171	return 0;
1172}
1173
1174static struct ring_buffer_per_cpu *
1175rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1176{
1177	struct ring_buffer_per_cpu *cpu_buffer;
1178	struct buffer_page *bpage;
1179	struct page *page;
1180	int ret;
1181
1182	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1183				  GFP_KERNEL, cpu_to_node(cpu));
1184	if (!cpu_buffer)
1185		return NULL;
1186
1187	cpu_buffer->cpu = cpu;
1188	cpu_buffer->buffer = buffer;
1189	raw_spin_lock_init(&cpu_buffer->reader_lock);
1190	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1191	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1192	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1193	init_completion(&cpu_buffer->update_done);
1194	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1195	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
 
1196
1197	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1198			    GFP_KERNEL, cpu_to_node(cpu));
1199	if (!bpage)
1200		goto fail_free_buffer;
1201
1202	rb_check_bpage(cpu_buffer, bpage);
1203
1204	cpu_buffer->reader_page = bpage;
1205	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1206	if (!page)
1207		goto fail_free_reader;
1208	bpage->page = page_address(page);
1209	rb_init_page(bpage->page);
1210
1211	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1212	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1213
1214	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1215	if (ret < 0)
1216		goto fail_free_reader;
1217
1218	cpu_buffer->head_page
1219		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1220	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1221
1222	rb_head_page_activate(cpu_buffer);
1223
1224	return cpu_buffer;
1225
1226 fail_free_reader:
1227	free_buffer_page(cpu_buffer->reader_page);
1228
1229 fail_free_buffer:
1230	kfree(cpu_buffer);
1231	return NULL;
1232}
1233
1234static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1235{
1236	struct list_head *head = cpu_buffer->pages;
1237	struct buffer_page *bpage, *tmp;
1238
1239	free_buffer_page(cpu_buffer->reader_page);
1240
1241	rb_head_page_deactivate(cpu_buffer);
1242
1243	if (head) {
1244		list_for_each_entry_safe(bpage, tmp, head, list) {
1245			list_del_init(&bpage->list);
1246			free_buffer_page(bpage);
1247		}
1248		bpage = list_entry(head, struct buffer_page, list);
1249		free_buffer_page(bpage);
1250	}
1251
1252	kfree(cpu_buffer);
1253}
1254
1255#ifdef CONFIG_HOTPLUG_CPU
1256static int rb_cpu_notify(struct notifier_block *self,
1257			 unsigned long action, void *hcpu);
1258#endif
1259
1260/**
1261 * __ring_buffer_alloc - allocate a new ring_buffer
1262 * @size: the size in bytes per cpu that is needed.
1263 * @flags: attributes to set for the ring buffer.
 
1264 *
1265 * Currently the only flag that is available is the RB_FL_OVERWRITE
1266 * flag. This flag means that the buffer will overwrite old data
1267 * when the buffer wraps. If this flag is not set, the buffer will
1268 * drop data when the tail hits the head.
1269 */
1270struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1271					struct lock_class_key *key)
1272{
1273	struct ring_buffer *buffer;
 
1274	int bsize;
1275	int cpu, nr_pages;
 
1276
1277	/* keep it in its own cache line */
1278	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1279			 GFP_KERNEL);
1280	if (!buffer)
1281		return NULL;
1282
1283	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1284		goto fail_free_buffer;
1285
1286	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1287	buffer->flags = flags;
1288	buffer->clock = trace_clock_local;
1289	buffer->reader_lock_key = key;
1290
1291	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1292	init_waitqueue_head(&buffer->irq_work.waiters);
1293
1294	/* need at least two pages */
1295	if (nr_pages < 2)
1296		nr_pages = 2;
1297
1298	/*
1299	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1300	 * in early initcall, it will not be notified of secondary cpus.
1301	 * In that off case, we need to allocate for all possible cpus.
1302	 */
1303#ifdef CONFIG_HOTPLUG_CPU
1304	cpu_notifier_register_begin();
1305	cpumask_copy(buffer->cpumask, cpu_online_mask);
1306#else
1307	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1308#endif
1309	buffer->cpus = nr_cpu_ids;
1310
1311	bsize = sizeof(void *) * nr_cpu_ids;
1312	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1313				  GFP_KERNEL);
1314	if (!buffer->buffers)
1315		goto fail_free_cpumask;
1316
1317	for_each_buffer_cpu(buffer, cpu) {
1318		buffer->buffers[cpu] =
1319			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1320		if (!buffer->buffers[cpu])
1321			goto fail_free_buffers;
1322	}
1323
1324#ifdef CONFIG_HOTPLUG_CPU
1325	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1326	buffer->cpu_notify.priority = 0;
1327	__register_cpu_notifier(&buffer->cpu_notify);
1328	cpu_notifier_register_done();
1329#endif
1330
1331	mutex_init(&buffer->mutex);
1332
1333	return buffer;
1334
1335 fail_free_buffers:
1336	for_each_buffer_cpu(buffer, cpu) {
1337		if (buffer->buffers[cpu])
1338			rb_free_cpu_buffer(buffer->buffers[cpu]);
1339	}
1340	kfree(buffer->buffers);
1341
1342 fail_free_cpumask:
1343	free_cpumask_var(buffer->cpumask);
1344#ifdef CONFIG_HOTPLUG_CPU
1345	cpu_notifier_register_done();
1346#endif
1347
1348 fail_free_buffer:
1349	kfree(buffer);
1350	return NULL;
1351}
1352EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1353
1354/**
1355 * ring_buffer_free - free a ring buffer.
1356 * @buffer: the buffer to free.
1357 */
1358void
1359ring_buffer_free(struct ring_buffer *buffer)
1360{
1361	int cpu;
1362
1363#ifdef CONFIG_HOTPLUG_CPU
1364	cpu_notifier_register_begin();
1365	__unregister_cpu_notifier(&buffer->cpu_notify);
1366#endif
1367
1368	for_each_buffer_cpu(buffer, cpu)
1369		rb_free_cpu_buffer(buffer->buffers[cpu]);
1370
1371#ifdef CONFIG_HOTPLUG_CPU
1372	cpu_notifier_register_done();
1373#endif
1374
1375	kfree(buffer->buffers);
1376	free_cpumask_var(buffer->cpumask);
1377
1378	kfree(buffer);
1379}
1380EXPORT_SYMBOL_GPL(ring_buffer_free);
1381
1382void ring_buffer_set_clock(struct ring_buffer *buffer,
1383			   u64 (*clock)(void))
1384{
1385	buffer->clock = clock;
1386}
1387
 
 
 
 
 
 
 
 
 
 
1388static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1389
1390static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1391{
1392	return local_read(&bpage->entries) & RB_WRITE_MASK;
1393}
1394
1395static inline unsigned long rb_page_write(struct buffer_page *bpage)
1396{
1397	return local_read(&bpage->write) & RB_WRITE_MASK;
1398}
1399
1400static int
1401rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1402{
1403	struct list_head *tail_page, *to_remove, *next_page;
1404	struct buffer_page *to_remove_page, *tmp_iter_page;
1405	struct buffer_page *last_page, *first_page;
1406	unsigned int nr_removed;
1407	unsigned long head_bit;
1408	int page_entries;
1409
1410	head_bit = 0;
1411
1412	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1413	atomic_inc(&cpu_buffer->record_disabled);
1414	/*
1415	 * We don't race with the readers since we have acquired the reader
1416	 * lock. We also don't race with writers after disabling recording.
1417	 * This makes it easy to figure out the first and the last page to be
1418	 * removed from the list. We unlink all the pages in between including
1419	 * the first and last pages. This is done in a busy loop so that we
1420	 * lose the least number of traces.
1421	 * The pages are freed after we restart recording and unlock readers.
1422	 */
1423	tail_page = &cpu_buffer->tail_page->list;
1424
1425	/*
1426	 * tail page might be on reader page, we remove the next page
1427	 * from the ring buffer
1428	 */
1429	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1430		tail_page = rb_list_head(tail_page->next);
1431	to_remove = tail_page;
1432
1433	/* start of pages to remove */
1434	first_page = list_entry(rb_list_head(to_remove->next),
1435				struct buffer_page, list);
1436
1437	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1438		to_remove = rb_list_head(to_remove)->next;
1439		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1440	}
1441
1442	next_page = rb_list_head(to_remove)->next;
1443
1444	/*
1445	 * Now we remove all pages between tail_page and next_page.
1446	 * Make sure that we have head_bit value preserved for the
1447	 * next page
1448	 */
1449	tail_page->next = (struct list_head *)((unsigned long)next_page |
1450						head_bit);
1451	next_page = rb_list_head(next_page);
1452	next_page->prev = tail_page;
1453
1454	/* make sure pages points to a valid page in the ring buffer */
1455	cpu_buffer->pages = next_page;
1456
1457	/* update head page */
1458	if (head_bit)
1459		cpu_buffer->head_page = list_entry(next_page,
1460						struct buffer_page, list);
1461
1462	/*
1463	 * change read pointer to make sure any read iterators reset
1464	 * themselves
1465	 */
1466	cpu_buffer->read = 0;
1467
1468	/* pages are removed, resume tracing and then free the pages */
1469	atomic_dec(&cpu_buffer->record_disabled);
1470	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1471
1472	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1473
1474	/* last buffer page to remove */
1475	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1476				list);
1477	tmp_iter_page = first_page;
1478
1479	do {
 
 
1480		to_remove_page = tmp_iter_page;
1481		rb_inc_page(cpu_buffer, &tmp_iter_page);
1482
1483		/* update the counters */
1484		page_entries = rb_page_entries(to_remove_page);
1485		if (page_entries) {
1486			/*
1487			 * If something was added to this page, it was full
1488			 * since it is not the tail page. So we deduct the
1489			 * bytes consumed in ring buffer from here.
1490			 * Increment overrun to account for the lost events.
1491			 */
1492			local_add(page_entries, &cpu_buffer->overrun);
1493			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1494		}
1495
1496		/*
1497		 * We have already removed references to this list item, just
1498		 * free up the buffer_page and its page
1499		 */
1500		free_buffer_page(to_remove_page);
1501		nr_removed--;
1502
1503	} while (to_remove_page != last_page);
1504
1505	RB_WARN_ON(cpu_buffer, nr_removed);
1506
1507	return nr_removed == 0;
1508}
1509
1510static int
1511rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1512{
1513	struct list_head *pages = &cpu_buffer->new_pages;
1514	int retries, success;
1515
1516	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1517	/*
1518	 * We are holding the reader lock, so the reader page won't be swapped
1519	 * in the ring buffer. Now we are racing with the writer trying to
1520	 * move head page and the tail page.
1521	 * We are going to adapt the reader page update process where:
1522	 * 1. We first splice the start and end of list of new pages between
1523	 *    the head page and its previous page.
1524	 * 2. We cmpxchg the prev_page->next to point from head page to the
1525	 *    start of new pages list.
1526	 * 3. Finally, we update the head->prev to the end of new list.
1527	 *
1528	 * We will try this process 10 times, to make sure that we don't keep
1529	 * spinning.
1530	 */
1531	retries = 10;
1532	success = 0;
1533	while (retries--) {
1534		struct list_head *head_page, *prev_page, *r;
1535		struct list_head *last_page, *first_page;
1536		struct list_head *head_page_with_bit;
1537
1538		head_page = &rb_set_head_page(cpu_buffer)->list;
1539		if (!head_page)
1540			break;
1541		prev_page = head_page->prev;
1542
1543		first_page = pages->next;
1544		last_page  = pages->prev;
1545
1546		head_page_with_bit = (struct list_head *)
1547				     ((unsigned long)head_page | RB_PAGE_HEAD);
1548
1549		last_page->next = head_page_with_bit;
1550		first_page->prev = prev_page;
1551
1552		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1553
1554		if (r == head_page_with_bit) {
1555			/*
1556			 * yay, we replaced the page pointer to our new list,
1557			 * now, we just have to update to head page's prev
1558			 * pointer to point to end of list
1559			 */
1560			head_page->prev = last_page;
1561			success = 1;
1562			break;
1563		}
1564	}
1565
1566	if (success)
1567		INIT_LIST_HEAD(pages);
1568	/*
1569	 * If we weren't successful in adding in new pages, warn and stop
1570	 * tracing
1571	 */
1572	RB_WARN_ON(cpu_buffer, !success);
1573	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1574
1575	/* free pages if they weren't inserted */
1576	if (!success) {
1577		struct buffer_page *bpage, *tmp;
1578		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1579					 list) {
1580			list_del_init(&bpage->list);
1581			free_buffer_page(bpage);
1582		}
1583	}
1584	return success;
1585}
1586
1587static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1588{
1589	int success;
1590
1591	if (cpu_buffer->nr_pages_to_update > 0)
1592		success = rb_insert_pages(cpu_buffer);
1593	else
1594		success = rb_remove_pages(cpu_buffer,
1595					-cpu_buffer->nr_pages_to_update);
1596
1597	if (success)
1598		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1599}
1600
1601static void update_pages_handler(struct work_struct *work)
1602{
1603	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1604			struct ring_buffer_per_cpu, update_pages_work);
1605	rb_update_pages(cpu_buffer);
1606	complete(&cpu_buffer->update_done);
1607}
1608
1609/**
1610 * ring_buffer_resize - resize the ring buffer
1611 * @buffer: the buffer to resize.
1612 * @size: the new size.
1613 * @cpu_id: the cpu buffer to resize
1614 *
1615 * Minimum size is 2 * BUF_PAGE_SIZE.
1616 *
1617 * Returns 0 on success and < 0 on failure.
1618 */
1619int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1620			int cpu_id)
1621{
1622	struct ring_buffer_per_cpu *cpu_buffer;
1623	unsigned nr_pages;
1624	int cpu, err = 0;
1625
1626	/*
1627	 * Always succeed at resizing a non-existent buffer:
1628	 */
1629	if (!buffer)
1630		return size;
1631
1632	/* Make sure the requested buffer exists */
1633	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1634	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1635		return size;
1636
1637	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1638	size *= BUF_PAGE_SIZE;
1639
1640	/* we need a minimum of two pages */
1641	if (size < BUF_PAGE_SIZE * 2)
1642		size = BUF_PAGE_SIZE * 2;
1643
1644	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1645
1646	/*
1647	 * Don't succeed if resizing is disabled, as a reader might be
1648	 * manipulating the ring buffer and is expecting a sane state while
1649	 * this is true.
1650	 */
1651	if (atomic_read(&buffer->resize_disabled))
1652		return -EBUSY;
1653
1654	/* prevent another thread from changing buffer sizes */
1655	mutex_lock(&buffer->mutex);
1656
 
1657	if (cpu_id == RING_BUFFER_ALL_CPUS) {
 
 
 
 
 
 
 
 
 
 
 
 
 
1658		/* calculate the pages to update */
1659		for_each_buffer_cpu(buffer, cpu) {
1660			cpu_buffer = buffer->buffers[cpu];
1661
1662			cpu_buffer->nr_pages_to_update = nr_pages -
1663							cpu_buffer->nr_pages;
1664			/*
1665			 * nothing more to do for removing pages or no update
1666			 */
1667			if (cpu_buffer->nr_pages_to_update <= 0)
1668				continue;
1669			/*
1670			 * to add pages, make sure all new pages can be
1671			 * allocated without receiving ENOMEM
1672			 */
1673			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1674			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1675						&cpu_buffer->new_pages, cpu)) {
1676				/* not enough memory for new pages */
1677				err = -ENOMEM;
1678				goto out_err;
1679			}
1680		}
1681
1682		get_online_cpus();
1683		/*
1684		 * Fire off all the required work handlers
1685		 * We can't schedule on offline CPUs, but it's not necessary
1686		 * since we can change their buffer sizes without any race.
1687		 */
1688		for_each_buffer_cpu(buffer, cpu) {
1689			cpu_buffer = buffer->buffers[cpu];
1690			if (!cpu_buffer->nr_pages_to_update)
1691				continue;
1692
1693			/* The update must run on the CPU that is being updated. */
1694			preempt_disable();
1695			if (cpu == smp_processor_id() || !cpu_online(cpu)) {
1696				rb_update_pages(cpu_buffer);
1697				cpu_buffer->nr_pages_to_update = 0;
1698			} else {
1699				/*
1700				 * Can not disable preemption for schedule_work_on()
1701				 * on PREEMPT_RT.
1702				 */
1703				preempt_enable();
1704				schedule_work_on(cpu,
1705						&cpu_buffer->update_pages_work);
1706				preempt_disable();
1707			}
1708			preempt_enable();
1709		}
1710
1711		/* wait for all the updates to complete */
1712		for_each_buffer_cpu(buffer, cpu) {
1713			cpu_buffer = buffer->buffers[cpu];
1714			if (!cpu_buffer->nr_pages_to_update)
1715				continue;
1716
1717			if (cpu_online(cpu))
1718				wait_for_completion(&cpu_buffer->update_done);
1719			cpu_buffer->nr_pages_to_update = 0;
1720		}
1721
1722		put_online_cpus();
1723	} else {
1724		/* Make sure this CPU has been intitialized */
1725		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1726			goto out;
1727
1728		cpu_buffer = buffer->buffers[cpu_id];
1729
1730		if (nr_pages == cpu_buffer->nr_pages)
1731			goto out;
1732
 
 
 
 
 
 
 
 
 
 
1733		cpu_buffer->nr_pages_to_update = nr_pages -
1734						cpu_buffer->nr_pages;
1735
1736		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1737		if (cpu_buffer->nr_pages_to_update > 0 &&
1738			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1739					    &cpu_buffer->new_pages, cpu_id)) {
1740			err = -ENOMEM;
1741			goto out_err;
1742		}
1743
1744		get_online_cpus();
1745
1746		preempt_disable();
1747		/* The update must run on the CPU that is being updated. */
1748		if (cpu_id == smp_processor_id() || !cpu_online(cpu_id))
1749			rb_update_pages(cpu_buffer);
1750		else {
1751			/*
1752			 * Can not disable preemption for schedule_work_on()
1753			 * on PREEMPT_RT.
1754			 */
1755			preempt_enable();
1756			schedule_work_on(cpu_id,
1757					 &cpu_buffer->update_pages_work);
1758			wait_for_completion(&cpu_buffer->update_done);
1759			preempt_disable();
1760		}
1761		preempt_enable();
1762
1763		cpu_buffer->nr_pages_to_update = 0;
1764		put_online_cpus();
1765	}
1766
1767 out:
1768	/*
1769	 * The ring buffer resize can happen with the ring buffer
1770	 * enabled, so that the update disturbs the tracing as little
1771	 * as possible. But if the buffer is disabled, we do not need
1772	 * to worry about that, and we can take the time to verify
1773	 * that the buffer is not corrupt.
1774	 */
1775	if (atomic_read(&buffer->record_disabled)) {
1776		atomic_inc(&buffer->record_disabled);
1777		/*
1778		 * Even though the buffer was disabled, we must make sure
1779		 * that it is truly disabled before calling rb_check_pages.
1780		 * There could have been a race between checking
1781		 * record_disable and incrementing it.
1782		 */
1783		synchronize_sched();
1784		for_each_buffer_cpu(buffer, cpu) {
1785			cpu_buffer = buffer->buffers[cpu];
1786			rb_check_pages(cpu_buffer);
1787		}
1788		atomic_dec(&buffer->record_disabled);
1789	}
1790
1791	mutex_unlock(&buffer->mutex);
1792	return size;
1793
1794 out_err:
1795	for_each_buffer_cpu(buffer, cpu) {
1796		struct buffer_page *bpage, *tmp;
1797
1798		cpu_buffer = buffer->buffers[cpu];
1799		cpu_buffer->nr_pages_to_update = 0;
1800
1801		if (list_empty(&cpu_buffer->new_pages))
1802			continue;
1803
1804		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1805					list) {
1806			list_del_init(&bpage->list);
1807			free_buffer_page(bpage);
1808		}
1809	}
 
1810	mutex_unlock(&buffer->mutex);
1811	return err;
1812}
1813EXPORT_SYMBOL_GPL(ring_buffer_resize);
1814
1815void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1816{
1817	mutex_lock(&buffer->mutex);
1818	if (val)
1819		buffer->flags |= RB_FL_OVERWRITE;
1820	else
1821		buffer->flags &= ~RB_FL_OVERWRITE;
1822	mutex_unlock(&buffer->mutex);
1823}
1824EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1825
1826static inline void *
1827__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1828{
1829	return bpage->data + index;
1830}
1831
1832static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1833{
1834	return bpage->page->data + index;
1835}
1836
1837static inline struct ring_buffer_event *
1838rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1839{
1840	return __rb_page_index(cpu_buffer->reader_page,
1841			       cpu_buffer->reader_page->read);
1842}
1843
1844static inline struct ring_buffer_event *
1845rb_iter_head_event(struct ring_buffer_iter *iter)
1846{
1847	return __rb_page_index(iter->head_page, iter->head);
1848}
1849
1850static inline unsigned rb_page_commit(struct buffer_page *bpage)
 
1851{
1852	return local_read(&bpage->page->commit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1853}
1854
1855/* Size is determined by what has been committed */
1856static inline unsigned rb_page_size(struct buffer_page *bpage)
1857{
1858	return rb_page_commit(bpage);
1859}
1860
1861static inline unsigned
1862rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1863{
1864	return rb_page_commit(cpu_buffer->commit_page);
1865}
1866
1867static inline unsigned
1868rb_event_index(struct ring_buffer_event *event)
1869{
1870	unsigned long addr = (unsigned long)event;
1871
1872	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1873}
1874
1875static inline int
1876rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1877		   struct ring_buffer_event *event)
1878{
1879	unsigned long addr = (unsigned long)event;
1880	unsigned long index;
1881
1882	index = rb_event_index(event);
1883	addr &= PAGE_MASK;
1884
1885	return cpu_buffer->commit_page->page == (void *)addr &&
1886		rb_commit_index(cpu_buffer) == index;
1887}
1888
1889static void
1890rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1891{
1892	unsigned long max_count;
1893
1894	/*
1895	 * We only race with interrupts and NMIs on this CPU.
1896	 * If we own the commit event, then we can commit
1897	 * all others that interrupted us, since the interruptions
1898	 * are in stack format (they finish before they come
1899	 * back to us). This allows us to do a simple loop to
1900	 * assign the commit to the tail.
1901	 */
1902 again:
1903	max_count = cpu_buffer->nr_pages * 100;
1904
1905	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1906		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1907			return;
1908		if (RB_WARN_ON(cpu_buffer,
1909			       rb_is_reader_page(cpu_buffer->tail_page)))
1910			return;
1911		local_set(&cpu_buffer->commit_page->page->commit,
1912			  rb_page_write(cpu_buffer->commit_page));
1913		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1914		cpu_buffer->write_stamp =
1915			cpu_buffer->commit_page->page->time_stamp;
1916		/* add barrier to keep gcc from optimizing too much */
1917		barrier();
1918	}
1919	while (rb_commit_index(cpu_buffer) !=
1920	       rb_page_write(cpu_buffer->commit_page)) {
1921
1922		local_set(&cpu_buffer->commit_page->page->commit,
1923			  rb_page_write(cpu_buffer->commit_page));
1924		RB_WARN_ON(cpu_buffer,
1925			   local_read(&cpu_buffer->commit_page->page->commit) &
1926			   ~RB_WRITE_MASK);
1927		barrier();
1928	}
1929
1930	/* again, keep gcc from optimizing */
1931	barrier();
1932
1933	/*
1934	 * If an interrupt came in just after the first while loop
1935	 * and pushed the tail page forward, we will be left with
1936	 * a dangling commit that will never go forward.
1937	 */
1938	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1939		goto again;
1940}
1941
1942static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1943{
1944	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1945	cpu_buffer->reader_page->read = 0;
1946}
1947
1948static void rb_inc_iter(struct ring_buffer_iter *iter)
1949{
1950	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1951
1952	/*
1953	 * The iterator could be on the reader page (it starts there).
1954	 * But the head could have moved, since the reader was
1955	 * found. Check for this case and assign the iterator
1956	 * to the head page instead of next.
1957	 */
1958	if (iter->head_page == cpu_buffer->reader_page)
1959		iter->head_page = rb_set_head_page(cpu_buffer);
1960	else
1961		rb_inc_page(cpu_buffer, &iter->head_page);
1962
1963	iter->read_stamp = iter->head_page->page->time_stamp;
1964	iter->head = 0;
1965}
1966
1967/* Slow path, do not inline */
1968static noinline struct ring_buffer_event *
1969rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1970{
1971	event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1972
1973	/* Not the first event on the page? */
1974	if (rb_event_index(event)) {
1975		event->time_delta = delta & TS_MASK;
1976		event->array[0] = delta >> TS_SHIFT;
1977	} else {
1978		/* nope, just zero it */
1979		event->time_delta = 0;
1980		event->array[0] = 0;
1981	}
1982
1983	return skip_time_extend(event);
1984}
1985
1986/**
1987 * rb_update_event - update event type and data
1988 * @event: the even to update
1989 * @type: the type of event
1990 * @length: the size of the event field in the ring buffer
1991 *
1992 * Update the type and data fields of the event. The length
1993 * is the actual size that is written to the ring buffer,
1994 * and with this, we can determine what to place into the
1995 * data field.
1996 */
1997static void
1998rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1999		struct ring_buffer_event *event, unsigned length,
2000		int add_timestamp, u64 delta)
2001{
2002	/* Only a commit updates the timestamp */
2003	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2004		delta = 0;
2005
2006	/*
2007	 * If we need to add a timestamp, then we
2008	 * add it to the start of the resevered space.
2009	 */
2010	if (unlikely(add_timestamp)) {
2011		event = rb_add_time_stamp(event, delta);
2012		length -= RB_LEN_TIME_EXTEND;
2013		delta = 0;
2014	}
2015
2016	event->time_delta = delta;
2017	length -= RB_EVNT_HDR_SIZE;
2018	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2019		event->type_len = 0;
2020		event->array[0] = length;
2021	} else
2022		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2023}
2024
2025/*
2026 * rb_handle_head_page - writer hit the head page
2027 *
2028 * Returns: +1 to retry page
2029 *           0 to continue
2030 *          -1 on error
2031 */
2032static int
2033rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2034		    struct buffer_page *tail_page,
2035		    struct buffer_page *next_page)
2036{
2037	struct buffer_page *new_head;
2038	int entries;
2039	int type;
2040	int ret;
2041
2042	entries = rb_page_entries(next_page);
2043
2044	/*
2045	 * The hard part is here. We need to move the head
2046	 * forward, and protect against both readers on
2047	 * other CPUs and writers coming in via interrupts.
2048	 */
2049	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2050				       RB_PAGE_HEAD);
2051
2052	/*
2053	 * type can be one of four:
2054	 *  NORMAL - an interrupt already moved it for us
2055	 *  HEAD   - we are the first to get here.
2056	 *  UPDATE - we are the interrupt interrupting
2057	 *           a current move.
2058	 *  MOVED  - a reader on another CPU moved the next
2059	 *           pointer to its reader page. Give up
2060	 *           and try again.
2061	 */
2062
2063	switch (type) {
2064	case RB_PAGE_HEAD:
2065		/*
2066		 * We changed the head to UPDATE, thus
2067		 * it is our responsibility to update
2068		 * the counters.
2069		 */
2070		local_add(entries, &cpu_buffer->overrun);
2071		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2072
2073		/*
2074		 * The entries will be zeroed out when we move the
2075		 * tail page.
2076		 */
2077
2078		/* still more to do */
2079		break;
2080
2081	case RB_PAGE_UPDATE:
2082		/*
2083		 * This is an interrupt that interrupt the
2084		 * previous update. Still more to do.
2085		 */
2086		break;
2087	case RB_PAGE_NORMAL:
2088		/*
2089		 * An interrupt came in before the update
2090		 * and processed this for us.
2091		 * Nothing left to do.
2092		 */
2093		return 1;
2094	case RB_PAGE_MOVED:
2095		/*
2096		 * The reader is on another CPU and just did
2097		 * a swap with our next_page.
2098		 * Try again.
2099		 */
2100		return 1;
2101	default:
2102		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2103		return -1;
2104	}
2105
2106	/*
2107	 * Now that we are here, the old head pointer is
2108	 * set to UPDATE. This will keep the reader from
2109	 * swapping the head page with the reader page.
2110	 * The reader (on another CPU) will spin till
2111	 * we are finished.
2112	 *
2113	 * We just need to protect against interrupts
2114	 * doing the job. We will set the next pointer
2115	 * to HEAD. After that, we set the old pointer
2116	 * to NORMAL, but only if it was HEAD before.
2117	 * otherwise we are an interrupt, and only
2118	 * want the outer most commit to reset it.
2119	 */
2120	new_head = next_page;
2121	rb_inc_page(cpu_buffer, &new_head);
2122
2123	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2124				    RB_PAGE_NORMAL);
2125
2126	/*
2127	 * Valid returns are:
2128	 *  HEAD   - an interrupt came in and already set it.
2129	 *  NORMAL - One of two things:
2130	 *            1) We really set it.
2131	 *            2) A bunch of interrupts came in and moved
2132	 *               the page forward again.
2133	 */
2134	switch (ret) {
2135	case RB_PAGE_HEAD:
2136	case RB_PAGE_NORMAL:
2137		/* OK */
2138		break;
2139	default:
2140		RB_WARN_ON(cpu_buffer, 1);
2141		return -1;
2142	}
2143
2144	/*
2145	 * It is possible that an interrupt came in,
2146	 * set the head up, then more interrupts came in
2147	 * and moved it again. When we get back here,
2148	 * the page would have been set to NORMAL but we
2149	 * just set it back to HEAD.
2150	 *
2151	 * How do you detect this? Well, if that happened
2152	 * the tail page would have moved.
2153	 */
2154	if (ret == RB_PAGE_NORMAL) {
 
 
 
2155		/*
2156		 * If the tail had moved passed next, then we need
2157		 * to reset the pointer.
2158		 */
2159		if (cpu_buffer->tail_page != tail_page &&
2160		    cpu_buffer->tail_page != next_page)
2161			rb_head_page_set_normal(cpu_buffer, new_head,
2162						next_page,
2163						RB_PAGE_HEAD);
2164	}
2165
2166	/*
2167	 * If this was the outer most commit (the one that
2168	 * changed the original pointer from HEAD to UPDATE),
2169	 * then it is up to us to reset it to NORMAL.
2170	 */
2171	if (type == RB_PAGE_HEAD) {
2172		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2173					      tail_page,
2174					      RB_PAGE_UPDATE);
2175		if (RB_WARN_ON(cpu_buffer,
2176			       ret != RB_PAGE_UPDATE))
2177			return -1;
2178	}
2179
2180	return 0;
2181}
2182
2183static unsigned rb_calculate_event_length(unsigned length)
2184{
2185	struct ring_buffer_event event; /* Used only for sizeof array */
2186
2187	/* zero length can cause confusions */
2188	if (!length)
2189		length = 1;
2190
2191	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2192		length += sizeof(event.array[0]);
2193
2194	length += RB_EVNT_HDR_SIZE;
2195	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2196
2197	return length;
2198}
2199
2200static inline void
2201rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2202	      struct buffer_page *tail_page,
2203	      unsigned long tail, unsigned long length)
2204{
 
2205	struct ring_buffer_event *event;
 
2206
2207	/*
2208	 * Only the event that crossed the page boundary
2209	 * must fill the old tail_page with padding.
2210	 */
2211	if (tail >= BUF_PAGE_SIZE) {
2212		/*
2213		 * If the page was filled, then we still need
2214		 * to update the real_end. Reset it to zero
2215		 * and the reader will ignore it.
2216		 */
2217		if (tail == BUF_PAGE_SIZE)
2218			tail_page->real_end = 0;
2219
2220		local_sub(length, &tail_page->write);
2221		return;
2222	}
2223
2224	event = __rb_page_index(tail_page, tail);
2225	kmemcheck_annotate_bitfield(event, bitfield);
2226
2227	/* account for padding bytes */
2228	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2229
2230	/*
2231	 * Save the original length to the meta data.
2232	 * This will be used by the reader to add lost event
2233	 * counter.
2234	 */
2235	tail_page->real_end = tail;
2236
2237	/*
2238	 * If this event is bigger than the minimum size, then
2239	 * we need to be careful that we don't subtract the
2240	 * write counter enough to allow another writer to slip
2241	 * in on this page.
2242	 * We put in a discarded commit instead, to make sure
2243	 * that this space is not used again.
2244	 *
2245	 * If we are less than the minimum size, we don't need to
2246	 * worry about it.
2247	 */
2248	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2249		/* No room for any events */
2250
2251		/* Mark the rest of the page with padding */
2252		rb_event_set_padding(event);
2253
2254		/* Set the write back to the previous setting */
2255		local_sub(length, &tail_page->write);
2256		return;
2257	}
2258
2259	/* Put in a discarded event */
2260	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2261	event->type_len = RINGBUF_TYPE_PADDING;
2262	/* time delta must be non zero */
2263	event->time_delta = 1;
2264
2265	/* Set write to end of buffer */
2266	length = (tail + length) - BUF_PAGE_SIZE;
2267	local_sub(length, &tail_page->write);
2268}
2269
 
 
2270/*
2271 * This is the slow path, force gcc not to inline it.
2272 */
2273static noinline struct ring_buffer_event *
2274rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2275	     unsigned long length, unsigned long tail,
2276	     struct buffer_page *tail_page, u64 ts)
2277{
 
2278	struct buffer_page *commit_page = cpu_buffer->commit_page;
2279	struct ring_buffer *buffer = cpu_buffer->buffer;
2280	struct buffer_page *next_page;
2281	int ret;
2282
2283	next_page = tail_page;
2284
2285	rb_inc_page(cpu_buffer, &next_page);
2286
2287	/*
2288	 * If for some reason, we had an interrupt storm that made
2289	 * it all the way around the buffer, bail, and warn
2290	 * about it.
2291	 */
2292	if (unlikely(next_page == commit_page)) {
2293		local_inc(&cpu_buffer->commit_overrun);
2294		goto out_reset;
2295	}
2296
2297	/*
2298	 * This is where the fun begins!
2299	 *
2300	 * We are fighting against races between a reader that
2301	 * could be on another CPU trying to swap its reader
2302	 * page with the buffer head.
2303	 *
2304	 * We are also fighting against interrupts coming in and
2305	 * moving the head or tail on us as well.
2306	 *
2307	 * If the next page is the head page then we have filled
2308	 * the buffer, unless the commit page is still on the
2309	 * reader page.
2310	 */
2311	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2312
2313		/*
2314		 * If the commit is not on the reader page, then
2315		 * move the header page.
2316		 */
2317		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2318			/*
2319			 * If we are not in overwrite mode,
2320			 * this is easy, just stop here.
2321			 */
2322			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2323				local_inc(&cpu_buffer->dropped_events);
2324				goto out_reset;
2325			}
2326
2327			ret = rb_handle_head_page(cpu_buffer,
2328						  tail_page,
2329						  next_page);
2330			if (ret < 0)
2331				goto out_reset;
2332			if (ret)
2333				goto out_again;
2334		} else {
2335			/*
2336			 * We need to be careful here too. The
2337			 * commit page could still be on the reader
2338			 * page. We could have a small buffer, and
2339			 * have filled up the buffer with events
2340			 * from interrupts and such, and wrapped.
2341			 *
2342			 * Note, if the tail page is also the on the
2343			 * reader_page, we let it move out.
2344			 */
2345			if (unlikely((cpu_buffer->commit_page !=
2346				      cpu_buffer->tail_page) &&
2347				     (cpu_buffer->commit_page ==
2348				      cpu_buffer->reader_page))) {
2349				local_inc(&cpu_buffer->commit_overrun);
2350				goto out_reset;
2351			}
2352		}
2353	}
2354
2355	ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2356	if (ret) {
2357		/*
2358		 * Nested commits always have zero deltas, so
2359		 * just reread the time stamp
2360		 */
2361		ts = rb_time_stamp(buffer);
2362		next_page->page->time_stamp = ts;
2363	}
2364
2365 out_again:
2366
2367	rb_reset_tail(cpu_buffer, tail_page, tail, length);
 
 
 
 
 
2368
2369	/* fail and let the caller try again */
2370	return ERR_PTR(-EAGAIN);
2371
2372 out_reset:
2373	/* reset write */
2374	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2375
2376	return NULL;
2377}
2378
 
2379static struct ring_buffer_event *
2380__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2381		  unsigned long length, u64 ts,
2382		  u64 delta, int add_timestamp)
2383{
2384	struct buffer_page *tail_page;
2385	struct ring_buffer_event *event;
2386	unsigned long tail, write;
 
2387
2388	/*
2389	 * If the time delta since the last event is too big to
2390	 * hold in the time field of the event, then we append a
2391	 * TIME EXTEND event ahead of the data event.
2392	 */
2393	if (unlikely(add_timestamp))
2394		length += RB_LEN_TIME_EXTEND;
 
 
2395
2396	tail_page = cpu_buffer->tail_page;
2397	write = local_add_return(length, &tail_page->write);
2398
2399	/* set write to only the index of the write */
2400	write &= RB_WRITE_MASK;
2401	tail = write - length;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2402
2403	/*
2404	 * If this is the first commit on the page, then it has the same
2405	 * timestamp as the page itself.
2406	 */
2407	if (!tail)
2408		delta = 0;
2409
2410	/* See if we shot pass the end of this buffer page */
2411	if (unlikely(write > BUF_PAGE_SIZE))
2412		return rb_move_tail(cpu_buffer, length, tail,
2413				    tail_page, ts);
 
 
 
 
2414
2415	/* We reserved something on the buffer */
 
 
2416
2417	event = __rb_page_index(tail_page, tail);
2418	kmemcheck_annotate_bitfield(event, bitfield);
2419	rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2420
2421	local_inc(&tail_page->entries);
 
 
 
 
2422
2423	/*
2424	 * If this is the first commit on the page, then update
2425	 * its timestamp.
 
