Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 * linux/kernel/time/clocksource.c
   3 *
   4 * This file contains the functions which manage clocksource drivers.
   5 *
   6 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 *
  22 * TODO WishList:
  23 *   o Allow clocksource drivers to be unregistered
  24 */
  25
 
 
  26#include <linux/device.h>
  27#include <linux/clocksource.h>
  28#include <linux/init.h>
  29#include <linux/module.h>
  30#include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
  31#include <linux/tick.h>
  32#include <linux/kthread.h>
  33
  34#include "tick-internal.h"
  35
  36void timecounter_init(struct timecounter *tc,
  37		      const struct cyclecounter *cc,
  38		      u64 start_tstamp)
  39{
  40	tc->cc = cc;
  41	tc->cycle_last = cc->read(cc);
  42	tc->nsec = start_tstamp;
  43}
  44EXPORT_SYMBOL_GPL(timecounter_init);
  45
  46/**
  47 * timecounter_read_delta - get nanoseconds since last call of this function
  48 * @tc:         Pointer to time counter
  49 *
  50 * When the underlying cycle counter runs over, this will be handled
  51 * correctly as long as it does not run over more than once between
  52 * calls.
  53 *
  54 * The first call to this function for a new time counter initializes
  55 * the time tracking and returns an undefined result.
  56 */
  57static u64 timecounter_read_delta(struct timecounter *tc)
  58{
  59	cycle_t cycle_now, cycle_delta;
  60	u64 ns_offset;
  61
  62	/* read cycle counter: */
  63	cycle_now = tc->cc->read(tc->cc);
  64
  65	/* calculate the delta since the last timecounter_read_delta(): */
  66	cycle_delta = (cycle_now - tc->cycle_last) & tc->cc->mask;
  67
  68	/* convert to nanoseconds: */
  69	ns_offset = cyclecounter_cyc2ns(tc->cc, cycle_delta);
  70
  71	/* update time stamp of timecounter_read_delta() call: */
  72	tc->cycle_last = cycle_now;
  73
  74	return ns_offset;
  75}
  76
  77u64 timecounter_read(struct timecounter *tc)
  78{
  79	u64 nsec;
  80
  81	/* increment time by nanoseconds since last call */
  82	nsec = timecounter_read_delta(tc);
  83	nsec += tc->nsec;
  84	tc->nsec = nsec;
  85
  86	return nsec;
  87}
  88EXPORT_SYMBOL_GPL(timecounter_read);
  89
  90u64 timecounter_cyc2time(struct timecounter *tc,
  91			 cycle_t cycle_tstamp)
  92{
  93	u64 cycle_delta = (cycle_tstamp - tc->cycle_last) & tc->cc->mask;
  94	u64 nsec;
  95
  96	/*
  97	 * Instead of always treating cycle_tstamp as more recent
  98	 * than tc->cycle_last, detect when it is too far in the
  99	 * future and treat it as old time stamp instead.
 100	 */
 101	if (cycle_delta > tc->cc->mask / 2) {
 102		cycle_delta = (tc->cycle_last - cycle_tstamp) & tc->cc->mask;
 103		nsec = tc->nsec - cyclecounter_cyc2ns(tc->cc, cycle_delta);
 104	} else {
 105		nsec = cyclecounter_cyc2ns(tc->cc, cycle_delta) + tc->nsec;
 106	}
 107
 108	return nsec;
 109}
 110EXPORT_SYMBOL_GPL(timecounter_cyc2time);
 111
 112/**
 113 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
 114 * @mult:	pointer to mult variable
 115 * @shift:	pointer to shift variable
 116 * @from:	frequency to convert from
 117 * @to:		frequency to convert to
 118 * @maxsec:	guaranteed runtime conversion range in seconds
 119 *
 120 * The function evaluates the shift/mult pair for the scaled math
 121 * operations of clocksources and clockevents.
 122 *
 123 * @to and @from are frequency values in HZ. For clock sources @to is
 124 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
 125 * event @to is the counter frequency and @from is NSEC_PER_SEC.
 126 *
 127 * The @maxsec conversion range argument controls the time frame in
 128 * seconds which must be covered by the runtime conversion with the
 129 * calculated mult and shift factors. This guarantees that no 64bit
 130 * overflow happens when the input value of the conversion is
 131 * multiplied with the calculated mult factor. Larger ranges may
 132 * reduce the conversion accuracy by chosing smaller mult and shift
 133 * factors.
 134 */
 135void
 136clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
 137{
 138	u64 tmp;
 139	u32 sft, sftacc= 32;
 140
 141	/*
 142	 * Calculate the shift factor which is limiting the conversion
 143	 * range:
 144	 */
 145	tmp = ((u64)maxsec * from) >> 32;
 146	while (tmp) {
 147		tmp >>=1;
 148		sftacc--;
 149	}
 150
 151	/*
 152	 * Find the conversion shift/mult pair which has the best
 153	 * accuracy and fits the maxsec conversion range:
 154	 */
 155	for (sft = 32; sft > 0; sft--) {
 156		tmp = (u64) to << sft;
 157		tmp += from / 2;
 158		do_div(tmp, from);
 159		if ((tmp >> sftacc) == 0)
 160			break;
 161	}
 162	*mult = tmp;
 163	*shift = sft;
 164}
 
 165
 166/*[Clocksource internal variables]---------
 167 * curr_clocksource:
 168 *	currently selected clocksource.
 
 
 169 * clocksource_list:
 170 *	linked list with the registered clocksources
 171 * clocksource_mutex:
 172 *	protects manipulations to curr_clocksource and the clocksource_list
 173 * override_name:
 174 *	Name of the user-specified clocksource.
 175 */
 176static struct clocksource *curr_clocksource;
 
 177static LIST_HEAD(clocksource_list);
 178static DEFINE_MUTEX(clocksource_mutex);
 179static char override_name[CS_NAME_LEN];
 180static int finished_booting;
 
 181
 182#ifdef CONFIG_CLOCKSOURCE_WATCHDOG
 183static void clocksource_watchdog_work(struct work_struct *work);
 184static void clocksource_select(void);
 185
 186static LIST_HEAD(watchdog_list);
 187static struct clocksource *watchdog;
 188static struct timer_list watchdog_timer;
 189static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
 190static DEFINE_SPINLOCK(watchdog_lock);
 191static int watchdog_running;
 192static atomic_t watchdog_reset_pending;
 193
 
 
 
 
 
 
 
 
 
 
 194static int clocksource_watchdog_kthread(void *data);
 195static void __clocksource_change_rating(struct clocksource *cs, int rating);
 196
 197/*
 198 * Interval: 0.5sec Threshold: 0.0625s
 199 */
 200#define WATCHDOG_INTERVAL (HZ >> 1)
 201#define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4)
 202
 203static void clocksource_watchdog_work(struct work_struct *work)
 204{
 205	/*
 
 
 
 
 
 
 
 
 
 206	 * If kthread_run fails the next watchdog scan over the
 207	 * watchdog_list will find the unstable clock again.
 208	 */
 209	kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
 210}
 211
 212static void __clocksource_unstable(struct clocksource *cs)
 213{
 214	cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
 215	cs->flags |= CLOCK_SOURCE_UNSTABLE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 216	if (finished_booting)
 217		schedule_work(&watchdog_work);
 218}
 219
 220static void clocksource_unstable(struct clocksource *cs, int64_t delta)
 221{
 222	printk(KERN_WARNING "Clocksource %s unstable (delta = %Ld ns)\n",
 223	       cs->name, delta);
 224	__clocksource_unstable(cs);
 225}
 226
 227/**
 228 * clocksource_mark_unstable - mark clocksource unstable via watchdog
 229 * @cs:		clocksource to be marked unstable
 230 *
 231 * This function is called instead of clocksource_change_rating from
 232 * cpu hotplug code to avoid a deadlock between the clocksource mutex
 233 * and the cpu hotplug mutex. It defers the update of the clocksource
 234 * to the watchdog thread.
 235 */
 236void clocksource_mark_unstable(struct clocksource *cs)
 237{
 238	unsigned long flags;
 239
 240	spin_lock_irqsave(&watchdog_lock, flags);
 241	if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
 242		if (list_empty(&cs->wd_list))
 243			list_add(&cs->wd_list, &watchdog_list);
 244		__clocksource_unstable(cs);
 245	}
 246	spin_unlock_irqrestore(&watchdog_lock, flags);
 247}
 248
 249static void clocksource_watchdog(unsigned long data)
 250{
 251	struct clocksource *cs;
 252	cycle_t csnow, wdnow;
 253	int64_t wd_nsec, cs_nsec;
 254	int next_cpu, reset_pending;
 255
 256	spin_lock(&watchdog_lock);
 257	if (!watchdog_running)
 258		goto out;
 259
 260	reset_pending = atomic_read(&watchdog_reset_pending);
 261
 262	list_for_each_entry(cs, &watchdog_list, wd_list) {
 263
 264		/* Clocksource already marked unstable? */
 265		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
 266			if (finished_booting)
 267				schedule_work(&watchdog_work);
 268			continue;
 269		}
 270
 271		local_irq_disable();
 272		csnow = cs->read(cs);
 273		wdnow = watchdog->read(watchdog);
 274		local_irq_enable();
 275
 276		/* Clocksource initialized ? */
 277		if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
 278		    atomic_read(&watchdog_reset_pending)) {
 279			cs->flags |= CLOCK_SOURCE_WATCHDOG;
 280			cs->wd_last = wdnow;
 281			cs->cs_last = csnow;
 282			continue;
 283		}
 284
 285		wd_nsec = clocksource_cyc2ns((wdnow - cs->wd_last) & watchdog->mask,
 286					     watchdog->mult, watchdog->shift);
 287
 288		cs_nsec = clocksource_cyc2ns((csnow - cs->cs_last) &
 289					     cs->mask, cs->mult, cs->shift);
 
 
 