 
 
 
 
 
 
 
2426	 */
2427	if (!tail)
2428		tail_page->page->time_stamp = ts;
2429
2430	/* account for these added bytes */
2431	local_add(length, &cpu_buffer->entries_bytes);
2432
2433	return event;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2434}
2435
2436static inline int
2437rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2438		  struct ring_buffer_event *event)
2439{
2440	unsigned long new_index, old_index;
2441	struct buffer_page *bpage;
2442	unsigned long index;
2443	unsigned long addr;
 
 
2444
2445	new_index = rb_event_index(event);
2446	old_index = new_index + rb_event_ts_length(event);
2447	addr = (unsigned long)event;
2448	addr &= PAGE_MASK;
2449
2450	bpage = cpu_buffer->tail_page;
 
 
 
 
 
 
 
 
2451
2452	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2453		unsigned long write_mask =
2454			local_read(&bpage->write) & ~RB_WRITE_MASK;
2455		unsigned long event_length = rb_event_length(event);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2456		/*
2457		 * This is on the tail page. It is possible that
2458		 * a write could come in and move the tail page
2459		 * and write to the next page. That is fine
2460		 * because we just shorten what is on this page.
2461		 */
2462		old_index += write_mask;
2463		new_index += write_mask;
2464		index = local_cmpxchg(&bpage->write, old_index, new_index);
2465		if (index == old_index) {
2466			/* update counters */
2467			local_sub(event_length, &cpu_buffer->entries_bytes);
2468			return 1;
2469		}
2470	}
2471
2472	/* could not discard */
2473	return 0;
2474}
2475
2476static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2477{
2478	local_inc(&cpu_buffer->committing);
2479	local_inc(&cpu_buffer->commits);
2480}
2481
2482static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2483{
2484	unsigned long commits;
2485
2486	if (RB_WARN_ON(cpu_buffer,
2487		       !local_read(&cpu_buffer->committing)))
2488		return;
2489
2490 again:
2491	commits = local_read(&cpu_buffer->commits);
2492	/* synchronize with interrupts */
2493	barrier();
2494	if (local_read(&cpu_buffer->committing) == 1)
2495		rb_set_commit_to_write(cpu_buffer);
2496
2497	local_dec(&cpu_buffer->committing);
2498
2499	/* synchronize with interrupts */
2500	barrier();
2501
2502	/*
2503	 * Need to account for interrupts coming in between the
2504	 * updating of the commit page and the clearing of the
2505	 * committing counter.
2506	 */
2507	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2508	    !local_read(&cpu_buffer->committing)) {
2509		local_inc(&cpu_buffer->committing);
2510		goto again;
2511	}
2512}
2513
2514static struct ring_buffer_event *
2515rb_reserve_next_event(struct ring_buffer *buffer,
2516		      struct ring_buffer_per_cpu *cpu_buffer,
2517		      unsigned long length)
2518{
2519	struct ring_buffer_event *event;
2520	u64 ts, delta;
2521	int nr_loops = 0;
2522	int add_timestamp;
2523	u64 diff;
2524
2525	rb_start_commit(cpu_buffer);
 
 
 
 
 
 
2526
2527#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2528	/*
2529	 * Due to the ability to swap a cpu buffer from a buffer
2530	 * it is possible it was swapped before we committed.
2531	 * (committing stops a swap). We check for it here and
2532	 * if it happened, we have to fail the write.
2533	 */
2534	barrier();
2535	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2536		local_dec(&cpu_buffer->committing);
2537		local_dec(&cpu_buffer->commits);
2538		return NULL;
2539	}
2540#endif
2541
2542	length = rb_calculate_event_length(length);
2543 again:
2544	add_timestamp = 0;
2545	delta = 0;
 
 
2546
2547	/*
2548	 * We allow for interrupts to reenter here and do a trace.
2549	 * If one does, it will cause this original code to loop
2550	 * back here. Even with heavy interrupts happening, this
2551	 * should only happen a few times in a row. If this happens
2552	 * 1000 times in a row, there must be either an interrupt
2553	 * storm or we have something buggy.
2554	 * Bail!
2555	 */
2556	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2557		goto out_fail;
2558
2559	ts = rb_time_stamp(cpu_buffer->buffer);
2560	diff = ts - cpu_buffer->write_stamp;
 
 
 
2561
2562	/* make sure this diff is calculated here */
2563	barrier();
2564
2565	/* Did the write stamp get updated already? */
2566	if (likely(ts >= cpu_buffer->write_stamp)) {
2567		delta = diff;
2568		if (unlikely(test_time_stamp(delta))) {
2569			int local_clock_stable = 1;
2570#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2571			local_clock_stable = sched_clock_stable();
2572#endif
2573			WARN_ONCE(delta > (1ULL << 59),
2574				  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2575				  (unsigned long long)delta,
2576				  (unsigned long long)ts,
2577				  (unsigned long long)cpu_buffer->write_stamp,
2578				  local_clock_stable ? "" :
2579				  "If you just came from a suspend/resume,\n"
2580				  "please switch to the trace global clock:\n"
2581				  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2582			add_timestamp = 1;
2583		}
2584	}
2585
2586	event = __rb_reserve_next(cpu_buffer, length, ts,
2587				  delta, add_timestamp);
2588	if (unlikely(PTR_ERR(event) == -EAGAIN))
2589		goto again;
2590
2591	if (!event)
2592		goto out_fail;
2593
2594	return event;
 
 
 
 
2595
2596 out_fail:
2597	rb_end_commit(cpu_buffer);
2598	return NULL;
 
2599}
2600
2601#ifdef CONFIG_TRACING
2602
2603/*
2604 * The lock and unlock are done within a preempt disable section.
2605 * The current_context per_cpu variable can only be modified
2606 * by the current task between lock and unlock. But it can
2607 * be modified more than once via an interrupt. To pass this
2608 * information from the lock to the unlock without having to
2609 * access the 'in_interrupt()' functions again (which do show
2610 * a bit of overhead in something as critical as function tracing,
2611 * we use a bitmask trick.
2612 *
2613 *  bit 0 =  NMI context
2614 *  bit 1 =  IRQ context
2615 *  bit 2 =  SoftIRQ context
2616 *  bit 3 =  normal context.
2617 *
2618 * This works because this is the order of contexts that can
2619 * preempt other contexts. A SoftIRQ never preempts an IRQ
2620 * context.
2621 *
2622 * When the context is determined, the corresponding bit is
2623 * checked and set (if it was set, then a recursion of that context
2624 * happened).
2625 *
2626 * On unlock, we need to clear this bit. To do so, just subtract
2627 * 1 from the current_context and AND it to itself.
2628 *
2629 * (binary)
2630 *  101 - 1 = 100
2631 *  101 & 100 = 100 (clearing bit zero)
2632 *
2633 *  1010 - 1 = 1001
2634 *  1010 & 1001 = 1000 (clearing bit 1)
2635 *
2636 * The least significant bit can be cleared this way, and it
2637 * just so happens that it is the same bit corresponding to
2638 * the current context.
2639 */
2640static DEFINE_PER_CPU(unsigned int, current_context);
2641
2642static __always_inline int trace_recursive_lock(void)
 
2643{
2644	unsigned int val = this_cpu_read(current_context);
 
2645	int bit;
2646
2647	if (in_interrupt()) {
2648		if (in_nmi())
2649			bit = 0;
2650		else if (in_irq())
2651			bit = 1;
2652		else
2653			bit = 2;
2654	} else
2655		bit = 3;
2656
2657	if (unlikely(val & (1 << bit)))
2658		return 1;
2659
2660	val |= (1 << bit);
2661	this_cpu_write(current_context, val);
2662
2663	return 0;
2664}
2665
2666static __always_inline void trace_recursive_unlock(void)
 
2667{
2668	unsigned int val = this_cpu_read(current_context);
2669
2670	val--;
2671	val &= this_cpu_read(current_context);
2672	this_cpu_write(current_context, val);
2673}
2674
2675#else
 
2676
2677#define trace_recursive_lock()		(0)
2678#define trace_recursive_unlock()	do { } while (0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2679
2680#endif
 
 
 
 
 
 
2681
2682/**
2683 * ring_buffer_lock_reserve - reserve a part of the buffer
2684 * @buffer: the ring buffer to reserve from
2685 * @length: the length of the data to reserve (excluding event header)
2686 *
2687 * Returns a reseverd event on the ring buffer to copy directly to.
2688 * The user of this interface will need to get the body to write into
2689 * and can use the ring_buffer_event_data() interface.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2690 *
2691 * The length is the length of the data needed, not the event length
2692 * which also includes the event header.
2693 *
2694 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2695 * If NULL is returned, then nothing has been allocated or locked.
2696 */
2697struct ring_buffer_event *
2698ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2699{
2700	struct ring_buffer_per_cpu *cpu_buffer;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2701	struct ring_buffer_event *event;
2702	int cpu;
 
 
 
2703
2704	if (ring_buffer_flags != RB_BUFFERS_ON)
2705		return NULL;
2706
2707	/* If we are tracing schedule, we don't want to recurse */
2708	preempt_disable_notrace();
 
 
 
 
2709
2710	if (atomic_read(&buffer->record_disabled))
2711		goto out_nocheck;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2712
2713	if (trace_recursive_lock())
2714		goto out_nocheck;
2715
2716	cpu = raw_smp_processor_id();
2717
2718	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2719		goto out;
2720
2721	cpu_buffer = buffer->buffers[cpu];
2722
2723	if (atomic_read(&cpu_buffer->record_disabled))
2724		goto out;
 
 
 
 
 
 
 
 
 
 
2725
2726	if (length > BUF_MAX_DATA_SIZE)
2727		goto out;
 
2728
2729	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2730	if (!event)
2731		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
2732
2733	return event;
 
2734
2735 out:
2736	trace_recursive_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2737
2738 out_nocheck:
2739	preempt_enable_notrace();
2740	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2741}
2742EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2743
2744static void
2745rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2746		      struct ring_buffer_event *event)
 
2747{
2748	u64 delta;
 
 
 
 
 
 
2749
 
2750	/*
2751	 * The event first in the commit queue updates the
2752	 * time stamp.
 
 
2753	 */
2754	if (rb_event_is_commit(cpu_buffer, event)) {
2755		/*
2756		 * A commit event that is first on a page
2757		 * updates the write timestamp with the page stamp
2758		 */
2759		if (!rb_event_index(event))
2760			cpu_buffer->write_stamp =
2761				cpu_buffer->commit_page->page->time_stamp;
2762		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2763			delta = event->array[0];
2764			delta <<= TS_SHIFT;
2765			delta += event->time_delta;
2766			cpu_buffer->write_stamp += delta;
2767		} else
2768			cpu_buffer->write_stamp += event->time_delta;
2769	}
2770}
2771
2772static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2773		      struct ring_buffer_event *event)
2774{
2775	local_inc(&cpu_buffer->entries);
2776	rb_update_write_stamp(cpu_buffer, event);
2777	rb_end_commit(cpu_buffer);
2778}
2779
2780static __always_inline void
2781rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2782{
2783	if (buffer->irq_work.waiters_pending) {
2784		buffer->irq_work.waiters_pending = false;
2785		/* irq_work_queue() supplies it's own memory barriers */
2786		irq_work_queue(&buffer->irq_work.work);
2787	}
2788
2789	if (cpu_buffer->irq_work.waiters_pending) {
2790		cpu_buffer->irq_work.waiters_pending = false;
2791		/* irq_work_queue() supplies it's own memory barriers */
2792		irq_work_queue(&cpu_buffer->irq_work.work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2793	}
 
 
 
 
 
 
2794}
2795
2796/**
2797 * ring_buffer_unlock_commit - commit a reserved
2798 * @buffer: The buffer to commit to
2799 * @event: The event pointer to commit.
2800 *
2801 * This commits the data to the ring buffer, and releases any locks held.
 
 
2802 *
2803 * Must be paired with ring_buffer_lock_reserve.
 
 
 
 
2804 */
2805int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2806			      struct ring_buffer_event *event)
2807{
2808	struct ring_buffer_per_cpu *cpu_buffer;
2809	int cpu = raw_smp_processor_id();
 
2810
2811	cpu_buffer = buffer->buffers[cpu];
 
2812
2813	rb_commit(cpu_buffer, event);
 
2814
2815	rb_wakeups(buffer, cpu_buffer);
2816
2817	trace_recursive_unlock();
 
2818
2819	preempt_enable_notrace();
2820
2821	return 0;
2822}
2823EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2824
2825static inline void rb_event_discard(struct ring_buffer_event *event)
2826{
2827	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2828		event = skip_time_extend(event);
2829
2830	/* array[0] holds the actual length for the discarded event */
2831	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2832	event->type_len = RINGBUF_TYPE_PADDING;
2833	/* time delta must be non zero */
2834	if (!event->time_delta)
2835		event->time_delta = 1;
 
 
 
 
 
 
 
 
2836}
 
2837
2838/*
2839 * Decrement the entries to the page that an event is on.
2840 * The event does not even need to exist, only the pointer
2841 * to the page it is on. This may only be called before the commit
2842 * takes place.
2843 */
2844static inline void
2845rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2846		   struct ring_buffer_event *event)
2847{
2848	unsigned long addr = (unsigned long)event;
2849	struct buffer_page *bpage = cpu_buffer->commit_page;
2850	struct buffer_page *start;
2851
2852	addr &= PAGE_MASK;
2853
2854	/* Do the likely case first */
2855	if (likely(bpage->page == (void *)addr)) {
2856		local_dec(&bpage->entries);
2857		return;
2858	}
2859
2860	/*
2861	 * Because the commit page may be on the reader page we
2862	 * start with the next page and check the end loop there.
2863	 */
2864	rb_inc_page(cpu_buffer, &bpage);
2865	start = bpage;
2866	do {
2867		if (bpage->page == (void *)addr) {
2868			local_dec(&bpage->entries);
2869			return;
2870		}
2871		rb_inc_page(cpu_buffer, &bpage);
2872	} while (bpage != start);
2873
2874	/* commit not part of this buffer?? */
2875	RB_WARN_ON(cpu_buffer, 1);
2876}
2877
2878/**
2879 * ring_buffer_commit_discard - discard an event that has not been committed
2880 * @buffer: the ring buffer
2881 * @event: non committed event to discard
2882 *
2883 * Sometimes an event that is in the ring buffer needs to be ignored.
2884 * This function lets the user discard an event in the ring buffer
2885 * and then that event will not be read later.
2886 *
2887 * This function only works if it is called before the the item has been
2888 * committed. It will try to free the event from the ring buffer
2889 * if another event has not been added behind it.
2890 *
2891 * If another event has been added behind it, it will set the event
2892 * up as discarded, and perform the commit.
2893 *
2894 * If this function is called, do not call ring_buffer_unlock_commit on
2895 * the event.
2896 */
2897void ring_buffer_discard_commit(struct ring_buffer *buffer,
2898				struct ring_buffer_event *event)
2899{
2900	struct ring_buffer_per_cpu *cpu_buffer;
2901	int cpu;
2902
2903	/* The event is discarded regardless */
2904	rb_event_discard(event);
2905
2906	cpu = smp_processor_id();
2907	cpu_buffer = buffer->buffers[cpu];
2908
2909	/*
2910	 * This must only be called if the event has not been
2911	 * committed yet. Thus we can assume that preemption
2912	 * is still disabled.
2913	 */
2914	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2915
2916	rb_decrement_entry(cpu_buffer, event);
2917	if (rb_try_to_discard(cpu_buffer, event))
2918		goto out;
2919
2920	/*
2921	 * The commit is still visible by the reader, so we
2922	 * must still update the timestamp.
2923	 */
2924	rb_update_write_stamp(cpu_buffer, event);
2925 out:
2926	rb_end_commit(cpu_buffer);
2927
2928	trace_recursive_unlock();
2929
2930	preempt_enable_notrace();
2931
2932}
2933EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2934
2935/**
2936 * ring_buffer_write - write data to the buffer without reserving
2937 * @buffer: The ring buffer to write to.
2938 * @length: The length of the data being written (excluding the event header)
2939 * @data: The data to write to the buffer.
2940 *
2941 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2942 * one function. If you already have the data to write to the buffer, it
2943 * may be easier to simply call this function.
2944 *
2945 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2946 * and not the length of the event which would hold the header.
2947 */
2948int ring_buffer_write(struct ring_buffer *buffer,
2949		      unsigned long length,
2950		      void *data)
2951{
2952	struct ring_buffer_per_cpu *cpu_buffer;
2953	struct ring_buffer_event *event;
2954	void *body;
2955	int ret = -EBUSY;
2956	int cpu;
2957
2958	if (ring_buffer_flags != RB_BUFFERS_ON)
2959		return -EBUSY;
2960
2961	preempt_disable_notrace();
2962
2963	if (atomic_read(&buffer->record_disabled))
2964		goto out;
2965
2966	cpu = raw_smp_processor_id();
2967
2968	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2969		goto out;
2970
2971	cpu_buffer = buffer->buffers[cpu];
2972
2973	if (atomic_read(&cpu_buffer->record_disabled))
2974		goto out;
2975
2976	if (length > BUF_MAX_DATA_SIZE)
2977		goto out;
2978
 
 
 
2979	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2980	if (!event)
2981		goto out;
2982
2983	body = rb_event_data(event);
2984
2985	memcpy(body, data, length);
2986
2987	rb_commit(cpu_buffer, event);
2988
2989	rb_wakeups(buffer, cpu_buffer);
2990
2991	ret = 0;
 
 
 
 
2992 out:
2993	preempt_enable_notrace();
2994
2995	return ret;
2996}
2997EXPORT_SYMBOL_GPL(ring_buffer_write);
2998
2999static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3000{
3001	struct buffer_page *reader = cpu_buffer->reader_page;
3002	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3003	struct buffer_page *commit = cpu_buffer->commit_page;
3004
3005	/* In case of error, head will be NULL */
3006	if (unlikely(!head))
3007		return 1;
3008
3009	return reader->read == rb_page_commit(reader) &&
3010		(commit == reader ||
3011		 (commit == head &&
3012		  head->read == rb_page_commit(commit)));
3013}
3014
3015/**
3016 * ring_buffer_record_disable - stop all writes into the buffer
3017 * @buffer: The ring buffer to stop writes to.
3018 *
3019 * This prevents all writes to the buffer. Any attempt to write
3020 * to the buffer after this will fail and return NULL.
3021 *
3022 * The caller should call synchronize_sched() after this.
3023 */
3024void ring_buffer_record_disable(struct ring_buffer *buffer)
3025{
3026	atomic_inc(&buffer->record_disabled);
3027}
3028EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3029
3030/**
3031 * ring_buffer_record_enable - enable writes to the buffer
3032 * @buffer: The ring buffer to enable writes
3033 *
3034 * Note, multiple disables will need the same number of enables
3035 * to truly enable the writing (much like preempt_disable).
3036 */
3037void ring_buffer_record_enable(struct ring_buffer *buffer)
3038{
3039	atomic_dec(&buffer->record_disabled);
3040}
3041EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3042
3043/**
3044 * ring_buffer_record_off - stop all writes into the buffer
3045 * @buffer: The ring buffer to stop writes to.
3046 *
3047 * This prevents all writes to the buffer. Any attempt to write
3048 * to the buffer after this will fail and return NULL.
3049 *
3050 * This is different than ring_buffer_record_disable() as
3051 * it works like an on/off switch, where as the disable() version
3052 * must be paired with a enable().
3053 */
3054void ring_buffer_record_off(struct ring_buffer *buffer)
3055{
3056	unsigned int rd;
3057	unsigned int new_rd;
3058
3059	do {
3060		rd = atomic_read(&buffer->record_disabled);
3061		new_rd = rd | RB_BUFFER_OFF;
3062	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3063}
3064EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3065
3066/**
3067 * ring_buffer_record_on - restart writes into the buffer
3068 * @buffer: The ring buffer to start writes to.
3069 *
3070 * This enables all writes to the buffer that was disabled by
3071 * ring_buffer_record_off().
3072 *
3073 * This is different than ring_buffer_record_enable() as
3074 * it works like an on/off switch, where as the enable() version
3075 * must be paired with a disable().
3076 */
3077void ring_buffer_record_on(struct ring_buffer *buffer)
3078{
3079	unsigned int rd;
3080	unsigned int new_rd;
3081
3082	do {
3083		rd = atomic_read(&buffer->record_disabled);
3084		new_rd = rd & ~RB_BUFFER_OFF;
3085	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3086}
3087EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3088
3089/**
3090 * ring_buffer_record_is_on - return true if the ring buffer can write
3091 * @buffer: The ring buffer to see if write is enabled
3092 *
3093 * Returns true if the ring buffer is in a state that it accepts writes.
3094 */
3095int ring_buffer_record_is_on(struct ring_buffer *buffer)
3096{
3097	return !atomic_read(&buffer->record_disabled);
3098}
3099
3100/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3101 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3102 * @buffer: The ring buffer to stop writes to.
3103 * @cpu: The CPU buffer to stop
3104 *
3105 * This prevents all writes to the buffer. Any attempt to write
3106 * to the buffer after this will fail and return NULL.
3107 *
3108 * The caller should call synchronize_sched() after this.
3109 */
3110void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3111{
3112	struct ring_buffer_per_cpu *cpu_buffer;
3113
3114	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3115		return;
3116
3117	cpu_buffer = buffer->buffers[cpu];
3118	atomic_inc(&cpu_buffer->record_disabled);
3119}
3120EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3121
3122/**
3123 * ring_buffer_record_enable_cpu - enable writes to the buffer
3124 * @buffer: The ring buffer to enable writes
3125 * @cpu: The CPU to enable.
3126 *
3127 * Note, multiple disables will need the same number of enables
3128 * to truly enable the writing (much like preempt_disable).
3129 */
3130void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3131{
3132	struct ring_buffer_per_cpu *cpu_buffer;
3133
3134	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3135		return;
3136
3137	cpu_buffer = buffer->buffers[cpu];
3138	atomic_dec(&cpu_buffer->record_disabled);
3139}
3140EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3141
3142/*
3143 * The total entries in the ring buffer is the running counter
3144 * of entries entered into the ring buffer, minus the sum of
3145 * the entries read from the ring buffer and the number of
3146 * entries that were overwritten.
3147 */
3148static inline unsigned long
3149rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3150{
3151	return local_read(&cpu_buffer->entries) -
3152		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3153}
3154
3155/**
3156 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3157 * @buffer: The ring buffer
3158 * @cpu: The per CPU buffer to read from.
3159 */
3160u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3161{
3162	unsigned long flags;
3163	struct ring_buffer_per_cpu *cpu_buffer;
3164	struct buffer_page *bpage;
3165	u64 ret = 0;
3166
3167	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3168		return 0;
3169
3170	cpu_buffer = buffer->buffers[cpu];
3171	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3172	/*
3173	 * if the tail is on reader_page, oldest time stamp is on the reader
3174	 * page
3175	 */
3176	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3177		bpage = cpu_buffer->reader_page;
3178	else
3179		bpage = rb_set_head_page(cpu_buffer);
3180	if (bpage)
3181		ret = bpage->page->time_stamp;
3182	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3183
3184	return ret;
3185}
3186EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3187
3188/**
3189 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3190 * @buffer: The ring buffer
3191 * @cpu: The per CPU buffer to read from.
3192 */
3193unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3194{
3195	struct ring_buffer_per_cpu *cpu_buffer;
3196	unsigned long ret;
3197
3198	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3199		return 0;
3200
3201	cpu_buffer = buffer->buffers[cpu];
3202	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3203
3204	return ret;
3205}
3206EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3207
3208/**
3209 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3210 * @buffer: The ring buffer
3211 * @cpu: The per CPU buffer to get the entries from.
3212 */
3213unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3214{
3215	struct ring_buffer_per_cpu *cpu_buffer;
3216
3217	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3218		return 0;
3219
3220	cpu_buffer = buffer->buffers[cpu];
3221
3222	return rb_num_of_entries(cpu_buffer);
3223}
3224EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3225
3226/**
3227 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3228 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3229 * @buffer: The ring buffer
3230 * @cpu: The per CPU buffer to get the number of overruns from
3231 */
3232unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3233{
3234	struct ring_buffer_per_cpu *cpu_buffer;
3235	unsigned long ret;
3236
3237	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3238		return 0;
3239
3240	cpu_buffer = buffer->buffers[cpu];
3241	ret = local_read(&cpu_buffer->overrun);
3242
3243	return ret;
3244}
3245EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3246
3247/**
3248 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3249 * commits failing due to the buffer wrapping around while there are uncommitted
3250 * events, such as during an interrupt storm.
3251 * @buffer: The ring buffer
3252 * @cpu: The per CPU buffer to get the number of overruns from
3253 */
3254unsigned long
3255ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3256{
3257	struct ring_buffer_per_cpu *cpu_buffer;
3258	unsigned long ret;
3259
3260	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3261		return 0;
3262
3263	cpu_buffer = buffer->buffers[cpu];
3264	ret = local_read(&cpu_buffer->commit_overrun);
3265
3266	return ret;
3267}
3268EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3269
3270/**
3271 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3272 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3273 * @buffer: The ring buffer
3274 * @cpu: The per CPU buffer to get the number of overruns from
3275 */
3276unsigned long
3277ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3278{
3279	struct ring_buffer_per_cpu *cpu_buffer;
3280	unsigned long ret;
3281
3282	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3283		return 0;
3284
3285	cpu_buffer = buffer->buffers[cpu];
3286	ret = local_read(&cpu_buffer->dropped_events);
3287
3288	return ret;
3289}
3290EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3291
3292/**
3293 * ring_buffer_read_events_cpu - get the number of events successfully read
3294 * @buffer: The ring buffer
3295 * @cpu: The per CPU buffer to get the number of events read
3296 */
3297unsigned long
3298ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3299{
3300	struct ring_buffer_per_cpu *cpu_buffer;
3301
3302	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3303		return 0;
3304
3305	cpu_buffer = buffer->buffers[cpu];
3306	return cpu_buffer->read;
3307}
3308EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3309
3310/**
3311 * ring_buffer_entries - get the number of entries in a buffer
3312 * @buffer: The ring buffer
3313 *
3314 * Returns the total number of entries in the ring buffer
3315 * (all CPU entries)
3316 */
3317unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3318{
3319	struct ring_buffer_per_cpu *cpu_buffer;
3320	unsigned long entries = 0;
3321	int cpu;
3322
3323	/* if you care about this being correct, lock the buffer */
3324	for_each_buffer_cpu(buffer, cpu) {
3325		cpu_buffer = buffer->buffers[cpu];
3326		entries += rb_num_of_entries(cpu_buffer);
3327	}
3328
3329	return entries;
3330}
3331EXPORT_SYMBOL_GPL(ring_buffer_entries);
3332
3333/**
3334 * ring_buffer_overruns - get the number of overruns in buffer
3335 * @buffer: The ring buffer
3336 *
3337 * Returns the total number of overruns in the ring buffer
3338 * (all CPU entries)
3339 */
3340unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3341{
3342	struct ring_buffer_per_cpu *cpu_buffer;
3343	unsigned long overruns = 0;
3344	int cpu;
3345
3346	/* if you care about this being correct, lock the buffer */
3347	for_each_buffer_cpu(buffer, cpu) {
3348		cpu_buffer = buffer->buffers[cpu];
3349		overruns += local_read(&cpu_buffer->overrun);
3350	}
3351
3352	return overruns;
3353}
3354EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3355
3356static void rb_iter_reset(struct ring_buffer_iter *iter)
3357{
3358	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3359
3360	/* Iterator usage is expected to have record disabled */
3361	if (list_empty(&cpu_buffer->reader_page->list)) {
3362		iter->head_page = rb_set_head_page(cpu_buffer);
3363		if (unlikely(!iter->head_page))
3364			return;
3365		iter->head = iter->head_page->read;
3366	} else {
3367		iter->head_page = cpu_buffer->reader_page;
3368		iter->head = cpu_buffer->reader_page->read;
3369	}
3370	if (iter->head)
3371		iter->read_stamp = cpu_buffer->read_stamp;
3372	else
 
3373		iter->read_stamp = iter->head_page->page->time_stamp;
3374	iter->cache_reader_page = cpu_buffer->reader_page;
3375	iter->cache_read = cpu_buffer->read;
3376}
3377
3378/**
3379 * ring_buffer_iter_reset - reset an iterator
3380 * @iter: The iterator to reset
3381 *
3382 * Resets the iterator, so that it will start from the beginning
3383 * again.
3384 */
3385void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3386{
3387	struct ring_buffer_per_cpu *cpu_buffer;
3388	unsigned long flags;
3389
3390	if (!iter)
3391		return;
3392
3393	cpu_buffer = iter->cpu_buffer;
3394
3395	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3396	rb_iter_reset(iter);
3397	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3398}
3399EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3400
3401/**
3402 * ring_buffer_iter_empty - check if an iterator has no more to read
3403 * @iter: The iterator to check
3404 */
3405int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3406{
3407	struct ring_buffer_per_cpu *cpu_buffer;
 
 
 
 
 
 
 
3408
3409	cpu_buffer = iter->cpu_buffer;
 
 
 
 
3410
3411	return iter->head_page == cpu_buffer->commit_page &&
3412		iter->head == rb_commit_index(cpu_buffer);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3413}
3414EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3415
3416static void
3417rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3418		     struct ring_buffer_event *event)
3419{
3420	u64 delta;
3421
3422	switch (event->type_len) {
3423	case RINGBUF_TYPE_PADDING:
3424		return;
3425
3426	case RINGBUF_TYPE_TIME_EXTEND:
3427		delta = event->array[0];
3428		delta <<= TS_SHIFT;
3429		delta += event->time_delta;
3430		cpu_buffer->read_stamp += delta;
3431		return;
3432
3433	case RINGBUF_TYPE_TIME_STAMP:
3434		/* FIXME: not implemented */
 
3435		return;
3436
3437	case RINGBUF_TYPE_DATA:
3438		cpu_buffer->read_stamp += event->time_delta;
3439		return;
3440
3441	default:
3442		BUG();
3443	}
3444	return;
3445}
3446
3447static void
3448rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3449			  struct ring_buffer_event *event)
3450{
3451	u64 delta;
3452
3453	switch (event->type_len) {
3454	case RINGBUF_TYPE_PADDING:
3455		return;
3456
3457	case RINGBUF_TYPE_TIME_EXTEND:
3458		delta = event->array[0];
3459		delta <<= TS_SHIFT;
3460		delta += event->time_delta;
3461		iter->read_stamp += delta;
3462		return;
3463
3464	case RINGBUF_TYPE_TIME_STAMP:
3465		/* FIXME: not implemented */
 
3466		return;
3467
3468	case RINGBUF_TYPE_DATA:
3469		iter->read_stamp += event->time_delta;
3470		return;
3471
3472	default:
3473		BUG();
3474	}
3475	return;
3476}
3477
3478static struct buffer_page *
3479rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3480{
3481	struct buffer_page *reader = NULL;
3482	unsigned long overwrite;
3483	unsigned long flags;
3484	int nr_loops = 0;
3485	int ret;
3486
3487	local_irq_save(flags);
3488	arch_spin_lock(&cpu_buffer->lock);
3489
3490 again:
3491	/*
3492	 * This should normally only loop twice. But because the
3493	 * start of the reader inserts an empty page, it causes
3494	 * a case where we will loop three times. There should be no
3495	 * reason to loop four times (that I know of).
3496	 */
3497	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3498		reader = NULL;
3499		goto out;
3500	}
3501
3502	reader = cpu_buffer->reader_page;
3503
3504	/* If there's more to read, return this page */
3505	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3506		goto out;
3507
3508	/* Never should we have an index greater than the size */
3509	if (RB_WARN_ON(cpu_buffer,
3510		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3511		goto out;
3512
3513	/* check if we caught up to the tail */
3514	reader = NULL;
3515	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3516		goto out;
3517
3518	/* Don't bother swapping if the ring buffer is empty */
3519	if (rb_num_of_entries(cpu_buffer) == 0)
3520		goto out;
3521
3522	/*
3523	 * Reset the reader page to size zero.
3524	 */
3525	local_set(&cpu_buffer->reader_page->write, 0);
3526	local_set(&cpu_buffer->reader_page->entries, 0);
3527	local_set(&cpu_buffer->reader_page->page->commit, 0);
3528	cpu_buffer->reader_page->real_end = 0;
3529
3530 spin:
3531	/*
3532	 * Splice the empty reader page into the list around the head.
3533	 */
3534	reader = rb_set_head_page(cpu_buffer);
3535	if (!reader)
3536		goto out;
3537	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3538	cpu_buffer->reader_page->list.prev = reader->list.prev;
3539
3540	/*
3541	 * cpu_buffer->pages just needs to point to the buffer, it
3542	 *  has no specific buffer page to point to. Lets move it out
3543	 *  of our way so we don't accidentally swap it.
3544	 */
3545	cpu_buffer->pages = reader->list.prev;
3546
3547	/* The reader page will be pointing to the new head */
3548	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3549
3550	/*
3551	 * We want to make sure we read the overruns after we set up our
3552	 * pointers to the next object. The writer side does a
3553	 * cmpxchg to cross pages which acts as the mb on the writer
3554	 * side. Note, the reader will constantly fail the swap
3555	 * while the writer is updating the pointers, so this
3556	 * guarantees that the overwrite recorded here is the one we
3557	 * want to compare with the last_overrun.
3558	 */
3559	smp_mb();
3560	overwrite = local_read(&(cpu_buffer->overrun));
3561
3562	/*
3563	 * Here's the tricky part.
3564	 *
3565	 * We need to move the pointer past the header page.
3566	 * But we can only do that if a writer is not currently
3567	 * moving it. The page before the header page has the
3568	 * flag bit '1' set if it is pointing to the page we want.
3569	 * but if the writer is in the process of moving it
3570	 * than it will be '2' or already moved '0'.
3571	 */
3572
3573	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3574
3575	/*
3576	 * If we did not convert it, then we must try again.
3577	 */
3578	if (!ret)
3579		goto spin;
3580
3581	/*
3582	 * Yeah! We succeeded in replacing the page.
3583	 *
3584	 * Now make the new head point back to the reader page.
3585	 */
3586	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3587	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3588
 
 
3589	/* Finally update the reader page to the new head */
3590	cpu_buffer->reader_page = reader;
3591	rb_reset_reader_page(cpu_buffer);
3592
3593	if (overwrite != cpu_buffer->last_overrun) {
3594		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3595		cpu_buffer->last_overrun = overwrite;
3596	}
3597
3598	goto again;
3599
3600 out:
 
 
 
 
3601	arch_spin_unlock(&cpu_buffer->lock);
3602	local_irq_restore(flags);
3603
3604	return reader;
3605}
3606
3607static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3608{
3609	struct ring_buffer_event *event;
3610	struct buffer_page *reader;
3611	unsigned length;
3612
3613	reader = rb_get_reader_page(cpu_buffer);
3614
3615	/* This function should not be called when buffer is empty */
3616	if (RB_WARN_ON(cpu_buffer, !reader))
3617		return;
3618
3619	event = rb_reader_event(cpu_buffer);
3620
3621	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3622		cpu_buffer->read++;
3623
3624	rb_update_read_stamp(cpu_buffer, event);
3625
3626	length = rb_event_length(event);
3627	cpu_buffer->reader_page->read += length;
3628}
3629
3630static void rb_advance_iter(struct ring_buffer_iter *iter)
3631{
3632	struct ring_buffer_per_cpu *cpu_buffer;
3633	struct ring_buffer_event *event;
3634	unsigned length;
3635
3636	cpu_buffer = iter->cpu_buffer;
3637
 
 
 
 
 
 
 
 
 
3638	/*
3639	 * Check if we are at the end of the buffer.
3640	 */
3641	if (iter->head >= rb_page_size(iter->head_page)) {
3642		/* discarded commits can make the page empty */
3643		if (iter->head_page == cpu_buffer->commit_page)
3644			return;
3645		rb_inc_iter(iter);
3646		return;
3647	}
3648
3649	event = rb_iter_head_event(iter);
3650
3651	length = rb_event_length(event);
3652
3653	/*
3654	 * This should not be called to advance the header if we are
3655	 * at the tail of the buffer.
3656	 */
3657	if (RB_WARN_ON(cpu_buffer,
3658		       (iter->head_page == cpu_buffer->commit_page) &&
3659		       (iter->head + length > rb_commit_index(cpu_buffer))))
3660		return;
3661
3662	rb_update_iter_read_stamp(iter, event);
3663
3664	iter->head += length;
3665
3666	/* check for end of page padding */
3667	if ((iter->head >= rb_page_size(iter->head_page)) &&
3668	    (iter->head_page != cpu_buffer->commit_page))
3669		rb_inc_iter(iter);
3670}
3671
3672static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3673{
3674	return cpu_buffer->lost_events;
3675}
3676
3677static struct ring_buffer_event *
3678rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3679	       unsigned long *lost_events)
3680{
3681	struct ring_buffer_event *event;
3682	struct buffer_page *reader;
3683	int nr_loops = 0;
3684
 
 
3685 again:
3686	/*
3687	 * We repeat when a time extend is encountered.
3688	 * Since the time extend is always attached to a data event,
3689	 * we should never loop more than once.
3690	 * (We never hit the following condition more than twice).
3691	 */
3692	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3693		return NULL;
3694
3695	reader = rb_get_reader_page(cpu_buffer);
3696	if (!reader)
3697		return NULL;
3698
3699	event = rb_reader_event(cpu_buffer);
3700
3701	switch (event->type_len) {
3702	case RINGBUF_TYPE_PADDING:
3703		if (rb_null_event(event))
3704			RB_WARN_ON(cpu_buffer, 1);
3705		/*
3706		 * Because the writer could be discarding every
3707		 * event it creates (which would probably be bad)
3708		 * if we were to go back to "again" then we may never
3709		 * catch up, and will trigger the warn on, or lock
3710		 * the box. Return the padding, and we will release
3711		 * the current locks, and try again.
3712		 */
3713		return event;
3714
3715	case RINGBUF_TYPE_TIME_EXTEND:
3716		/* Internal data, OK to advance */
3717		rb_advance_reader(cpu_buffer);
3718		goto again;
3719
3720	case RINGBUF_TYPE_TIME_STAMP:
3721		/* FIXME: not implemented */
 
 
 
 
 
3722		rb_advance_reader(cpu_buffer);
3723		goto again;
3724
3725	case RINGBUF_TYPE_DATA:
3726		if (ts) {
3727			*ts = cpu_buffer->read_stamp + event->time_delta;
3728			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3729							 cpu_buffer->cpu, ts);
3730		}
3731		if (lost_events)
3732			*lost_events = rb_lost_events(cpu_buffer);
3733		return event;
3734
3735	default:
3736		BUG();
3737	}
3738
3739	return NULL;
3740}
3741EXPORT_SYMBOL_GPL(ring_buffer_peek);
3742
3743static struct ring_buffer_event *
3744rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3745{
3746	struct ring_buffer *buffer;
3747	struct ring_buffer_per_cpu *cpu_buffer;
3748	struct ring_buffer_event *event;
3749	int nr_loops = 0;
3750
 
 
 
3751	cpu_buffer = iter->cpu_buffer;
3752	buffer = cpu_buffer->buffer;
3753
3754	/*
3755	 * Check if someone performed a consuming read to
3756	 * the buffer. A consuming read invalidates the iterator
3757	 * and we need to reset the iterator in this case.
3758	 */
3759	if (unlikely(iter->cache_read != cpu_buffer->read ||
3760		     iter->cache_reader_page != cpu_buffer->reader_page))
3761		rb_iter_reset(iter);
3762
3763 again:
3764	if (ring_buffer_iter_empty(iter))
3765		return NULL;
3766
3767	/*
3768	 * We repeat when a time extend is encountered.
3769	 * Since the time extend is always attached to a data event,
3770	 * we should never loop more than once.
3771	 * (We never hit the following condition more than twice).
 
3772	 */
3773	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3774		return NULL;
3775
3776	if (rb_per_cpu_empty(cpu_buffer))
3777		return NULL;
3778
3779	if (iter->head >= local_read(&iter->head_page->page->commit)) {
3780		rb_inc_iter(iter);
3781		goto again;
3782	}
3783
3784	event = rb_iter_head_event(iter);
 
 
3785
3786	switch (event->type_len) {
3787	case RINGBUF_TYPE_PADDING:
3788		if (rb_null_event(event)) {
3789			rb_inc_iter(iter);
3790			goto again;
3791		}
3792		rb_advance_iter(iter);
3793		return event;
3794
3795	case RINGBUF_TYPE_TIME_EXTEND:
3796		/* Internal data, OK to advance */
3797		rb_advance_iter(iter);
3798		goto again;
3799
3800	case RINGBUF_TYPE_TIME_STAMP:
3801		/* FIXME: not implemented */
 
 
 
 
 
3802		rb_advance_iter(iter);
3803		goto again;
3804
3805	case RINGBUF_TYPE_DATA:
3806		if (ts) {
3807			*ts = iter->read_stamp + event->time_delta;
3808			ring_buffer_normalize_time_stamp(buffer,
3809							 cpu_buffer->cpu, ts);
3810		}
3811		return event;
3812
3813	default:
3814		BUG();
3815	}
3816
3817	return NULL;
3818}
3819EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3820
3821static inline int rb_ok_to_lock(void)
3822{
 
 
 
 
 
3823	/*
3824	 * If an NMI die dumps out the content of the ring buffer
3825	 * do not grab locks. We also permanently disable the ring
3826	 * buffer too. A one time deal is all you get from reading
3827	 * the ring buffer from an NMI.
 
 
 
3828	 */
3829	if (likely(!in_nmi()))
3830		return 1;
3831
3832	tracing_off_permanent();
3833	return 0;
 
 
 
 
 
 
 
 
 
3834}
3835
3836/**
3837 * ring_buffer_peek - peek at the next event to be read
3838 * @buffer: The ring buffer to read
3839 * @cpu: The cpu to peak at
3840 * @ts: The timestamp counter of this event.
3841 * @lost_events: a variable to store if events were lost (may be NULL)
3842 *
3843 * This will return the event that will be read next, but does
3844 * not consume the data.
3845 */
3846struct ring_buffer_event *
3847ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3848		 unsigned long *lost_events)
3849{
3850	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3851	struct ring_buffer_event *event;
3852	unsigned long flags;
3853	int dolock;
3854
3855	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3856		return NULL;
3857
3858	dolock = rb_ok_to_lock();
3859 again:
3860	local_irq_save(flags);
3861	if (dolock)
3862		raw_spin_lock(&cpu_buffer->reader_lock);
3863	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3864	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3865		rb_advance_reader(cpu_buffer);
3866	if (dolock)
3867		raw_spin_unlock(&cpu_buffer->reader_lock);
3868	local_irq_restore(flags);
3869
3870	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3871		goto again;
3872
3873	return event;
3874}
3875
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3876/**
3877 * ring_buffer_iter_peek - peek at the next event to be read
3878 * @iter: The ring buffer iterator
3879 * @ts: The timestamp counter of this event.
3880 *
3881 * This will return the event that will be read next, but does
3882 * not increment the iterator.
3883 */
3884struct ring_buffer_event *
3885ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3886{
3887	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3888	struct ring_buffer_event *event;
3889	unsigned long flags;
3890
3891 again:
3892	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3893	event = rb_iter_peek(iter, ts);
3894	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3895
3896	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3897		goto again;
3898
3899	return event;
3900}
3901
3902/**
3903 * ring_buffer_consume - return an event and consume it
3904 * @buffer: The ring buffer to get the next event from
3905 * @cpu: the cpu to read the buffer from
3906 * @ts: a variable to store the timestamp (may be NULL)
3907 * @lost_events: a variable to store if events were lost (may be NULL)
3908 *
3909 * Returns the next event in the ring buffer, and that event is consumed.
3910 * Meaning, that sequential reads will keep returning a different event,
3911 * and eventually empty the ring buffer if the producer is slower.
3912 */
3913struct ring_buffer_event *
3914ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3915		    unsigned long *lost_events)
3916{
3917	struct ring_buffer_per_cpu *cpu_buffer;
3918	struct ring_buffer_event *event = NULL;
3919	unsigned long flags;
3920	int dolock;
3921
3922	dolock = rb_ok_to_lock();
3923
3924 again:
3925	/* might be called in atomic */
3926	preempt_disable();
3927
3928	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3929		goto out;
3930
3931	cpu_buffer = buffer->buffers[cpu];
3932	local_irq_save(flags);
3933	if (dolock)
3934		raw_spin_lock(&cpu_buffer->reader_lock);
3935
3936	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3937	if (event) {
3938		cpu_buffer->lost_events = 0;
3939		rb_advance_reader(cpu_buffer);
3940	}
3941
3942	if (dolock)
3943		raw_spin_unlock(&cpu_buffer->reader_lock);
3944	local_irq_restore(flags);
3945
3946 out:
3947	preempt_enable();
3948
3949	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3950		goto again;
3951
3952	return event;
3953}
3954EXPORT_SYMBOL_GPL(ring_buffer_consume);
3955
3956/**
3957 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3958 * @buffer: The ring buffer to read from
3959 * @cpu: The cpu buffer to iterate over
 
3960 *
3961 * This performs the initial preparations necessary to iterate
3962 * through the buffer.  Memory is allocated, buffer recording
3963 * is disabled, and the iterator pointer is returned to the caller.
3964 *
3965 * Disabling buffer recordng prevents the reading from being
3966 * corrupted. This is not a consuming read, so a producer is not
3967 * expected.
3968 *
3969 * After a sequence of ring_buffer_read_prepare calls, the user is
3970 * expected to make at least one call to ring_buffer_read_prepare_sync.
3971 * Afterwards, ring_buffer_read_start is invoked to get things going
3972 * for real.
3973 *
3974 * This overall must be paired with ring_buffer_read_finish.
3975 */
3976struct ring_buffer_iter *
3977ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3978{
3979	struct ring_buffer_per_cpu *cpu_buffer;
3980	struct ring_buffer_iter *iter;
3981
3982	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3983		return NULL;
3984
3985	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3986	if (!iter)
3987		return NULL;
3988
 
 
 
 
 
 
3989	cpu_buffer = buffer->buffers[cpu];
3990
3991	iter->cpu_buffer = cpu_buffer;
3992
3993	atomic_inc(&buffer->resize_disabled);
3994	atomic_inc(&cpu_buffer->record_disabled);
3995
3996	return iter;
3997}
3998EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3999
4000/**
4001 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4002 *
4003 * All previously invoked ring_buffer_read_prepare calls to prepare
4004 * iterators will be synchronized.  Afterwards, read_buffer_read_start
4005 * calls on those iterators are allowed.
4006 */
4007void
4008ring_buffer_read_prepare_sync(void)
4009{
4010	synchronize_sched();
4011}
4012EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4013
4014/**
4015 * ring_buffer_read_start - start a non consuming read of the buffer
4016 * @iter: The iterator returned by ring_buffer_read_prepare
4017 *
4018 * This finalizes the startup of an iteration through the buffer.
4019 * The iterator comes from a call to ring_buffer_read_prepare and
4020 * an intervening ring_buffer_read_prepare_sync must have been
4021 * performed.
4022 *
4023 * Must be paired with ring_buffer_read_finish.
4024 */
4025void
4026ring_buffer_read_start(struct ring_buffer_iter *iter)
4027{
4028	struct ring_buffer_per_cpu *cpu_buffer;
4029	unsigned long flags;
4030
4031	if (!iter)
4032		return;
4033
4034	cpu_buffer = iter->cpu_buffer;
4035
4036	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4037	arch_spin_lock(&cpu_buffer->lock);
4038	rb_iter_reset(iter);
4039	arch_spin_unlock(&cpu_buffer->lock);
4040	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4041}
4042EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4043
4044/**
4045 * ring_buffer_read_finish - finish reading the iterator of the buffer
4046 * @iter: The iterator retrieved by ring_buffer_start
4047 *
4048 * This re-enables the recording to the buffer, and frees the
4049 * iterator.
4050 */
4051void
4052ring_buffer_read_finish(struct ring_buffer_iter *iter)
4053{
4054	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4055	unsigned long flags;
4056
4057	/*
4058	 * Ring buffer is disabled from recording, here's a good place
4059	 * to check the integrity of the ring buffer.
4060	 * Must prevent readers from trying to read, as the check
4061	 * clears the HEAD page and readers require it.
4062	 */
4063	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4064	rb_check_pages(cpu_buffer);
4065	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4066
4067	atomic_dec(&cpu_buffer->record_disabled);
4068	atomic_dec(&cpu_buffer->buffer->resize_disabled);
4069	kfree(iter);
4070}
4071EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4072
4073/**
4074 * ring_buffer_read - read the next item in the ring buffer by the iterator
4075 * @iter: The ring buffer iterator
4076 * @ts: The time stamp of the event read.
4077 *
4078 * This reads the next event in the ring buffer and increments the iterator.
 
4079 */
4080struct ring_buffer_event *
4081ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4082{
4083	struct ring_buffer_event *event;
4084	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4085	unsigned long flags;
4086
4087	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4088 again:
4089	event = rb_iter_peek(iter, ts);
4090	if (!event)
4091		goto out;
4092
4093	if (event->type_len == RINGBUF_TYPE_PADDING)
4094		goto again;
4095
4096	rb_advance_iter(iter);
4097 out:
4098	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4099
4100	return event;
4101}
4102EXPORT_SYMBOL_GPL(ring_buffer_read);
4103
4104/**
4105 * ring_buffer_size - return the size of the ring buffer (in bytes)
4106 * @buffer: The ring buffer.
 
4107 */
4108unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4109{
4110	/*
4111	 * Earlier, this method returned
4112	 *	BUF_PAGE_SIZE * buffer->nr_pages
4113	 * Since the nr_pages field is now removed, we have converted this to
4114	 * return the per cpu buffer value.
4115	 */
4116	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4117		return 0;
4118
4119	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4120}
4121EXPORT_SYMBOL_GPL(ring_buffer_size);
4122
4123static void
4124rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4125{
4126	rb_head_page_deactivate(cpu_buffer);
4127
4128	cpu_buffer->head_page
4129		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4130	local_set(&cpu_buffer->head_page->write, 0);
4131	local_set(&cpu_buffer->head_page->entries, 0);
4132	local_set(&cpu_buffer->head_page->page->commit, 0);
4133
4134	cpu_buffer->head_page->read = 0;
4135
4136	cpu_buffer->tail_page = cpu_buffer->head_page;
4137	cpu_buffer->commit_page = cpu_buffer->head_page;
4138
4139	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4140	INIT_LIST_HEAD(&cpu_buffer->new_pages);
4141	local_set(&cpu_buffer->reader_page->write, 0);
4142	local_set(&cpu_buffer->reader_page->entries, 0);
4143	local_set(&cpu_buffer->reader_page->page->commit, 0);
4144	cpu_buffer->reader_page->read = 0;
4145
4146	local_set(&cpu_buffer->entries_bytes, 0);
4147	local_set(&cpu_buffer->overrun, 0);
4148	local_set(&cpu_buffer->commit_overrun, 0);
4149	local_set(&cpu_buffer->dropped_events, 0);
4150	local_set(&cpu_buffer->entries, 0);
4151	local_set(&cpu_buffer->committing, 0);
4152	local_set(&cpu_buffer->commits, 0);
 
 
 
 
4153	cpu_buffer->read = 0;
4154	cpu_buffer->read_bytes = 0;
4155
4156	cpu_buffer->write_stamp = 0;
4157	cpu_buffer->read_stamp = 0;
4158
4159	cpu_buffer->lost_events = 0;
4160	cpu_buffer->last_overrun = 0;
4161
4162	rb_head_page_activate(cpu_buffer);
4163}
4164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4165/**
4166 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4167 * @buffer: The ring buffer to reset a per cpu buffer of
4168 * @cpu: The CPU buffer to be reset
4169 */
4170void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4171{
4172	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4173	unsigned long flags;
4174
4175	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4176		return;
4177
4178	atomic_inc(&buffer->resize_disabled);
4179	atomic_inc(&cpu_buffer->record_disabled);
4180
4181	/* Make sure all commits have finished */
4182	synchronize_sched();
4183
4184	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4185
4186	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4187		goto out;
 
 
4188
4189	arch_spin_lock(&cpu_buffer->lock);
 
 
 
 
 
 
 
 
4190
4191	rb_reset_cpu(cpu_buffer);
 
4192
4193	arch_spin_unlock(&cpu_buffer->lock);
 
 
4194
4195 out:
4196	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4197
4198	atomic_dec(&cpu_buffer->record_disabled);
4199	atomic_dec(&buffer->resize_disabled);
 
 
 
 
 
 
4200}
4201EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4202
4203/**
4204 * ring_buffer_reset - reset a ring buffer
4205 * @buffer: The ring buffer to reset all cpu buffers
4206 */
4207void ring_buffer_reset(struct ring_buffer *buffer)
4208{
 
4209	int cpu;
4210
4211	for_each_buffer_cpu(buffer, cpu)
4212		ring_buffer_reset_cpu(buffer, cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4213}
4214EXPORT_SYMBOL_GPL(ring_buffer_reset);
4215
4216/**
4217 * rind_buffer_empty - is the ring buffer empty?
4218 * @buffer: The ring buffer to test
4219 */
4220int ring_buffer_empty(struct ring_buffer *buffer)
4221{
4222	struct ring_buffer_per_cpu *cpu_buffer;
4223	unsigned long flags;
4224	int dolock;
4225	int cpu;
4226	int ret;
4227
4228	dolock = rb_ok_to_lock();
4229
4230	/* yes this is racy, but if you don't like the race, lock the buffer */
4231	for_each_buffer_cpu(buffer, cpu) {
4232		cpu_buffer = buffer->buffers[cpu];
4233		local_irq_save(flags);
4234		if (dolock)
4235			raw_spin_lock(&cpu_buffer->reader_lock);
4236		ret = rb_per_cpu_empty(cpu_buffer);
4237		if (dolock)
4238			raw_spin_unlock(&cpu_buffer->reader_lock);
4239		local_irq_restore(flags);
4240
4241		if (!ret)
4242			return 0;
4243	}
4244
4245	return 1;
4246}
4247EXPORT_SYMBOL_GPL(ring_buffer_empty);
4248
4249/**
4250 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4251 * @buffer: The ring buffer
4252 * @cpu: The CPU buffer to test
4253 */
4254int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4255{
4256	struct ring_buffer_per_cpu *cpu_buffer;
4257	unsigned long flags;
4258	int dolock;
4259	int ret;
4260
4261	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4262		return 1;
4263
4264	dolock = rb_ok_to_lock();
4265
4266	cpu_buffer = buffer->buffers[cpu];
4267	local_irq_save(flags);
4268	if (dolock)
4269		raw_spin_lock(&cpu_buffer->reader_lock);
4270	ret = rb_per_cpu_empty(cpu_buffer);
4271	if (dolock)
4272		raw_spin_unlock(&cpu_buffer->reader_lock);
4273	local_irq_restore(flags);
4274
4275	return ret;
4276}
4277EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4278
4279#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4280/**
4281 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4282 * @buffer_a: One buffer to swap with
4283 * @buffer_b: The other buffer to swap with
 
4284 *
4285 * This function is useful for tracers that want to take a "snapshot"
4286 * of a CPU buffer and has another back up buffer lying around.
4287 * it is expected that the tracer handles the cpu buffer not being
4288 * used at the moment.
4289 */
4290int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4291			 struct ring_buffer *buffer_b, int cpu)
4292{
4293	struct ring_buffer_per_cpu *cpu_buffer_a;
4294	struct ring_buffer_per_cpu *cpu_buffer_b;
4295	int ret = -EINVAL;
4296
4297	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4298	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4299		goto out;
4300
4301	cpu_buffer_a = buffer_a->buffers[cpu];
4302	cpu_buffer_b = buffer_b->buffers[cpu];
4303
4304	/* At least make sure the two buffers are somewhat the same */
4305	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4306		goto out;
4307
4308	ret = -EAGAIN;
4309
4310	if (ring_buffer_flags != RB_BUFFERS_ON)
4311		goto out;
4312
4313	if (atomic_read(&buffer_a->record_disabled))
4314		goto out;
4315
4316	if (atomic_read(&buffer_b->record_disabled))
4317		goto out;
4318
4319	if (atomic_read(&cpu_buffer_a->record_disabled))
4320		goto out;
4321
4322	if (atomic_read(&cpu_buffer_b->record_disabled))
4323		goto out;
4324
4325	/*
4326	 * We can't do a synchronize_sched here because this
4327	 * function can be called in atomic context.
4328	 * Normally this will be called from the same CPU as cpu.
4329	 * If not it's up to the caller to protect this.
4330	 */
4331	atomic_inc(&cpu_buffer_a->record_disabled);
4332	atomic_inc(&cpu_buffer_b->record_disabled);
4333
4334	ret = -EBUSY;
4335	if (local_read(&cpu_buffer_a->committing))
4336		goto out_dec;
4337	if (local_read(&cpu_buffer_b->committing))
4338		goto out_dec;
4339
4340	buffer_a->buffers[cpu] = cpu_buffer_b;
4341	buffer_b->buffers[cpu] = cpu_buffer_a;
4342
4343	cpu_buffer_b->buffer = buffer_a;
4344	cpu_buffer_a->buffer = buffer_b;
4345
4346	ret = 0;
4347
4348out_dec:
4349	atomic_dec(&cpu_buffer_a->record_disabled);
4350	atomic_dec(&cpu_buffer_b->record_disabled);
4351out:
4352	return ret;
4353}
4354EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4355#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4356
4357/**
4358 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4359 * @buffer: the buffer to allocate for.
4360 * @cpu: the cpu buffer to allocate.
4361 *
4362 * This function is used in conjunction with ring_buffer_read_page.
4363 * When reading a full page from the ring buffer, these functions
4364 * can be used to speed up the process. The calling function should
4365 * allocate a few pages first with this function. Then when it
4366 * needs to get pages from the ring buffer, it passes the result
4367 * of this function into ring_buffer_read_page, which will swap
4368 * the page that was allocated, with the read page of the buffer.
4369 *
4370 * Returns:
4371 *  The page allocated, or NULL on error.
4372 */
4373void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4374{
4375	struct buffer_data_page *bpage;
 
 
4376	struct page *page;
4377
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4378	page = alloc_pages_node(cpu_to_node(cpu),
4379				GFP_KERNEL | __GFP_NORETRY, 0);
4380	if (!page)
4381		return NULL;
4382
4383	bpage = page_address(page);
4384
 
4385	rb_init_page(bpage);
4386
4387	return bpage;
4388}
4389EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4390
4391/**
4392 * ring_buffer_free_read_page - free an allocated read page
4393 * @buffer: the buffer the page was allocate for
 
4394 * @data: the page to free
4395 *
4396 * Free a page allocated from ring_buffer_alloc_read_page.
4397 */
4398void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4399{
4400	free_page((unsigned long)data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4401}
4402EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4403
4404/**
4405 * ring_buffer_read_page - extract a page from the ring buffer
4406 * @buffer: buffer to extract from
4407 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4408 * @len: amount to extract
4409 * @cpu: the cpu of the buffer to extract
4410 * @full: should the extraction only happen when the page is full.
4411 *
4412 * This function will pull out a page from the ring buffer and consume it.
4413 * @data_page must be the address of the variable that was returned
4414 * from ring_buffer_alloc_read_page. This is because the page might be used
4415 * to swap with a page in the ring buffer.
4416 *
4417 * for example:
4418 *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
4419 *	if (!rpage)
4420 *		return error;
4421 *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4422 *	if (ret >= 0)
4423 *		process_page(rpage, ret);
4424 *
4425 * When @full is set, the function will not return true unless
4426 * the writer is off the reader page.
4427 *
4428 * Note: it is up to the calling functions to handle sleeps and wakeups.
4429 *  The ring buffer can be used anywhere in the kernel and can not
4430 *  blindly call wake_up. The layer that uses the ring buffer must be
4431 *  responsible for that.
4432 *
4433 * Returns:
4434 *  >=0 if data has been transferred, returns the offset of consumed data.
4435 *  <0 if no data has been transferred.
4436 */
4437int ring_buffer_read_page(struct ring_buffer *buffer,
4438			  void **data_page, size_t len, int cpu, int full)
4439{
4440	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4441	struct ring_buffer_event *event;
4442	struct buffer_data_page *bpage;
4443	struct buffer_page *reader;
4444	unsigned long missed_events;
4445	unsigned long flags;
4446	unsigned int commit;
4447	unsigned int read;
4448	u64 save_timestamp;
4449	int ret = -1;
4450
4451	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4452		goto out;
4453
4454	/*
4455	 * If len is not big enough to hold the page header, then
4456	 * we can not copy anything.
4457	 */
4458	if (len <= BUF_PAGE_HDR_SIZE)
4459		goto out;
4460
4461	len -= BUF_PAGE_HDR_SIZE;
4462
4463	if (!data_page)
4464		goto out;
4465
4466	bpage = *data_page;
4467	if (!bpage)
4468		goto out;
4469
4470	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4471
4472	reader = rb_get_reader_page(cpu_buffer);
4473	if (!reader)
4474		goto out_unlock;
4475
4476	event = rb_reader_event(cpu_buffer);
4477
4478	read = reader->read;
4479	commit = rb_page_commit(reader);
4480
4481	/* Check if any events were dropped */
4482	missed_events = cpu_buffer->lost_events;
4483
4484	/*
4485	 * If this page has been partially read or
4486	 * if len is not big enough to read the rest of the page or
4487	 * a writer is still on the page, then
4488	 * we must copy the data from the page to the buffer.
4489	 * Otherwise, we can simply swap the page with the one passed in.
4490	 */
4491	if (read || (len < (commit - read)) ||
4492	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
4493		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4494		unsigned int rpos = read;
4495		unsigned int pos = 0;
4496		unsigned int size;
4497
4498		if (full)
4499			goto out_unlock;
4500
4501		if (len > (commit - read))
4502			len = (commit - read);
4503
4504		/* Always keep the time extend and data together */
4505		size = rb_event_ts_length(event);
4506
4507		if (len < size)
4508			goto out_unlock;
4509
4510		/* save the current timestamp, since the user will need it */
4511		save_timestamp = cpu_buffer->read_stamp;
4512
4513		/* Need to copy one event at a time */
4514		do {
4515			/* We need the size of one event, because
4516			 * rb_advance_reader only advances by one event,
4517			 * whereas rb_event_ts_length may include the size of
4518			 * one or two events.
4519			 * We have already ensured there's enough space if this
4520			 * is a time extend. */
4521			size = rb_event_length(event);
4522			memcpy(bpage->data + pos, rpage->data + rpos, size);
4523
4524			len -= size;
4525
4526			rb_advance_reader(cpu_buffer);
4527			rpos = reader->read;
4528			pos += size;
4529
4530			if (rpos >= commit)
4531				break;
4532
4533			event = rb_reader_event(cpu_buffer);
4534			/* Always keep the time extend and data together */
4535			size = rb_event_ts_length(event);
4536		} while (len >= size);
4537
4538		/* update bpage */
4539		local_set(&bpage->commit, pos);
4540		bpage->time_stamp = save_timestamp;
4541
4542		/* we copied everything to the beginning */
4543		read = 0;
4544	} else {
4545		/* update the entry counter */
4546		cpu_buffer->read += rb_page_entries(reader);
4547		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4548
4549		/* swap the pages */
4550		rb_init_page(bpage);
4551		bpage = reader->page;
4552		reader->page = *data_page;
4553		local_set(&reader->write, 0);
4554		local_set(&reader->entries, 0);
4555		reader->read = 0;
4556		*data_page = bpage;
4557
4558		/*
4559		 * Use the real_end for the data size,
4560		 * This gives us a chance to store the lost events
4561		 * on the page.
4562		 */
4563		if (reader->real_end)
4564			local_set(&bpage->commit, reader->real_end);
4565	}
4566	ret = read;
4567
4568	cpu_buffer->lost_events = 0;
4569
4570	commit = local_read(&bpage->commit);
4571	/*
4572	 * Set a flag in the commit field if we lost events
4573	 */
4574	if (missed_events) {
4575		/* If there is room at the end of the page to save the
4576		 * missed events, then record it there.
4577		 */
4578		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4579			memcpy(&bpage->data[commit], &missed_events,
4580			       sizeof(missed_events));
4581			local_add(RB_MISSED_STORED, &bpage->commit);
4582			commit += sizeof(missed_events);
4583		}
4584		local_add(RB_MISSED_EVENTS, &bpage->commit);
4585	}
4586
4587	/*
4588	 * This page may be off to user land. Zero it out here.
4589	 */
4590	if (commit < BUF_PAGE_SIZE)
4591		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4592
4593 out_unlock:
4594	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4595
4596 out:
4597	return ret;
4598}
4599EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4600
4601#ifdef CONFIG_HOTPLUG_CPU
4602static int rb_cpu_notify(struct notifier_block *self,
4603			 unsigned long action, void *hcpu)
4604{
4605	struct ring_buffer *buffer =
4606		container_of(self, struct ring_buffer, cpu_notify);
4607	long cpu = (long)hcpu;
4608	int cpu_i, nr_pages_same;
4609	unsigned int nr_pages;
4610
4611	switch (action) {
4612	case CPU_UP_PREPARE:
4613	case CPU_UP_PREPARE_FROZEN:
4614		if (cpumask_test_cpu(cpu, buffer->cpumask))
4615			return NOTIFY_OK;
4616
4617		nr_pages = 0;
4618		nr_pages_same = 1;
4619		/* check if all cpu sizes are same */
4620		for_each_buffer_cpu(buffer, cpu_i) {
4621			/* fill in the size from first enabled cpu */
4622			if (nr_pages == 0)
4623				nr_pages = buffer->buffers[cpu_i]->nr_pages;
4624			if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4625				nr_pages_same = 0;
4626				break;
4627			}
4628		}
4629		/* allocate minimum pages, user can later expand it */
4630		if (!nr_pages_same)
4631			nr_pages = 2;
4632		buffer->buffers[cpu] =
4633			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4634		if (!buffer->buffers[cpu]) {
4635			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4636			     cpu);
4637			return NOTIFY_OK;
4638		}
4639		smp_wmb();
4640		cpumask_set_cpu(cpu, buffer->cpumask);
4641		break;
4642	case CPU_DOWN_PREPARE:
4643	case CPU_DOWN_PREPARE_FROZEN:
4644		/*
4645		 * Do nothing.
4646		 *  If we were to free the buffer, then the user would
4647		 *  lose any trace that was in the buffer.
4648		 */
4649		break;
4650	default:
4651		break;
4652	}
4653	return NOTIFY_OK;
 
 
 
 
 
 
 
 
 
 
 
 
4654}
4655#endif
4656
4657#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4658/*
4659 * This is a basic integrity check of the ring buffer.
4660 * Late in the boot cycle this test will run when configured in.
4661 * It will kick off a thread per CPU that will go into a loop
4662 * writing to the per cpu ring buffer various sizes of data.
4663 * Some of the data will be large items, some small.
4664 *
4665 * Another thread is created that goes into a spin, sending out
4666 * IPIs to the other CPUs to also write into the ring buffer.
4667 * this is to test the nesting ability of the buffer.
4668 *
4669 * Basic stats are recorded and reported. If something in the
4670 * ring buffer should happen that's not expected, a big warning
4671 * is displayed and all ring buffers are disabled.
4672 */
4673static struct task_struct *rb_threads[NR_CPUS] __initdata;
4674
4675struct rb_test_data {
4676	struct ring_buffer	*buffer;
4677	unsigned long		events;
4678	unsigned long		bytes_written;
4679	unsigned long		bytes_alloc;
4680	unsigned long		bytes_dropped;
4681	unsigned long		events_nested;
4682	unsigned long		bytes_written_nested;
4683	unsigned long		bytes_alloc_nested;
4684	unsigned long		bytes_dropped_nested;
4685	int			min_size_nested;
4686	int			max_size_nested;
4687	int			max_size;
4688	int			min_size;
4689	int			cpu;
4690	int			cnt;
4691};
4692
4693static struct rb_test_data rb_data[NR_CPUS] __initdata;
4694
4695/* 1 meg per cpu */
4696#define RB_TEST_BUFFER_SIZE	1048576
4697
4698static char rb_string[] __initdata =
4699	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4700	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4701	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4702
4703static bool rb_test_started __initdata;
4704
4705struct rb_item {
4706	int size;
4707	char str[];
4708};
4709
4710static __init int rb_write_something(struct rb_test_data *data, bool nested)
4711{
4712	struct ring_buffer_event *event;
4713	struct rb_item *item;
4714	bool started;
4715	int event_len;
4716	int size;
4717	int len;
4718	int cnt;
4719
4720	/* Have nested writes different that what is written */
4721	cnt = data->cnt + (nested ? 27 : 0);
4722
4723	/* Multiply cnt by ~e, to make some unique increment */
4724	size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4725
4726	len = size + sizeof(struct rb_item);
4727
4728	started = rb_test_started;
4729	/* read rb_test_started before checking buffer enabled */
4730	smp_rmb();
4731
4732	event = ring_buffer_lock_reserve(data->buffer, len);
4733	if (!event) {
4734		/* Ignore dropped events before test starts. */
4735		if (started) {
4736			if (nested)
4737				data->bytes_dropped += len;
4738			else
4739				data->bytes_dropped_nested += len;
4740		}
4741		return len;
4742	}
4743
4744	event_len = ring_buffer_event_length(event);
4745
4746	if (RB_WARN_ON(data->buffer, event_len < len))
4747		goto out;
4748
4749	item = ring_buffer_event_data(event);
4750	item->size = size;
4751	memcpy(item->str, rb_string, size);
4752
4753	if (nested) {
4754		data->bytes_alloc_nested += event_len;
4755		data->bytes_written_nested += len;
4756		data->events_nested++;
4757		if (!data->min_size_nested || len < data->min_size_nested)
4758			data->min_size_nested = len;
4759		if (len > data->max_size_nested)
4760			data->max_size_nested = len;
4761	} else {
4762		data->bytes_alloc += event_len;
4763		data->bytes_written += len;
4764		data->events++;
4765		if (!data->min_size || len < data->min_size)
4766			data->max_size = len;
4767		if (len > data->max_size)
4768			data->max_size = len;
4769	}
4770
4771 out:
4772	ring_buffer_unlock_commit(data->buffer, event);
4773
4774	return 0;
4775}
4776
4777static __init int rb_test(void *arg)
4778{
4779	struct rb_test_data *data = arg;
4780
4781	while (!kthread_should_stop()) {
4782		rb_write_something(data, false);
4783		data->cnt++;
4784
4785		set_current_state(TASK_INTERRUPTIBLE);
4786		/* Now sleep between a min of 100-300us and a max of 1ms */
4787		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4788	}
4789
4790	return 0;
4791}
4792
4793static __init void rb_ipi(void *ignore)
4794{
4795	struct rb_test_data *data;
4796	int cpu = smp_processor_id();
4797
4798	data = &rb_data[cpu];
4799	rb_write_something(data, true);
4800}
4801
4802static __init int rb_hammer_test(void *arg)
4803{
4804	while (!kthread_should_stop()) {
4805
4806		/* Send an IPI to all cpus to write data! */
4807		smp_call_function(rb_ipi, NULL, 1);
4808		/* No sleep, but for non preempt, let others run */
4809		schedule();
4810	}
4811
4812	return 0;
4813}
4814
4815static __init int test_ringbuffer(void)
4816{
4817	struct task_struct *rb_hammer;
4818	struct ring_buffer *buffer;
4819	int cpu;
4820	int ret = 0;
4821
 