 290		cs->cs_last = csnow;
 291		cs->wd_last = wdnow;
 292
 293		if (atomic_read(&watchdog_reset_pending))
 294			continue;
 295
 296		/* Check the deviation from the watchdog clocksource. */
 297		if ((abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD)) {
 298			clocksource_unstable(cs, cs_nsec - wd_nsec);
 
 
 
 
 
 
 299			continue;
 300		}
 301
 
 
 
 302		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
 303		    (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
 304		    (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
 305			/* Mark it valid for high-res. */
 306			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 307
 308			/*
 309			 * clocksource_done_booting() will sort it if
 310			 * finished_booting is not set yet.
 311			 */
 312			if (!finished_booting)
 313				continue;
 314
 315			/*
 316			 * If this is not the current clocksource let
 317			 * the watchdog thread reselect it. Due to the
 318			 * change to high res this clocksource might
 319			 * be preferred now. If it is the current
 320			 * clocksource let the tick code know about
 321			 * that change.
 322			 */
 323			if (cs != curr_clocksource) {
 324				cs->flags |= CLOCK_SOURCE_RESELECT;
 325				schedule_work(&watchdog_work);
 326			} else {
 327				tick_clock_notify();
 328			}
 329		}
 330	}
 331
 332	/*
 333	 * We only clear the watchdog_reset_pending, when we did a
 334	 * full cycle through all clocksources.
 335	 */
 336	if (reset_pending)
 337		atomic_dec(&watchdog_reset_pending);
 338
 339	/*
 340	 * Cycle through CPUs to check if the CPUs stay synchronized
 341	 * to each other.
 342	 */
 343	next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
 344	if (next_cpu >= nr_cpu_ids)
 345		next_cpu = cpumask_first(cpu_online_mask);
 346	watchdog_timer.expires += WATCHDOG_INTERVAL;
 347	add_timer_on(&watchdog_timer, next_cpu);
 
 
 
 
 
 
 
 348out:
 349	spin_unlock(&watchdog_lock);
 350}
 351
 352static inline void clocksource_start_watchdog(void)
 353{
 354	if (watchdog_running || !watchdog || list_empty(&watchdog_list))
 355		return;
 356	init_timer(&watchdog_timer);
 357	watchdog_timer.function = clocksource_watchdog;
 358	watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
 359	add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
 360	watchdog_running = 1;
 361}
 362
 363static inline void clocksource_stop_watchdog(void)
 364{
 365	if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
 366		return;
 367	del_timer(&watchdog_timer);
 368	watchdog_running = 0;
 369}
 370
 371static inline void clocksource_reset_watchdog(void)
 372{
 373	struct clocksource *cs;
 374
 375	list_for_each_entry(cs, &watchdog_list, wd_list)
 376		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
 377}
 378
 379static void clocksource_resume_watchdog(void)
 380{
 381	atomic_inc(&watchdog_reset_pending);
 382}
 383
 384static void clocksource_enqueue_watchdog(struct clocksource *cs)
 385{
 386	unsigned long flags;
 387
 388	spin_lock_irqsave(&watchdog_lock, flags);
 389	if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
 390		/* cs is a clocksource to be watched. */
 391		list_add(&cs->wd_list, &watchdog_list);
 392		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
 393	} else {
 394		/* cs is a watchdog. */
 395		if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
 396			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 397		/* Pick the best watchdog. */
 398		if (!watchdog || cs->rating > watchdog->rating) {
 399			watchdog = cs;
 400			/* Reset watchdog cycles */
 401			clocksource_reset_watchdog();
 402		}
 403	}
 
 
 
 
 
 
 
 
 404	/* Check if the watchdog timer needs to be started. */
 405	clocksource_start_watchdog();
 406	spin_unlock_irqrestore(&watchdog_lock, flags);
 407}
 408
 409static void clocksource_dequeue_watchdog(struct clocksource *cs)
 410{
 411	unsigned long flags;
 412
 413	spin_lock_irqsave(&watchdog_lock, flags);
 414	if (cs != watchdog) {
 415		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
 416			/* cs is a watched clocksource. */
 417			list_del_init(&cs->wd_list);
 418			/* Check if the watchdog timer needs to be stopped. */
 419			clocksource_stop_watchdog();
 420		}
 421	}
 422	spin_unlock_irqrestore(&watchdog_lock, flags);
 423}
 424
 425static int __clocksource_watchdog_kthread(void)
 426{
 427	struct clocksource *cs, *tmp;
 428	unsigned long flags;
 429	LIST_HEAD(unstable);
 430	int select = 0;
 431
 432	spin_lock_irqsave(&watchdog_lock, flags);
 433	list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
 434		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
 435			list_del_init(&cs->wd_list);
 436			list_add(&cs->wd_list, &unstable);
 437			select = 1;
 438		}
 439		if (cs->flags & CLOCK_SOURCE_RESELECT) {
 440			cs->flags &= ~CLOCK_SOURCE_RESELECT;
 441			select = 1;
 442		}
 443	}
 444	/* Check if the watchdog timer needs to be stopped. */
 445	clocksource_stop_watchdog();
 446	spin_unlock_irqrestore(&watchdog_lock, flags);
 447
 448	/* Needs to be done outside of watchdog lock */
 449	list_for_each_entry_safe(cs, tmp, &unstable, wd_list) {
 450		list_del_init(&cs->wd_list);
 451		__clocksource_change_rating(cs, 0);
 452	}
 453	return select;
 454}
 455
 456static int clocksource_watchdog_kthread(void *data)
 457{
 458	mutex_lock(&clocksource_mutex);
 459	if (__clocksource_watchdog_kthread())
 460		clocksource_select();
 461	mutex_unlock(&clocksource_mutex);
 462	return 0;
 463}
 464
 465static bool clocksource_is_watchdog(struct clocksource *cs)
 466{
 467	return cs == watchdog;
 468}
 469
 470#else /* CONFIG_CLOCKSOURCE_WATCHDOG */
 471
 472static void clocksource_enqueue_watchdog(struct clocksource *cs)
 473{
 474	if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
 475		cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 476}
 477
 
 478static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
 479static inline void clocksource_resume_watchdog(void) { }
 480static inline int __clocksource_watchdog_kthread(void) { return 0; }
 481static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
 482void clocksource_mark_unstable(struct clocksource *cs) { }
 483
 
 
 
 484#endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
 485
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 486/**
 487 * clocksource_suspend - suspend the clocksource(s)
 488 */
 489void clocksource_suspend(void)
 490{
 491	struct clocksource *cs;
 492
 493	list_for_each_entry_reverse(cs, &clocksource_list, list)
 494		if (cs->suspend)
 495			cs->suspend(cs);
 496}
 497
 498/**
 499 * clocksource_resume - resume the clocksource(s)
 500 */
 501void clocksource_resume(void)
 502{
 503	struct clocksource *cs;
 504
 505	list_for_each_entry(cs, &clocksource_list, list)
 506		if (cs->resume)
 507			cs->resume(cs);
 508
 509	clocksource_resume_watchdog();
 510}
 511
 512/**
 513 * clocksource_touch_watchdog - Update watchdog
 514 *
 515 * Update the watchdog after exception contexts such as kgdb so as not
 516 * to incorrectly trip the watchdog. This might fail when the kernel
 517 * was stopped in code which holds watchdog_lock.
 518 */
 519void clocksource_touch_watchdog(void)
 520{
 521	clocksource_resume_watchdog();
 522}
 523
 524/**
 525 * clocksource_max_adjustment- Returns max adjustment amount
 526 * @cs:         Pointer to clocksource
 527 *
 528 */
 529static u32 clocksource_max_adjustment(struct clocksource *cs)
 530{
 531	u64 ret;
 532	/*
 533	 * We won't try to correct for more than 11% adjustments (110,000 ppm),
 534	 */
 535	ret = (u64)cs->mult * 11;
 536	do_div(ret,100);
 537	return (u32)ret;
 538}
 539
 540/**
 541 * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
 542 * @mult:	cycle to nanosecond multiplier
 543 * @shift:	cycle to nanosecond divisor (power of two)
 544 * @maxadj:	maximum adjustment value to mult (~11%)
 545 * @mask:	bitmask for two's complement subtraction of non 64 bit counters
 
 
 
 
 
 
 
 
 546 */
 547u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask)
 548{
 549	u64 max_nsecs, max_cycles;
 550
 551	/*
 552	 * Calculate the maximum number of cycles that we can pass to the
 553	 * cyc2ns function without overflowing a 64-bit signed result. The
 554	 * maximum number of cycles is equal to ULLONG_MAX/(mult+maxadj)
 555	 * which is equivalent to the below.
 556	 * max_cycles < (2^63)/(mult + maxadj)
 557	 * max_cycles < 2^(log2((2^63)/(mult + maxadj)))
 558	 * max_cycles < 2^(log2(2^63) - log2(mult + maxadj))
 559	 * max_cycles < 2^(63 - log2(mult + maxadj))
 560	 * max_cycles < 1 << (63 - log2(mult + maxadj))
 561	 * Please note that we add 1 to the result of the log2 to account for
 562	 * any rounding errors, ensure the above inequality is satisfied and
 563	 * no overflow will occur.
 564	 */
 565	max_cycles = 1ULL << (63 - (ilog2(mult + maxadj) + 1));
 
 566
 567	/*
 568	 * The actual maximum number of cycles we can defer the clocksource is
 569	 * determined by the minimum of max_cycles and mask.
 570	 * Note: Here we subtract the maxadj to make sure we don't sleep for
 571	 * too long if there's a large negative adjustment.
 572	 */
 573	max_cycles = min(max_cycles, mask);
 574	max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
 575
 
 
 
 
 
 
 