 
 
 
 
4822	pr_info("Running ring buffer tests...\n");
4823
4824	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4825	if (WARN_ON(!buffer))
4826		return 0;
4827
4828	/* Disable buffer so that threads can't write to it yet */
4829	ring_buffer_record_off(buffer);
4830
4831	for_each_online_cpu(cpu) {
4832		rb_data[cpu].buffer = buffer;
4833		rb_data[cpu].cpu = cpu;
4834		rb_data[cpu].cnt = cpu;
4835		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4836						 "rbtester/%d", cpu);
4837		if (WARN_ON(!rb_threads[cpu])) {
4838			pr_cont("FAILED\n");
4839			ret = -1;
4840			goto out_free;
4841		}
4842
4843		kthread_bind(rb_threads[cpu], cpu);
4844 		wake_up_process(rb_threads[cpu]);
4845	}
4846
4847	/* Now create the rb hammer! */
4848	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4849	if (WARN_ON(!rb_hammer)) {
4850		pr_cont("FAILED\n");
4851		ret = -1;
4852		goto out_free;
4853	}
4854
4855	ring_buffer_record_on(buffer);
4856	/*
4857	 * Show buffer is enabled before setting rb_test_started.
4858	 * Yes there's a small race window where events could be
4859	 * dropped and the thread wont catch it. But when a ring
4860	 * buffer gets enabled, there will always be some kind of
4861	 * delay before other CPUs see it. Thus, we don't care about
4862	 * those dropped events. We care about events dropped after
4863	 * the threads see that the buffer is active.
4864	 */
4865	smp_wmb();
4866	rb_test_started = true;
4867
4868	set_current_state(TASK_INTERRUPTIBLE);
4869	/* Just run for 10 seconds */;
4870	schedule_timeout(10 * HZ);
4871
4872	kthread_stop(rb_hammer);
4873
4874 out_free:
4875	for_each_online_cpu(cpu) {
4876		if (!rb_threads[cpu])
4877			break;
4878		kthread_stop(rb_threads[cpu]);
4879	}
4880	if (ret) {
4881		ring_buffer_free(buffer);
4882		return ret;
4883	}
4884
4885	/* Report! */
4886	pr_info("finished\n");
4887	for_each_online_cpu(cpu) {
4888		struct ring_buffer_event *event;
4889		struct rb_test_data *data = &rb_data[cpu];
4890		struct rb_item *item;
4891		unsigned long total_events;
4892		unsigned long total_dropped;
4893		unsigned long total_written;
4894		unsigned long total_alloc;
4895		unsigned long total_read = 0;
4896		unsigned long total_size = 0;
4897		unsigned long total_len = 0;
4898		unsigned long total_lost = 0;
4899		unsigned long lost;
4900		int big_event_size;
4901		int small_event_size;
4902
4903		ret = -1;
4904
4905		total_events = data->events + data->events_nested;
4906		total_written = data->bytes_written + data->bytes_written_nested;
4907		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4908		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4909
4910		big_event_size = data->max_size + data->max_size_nested;
4911		small_event_size = data->min_size + data->min_size_nested;
4912
4913		pr_info("CPU %d:\n", cpu);
4914		pr_info("              events:    %ld\n", total_events);
4915		pr_info("       dropped bytes:    %ld\n", total_dropped);
4916		pr_info("       alloced bytes:    %ld\n", total_alloc);
4917		pr_info("       written bytes:    %ld\n", total_written);
4918		pr_info("       biggest event:    %d\n", big_event_size);
4919		pr_info("      smallest event:    %d\n", small_event_size);
4920
4921		if (RB_WARN_ON(buffer, total_dropped))
4922			break;
4923
4924		ret = 0;
4925
4926		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4927			total_lost += lost;
4928			item = ring_buffer_event_data(event);
4929			total_len += ring_buffer_event_length(event);
4930			total_size += item->size + sizeof(struct rb_item);
4931			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4932				pr_info("FAILED!\n");
4933				pr_info("buffer had: %.*s\n", item->size, item->str);
4934				pr_info("expected:   %.*s\n", item->size, rb_string);
4935				RB_WARN_ON(buffer, 1);
4936				ret = -1;
4937				break;
4938			}
4939			total_read++;
4940		}
4941		if (ret)
4942			break;
4943
4944		ret = -1;
4945
4946		pr_info("         read events:   %ld\n", total_read);
4947		pr_info("         lost events:   %ld\n", total_lost);
4948		pr_info("        total events:   %ld\n", total_lost + total_read);
4949		pr_info("  recorded len bytes:   %ld\n", total_len);
4950		pr_info(" recorded size bytes:   %ld\n", total_size);
4951		if (total_lost)
4952			pr_info(" With dropped events, record len and size may not match\n"
4953				" alloced and written from above\n");
4954		if (!total_lost) {
4955			if (RB_WARN_ON(buffer, total_len != total_alloc ||
4956				       total_size != total_written))
4957				break;
4958		}
4959		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4960			break;
4961
4962		ret = 0;
4963	}
4964	if (!ret)
4965		pr_info("Ring buffer PASSED!\n");
4966
4967	ring_buffer_free(buffer);
4968	return 0;
4969}
4970
4971late_initcall(test_ringbuffer);
4972#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Generic ring buffer
   4 *
   5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
   6 */
   7#include <linux/trace_events.h>
   8#include <linux/ring_buffer.h>
   9#include <linux/trace_clock.h>
  10#include <linux/sched/clock.h>
  11#include <linux/trace_seq.h>
  12#include <linux/spinlock.h>
  13#include <linux/irq_work.h>
  14#include <linux/security.h>
  15#include <linux/uaccess.h>
  16#include <linux/hardirq.h>
  17#include <linux/kthread.h>	/* for self test */
 
  18#include <linux/module.h>
  19#include <linux/percpu.h>
  20#include <linux/mutex.h>
  21#include <linux/delay.h>
  22#include <linux/slab.h>
  23#include <linux/init.h>
  24#include <linux/hash.h>
  25#include <linux/list.h>
  26#include <linux/cpu.h>
  27#include <linux/oom.h>
  28
  29#include <asm/local.h>
  30
  31static void update_pages_handler(struct work_struct *work);
  32
  33/*
  34 * The ring buffer header is special. We must manually up keep it.
  35 */
  36int ring_buffer_print_entry_header(struct trace_seq *s)
  37{
  38	trace_seq_puts(s, "# compressed entry header\n");
  39	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
  40	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
  41	trace_seq_puts(s, "\tarray       :   32 bits\n");
  42	trace_seq_putc(s, '\n');
  43	trace_seq_printf(s, "\tpadding     : type == %d\n",
  44			 RINGBUF_TYPE_PADDING);
  45	trace_seq_printf(s, "\ttime_extend : type == %d\n",
  46			 RINGBUF_TYPE_TIME_EXTEND);
  47	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
  48			 RINGBUF_TYPE_TIME_STAMP);
  49	trace_seq_printf(s, "\tdata max type_len  == %d\n",
  50			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
  51
  52	return !trace_seq_has_overflowed(s);
  53}
  54
  55/*
  56 * The ring buffer is made up of a list of pages. A separate list of pages is
  57 * allocated for each CPU. A writer may only write to a buffer that is
  58 * associated with the CPU it is currently executing on.  A reader may read
  59 * from any per cpu buffer.
  60 *
  61 * The reader is special. For each per cpu buffer, the reader has its own
  62 * reader page. When a reader has read the entire reader page, this reader
  63 * page is swapped with another page in the ring buffer.
  64 *
  65 * Now, as long as the writer is off the reader page, the reader can do what
  66 * ever it wants with that page. The writer will never write to that page
  67 * again (as long as it is out of the ring buffer).
  68 *
  69 * Here's some silly ASCII art.
  70 *
  71 *   +------+
  72 *   |reader|          RING BUFFER
  73 *   |page  |
  74 *   +------+        +---+   +---+   +---+
  75 *                   |   |-->|   |-->|   |
  76 *                   +---+   +---+   +---+
  77 *                     ^               |
  78 *                     |               |
  79 *                     +---------------+
  80 *
  81 *
  82 *   +------+
  83 *   |reader|          RING BUFFER
  84 *   |page  |------------------v
  85 *   +------+        +---+   +---+   +---+
  86 *                   |   |-->|   |-->|   |
  87 *                   +---+   +---+   +---+
  88 *                     ^               |
  89 *                     |               |
  90 *                     +---------------+
  91 *
  92 *
  93 *   +------+
  94 *   |reader|          RING BUFFER
  95 *   |page  |------------------v
  96 *   +------+        +---+   +---+   +---+
  97 *      ^            |   |-->|   |-->|   |
  98 *      |            +---+   +---+   +---+
  99 *      |                              |
 100 *      |                              |
 101 *      +------------------------------+
 102 *
 103 *
 104 *   +------+
 105 *   |buffer|          RING BUFFER
 106 *   |page  |------------------v
 107 *   +------+        +---+   +---+   +---+
 108 *      ^            |   |   |   |-->|   |
 109 *      |   New      +---+   +---+   +---+
 110 *      |  Reader------^               |
 111 *      |   page                       |
 112 *      +------------------------------+
 113 *
 114 *
 115 * After we make this swap, the reader can hand this page off to the splice
 116 * code and be done with it. It can even allocate a new page if it needs to
 117 * and swap that into the ring buffer.
 118 *
 119 * We will be using cmpxchg soon to make all this lockless.
 120 *
 121 */
 122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 123/* Used for individual buffers (after the counter) */
 124#define RB_BUFFER_OFF		(1 << 20)
 125
 126#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
 127
 
 
 
 
 
 
 
 
 
 
 
 128#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
 129#define RB_ALIGNMENT		4U
 130#define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 131#define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
 132#define RB_ALIGN_DATA		__aligned(RB_ALIGNMENT)
 
 
 
 
 
 
 
 
 
 133
 134/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
 135#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
 136
 137enum {
 138	RB_LEN_TIME_EXTEND = 8,
 139	RB_LEN_TIME_STAMP =  8,
 140};
 141
 142#define skip_time_extend(event) \
 143	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
 144
 145#define extended_time(event) \
 146	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
 147
 148static inline int rb_null_event(struct ring_buffer_event *event)
 149{
 150	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
 151}
 152
 153static void rb_event_set_padding(struct ring_buffer_event *event)
 154{
 155	/* padding has a NULL time_delta */
 156	event->type_len = RINGBUF_TYPE_PADDING;
 157	event->time_delta = 0;
 158}
 159
 160static unsigned
 161rb_event_data_length(struct ring_buffer_event *event)
 162{
 163	unsigned length;
 164
 165	if (event->type_len)
 166		length = event->type_len * RB_ALIGNMENT;
 167	else
 168		length = event->array[0];
 169	return length + RB_EVNT_HDR_SIZE;
 170}
 171
 172/*
 173 * Return the length of the given event. Will return
 174 * the length of the time extend if the event is a
 175 * time extend.
 176 */
 177static inline unsigned
 178rb_event_length(struct ring_buffer_event *event)
 179{
 180	switch (event->type_len) {
 181	case RINGBUF_TYPE_PADDING:
 182		if (rb_null_event(event))
 183			/* undefined */
 184			return -1;
 185		return  event->array[0] + RB_EVNT_HDR_SIZE;
 186
 187	case RINGBUF_TYPE_TIME_EXTEND:
 188		return RB_LEN_TIME_EXTEND;
 189
 190	case RINGBUF_TYPE_TIME_STAMP:
 191		return RB_LEN_TIME_STAMP;
 192
 193	case RINGBUF_TYPE_DATA:
 194		return rb_event_data_length(event);
 195	default:
 196		WARN_ON_ONCE(1);
 197	}
 198	/* not hit */
 199	return 0;
 200}
 201
 202/*
 203 * Return total length of time extend and data,
 204 *   or just the event length for all other events.
 205 */
 206static inline unsigned
 207rb_event_ts_length(struct ring_buffer_event *event)
 208{
 209	unsigned len = 0;
 210
 211	if (extended_time(event)) {
 212		/* time extends include the data event after it */
 213		len = RB_LEN_TIME_EXTEND;
 214		event = skip_time_extend(event);
 215	}
 216	return len + rb_event_length(event);
 217}
 218
 219/**
 220 * ring_buffer_event_length - return the length of the event
 221 * @event: the event to get the length of
 222 *
 223 * Returns the size of the data load of a data event.
 224 * If the event is something other than a data event, it
 225 * returns the size of the event itself. With the exception
 226 * of a TIME EXTEND, where it still returns the size of the
 227 * data load of the data event after it.
 228 */
 229unsigned ring_buffer_event_length(struct ring_buffer_event *event)
 230{
 231	unsigned length;
 232
 233	if (extended_time(event))
 234		event = skip_time_extend(event);
 235
 236	length = rb_event_length(event);
 237	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 238		return length;
 239	length -= RB_EVNT_HDR_SIZE;
 240	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
 241                length -= sizeof(event->array[0]);
 242	return length;
 243}
 244EXPORT_SYMBOL_GPL(ring_buffer_event_length);
 245
 246/* inline for ring buffer fast paths */
 247static __always_inline void *
 248rb_event_data(struct ring_buffer_event *event)
 249{
 250	if (extended_time(event))
 251		event = skip_time_extend(event);
 252	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
 253	/* If length is in len field, then array[0] has the data */
 254	if (event->type_len)
 255		return (void *)&event->array[0];
 256	/* Otherwise length is in array[0] and array[1] has the data */
 257	return (void *)&event->array[1];
 258}
 259
 260/**
 261 * ring_buffer_event_data - return the data of the event
 262 * @event: the event to get the data from
 263 */
 264void *ring_buffer_event_data(struct ring_buffer_event *event)
 265{
 266	return rb_event_data(event);
 267}
 268EXPORT_SYMBOL_GPL(ring_buffer_event_data);
 269
 270#define for_each_buffer_cpu(buffer, cpu)		\
 271	for_each_cpu(cpu, buffer->cpumask)
 272
 273#define for_each_online_buffer_cpu(buffer, cpu)		\
 274	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
 275
 276#define TS_SHIFT	27
 277#define TS_MASK		((1ULL << TS_SHIFT) - 1)
 278#define TS_DELTA_TEST	(~TS_MASK)
 279
 280/**
 281 * ring_buffer_event_time_stamp - return the event's extended timestamp
 282 * @event: the event to get the timestamp of
 283 *
 284 * Returns the extended timestamp associated with a data event.
 285 * An extended time_stamp is a 64-bit timestamp represented
 286 * internally in a special way that makes the best use of space
 287 * contained within a ring buffer event.  This function decodes
 288 * it and maps it to a straight u64 value.
 289 */
 290u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
 291{
 292	u64 ts;
 293
 294	ts = event->array[0];
 295	ts <<= TS_SHIFT;
 296	ts += event->time_delta;
 297
 298	return ts;
 299}
 300
 301/* Flag when events were overwritten */
 302#define RB_MISSED_EVENTS	(1 << 31)
 303/* Missed count stored at end */
 304#define RB_MISSED_STORED	(1 << 30)
 305
 306struct buffer_data_page {
 307	u64		 time_stamp;	/* page time stamp */
 308	local_t		 commit;	/* write committed index */
 309	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
 310};
 311
 312/*
 313 * Note, the buffer_page list must be first. The buffer pages
 314 * are allocated in cache lines, which means that each buffer
 315 * page will be at the beginning of a cache line, and thus
 316 * the least significant bits will be zero. We use this to
 317 * add flags in the list struct pointers, to make the ring buffer
 318 * lockless.
 319 */
 320struct buffer_page {
 321	struct list_head list;		/* list of buffer pages */
 322	local_t		 write;		/* index for next write */
 323	unsigned	 read;		/* index for next read */
 324	local_t		 entries;	/* entries on this page */
 325	unsigned long	 real_end;	/* real end of data */
 326	struct buffer_data_page *page;	/* Actual data page */
 327};
 328
 329/*
 330 * The buffer page counters, write and entries, must be reset
 331 * atomically when crossing page boundaries. To synchronize this
 332 * update, two counters are inserted into the number. One is
 333 * the actual counter for the write position or count on the page.
 334 *
 335 * The other is a counter of updaters. Before an update happens
 336 * the update partition of the counter is incremented. This will
 337 * allow the updater to update the counter atomically.
 338 *
 339 * The counter is 20 bits, and the state data is 12.
 340 */
 341#define RB_WRITE_MASK		0xfffff
 342#define RB_WRITE_INTCNT		(1 << 20)
 343
 344static void rb_init_page(struct buffer_data_page *bpage)
 345{
 346	local_set(&bpage->commit, 0);
 347}
 348
 
 
 
 
 
 
 
 
 
 
 
 
 349/*
 350 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
 351 * this issue out.
 352 */
 353static void free_buffer_page(struct buffer_page *bpage)
 354{
 355	free_page((unsigned long)bpage->page);
 356	kfree(bpage);
 357}
 358
 359/*
 360 * We need to fit the time_stamp delta into 27 bits.
 361 */
 362static inline int test_time_stamp(u64 delta)
 363{
 364	if (delta & TS_DELTA_TEST)
 365		return 1;
 366	return 0;
 367}
 368
 369#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
 370
 371/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
 372#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
 373
 374int ring_buffer_print_page_header(struct trace_seq *s)
 375{
 376	struct buffer_data_page field;
 
 377
 378	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
 379			 "offset:0;\tsize:%u;\tsigned:%u;\n",
 380			 (unsigned int)sizeof(field.time_stamp),
 381			 (unsigned int)is_signed_type(u64));
 382
 383	trace_seq_printf(s, "\tfield: local_t commit;\t"
 384			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
 385			 (unsigned int)offsetof(typeof(field), commit),
 386			 (unsigned int)sizeof(field.commit),
 387			 (unsigned int)is_signed_type(long));
 388
 389	trace_seq_printf(s, "\tfield: int overwrite;\t"
 390			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
 391			 (unsigned int)offsetof(typeof(field), commit),
 392			 1,
 393			 (unsigned int)is_signed_type(long));
 394
 395	trace_seq_printf(s, "\tfield: char data;\t"
 396			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
 397			 (unsigned int)offsetof(typeof(field), data),
 398			 (unsigned int)BUF_PAGE_SIZE,
 399			 (unsigned int)is_signed_type(char));
 400
 401	return !trace_seq_has_overflowed(s);
 402}
 403
 404struct rb_irq_work {
 405	struct irq_work			work;
 406	wait_queue_head_t		waiters;
 407	wait_queue_head_t		full_waiters;
 408	bool				waiters_pending;
 409	bool				full_waiters_pending;
 410	bool				wakeup_full;
 411};
 412
 413/*
 414 * Structure to hold event state and handle nested events.
 415 */
 416struct rb_event_info {
 417	u64			ts;
 418	u64			delta;
 419	u64			before;
 420	u64			after;
 421	unsigned long		length;
 422	struct buffer_page	*tail_page;
 423	int			add_timestamp;
 424};
 425
 426/*
 427 * Used for the add_timestamp
 428 *  NONE
 429 *  EXTEND - wants a time extend
 430 *  ABSOLUTE - the buffer requests all events to have absolute time stamps
 431 *  FORCE - force a full time stamp.
 432 */
 433enum {
 434	RB_ADD_STAMP_NONE		= 0,
 435	RB_ADD_STAMP_EXTEND		= BIT(1),
 436	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
 437	RB_ADD_STAMP_FORCE		= BIT(3)
 438};
 439/*
 440 * Used for which event context the event is in.
 441 *  NMI     = 0
 442 *  IRQ     = 1
 443 *  SOFTIRQ = 2
 444 *  NORMAL  = 3
 445 *
 446 * See trace_recursive_lock() comment below for more details.
 447 */
 448enum {
 449	RB_CTX_NMI,
 450	RB_CTX_IRQ,
 451	RB_CTX_SOFTIRQ,
 452	RB_CTX_NORMAL,
 453	RB_CTX_MAX
 454};
 455
 456#if BITS_PER_LONG == 32
 457#define RB_TIME_32
 458#endif
 459
 460/* To test on 64 bit machines */
 461//#define RB_TIME_32
 462
 463#ifdef RB_TIME_32
 464
 465struct rb_time_struct {
 466	local_t		cnt;
 467	local_t		top;
 468	local_t		bottom;
 469};
 470#else
 471#include <asm/local64.h>
 472struct rb_time_struct {
 473	local64_t	time;
 474};
 475#endif
 476typedef struct rb_time_struct rb_time_t;
 477
 478/*
 479 * head_page == tail_page && head == tail then buffer is empty.
 480 */
 481struct ring_buffer_per_cpu {
 482	int				cpu;
 483	atomic_t			record_disabled;
 484	atomic_t			resize_disabled;
 485	struct trace_buffer	*buffer;
 486	raw_spinlock_t			reader_lock;	/* serialize readers */
 487	arch_spinlock_t			lock;
 488	struct lock_class_key		lock_key;
 489	struct buffer_data_page		*free_page;
 490	unsigned long			nr_pages;
 491	unsigned int			current_context;
 492	struct list_head		*pages;
 493	struct buffer_page		*head_page;	/* read from head */
 494	struct buffer_page		*tail_page;	/* write to tail */
 495	struct buffer_page		*commit_page;	/* committed pages */
 496	struct buffer_page		*reader_page;
 497	unsigned long			lost_events;
 498	unsigned long			last_overrun;
 499	unsigned long			nest;
 500	local_t				entries_bytes;
 501	local_t				entries;
 502	local_t				overrun;
 503	local_t				commit_overrun;
 504	local_t				dropped_events;
 505	local_t				committing;
 506	local_t				commits;
 507	local_t				pages_touched;
 508	local_t				pages_read;
 509	long				last_pages_touch;
 510	size_t				shortest_full;
 511	unsigned long			read;
 512	unsigned long			read_bytes;
 513	rb_time_t			write_stamp;
 514	rb_time_t			before_stamp;
 515	u64				read_stamp;
 516	/* ring buffer pages to update, > 0 to add, < 0 to remove */
 517	long				nr_pages_to_update;
 518	struct list_head		new_pages; /* new pages to add */
 519	struct work_struct		update_pages_work;
 520	struct completion		update_done;
 521
 522	struct rb_irq_work		irq_work;
 523};
 524
 525struct trace_buffer {
 526	unsigned			flags;
 527	int				cpus;
 528	atomic_t			record_disabled;
 
 529	cpumask_var_t			cpumask;
 530
 531	struct lock_class_key		*reader_lock_key;
 532
 533	struct mutex			mutex;
 534
 535	struct ring_buffer_per_cpu	**buffers;
 536
 537	struct hlist_node		node;
 
 
 538	u64				(*clock)(void);
 539
 540	struct rb_irq_work		irq_work;
 541	bool				time_stamp_abs;
 542};
 543
 544struct ring_buffer_iter {
 545	struct ring_buffer_per_cpu	*cpu_buffer;
 546	unsigned long			head;
 547	unsigned long			next_event;
 548	struct buffer_page		*head_page;
 549	struct buffer_page		*cache_reader_page;
 550	unsigned long			cache_read;
 551	u64				read_stamp;
 552	u64				page_stamp;
 553	struct ring_buffer_event	*event;
 554	int				missed_events;
 555};
 556
 557#ifdef RB_TIME_32
 558
 559/*
 560 * On 32 bit machines, local64_t is very expensive. As the ring
 561 * buffer doesn't need all the features of a true 64 bit atomic,
 562 * on 32 bit, it uses these functions (64 still uses local64_t).
 563 *
 564 * For the ring buffer, 64 bit required operations for the time is
 565 * the following:
 566 *
 567 *  - Only need 59 bits (uses 60 to make it even).
 568 *  - Reads may fail if it interrupted a modification of the time stamp.
 569 *      It will succeed if it did not interrupt another write even if
 570 *      the read itself is interrupted by a write.
 571 *      It returns whether it was successful or not.
 572 *
 573 *  - Writes always succeed and will overwrite other writes and writes
 574 *      that were done by events interrupting the current write.
 575 *
 576 *  - A write followed by a read of the same time stamp will always succeed,
 577 *      but may not contain the same value.
 578 *
 579 *  - A cmpxchg will fail if it interrupted another write or cmpxchg.
 580 *      Other than that, it acts like a normal cmpxchg.
 581 *
 582 * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
 583 *  (bottom being the least significant 30 bits of the 60 bit time stamp).
 584 *
 585 * The two most significant bits of each half holds a 2 bit counter (0-3).
 586 * Each update will increment this counter by one.
 587 * When reading the top and bottom, if the two counter bits match then the
 588 *  top and bottom together make a valid 60 bit number.
 589 */
 590#define RB_TIME_SHIFT	30
 591#define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
 592
 593static inline int rb_time_cnt(unsigned long val)
 594{
 595	return (val >> RB_TIME_SHIFT) & 3;
 596}
 597
 598static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
 599{
 600	u64 val;
 601
 602	val = top & RB_TIME_VAL_MASK;
 603	val <<= RB_TIME_SHIFT;
 604	val |= bottom & RB_TIME_VAL_MASK;
 605
 606	return val;
 607}
 608
 609static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
 610{
 611	unsigned long top, bottom;
 612	unsigned long c;
 613
 614	/*
 615	 * If the read is interrupted by a write, then the cnt will
 616	 * be different. Loop until both top and bottom have been read
 617	 * without interruption.
 618	 */
 619	do {
 620		c = local_read(&t->cnt);
 621		top = local_read(&t->top);
 622		bottom = local_read(&t->bottom);
 623	} while (c != local_read(&t->cnt));
 624
 625	*cnt = rb_time_cnt(top);
 626
 627	/* If top and bottom counts don't match, this interrupted a write */
 628	if (*cnt != rb_time_cnt(bottom))
 629		return false;
 630
 631	*ret = rb_time_val(top, bottom);
 632	return true;
 633}
 634
 635static bool rb_time_read(rb_time_t *t, u64 *ret)
 636{
 637	unsigned long cnt;
 638
 639	return __rb_time_read(t, ret, &cnt);
 640}
 641
 642static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
 643{
 644	return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
 645}
 646
 647static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom)
 648{
 649	*top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
 650	*bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
 651}
 652
 653static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
 654{
 655	val = rb_time_val_cnt(val, cnt);
 656	local_set(t, val);
 657}
 658
 659static void rb_time_set(rb_time_t *t, u64 val)
 660{
 661	unsigned long cnt, top, bottom;
 662
 663	rb_time_split(val, &top, &bottom);
 664
 665	/* Writes always succeed with a valid number even if it gets interrupted. */
 666	do {
 667		cnt = local_inc_return(&t->cnt);
 668		rb_time_val_set(&t->top, top, cnt);
 669		rb_time_val_set(&t->bottom, bottom, cnt);
 670	} while (cnt != local_read(&t->cnt));
 671}
 672
 673static inline bool
 674rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
 675{
 676	unsigned long ret;
 677
 678	ret = local_cmpxchg(l, expect, set);
 679	return ret == expect;
 680}
 681
 682static int rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
 683{
 684	unsigned long cnt, top, bottom;
 685	unsigned long cnt2, top2, bottom2;
 686	u64 val;
 687
 688	/* The cmpxchg always fails if it interrupted an update */
 689	 if (!__rb_time_read(t, &val, &cnt2))
 690		 return false;
 691
 692	 if (val != expect)
 693		 return false;
 694
 695	 cnt = local_read(&t->cnt);
 696	 if ((cnt & 3) != cnt2)
 697		 return false;
 698
 699	 cnt2 = cnt + 1;
 700
 701	 rb_time_split(val, &top, &bottom);
 702	 top = rb_time_val_cnt(top, cnt);
 703	 bottom = rb_time_val_cnt(bottom, cnt);
 704
 705	 rb_time_split(set, &top2, &bottom2);
 706	 top2 = rb_time_val_cnt(top2, cnt2);
 707	 bottom2 = rb_time_val_cnt(bottom2, cnt2);
 708
 709	if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
 710		return false;
 711	if (!rb_time_read_cmpxchg(&t->top, top, top2))
 712		return false;
 713	if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
 714		return false;
 715	return true;
 716}
 717
 718#else /* 64 bits */
 719
 720/* local64_t always succeeds */
 721
 722static inline bool rb_time_read(rb_time_t *t, u64 *ret)
 723{
 724	*ret = local64_read(&t->time);
 725	return true;
 726}
 727static void rb_time_set(rb_time_t *t, u64 val)
 728{
 729	local64_set(&t->time, val);
 730}
 731
 732static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
 733{
 734	u64 val;
 735	val = local64_cmpxchg(&t->time, expect, set);
 736	return val == expect;
 737}
 738#endif
 739
 740/**
 741 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
 742 * @buffer: The ring_buffer to get the number of pages from
 743 * @cpu: The cpu of the ring_buffer to get the number of pages from
 744 *
 745 * Returns the number of pages used by a per_cpu buffer of the ring buffer.
 746 */
 747size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
 748{
 749	return buffer->buffers[cpu]->nr_pages;
 750}
 751
 752/**
 753 * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer
 754 * @buffer: The ring_buffer to get the number of pages from
 755 * @cpu: The cpu of the ring_buffer to get the number of pages from
 756 *
 757 * Returns the number of pages that have content in the ring buffer.
 758 */
 759size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
 760{
 761	size_t read;
 762	size_t cnt;
 763
 764	read = local_read(&buffer->buffers[cpu]->pages_read);
 765	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
 766	/* The reader can read an empty page, but not more than that */
 767	if (cnt < read) {
 768		WARN_ON_ONCE(read > cnt + 1);
 769		return 0;
 770	}
 771
 772	return cnt - read;
 773}
 774
 775/*
 776 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
 777 *
 778 * Schedules a delayed work to wake up any task that is blocked on the
 779 * ring buffer waiters queue.
 780 */
 781static void rb_wake_up_waiters(struct irq_work *work)
 782{
 783	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
 784
 785	wake_up_all(&rbwork->waiters);
 786	if (rbwork->wakeup_full) {
 787		rbwork->wakeup_full = false;
 788		wake_up_all(&rbwork->full_waiters);
 789	}
 790}
 791
 792/**
 793 * ring_buffer_wait - wait for input to the ring buffer
 794 * @buffer: buffer to wait on
 795 * @cpu: the cpu buffer to wait on
 796 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
 797 *
 798 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 799 * as data is added to any of the @buffer's cpu buffers. Otherwise
 800 * it will wait for data to be added to a specific cpu buffer.
 801 */
 802int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
 803{
 804	struct ring_buffer_per_cpu *cpu_buffer;
 805	DEFINE_WAIT(wait);
 806	struct rb_irq_work *work;
 807	int ret = 0;
 808
 809	/*
 810	 * Depending on what the caller is waiting for, either any
 811	 * data in any cpu buffer, or a specific buffer, put the
 812	 * caller on the appropriate wait queue.
 813	 */
 814	if (cpu == RING_BUFFER_ALL_CPUS) {
 815		work = &buffer->irq_work;
 816		/* Full only makes sense on per cpu reads */
 817		full = 0;
 818	} else {
 819		if (!cpumask_test_cpu(cpu, buffer->cpumask))
 820			return -ENODEV;
 821		cpu_buffer = buffer->buffers[cpu];
 822		work = &cpu_buffer->irq_work;
 823	}
 824
 825
 826	while (true) {
 827		if (full)
 828			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
 829		else
 830			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
 831
 832		/*
 833		 * The events can happen in critical sections where
 834		 * checking a work queue can cause deadlocks.
 835		 * After adding a task to the queue, this flag is set
 836		 * only to notify events to try to wake up the queue
 837		 * using irq_work.
 838		 *
 839		 * We don't clear it even if the buffer is no longer
 840		 * empty. The flag only causes the next event to run
 841		 * irq_work to do the work queue wake up. The worse
 842		 * that can happen if we race with !trace_empty() is that
 843		 * an event will cause an irq_work to try to wake up
 844		 * an empty queue.
 845		 *
 846		 * There's no reason to protect this flag either, as
 847		 * the work queue and irq_work logic will do the necessary
 848		 * synchronization for the wake ups. The only thing
 849		 * that is necessary is that the wake up happens after
 850		 * a task has been queued. It's OK for spurious wake ups.
 851		 */
 852		if (full)
 853			work->full_waiters_pending = true;
 854		else
 855			work->waiters_pending = true;
 856
 857		if (signal_pending(current)) {
 858			ret = -EINTR;
 859			break;
 860		}
 861
 862		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
 863			break;
 864
 865		if (cpu != RING_BUFFER_ALL_CPUS &&
 866		    !ring_buffer_empty_cpu(buffer, cpu)) {
 867			unsigned long flags;
 868			bool pagebusy;
 869			size_t nr_pages;
 870			size_t dirty;
 871
 872			if (!full)
 873				break;
 874
 875			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
 876			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
 877			nr_pages = cpu_buffer->nr_pages;
 878			dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
 879			if (!cpu_buffer->shortest_full ||
 880			    cpu_buffer->shortest_full < full)
 881				cpu_buffer->shortest_full = full;
 882			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
 883			if (!pagebusy &&
 884			    (!nr_pages || (dirty * 100) > full * nr_pages))
 885				break;
 886		}
 887
 
 
 888		schedule();
 889	}
 890
 891	if (full)
 892		finish_wait(&work->full_waiters, &wait);
 893	else
 894		finish_wait(&work->waiters, &wait);
 895
 896	return ret;
 897}
 898
 899/**
 900 * ring_buffer_poll_wait - poll on buffer input
 901 * @buffer: buffer to wait on
 902 * @cpu: the cpu buffer to wait on
 903 * @filp: the file descriptor
 904 * @poll_table: The poll descriptor
 905 *
 906 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 907 * as data is added to any of the @buffer's cpu buffers. Otherwise
 908 * it will wait for data to be added to a specific cpu buffer.
 909 *
 910 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
 911 * zero otherwise.
 912 */
 913__poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
 914			  struct file *filp, poll_table *poll_table)
 915{
 916	struct ring_buffer_per_cpu *cpu_buffer;
 917	struct rb_irq_work *work;
 918
 
 
 
 
 919	if (cpu == RING_BUFFER_ALL_CPUS)
 920		work = &buffer->irq_work;
 921	else {
 922		if (!cpumask_test_cpu(cpu, buffer->cpumask))
 923			return -EINVAL;
 924
 925		cpu_buffer = buffer->buffers[cpu];
 926		work = &cpu_buffer->irq_work;
 927	}
 928
 