 576	return max_nsecs;
 577}
 578
 579/**
 580 * clocksource_max_deferment - Returns max time the clocksource can be deferred
 581 * @cs:         Pointer to clocksource
 582 *
 583 */
 584static u64 clocksource_max_deferment(struct clocksource *cs)
 585{
 586	u64 max_nsecs;
 587
 588	max_nsecs = clocks_calc_max_nsecs(cs->mult, cs->shift, cs->maxadj,
 589					  cs->mask);
 590	/*
 591	 * To ensure that the clocksource does not wrap whilst we are idle,
 592	 * limit the time the clocksource can be deferred by 12.5%. Please
 593	 * note a margin of 12.5% is used because this can be computed with
 594	 * a shift, versus say 10% which would require division.
 595	 */
 596	return max_nsecs - (max_nsecs >> 3);
 597}
 598
 599#ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
 600
 601static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
 602{
 603	struct clocksource *cs;
 604
 605	if (!finished_booting || list_empty(&clocksource_list))
 606		return NULL;
 607
 608	/*
 609	 * We pick the clocksource with the highest rating. If oneshot
 610	 * mode is active, we pick the highres valid clocksource with
 611	 * the best rating.
 612	 */
 613	list_for_each_entry(cs, &clocksource_list, list) {
 614		if (skipcur && cs == curr_clocksource)
 615			continue;
 616		if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
 617			continue;
 618		return cs;
 619	}
 620	return NULL;
 621}
 622
 623static void __clocksource_select(bool skipcur)
 624{
 625	bool oneshot = tick_oneshot_mode_active();
 626	struct clocksource *best, *cs;
 627
 628	/* Find the best suitable clocksource */
 629	best = clocksource_find_best(oneshot, skipcur);
 630	if (!best)
 631		return;
 632
 
 
 
 633	/* Check for the override clocksource. */
 634	list_for_each_entry(cs, &clocksource_list, list) {
 635		if (skipcur && cs == curr_clocksource)
 636			continue;
 637		if (strcmp(cs->name, override_name) != 0)
 638			continue;
 639		/*
 640		 * Check to make sure we don't switch to a non-highres
 641		 * capable clocksource if the tick code is in oneshot
 642		 * mode (highres or nohz)
 643		 */
 644		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
 645			/* Override clocksource cannot be used. */
 646			printk(KERN_WARNING "Override clocksource %s is not "
 647			       "HRT compatible. Cannot switch while in "
 648			       "HRT/NOHZ mode\n", cs->name);
 649			override_name[0] = 0;
 
 
 
 
 
 
 
 
 650		} else
 651			/* Override clocksource can be used. */
 652			best = cs;
 653		break;
 654	}
 655
 
 656	if (curr_clocksource != best && !timekeeping_notify(best)) {
 657		pr_info("Switched to clocksource %s\n", best->name);
 658		curr_clocksource = best;
 659	}
 660}
 661
 662/**
 663 * clocksource_select - Select the best clocksource available
 664 *
 665 * Private function. Must hold clocksource_mutex when called.
 666 *
 667 * Select the clocksource with the best rating, or the clocksource,
 668 * which is selected by userspace override.
 669 */
 670static void clocksource_select(void)
 671{
 672	return __clocksource_select(false);
 673}
 674
 675static void clocksource_select_fallback(void)
 676{
 677	return __clocksource_select(true);
 678}
 679
 680#else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
 681
 682static inline void clocksource_select(void) { }
 683static inline void clocksource_select_fallback(void) { }
 684
 685#endif
 686
 687/*
 688 * clocksource_done_booting - Called near the end of core bootup
 689 *
 690 * Hack to avoid lots of clocksource churn at boot time.
 691 * We use fs_initcall because we want this to start before
 692 * device_initcall but after subsys_initcall.
 693 */
 694static int __init clocksource_done_booting(void)
 695{
 696	mutex_lock(&clocksource_mutex);
 697	curr_clocksource = clocksource_default_clock();
 698	finished_booting = 1;
 699	/*
 700	 * Run the watchdog first to eliminate unstable clock sources
 701	 */
 702	__clocksource_watchdog_kthread();
 703	clocksource_select();
 704	mutex_unlock(&clocksource_mutex);
 705	return 0;
 706}
 707fs_initcall(clocksource_done_booting);
 708
 709/*
 710 * Enqueue the clocksource sorted by rating
 711 */
 712static void clocksource_enqueue(struct clocksource *cs)
 713{
 714	struct list_head *entry = &clocksource_list;
 715	struct clocksource *tmp;
 716
 717	list_for_each_entry(tmp, &clocksource_list, list)
 718		/* Keep track of the place, where to insert */
 719		if (tmp->rating >= cs->rating)
 720			entry = &tmp->list;
 
 
 721	list_add(&cs->list, entry);
 722}
 723
 724/**
 725 * __clocksource_updatefreq_scale - Used update clocksource with new freq
 726 * @cs:		clocksource to be registered
 727 * @scale:	Scale factor multiplied against freq to get clocksource hz
 728 * @freq:	clocksource frequency (cycles per second) divided by scale
 729 *
 730 * This should only be called from the clocksource->enable() method.
 731 *
 732 * This *SHOULD NOT* be called directly! Please use the
 733 * clocksource_updatefreq_hz() or clocksource_updatefreq_khz helper functions.
 
 734 */
 735void __clocksource_updatefreq_scale(struct clocksource *cs, u32 scale, u32 freq)
 736{
 737	u64 sec;
 
 738	/*
 739	 * Calc the maximum number of seconds which we can run before
 740	 * wrapping around. For clocksources which have a mask > 32bit
 741	 * we need to limit the max sleep time to have a good
 742	 * conversion precision. 10 minutes is still a reasonable
 743	 * amount. That results in a shift value of 24 for a
 744	 * clocksource with mask >= 40bit and f >= 4GHz. That maps to
 745	 * ~ 0.06ppm granularity for NTP. We apply the same 12.5%
 746	 * margin as we do in clocksource_max_deferment()
 747	 */
 748	sec = (cs->mask - (cs->mask >> 3));
 749	do_div(sec, freq);
 750	do_div(sec, scale);
 751	if (!sec)
 752		sec = 1;
 753	else if (sec > 600 && cs->mask > UINT_MAX)
 754		sec = 600;
 755
 756	clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
 757			       NSEC_PER_SEC / scale, sec * scale);
 
 
 
 
 
 
 
 758
 
 
 
 759	/*
 760	 * for clocksources that have large mults, to avoid overflow.
 761	 * Since mult may be adjusted by ntp, add an safety extra margin
 762	 *
 763	 */
 764	cs->maxadj = clocksource_max_adjustment(cs);
 765	while ((cs->mult + cs->maxadj < cs->mult)
 766		|| (cs->mult - cs->maxadj > cs->mult)) {
 767		cs->mult >>= 1;
 768		cs->shift--;
 769		cs->maxadj = clocksource_max_adjustment(cs);
 770	}
 771
 772	cs->max_idle_ns = clocksource_max_deferment(cs);
 
 
 
 
 
 
 
 
 
 
 
 773}
 774EXPORT_SYMBOL_GPL(__clocksource_updatefreq_scale);
 775
 776/**
 777 * __clocksource_register_scale - Used to install new clocksources
 778 * @cs:		clocksource to be registered
 779 * @scale:	Scale factor multiplied against freq to get clocksource hz
 780 * @freq:	clocksource frequency (cycles per second) divided by scale
 781 *
 782 * Returns -EBUSY if registration fails, zero otherwise.
 783 *
 784 * This *SHOULD NOT* be called directly! Please use the
 785 * clocksource_register_hz() or clocksource_register_khz helper functions.
 786 */
 787int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
 788{
 
 789
 790	/* Initialize mult/shift and max_idle_ns */
 791	__clocksource_updatefreq_scale(cs, scale, freq);
 792
 793	/* Add clocksource to the clcoksource list */
 794	mutex_lock(&clocksource_mutex);
 795	clocksource_enqueue(cs);
 796	clocksource_enqueue_watchdog(cs);
 797	clocksource_select();
 798	mutex_unlock(&clocksource_mutex);
 799	return 0;
 800}
 801EXPORT_SYMBOL_GPL(__clocksource_register_scale);
 802
 803
 804/**
 805 * clocksource_register - Used to install new clocksources
 806 * @cs:		clocksource to be registered
 807 *
 808 * Returns -EBUSY if registration fails, zero otherwise.
 809 */
 810int clocksource_register(struct clocksource *cs)
 811{
 812	/* calculate max adjustment for given mult/shift */
 813	cs->maxadj = clocksource_max_adjustment(cs);
 814	WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
 815		"Clocksource %s might overflow on 11%% adjustment\n",
 816		cs->name);
 817
 818	/* calculate max idle time permitted for this clocksource */
 819	cs->max_idle_ns = clocksource_max_deferment(cs);
 820
 
 821	mutex_lock(&clocksource_mutex);
 
 
 822	clocksource_enqueue(cs);
 823	clocksource_enqueue_watchdog(cs);
 
 
 824	clocksource_select();
 
 
 825	mutex_unlock(&clocksource_mutex);
 826	return 0;
 827}
 828EXPORT_SYMBOL(clocksource_register);
 829
 830static void __clocksource_change_rating(struct clocksource *cs, int rating)
 831{
 832	list_del(&cs->list);
 833	cs->rating = rating;
 834	clocksource_enqueue(cs);
 835}
 836
 837/**
 838 * clocksource_change_rating - Change the rating of a registered clocksource
 839 * @cs:		clocksource to be changed
 840 * @rating:	new rating
 841 */
 842void clocksource_change_rating(struct clocksource *cs, int rating)
 843{
 
 
 844	mutex_lock(&clocksource_mutex);
 
 845	__clocksource_change_rating(cs, rating);
 
 
 846	clocksource_select();
 