 929	poll_wait(filp, &work->waiters, poll_table);
 930	work->waiters_pending = true;
 931	/*
 932	 * There's a tight race between setting the waiters_pending and
 933	 * checking if the ring buffer is empty.  Once the waiters_pending bit
 934	 * is set, the next event will wake the task up, but we can get stuck
 935	 * if there's only a single event in.
 936	 *
 937	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
 938	 * but adding a memory barrier to all events will cause too much of a
 939	 * performance hit in the fast path.  We only need a memory barrier when
 940	 * the buffer goes from empty to having content.  But as this race is
 941	 * extremely small, and it's not a problem if another event comes in, we
 942	 * will fix it later.
 943	 */
 944	smp_mb();
 945
 946	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
 947	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
 948		return EPOLLIN | EPOLLRDNORM;
 949	return 0;
 950}
 951
 952/* buffer may be either ring_buffer or ring_buffer_per_cpu */
 953#define RB_WARN_ON(b, cond)						\
 954	({								\
 955		int _____ret = unlikely(cond);				\
 956		if (_____ret) {						\
 957			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
 958				struct ring_buffer_per_cpu *__b =	\
 959					(void *)b;			\
 960				atomic_inc(&__b->buffer->record_disabled); \
 961			} else						\
 962				atomic_inc(&b->record_disabled);	\
 963			WARN_ON(1);					\
 964		}							\
 965		_____ret;						\
 966	})
 967
 968/* Up this if you want to test the TIME_EXTENTS and normalization */
 969#define DEBUG_SHIFT 0
 970
 971static inline u64 rb_time_stamp(struct trace_buffer *buffer)
 972{
 973	u64 ts;
 974
 975	/* Skip retpolines :-( */
 976	if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
 977		ts = trace_clock_local();
 978	else
 979		ts = buffer->clock();
 980
 981	/* shift to debug/test normalization and TIME_EXTENTS */
 982	return ts << DEBUG_SHIFT;
 983}
 984
 985u64 ring_buffer_time_stamp(struct trace_buffer *buffer, int cpu)
 986{
 987	u64 time;
 988
 989	preempt_disable_notrace();
 990	time = rb_time_stamp(buffer);
 991	preempt_enable_notrace();
 992
 993	return time;
 994}
 995EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
 996
 997void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
 998				      int cpu, u64 *ts)
 999{
1000	/* Just stupid testing the normalize function and deltas */
1001	*ts >>= DEBUG_SHIFT;
1002}
1003EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1004
1005/*
1006 * Making the ring buffer lockless makes things tricky.
1007 * Although writes only happen on the CPU that they are on,
1008 * and they only need to worry about interrupts. Reads can
1009 * happen on any CPU.
1010 *
1011 * The reader page is always off the ring buffer, but when the
1012 * reader finishes with a page, it needs to swap its page with
1013 * a new one from the buffer. The reader needs to take from
1014 * the head (writes go to the tail). But if a writer is in overwrite
1015 * mode and wraps, it must push the head page forward.
1016 *
1017 * Here lies the problem.
1018 *
1019 * The reader must be careful to replace only the head page, and
1020 * not another one. As described at the top of the file in the
1021 * ASCII art, the reader sets its old page to point to the next
1022 * page after head. It then sets the page after head to point to
1023 * the old reader page. But if the writer moves the head page
1024 * during this operation, the reader could end up with the tail.
1025 *
1026 * We use cmpxchg to help prevent this race. We also do something
1027 * special with the page before head. We set the LSB to 1.
1028 *
1029 * When the writer must push the page forward, it will clear the
1030 * bit that points to the head page, move the head, and then set
1031 * the bit that points to the new head page.
1032 *
1033 * We also don't want an interrupt coming in and moving the head
1034 * page on another writer. Thus we use the second LSB to catch
1035 * that too. Thus:
1036 *
1037 * head->list->prev->next        bit 1          bit 0
1038 *                              -------        -------
1039 * Normal page                     0              0
1040 * Points to head page             0              1
1041 * New head page                   1              0
1042 *
1043 * Note we can not trust the prev pointer of the head page, because:
1044 *
1045 * +----+       +-----+        +-----+
1046 * |    |------>|  T  |---X--->|  N  |
1047 * |    |<------|     |        |     |
1048 * +----+       +-----+        +-----+
1049 *   ^                           ^ |
1050 *   |          +-----+          | |
1051 *   +----------|  R  |----------+ |
1052 *              |     |<-----------+
1053 *              +-----+
1054 *
1055 * Key:  ---X-->  HEAD flag set in pointer
1056 *         T      Tail page
1057 *         R      Reader page
1058 *         N      Next page
1059 *
1060 * (see __rb_reserve_next() to see where this happens)
1061 *
1062 *  What the above shows is that the reader just swapped out
1063 *  the reader page with a page in the buffer, but before it
1064 *  could make the new header point back to the new page added
1065 *  it was preempted by a writer. The writer moved forward onto
1066 *  the new page added by the reader and is about to move forward
1067 *  again.
1068 *
1069 *  You can see, it is legitimate for the previous pointer of
1070 *  the head (or any page) not to point back to itself. But only
1071 *  temporarily.
1072 */
1073
1074#define RB_PAGE_NORMAL		0UL
1075#define RB_PAGE_HEAD		1UL
1076#define RB_PAGE_UPDATE		2UL
1077
1078
1079#define RB_FLAG_MASK		3UL
1080
1081/* PAGE_MOVED is not part of the mask */
1082#define RB_PAGE_MOVED		4UL
1083
1084/*
1085 * rb_list_head - remove any bit
1086 */
1087static struct list_head *rb_list_head(struct list_head *list)
1088{
1089	unsigned long val = (unsigned long)list;
1090
1091	return (struct list_head *)(val & ~RB_FLAG_MASK);
1092}
1093
1094/*
1095 * rb_is_head_page - test if the given page is the head page
1096 *
1097 * Because the reader may move the head_page pointer, we can
1098 * not trust what the head page is (it may be pointing to
1099 * the reader page). But if the next page is a header page,
1100 * its flags will be non zero.
1101 */
1102static inline int
1103rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1104		struct buffer_page *page, struct list_head *list)
1105{
1106	unsigned long val;
1107
1108	val = (unsigned long)list->next;
1109
1110	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1111		return RB_PAGE_MOVED;
1112
1113	return val & RB_FLAG_MASK;
1114}
1115
1116/*
1117 * rb_is_reader_page
1118 *
1119 * The unique thing about the reader page, is that, if the
1120 * writer is ever on it, the previous pointer never points
1121 * back to the reader page.
1122 */
1123static bool rb_is_reader_page(struct buffer_page *page)
1124{
1125	struct list_head *list = page->list.prev;
1126
1127	return rb_list_head(list->next) != &page->list;
1128}
1129
1130/*
1131 * rb_set_list_to_head - set a list_head to be pointing to head.
1132 */
1133static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
1134				struct list_head *list)
1135{
1136	unsigned long *ptr;
1137
1138	ptr = (unsigned long *)&list->next;
1139	*ptr |= RB_PAGE_HEAD;
1140	*ptr &= ~RB_PAGE_UPDATE;
1141}
1142
1143/*
1144 * rb_head_page_activate - sets up head page
1145 */
1146static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1147{
1148	struct buffer_page *head;
1149
1150	head = cpu_buffer->head_page;
1151	if (!head)
1152		return;
1153
1154	/*
1155	 * Set the previous list pointer to have the HEAD flag.
1156	 */
1157	rb_set_list_to_head(cpu_buffer, head->list.prev);
1158}
1159
1160static void rb_list_head_clear(struct list_head *list)
1161{
1162	unsigned long *ptr = (unsigned long *)&list->next;
1163
1164	*ptr &= ~RB_FLAG_MASK;
1165}
1166
1167/*
1168 * rb_head_page_deactivate - clears head page ptr (for free list)
1169 */
1170static void
1171rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1172{
1173	struct list_head *hd;
1174
1175	/* Go through the whole list and clear any pointers found. */
1176	rb_list_head_clear(cpu_buffer->pages);
1177
1178	list_for_each(hd, cpu_buffer->pages)
1179		rb_list_head_clear(hd);
1180}
1181
1182static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1183			    struct buffer_page *head,
1184			    struct buffer_page *prev,
1185			    int old_flag, int new_flag)
1186{
1187	struct list_head *list;
1188	unsigned long val = (unsigned long)&head->list;
1189	unsigned long ret;
1190
1191	list = &prev->list;
1192
1193	val &= ~RB_FLAG_MASK;
1194
1195	ret = cmpxchg((unsigned long *)&list->next,
1196		      val | old_flag, val | new_flag);
1197
1198	/* check if the reader took the page */
1199	if ((ret & ~RB_FLAG_MASK) != val)
1200		return RB_PAGE_MOVED;
1201
1202	return ret & RB_FLAG_MASK;
1203}
1204
1205static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1206				   struct buffer_page *head,
1207				   struct buffer_page *prev,
1208				   int old_flag)
1209{
1210	return rb_head_page_set(cpu_buffer, head, prev,
1211				old_flag, RB_PAGE_UPDATE);
1212}
1213
1214static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1215				 struct buffer_page *head,
1216				 struct buffer_page *prev,
1217				 int old_flag)
1218{
1219	return rb_head_page_set(cpu_buffer, head, prev,
1220				old_flag, RB_PAGE_HEAD);
1221}
1222
1223static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1224				   struct buffer_page *head,
1225				   struct buffer_page *prev,
1226				   int old_flag)
1227{
1228	return rb_head_page_set(cpu_buffer, head, prev,
1229				old_flag, RB_PAGE_NORMAL);
1230}
1231
1232static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
1233			       struct buffer_page **bpage)
1234{
1235	struct list_head *p = rb_list_head((*bpage)->list.next);
1236
1237	*bpage = list_entry(p, struct buffer_page, list);
1238}
1239
1240static struct buffer_page *
1241rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1242{
1243	struct buffer_page *head;
1244	struct buffer_page *page;
1245	struct list_head *list;
1246	int i;
1247
1248	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1249		return NULL;
1250
1251	/* sanity check */
1252	list = cpu_buffer->pages;
1253	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1254		return NULL;
1255
1256	page = head = cpu_buffer->head_page;
1257	/*
1258	 * It is possible that the writer moves the header behind
1259	 * where we started, and we miss in one loop.
1260	 * A second loop should grab the header, but we'll do
1261	 * three loops just because I'm paranoid.
1262	 */
1263	for (i = 0; i < 3; i++) {
1264		do {
1265			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
1266				cpu_buffer->head_page = page;
1267				return page;
1268			}
1269			rb_inc_page(cpu_buffer, &page);
1270		} while (page != head);
1271	}
1272
1273	RB_WARN_ON(cpu_buffer, 1);
1274
1275	return NULL;
1276}
1277
1278static int rb_head_page_replace(struct buffer_page *old,
1279				struct buffer_page *new)
1280{
1281	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1282	unsigned long val;
1283	unsigned long ret;
1284
1285	val = *ptr & ~RB_FLAG_MASK;
1286	val |= RB_PAGE_HEAD;
1287
1288	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1289
1290	return ret == val;
1291}
1292
1293/*
1294 * rb_tail_page_update - move the tail page forward
 
 
1295 */
1296static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1297			       struct buffer_page *tail_page,
1298			       struct buffer_page *next_page)
1299{
 
1300	unsigned long old_entries;
1301	unsigned long old_write;
 
1302
1303	/*
1304	 * The tail page now needs to be moved forward.
1305	 *
1306	 * We need to reset the tail page, but without messing
1307	 * with possible erasing of data brought in by interrupts
1308	 * that have moved the tail page and are currently on it.
1309	 *
1310	 * We add a counter to the write field to denote this.
1311	 */
1312	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1313	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1314
1315	local_inc(&cpu_buffer->pages_touched);
1316	/*
1317	 * Just make sure we have seen our old_write and synchronize
1318	 * with any interrupts that come in.
1319	 */
1320	barrier();
1321
1322	/*
1323	 * If the tail page is still the same as what we think
1324	 * it is, then it is up to us to update the tail
1325	 * pointer.
1326	 */
1327	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1328		/* Zero the write counter */
1329		unsigned long val = old_write & ~RB_WRITE_MASK;
1330		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1331
1332		/*
1333		 * This will only succeed if an interrupt did
1334		 * not come in and change it. In which case, we
1335		 * do not want to modify it.
1336		 *
1337		 * We add (void) to let the compiler know that we do not care
1338		 * about the return value of these functions. We use the
1339		 * cmpxchg to only update if an interrupt did not already
1340		 * do it for us. If the cmpxchg fails, we don't care.
1341		 */
1342		(void)local_cmpxchg(&next_page->write, old_write, val);
1343		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1344
1345		/*
1346		 * No need to worry about races with clearing out the commit.
1347		 * it only can increment when a commit takes place. But that
1348		 * only happens in the outer most nested commit.
1349		 */
1350		local_set(&next_page->page->commit, 0);
1351
1352		/* Again, either we update tail_page or an interrupt does */
1353		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
 
 
 
1354	}
 
 
1355}
1356
1357static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1358			  struct buffer_page *bpage)
1359{
1360	unsigned long val = (unsigned long)bpage;
1361
1362	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1363		return 1;
1364
1365	return 0;
1366}
1367
1368/**
1369 * rb_check_list - make sure a pointer to a list has the last bits zero
1370 */
1371static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1372			 struct list_head *list)
1373{
1374	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1375		return 1;
1376	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1377		return 1;
1378	return 0;
1379}
1380
1381/**
1382 * rb_check_pages - integrity check of buffer pages
1383 * @cpu_buffer: CPU buffer with pages to test
1384 *
1385 * As a safety measure we check to make sure the data pages have not
1386 * been corrupted.
1387 */
1388static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1389{
1390	struct list_head *head = cpu_buffer->pages;
1391	struct buffer_page *bpage, *tmp;
1392
1393	/* Reset the head page if it exists */
1394	if (cpu_buffer->head_page)
1395		rb_set_head_page(cpu_buffer);
1396
1397	rb_head_page_deactivate(cpu_buffer);
1398
1399	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1400		return -1;
1401	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1402		return -1;
1403
1404	if (rb_check_list(cpu_buffer, head))
1405		return -1;
1406
1407	list_for_each_entry_safe(bpage, tmp, head, list) {
1408		if (RB_WARN_ON(cpu_buffer,
1409			       bpage->list.next->prev != &bpage->list))
1410			return -1;
1411		if (RB_WARN_ON(cpu_buffer,
1412			       bpage->list.prev->next != &bpage->list))
1413			return -1;
1414		if (rb_check_list(cpu_buffer, &bpage->list))
1415			return -1;
1416	}
1417
1418	rb_head_page_activate(cpu_buffer);
1419
1420	return 0;
1421}
1422
1423static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1424{
 
1425	struct buffer_page *bpage, *tmp;
1426	bool user_thread = current->mm != NULL;
1427	gfp_t mflags;
1428	long i;
1429
1430	/*
1431	 * Check if the available memory is there first.
1432	 * Note, si_mem_available() only gives us a rough estimate of available
1433	 * memory. It may not be accurate. But we don't care, we just want
1434	 * to prevent doing any allocation when it is obvious that it is
1435	 * not going to succeed.
1436	 */
1437	i = si_mem_available();
1438	if (i < nr_pages)
1439		return -ENOMEM;
1440
1441	/*
1442	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1443	 * gracefully without invoking oom-killer and the system is not
1444	 * destabilized.
1445	 */
1446	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1447
1448	/*
1449	 * If a user thread allocates too much, and si_mem_available()
1450	 * reports there's enough memory, even though there is not.
1451	 * Make sure the OOM killer kills this thread. This can happen
1452	 * even with RETRY_MAYFAIL because another task may be doing
1453	 * an allocation after this task has taken all memory.
1454	 * This is the task the OOM killer needs to take out during this
1455	 * loop, even if it was triggered by an allocation somewhere else.
1456	 */
1457	if (user_thread)
1458		set_current_oom_origin();
1459	for (i = 0; i < nr_pages; i++) {
1460		struct page *page;
1461
 
 
 
 
1462		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1463				    mflags, cpu_to_node(cpu));
 
1464		if (!bpage)
1465			goto free_pages;
1466
1467		list_add(&bpage->list, pages);
1468
1469		page = alloc_pages_node(cpu_to_node(cpu), mflags, 0);
 
1470		if (!page)
1471			goto free_pages;
1472		bpage->page = page_address(page);
1473		rb_init_page(bpage->page);
1474
1475		if (user_thread && fatal_signal_pending(current))
1476			goto free_pages;
1477	}
1478	if (user_thread)
1479		clear_current_oom_origin();
1480
1481	return 0;
1482
1483free_pages:
1484	list_for_each_entry_safe(bpage, tmp, pages, list) {
1485		list_del_init(&bpage->list);
1486		free_buffer_page(bpage);
1487	}
1488	if (user_thread)
1489		clear_current_oom_origin();
1490
1491	return -ENOMEM;
1492}
1493
1494static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1495			     unsigned long nr_pages)
1496{
1497	LIST_HEAD(pages);
1498
1499	WARN_ON(!nr_pages);
1500
1501	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1502		return -ENOMEM;
1503
1504	/*
1505	 * The ring buffer page list is a circular list that does not
1506	 * start and end with a list head. All page list items point to
1507	 * other pages.
1508	 */
1509	cpu_buffer->pages = pages.next;
1510	list_del(&pages);
1511
1512	cpu_buffer->nr_pages = nr_pages;
1513
1514	rb_check_pages(cpu_buffer);
1515
1516	return 0;
1517}
1518
1519static struct ring_buffer_per_cpu *
1520rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1521{
1522	struct ring_buffer_per_cpu *cpu_buffer;
1523	struct buffer_page *bpage;
1524	struct page *page;
1525	int ret;
1526
1527	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1528				  GFP_KERNEL, cpu_to_node(cpu));
1529	if (!cpu_buffer)
1530		return NULL;
1531
1532	cpu_buffer->cpu = cpu;
1533	cpu_buffer->buffer = buffer;
1534	raw_spin_lock_init(&cpu_buffer->reader_lock);
1535	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1536	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1537	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1538	init_completion(&cpu_buffer->update_done);
1539	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1540	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1541	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1542
1543	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1544			    GFP_KERNEL, cpu_to_node(cpu));
1545	if (!bpage)
1546		goto fail_free_buffer;
1547
1548	rb_check_bpage(cpu_buffer, bpage);
1549
1550	cpu_buffer->reader_page = bpage;
1551	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1552	if (!page)
1553		goto fail_free_reader;
1554	bpage->page = page_address(page);
1555	rb_init_page(bpage->page);
1556
1557	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1558	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1559
1560	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1561	if (ret < 0)
1562		goto fail_free_reader;
1563
1564	cpu_buffer->head_page
1565		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1566	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1567
1568	rb_head_page_activate(cpu_buffer);
1569
1570	return cpu_buffer;
1571
1572 fail_free_reader:
1573	free_buffer_page(cpu_buffer->reader_page);
1574
1575 fail_free_buffer:
1576	kfree(cpu_buffer);
1577	return NULL;
1578}
1579
1580static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1581{
1582	struct list_head *head = cpu_buffer->pages;
1583	struct buffer_page *bpage, *tmp;
1584
1585	free_buffer_page(cpu_buffer->reader_page);
1586
1587	rb_head_page_deactivate(cpu_buffer);
1588
1589	if (head) {
1590		list_for_each_entry_safe(bpage, tmp, head, list) {
1591			list_del_init(&bpage->list);
1592			free_buffer_page(bpage);
1593		}
1594		bpage = list_entry(head, struct buffer_page, list);
1595		free_buffer_page(bpage);
1596	}
1597
1598	kfree(cpu_buffer);
1599}
1600
 
 
 
 
 
1601/**
1602 * __ring_buffer_alloc - allocate a new ring_buffer
1603 * @size: the size in bytes per cpu that is needed.
1604 * @flags: attributes to set for the ring buffer.
1605 * @key: ring buffer reader_lock_key.
1606 *
1607 * Currently the only flag that is available is the RB_FL_OVERWRITE
1608 * flag. This flag means that the buffer will overwrite old data
1609 * when the buffer wraps. If this flag is not set, the buffer will
1610 * drop data when the tail hits the head.
1611 */
1612struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1613					struct lock_class_key *key)
1614{
1615	struct trace_buffer *buffer;
1616	long nr_pages;
1617	int bsize;
1618	int cpu;
1619	int ret;
1620
1621	/* keep it in its own cache line */
1622	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1623			 GFP_KERNEL);
1624	if (!buffer)
1625		return NULL;
1626
1627	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1628		goto fail_free_buffer;
1629
1630	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1631	buffer->flags = flags;
1632	buffer->clock = trace_clock_local;
1633	buffer->reader_lock_key = key;
1634
1635	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1636	init_waitqueue_head(&buffer->irq_work.waiters);
1637
1638	/* need at least two pages */
1639	if (nr_pages < 2)
1640		nr_pages = 2;
1641
 
 
 
 
 
 
 
 
 
 
 
1642	buffer->cpus = nr_cpu_ids;
1643
1644	bsize = sizeof(void *) * nr_cpu_ids;
1645	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1646				  GFP_KERNEL);
1647	if (!buffer->buffers)
1648		goto fail_free_cpumask;
1649
1650	cpu = raw_smp_processor_id();
1651	cpumask_set_cpu(cpu, buffer->cpumask);
1652	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1653	if (!buffer->buffers[cpu])
1654		goto fail_free_buffers;
 
1655
1656	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1657	if (ret < 0)
1658		goto fail_free_buffers;
 
 
 
1659
1660	mutex_init(&buffer->mutex);
1661
1662	return buffer;
1663
1664 fail_free_buffers:
1665	for_each_buffer_cpu(buffer, cpu) {
1666		if (buffer->buffers[cpu])
1667			rb_free_cpu_buffer(buffer->buffers[cpu]);
1668	}
1669	kfree(buffer->buffers);
1670
1671 fail_free_cpumask:
1672	free_cpumask_var(buffer->cpumask);
 
 
 
1673
1674 fail_free_buffer:
1675	kfree(buffer);
1676	return NULL;
1677}
1678EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1679
1680/**
1681 * ring_buffer_free - free a ring buffer.
1682 * @buffer: the buffer to free.
1683 */
1684void
1685ring_buffer_free(struct trace_buffer *buffer)
1686{
1687	int cpu;
1688
1689	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
 
 
 
1690
1691	for_each_buffer_cpu(buffer, cpu)
1692		rb_free_cpu_buffer(buffer->buffers[cpu]);
1693
 
 
 
 
1694	kfree(buffer->buffers);
1695	free_cpumask_var(buffer->cpumask);
1696
1697	kfree(buffer);
1698}
1699EXPORT_SYMBOL_GPL(ring_buffer_free);
1700
1701void ring_buffer_set_clock(struct trace_buffer *buffer,
1702			   u64 (*clock)(void))
1703{
1704	buffer->clock = clock;
1705}
1706
1707void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1708{
1709	buffer->time_stamp_abs = abs;
1710}
1711
1712bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1713{
1714	return buffer->time_stamp_abs;
1715}
1716
1717static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1718
1719static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1720{
1721	return local_read(&bpage->entries) & RB_WRITE_MASK;
1722}
1723
1724static inline unsigned long rb_page_write(struct buffer_page *bpage)
1725{
1726	return local_read(&bpage->write) & RB_WRITE_MASK;
1727}
1728
1729static int
1730rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1731{
1732	struct list_head *tail_page, *to_remove, *next_page;
1733	struct buffer_page *to_remove_page, *tmp_iter_page;
1734	struct buffer_page *last_page, *first_page;
1735	unsigned long nr_removed;
1736	unsigned long head_bit;
1737	int page_entries;
1738
1739	head_bit = 0;
1740
1741	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1742	atomic_inc(&cpu_buffer->record_disabled);
1743	/*
1744	 * We don't race with the readers since we have acquired the reader
1745	 * lock. We also don't race with writers after disabling recording.
1746	 * This makes it easy to figure out the first and the last page to be
1747	 * removed from the list. We unlink all the pages in between including
1748	 * the first and last pages. This is done in a busy loop so that we
1749	 * lose the least number of traces.
1750	 * The pages are freed after we restart recording and unlock readers.
1751	 */
1752	tail_page = &cpu_buffer->tail_page->list;
1753
1754	/*
1755	 * tail page might be on reader page, we remove the next page
1756	 * from the ring buffer
1757	 */
1758	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1759		tail_page = rb_list_head(tail_page->next);
1760	to_remove = tail_page;
1761
1762	/* start of pages to remove */
1763	first_page = list_entry(rb_list_head(to_remove->next),
1764				struct buffer_page, list);
1765
1766	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1767		to_remove = rb_list_head(to_remove)->next;
1768		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1769	}
1770
1771	next_page = rb_list_head(to_remove)->next;
1772
1773	/*
1774	 * Now we remove all pages between tail_page and next_page.
1775	 * Make sure that we have head_bit value preserved for the
1776	 * next page
1777	 */
1778	tail_page->next = (struct list_head *)((unsigned long)next_page |
1779						head_bit);
1780	next_page = rb_list_head(next_page);
1781	next_page->prev = tail_page;
1782
1783	/* make sure pages points to a valid page in the ring buffer */
1784	cpu_buffer->pages = next_page;
1785
1786	/* update head page */
1787	if (head_bit)
1788		cpu_buffer->head_page = list_entry(next_page,
1789						struct buffer_page, list);
1790
1791	/*
1792	 * change read pointer to make sure any read iterators reset
1793	 * themselves
1794	 */
1795	cpu_buffer->read = 0;
1796
1797	/* pages are removed, resume tracing and then free the pages */
1798	atomic_dec(&cpu_buffer->record_disabled);
1799	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1800
1801	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1802
1803	/* last buffer page to remove */
1804	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1805				list);
1806	tmp_iter_page = first_page;
1807
1808	do {
1809		cond_resched();
1810
1811		to_remove_page = tmp_iter_page;
1812		rb_inc_page(cpu_buffer, &tmp_iter_page);
1813
1814		/* update the counters */
1815		page_entries = rb_page_entries(to_remove_page);
1816		if (page_entries) {
1817			/*
1818			 * If something was added to this page, it was full
1819			 * since it is not the tail page. So we deduct the
1820			 * bytes consumed in ring buffer from here.
1821			 * Increment overrun to account for the lost events.
1822			 */
1823			local_add(page_entries, &cpu_buffer->overrun);
1824			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1825		}
1826
1827		/*
1828		 * We have already removed references to this list item, just
1829		 * free up the buffer_page and its page
1830		 */
1831		free_buffer_page(to_remove_page);
1832		nr_removed--;
1833
1834	} while (to_remove_page != last_page);
1835
1836	RB_WARN_ON(cpu_buffer, nr_removed);
1837
1838	return nr_removed == 0;
1839}
1840
1841static int
1842rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1843{
1844	struct list_head *pages = &cpu_buffer->new_pages;
1845	int retries, success;
1846
1847	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1848	/*
1849	 * We are holding the reader lock, so the reader page won't be swapped
1850	 * in the ring buffer. Now we are racing with the writer trying to
1851	 * move head page and the tail page.
1852	 * We are going to adapt the reader page update process where:
1853	 * 1. We first splice the start and end of list of new pages between
1854	 *    the head page and its previous page.
1855	 * 2. We cmpxchg the prev_page->next to point from head page to the
1856	 *    start of new pages list.
1857	 * 3. Finally, we update the head->prev to the end of new list.
1858	 *
1859	 * We will try this process 10 times, to make sure that we don't keep
1860	 * spinning.
1861	 */
1862	retries = 10;
1863	success = 0;
1864	while (retries--) {
1865		struct list_head *head_page, *prev_page, *r;
1866		struct list_head *last_page, *first_page;
1867		struct list_head *head_page_with_bit;
1868
1869		head_page = &rb_set_head_page(cpu_buffer)->list;
1870		if (!head_page)
1871			break;
1872		prev_page = head_page->prev;
1873
1874		first_page = pages->next;
1875		last_page  = pages->prev;
1876
1877		head_page_with_bit = (struct list_head *)
1878				     ((unsigned long)head_page | RB_PAGE_HEAD);
1879
1880		last_page->next = head_page_with_bit;
1881		first_page->prev = prev_page;
1882
1883		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1884
1885		if (r == head_page_with_bit) {
1886			/*
1887			 * yay, we replaced the page pointer to our new list,
1888			 * now, we just have to update to head page's prev
1889			 * pointer to point to end of list
1890			 */
1891			head_page->prev = last_page;
1892			success = 1;
1893			break;
1894		}
1895	}
1896
1897	if (success)
1898		INIT_LIST_HEAD(pages);
1899	/*
1900	 * If we weren't successful in adding in new pages, warn and stop
1901	 * tracing
1902	 */
1903	RB_WARN_ON(cpu_buffer, !success);
1904	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1905
1906	/* free pages if they weren't inserted */
1907	if (!success) {
1908		struct buffer_page *bpage, *tmp;
1909		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1910					 list) {
1911			list_del_init(&bpage->list);
1912			free_buffer_page(bpage);
1913		}
1914	}
1915	return success;
1916}
1917
1918static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1919{
1920	int success;
1921
1922	if (cpu_buffer->nr_pages_to_update > 0)
1923		success = rb_insert_pages(cpu_buffer);
1924	else
1925		success = rb_remove_pages(cpu_buffer,
1926					-cpu_buffer->nr_pages_to_update);
1927
1928	if (success)
1929		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1930}
1931
1932static void update_pages_handler(struct work_struct *work)
1933{
1934	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1935			struct ring_buffer_per_cpu, update_pages_work);
1936	rb_update_pages(cpu_buffer);
1937	complete(&cpu_buffer->update_done);
1938}
1939
1940/**
1941 * ring_buffer_resize - resize the ring buffer
1942 * @buffer: the buffer to resize.
1943 * @size: the new size.
1944 * @cpu_id: the cpu buffer to resize
1945 *
1946 * Minimum size is 2 * BUF_PAGE_SIZE.
1947 *
1948 * Returns 0 on success and < 0 on failure.
1949 */
1950int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
1951			int cpu_id)
1952{
1953	struct ring_buffer_per_cpu *cpu_buffer;
1954	unsigned long nr_pages;
1955	int cpu, err = 0;
1956
1957	/*
1958	 * Always succeed at resizing a non-existent buffer:
1959	 */
1960	if (!buffer)
1961		return size;
1962
1963	/* Make sure the requested buffer exists */
1964	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1965	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1966		return size;
1967
1968	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
 
1969
1970	/* we need a minimum of two pages */
1971	if (nr_pages < 2)
1972		nr_pages = 2;
 
 
1973
1974	size = nr_pages * BUF_PAGE_SIZE;
 
 
 
 
 
 
1975
1976	/* prevent another thread from changing buffer sizes */
1977	mutex_lock(&buffer->mutex);
1978
1979
1980	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1981		/*
1982		 * Don't succeed if resizing is disabled, as a reader might be
1983		 * manipulating the ring buffer and is expecting a sane state while
1984		 * this is true.
1985		 */
1986		for_each_buffer_cpu(buffer, cpu) {
1987			cpu_buffer = buffer->buffers[cpu];
1988			if (atomic_read(&cpu_buffer->resize_disabled)) {
1989				err = -EBUSY;
1990				goto out_err_unlock;
1991			}
1992		}
1993
1994		/* calculate the pages to update */
1995		for_each_buffer_cpu(buffer, cpu) {
1996			cpu_buffer = buffer->buffers[cpu];
1997
1998			cpu_buffer->nr_pages_to_update = nr_pages -
1999							cpu_buffer->nr_pages;
2000			/*
2001			 * nothing more to do for removing pages or no update
2002			 */
2003			if (cpu_buffer->nr_pages_to_update <= 0)
2004				continue;
2005			/*
2006			 * to add pages, make sure all new pages can be
2007			 * allocated without receiving ENOMEM
2008			 */
2009			INIT_LIST_HEAD(&cpu_buffer->new_pages);
2010			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
2011						&cpu_buffer->new_pages, cpu)) {
2012				/* not enough memory for new pages */
2013				err = -ENOMEM;
2014				goto out_err;
2015			}
2016		}
2017
2018		get_online_cpus();
2019		/*
2020		 * Fire off all the required work handlers
2021		 * We can't schedule on offline CPUs, but it's not necessary
2022		 * since we can change their buffer sizes without any race.
2023		 */
2024		for_each_buffer_cpu(buffer, cpu) {
2025			cpu_buffer = buffer->buffers[cpu];
2026			if (!cpu_buffer->nr_pages_to_update)
2027				continue;
2028
2029			/* Can't run something on an offline CPU. */
2030			if (!cpu_online(cpu)) {
 
2031				rb_update_pages(cpu_buffer);
2032				cpu_buffer->nr_pages_to_update = 0;
2033			} else {
 
 
 
 
 
2034				schedule_work_on(cpu,
2035						&cpu_buffer->update_pages_work);
 
2036			}
 
2037		}
2038
2039		/* wait for all the updates to complete */
2040		for_each_buffer_cpu(buffer, cpu) {
2041			cpu_buffer = buffer->buffers[cpu];
2042			if (!cpu_buffer->nr_pages_to_update)
2043				continue;
2044
2045			if (cpu_online(cpu))
2046				wait_for_completion(&cpu_buffer->update_done);
2047			cpu_buffer->nr_pages_to_update = 0;
2048		}
2049
2050		put_online_cpus();
2051	} else {
2052		/* Make sure this CPU has been initialized */
2053		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
2054			goto out;
2055
2056		cpu_buffer = buffer->buffers[cpu_id];
2057
2058		if (nr_pages == cpu_buffer->nr_pages)
2059			goto out;
2060
2061		/*
2062		 * Don't succeed if resizing is disabled, as a reader might be
2063		 * manipulating the ring buffer and is expecting a sane state while
2064		 * this is true.
2065		 */
2066		if (atomic_read(&cpu_buffer->resize_disabled)) {
2067			err = -EBUSY;
2068			goto out_err_unlock;
2069		}
2070
2071		cpu_buffer->nr_pages_to_update = nr_pages -
2072						cpu_buffer->nr_pages;
2073
2074		INIT_LIST_HEAD(&cpu_buffer->new_pages);
2075		if (cpu_buffer->nr_pages_to_update > 0 &&
2076			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
2077					    &cpu_buffer->new_pages, cpu_id)) {
2078			err = -ENOMEM;
2079			goto out_err;
2080		}
2081
2082		get_online_cpus();
2083
2084		/* Can't run something on an offline CPU. */
2085		if (!cpu_online(cpu_id))
 
2086			rb_update_pages(cpu_buffer);
2087		else {
 
 
 
 
 
2088			schedule_work_on(cpu_id,
2089					 &cpu_buffer->update_pages_work);
2090			wait_for_completion(&cpu_buffer->update_done);
 
2091		}
 
2092
2093		cpu_buffer->nr_pages_to_update = 0;
2094		put_online_cpus();
2095	}
2096
2097 out:
2098	/*
2099	 * The ring buffer resize can happen with the ring buffer
2100	 * enabled, so that the update disturbs the tracing as little
2101	 * as possible. But if the buffer is disabled, we do not need
2102	 * to worry about that, and we can take the time to verify
2103	 * that the buffer is not corrupt.
2104	 */
2105	if (atomic_read(&buffer->record_disabled)) {
2106		atomic_inc(&buffer->record_disabled);
2107		/*
2108		 * Even though the buffer was disabled, we must make sure
2109		 * that it is truly disabled before calling rb_check_pages.
2110		 * There could have been a race between checking
2111		 * record_disable and incrementing it.
2112		 */
2113		synchronize_rcu();
2114		for_each_buffer_cpu(buffer, cpu) {
2115			cpu_buffer = buffer->buffers[cpu];
2116			rb_check_pages(cpu_buffer);
2117		}
2118		atomic_dec(&buffer->record_disabled);
2119	}
2120
2121	mutex_unlock(&buffer->mutex);
2122	return size;
2123
2124 out_err:
2125	for_each_buffer_cpu(buffer, cpu) {
2126		struct buffer_page *bpage, *tmp;
2127
2128		cpu_buffer = buffer->buffers[cpu];
2129		cpu_buffer->nr_pages_to_update = 0;
2130
2131		if (list_empty(&cpu_buffer->new_pages))
2132			continue;
2133
2134		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2135					list) {
2136			list_del_init(&bpage->list);
2137			free_buffer_page(bpage);
2138		}
2139	}
2140 out_err_unlock:
2141	mutex_unlock(&buffer->mutex);
2142	return err;
2143}
2144EXPORT_SYMBOL_GPL(ring_buffer_resize);
2145
2146void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2147{
2148	mutex_lock(&buffer->mutex);
2149	if (val)
2150		buffer->flags |= RB_FL_OVERWRITE;
2151	else
2152		buffer->flags &= ~RB_FL_OVERWRITE;
2153	mutex_unlock(&buffer->mutex);
2154}
2155EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2156
2157static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
 
 
 
 
 
 
2158{
2159	return bpage->page->data + index;
2160}
2161
2162static __always_inline struct ring_buffer_event *
2163rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2164{
2165	return __rb_page_index(cpu_buffer->reader_page,
2166			       cpu_buffer->reader_page->read);
2167}
2168
2169static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
 
2170{
2171	return local_read(&bpage->page->commit);
2172}
2173
2174static struct ring_buffer_event *
2175rb_iter_head_event(struct ring_buffer_iter *iter)
2176{
2177	struct ring_buffer_event *event;
2178	struct buffer_page *iter_head_page = iter->head_page;
2179	unsigned long commit;
2180	unsigned length;
2181
2182	if (iter->head != iter->next_event)
2183		return iter->event;
2184
2185	/*
2186	 * When the writer goes across pages, it issues a cmpxchg which
2187	 * is a mb(), which will synchronize with the rmb here.
2188	 * (see rb_tail_page_update() and __rb_reserve_next())
2189	 */
2190	commit = rb_page_commit(iter_head_page);
2191	smp_rmb();
2192	event = __rb_page_index(iter_head_page, iter->head);
2193	length = rb_event_length(event);
2194
2195	/*
2196	 * READ_ONCE() doesn't work on functions and we don't want the
2197	 * compiler doing any crazy optimizations with length.
2198	 */
2199	barrier();
2200
2201	if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE)
2202		/* Writer corrupted the read? */
2203		goto reset;
2204
2205	memcpy(iter->event, event, length);
2206	/*
2207	 * If the page stamp is still the same after this rmb() then the
2208	 * event was safely copied without the writer entering the page.
2209	 */
2210	smp_rmb();
2211
2212	/* Make sure the page didn't change since we read this */
2213	if (iter->page_stamp != iter_head_page->page->time_stamp ||
2214	    commit > rb_page_commit(iter_head_page))
2215		goto reset;
2216
2217	iter->next_event = iter->head + length;
2218	return iter->event;
2219 reset:
2220	/* Reset to the beginning */
2221	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2222	iter->head = 0;
2223	iter->next_event = 0;
2224	iter->missed_events = 1;
2225	return NULL;
2226}
2227
2228/* Size is determined by what has been committed */
2229static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2230{
2231	return rb_page_commit(bpage);
2232}
2233
2234static __always_inline unsigned
2235rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2236{
2237	return rb_page_commit(cpu_buffer->commit_page);
2238}
2239
2240static __always_inline unsigned
2241rb_event_index(struct ring_buffer_event *event)
2242{
2243	unsigned long addr = (unsigned long)event;
2244
2245	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2246}
2247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2248static void rb_inc_iter(struct ring_buffer_iter *iter)
2249{
2250	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2251
2252	/*
2253	 * The iterator could be on the reader page (it starts there).
2254	 * But the head could have moved, since the reader was
2255	 * found. Check for this case and assign the iterator
2256	 * to the head page instead of next.
2257	 */
2258	if (iter->head_page == cpu_buffer->reader_page)
2259		iter->head_page = rb_set_head_page(cpu_buffer);
2260	else
2261		rb_inc_page(cpu_buffer, &iter->head_page);
2262
2263	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2264	iter->head = 0;
2265	iter->next_event = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2266}
2267
2268/*
2269 * rb_handle_head_page - writer hit the head page
2270 *
2271 * Returns: +1 to retry page
2272 *           0 to continue
2273 *          -1 on error
2274 */
2275static int
2276rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2277		    struct buffer_page *tail_page,
2278		    struct buffer_page *next_page)
2279{
2280	struct buffer_page *new_head;
2281	int entries;
2282	int type;
2283	int ret;
2284
2285	entries = rb_page_entries(next_page);
2286
2287	/*
2288	 * The hard part is here. We need to move the head
2289	 * forward, and protect against both readers on
2290	 * other CPUs and writers coming in via interrupts.
2291	 */
2292	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2293				       RB_PAGE_HEAD);
2294
2295	/*
2296	 * type can be one of four:
2297	 *  NORMAL - an interrupt already moved it for us
2298	 *  HEAD   - we are the first to get here.
2299	 *  UPDATE - we are the interrupt interrupting
2300	 *           a current move.
2301	 *  MOVED  - a reader on another CPU moved the next
2302	 *           pointer to its reader page. Give up
2303	 *           and try again.
2304	 */
2305
2306	switch (type) {
2307	case RB_PAGE_HEAD:
2308		/*
2309		 * We changed the head to UPDATE, thus
2310		 * it is our responsibility to update
2311		 * the counters.
2312		 */
2313		local_add(entries, &cpu_buffer->overrun);
2314		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2315
2316		/*
2317		 * The entries will be zeroed out when we move the
2318		 * tail page.
2319		 */
2320
2321		/* still more to do */
2322		break;
2323
2324	case RB_PAGE_UPDATE:
2325		/*
2326		 * This is an interrupt that interrupt the
2327		 * previous update. Still more to do.
2328		 */
2329		break;
2330	case RB_PAGE_NORMAL:
2331		/*
2332		 * An interrupt came in before the update
2333		 * and processed this for us.
2334		 * Nothing left to do.
2335		 */
2336		return 1;
2337	case RB_PAGE_MOVED:
2338		/*
2339		 * The reader is on another CPU and just did
2340		 * a swap with our next_page.
2341		 * Try again.
2342		 */
2343		return 1;
2344	default:
2345		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2346		return -1;
2347	}
2348
2349	/*
2350	 * Now that we are here, the old head pointer is
2351	 * set to UPDATE. This will keep the reader from
2352	 * swapping the head page with the reader page.
2353	 * The reader (on another CPU) will spin till
2354	 * we are finished.
2355	 *
2356	 * We just need to protect against interrupts
2357	 * doing the job. We will set the next pointer
2358	 * to HEAD. After that, we set the old pointer
2359	 * to NORMAL, but only if it was HEAD before.
2360	 * otherwise we are an interrupt, and only
2361	 * want the outer most commit to reset it.
2362	 */
2363	new_head = next_page;
2364	rb_inc_page(cpu_buffer, &new_head);
2365
2366	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2367				    RB_PAGE_NORMAL);
2368
2369	/*
2370	 * Valid returns are:
2371	 *  HEAD   - an interrupt came in and already set it.
2372	 *  NORMAL - One of two things:
2373	 *            1) We really set it.
2374	 *            2) A bunch of interrupts came in and moved
2375	 *               the page forward again.
2376	 */
2377	switch (ret) {
2378	case RB_PAGE_HEAD:
2379	case RB_PAGE_NORMAL:
2380		/* OK */
2381		break;
2382	default:
2383		RB_WARN_ON(cpu_buffer, 1);
2384		return -1;
2385	}
2386
2387	/*
2388	 * It is possible that an interrupt came in,
2389	 * set the head up, then more interrupts came in
2390	 * and moved it again. When we get back here,
2391	 * the page would have been set to NORMAL but we
2392	 * just set it back to HEAD.
2393	 *
2394	 * How do you detect this? Well, if that happened
2395	 * the tail page would have moved.
2396	 */
2397	if (ret == RB_PAGE_NORMAL) {
2398		struct buffer_page *buffer_tail_page;
2399
2400		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2401		/*
2402		 * If the tail had moved passed next, then we need
2403		 * to reset the pointer.
2404		 */
2405		if (buffer_tail_page != tail_page &&
2406		    buffer_tail_page != next_page)
2407			rb_head_page_set_normal(cpu_buffer, new_head,
2408						next_page,
2409						RB_PAGE_HEAD);
2410	}
2411
2412	/*
2413	 * If this was the outer most commit (the one that
2414	 * changed the original pointer from HEAD to UPDATE),
2415	 * then it is up to us to reset it to NORMAL.
2416	 */
2417	if (type == RB_PAGE_HEAD) {
2418		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2419					      tail_page,
2420					      RB_PAGE_UPDATE);
2421		if (RB_WARN_ON(cpu_buffer,
2422			       ret != RB_PAGE_UPDATE))
2423			return -1;
2424	}
2425
2426	return 0;
2427}
2428
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2429static inline void
2430rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2431	      unsigned long tail, struct rb_event_info *info)
 
2432{
2433	struct buffer_page *tail_page = info->tail_page;
2434	struct ring_buffer_event *event;
2435	unsigned long length = info->length;
2436
2437	/*
2438	 * Only the event that crossed the page boundary
2439	 * must fill the old tail_page with padding.
2440	 */
2441	if (tail >= BUF_PAGE_SIZE) {
2442		/*
2443		 * If the page was filled, then we still need
2444		 * to update the real_end. Reset it to zero
2445		 * and the reader will ignore it.
2446		 */
2447		if (tail == BUF_PAGE_SIZE)
2448			tail_page->real_end = 0;
2449
2450		local_sub(length, &tail_page->write);
2451		return;
2452	}
2453
2454	event = __rb_page_index(tail_page, tail);
 
2455
2456	/* account for padding bytes */
2457	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2458
2459	/*
2460	 * Save the original length to the meta data.
2461	 * This will be used by the reader to add lost event
2462	 * counter.
2463	 */
2464	tail_page->real_end = tail;
2465
2466	/*
2467	 * If this event is bigger than the minimum size, then
2468	 * we need to be careful that we don't subtract the
2469	 * write counter enough to allow another writer to slip
2470	 * in on this page.
2471	 * We put in a discarded commit instead, to make sure
2472	 * that this space is not used again.
2473	 *
2474	 * If we are less than the minimum size, we don't need to
2475	 * worry about it.
2476	 */
2477	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2478		/* No room for any events */
2479
2480		/* Mark the rest of the page with padding */
2481		rb_event_set_padding(event);
2482
2483		/* Set the write back to the previous setting */
2484		local_sub(length, &tail_page->write);
2485		return;
2486	}
2487
2488	/* Put in a discarded event */
2489	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2490	event->type_len = RINGBUF_TYPE_PADDING;
2491	/* time delta must be non zero */
2492	event->time_delta = 1;
2493
2494	/* Set write to end of buffer */
2495	length = (tail + length) - BUF_PAGE_SIZE;
2496	local_sub(length, &tail_page->write);
2497}
2498
2499static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2500
2501/*
2502 * This is the slow path, force gcc not to inline it.
2503 */
2504static noinline struct ring_buffer_event *
2505rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2506	     unsigned long tail, struct rb_event_info *info)
 
2507{
2508	struct buffer_page *tail_page = info->tail_page;
2509	struct buffer_page *commit_page = cpu_buffer->commit_page;
2510	struct trace_buffer *buffer = cpu_buffer->buffer;
2511	struct buffer_page *next_page;
2512	int ret;
2513
2514	next_page = tail_page;
2515
2516	rb_inc_page(cpu_buffer, &next_page);
2517
2518	/*
2519	 * If for some reason, we had an interrupt storm that made
2520	 * it all the way around the buffer, bail, and warn
2521	 * about it.
2522	 */
2523	if (unlikely(next_page == commit_page)) {
2524		local_inc(&cpu_buffer->commit_overrun);
2525		goto out_reset;
2526	}
2527
2528	/*
2529	 * This is where the fun begins!
2530	 *
2531	 * We are fighting against races between a reader that
2532	 * could be on another CPU trying to swap its reader
2533	 * page with the buffer head.
2534	 *
2535	 * We are also fighting against interrupts coming in and
2536	 * moving the head or tail on us as well.
2537	 *
2538	 * If the next page is the head page then we have filled
2539	 * the buffer, unless the commit page is still on the
2540	 * reader page.
2541	 */
2542	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2543
2544		/*
2545		 * If the commit is not on the reader page, then
2546		 * move the header page.
2547		 */
2548		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2549			/*
2550			 * If we are not in overwrite mode,
2551			 * this is easy, just stop here.
2552			 */
2553			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2554				local_inc(&cpu_buffer->dropped_events);
2555				goto out_reset;
2556			}
2557
2558			ret = rb_handle_head_page(cpu_buffer,
2559						  tail_page,
2560						  next_page);
2561			if (ret < 0)
2562				goto out_reset;
2563			if (ret)
2564				goto out_again;
2565		} else {
2566			/*
2567			 * We need to be careful here too. The
2568			 * commit page could still be on the reader
2569			 * page. We could have a small buffer, and
2570			 * have filled up the buffer with events
2571			 * from interrupts and such, and wrapped.
2572			 *
2573			 * Note, if the tail page is also the on the
2574			 * reader_page, we let it move out.
2575			 */
2576			if (unlikely((cpu_buffer->commit_page !=
2577				      cpu_buffer->tail_page) &&
2578				     (cpu_buffer->commit_page ==
2579				      cpu_buffer->reader_page))) {
2580				local_inc(&cpu_buffer->commit_overrun);
2581				goto out_reset;
2582			}
2583		}
2584	}
2585
2586	rb_tail_page_update(cpu_buffer, tail_page, next_page);
 
 
 
 
 
 
 
 
2587
2588 out_again:
2589
2590	rb_reset_tail(cpu_buffer, tail, info);
2591
2592	/* Commit what we have for now. */
2593	rb_end_commit(cpu_buffer);
2594	/* rb_end_commit() decs committing */
2595	local_inc(&cpu_buffer->committing);
2596
2597	/* fail and let the caller try again */
2598	return ERR_PTR(-EAGAIN);
2599
2600 out_reset:
2601	/* reset write */
2602	rb_reset_tail(cpu_buffer, tail, info);
2603
2604	return NULL;
2605}
2606
2607/* Slow path */
2608static struct ring_buffer_event *
2609rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
 
 
2610{
2611	if (abs)
2612		event->type_len = RINGBUF_TYPE_TIME_STAMP;
2613	else
2614		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2615
2616	/* Not the first event on the page, or not delta? */
2617	if (abs || rb_event_index(event)) {
2618		event->time_delta = delta & TS_MASK;
2619		event->array[0] = delta >> TS_SHIFT;
2620	} else {
2621		/* nope, just zero it */
2622		event->time_delta = 0;
2623		event->array[0] = 0;
2624	}
2625
2626	return skip_time_extend(event);
2627}
2628
2629static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2630				     struct ring_buffer_event *event);
2631
2632#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2633static inline bool sched_clock_stable(void)
2634{
2635	return true;
2636}
2637#endif
2638
2639static void
2640rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2641		   struct rb_event_info *info)
2642{
2643	u64 write_stamp;
2644
2645	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2646		  (unsigned long long)info->delta,
2647		  (unsigned long long)info->ts,
2648		  (unsigned long long)info->before,
2649		  (unsigned long long)info->after,
2650		  (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2651		  sched_clock_stable() ? "" :
2652		  "If you just came from a suspend/resume,\n"
2653		  "please switch to the trace global clock:\n"
2654		  "  echo global > /sys/kernel/debug/tracing/trace_clock\n"
2655		  "or add trace_clock=global to the kernel command line\n");
2656}
2657
2658static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2659				      struct ring_buffer_event **event,
2660				      struct rb_event_info *info,
2661				      u64 *delta,
2662				      unsigned int *length)
2663{
2664	bool abs = info->add_timestamp &
2665		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2666
2667	if (unlikely(info->delta > (1ULL << 59))) {
2668		/* did the clock go backwards */
2669		if (info->before == info->after && info->before > info->ts) {
2670			/* not interrupted */
2671			static int once;
2672
2673			/*
2674			 * This is possible with a recalibrating of the TSC.
2675			 * Do not produce a call stack, but just report it.
2676			 */
2677			if (!once) {
2678				once++;
2679				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2680					info->before, info->ts);
2681			}
2682		} else
2683			rb_check_timestamp(cpu_buffer, info);
2684		if (!abs)
2685			info->delta = 0;
2686	}
2687	*event = rb_add_time_stamp(*event, info->delta, abs);
2688	*length -= RB_LEN_TIME_EXTEND;
2689	*delta = 0;
2690}
2691
2692/**
2693 * rb_update_event - update event type and data
2694 * @cpu_buffer: The per cpu buffer of the @event
2695 * @event: the event to update
2696 * @info: The info to update the @event with (contains length and delta)
2697 *
2698 * Update the type and data fields of the @event. The length
2699 * is the actual size that is written to the ring buffer,
2700 * and with this, we can determine what to place into the
2701 * data field.
2702 */
2703static void
2704rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2705		struct ring_buffer_event *event,
2706		struct rb_event_info *info)
2707{
2708	unsigned length = info->length;
2709	u64 delta = info->delta;
2710
2711	/*
2712	 * If we need to add a timestamp, then we
2713	 * add it to the start of the reserved space.
2714	 */
2715	if (unlikely(info->add_timestamp))
2716		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2717
2718	event->time_delta = delta;
2719	length -= RB_EVNT_HDR_SIZE;
2720	if (length > RB_MAX_SMALL_DATA) {
2721		event->type_len = 0;
2722		event->array[0] = length;
2723	} else
2724		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2725}
2726
2727static unsigned rb_calculate_event_length(unsigned length)
2728{
2729	struct ring_buffer_event event; /* Used only for sizeof array */
2730
2731	/* zero length can cause confusions */
2732	if (!length)
2733		length++;
2734
2735	if (length > RB_MAX_SMALL_DATA)
2736		length += sizeof(event.array[0]);
2737
2738	length += RB_EVNT_HDR_SIZE;
2739	length = ALIGN(length, RB_ALIGNMENT);
2740
2741	/*
2742	 * In case the time delta is larger than the 27 bits for it
2743	 * in the header, we need to add a timestamp. If another
2744	 * event comes in when trying to discard this one to increase
2745	 * the length, then the timestamp will be added in the allocated
2746	 * space of this event. If length is bigger than the size needed
2747	 * for the TIME_EXTEND, then padding has to be used. The events
2748	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2749	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2750	 * As length is a multiple of 4, we only need to worry if it
2751	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2752	 */
2753	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2754		length += RB_ALIGNMENT;
2755
2756	return length;
2757}
2758
2759static __always_inline bool
2760rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2761		   struct ring_buffer_event *event)
2762{
2763	unsigned long addr = (unsigned long)event;
2764	unsigned long index;
2765
2766	index = rb_event_index(event);
2767	addr &= PAGE_MASK;
2768
2769	return cpu_buffer->commit_page->page == (void *)addr &&
2770		rb_commit_index(cpu_buffer) == index;
2771}
2772
2773static u64 rb_time_delta(struct ring_buffer_event *event)
2774{
2775	switch (event->type_len) {
2776	case RINGBUF_TYPE_PADDING:
2777		return 0;
2778
2779	case RINGBUF_TYPE_TIME_EXTEND:
2780		return ring_buffer_event_time_stamp(event);
2781
2782	case RINGBUF_TYPE_TIME_STAMP:
2783		return 0;
2784
2785	case RINGBUF_TYPE_DATA:
2786		return event->time_delta;
2787	default:
2788		return 0;
2789	}
2790}
2791
2792static inline int
2793rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2794		  struct ring_buffer_event *event)
2795{
2796	unsigned long new_index, old_index;
2797	struct buffer_page *bpage;
2798	unsigned long index;
2799	unsigned long addr;
2800	u64 write_stamp;
2801	u64 delta;
2802
2803	new_index = rb_event_index(event);
2804	old_index = new_index + rb_event_ts_length(event);
2805	addr = (unsigned long)event;
2806	addr &= PAGE_MASK;
2807
2808	bpage = READ_ONCE(cpu_buffer->tail_page);
2809
2810	delta = rb_time_delta(event);
2811
2812	if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
2813		return 0;
2814
2815	/* Make sure the write stamp is read before testing the location */
2816	barrier();
2817
2818	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2819		unsigned long write_mask =
2820			local_read(&bpage->write) & ~RB_WRITE_MASK;
2821		unsigned long event_length = rb_event_length(event);
2822
2823		/* Something came in, can't discard */
2824		if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
2825				       write_stamp, write_stamp - delta))
2826			return 0;
2827
2828		/*
2829		 * If an event were to come in now, it would see that the
2830		 * write_stamp and the before_stamp are different, and assume
2831		 * that this event just added itself before updating
2832		 * the write stamp. The interrupting event will fix the
2833		 * write stamp for us, and use the before stamp as its delta.
2834		 */
2835
2836		/*
2837		 * This is on the tail page. It is possible that
2838		 * a write could come in and move the tail page
2839		 * and write to the next page. That is fine
2840		 * because we just shorten what is on this page.
2841		 */
2842		old_index += write_mask;
2843		new_index += write_mask;
2844		index = local_cmpxchg(&bpage->write, old_index, new_index);
2845		if (index == old_index) {
2846			/* update counters */
2847			local_sub(event_length, &cpu_buffer->entries_bytes);
2848			return 1;
2849		}
2850	}
2851
2852	/* could not discard */
2853	return 0;
2854}
2855
2856static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2857{
2858	local_inc(&cpu_buffer->committing);
2859	local_inc(&cpu_buffer->commits);
2860}
2861
2862static __always_inline void
2863rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2864{
2865	unsigned long max_count;
2866
2867	/*
2868	 * We only race with interrupts and NMIs on this CPU.
2869	 * If we own the commit event, then we can commit
2870	 * all others that interrupted us, since the interruptions
2871	 * are in stack format (they finish before they come
2872	 * back to us). This allows us to do a simple loop to
2873	 * assign the commit to the tail.
2874	 */
2875 again:
2876	max_count = cpu_buffer->nr_pages * 100;
2877
2878	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2879		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2880			return;
2881		if (RB_WARN_ON(cpu_buffer,
2882			       rb_is_reader_page(cpu_buffer->tail_page)))
2883			return;
2884		local_set(&cpu_buffer->commit_page->page->commit,
2885			  rb_page_write(cpu_buffer->commit_page));
2886		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2887		/* add barrier to keep gcc from optimizing too much */
2888		barrier();
2889	}
2890	while (rb_commit_index(cpu_buffer) !=
2891	       rb_page_write(cpu_buffer->commit_page)) {
2892
2893		local_set(&cpu_buffer->commit_page->page->commit,
2894			  rb_page_write(cpu_buffer->commit_page));
2895		RB_WARN_ON(cpu_buffer,
2896			   local_read(&cpu_buffer->commit_page->page->commit) &
2897			   ~RB_WRITE_MASK);
2898		barrier();
2899	}
2900
2901	/* again, keep gcc from optimizing */
2902	barrier();
2903
2904	/*
2905	 * If an interrupt came in just after the first while loop
2906	 * and pushed the tail page forward, we will be left with
2907	 * a dangling commit that will never go forward.
2908	 */
2909	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2910		goto again;
2911}
2912
2913static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2914{
2915	unsigned long commits;
2916
2917	if (RB_WARN_ON(cpu_buffer,
2918		       !local_read(&cpu_buffer->committing)))
2919		return;
2920
2921 again:
2922	commits = local_read(&cpu_buffer->commits);
2923	/* synchronize with interrupts */
2924	barrier();
2925	if (local_read(&cpu_buffer->committing) == 1)
2926		rb_set_commit_to_write(cpu_buffer);
2927
2928	local_dec(&cpu_buffer->committing);
2929
2930	/* synchronize with interrupts */
2931	barrier();
2932
2933	/*
2934	 * Need to account for interrupts coming in between the
2935	 * updating of the commit page and the clearing of the
2936	 * committing counter.
2937	 */
2938	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2939	    !local_read(&cpu_buffer->committing)) {
2940		local_inc(&cpu_buffer->committing);
2941		goto again;
2942	}
2943}
2944
2945static inline void rb_event_discard(struct ring_buffer_event *event)
 
 
 
2946{
2947	if (extended_time(event))
2948		event = skip_time_extend(event);
 
 
 
2949
2950	/* array[0] holds the actual length for the discarded event */
2951	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2952	event->type_len = RINGBUF_TYPE_PADDING;
2953	/* time delta must be non zero */
2954	if (!event->time_delta)
2955		event->time_delta = 1;
2956}
2957
2958static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2959		      struct ring_buffer_event *event)
2960{
2961	local_inc(&cpu_buffer->entries);
2962	rb_end_commit(cpu_buffer);
2963}
 
 
 
 
 
 
 
 
2964
2965static __always_inline void
2966rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2967{
2968	size_t nr_pages;
2969	size_t dirty;
2970	size_t full;
2971
2972	if (buffer->irq_work.waiters_pending) {
2973		buffer->irq_work.waiters_pending = false;
2974		/* irq_work_queue() supplies it's own memory barriers */
2975		irq_work_queue(&buffer->irq_work.work);
2976	}
 
 
 
 
 
 
2977
2978	if (cpu_buffer->irq_work.waiters_pending) {
2979		cpu_buffer->irq_work.waiters_pending = false;
2980		/* irq_work_queue() supplies it's own memory barriers */
2981		irq_work_queue(&cpu_buffer->irq_work.work);
2982	}
2983
2984	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
2985		return;
2986
2987	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
2988		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2989
2990	if (!cpu_buffer->irq_work.full_waiters_pending)
2991		return;
 
 
2992
2993	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
 
2994
2995	full = cpu_buffer->shortest_full;
2996	nr_pages = cpu_buffer->nr_pages;
2997	dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu);
2998	if (full && nr_pages && (dirty * 100) <= full * nr_pages)
2999		return;
3000
3001	cpu_buffer->irq_work.wakeup_full = true;
3002	cpu_buffer->irq_work.full_waiters_pending = false;
3003	/* irq_work_queue() supplies it's own memory barriers */
3004	irq_work_queue(&cpu_buffer->irq_work.work);
3005}
3006
 
 
3007/*
3008 * The lock and unlock are done within a preempt disable section.
3009 * The current_context per_cpu variable can only be modified
3010 * by the current task between lock and unlock. But it can
3011 * be modified more than once via an interrupt. To pass this
3012 * information from the lock to the unlock without having to
3013 * access the 'in_interrupt()' functions again (which do show
3014 * a bit of overhead in something as critical as function tracing,
3015 * we use a bitmask trick.
3016 *
3017 *  bit 0 =  NMI context
3018 *  bit 1 =  IRQ context
3019 *  bit 2 =  SoftIRQ context
3020 *  bit 3 =  normal context.
3021 *
3022 * This works because this is the order of contexts that can
3023 * preempt other contexts. A SoftIRQ never preempts an IRQ
3024 * context.
3025 *
3026 * When the context is determined, the corresponding bit is
3027 * checked and set (if it was set, then a recursion of that context
3028 * happened).
3029 *
3030 * On unlock, we need to clear this bit. To do so, just subtract
3031 * 1 from the current_context and AND it to itself.
3032 *
3033 * (binary)
3034 *  101 - 1 = 100
3035 *  101 & 100 = 100 (clearing bit zero)
3036 *
3037 *  1010 - 1 = 1001
3038 *  1010 & 1001 = 1000 (clearing bit 1)
3039 *
3040 * The least significant bit can be cleared this way, and it
3041 * just so happens that it is the same bit corresponding to
3042 * the current context.
3043 */
 
3044
3045static __always_inline int
3046trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3047{
3048	unsigned int val = cpu_buffer->current_context;
3049	unsigned long pc = preempt_count();
3050	int bit;
3051
3052	if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
3053		bit = RB_CTX_NORMAL;
3054	else
3055		bit = pc & NMI_MASK ? RB_CTX_NMI :
3056			pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
 
 
 
 
3057
3058	if (unlikely(val & (1 << (bit + cpu_buffer->nest))))
3059		return 1;
3060
3061	val |= (1 << (bit + cpu_buffer->nest));
3062	cpu_buffer->current_context = val;
3063
3064	return 0;
3065}
3066
3067static __always_inline void
3068trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3069{
3070	cpu_buffer->current_context &=
3071		cpu_buffer->current_context - (1 << cpu_buffer->nest);
 
 
 
3072}
3073
3074/* The recursive locking above uses 4 bits */
3075#define NESTED_BITS 4
3076
3077/**
3078 * ring_buffer_nest_start - Allow to trace while nested
3079 * @buffer: The ring buffer to modify
3080 *
3081 * The ring buffer has a safety mechanism to prevent recursion.
3082 * But there may be a case where a trace needs to be done while
3083 * tracing something else. In this case, calling this function
3084 * will allow this function to nest within a currently active
3085 * ring_buffer_lock_reserve().
3086 *
3087 * Call this function before calling another ring_buffer_lock_reserve() and
3088 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3089 */
3090void ring_buffer_nest_start(struct trace_buffer *buffer)
3091{
3092	struct ring_buffer_per_cpu *cpu_buffer;
3093	int cpu;
3094
3095	/* Enabled by ring_buffer_nest_end() */
3096	preempt_disable_notrace();
3097	cpu = raw_smp_processor_id();
3098	cpu_buffer = buffer->buffers[cpu];
3099	/* This is the shift value for the above recursive locking */
3100	cpu_buffer->nest += NESTED_BITS;
3101}
3102
3103/**
3104 * ring_buffer_nest_end - Allow to trace while nested
3105 * @buffer: The ring buffer to modify
 
3106 *
3107 * Must be called after ring_buffer_nest_start() and after the
3108 * ring_buffer_unlock_commit().
3109 */
3110void ring_buffer_nest_end(struct trace_buffer *buffer)
3111{
3112	struct ring_buffer_per_cpu *cpu_buffer;
3113	int cpu;
3114
3115	/* disabled by ring_buffer_nest_start() */
3116	cpu = raw_smp_processor_id();
3117	cpu_buffer = buffer->buffers[cpu];
3118	/* This is the shift value for the above recursive locking */
3119	cpu_buffer->nest -= NESTED_BITS;
3120	preempt_enable_notrace();
3121}
3122
3123/**
3124 * ring_buffer_unlock_commit - commit a reserved
3125 * @buffer: The buffer to commit to
3126 * @event: The event pointer to commit.
3127 *
3128 * This commits the data to the ring buffer, and releases any locks held.
 
3129 *
3130 * Must be paired with ring_buffer_lock_reserve.
 
3131 */
3132int ring_buffer_unlock_commit(struct trace_buffer *buffer,
3133			      struct ring_buffer_event *event)
3134{
3135	struct ring_buffer_per_cpu *cpu_buffer;
3136	int cpu = raw_smp_processor_id();
3137
3138	cpu_buffer = buffer->buffers[cpu];
3139
3140	rb_commit(cpu_buffer, event);
3141
3142	rb_wakeups(buffer, cpu_buffer);
3143
3144	trace_recursive_unlock(cpu_buffer);
3145
3146	preempt_enable_notrace();
3147
3148	return 0;
3149}
3150EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3151
3152static struct ring_buffer_event *
3153__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3154		  struct rb_event_info *info)
3155{
3156	struct ring_buffer_event *event;
3157	struct buffer_page *tail_page;
3158	unsigned long tail, write, w;
3159	bool a_ok;
3160	bool b_ok;
3161
3162	/* Don't let the compiler play games with cpu_buffer->tail_page */
3163	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3164
3165 /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
3166	barrier();
3167	b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3168	a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3169	barrier();
3170	info->ts = rb_time_stamp(cpu_buffer->buffer);
3171
3172	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3173		info->delta = info->ts;
3174	} else {
3175		/*
3176		 * If interrupting an event time update, we may need an
3177		 * absolute timestamp.
3178		 * Don't bother if this is the start of a new page (w == 0).
3179		 */
3180		if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) {
3181			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3182			info->length += RB_LEN_TIME_EXTEND;
3183		} else {
3184			info->delta = info->ts - info->after;
3185			if (unlikely(test_time_stamp(info->delta))) {
3186				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3187				info->length += RB_LEN_TIME_EXTEND;
3188			}
3189		}
3190	}
3191
3192 /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
 
3193
3194 /*C*/	write = local_add_return(info->length, &tail_page->write);
3195
3196	/* set write to only the index of the write */
3197	write &= RB_WRITE_MASK;
3198
3199	tail = write - info->length;
3200
3201	/* See if we shot pass the end of this buffer page */
3202	if (unlikely(write > BUF_PAGE_SIZE)) {
3203		if (tail != w) {
3204			/* before and after may now different, fix it up*/
3205			b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3206			a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3207			if (a_ok && b_ok && info->before != info->after)
3208				(void)rb_time_cmpxchg(&cpu_buffer->before_stamp,
3209						      info->before, info->after);
3210		}
3211		return rb_move_tail(cpu_buffer, tail, info);
3212	}
3213
3214	if (likely(tail == w)) {
3215		u64 save_before;
3216		bool s_ok;
3217
3218		/* Nothing interrupted us between A and C */
3219 /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
3220		barrier();
3221 /*E*/		s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before);
3222		RB_WARN_ON(cpu_buffer, !s_ok);
3223		if (likely(!(info->add_timestamp &
3224			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3225			/* This did not interrupt any time update */
3226			info->delta = info->ts - info->after;
3227		else
3228			/* Just use full timestamp for inerrupting event */
3229			info->delta = info->ts;
3230		barrier();
3231		if (unlikely(info->ts != save_before)) {
3232			/* SLOW PATH - Interrupted between C and E */
3233
3234			a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3235			RB_WARN_ON(cpu_buffer, !a_ok);
3236
3237			/* Write stamp must only go forward */
3238			if (save_before > info->after) {
3239				/*
3240				 * We do not care about the result, only that
3241				 * it gets updated atomically.
3242				 */
3243				(void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3244						      info->after, save_before);
3245			}
3246		}
3247	} else {
3248		u64 ts;
3249		/* SLOW PATH - Interrupted between A and C */
3250		a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3251		/* Was interrupted before here, write_stamp must be valid */
3252		RB_WARN_ON(cpu_buffer, !a_ok);
3253		ts = rb_time_stamp(cpu_buffer->buffer);
3254		barrier();
3255 /*E*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3256		    info->after < ts) {
3257			/* Nothing came after this event between C and E */
3258			info->delta = ts - info->after;
3259			(void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3260					      info->after, info->ts);
3261			info->ts = ts;
3262		} else {
3263			/*
3264			 * Interrupted beween C and E:
3265			 * Lost the previous events time stamp. Just set the
3266			 * delta to zero, and this will be the same time as
3267			 * the event this event interrupted. And the events that
3268			 * came after this will still be correct (as they would
3269			 * have built their delta on the previous event.
3270			 */
3271			info->delta = 0;
3272		}
3273		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3274	}
3275
3276	/*
3277	 * If this is the first commit on the page, then it has the same
3278	 * timestamp as the page itself.
3279	 */
3280	if (unlikely(!tail && !(info->add_timestamp &
3281				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3282		info->delta = 0;
3283
3284	/* We reserved something on the buffer */
3285
3286	event = __rb_page_index(tail_page, tail);
3287	rb_update_event(cpu_buffer, event, info);
3288
3289	local_inc(&tail_page->entries);
3290
3291	/*
3292	 * If this is the first commit on the page, then update
3293	 * its timestamp.
3294	 */
3295	if (unlikely(!tail))
3296		tail_page->page->time_stamp = info->ts;
3297
3298	/* account for these added bytes */
3299	local_add(info->length, &cpu_buffer->entries_bytes);
3300
3301	return event;
3302}
 
3303
3304static __always_inline struct ring_buffer_event *
3305rb_reserve_next_event(struct trace_buffer *buffer,
3306		      struct ring_buffer_per_cpu *cpu_buffer,
3307		      unsigned long length)
3308{
3309	struct ring_buffer_event *event;
3310	struct rb_event_info info;
3311	int nr_loops = 0;
3312	int add_ts_default;
3313
3314	rb_start_commit(cpu_buffer);
3315	/* The commit page can not change after this */
3316
3317#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3318	/*
3319	 * Due to the ability to swap a cpu buffer from a buffer
3320	 * it is possible it was swapped before we committed.
3321	 * (committing stops a swap). We check for it here and
3322	 * if it happened, we have to fail the write.
3323	 */
3324	barrier();
3325	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3326		local_dec(&cpu_buffer->committing);
3327		local_dec(&cpu_buffer->commits);
3328		return NULL;
 
 
 
 
 
 
 
 
 
 
3329	}
3330#endif
3331
3332	info.length = rb_calculate_event_length(length);
 
 
 
 
 
 
3333
3334	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3335		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3336		info.length += RB_LEN_TIME_EXTEND;
3337	} else {
3338		add_ts_default = RB_ADD_STAMP_NONE;
 