 
 847	mutex_unlock(&clocksource_mutex);
 848}
 849EXPORT_SYMBOL(clocksource_change_rating);
 850
 851/*
 852 * Unbind clocksource @cs. Called with clocksource_mutex held
 853 */
 854static int clocksource_unbind(struct clocksource *cs)
 855{
 856	/*
 857	 * I really can't convince myself to support this on hardware
 858	 * designed by lobotomized monkeys.
 859	 */
 860	if (clocksource_is_watchdog(cs))
 861		return -EBUSY;
 
 
 862
 863	if (cs == curr_clocksource) {
 864		/* Select and try to install a replacement clock source */
 865		clocksource_select_fallback();
 866		if (curr_clocksource == cs)
 867			return -EBUSY;
 868	}
 
 
 
 
 
 
 
 
 
 
 
 869	clocksource_dequeue_watchdog(cs);
 870	list_del_init(&cs->list);
 
 
 871	return 0;
 872}
 873
 874/**
 875 * clocksource_unregister - remove a registered clocksource
 876 * @cs:	clocksource to be unregistered
 877 */
 878int clocksource_unregister(struct clocksource *cs)
 879{
 880	int ret = 0;
 881
 882	mutex_lock(&clocksource_mutex);
 883	if (!list_empty(&cs->list))
 884		ret = clocksource_unbind(cs);
 885	mutex_unlock(&clocksource_mutex);
 886	return ret;
 887}
 888EXPORT_SYMBOL(clocksource_unregister);
 889
 890#ifdef CONFIG_SYSFS
 891/**
 892 * sysfs_show_current_clocksources - sysfs interface for current clocksource
 893 * @dev:	unused
 894 * @attr:	unused
 895 * @buf:	char buffer to be filled with clocksource list
 896 *
 897 * Provides sysfs interface for listing current clocksource.
 898 */
 899static ssize_t
 900sysfs_show_current_clocksources(struct device *dev,
 901				struct device_attribute *attr, char *buf)
 902{
 903	ssize_t count = 0;
 904
 905	mutex_lock(&clocksource_mutex);
 906	count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
 907	mutex_unlock(&clocksource_mutex);
 908
 909	return count;
 910}
 911
 912ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
 913{
 914	size_t ret = cnt;
 915
 916	/* strings from sysfs write are not 0 terminated! */
 917	if (!cnt || cnt >= CS_NAME_LEN)
 918		return -EINVAL;
 919
 920	/* strip of \n: */
 921	if (buf[cnt-1] == '\n')
 922		cnt--;
 923	if (cnt > 0)
 924		memcpy(dst, buf, cnt);
 925	dst[cnt] = 0;
 926	return ret;
 927}
 928
 929/**
 930 * sysfs_override_clocksource - interface for manually overriding clocksource
 931 * @dev:	unused
 932 * @attr:	unused
 933 * @buf:	name of override clocksource
 934 * @count:	length of buffer
 935 *
 936 * Takes input from sysfs interface for manually overriding the default
 937 * clocksource selection.
 938 */
 939static ssize_t sysfs_override_clocksource(struct device *dev,
 940					  struct device_attribute *attr,
 941					  const char *buf, size_t count)
 942{
 943	ssize_t ret;
 944
 945	mutex_lock(&clocksource_mutex);
 946
 947	ret = sysfs_get_uname(buf, override_name, count);
 948	if (ret >= 0)
 949		clocksource_select();
 950
 951	mutex_unlock(&clocksource_mutex);
 952
 953	return ret;
 954}
 
 955
 956/**
 957 * sysfs_unbind_current_clocksource - interface for manually unbinding clocksource
 958 * @dev:	unused
 959 * @attr:	unused
 960 * @buf:	unused
 961 * @count:	length of buffer
 962 *
 963 * Takes input from sysfs interface for manually unbinding a clocksource.
 964 */
 965static ssize_t sysfs_unbind_clocksource(struct device *dev,
 966					struct device_attribute *attr,
 967					const char *buf, size_t count)
 968{
 969	struct clocksource *cs;
 970	char name[CS_NAME_LEN];
 971	ssize_t ret;
 972
 973	ret = sysfs_get_uname(buf, name, count);
 974	if (ret < 0)
 975		return ret;
 976
 977	ret = -ENODEV;
 978	mutex_lock(&clocksource_mutex);
 979	list_for_each_entry(cs, &clocksource_list, list) {
 980		if (strcmp(cs->name, name))
 981			continue;
 982		ret = clocksource_unbind(cs);
 983		break;
 984	}
 985	mutex_unlock(&clocksource_mutex);
 986
 987	return ret ? ret : count;
 988}
 
 989
 990/**
 991 * sysfs_show_available_clocksources - sysfs interface for listing clocksource
 992 * @dev:	unused
 993 * @attr:	unused
 994 * @buf:	char buffer to be filled with clocksource list
 995 *
 996 * Provides sysfs interface for listing registered clocksources
 997 */
 998static ssize_t
 999sysfs_show_available_clocksources(struct device *dev,
1000				  struct device_attribute *attr,
1001				  char *buf)
1002{
1003	struct clocksource *src;
1004	ssize_t count = 0;
1005
1006	mutex_lock(&clocksource_mutex);
1007	list_for_each_entry(src, &clocksource_list, list) {
1008		/*
1009		 * Don't show non-HRES clocksource if the tick code is
1010		 * in one shot mode (highres=on or nohz=on)
1011		 */
1012		if (!tick_oneshot_mode_active() ||
1013		    (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1014			count += snprintf(buf + count,
1015				  max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
1016				  "%s ", src->name);
1017	}
1018	mutex_unlock(&clocksource_mutex);
1019
1020	count += snprintf(buf + count,
1021			  max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
1022
1023	return count;
1024}
 
1025
1026/*
1027 * Sysfs setup bits:
1028 */
1029static DEVICE_ATTR(current_clocksource, 0644, sysfs_show_current_clocksources,
1030		   sysfs_override_clocksource);
1031
1032static DEVICE_ATTR(unbind_clocksource, 0200, NULL, sysfs_unbind_clocksource);
1033
1034static DEVICE_ATTR(available_clocksource, 0444,
1035		   sysfs_show_available_clocksources, NULL);
1036
1037static struct bus_type clocksource_subsys = {
1038	.name = "clocksource",
1039	.dev_name = "clocksource",
1040};
1041
1042static struct device device_clocksource = {
1043	.id	= 0,
1044	.bus	= &clocksource_subsys,
 
1045};
1046
1047static int __init init_clocksource_sysfs(void)
1048{
1049	int error = subsys_system_register(&clocksource_subsys, NULL);
1050
1051	if (!error)
1052		error = device_register(&device_clocksource);
1053	if (!error)
1054		error = device_create_file(
1055				&device_clocksource,
1056				&dev_attr_current_clocksource);
1057	if (!error)
1058		error = device_create_file(&device_clocksource,
1059					   &dev_attr_unbind_clocksource);
1060	if (!error)
1061		error = device_create_file(
1062				&device_clocksource,
1063				&dev_attr_available_clocksource);
1064	return error;
1065}
1066
1067device_initcall(init_clocksource_sysfs);
1068#endif /* CONFIG_SYSFS */
1069
1070/**
1071 * boot_override_clocksource - boot clock override
1072 * @str:	override name
1073 *
1074 * Takes a clocksource= boot argument and uses it
1075 * as the clocksource override name.
1076 */
1077static int __init boot_override_clocksource(char* str)
1078{
1079	mutex_lock(&clocksource_mutex);
1080	if (str)
1081		strlcpy(override_name, str, sizeof(override_name));
1082	mutex_unlock(&clocksource_mutex);
1083	return 1;
1084}
1085
1086__setup("clocksource=", boot_override_clocksource);
1087
1088/**
1089 * boot_override_clock - Compatibility layer for deprecated boot option
1090 * @str:	override name
1091 *
1092 * DEPRECATED! Takes a clock= boot argument and uses it
1093 * as the clocksource override name
1094 */
1095static int __init boot_override_clock(char* str)
1096{
1097	if (!strcmp(str, "pmtmr")) {
1098		printk("Warning: clock=pmtmr is deprecated. "
1099			"Use clocksource=acpi_pm.\n");
1100		return boot_override_clocksource("acpi_pm");
1101	}
1102	printk("Warning! clock= boot option is deprecated. "
1103		"Use clocksource=xyz\n");
1104	return boot_override_clocksource(str);
1105}
1106
1107__setup("clock=", boot_override_clock);
v5.9
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
 
 
   3 * This file contains the functions which manage clocksource drivers.
   4 *
   5 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/device.h>
  11#include <linux/clocksource.h>
  12#include <linux/init.h>
  13#include <linux/module.h>
  14#include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
  15#include <linux/tick.h>
  16#include <linux/kthread.h>
  17
  18#include "tick-internal.h"
  19#include "timekeeping_internal.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  20
  21/**
  22 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
  23 * @mult:	pointer to mult variable
  24 * @shift:	pointer to shift variable
  25 * @from:	frequency to convert from
  26 * @to:		frequency to convert to
  27 * @maxsec:	guaranteed runtime conversion range in seconds
  28 *
  29 * The function evaluates the shift/mult pair for the scaled math
  30 * operations of clocksources and clockevents.
  31 *
  32 * @to and @from are frequency values in HZ. For clock sources @to is
  33 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
  34 * event @to is the counter frequency and @from is NSEC_PER_SEC.
  35 *
  36 * The @maxsec conversion range argument controls the time frame in
  37 * seconds which must be covered by the runtime conversion with the
  38 * calculated mult and shift factors. This guarantees that no 64bit
  39 * overflow happens when the input value of the conversion is
  40 * multiplied with the calculated mult factor. Larger ranges may
  41 * reduce the conversion accuracy by chosing smaller mult and shift
  42 * factors.
  43 */
  44void
  45clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
  46{
  47	u64 tmp;
  48	u32 sft, sftacc= 32;
  49
  50	/*
  51	 * Calculate the shift factor which is limiting the conversion
  52	 * range:
  53	 */
  54	tmp = ((u64)maxsec * from) >> 32;
  55	while (tmp) {
  56		tmp >>=1;
  57		sftacc--;
  58	}
  59
  60	/*
  61	 * Find the conversion shift/mult pair which has the best
  62	 * accuracy and fits the maxsec conversion range:
  63	 */
  64	for (sft = 32; sft > 0; sft--) {
  65		tmp = (u64) to << sft;
  66		tmp += from / 2;
  67		do_div(tmp, from);
  68		if ((tmp >> sftacc) == 0)
  69			break;
  70	}
  71	*mult = tmp;
  72	*shift = sft;
  73}
  74EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
  75
  76/*[Clocksource internal variables]---------
  77 * curr_clocksource:
  78 *	currently selected clocksource.
  79 * suspend_clocksource:
  80 *	used to calculate the suspend time.
  81 * clocksource_list:
  82 *	linked list with the registered clocksources
  83 * clocksource_mutex:
  84 *	protects manipulations to curr_clocksource and the clocksource_list
  85 * override_name:
  86 *	Name of the user-specified clocksource.
  87 */
  88static struct clocksource *curr_clocksource;
  89static struct clocksource *suspend_clocksource;
  90static LIST_HEAD(clocksource_list);
  91static DEFINE_MUTEX(clocksource_mutex);
  92static char override_name[CS_NAME_LEN];
  93static int finished_booting;
  94static u64 suspend_start;
  95
  96#ifdef CONFIG_CLOCKSOURCE_WATCHDOG
  97static void clocksource_watchdog_work(struct work_struct *work);
  98static void clocksource_select(void);
  99
 100static LIST_HEAD(watchdog_list);
 101static struct clocksource *watchdog;
 102static struct timer_list watchdog_timer;
 103static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
 104static DEFINE_SPINLOCK(watchdog_lock);
 105static int watchdog_running;
 106static atomic_t watchdog_reset_pending;
 107
 108static inline void clocksource_watchdog_lock(unsigned long *flags)
 109{
 110	spin_lock_irqsave(&watchdog_lock, *flags);
 111}
 112
 113static inline void clocksource_watchdog_unlock(unsigned long *flags)
 114{
 115	spin_unlock_irqrestore(&watchdog_lock, *flags);
 116}
 117
 118static int clocksource_watchdog_kthread(void *data);
 119static void __clocksource_change_rating(struct clocksource *cs, int rating);
 120
 121/*
 122 * Interval: 0.5sec Threshold: 0.0625s
 123 */
 124#define WATCHDOG_INTERVAL (HZ >> 1)
 125#define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4)
 126
 127static void clocksource_watchdog_work(struct work_struct *work)
 128{
 129	/*
 130	 * We cannot directly run clocksource_watchdog_kthread() here, because
 131	 * clocksource_select() calls timekeeping_notify() which uses
 132	 * stop_machine(). One cannot use stop_machine() from a workqueue() due
 133	 * lock inversions wrt CPU hotplug.
 134	 *
 135	 * Also, we only ever run this work once or twice during the lifetime
 136	 * of the kernel, so there is no point in creating a more permanent
 137	 * kthread for this.
 138	 *
 139	 * If kthread_run fails the next watchdog scan over the
 140	 * watchdog_list will find the unstable clock again.
 141	 */
 142	kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
 143}
 144
 145static void __clocksource_unstable(struct clocksource *cs)
 146{
 147	cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
 148	cs->flags |= CLOCK_SOURCE_UNSTABLE;
 149
 150	/*
 151	 * If the clocksource is registered clocksource_watchdog_kthread() will
 152	 * re-rate and re-select.
 153	 */
 154	if (list_empty(&cs->list)) {
 155		cs->rating = 0;
 156		return;
 157	}
 158
 159	if (cs->mark_unstable)
 160		cs->mark_unstable(cs);
 161
 162	/* kick clocksource_watchdog_kthread() */
 163	if (finished_booting)
 164		schedule_work(&watchdog_work);
 165}
 166
 
 
 
 
 
 
 
 167/**
 168 * clocksource_mark_unstable - mark clocksource unstable via watchdog
 169 * @cs:		clocksource to be marked unstable
 170 *
 171 * This function is called by the x86 TSC code to mark clocksources as unstable;
 172 * it defers demotion and re-selection to a kthread.
 
 
 173 */
 174void clocksource_mark_unstable(struct clocksource *cs)
 175{
 176	unsigned long flags;
 177
 178	spin_lock_irqsave(&watchdog_lock, flags);
 179	if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
 180		if (!list_empty(&cs->list) && list_empty(&cs->wd_list))
 181			list_add(&cs->wd_list, &watchdog_list);
 182		__clocksource_unstable(cs);
 183	}
 184	spin_unlock_irqrestore(&watchdog_lock, flags);
 185}
 186
 187static void clocksource_watchdog(struct timer_list *unused)
 188{
 189	struct clocksource *cs;
 190	u64 csnow, wdnow, cslast, wdlast, delta;
 191	int64_t wd_nsec, cs_nsec;
 192	int next_cpu, reset_pending;
 193
 194	spin_lock(&watchdog_lock);
 195	if (!watchdog_running)
 196		goto out;
 197
 198	reset_pending = atomic_read(&watchdog_reset_pending);
 199
 200	list_for_each_entry(cs, &watchdog_list, wd_list) {
 201
 202		/* Clocksource already marked unstable? */
 203		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
 204			if (finished_booting)
 205				schedule_work(&watchdog_work);
 206			continue;
 207		}
 208
 209		local_irq_disable();
 210		csnow = cs->read(cs);
 211		wdnow = watchdog->read(watchdog);
 212		local_irq_enable();
 213
 214		/* Clocksource initialized ? */
 215		if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
 216		    atomic_read(&watchdog_reset_pending)) {
 217			cs->flags |= CLOCK_SOURCE_WATCHDOG;
 218			cs->wd_last = wdnow;
 219			cs->cs_last = csnow;
 220			continue;
 221		}
 222
 223		delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
 224		wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
 225					     watchdog->shift);
 226
 227		delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
 228		cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
 229		wdlast = cs->wd_last; /* save these in case we print them */
 230		cslast = cs->cs_last;
 231		cs->cs_last = csnow;
 232		cs->wd_last = wdnow;
 233
 234		if (atomic_read(&watchdog_reset_pending))
 235			continue;
 236
 237		/* Check the deviation from the watchdog clocksource. */
 238		if (abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD) {
 239			pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
 240				smp_processor_id(), cs->name);
 241			pr_warn("                      '%s' wd_now: %llx wd_last: %llx mask: %llx\n",
 242				watchdog->name, wdnow, wdlast, watchdog->mask);
 243			pr_warn("                      '%s' cs_now: %llx cs_last: %llx mask: %llx\n",
 244				cs->name, csnow, cslast, cs->mask);
 245			__clocksource_unstable(cs);
 246			continue;
 247		}
 248
 249		if (cs == curr_clocksource && cs->tick_stable)
 250			cs->tick_stable(cs);
 251
 252		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
 253		    (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
 254		    (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
 255			/* Mark it valid for high-res. */
 256			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 257
 258			/*
 259			 * clocksource_done_booting() will sort it if
 260			 * finished_booting is not set yet.
 261			 */
 262			if (!finished_booting)
 263				continue;
 264
 265			/*
 266			 * If this is not the current clocksource let
 267			 * the watchdog thread reselect it. Due to the
 268			 * change to high res this clocksource might
 269			 * be preferred now. If it is the current
 270			 * clocksource let the tick code know about
 271			 * that change.
 272			 */
 273			if (cs != curr_clocksource) {
 274				cs->flags |= CLOCK_SOURCE_RESELECT;
 275				schedule_work(&watchdog_work);
 276			} else {
 277				tick_clock_notify();
 278			}
 279		}
 280	}
 281
 282	/*
 283	 * We only clear the watchdog_reset_pending, when we did a
 284	 * full cycle through all clocksources.
 285	 */
 286	if (reset_pending)
 287		atomic_dec(&watchdog_reset_pending);
 288
 289	/*
 290	 * Cycle through CPUs to check if the CPUs stay synchronized
 291	 * to each other.
 292	 */
 293	next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
 294	if (next_cpu >= nr_cpu_ids)
 295		next_cpu = cpumask_first(cpu_online_mask);
 296
 297	/*
 298	 * Arm timer if not already pending: could race with concurrent
 299	 * pair clocksource_stop_watchdog() clocksource_start_watchdog().
 300	 */
 301	if (!timer_pending(&watchdog_timer)) {
 302		watchdog_timer.expires += WATCHDOG_INTERVAL;
 303		add_timer_on(&watchdog_timer, next_cpu);
 304	}
 305out:
 306	spin_unlock(&watchdog_lock);
 307}
 308
 309static inline void clocksource_start_watchdog(void)
 310{
 311	if (watchdog_running || !watchdog || list_empty(&watchdog_list))
 312		return;
 313	timer_setup(&watchdog_timer, clocksource_watchdog, 0);
 
 314	watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
 315	add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
 316	watchdog_running = 1;
 317}
 318
 319static inline void clocksource_stop_watchdog(void)
 320{
 321	if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
 322		return;
 323	del_timer(&watchdog_timer);
 324	watchdog_running = 0;
 325}
 326
 327static inline void clocksource_reset_watchdog(void)
 328{
 329	struct clocksource *cs;
 330
 331	list_for_each_entry(cs, &watchdog_list, wd_list)
 332		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
 333}
 334
 335static void clocksource_resume_watchdog(void)
 336{
 337	atomic_inc(&watchdog_reset_pending);
 338}
 339
 340static void clocksource_enqueue_watchdog(struct clocksource *cs)
 341{
 342	INIT_LIST_HEAD(&cs->wd_list);
 343
 
 344	if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
 345		/* cs is a clocksource to be watched. */
 346		list_add(&cs->wd_list, &watchdog_list);
 347		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
 348	} else {
 349		/* cs is a watchdog. */
 350		if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
 351			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 352	}
 353}
 354
 355static void clocksource_select_watchdog(bool fallback)
 356{
 357	struct clocksource *cs, *old_wd;
 358	unsigned long flags;
 359
 360	spin_lock_irqsave(&watchdog_lock, flags);
 361	/* save current watchdog */
 362	old_wd = watchdog;
 363	if (fallback)
 364		watchdog = NULL;
 365
 366	list_for_each_entry(cs, &clocksource_list, list) {
 367		/* cs is a clocksource to be watched. */
 368		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
 369			continue;
 370
 371		/* Skip current if we were requested for a fallback. */
 372		if (fallback && cs == old_wd)
 373			continue;
 374
 375		/* Pick the best watchdog. */
 376		if (!watchdog || cs->rating > watchdog->rating)
 377			watchdog = cs;
 
 
 
 378	}
 379	/* If we failed to find a fallback restore the old one. */
 380	if (!watchdog)
 381		watchdog = old_wd;
 382
 383	/* If we changed the watchdog we need to reset cycles. */
 384	if (watchdog != old_wd)
 385		clocksource_reset_watchdog();
 386
 387	/* Check if the watchdog timer needs to be started. */
 388	clocksource_start_watchdog();
 389	spin_unlock_irqrestore(&watchdog_lock, flags);
 390}
 391
 392static void clocksource_dequeue_watchdog(struct clocksource *cs)
 393{
 
 
 
 394	if (cs != watchdog) {
 395		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
 396			/* cs is a watched clocksource. */
 397			list_del_init(&cs->wd_list);
 398			/* Check if the watchdog timer needs to be stopped. */
 399			clocksource_stop_watchdog();
 400		}
 401	}
 
 402}
 403
 404static int __clocksource_watchdog_kthread(void)
 405{
 406	struct clocksource *cs, *tmp;
 407	unsigned long flags;
 
 408	int select = 0;
 409
 410	spin_lock_irqsave(&watchdog_lock, flags);
 411	list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
 412		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
 413			list_del_init(&cs->wd_list);
 414			__clocksource_change_rating(cs, 0);
 415			select = 1;
 416		}
 417		if (cs->flags & CLOCK_SOURCE_RESELECT) {
 418			cs->flags &= ~CLOCK_SOURCE_RESELECT;
 419			select = 1;
 420		}
 421	}
 422	/* Check if the watchdog timer needs to be stopped. */
 423	clocksource_stop_watchdog();
 424	spin_unlock_irqrestore(&watchdog_lock, flags);
 425
 
 
 
 
 
 426	return select;
 427}
 428
 429static int clocksource_watchdog_kthread(void *data)
 430{
 431	mutex_lock(&clocksource_mutex);
 432	if (__clocksource_watchdog_kthread())
 433		clocksource_select();
 434	mutex_unlock(&clocksource_mutex);
 435	return 0;
 436}
 437
 438static bool clocksource_is_watchdog(struct clocksource *cs)
 439{
 440	return cs == watchdog;
 441}
 442
 443#else /* CONFIG_CLOCKSOURCE_WATCHDOG */
 444
 445static void clocksource_enqueue_watchdog(struct clocksource *cs)
 446{
 447	if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
 448		cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 449}
 450
 451static void clocksource_select_watchdog(bool fallback) { }
 452static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
 453static inline void clocksource_resume_watchdog(void) { }
 454static inline int __clocksource_watchdog_kthread(void) { return 0; }
 455static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
 456void clocksource_mark_unstable(struct clocksource *cs) { }
 457
 458static inline void clocksource_watchdog_lock(unsigned long *flags) { }
 459static inline void clocksource_watchdog_unlock(unsigned long *flags) { }
 460
 461#endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
 462
 463static bool clocksource_is_suspend(struct clocksource *cs)
 464{
 465	return cs == suspend_clocksource;
 466}
 467
 468static void __clocksource_suspend_select(struct clocksource *cs)
 469{
 470	/*
 471	 * Skip the clocksource which will be stopped in suspend state.
 472	 */
 473	if (!(cs->flags & CLOCK_SOURCE_SUSPEND_NONSTOP))
 474		return;
 475
 476	/*
 477	 * The nonstop clocksource can be selected as the suspend clocksource to
 478	 * calculate the suspend time, so it should not supply suspend/resume
 479	 * interfaces to suspend the nonstop clocksource when system suspends.
 480	 */
 481	if (cs->suspend || cs->resume) {
 482		pr_warn("Nonstop clocksource %s should not supply suspend/resume interfaces\n",
 483			cs->name);
 484	}
 485
 486	/* Pick the best rating. */
 487	if (!suspend_clocksource || cs->rating > suspend_clocksource->rating)
 488		suspend_clocksource = cs;
 489}
 490
 491/**
 492 * clocksource_suspend_select - Select the best clocksource for suspend timing
 493 * @fallback:	if select a fallback clocksource
 494 */
 495static void clocksource_suspend_select(bool fallback)
 496{
 497	struct clocksource *cs, *old_suspend;
 498
 499	old_suspend = suspend_clocksource;
 500	if (fallback)
 501		suspend_clocksource = NULL;
 502
 503	list_for_each_entry(cs, &clocksource_list, list) {
 504		/* Skip current if we were requested for a fallback. */
 505		if (fallback && cs == old_suspend)
 506			continue;
 507
 508		__clocksource_suspend_select(cs);
 509	}
 510}
 511
 512/**
 513 * clocksource_start_suspend_timing - Start measuring the suspend timing
 514 * @cs:			current clocksource from timekeeping
 515 * @start_cycles:	current cycles from timekeeping
 516 *
 517 * This function will save the start cycle values of suspend timer to calculate
 518 * the suspend time when resuming system.
 519 *
 520 * This function is called late in the suspend process from timekeeping_suspend(),
 521 * that means processes are freezed, non-boot cpus and interrupts are disabled
 522 * now. It is therefore possible to start the suspend timer without taking the
 523 * clocksource mutex.
 524 */
 525void clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles)
 526{
 527	if (!suspend_clocksource)
 528		return;
 529
 530	/*
 531	 * If current clocksource is the suspend timer, we should use the
 532	 * tkr_mono.cycle_last value as suspend_start to avoid same reading
 533	 * from suspend timer.
 534	 */
 535	if (clocksource_is_suspend(cs)) {
 536		suspend_start = start_cycles;
 537		return;
 538	}
 539
 540	if (suspend_clocksource->enable &&
 541	    suspend_clocksource->enable(suspend_clocksource)) {
 542		pr_warn_once("Failed to enable the non-suspend-able clocksource.\n");
 543		return;
 544	}
 545
 546	suspend_start = suspend_clocksource->read(suspend_clocksource);
 547}
 548
 549/**
 550 * clocksource_stop_suspend_timing - Stop measuring the suspend timing
 551 * @cs:		current clocksource from timekeeping
 552 * @cycle_now:	current cycles from timekeeping
 553 *
 554 * This function will calculate the suspend time from suspend timer.
 555 *
 556 * Returns nanoseconds since suspend started, 0 if no usable suspend clocksource.
 557 *
 558 * This function is called early in the resume process from timekeeping_resume(),
 559 * that means there is only one cpu, no processes are running and the interrupts
 560 * are disabled. It is therefore possible to stop the suspend timer without
 561 * taking the clocksource mutex.
 562 */
 563u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 cycle_now)
 564{
 565	u64 now, delta, nsec = 0;
 566
 567	if (!suspend_clocksource)
 568		return 0;
 569
 570	/*
 571	 * If current clocksource is the suspend timer, we should use the
 572	 * tkr_mono.cycle_last value from timekeeping as current cycle to
 573	 * avoid same reading from suspend timer.
 574	 */
 575	if (clocksource_is_suspend(cs))
 576		now = cycle_now;
 577	else
 578		now = suspend_clocksource->read(suspend_clocksource);
 579
 580	if (now > suspend_start) {
 581		delta = clocksource_delta(now, suspend_start,
 582					  suspend_clocksource->mask);
 583		nsec = mul_u64_u32_shr(delta, suspend_clocksource->mult,
 584				       suspend_clocksource->shift);
 585	}
 586
 587	/*
 588	 * Disable the suspend timer to save power if current clocksource is
 589	 * not the suspend timer.
 590	 */
 591	if (!clocksource_is_suspend(cs) && suspend_clocksource->disable)
 592		suspend_clocksource->disable(suspend_clocksource);
 593
 594	return nsec;
 595}
 596
 597/**
 598 * clocksource_suspend - suspend the clocksource(s)
 599 */
 600void clocksource_suspend(void)
 601{
 602	struct clocksource *cs;
 603
 604	list_for_each_entry_reverse(cs, &clocksource_list, list)
 605		if (cs->suspend)
 606			cs->suspend(cs);
 607}
 608
 609/**
 610 * clocksource_resume - resume the clocksource(s)
 611 */
 612void clocksource_resume(void)
 613{
 614	struct clocksource *cs;
 615
 616	list_for_each_entry(cs, &clocksource_list, list)
 617		if (cs->resume)
 618			cs->resume(cs);
 619
 620	clocksource_resume_watchdog();
 621}
 622
 623/**
 624 * clocksource_touch_watchdog - Update watchdog
 625 *
 626 * Update the watchdog after exception contexts such as kgdb so as not
 627 * to incorrectly trip the watchdog. This might fail when the kernel
 628 * was stopped in code which holds watchdog_lock.
 629 */
 630void clocksource_touch_watchdog(void)
 631{
 632	clocksource_resume_watchdog();
 633}
 634
 635/**
 636 * clocksource_max_adjustment- Returns max adjustment amount
 637 * @cs:         Pointer to clocksource
 638 *
 639 */
 640static u32 clocksource_max_adjustment(struct clocksource *cs)
 641{
 642	u64 ret;
 643	/*
 644	 * We won't try to correct for more than 11% adjustments (110,000 ppm),
 645	 */
 646	ret = (u64)cs->mult * 11;
 647	do_div(ret,100);
 648	return (u32)ret;
 649}
 650
 651/**
 652 * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
 653 * @mult:	cycle to nanosecond multiplier
 654 * @shift:	cycle to nanosecond divisor (power of two)
 655 * @maxadj:	maximum adjustment value to mult (~11%)
 656 * @mask:	bitmask for two's complement subtraction of non 64 bit counters
 657 * @max_cyc:	maximum cycle value before potential overflow (does not include
 658 *		any safety margin)
 659 *
 660 * NOTE: This function includes a safety margin of 50%, in other words, we
 661 * return half the number of nanoseconds the hardware counter can technically
 662 * cover. This is done so that we can potentially detect problems caused by
 663 * delayed timers or bad hardware, which might result in time intervals that
 664 * are larger than what the math used can handle without overflows.
 665 */
 666u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
 667{
 668	u64 max_nsecs, max_cycles;
 669
 670	/*
 671	 * Calculate the maximum number of cycles that we can pass to the
 672	 * cyc2ns() function without overflowing a 64-bit result.
 
 
 
 
 
 
 
 
 
 
 673	 */
 674	max_cycles = ULLONG_MAX;
 675	do_div(max_cycles, mult+maxadj);
 676
 677	/*
 678	 * The actual maximum number of cycles we can defer the clocksource is
 679	 * determined by the minimum of max_cycles and mask.
 680	 * Note: Here we subtract the maxadj to make sure we don't sleep for
 681	 * too long if there's a large negative adjustment.
 682	 */
 683	max_cycles = min(max_cycles, mask);
 684	max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
 685
 686	/* return the max_cycles value as well if requested */
 687	if (max_cyc)
 688		*max_cyc = max_cycles;
 689
 690	/* Return 50% of the actual maximum, so we can detect bad values */
 691	max_nsecs >>= 1;
 692
 693	return max_nsecs;
 694}
 695
 696/**
 697 * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
 698 * @cs:         Pointer to clocksource to be updated
 699 *
 700 */
 701static inline void clocksource_update_max_deferment(struct clocksource *cs)
 702{
 703	cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
 704						cs->maxadj, cs->mask,
 705						&cs->max_cycles);
 
 
 
 
 
 
 
 
 706}
 707
 708#ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
 709
 710static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
 711{
 712	struct clocksource *cs;
 713
 714	if (!finished_booting || list_empty(&clocksource_list))
 715		return NULL;
 716
 717	/*
 718	 * We pick the clocksource with the highest rating. If oneshot
 719	 * mode is active, we pick the highres valid clocksource with
 720	 * the best rating.
 721	 */
 722	list_for_each_entry(cs, &clocksource_list, list) {
 723		if (skipcur && cs == curr_clocksource)
 724			continue;
 725		if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
 726			continue;
 727		return cs;
 728	}
 729	return NULL;
 730}
 731
 732static void __clocksource_select(bool skipcur)
 733{
 734	bool oneshot = tick_oneshot_mode_active();
 735	struct clocksource *best, *cs;
 736
 737	/* Find the best suitable clocksource */
 738	best = clocksource_find_best(oneshot, skipcur);
 739	if (!best)
 740		return;
 741
 742	if (!strlen(override_name))
 743		goto found;
 744
 745	/* Check for the override clocksource. */
 746	list_for_each_entry(cs, &clocksource_list, list) {
 747		if (skipcur && cs == curr_clocksource)
 748			continue;
 749		if (strcmp(cs->name, override_name) != 0)
 750			continue;
 751		/*
 752		 * Check to make sure we don't switch to a non-highres
 753		 * capable clocksource if the tick code is in oneshot
 754		 * mode (highres or nohz)
 755		 */
 756		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
 757			/* Override clocksource cannot be used. */
 758			if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
 759				pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
 760					cs->name);
 761				override_name[0] = 0;
 762			} else {
 763				/*
 764				 * The override cannot be currently verified.
 765				 * Deferring to let the watchdog check.
 766				 */
 767				pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
 768					cs->name);
 769			}
 770		} else
 771			/* Override clocksource can be used. */
 772			best = cs;
 773		break;
 774	}
 775
 776found:
 777	if (curr_clocksource != best && !timekeeping_notify(best)) {
 778		pr_info("Switched to clocksource %s\n", best->name);
 779		curr_clocksource = best;
 780	}
 781}
 782
 783/**
 784 * clocksource_select - Select the best clocksource available
 785 *
 786 * Private function. Must hold clocksource_mutex when called.
 787 *
 788 * Select the clocksource with the best rating, or the clocksource,
 789 * which is selected by userspace override.
 790 */
 791static void clocksource_select(void)
 792{
 793	__clocksource_select(false);
 794}
 795
 796static void clocksource_select_fallback(void)
 797{
 798	__clocksource_select(true);
 799}
 800
 801#else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
 
 802static inline void clocksource_select(void) { }
 803static inline void clocksource_select_fallback(void) { }
 804
 805#endif
 806
 807/*
 808 * clocksource_done_booting - Called near the end of core bootup
 809 *
 810 * Hack to avoid lots of clocksource churn at boot time.
 811 * We use fs_initcall because we want this to start before
 812 * device_initcall but after subsys_initcall.
 813 */
 814static int __init clocksource_done_booting(void)
 815{
 816	mutex_lock(&clocksource_mutex);
 817	curr_clocksource = clocksource_default_clock();
 818	finished_booting = 1;
 819	/*
 820	 * Run the watchdog first to eliminate unstable clock sources
 821	 */
 822	__clocksource_watchdog_kthread();
 823	clocksource_select();
 824	mutex_unlock(&clocksource_mutex);
 825	return 0;
 826}
 827fs_initcall(clocksource_done_booting);
 828
 829/*
 830 * Enqueue the clocksource sorted by rating
 831 */
 832static void clocksource_enqueue(struct clocksource *cs)
 833{
 834	struct list_head *entry = &clocksource_list;
 835	struct clocksource *tmp;
 836
 837	list_for_each_entry(tmp, &clocksource_list, list) {
 838		/* Keep track of the place, where to insert */
 839		if (tmp->rating < cs->rating)
 840			break;
 841		entry = &tmp->list;
 842	}
 843	list_add(&cs->list, entry);
 844}
 845
 846/**
 847 * __clocksource_update_freq_scale - Used update clocksource with new freq
 848 * @cs:		clocksource to be registered
 849 * @scale:	Scale factor multiplied against freq to get clocksource hz
 850 * @freq:	clocksource frequency (cycles per second) divided by scale
 851 *
 852 * This should only be called from the clocksource->enable() method.
 853 *
 854 * This *SHOULD NOT* be called directly! Please use the
 855 * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
 856 * functions.
 857 */
 858void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
 859{
 860	u64 sec;
 861
 862	/*
 863	 * Default clocksources are *special* and self-define their mult/shift.
 864	 * But, you're not special, so you should specify a freq value.
 
 
 
 
 
 
 865	 */
 866	if (freq) {
 867		/*
 868		 * Calc the maximum number of seconds which we can run before
 869		 * wrapping around. For clocksources which have a mask > 32-bit
 870		 * we need to limit the max sleep time to have a good
 871		 * conversion precision. 10 minutes is still a reasonable
 872		 * amount. That results in a shift value of 24 for a
 873		 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
 874		 * ~ 0.06ppm granularity for NTP.
 875		 */
 876		sec = cs->mask;
 877		do_div(sec, freq);
 878		do_div(sec, scale);
 879		if (!sec)
 880			sec = 1;
 881		else if (sec > 600 && cs->mask > UINT_MAX)
 882			sec = 600;
 883
 884		clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
 885				       NSEC_PER_SEC / scale, sec * scale);
 886	}
 887	/*
 888	 * Ensure clocksources that have large 'mult' values don't overflow
 889	 * when adjusted.
 
 890	 */
 891	cs->maxadj = clocksource_max_adjustment(cs);
 892	while (freq && ((cs->mult + cs->maxadj < cs->mult)
 893		|| (cs->mult - cs->maxadj > cs->mult))) {
 894		cs->mult >>= 1;
 895		cs->shift--;
 896		cs->maxadj = clocksource_max_adjustment(cs);
 897	}
 898
 899	/*
 900	 * Only warn for *special* clocksources that self-define
 901	 * their mult/shift values and don't specify a freq.
 902	 */
 903	WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
 904		"timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
 905		cs->name);
 906
 907	clocksource_update_max_deferment(cs);
 908
 909	pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
 910		cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
 911}
 912EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
 913
 914/**
 915 * __clocksource_register_scale - Used to install new clocksources
 916 * @cs:		clocksource to be registered
 917 * @scale:	Scale factor multiplied against freq to get clocksource hz
 918 * @freq:	clocksource frequency (cycles per second) divided by scale
 919 *
 920 * Returns -EBUSY if registration fails, zero otherwise.
 921 *
 922 * This *SHOULD NOT* be called directly! Please use the
 923 * clocksource_register_hz() or clocksource_register_khz helper functions.
 924 */
 925int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
 926{
 927	unsigned long flags;
 928
 929	clocksource_arch_init(cs);
 
 
 
 
 
 
 
 
 
 
 
 
 930
 931	if (cs->vdso_clock_mode < 0 ||
 932	    cs->vdso_clock_mode >= VDSO_CLOCKMODE_MAX) {
 933		pr_warn("clocksource %s registered with invalid VDSO mode %d. Disabling VDSO support.\n",
 934			cs->name, cs->vdso_clock_mode);
 935		cs->vdso_clock_mode = VDSO_CLOCKMODE_NONE;
 936	}
 
 
 
 
 
 
 
 937
 938	/* Initialize mult/shift and max_idle_ns */
 939	__clocksource_update_freq_scale(cs, scale, freq);
 940
 941	/* Add clocksource to the clocksource list */
 942	mutex_lock(&clocksource_mutex);
 943
 944	clocksource_watchdog_lock(&flags);
 945	clocksource_enqueue(cs);
 946	clocksource_enqueue_watchdog(cs);
 947	clocksource_watchdog_unlock(&flags);
 948
 949	clocksource_select();
 950	clocksource_select_watchdog(false);
 951	__clocksource_suspend_select(cs);
 952	mutex_unlock(&clocksource_mutex);
 953	return 0;
 954}
 955EXPORT_SYMBOL_GPL(__clocksource_register_scale);
 956
 957static void __clocksource_change_rating(struct clocksource *cs, int rating)
 958{
 959	list_del(&cs->list);
 960	cs->rating = rating;
 961	clocksource_enqueue(cs);
 962}
 963
 964/**
 965 * clocksource_change_rating - Change the rating of a registered clocksource
 966 * @cs:		clocksource to be changed
 967 * @rating:	new rating
 968 */
 969void clocksource_change_rating(struct clocksource *cs, int rating)
 970{
 971	unsigned long flags;
 972
 973	mutex_lock(&clocksource_mutex);
 974	clocksource_watchdog_lock(&flags);
 975	__clocksource_change_rating(cs, rating);
 976	clocksource_watchdog_unlock(&flags);
 977
 978	clocksource_select();
 979	clocksource_select_watchdog(false);
 980	clocksource_suspend_select(false);
 981	mutex_unlock(&clocksource_mutex);
 982}
 983EXPORT_SYMBOL(clocksource_change_rating);
 984
 985/*
 986 * Unbind clocksource @cs. Called with clocksource_mutex held
 987 */
 988static int clocksource_unbind(struct clocksource *cs)
 989{
 990	unsigned long flags;
 991
 992	if (clocksource_is_watchdog(cs)) {
 993		/* Select and try to install a replacement watchdog. */
 994		clocksource_select_watchdog(true);
 995		if (clocksource_is_watchdog(cs))
 996			return -EBUSY;
 997	}
 998
 999	if (cs == curr_clocksource) {
1000		/* Select and try to install a replacement clock source */
1001		clocksource_select_fallback();
1002		if (curr_clocksource == cs)
1003			return -EBUSY;
1004	}
1005
1006	if (clocksource_is_suspend(cs)) {
1007		/*
1008		 * Select and try to install a replacement suspend clocksource.
1009		 * If no replacement suspend clocksource, we will just let the
1010		 * clocksource go and have no suspend clocksource.
1011		 */
1012		clocksource_suspend_select(true);
1013	}
1014
1015	clocksource_watchdog_lock(&flags);
1016	clocksource_dequeue_watchdog(cs);
1017	list_del_init(&cs->list);
1018	clocksource_watchdog_unlock(&flags);
1019
1020	return 0;
1021}
1022
1023/**
1024 * clocksource_unregister - remove a registered clocksource
1025 * @cs:	clocksource to be unregistered
1026 */
1027int clocksource_unregister(struct clocksource *cs)
1028{
1029	int ret = 0;
1030
1031	mutex_lock(&clocksource_mutex);
1032	if (!list_empty(&cs->list))
1033		ret = clocksource_unbind(cs);
1034	mutex_unlock(&clocksource_mutex);
1035	return ret;
1036}
1037EXPORT_SYMBOL(clocksource_unregister);
1038
1039#ifdef CONFIG_SYSFS
1040/**
1041 * current_clocksource_show - sysfs interface for current clocksource
1042 * @dev:	unused
1043 * @attr:	unused
1044 * @buf:	char buffer to be filled with clocksource list
1045 *
1046 * Provides sysfs interface for listing current clocksource.
1047 */
1048static ssize_t current_clocksource_show(struct device *dev,
1049					struct device_attribute *attr,
1050					char *buf)
1051{
1052	ssize_t count = 0;
1053
1054	mutex_lock(&clocksource_mutex);
1055	count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
1056	mutex_unlock(&clocksource_mutex);
1057
1058	return count;
1059}
1060
1061ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
1062{
1063	size_t ret = cnt;
1064
1065	/* strings from sysfs write are not 0 terminated! */
1066	if (!cnt || cnt >= CS_NAME_LEN)
1067		return -EINVAL;
1068
1069	/* strip of \n: */
1070	if (buf[cnt-1] == '\n')
1071		cnt--;
1072	if (cnt > 0)
1073		memcpy(dst, buf, cnt);
1074	dst[cnt] = 0;
1075	return ret;
1076}
1077
1078/**
1079 * current_clocksource_store - interface for manually overriding clocksource
1080 * @dev:	unused
1081 * @attr:	unused
1082 * @buf:	name of override clocksource
1083 * @count:	length of buffer
1084 *
1085 * Takes input from sysfs interface for manually overriding the default
1086 * clocksource selection.
1087 */
1088static ssize_t current_clocksource_store(struct device *dev,
1089					 struct device_attribute *attr,
1090					 const char *buf, size_t count)
1091{
1092	ssize_t ret;
1093
1094	mutex_lock(&clocksource_mutex);
1095
1096	ret = sysfs_get_uname(buf, override_name, count);
1097	if (ret >= 0)
1098		clocksource_select();
1099
1100	mutex_unlock(&clocksource_mutex);
1101
1102	return ret;
1103}
1104static DEVICE_ATTR_RW(current_clocksource);
1105
1106/**
1107 * unbind_clocksource_store - interface for manually unbinding clocksource
1108 * @dev:	unused
1109 * @attr:	unused
1110 * @buf:	unused
1111 * @count:	length of buffer
1112 *
1113 * Takes input from sysfs interface for manually unbinding a clocksource.
1114 */
1115static ssize_t unbind_clocksource_store(struct device *dev,
1116					struct device_attribute *attr,
1117					const char *buf, size_t count)
1118{
1119	struct clocksource *cs;
1120	char name[CS_NAME_LEN];
1121	ssize_t ret;
1122
1123	ret = sysfs_get_uname(buf, name, count);
1124	if (ret < 0)
1125		return ret;
1126
1127	ret = -ENODEV;
1128	mutex_lock(&clocksource_mutex);
1129	list_for_each_entry(cs, &clocksource_list, list) {
1130		if (strcmp(cs->name, name))
1131			continue;
1132		ret = clocksource_unbind(cs);
1133		break;
1134	}
1135	mutex_unlock(&clocksource_mutex);
1136
1137	return ret ? ret : count;
1138}
1139static DEVICE_ATTR_WO(unbind_clocksource);
1140
1141/**
1142 * available_clocksource_show - sysfs interface for listing clocksource
1143 * @dev:	unused
1144 * @attr:	unused
1145 * @buf:	char buffer to be filled with clocksource list
1146 *
1147 * Provides sysfs interface for listing registered clocksources
1148 */
1149static ssize_t available_clocksource_show(struct device *dev,
1150					  struct device_attribute *attr,
1151					  char *buf)
 
1152{
1153	struct clocksource *src;
1154	ssize_t count = 0;
1155
1156	mutex_lock(&clocksource_mutex);
1157	list_for_each_entry(src, &clocksource_list, list) {
1158		/*
1159		 * Don't show non-HRES clocksource if the tick code is
1160		 * in one shot mode (highres=on or nohz=on)
1161		 */
1162		if (!tick_oneshot_mode_active() ||
1163		    (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1164			count += snprintf(buf + count,
1165				  max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
1166				  "%s ", src->name);
1167	}
1168	mutex_unlock(&clocksource_mutex);
1169
1170	count += snprintf(buf + count,
1171			  max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
1172
1173	return count;
1174}
1175static DEVICE_ATTR_RO(available_clocksource);
1176
1177static struct attribute *clocksource_attrs[] = {
1178	&dev_attr_current_clocksource.attr,
1179	&dev_attr_unbind_clocksource.attr,
1180	&dev_attr_available_clocksource.attr,
1181	NULL
1182};
1183ATTRIBUTE_GROUPS(clocksource);
 
 
 
1184
1185static struct bus_type clocksource_subsys = {
1186	.name = "clocksource",
1187	.dev_name = "clocksource",
1188};
1189
1190static struct device device_clocksource = {
1191	.id	= 0,
1192	.bus	= &clocksource_subsys,
1193	.groups	= clocksource_groups,
1194};
1195
1196static int __init init_clocksource_sysfs(void)
1197{
1198	int error = subsys_system_register(&clocksource_subsys, NULL);
1199
1200	if (!error)
1201		error = device_register(&device_clocksource);
1202
 
 
 
 
 
 
 
 
 
 
1203	return error;
1204}
1205
1206device_initcall(init_clocksource_sysfs);
1207#endif /* CONFIG_SYSFS */
1208
1209/**
1210 * boot_override_clocksource - boot clock override
1211 * @str:	override name
1212 *
1213 * Takes a clocksource= boot argument and uses it
1214 * as the clocksource override name.
1215 */
1216static int __init boot_override_clocksource(char* str)
1217{
1218	mutex_lock(&clocksource_mutex);
1219	if (str)
1220		strlcpy(override_name, str, sizeof(override_name));
1221	mutex_unlock(&clocksource_mutex);
1222	return 1;
1223}
1224
1225__setup("clocksource=", boot_override_clocksource);
1226
1227/**
1228 * boot_override_clock - Compatibility layer for deprecated boot option
1229 * @str:	override name
1230 *
1231 * DEPRECATED! Takes a clock= boot argument and uses it
1232 * as the clocksource override name
1233 */
1234static int __init boot_override_clock(char* str)
1235{
1236	if (!strcmp(str, "pmtmr")) {
1237		pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
 
1238		return boot_override_clocksource("acpi_pm");
1239	}
1240	pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
 
1241	return boot_override_clocksource(str);
1242}
1243
1244__setup("clock=", boot_override_clock);