 
3339	}
3340
3341 again:
3342	info.add_timestamp = add_ts_default;
3343	info.delta = 0;
3344
3345	/*
3346	 * We allow for interrupts to reenter here and do a trace.
3347	 * If one does, it will cause this original code to loop
3348	 * back here. Even with heavy interrupts happening, this
3349	 * should only happen a few times in a row. If this happens
3350	 * 1000 times in a row, there must be either an interrupt
3351	 * storm or we have something buggy.
3352	 * Bail!
3353	 */
3354	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3355		goto out_fail;
3356
3357	event = __rb_reserve_next(cpu_buffer, &info);
3358
3359	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3360		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3361			info.length -= RB_LEN_TIME_EXTEND;
3362		goto again;
3363	}
3364
3365	if (likely(event))
3366		return event;
3367 out_fail:
3368	rb_end_commit(cpu_buffer);
3369	return NULL;
3370}
3371
3372/**
3373 * ring_buffer_lock_reserve - reserve a part of the buffer
3374 * @buffer: the ring buffer to reserve from
3375 * @length: the length of the data to reserve (excluding event header)
3376 *
3377 * Returns a reserved event on the ring buffer to copy directly to.
3378 * The user of this interface will need to get the body to write into
3379 * and can use the ring_buffer_event_data() interface.
3380 *
3381 * The length is the length of the data needed, not the event length
3382 * which also includes the event header.
3383 *
3384 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3385 * If NULL is returned, then nothing has been allocated or locked.
3386 */
3387struct ring_buffer_event *
3388ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3389{
3390	struct ring_buffer_per_cpu *cpu_buffer;
3391	struct ring_buffer_event *event;
3392	int cpu;
3393
3394	/* If we are tracing schedule, we don't want to recurse */
3395	preempt_disable_notrace();
3396
3397	if (unlikely(atomic_read(&buffer->record_disabled)))
3398		goto out;
3399
3400	cpu = raw_smp_processor_id();
3401
3402	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3403		goto out;
3404
3405	cpu_buffer = buffer->buffers[cpu];
3406
3407	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3408		goto out;
 
3409
3410	if (unlikely(length > BUF_MAX_DATA_SIZE))
3411		goto out;
 
 
3412
3413	if (unlikely(trace_recursive_lock(cpu_buffer)))
3414		goto out;
3415
3416	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3417	if (!event)
3418		goto out_unlock;
3419
3420	return event;
3421
3422 out_unlock:
3423	trace_recursive_unlock(cpu_buffer);
3424 out:
3425	preempt_enable_notrace();
3426	return NULL;
3427}
3428EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3429
3430/*
3431 * Decrement the entries to the page that an event is on.
3432 * The event does not even need to exist, only the pointer
3433 * to the page it is on. This may only be called before the commit
3434 * takes place.
3435 */
3436static inline void
3437rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3438		   struct ring_buffer_event *event)
3439{
3440	unsigned long addr = (unsigned long)event;
3441	struct buffer_page *bpage = cpu_buffer->commit_page;
3442	struct buffer_page *start;
3443
3444	addr &= PAGE_MASK;
3445
3446	/* Do the likely case first */
3447	if (likely(bpage->page == (void *)addr)) {
3448		local_dec(&bpage->entries);
3449		return;
3450	}
3451
3452	/*
3453	 * Because the commit page may be on the reader page we
3454	 * start with the next page and check the end loop there.
3455	 */
3456	rb_inc_page(cpu_buffer, &bpage);
3457	start = bpage;
3458	do {
3459		if (bpage->page == (void *)addr) {
3460			local_dec(&bpage->entries);
3461			return;
3462		}
3463		rb_inc_page(cpu_buffer, &bpage);
3464	} while (bpage != start);
3465
3466	/* commit not part of this buffer?? */
3467	RB_WARN_ON(cpu_buffer, 1);
3468}
3469
3470/**
3471 * ring_buffer_commit_discard - discard an event that has not been committed
3472 * @buffer: the ring buffer
3473 * @event: non committed event to discard
3474 *
3475 * Sometimes an event that is in the ring buffer needs to be ignored.
3476 * This function lets the user discard an event in the ring buffer
3477 * and then that event will not be read later.
3478 *
3479 * This function only works if it is called before the item has been
3480 * committed. It will try to free the event from the ring buffer
3481 * if another event has not been added behind it.
3482 *
3483 * If another event has been added behind it, it will set the event
3484 * up as discarded, and perform the commit.
3485 *
3486 * If this function is called, do not call ring_buffer_unlock_commit on
3487 * the event.
3488 */
3489void ring_buffer_discard_commit(struct trace_buffer *buffer,
3490				struct ring_buffer_event *event)
3491{
3492	struct ring_buffer_per_cpu *cpu_buffer;
3493	int cpu;
3494
3495	/* The event is discarded regardless */
3496	rb_event_discard(event);
3497
3498	cpu = smp_processor_id();
3499	cpu_buffer = buffer->buffers[cpu];
3500
3501	/*
3502	 * This must only be called if the event has not been
3503	 * committed yet. Thus we can assume that preemption
3504	 * is still disabled.
3505	 */
3506	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3507
3508	rb_decrement_entry(cpu_buffer, event);
3509	if (rb_try_to_discard(cpu_buffer, event))
3510		goto out;
3511
 
 
 
 
 
3512 out:
3513	rb_end_commit(cpu_buffer);
3514
3515	trace_recursive_unlock(cpu_buffer);
3516
3517	preempt_enable_notrace();
3518
3519}
3520EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3521
3522/**
3523 * ring_buffer_write - write data to the buffer without reserving
3524 * @buffer: The ring buffer to write to.
3525 * @length: The length of the data being written (excluding the event header)
3526 * @data: The data to write to the buffer.
3527 *
3528 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3529 * one function. If you already have the data to write to the buffer, it
3530 * may be easier to simply call this function.
3531 *
3532 * Note, like ring_buffer_lock_reserve, the length is the length of the data
3533 * and not the length of the event which would hold the header.
3534 */
3535int ring_buffer_write(struct trace_buffer *buffer,
3536		      unsigned long length,
3537		      void *data)
3538{
3539	struct ring_buffer_per_cpu *cpu_buffer;
3540	struct ring_buffer_event *event;
3541	void *body;
3542	int ret = -EBUSY;
3543	int cpu;
3544
 
 
 
3545	preempt_disable_notrace();
3546
3547	if (atomic_read(&buffer->record_disabled))
3548		goto out;
3549
3550	cpu = raw_smp_processor_id();
3551
3552	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3553		goto out;
3554
3555	cpu_buffer = buffer->buffers[cpu];
3556
3557	if (atomic_read(&cpu_buffer->record_disabled))
3558		goto out;
3559
3560	if (length > BUF_MAX_DATA_SIZE)
3561		goto out;
3562
3563	if (unlikely(trace_recursive_lock(cpu_buffer)))
3564		goto out;
3565
3566	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3567	if (!event)
3568		goto out_unlock;
3569
3570	body = rb_event_data(event);
3571
3572	memcpy(body, data, length);
3573
3574	rb_commit(cpu_buffer, event);
3575
3576	rb_wakeups(buffer, cpu_buffer);
3577
3578	ret = 0;
3579
3580 out_unlock:
3581	trace_recursive_unlock(cpu_buffer);
3582
3583 out:
3584	preempt_enable_notrace();
3585
3586	return ret;
3587}
3588EXPORT_SYMBOL_GPL(ring_buffer_write);
3589
3590static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3591{
3592	struct buffer_page *reader = cpu_buffer->reader_page;
3593	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3594	struct buffer_page *commit = cpu_buffer->commit_page;
3595
3596	/* In case of error, head will be NULL */
3597	if (unlikely(!head))
3598		return true;
3599
3600	return reader->read == rb_page_commit(reader) &&
3601		(commit == reader ||
3602		 (commit == head &&
3603		  head->read == rb_page_commit(commit)));
3604}
3605
3606/**
3607 * ring_buffer_record_disable - stop all writes into the buffer
3608 * @buffer: The ring buffer to stop writes to.
3609 *
3610 * This prevents all writes to the buffer. Any attempt to write
3611 * to the buffer after this will fail and return NULL.
3612 *
3613 * The caller should call synchronize_rcu() after this.
3614 */
3615void ring_buffer_record_disable(struct trace_buffer *buffer)
3616{
3617	atomic_inc(&buffer->record_disabled);
3618}
3619EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3620
3621/**
3622 * ring_buffer_record_enable - enable writes to the buffer
3623 * @buffer: The ring buffer to enable writes
3624 *
3625 * Note, multiple disables will need the same number of enables
3626 * to truly enable the writing (much like preempt_disable).
3627 */
3628void ring_buffer_record_enable(struct trace_buffer *buffer)
3629{
3630	atomic_dec(&buffer->record_disabled);
3631}
3632EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3633
3634/**
3635 * ring_buffer_record_off - stop all writes into the buffer
3636 * @buffer: The ring buffer to stop writes to.
3637 *
3638 * This prevents all writes to the buffer. Any attempt to write
3639 * to the buffer after this will fail and return NULL.
3640 *
3641 * This is different than ring_buffer_record_disable() as
3642 * it works like an on/off switch, where as the disable() version
3643 * must be paired with a enable().
3644 */
3645void ring_buffer_record_off(struct trace_buffer *buffer)
3646{
3647	unsigned int rd;
3648	unsigned int new_rd;
3649
3650	do {
3651		rd = atomic_read(&buffer->record_disabled);
3652		new_rd = rd | RB_BUFFER_OFF;
3653	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3654}
3655EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3656
3657/**
3658 * ring_buffer_record_on - restart writes into the buffer
3659 * @buffer: The ring buffer to start writes to.
3660 *
3661 * This enables all writes to the buffer that was disabled by
3662 * ring_buffer_record_off().
3663 *
3664 * This is different than ring_buffer_record_enable() as
3665 * it works like an on/off switch, where as the enable() version
3666 * must be paired with a disable().
3667 */
3668void ring_buffer_record_on(struct trace_buffer *buffer)
3669{
3670	unsigned int rd;
3671	unsigned int new_rd;
3672
3673	do {
3674		rd = atomic_read(&buffer->record_disabled);
3675		new_rd = rd & ~RB_BUFFER_OFF;
3676	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3677}
3678EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3679
3680/**
3681 * ring_buffer_record_is_on - return true if the ring buffer can write
3682 * @buffer: The ring buffer to see if write is enabled
3683 *
3684 * Returns true if the ring buffer is in a state that it accepts writes.
3685 */
3686bool ring_buffer_record_is_on(struct trace_buffer *buffer)
3687{
3688	return !atomic_read(&buffer->record_disabled);
3689}
3690
3691/**
3692 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3693 * @buffer: The ring buffer to see if write is set enabled
3694 *
3695 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3696 * Note that this does NOT mean it is in a writable state.
3697 *
3698 * It may return true when the ring buffer has been disabled by
3699 * ring_buffer_record_disable(), as that is a temporary disabling of
3700 * the ring buffer.
3701 */
3702bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
3703{
3704	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3705}
3706
3707/**
3708 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3709 * @buffer: The ring buffer to stop writes to.
3710 * @cpu: The CPU buffer to stop
3711 *
3712 * This prevents all writes to the buffer. Any attempt to write
3713 * to the buffer after this will fail and return NULL.
3714 *
3715 * The caller should call synchronize_rcu() after this.
3716 */
3717void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
3718{
3719	struct ring_buffer_per_cpu *cpu_buffer;
3720
3721	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3722		return;
3723
3724	cpu_buffer = buffer->buffers[cpu];
3725	atomic_inc(&cpu_buffer->record_disabled);
3726}
3727EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3728
3729/**
3730 * ring_buffer_record_enable_cpu - enable writes to the buffer
3731 * @buffer: The ring buffer to enable writes
3732 * @cpu: The CPU to enable.
3733 *
3734 * Note, multiple disables will need the same number of enables
3735 * to truly enable the writing (much like preempt_disable).
3736 */
3737void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
3738{
3739	struct ring_buffer_per_cpu *cpu_buffer;
3740
3741	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3742		return;
3743
3744	cpu_buffer = buffer->buffers[cpu];
3745	atomic_dec(&cpu_buffer->record_disabled);
3746}
3747EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3748
3749/*
3750 * The total entries in the ring buffer is the running counter
3751 * of entries entered into the ring buffer, minus the sum of
3752 * the entries read from the ring buffer and the number of
3753 * entries that were overwritten.
3754 */
3755static inline unsigned long
3756rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3757{
3758	return local_read(&cpu_buffer->entries) -
3759		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3760}
3761
3762/**
3763 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3764 * @buffer: The ring buffer
3765 * @cpu: The per CPU buffer to read from.
3766 */
3767u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
3768{
3769	unsigned long flags;
3770	struct ring_buffer_per_cpu *cpu_buffer;
3771	struct buffer_page *bpage;
3772	u64 ret = 0;
3773
3774	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3775		return 0;
3776
3777	cpu_buffer = buffer->buffers[cpu];
3778	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3779	/*
3780	 * if the tail is on reader_page, oldest time stamp is on the reader
3781	 * page
3782	 */
3783	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3784		bpage = cpu_buffer->reader_page;
3785	else
3786		bpage = rb_set_head_page(cpu_buffer);
3787	if (bpage)
3788		ret = bpage->page->time_stamp;
3789	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3790
3791	return ret;
3792}
3793EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3794
3795/**
3796 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3797 * @buffer: The ring buffer
3798 * @cpu: The per CPU buffer to read from.
3799 */
3800unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
3801{
3802	struct ring_buffer_per_cpu *cpu_buffer;
3803	unsigned long ret;
3804
3805	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3806		return 0;
3807
3808	cpu_buffer = buffer->buffers[cpu];
3809	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3810
3811	return ret;
3812}
3813EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3814
3815/**
3816 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3817 * @buffer: The ring buffer
3818 * @cpu: The per CPU buffer to get the entries from.
3819 */
3820unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
3821{
3822	struct ring_buffer_per_cpu *cpu_buffer;
3823
3824	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3825		return 0;
3826
3827	cpu_buffer = buffer->buffers[cpu];
3828
3829	return rb_num_of_entries(cpu_buffer);
3830}
3831EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3832
3833/**
3834 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3835 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3836 * @buffer: The ring buffer
3837 * @cpu: The per CPU buffer to get the number of overruns from
3838 */
3839unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
3840{
3841	struct ring_buffer_per_cpu *cpu_buffer;
3842	unsigned long ret;
3843
3844	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3845		return 0;
3846
3847	cpu_buffer = buffer->buffers[cpu];
3848	ret = local_read(&cpu_buffer->overrun);
3849
3850	return ret;
3851}
3852EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3853
3854/**
3855 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3856 * commits failing due to the buffer wrapping around while there are uncommitted
3857 * events, such as during an interrupt storm.
3858 * @buffer: The ring buffer
3859 * @cpu: The per CPU buffer to get the number of overruns from
3860 */
3861unsigned long
3862ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
3863{
3864	struct ring_buffer_per_cpu *cpu_buffer;
3865	unsigned long ret;
3866
3867	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3868		return 0;
3869
3870	cpu_buffer = buffer->buffers[cpu];
3871	ret = local_read(&cpu_buffer->commit_overrun);
3872
3873	return ret;
3874}
3875EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3876
3877/**
3878 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3879 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3880 * @buffer: The ring buffer
3881 * @cpu: The per CPU buffer to get the number of overruns from
3882 */
3883unsigned long
3884ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
3885{
3886	struct ring_buffer_per_cpu *cpu_buffer;
3887	unsigned long ret;
3888
3889	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3890		return 0;
3891
3892	cpu_buffer = buffer->buffers[cpu];
3893	ret = local_read(&cpu_buffer->dropped_events);
3894
3895	return ret;
3896}
3897EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3898
3899/**
3900 * ring_buffer_read_events_cpu - get the number of events successfully read
3901 * @buffer: The ring buffer
3902 * @cpu: The per CPU buffer to get the number of events read
3903 */
3904unsigned long
3905ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
3906{
3907	struct ring_buffer_per_cpu *cpu_buffer;
3908
3909	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3910		return 0;
3911
3912	cpu_buffer = buffer->buffers[cpu];
3913	return cpu_buffer->read;
3914}
3915EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3916
3917/**
3918 * ring_buffer_entries - get the number of entries in a buffer
3919 * @buffer: The ring buffer
3920 *
3921 * Returns the total number of entries in the ring buffer
3922 * (all CPU entries)
3923 */
3924unsigned long ring_buffer_entries(struct trace_buffer *buffer)
3925{
3926	struct ring_buffer_per_cpu *cpu_buffer;
3927	unsigned long entries = 0;
3928	int cpu;
3929
3930	/* if you care about this being correct, lock the buffer */
3931	for_each_buffer_cpu(buffer, cpu) {
3932		cpu_buffer = buffer->buffers[cpu];
3933		entries += rb_num_of_entries(cpu_buffer);
3934	}
3935
3936	return entries;
3937}
3938EXPORT_SYMBOL_GPL(ring_buffer_entries);
3939
3940/**
3941 * ring_buffer_overruns - get the number of overruns in buffer
3942 * @buffer: The ring buffer
3943 *
3944 * Returns the total number of overruns in the ring buffer
3945 * (all CPU entries)
3946 */
3947unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
3948{
3949	struct ring_buffer_per_cpu *cpu_buffer;
3950	unsigned long overruns = 0;
3951	int cpu;
3952
3953	/* if you care about this being correct, lock the buffer */
3954	for_each_buffer_cpu(buffer, cpu) {
3955		cpu_buffer = buffer->buffers[cpu];
3956		overruns += local_read(&cpu_buffer->overrun);
3957	}
3958
3959	return overruns;
3960}
3961EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3962
3963static void rb_iter_reset(struct ring_buffer_iter *iter)
3964{
3965	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3966
3967	/* Iterator usage is expected to have record disabled */
3968	iter->head_page = cpu_buffer->reader_page;
3969	iter->head = cpu_buffer->reader_page->read;
3970	iter->next_event = iter->head;
3971
3972	iter->cache_reader_page = iter->head_page;
3973	iter->cache_read = cpu_buffer->read;
3974
3975	if (iter->head) {
 
 
3976		iter->read_stamp = cpu_buffer->read_stamp;
3977		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
3978	} else {
3979		iter->read_stamp = iter->head_page->page->time_stamp;
3980		iter->page_stamp = iter->read_stamp;
3981	}
3982}
3983
3984/**
3985 * ring_buffer_iter_reset - reset an iterator
3986 * @iter: The iterator to reset
3987 *
3988 * Resets the iterator, so that it will start from the beginning
3989 * again.
3990 */
3991void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3992{
3993	struct ring_buffer_per_cpu *cpu_buffer;
3994	unsigned long flags;
3995
3996	if (!iter)
3997		return;
3998
3999	cpu_buffer = iter->cpu_buffer;
4000
4001	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4002	rb_iter_reset(iter);
4003	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4004}
4005EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4006
4007/**
4008 * ring_buffer_iter_empty - check if an iterator has no more to read
4009 * @iter: The iterator to check
4010 */
4011int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4012{
4013	struct ring_buffer_per_cpu *cpu_buffer;
4014	struct buffer_page *reader;
4015	struct buffer_page *head_page;
4016	struct buffer_page *commit_page;
4017	struct buffer_page *curr_commit_page;
4018	unsigned commit;
4019	u64 curr_commit_ts;
4020	u64 commit_ts;
4021
4022	cpu_buffer = iter->cpu_buffer;
4023	reader = cpu_buffer->reader_page;
4024	head_page = cpu_buffer->head_page;
4025	commit_page = cpu_buffer->commit_page;
4026	commit_ts = commit_page->page->time_stamp;
4027
4028	/*
4029	 * When the writer goes across pages, it issues a cmpxchg which
4030	 * is a mb(), which will synchronize with the rmb here.
4031	 * (see rb_tail_page_update())
4032	 */
4033	smp_rmb();
4034	commit = rb_page_commit(commit_page);
4035	/* We want to make sure that the commit page doesn't change */
4036	smp_rmb();
4037
4038	/* Make sure commit page didn't change */
4039	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4040	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4041
4042	/* If the commit page changed, then there's more data */
4043	if (curr_commit_page != commit_page ||
4044	    curr_commit_ts != commit_ts)
4045		return 0;
4046
4047	/* Still racy, as it may return a false positive, but that's OK */
4048	return ((iter->head_page == commit_page && iter->head >= commit) ||
4049		(iter->head_page == reader && commit_page == head_page &&
4050		 head_page->read == commit &&
4051		 iter->head == rb_page_commit(cpu_buffer->reader_page)));
4052}
4053EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4054
4055static void
4056rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4057		     struct ring_buffer_event *event)
4058{
4059	u64 delta;
4060
4061	switch (event->type_len) {
4062	case RINGBUF_TYPE_PADDING:
4063		return;
4064
4065	case RINGBUF_TYPE_TIME_EXTEND:
4066		delta = ring_buffer_event_time_stamp(event);
 
 
4067		cpu_buffer->read_stamp += delta;
4068		return;
4069
4070	case RINGBUF_TYPE_TIME_STAMP:
4071		delta = ring_buffer_event_time_stamp(event);
4072		cpu_buffer->read_stamp = delta;
4073		return;
4074
4075	case RINGBUF_TYPE_DATA:
4076		cpu_buffer->read_stamp += event->time_delta;
4077		return;
4078
4079	default:
4080		RB_WARN_ON(cpu_buffer, 1);
4081	}
4082	return;
4083}
4084
4085static void
4086rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4087			  struct ring_buffer_event *event)
4088{
4089	u64 delta;
4090
4091	switch (event->type_len) {
4092	case RINGBUF_TYPE_PADDING:
4093		return;
4094
4095	case RINGBUF_TYPE_TIME_EXTEND:
4096		delta = ring_buffer_event_time_stamp(event);
 
 
4097		iter->read_stamp += delta;
4098		return;
4099
4100	case RINGBUF_TYPE_TIME_STAMP:
4101		delta = ring_buffer_event_time_stamp(event);
4102		iter->read_stamp = delta;
4103		return;
4104
4105	case RINGBUF_TYPE_DATA:
4106		iter->read_stamp += event->time_delta;
4107		return;
4108
4109	default:
4110		RB_WARN_ON(iter->cpu_buffer, 1);
4111	}
4112	return;
4113}
4114
4115static struct buffer_page *
4116rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4117{
4118	struct buffer_page *reader = NULL;
4119	unsigned long overwrite;
4120	unsigned long flags;
4121	int nr_loops = 0;
4122	int ret;
4123
4124	local_irq_save(flags);
4125	arch_spin_lock(&cpu_buffer->lock);
4126
4127 again:
4128	/*
4129	 * This should normally only loop twice. But because the
4130	 * start of the reader inserts an empty page, it causes
4131	 * a case where we will loop three times. There should be no
4132	 * reason to loop four times (that I know of).
4133	 */
4134	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4135		reader = NULL;
4136		goto out;
4137	}
4138
4139	reader = cpu_buffer->reader_page;
4140
4141	/* If there's more to read, return this page */
4142	if (cpu_buffer->reader_page->read < rb_page_size(reader))
4143		goto out;
4144
4145	/* Never should we have an index greater than the size */
4146	if (RB_WARN_ON(cpu_buffer,
4147		       cpu_buffer->reader_page->read > rb_page_size(reader)))
4148		goto out;
4149
4150	/* check if we caught up to the tail */
4151	reader = NULL;
4152	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4153		goto out;
4154
4155	/* Don't bother swapping if the ring buffer is empty */
4156	if (rb_num_of_entries(cpu_buffer) == 0)
4157		goto out;
4158
4159	/*
4160	 * Reset the reader page to size zero.
4161	 */
4162	local_set(&cpu_buffer->reader_page->write, 0);
4163	local_set(&cpu_buffer->reader_page->entries, 0);
4164	local_set(&cpu_buffer->reader_page->page->commit, 0);
4165	cpu_buffer->reader_page->real_end = 0;
4166
4167 spin:
4168	/*
4169	 * Splice the empty reader page into the list around the head.
4170	 */
4171	reader = rb_set_head_page(cpu_buffer);
4172	if (!reader)
4173		goto out;
4174	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4175	cpu_buffer->reader_page->list.prev = reader->list.prev;
4176
4177	/*
4178	 * cpu_buffer->pages just needs to point to the buffer, it
4179	 *  has no specific buffer page to point to. Lets move it out
4180	 *  of our way so we don't accidentally swap it.
4181	 */
4182	cpu_buffer->pages = reader->list.prev;
4183
4184	/* The reader page will be pointing to the new head */
4185	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
4186
4187	/*
4188	 * We want to make sure we read the overruns after we set up our
4189	 * pointers to the next object. The writer side does a
4190	 * cmpxchg to cross pages which acts as the mb on the writer
4191	 * side. Note, the reader will constantly fail the swap
4192	 * while the writer is updating the pointers, so this
4193	 * guarantees that the overwrite recorded here is the one we
4194	 * want to compare with the last_overrun.
4195	 */
4196	smp_mb();
4197	overwrite = local_read(&(cpu_buffer->overrun));
4198
4199	/*
4200	 * Here's the tricky part.
4201	 *
4202	 * We need to move the pointer past the header page.
4203	 * But we can only do that if a writer is not currently
4204	 * moving it. The page before the header page has the
4205	 * flag bit '1' set if it is pointing to the page we want.
4206	 * but if the writer is in the process of moving it
4207	 * than it will be '2' or already moved '0'.
4208	 */
4209
4210	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4211
4212	/*
4213	 * If we did not convert it, then we must try again.
4214	 */
4215	if (!ret)
4216		goto spin;
4217
4218	/*
4219	 * Yay! We succeeded in replacing the page.
4220	 *
4221	 * Now make the new head point back to the reader page.
4222	 */
4223	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4224	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
4225
4226	local_inc(&cpu_buffer->pages_read);
4227
4228	/* Finally update the reader page to the new head */
4229	cpu_buffer->reader_page = reader;
4230	cpu_buffer->reader_page->read = 0;
4231
4232	if (overwrite != cpu_buffer->last_overrun) {
4233		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4234		cpu_buffer->last_overrun = overwrite;
4235	}
4236
4237	goto again;
4238
4239 out:
4240	/* Update the read_stamp on the first event */
4241	if (reader && reader->read == 0)
4242		cpu_buffer->read_stamp = reader->page->time_stamp;
4243
4244	arch_spin_unlock(&cpu_buffer->lock);
4245	local_irq_restore(flags);
4246
4247	return reader;
4248}
4249
4250static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4251{
4252	struct ring_buffer_event *event;
4253	struct buffer_page *reader;
4254	unsigned length;
4255
4256	reader = rb_get_reader_page(cpu_buffer);
4257
4258	/* This function should not be called when buffer is empty */
4259	if (RB_WARN_ON(cpu_buffer, !reader))
4260		return;
4261
4262	event = rb_reader_event(cpu_buffer);
4263
4264	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4265		cpu_buffer->read++;
4266
4267	rb_update_read_stamp(cpu_buffer, event);
4268
4269	length = rb_event_length(event);
4270	cpu_buffer->reader_page->read += length;
4271}
4272
4273static void rb_advance_iter(struct ring_buffer_iter *iter)
4274{
4275	struct ring_buffer_per_cpu *cpu_buffer;
 
 
4276
4277	cpu_buffer = iter->cpu_buffer;
4278
4279	/* If head == next_event then we need to jump to the next event */
4280	if (iter->head == iter->next_event) {
4281		/* If the event gets overwritten again, there's nothing to do */
4282		if (rb_iter_head_event(iter) == NULL)
4283			return;
4284	}
4285
4286	iter->head = iter->next_event;
4287
4288	/*
4289	 * Check if we are at the end of the buffer.
4290	 */
4291	if (iter->next_event >= rb_page_size(iter->head_page)) {
4292		/* discarded commits can make the page empty */
4293		if (iter->head_page == cpu_buffer->commit_page)
4294			return;
4295		rb_inc_iter(iter);
4296		return;
4297	}
4298
4299	rb_update_iter_read_stamp(iter, iter->event);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4300}
4301
4302static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4303{
4304	return cpu_buffer->lost_events;
4305}
4306
4307static struct ring_buffer_event *
4308rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4309	       unsigned long *lost_events)
4310{
4311	struct ring_buffer_event *event;
4312	struct buffer_page *reader;
4313	int nr_loops = 0;
4314
4315	if (ts)
4316		*ts = 0;
4317 again:
4318	/*
4319	 * We repeat when a time extend is encountered.
4320	 * Since the time extend is always attached to a data event,
4321	 * we should never loop more than once.
4322	 * (We never hit the following condition more than twice).
4323	 */
4324	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4325		return NULL;
4326
4327	reader = rb_get_reader_page(cpu_buffer);
4328	if (!reader)
4329		return NULL;
4330
4331	event = rb_reader_event(cpu_buffer);
4332
4333	switch (event->type_len) {
4334	case RINGBUF_TYPE_PADDING:
4335		if (rb_null_event(event))
4336			RB_WARN_ON(cpu_buffer, 1);
4337		/*
4338		 * Because the writer could be discarding every
4339		 * event it creates (which would probably be bad)
4340		 * if we were to go back to "again" then we may never
4341		 * catch up, and will trigger the warn on, or lock
4342		 * the box. Return the padding, and we will release
4343		 * the current locks, and try again.
4344		 */
4345		return event;
4346
4347	case RINGBUF_TYPE_TIME_EXTEND:
4348		/* Internal data, OK to advance */
4349		rb_advance_reader(cpu_buffer);
4350		goto again;
4351
4352	case RINGBUF_TYPE_TIME_STAMP:
4353		if (ts) {
4354			*ts = ring_buffer_event_time_stamp(event);
4355			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4356							 cpu_buffer->cpu, ts);
4357		}
4358		/* Internal data, OK to advance */
4359		rb_advance_reader(cpu_buffer);
4360		goto again;
4361
4362	case RINGBUF_TYPE_DATA:
4363		if (ts && !(*ts)) {
4364			*ts = cpu_buffer->read_stamp + event->time_delta;
4365			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4366							 cpu_buffer->cpu, ts);
4367		}
4368		if (lost_events)
4369			*lost_events = rb_lost_events(cpu_buffer);
4370		return event;
4371
4372	default:
4373		RB_WARN_ON(cpu_buffer, 1);
4374	}
4375
4376	return NULL;
4377}
4378EXPORT_SYMBOL_GPL(ring_buffer_peek);
4379
4380static struct ring_buffer_event *
4381rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4382{
4383	struct trace_buffer *buffer;
4384	struct ring_buffer_per_cpu *cpu_buffer;
4385	struct ring_buffer_event *event;
4386	int nr_loops = 0;
4387
4388	if (ts)
4389		*ts = 0;
4390
4391	cpu_buffer = iter->cpu_buffer;
4392	buffer = cpu_buffer->buffer;
4393
4394	/*
4395	 * Check if someone performed a consuming read to
4396	 * the buffer. A consuming read invalidates the iterator
4397	 * and we need to reset the iterator in this case.
4398	 */
4399	if (unlikely(iter->cache_read != cpu_buffer->read ||
4400		     iter->cache_reader_page != cpu_buffer->reader_page))
4401		rb_iter_reset(iter);
4402
4403 again:
4404	if (ring_buffer_iter_empty(iter))
4405		return NULL;
4406
4407	/*
4408	 * As the writer can mess with what the iterator is trying
4409	 * to read, just give up if we fail to get an event after
4410	 * three tries. The iterator is not as reliable when reading
4411	 * the ring buffer with an active write as the consumer is.
4412	 * Do not warn if the three failures is reached.
4413	 */
4414	if (++nr_loops > 3)
4415		return NULL;
4416
4417	if (rb_per_cpu_empty(cpu_buffer))
4418		return NULL;
4419
4420	if (iter->head >= rb_page_size(iter->head_page)) {
4421		rb_inc_iter(iter);
4422		goto again;
4423	}
4424
4425	event = rb_iter_head_event(iter);
4426	if (!event)
4427		goto again;
4428
4429	switch (event->type_len) {
4430	case RINGBUF_TYPE_PADDING:
4431		if (rb_null_event(event)) {
4432			rb_inc_iter(iter);
4433			goto again;
4434		}
4435		rb_advance_iter(iter);
4436		return event;
4437
4438	case RINGBUF_TYPE_TIME_EXTEND:
4439		/* Internal data, OK to advance */
4440		rb_advance_iter(iter);
4441		goto again;
4442
4443	case RINGBUF_TYPE_TIME_STAMP:
4444		if (ts) {
4445			*ts = ring_buffer_event_time_stamp(event);
4446			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4447							 cpu_buffer->cpu, ts);
4448		}
4449		/* Internal data, OK to advance */
4450		rb_advance_iter(iter);
4451		goto again;
4452
4453	case RINGBUF_TYPE_DATA:
4454		if (ts && !(*ts)) {
4455			*ts = iter->read_stamp + event->time_delta;
4456			ring_buffer_normalize_time_stamp(buffer,
4457							 cpu_buffer->cpu, ts);
4458		}
4459		return event;
4460
4461	default:
4462		RB_WARN_ON(cpu_buffer, 1);
4463	}
4464
4465	return NULL;
4466}
4467EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4468
4469static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4470{
4471	if (likely(!in_nmi())) {
4472		raw_spin_lock(&cpu_buffer->reader_lock);
4473		return true;
4474	}
4475
4476	/*
4477	 * If an NMI die dumps out the content of the ring buffer
4478	 * trylock must be used to prevent a deadlock if the NMI
4479	 * preempted a task that holds the ring buffer locks. If
4480	 * we get the lock then all is fine, if not, then continue
4481	 * to do the read, but this can corrupt the ring buffer,
4482	 * so it must be permanently disabled from future writes.
4483	 * Reading from NMI is a oneshot deal.
4484	 */
4485	if (raw_spin_trylock(&cpu_buffer->reader_lock))
4486		return true;
4487
4488	/* Continue without locking, but disable the ring buffer */
4489	atomic_inc(&cpu_buffer->record_disabled);
4490	return false;
4491}
4492
4493static inline void
4494rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4495{
4496	if (likely(locked))
4497		raw_spin_unlock(&cpu_buffer->reader_lock);
4498	return;
4499}
4500
4501/**
4502 * ring_buffer_peek - peek at the next event to be read
4503 * @buffer: The ring buffer to read
4504 * @cpu: The cpu to peak at
4505 * @ts: The timestamp counter of this event.
4506 * @lost_events: a variable to store if events were lost (may be NULL)
4507 *
4508 * This will return the event that will be read next, but does
4509 * not consume the data.
4510 */
4511struct ring_buffer_event *
4512ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4513		 unsigned long *lost_events)
4514{
4515	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4516	struct ring_buffer_event *event;
4517	unsigned long flags;
4518	bool dolock;
4519
4520	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4521		return NULL;
4522
 
4523 again:
4524	local_irq_save(flags);
4525	dolock = rb_reader_lock(cpu_buffer);
 
4526	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4527	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4528		rb_advance_reader(cpu_buffer);
4529	rb_reader_unlock(cpu_buffer, dolock);
 
4530	local_irq_restore(flags);
4531
4532	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4533		goto again;
4534
4535	return event;
4536}
4537
4538/** ring_buffer_iter_dropped - report if there are dropped events
4539 * @iter: The ring buffer iterator
4540 *
4541 * Returns true if there was dropped events since the last peek.
4542 */
4543bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4544{
4545	bool ret = iter->missed_events != 0;
4546
4547	iter->missed_events = 0;
4548	return ret;
4549}
4550EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4551
4552/**
4553 * ring_buffer_iter_peek - peek at the next event to be read
4554 * @iter: The ring buffer iterator
4555 * @ts: The timestamp counter of this event.
4556 *
4557 * This will return the event that will be read next, but does
4558 * not increment the iterator.
4559 */
4560struct ring_buffer_event *
4561ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4562{
4563	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4564	struct ring_buffer_event *event;
4565	unsigned long flags;
4566
4567 again:
4568	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4569	event = rb_iter_peek(iter, ts);
4570	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4571
4572	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4573		goto again;
4574
4575	return event;
4576}
4577
4578/**
4579 * ring_buffer_consume - return an event and consume it
4580 * @buffer: The ring buffer to get the next event from
4581 * @cpu: the cpu to read the buffer from
4582 * @ts: a variable to store the timestamp (may be NULL)
4583 * @lost_events: a variable to store if events were lost (may be NULL)
4584 *
4585 * Returns the next event in the ring buffer, and that event is consumed.
4586 * Meaning, that sequential reads will keep returning a different event,
4587 * and eventually empty the ring buffer if the producer is slower.
4588 */
4589struct ring_buffer_event *
4590ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
4591		    unsigned long *lost_events)
4592{
4593	struct ring_buffer_per_cpu *cpu_buffer;
4594	struct ring_buffer_event *event = NULL;
4595	unsigned long flags;
4596	bool dolock;
 
 
4597
4598 again:
4599	/* might be called in atomic */
4600	preempt_disable();
4601
4602	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4603		goto out;
4604
4605	cpu_buffer = buffer->buffers[cpu];
4606	local_irq_save(flags);
4607	dolock = rb_reader_lock(cpu_buffer);
 
4608
4609	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4610	if (event) {
4611		cpu_buffer->lost_events = 0;
4612		rb_advance_reader(cpu_buffer);
4613	}
4614
4615	rb_reader_unlock(cpu_buffer, dolock);
 
4616	local_irq_restore(flags);
4617
4618 out:
4619	preempt_enable();
4620
4621	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4622		goto again;
4623
4624	return event;
4625}
4626EXPORT_SYMBOL_GPL(ring_buffer_consume);
4627
4628/**
4629 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4630 * @buffer: The ring buffer to read from
4631 * @cpu: The cpu buffer to iterate over
4632 * @flags: gfp flags to use for memory allocation
4633 *
4634 * This performs the initial preparations necessary to iterate
4635 * through the buffer.  Memory is allocated, buffer recording
4636 * is disabled, and the iterator pointer is returned to the caller.
4637 *
4638 * Disabling buffer recording prevents the reading from being
4639 * corrupted. This is not a consuming read, so a producer is not
4640 * expected.
4641 *
4642 * After a sequence of ring_buffer_read_prepare calls, the user is
4643 * expected to make at least one call to ring_buffer_read_prepare_sync.
4644 * Afterwards, ring_buffer_read_start is invoked to get things going
4645 * for real.
4646 *
4647 * This overall must be paired with ring_buffer_read_finish.
4648 */
4649struct ring_buffer_iter *
4650ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
4651{
4652	struct ring_buffer_per_cpu *cpu_buffer;
4653	struct ring_buffer_iter *iter;
4654
4655	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4656		return NULL;
4657
4658	iter = kzalloc(sizeof(*iter), flags);
4659	if (!iter)
4660		return NULL;
4661
4662	iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags);
4663	if (!iter->event) {
4664		kfree(iter);
4665		return NULL;
4666	}
4667
4668	cpu_buffer = buffer->buffers[cpu];
4669
4670	iter->cpu_buffer = cpu_buffer;
4671
4672	atomic_inc(&cpu_buffer->resize_disabled);
 
4673
4674	return iter;
4675}
4676EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4677
4678/**
4679 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4680 *
4681 * All previously invoked ring_buffer_read_prepare calls to prepare
4682 * iterators will be synchronized.  Afterwards, read_buffer_read_start
4683 * calls on those iterators are allowed.
4684 */
4685void
4686ring_buffer_read_prepare_sync(void)
4687{
4688	synchronize_rcu();
4689}
4690EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4691
4692/**
4693 * ring_buffer_read_start - start a non consuming read of the buffer
4694 * @iter: The iterator returned by ring_buffer_read_prepare
4695 *
4696 * This finalizes the startup of an iteration through the buffer.
4697 * The iterator comes from a call to ring_buffer_read_prepare and
4698 * an intervening ring_buffer_read_prepare_sync must have been
4699 * performed.
4700 *
4701 * Must be paired with ring_buffer_read_finish.
4702 */
4703void
4704ring_buffer_read_start(struct ring_buffer_iter *iter)
4705{
4706	struct ring_buffer_per_cpu *cpu_buffer;
4707	unsigned long flags;
4708
4709	if (!iter)
4710		return;
4711
4712	cpu_buffer = iter->cpu_buffer;
4713
4714	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4715	arch_spin_lock(&cpu_buffer->lock);
4716	rb_iter_reset(iter);
4717	arch_spin_unlock(&cpu_buffer->lock);
4718	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4719}
4720EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4721
4722/**
4723 * ring_buffer_read_finish - finish reading the iterator of the buffer
4724 * @iter: The iterator retrieved by ring_buffer_start
4725 *
4726 * This re-enables the recording to the buffer, and frees the
4727 * iterator.
4728 */
4729void
4730ring_buffer_read_finish(struct ring_buffer_iter *iter)
4731{
4732	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4733	unsigned long flags;
4734
4735	/*
4736	 * Ring buffer is disabled from recording, here's a good place
4737	 * to check the integrity of the ring buffer.
4738	 * Must prevent readers from trying to read, as the check
4739	 * clears the HEAD page and readers require it.
4740	 */
4741	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4742	rb_check_pages(cpu_buffer);
4743	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4744
4745	atomic_dec(&cpu_buffer->resize_disabled);
4746	kfree(iter->event);
4747	kfree(iter);
4748}
4749EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4750
4751/**
4752 * ring_buffer_iter_advance - advance the iterator to the next location
4753 * @iter: The ring buffer iterator
 
4754 *
4755 * Move the location of the iterator such that the next read will
4756 * be the next location of the iterator.
4757 */
4758void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
 
4759{
 
4760	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4761	unsigned long flags;
4762
4763	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
 
 
 
 
 
 
 
4764
4765	rb_advance_iter(iter);
 
 
4766
4767	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4768}
4769EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
4770
4771/**
4772 * ring_buffer_size - return the size of the ring buffer (in bytes)
4773 * @buffer: The ring buffer.
4774 * @cpu: The CPU to get ring buffer size from.
4775 */
4776unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
4777{
4778	/*
4779	 * Earlier, this method returned
4780	 *	BUF_PAGE_SIZE * buffer->nr_pages
4781	 * Since the nr_pages field is now removed, we have converted this to
4782	 * return the per cpu buffer value.
4783	 */
4784	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4785		return 0;
4786
4787	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4788}
4789EXPORT_SYMBOL_GPL(ring_buffer_size);
4790
4791static void
4792rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4793{
4794	rb_head_page_deactivate(cpu_buffer);
4795
4796	cpu_buffer->head_page
4797		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4798	local_set(&cpu_buffer->head_page->write, 0);
4799	local_set(&cpu_buffer->head_page->entries, 0);
4800	local_set(&cpu_buffer->head_page->page->commit, 0);
4801
4802	cpu_buffer->head_page->read = 0;
4803
4804	cpu_buffer->tail_page = cpu_buffer->head_page;
4805	cpu_buffer->commit_page = cpu_buffer->head_page;
4806
4807	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4808	INIT_LIST_HEAD(&cpu_buffer->new_pages);
4809	local_set(&cpu_buffer->reader_page->write, 0);
4810	local_set(&cpu_buffer->reader_page->entries, 0);
4811	local_set(&cpu_buffer->reader_page->page->commit, 0);
4812	cpu_buffer->reader_page->read = 0;
4813
4814	local_set(&cpu_buffer->entries_bytes, 0);
4815	local_set(&cpu_buffer->overrun, 0);
4816	local_set(&cpu_buffer->commit_overrun, 0);
4817	local_set(&cpu_buffer->dropped_events, 0);
4818	local_set(&cpu_buffer->entries, 0);
4819	local_set(&cpu_buffer->committing, 0);
4820	local_set(&cpu_buffer->commits, 0);
4821	local_set(&cpu_buffer->pages_touched, 0);
4822	local_set(&cpu_buffer->pages_read, 0);
4823	cpu_buffer->last_pages_touch = 0;
4824	cpu_buffer->shortest_full = 0;
4825	cpu_buffer->read = 0;
4826	cpu_buffer->read_bytes = 0;
4827
4828	rb_time_set(&cpu_buffer->write_stamp, 0);
4829	rb_time_set(&cpu_buffer->before_stamp, 0);
4830
4831	cpu_buffer->lost_events = 0;
4832	cpu_buffer->last_overrun = 0;
4833
4834	rb_head_page_activate(cpu_buffer);
4835}
4836
4837/* Must have disabled the cpu buffer then done a synchronize_rcu */
4838static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
4839{
4840	unsigned long flags;
4841
4842	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4843
4844	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4845		goto out;
4846
4847	arch_spin_lock(&cpu_buffer->lock);
4848
4849	rb_reset_cpu(cpu_buffer);
4850
4851	arch_spin_unlock(&cpu_buffer->lock);
4852
4853 out:
4854	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4855}
4856
4857/**
4858 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4859 * @buffer: The ring buffer to reset a per cpu buffer of
4860 * @cpu: The CPU buffer to be reset
4861 */
4862void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
4863{
4864	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
 
4865
4866	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4867		return;
4868
4869	atomic_inc(&cpu_buffer->resize_disabled);
4870	atomic_inc(&cpu_buffer->record_disabled);
4871
4872	/* Make sure all commits have finished */
4873	synchronize_rcu();
4874
4875	reset_disabled_cpu_buffer(cpu_buffer);
4876
4877	atomic_dec(&cpu_buffer->record_disabled);
4878	atomic_dec(&cpu_buffer->resize_disabled);
4879}
4880EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4881
4882/**
4883 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4884 * @buffer: The ring buffer to reset a per cpu buffer of
4885 * @cpu: The CPU buffer to be reset
4886 */
4887void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
4888{
4889	struct ring_buffer_per_cpu *cpu_buffer;
4890	int cpu;
4891
4892	for_each_online_buffer_cpu(buffer, cpu) {
4893		cpu_buffer = buffer->buffers[cpu];
4894
4895		atomic_inc(&cpu_buffer->resize_disabled);
4896		atomic_inc(&cpu_buffer->record_disabled);
4897	}
4898
4899	/* Make sure all commits have finished */
4900	synchronize_rcu();
4901
4902	for_each_online_buffer_cpu(buffer, cpu) {
4903		cpu_buffer = buffer->buffers[cpu];
4904
4905		reset_disabled_cpu_buffer(cpu_buffer);
4906
4907		atomic_dec(&cpu_buffer->record_disabled);
4908		atomic_dec(&cpu_buffer->resize_disabled);
4909	}
4910}
 
4911
4912/**
4913 * ring_buffer_reset - reset a ring buffer
4914 * @buffer: The ring buffer to reset all cpu buffers
4915 */
4916void ring_buffer_reset(struct trace_buffer *buffer)
4917{
4918	struct ring_buffer_per_cpu *cpu_buffer;
4919	int cpu;
4920
4921	for_each_buffer_cpu(buffer, cpu) {
4922		cpu_buffer = buffer->buffers[cpu];
4923
4924		atomic_inc(&cpu_buffer->resize_disabled);
4925		atomic_inc(&cpu_buffer->record_disabled);
4926	}
4927
4928	/* Make sure all commits have finished */
4929	synchronize_rcu();
4930
4931	for_each_buffer_cpu(buffer, cpu) {
4932		cpu_buffer = buffer->buffers[cpu];
4933
4934		reset_disabled_cpu_buffer(cpu_buffer);
4935
4936		atomic_dec(&cpu_buffer->record_disabled);
4937		atomic_dec(&cpu_buffer->resize_disabled);
4938	}
4939}
4940EXPORT_SYMBOL_GPL(ring_buffer_reset);
4941
4942/**
4943 * rind_buffer_empty - is the ring buffer empty?
4944 * @buffer: The ring buffer to test
4945 */
4946bool ring_buffer_empty(struct trace_buffer *buffer)
4947{
4948	struct ring_buffer_per_cpu *cpu_buffer;
4949	unsigned long flags;
4950	bool dolock;
4951	int cpu;
4952	int ret;
4953
 
 
4954	/* yes this is racy, but if you don't like the race, lock the buffer */
4955	for_each_buffer_cpu(buffer, cpu) {
4956		cpu_buffer = buffer->buffers[cpu];
4957		local_irq_save(flags);
4958		dolock = rb_reader_lock(cpu_buffer);
 
4959		ret = rb_per_cpu_empty(cpu_buffer);
4960		rb_reader_unlock(cpu_buffer, dolock);
 
4961		local_irq_restore(flags);
4962
4963		if (!ret)
4964			return false;
4965	}
4966
4967	return true;
4968}
4969EXPORT_SYMBOL_GPL(ring_buffer_empty);
4970
4971/**
4972 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4973 * @buffer: The ring buffer
4974 * @cpu: The CPU buffer to test
4975 */
4976bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
4977{
4978	struct ring_buffer_per_cpu *cpu_buffer;
4979	unsigned long flags;
4980	bool dolock;
4981	int ret;
4982
4983	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4984		return true;
 
 
4985
4986	cpu_buffer = buffer->buffers[cpu];
4987	local_irq_save(flags);
4988	dolock = rb_reader_lock(cpu_buffer);
 
4989	ret = rb_per_cpu_empty(cpu_buffer);
4990	rb_reader_unlock(cpu_buffer, dolock);
 
4991	local_irq_restore(flags);
4992
4993	return ret;
4994}
4995EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4996
4997#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4998/**
4999 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5000 * @buffer_a: One buffer to swap with
5001 * @buffer_b: The other buffer to swap with
5002 * @cpu: the CPU of the buffers to swap
5003 *
5004 * This function is useful for tracers that want to take a "snapshot"
5005 * of a CPU buffer and has another back up buffer lying around.
5006 * it is expected that the tracer handles the cpu buffer not being
5007 * used at the moment.
5008 */
5009int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5010			 struct trace_buffer *buffer_b, int cpu)
5011{
5012	struct ring_buffer_per_cpu *cpu_buffer_a;
5013	struct ring_buffer_per_cpu *cpu_buffer_b;
5014	int ret = -EINVAL;
5015
5016	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5017	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
5018		goto out;
5019
5020	cpu_buffer_a = buffer_a->buffers[cpu];
5021	cpu_buffer_b = buffer_b->buffers[cpu];
5022
5023	/* At least make sure the two buffers are somewhat the same */
5024	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5025		goto out;
5026
5027	ret = -EAGAIN;
5028
 
 
 
5029	if (atomic_read(&buffer_a->record_disabled))
5030		goto out;
5031
5032	if (atomic_read(&buffer_b->record_disabled))
5033		goto out;
5034
5035	if (atomic_read(&cpu_buffer_a->record_disabled))
5036		goto out;
5037
5038	if (atomic_read(&cpu_buffer_b->record_disabled))
5039		goto out;
5040
5041	/*
5042	 * We can't do a synchronize_rcu here because this
5043	 * function can be called in atomic context.
5044	 * Normally this will be called from the same CPU as cpu.
5045	 * If not it's up to the caller to protect this.
5046	 */
5047	atomic_inc(&cpu_buffer_a->record_disabled);
5048	atomic_inc(&cpu_buffer_b->record_disabled);
5049
5050	ret = -EBUSY;
5051	if (local_read(&cpu_buffer_a->committing))
5052		goto out_dec;
5053	if (local_read(&cpu_buffer_b->committing))
5054		goto out_dec;
5055
5056	buffer_a->buffers[cpu] = cpu_buffer_b;
5057	buffer_b->buffers[cpu] = cpu_buffer_a;
5058
5059	cpu_buffer_b->buffer = buffer_a;
5060	cpu_buffer_a->buffer = buffer_b;
5061
5062	ret = 0;
5063
5064out_dec:
5065	atomic_dec(&cpu_buffer_a->record_disabled);
5066	atomic_dec(&cpu_buffer_b->record_disabled);
5067out:
5068	return ret;
5069}
5070EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5071#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5072
5073/**
5074 * ring_buffer_alloc_read_page - allocate a page to read from buffer
5075 * @buffer: the buffer to allocate for.
5076 * @cpu: the cpu buffer to allocate.
5077 *
5078 * This function is used in conjunction with ring_buffer_read_page.
5079 * When reading a full page from the ring buffer, these functions
5080 * can be used to speed up the process. The calling function should
5081 * allocate a few pages first with this function. Then when it
5082 * needs to get pages from the ring buffer, it passes the result
5083 * of this function into ring_buffer_read_page, which will swap
5084 * the page that was allocated, with the read page of the buffer.
5085 *
5086 * Returns:
5087 *  The page allocated, or ERR_PTR
5088 */
5089void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5090{
5091	struct ring_buffer_per_cpu *cpu_buffer;
5092	struct buffer_data_page *bpage = NULL;
5093	unsigned long flags;
5094	struct page *page;
5095
5096	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5097		return ERR_PTR(-ENODEV);
5098
5099	cpu_buffer = buffer->buffers[cpu];
5100	local_irq_save(flags);
5101	arch_spin_lock(&cpu_buffer->lock);
5102
5103	if (cpu_buffer->free_page) {
5104		bpage = cpu_buffer->free_page;
5105		cpu_buffer->free_page = NULL;
5106	}
5107
5108	arch_spin_unlock(&cpu_buffer->lock);
5109	local_irq_restore(flags);
5110
5111	if (bpage)
5112		goto out;
5113
5114	page = alloc_pages_node(cpu_to_node(cpu),
5115				GFP_KERNEL | __GFP_NORETRY, 0);
5116	if (!page)
5117		return ERR_PTR(-ENOMEM);
5118
5119	bpage = page_address(page);
5120
5121 out:
5122	rb_init_page(bpage);
5123
5124	return bpage;
5125}
5126EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5127
5128/**
5129 * ring_buffer_free_read_page - free an allocated read page
5130 * @buffer: the buffer the page was allocate for
5131 * @cpu: the cpu buffer the page came from
5132 * @data: the page to free
5133 *
5134 * Free a page allocated from ring_buffer_alloc_read_page.
5135 */
5136void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5137{
5138	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5139	struct buffer_data_page *bpage = data;
5140	struct page *page = virt_to_page(bpage);
5141	unsigned long flags;
5142
5143	/* If the page is still in use someplace else, we can't reuse it */
5144	if (page_ref_count(page) > 1)
5145		goto out;
5146
5147	local_irq_save(flags);
5148	arch_spin_lock(&cpu_buffer->lock);
5149
5150	if (!cpu_buffer->free_page) {
5151		cpu_buffer->free_page = bpage;
5152		bpage = NULL;
5153	}
5154
5155	arch_spin_unlock(&cpu_buffer->lock);
5156	local_irq_restore(flags);
5157
5158 out:
5159	free_page((unsigned long)bpage);
5160}
5161EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5162
5163/**
5164 * ring_buffer_read_page - extract a page from the ring buffer
5165 * @buffer: buffer to extract from
5166 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5167 * @len: amount to extract
5168 * @cpu: the cpu of the buffer to extract
5169 * @full: should the extraction only happen when the page is full.
5170 *
5171 * This function will pull out a page from the ring buffer and consume it.
5172 * @data_page must be the address of the variable that was returned
5173 * from ring_buffer_alloc_read_page. This is because the page might be used
5174 * to swap with a page in the ring buffer.
5175 *
5176 * for example:
5177 *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
5178 *	if (IS_ERR(rpage))
5179 *		return PTR_ERR(rpage);
5180 *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5181 *	if (ret >= 0)
5182 *		process_page(rpage, ret);
5183 *
5184 * When @full is set, the function will not return true unless
5185 * the writer is off the reader page.
5186 *
5187 * Note: it is up to the calling functions to handle sleeps and wakeups.
5188 *  The ring buffer can be used anywhere in the kernel and can not
5189 *  blindly call wake_up. The layer that uses the ring buffer must be
5190 *  responsible for that.
5191 *
5192 * Returns:
5193 *  >=0 if data has been transferred, returns the offset of consumed data.
5194 *  <0 if no data has been transferred.
5195 */
5196int ring_buffer_read_page(struct trace_buffer *buffer,
5197			  void **data_page, size_t len, int cpu, int full)
5198{
5199	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5200	struct ring_buffer_event *event;
5201	struct buffer_data_page *bpage;
5202	struct buffer_page *reader;
5203	unsigned long missed_events;
5204	unsigned long flags;
5205	unsigned int commit;
5206	unsigned int read;
5207	u64 save_timestamp;
5208	int ret = -1;
5209
5210	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5211		goto out;
5212
5213	/*
5214	 * If len is not big enough to hold the page header, then
5215	 * we can not copy anything.
5216	 */
5217	if (len <= BUF_PAGE_HDR_SIZE)
5218		goto out;
5219
5220	len -= BUF_PAGE_HDR_SIZE;
5221
5222	if (!data_page)
5223		goto out;
5224
5225	bpage = *data_page;
5226	if (!bpage)
5227		goto out;
5228
5229	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5230
5231	reader = rb_get_reader_page(cpu_buffer);
5232	if (!reader)
5233		goto out_unlock;
5234
5235	event = rb_reader_event(cpu_buffer);
5236
5237	read = reader->read;
5238	commit = rb_page_commit(reader);
5239
5240	/* Check if any events were dropped */
5241	missed_events = cpu_buffer->lost_events;
5242
5243	/*
5244	 * If this page has been partially read or
5245	 * if len is not big enough to read the rest of the page or
5246	 * a writer is still on the page, then
5247	 * we must copy the data from the page to the buffer.
5248	 * Otherwise, we can simply swap the page with the one passed in.
5249	 */
5250	if (read || (len < (commit - read)) ||
5251	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
5252		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5253		unsigned int rpos = read;
5254		unsigned int pos = 0;
5255		unsigned int size;
5256
5257		if (full)
5258			goto out_unlock;
5259
5260		if (len > (commit - read))
5261			len = (commit - read);
5262
5263		/* Always keep the time extend and data together */
5264		size = rb_event_ts_length(event);
5265
5266		if (len < size)
5267			goto out_unlock;
5268
5269		/* save the current timestamp, since the user will need it */
5270		save_timestamp = cpu_buffer->read_stamp;
5271
5272		/* Need to copy one event at a time */
5273		do {
5274			/* We need the size of one event, because
5275			 * rb_advance_reader only advances by one event,
5276			 * whereas rb_event_ts_length may include the size of
5277			 * one or two events.
5278			 * We have already ensured there's enough space if this
5279			 * is a time extend. */
5280			size = rb_event_length(event);
5281			memcpy(bpage->data + pos, rpage->data + rpos, size);
5282
5283			len -= size;
5284
5285			rb_advance_reader(cpu_buffer);
5286			rpos = reader->read;
5287			pos += size;
5288
5289			if (rpos >= commit)
5290				break;
5291
5292			event = rb_reader_event(cpu_buffer);
5293			/* Always keep the time extend and data together */
5294			size = rb_event_ts_length(event);
5295		} while (len >= size);
5296
5297		/* update bpage */
5298		local_set(&bpage->commit, pos);
5299		bpage->time_stamp = save_timestamp;
5300
5301		/* we copied everything to the beginning */
5302		read = 0;
5303	} else {
5304		/* update the entry counter */
5305		cpu_buffer->read += rb_page_entries(reader);
5306		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
5307
5308		/* swap the pages */
5309		rb_init_page(bpage);
5310		bpage = reader->page;
5311		reader->page = *data_page;
5312		local_set(&reader->write, 0);
5313		local_set(&reader->entries, 0);
5314		reader->read = 0;
5315		*data_page = bpage;
5316
5317		/*
5318		 * Use the real_end for the data size,
5319		 * This gives us a chance to store the lost events
5320		 * on the page.
5321		 */
5322		if (reader->real_end)
5323			local_set(&bpage->commit, reader->real_end);
5324	}
5325	ret = read;
5326
5327	cpu_buffer->lost_events = 0;
5328
5329	commit = local_read(&bpage->commit);
5330	/*
5331	 * Set a flag in the commit field if we lost events
5332	 */
5333	if (missed_events) {
5334		/* If there is room at the end of the page to save the
5335		 * missed events, then record it there.
5336		 */
5337		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5338			memcpy(&bpage->data[commit], &missed_events,
5339			       sizeof(missed_events));
5340			local_add(RB_MISSED_STORED, &bpage->commit);
5341			commit += sizeof(missed_events);
5342		}
5343		local_add(RB_MISSED_EVENTS, &bpage->commit);
5344	}
5345
5346	/*
5347	 * This page may be off to user land. Zero it out here.
5348	 */
5349	if (commit < BUF_PAGE_SIZE)
5350		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5351
5352 out_unlock:
5353	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5354
5355 out:
5356	return ret;
5357}
5358EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5359
5360/*
5361 * We only allocate new buffers, never free them if the CPU goes down.
5362 * If we were to free the buffer, then the user would lose any trace that was in
5363 * the buffer.
5364 */
5365int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5366{
5367	struct trace_buffer *buffer;
5368	long nr_pages_same;
5369	int cpu_i;
5370	unsigned long nr_pages;
5371
5372	buffer = container_of(node, struct trace_buffer, node);
5373	if (cpumask_test_cpu(cpu, buffer->cpumask))
5374		return 0;
5375
5376	nr_pages = 0;
5377	nr_pages_same = 1;
5378	/* check if all cpu sizes are same */
5379	for_each_buffer_cpu(buffer, cpu_i) {
5380		/* fill in the size from first enabled cpu */
5381		if (nr_pages == 0)
5382			nr_pages = buffer->buffers[cpu_i]->nr_pages;
5383		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5384			nr_pages_same = 0;
5385			break;
 
 
 
 
 
 
 
 
 
 
 
5386		}
 
 
 
 
 
 
 
 
 
 
 
 
 
5387	}
5388	/* allocate minimum pages, user can later expand it */
5389	if (!nr_pages_same)
5390		nr_pages = 2;
5391	buffer->buffers[cpu] =
5392		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5393	if (!buffer->buffers[cpu]) {
5394		WARN(1, "failed to allocate ring buffer on CPU %u\n",
5395		     cpu);
5396		return -ENOMEM;
5397	}
5398	smp_wmb();
5399	cpumask_set_cpu(cpu, buffer->cpumask);
5400	return 0;
5401}
 
5402
5403#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5404/*
5405 * This is a basic integrity check of the ring buffer.
5406 * Late in the boot cycle this test will run when configured in.
5407 * It will kick off a thread per CPU that will go into a loop
5408 * writing to the per cpu ring buffer various sizes of data.
5409 * Some of the data will be large items, some small.
5410 *
5411 * Another thread is created that goes into a spin, sending out
5412 * IPIs to the other CPUs to also write into the ring buffer.
5413 * this is to test the nesting ability of the buffer.
5414 *
5415 * Basic stats are recorded and reported. If something in the
5416 * ring buffer should happen that's not expected, a big warning
5417 * is displayed and all ring buffers are disabled.
5418 */
5419static struct task_struct *rb_threads[NR_CPUS] __initdata;
5420
5421struct rb_test_data {
5422	struct trace_buffer *buffer;
5423	unsigned long		events;
5424	unsigned long		bytes_written;
5425	unsigned long		bytes_alloc;
5426	unsigned long		bytes_dropped;
5427	unsigned long		events_nested;
5428	unsigned long		bytes_written_nested;
5429	unsigned long		bytes_alloc_nested;
5430	unsigned long		bytes_dropped_nested;
5431	int			min_size_nested;
5432	int			max_size_nested;
5433	int			max_size;
5434	int			min_size;
5435	int			cpu;
5436	int			cnt;
5437};
5438
5439static struct rb_test_data rb_data[NR_CPUS] __initdata;
5440
5441/* 1 meg per cpu */
5442#define RB_TEST_BUFFER_SIZE	1048576
5443
5444static char rb_string[] __initdata =
5445	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5446	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5447	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5448
5449static bool rb_test_started __initdata;
5450
5451struct rb_item {
5452	int size;
5453	char str[];
5454};
5455
5456static __init int rb_write_something(struct rb_test_data *data, bool nested)
5457{
5458	struct ring_buffer_event *event;
5459	struct rb_item *item;
5460	bool started;
5461	int event_len;
5462	int size;
5463	int len;
5464	int cnt;
5465
5466	/* Have nested writes different that what is written */
5467	cnt = data->cnt + (nested ? 27 : 0);
5468
5469	/* Multiply cnt by ~e, to make some unique increment */
5470	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5471
5472	len = size + sizeof(struct rb_item);
5473
5474	started = rb_test_started;
5475	/* read rb_test_started before checking buffer enabled */
5476	smp_rmb();
5477
5478	event = ring_buffer_lock_reserve(data->buffer, len);
5479	if (!event) {
5480		/* Ignore dropped events before test starts. */
5481		if (started) {
5482			if (nested)
5483				data->bytes_dropped += len;
5484			else
5485				data->bytes_dropped_nested += len;
5486		}
5487		return len;
5488	}
5489
5490	event_len = ring_buffer_event_length(event);
5491
5492	if (RB_WARN_ON(data->buffer, event_len < len))
5493		goto out;
5494
5495	item = ring_buffer_event_data(event);
5496	item->size = size;
5497	memcpy(item->str, rb_string, size);
5498
5499	if (nested) {
5500		data->bytes_alloc_nested += event_len;
5501		data->bytes_written_nested += len;
5502		data->events_nested++;
5503		if (!data->min_size_nested || len < data->min_size_nested)
5504			data->min_size_nested = len;
5505		if (len > data->max_size_nested)
5506			data->max_size_nested = len;
5507	} else {
5508		data->bytes_alloc += event_len;
5509		data->bytes_written += len;
5510		data->events++;
5511		if (!data->min_size || len < data->min_size)
5512			data->max_size = len;
5513		if (len > data->max_size)
5514			data->max_size = len;
5515	}
5516
5517 out:
5518	ring_buffer_unlock_commit(data->buffer, event);
5519
5520	return 0;
5521}
5522
5523static __init int rb_test(void *arg)
5524{
5525	struct rb_test_data *data = arg;
5526
5527	while (!kthread_should_stop()) {
5528		rb_write_something(data, false);
5529		data->cnt++;
5530
5531		set_current_state(TASK_INTERRUPTIBLE);
5532		/* Now sleep between a min of 100-300us and a max of 1ms */
5533		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5534	}
5535
5536	return 0;
5537}
5538
5539static __init void rb_ipi(void *ignore)
5540{
5541	struct rb_test_data *data;
5542	int cpu = smp_processor_id();
5543
5544	data = &rb_data[cpu];
5545	rb_write_something(data, true);
5546}
5547
5548static __init int rb_hammer_test(void *arg)
5549{
5550	while (!kthread_should_stop()) {
5551
5552		/* Send an IPI to all cpus to write data! */
5553		smp_call_function(rb_ipi, NULL, 1);
5554		/* No sleep, but for non preempt, let others run */
5555		schedule();
5556	}
5557
5558	return 0;
5559}
5560
5561static __init int test_ringbuffer(void)
5562{
5563	struct task_struct *rb_hammer;
5564	struct trace_buffer *buffer;
5565	int cpu;
5566	int ret = 0;
5567
5568	if (security_locked_down(LOCKDOWN_TRACEFS)) {
5569		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
5570		return 0;
5571	}
5572
5573	pr_info("Running ring buffer tests...\n");
5574
5575	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5576	if (WARN_ON(!buffer))
5577		return 0;
5578
5579	/* Disable buffer so that threads can't write to it yet */
5580	ring_buffer_record_off(buffer);
5581
5582	for_each_online_cpu(cpu) {
5583		rb_data[cpu].buffer = buffer;
5584		rb_data[cpu].cpu = cpu;
5585		rb_data[cpu].cnt = cpu;
5586		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5587						 "rbtester/%d", cpu);
5588		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5589			pr_cont("FAILED\n");
5590			ret = PTR_ERR(rb_threads[cpu]);
5591			goto out_free;
5592		}
5593
5594		kthread_bind(rb_threads[cpu], cpu);
5595 		wake_up_process(rb_threads[cpu]);
5596	}
5597
5598	/* Now create the rb hammer! */
5599	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5600	if (WARN_ON(IS_ERR(rb_hammer))) {
5601		pr_cont("FAILED\n");
5602		ret = PTR_ERR(rb_hammer);
5603		goto out_free;
5604	}
5605
5606	ring_buffer_record_on(buffer);
5607	/*
5608	 * Show buffer is enabled before setting rb_test_started.
5609	 * Yes there's a small race window where events could be
5610	 * dropped and the thread wont catch it. But when a ring
5611	 * buffer gets enabled, there will always be some kind of
5612	 * delay before other CPUs see it. Thus, we don't care about
5613	 * those dropped events. We care about events dropped after
5614	 * the threads see that the buffer is active.
5615	 */
5616	smp_wmb();
5617	rb_test_started = true;
5618
5619	set_current_state(TASK_INTERRUPTIBLE);
5620	/* Just run for 10 seconds */;
5621	schedule_timeout(10 * HZ);
5622
5623	kthread_stop(rb_hammer);
5624
5625 out_free:
5626	for_each_online_cpu(cpu) {
5627		if (!rb_threads[cpu])
5628			break;
5629		kthread_stop(rb_threads[cpu]);
5630	}
5631	if (ret) {
5632		ring_buffer_free(buffer);
5633		return ret;
5634	}
5635
5636	/* Report! */
5637	pr_info("finished\n");
5638	for_each_online_cpu(cpu) {
5639		struct ring_buffer_event *event;
5640		struct rb_test_data *data = &rb_data[cpu];
5641		struct rb_item *item;
5642		unsigned long total_events;
5643		unsigned long total_dropped;
5644		unsigned long total_written;
5645		unsigned long total_alloc;
5646		unsigned long total_read = 0;
5647		unsigned long total_size = 0;
5648		unsigned long total_len = 0;
5649		unsigned long total_lost = 0;
5650		unsigned long lost;
5651		int big_event_size;
5652		int small_event_size;
5653
5654		ret = -1;
5655
5656		total_events = data->events + data->events_nested;
5657		total_written = data->bytes_written + data->bytes_written_nested;
5658		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5659		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5660
5661		big_event_size = data->max_size + data->max_size_nested;
5662		small_event_size = data->min_size + data->min_size_nested;
5663
5664		pr_info("CPU %d:\n", cpu);
5665		pr_info("              events:    %ld\n", total_events);
5666		pr_info("       dropped bytes:    %ld\n", total_dropped);
5667		pr_info("       alloced bytes:    %ld\n", total_alloc);
5668		pr_info("       written bytes:    %ld\n", total_written);
5669		pr_info("       biggest event:    %d\n", big_event_size);
5670		pr_info("      smallest event:    %d\n", small_event_size);
5671
5672		if (RB_WARN_ON(buffer, total_dropped))
5673			break;
5674
5675		ret = 0;
5676
5677		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5678			total_lost += lost;
5679			item = ring_buffer_event_data(event);
5680			total_len += ring_buffer_event_length(event);
5681			total_size += item->size + sizeof(struct rb_item);
5682			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5683				pr_info("FAILED!\n");
5684				pr_info("buffer had: %.*s\n", item->size, item->str);
5685				pr_info("expected:   %.*s\n", item->size, rb_string);
5686				RB_WARN_ON(buffer, 1);
5687				ret = -1;
5688				break;
5689			}
5690			total_read++;
5691		}
5692		if (ret)
5693			break;
5694
5695		ret = -1;
5696
5697		pr_info("         read events:   %ld\n", total_read);
5698		pr_info("         lost events:   %ld\n", total_lost);
5699		pr_info("        total events:   %ld\n", total_lost + total_read);
5700		pr_info("  recorded len bytes:   %ld\n", total_len);
5701		pr_info(" recorded size bytes:   %ld\n", total_size);
5702		if (total_lost)
5703			pr_info(" With dropped events, record len and size may not match\n"
5704				" alloced and written from above\n");
5705		if (!total_lost) {
5706			if (RB_WARN_ON(buffer, total_len != total_alloc ||
5707				       total_size != total_written))
5708				break;
5709		}
5710		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5711			break;
5712
5713		ret = 0;
5714	}
5715	if (!ret)
5716		pr_info("Ring buffer PASSED!\n");
5717
5718	ring_buffer_free(buffer);
5719	return 0;
5720}
5721
5722late_initcall(test_ringbuffer);
5723#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */