Loading...
1/*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76#include <linux/compiler.h>
77
78#include <asm/switch_to.h>
79#include <asm/tlb.h>
80#include <asm/irq_regs.h>
81#include <asm/mutex.h>
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
85
86#include "sched.h"
87#include "../workqueue_internal.h"
88#include "../smpboot.h"
89
90#define CREATE_TRACE_POINTS
91#include <trace/events/sched.h>
92
93void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
94{
95 unsigned long delta;
96 ktime_t soft, hard, now;
97
98 for (;;) {
99 if (hrtimer_active(period_timer))
100 break;
101
102 now = hrtimer_cb_get_time(period_timer);
103 hrtimer_forward(period_timer, now, period);
104
105 soft = hrtimer_get_softexpires(period_timer);
106 hard = hrtimer_get_expires(period_timer);
107 delta = ktime_to_ns(ktime_sub(hard, soft));
108 __hrtimer_start_range_ns(period_timer, soft, delta,
109 HRTIMER_MODE_ABS_PINNED, 0);
110 }
111}
112
113DEFINE_MUTEX(sched_domains_mutex);
114DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115
116static void update_rq_clock_task(struct rq *rq, s64 delta);
117
118void update_rq_clock(struct rq *rq)
119{
120 s64 delta;
121
122 if (rq->skip_clock_update > 0)
123 return;
124
125 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
126 rq->clock += delta;
127 update_rq_clock_task(rq, delta);
128}
129
130/*
131 * Debugging: various feature bits
132 */
133
134#define SCHED_FEAT(name, enabled) \
135 (1UL << __SCHED_FEAT_##name) * enabled |
136
137const_debug unsigned int sysctl_sched_features =
138#include "features.h"
139 0;
140
141#undef SCHED_FEAT
142
143#ifdef CONFIG_SCHED_DEBUG
144#define SCHED_FEAT(name, enabled) \
145 #name ,
146
147static const char * const sched_feat_names[] = {
148#include "features.h"
149};
150
151#undef SCHED_FEAT
152
153static int sched_feat_show(struct seq_file *m, void *v)
154{
155 int i;
156
157 for (i = 0; i < __SCHED_FEAT_NR; i++) {
158 if (!(sysctl_sched_features & (1UL << i)))
159 seq_puts(m, "NO_");
160 seq_printf(m, "%s ", sched_feat_names[i]);
161 }
162 seq_puts(m, "\n");
163
164 return 0;
165}
166
167#ifdef HAVE_JUMP_LABEL
168
169#define jump_label_key__true STATIC_KEY_INIT_TRUE
170#define jump_label_key__false STATIC_KEY_INIT_FALSE
171
172#define SCHED_FEAT(name, enabled) \
173 jump_label_key__##enabled ,
174
175struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
176#include "features.h"
177};
178
179#undef SCHED_FEAT
180
181static void sched_feat_disable(int i)
182{
183 if (static_key_enabled(&sched_feat_keys[i]))
184 static_key_slow_dec(&sched_feat_keys[i]);
185}
186
187static void sched_feat_enable(int i)
188{
189 if (!static_key_enabled(&sched_feat_keys[i]))
190 static_key_slow_inc(&sched_feat_keys[i]);
191}
192#else
193static void sched_feat_disable(int i) { };
194static void sched_feat_enable(int i) { };
195#endif /* HAVE_JUMP_LABEL */
196
197static int sched_feat_set(char *cmp)
198{
199 int i;
200 int neg = 0;
201
202 if (strncmp(cmp, "NO_", 3) == 0) {
203 neg = 1;
204 cmp += 3;
205 }
206
207 for (i = 0; i < __SCHED_FEAT_NR; i++) {
208 if (strcmp(cmp, sched_feat_names[i]) == 0) {
209 if (neg) {
210 sysctl_sched_features &= ~(1UL << i);
211 sched_feat_disable(i);
212 } else {
213 sysctl_sched_features |= (1UL << i);
214 sched_feat_enable(i);
215 }
216 break;
217 }
218 }
219
220 return i;
221}
222
223static ssize_t
224sched_feat_write(struct file *filp, const char __user *ubuf,
225 size_t cnt, loff_t *ppos)
226{
227 char buf[64];
228 char *cmp;
229 int i;
230
231 if (cnt > 63)
232 cnt = 63;
233
234 if (copy_from_user(&buf, ubuf, cnt))
235 return -EFAULT;
236
237 buf[cnt] = 0;
238 cmp = strstrip(buf);
239
240 i = sched_feat_set(cmp);
241 if (i == __SCHED_FEAT_NR)
242 return -EINVAL;
243
244 *ppos += cnt;
245
246 return cnt;
247}
248
249static int sched_feat_open(struct inode *inode, struct file *filp)
250{
251 return single_open(filp, sched_feat_show, NULL);
252}
253
254static const struct file_operations sched_feat_fops = {
255 .open = sched_feat_open,
256 .write = sched_feat_write,
257 .read = seq_read,
258 .llseek = seq_lseek,
259 .release = single_release,
260};
261
262static __init int sched_init_debug(void)
263{
264 debugfs_create_file("sched_features", 0644, NULL, NULL,
265 &sched_feat_fops);
266
267 return 0;
268}
269late_initcall(sched_init_debug);
270#endif /* CONFIG_SCHED_DEBUG */
271
272/*
273 * Number of tasks to iterate in a single balance run.
274 * Limited because this is done with IRQs disabled.
275 */
276const_debug unsigned int sysctl_sched_nr_migrate = 32;
277
278/*
279 * period over which we average the RT time consumption, measured
280 * in ms.
281 *
282 * default: 1s
283 */
284const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
285
286/*
287 * period over which we measure -rt task cpu usage in us.
288 * default: 1s
289 */
290unsigned int sysctl_sched_rt_period = 1000000;
291
292__read_mostly int scheduler_running;
293
294/*
295 * part of the period that we allow rt tasks to run in us.
296 * default: 0.95s
297 */
298int sysctl_sched_rt_runtime = 950000;
299
300/*
301 * __task_rq_lock - lock the rq @p resides on.
302 */
303static inline struct rq *__task_rq_lock(struct task_struct *p)
304 __acquires(rq->lock)
305{
306 struct rq *rq;
307
308 lockdep_assert_held(&p->pi_lock);
309
310 for (;;) {
311 rq = task_rq(p);
312 raw_spin_lock(&rq->lock);
313 if (likely(rq == task_rq(p)))
314 return rq;
315 raw_spin_unlock(&rq->lock);
316 }
317}
318
319/*
320 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
321 */
322static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
323 __acquires(p->pi_lock)
324 __acquires(rq->lock)
325{
326 struct rq *rq;
327
328 for (;;) {
329 raw_spin_lock_irqsave(&p->pi_lock, *flags);
330 rq = task_rq(p);
331 raw_spin_lock(&rq->lock);
332 if (likely(rq == task_rq(p)))
333 return rq;
334 raw_spin_unlock(&rq->lock);
335 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
336 }
337}
338
339static void __task_rq_unlock(struct rq *rq)
340 __releases(rq->lock)
341{
342 raw_spin_unlock(&rq->lock);
343}
344
345static inline void
346task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
347 __releases(rq->lock)
348 __releases(p->pi_lock)
349{
350 raw_spin_unlock(&rq->lock);
351 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
352}
353
354/*
355 * this_rq_lock - lock this runqueue and disable interrupts.
356 */
357static struct rq *this_rq_lock(void)
358 __acquires(rq->lock)
359{
360 struct rq *rq;
361
362 local_irq_disable();
363 rq = this_rq();
364 raw_spin_lock(&rq->lock);
365
366 return rq;
367}
368
369#ifdef CONFIG_SCHED_HRTICK
370/*
371 * Use HR-timers to deliver accurate preemption points.
372 */
373
374static void hrtick_clear(struct rq *rq)
375{
376 if (hrtimer_active(&rq->hrtick_timer))
377 hrtimer_cancel(&rq->hrtick_timer);
378}
379
380/*
381 * High-resolution timer tick.
382 * Runs from hardirq context with interrupts disabled.
383 */
384static enum hrtimer_restart hrtick(struct hrtimer *timer)
385{
386 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
387
388 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
389
390 raw_spin_lock(&rq->lock);
391 update_rq_clock(rq);
392 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
393 raw_spin_unlock(&rq->lock);
394
395 return HRTIMER_NORESTART;
396}
397
398#ifdef CONFIG_SMP
399
400static int __hrtick_restart(struct rq *rq)
401{
402 struct hrtimer *timer = &rq->hrtick_timer;
403 ktime_t time = hrtimer_get_softexpires(timer);
404
405 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
406}
407
408/*
409 * called from hardirq (IPI) context
410 */
411static void __hrtick_start(void *arg)
412{
413 struct rq *rq = arg;
414
415 raw_spin_lock(&rq->lock);
416 __hrtick_restart(rq);
417 rq->hrtick_csd_pending = 0;
418 raw_spin_unlock(&rq->lock);
419}
420
421/*
422 * Called to set the hrtick timer state.
423 *
424 * called with rq->lock held and irqs disabled
425 */
426void hrtick_start(struct rq *rq, u64 delay)
427{
428 struct hrtimer *timer = &rq->hrtick_timer;
429 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
430
431 hrtimer_set_expires(timer, time);
432
433 if (rq == this_rq()) {
434 __hrtick_restart(rq);
435 } else if (!rq->hrtick_csd_pending) {
436 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
437 rq->hrtick_csd_pending = 1;
438 }
439}
440
441static int
442hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
443{
444 int cpu = (int)(long)hcpu;
445
446 switch (action) {
447 case CPU_UP_CANCELED:
448 case CPU_UP_CANCELED_FROZEN:
449 case CPU_DOWN_PREPARE:
450 case CPU_DOWN_PREPARE_FROZEN:
451 case CPU_DEAD:
452 case CPU_DEAD_FROZEN:
453 hrtick_clear(cpu_rq(cpu));
454 return NOTIFY_OK;
455 }
456
457 return NOTIFY_DONE;
458}
459
460static __init void init_hrtick(void)
461{
462 hotcpu_notifier(hotplug_hrtick, 0);
463}
464#else
465/*
466 * Called to set the hrtick timer state.
467 *
468 * called with rq->lock held and irqs disabled
469 */
470void hrtick_start(struct rq *rq, u64 delay)
471{
472 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
473 HRTIMER_MODE_REL_PINNED, 0);
474}
475
476static inline void init_hrtick(void)
477{
478}
479#endif /* CONFIG_SMP */
480
481static void init_rq_hrtick(struct rq *rq)
482{
483#ifdef CONFIG_SMP
484 rq->hrtick_csd_pending = 0;
485
486 rq->hrtick_csd.flags = 0;
487 rq->hrtick_csd.func = __hrtick_start;
488 rq->hrtick_csd.info = rq;
489#endif
490
491 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
492 rq->hrtick_timer.function = hrtick;
493}
494#else /* CONFIG_SCHED_HRTICK */
495static inline void hrtick_clear(struct rq *rq)
496{
497}
498
499static inline void init_rq_hrtick(struct rq *rq)
500{
501}
502
503static inline void init_hrtick(void)
504{
505}
506#endif /* CONFIG_SCHED_HRTICK */
507
508/*
509 * resched_task - mark a task 'to be rescheduled now'.
510 *
511 * On UP this means the setting of the need_resched flag, on SMP it
512 * might also involve a cross-CPU call to trigger the scheduler on
513 * the target CPU.
514 */
515void resched_task(struct task_struct *p)
516{
517 int cpu;
518
519 lockdep_assert_held(&task_rq(p)->lock);
520
521 if (test_tsk_need_resched(p))
522 return;
523
524 set_tsk_need_resched(p);
525
526 cpu = task_cpu(p);
527 if (cpu == smp_processor_id()) {
528 set_preempt_need_resched();
529 return;
530 }
531
532 /* NEED_RESCHED must be visible before we test polling */
533 smp_mb();
534 if (!tsk_is_polling(p))
535 smp_send_reschedule(cpu);
536}
537
538void resched_cpu(int cpu)
539{
540 struct rq *rq = cpu_rq(cpu);
541 unsigned long flags;
542
543 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
544 return;
545 resched_task(cpu_curr(cpu));
546 raw_spin_unlock_irqrestore(&rq->lock, flags);
547}
548
549#ifdef CONFIG_SMP
550#ifdef CONFIG_NO_HZ_COMMON
551/*
552 * In the semi idle case, use the nearest busy cpu for migrating timers
553 * from an idle cpu. This is good for power-savings.
554 *
555 * We don't do similar optimization for completely idle system, as
556 * selecting an idle cpu will add more delays to the timers than intended
557 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
558 */
559int get_nohz_timer_target(int pinned)
560{
561 int cpu = smp_processor_id();
562 int i;
563 struct sched_domain *sd;
564
565 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
566 return cpu;
567
568 rcu_read_lock();
569 for_each_domain(cpu, sd) {
570 for_each_cpu(i, sched_domain_span(sd)) {
571 if (!idle_cpu(i)) {
572 cpu = i;
573 goto unlock;
574 }
575 }
576 }
577unlock:
578 rcu_read_unlock();
579 return cpu;
580}
581/*
582 * When add_timer_on() enqueues a timer into the timer wheel of an
583 * idle CPU then this timer might expire before the next timer event
584 * which is scheduled to wake up that CPU. In case of a completely
585 * idle system the next event might even be infinite time into the
586 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
587 * leaves the inner idle loop so the newly added timer is taken into
588 * account when the CPU goes back to idle and evaluates the timer
589 * wheel for the next timer event.
590 */
591static void wake_up_idle_cpu(int cpu)
592{
593 struct rq *rq = cpu_rq(cpu);
594
595 if (cpu == smp_processor_id())
596 return;
597
598 /*
599 * This is safe, as this function is called with the timer
600 * wheel base lock of (cpu) held. When the CPU is on the way
601 * to idle and has not yet set rq->curr to idle then it will
602 * be serialized on the timer wheel base lock and take the new
603 * timer into account automatically.
604 */
605 if (rq->curr != rq->idle)
606 return;
607
608 /*
609 * We can set TIF_RESCHED on the idle task of the other CPU
610 * lockless. The worst case is that the other CPU runs the
611 * idle task through an additional NOOP schedule()
612 */
613 set_tsk_need_resched(rq->idle);
614
615 /* NEED_RESCHED must be visible before we test polling */
616 smp_mb();
617 if (!tsk_is_polling(rq->idle))
618 smp_send_reschedule(cpu);
619}
620
621static bool wake_up_full_nohz_cpu(int cpu)
622{
623 if (tick_nohz_full_cpu(cpu)) {
624 if (cpu != smp_processor_id() ||
625 tick_nohz_tick_stopped())
626 smp_send_reschedule(cpu);
627 return true;
628 }
629
630 return false;
631}
632
633void wake_up_nohz_cpu(int cpu)
634{
635 if (!wake_up_full_nohz_cpu(cpu))
636 wake_up_idle_cpu(cpu);
637}
638
639static inline bool got_nohz_idle_kick(void)
640{
641 int cpu = smp_processor_id();
642
643 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
644 return false;
645
646 if (idle_cpu(cpu) && !need_resched())
647 return true;
648
649 /*
650 * We can't run Idle Load Balance on this CPU for this time so we
651 * cancel it and clear NOHZ_BALANCE_KICK
652 */
653 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
654 return false;
655}
656
657#else /* CONFIG_NO_HZ_COMMON */
658
659static inline bool got_nohz_idle_kick(void)
660{
661 return false;
662}
663
664#endif /* CONFIG_NO_HZ_COMMON */
665
666#ifdef CONFIG_NO_HZ_FULL
667bool sched_can_stop_tick(void)
668{
669 struct rq *rq;
670
671 rq = this_rq();
672
673 /* Make sure rq->nr_running update is visible after the IPI */
674 smp_rmb();
675
676 /* More than one running task need preemption */
677 if (rq->nr_running > 1)
678 return false;
679
680 return true;
681}
682#endif /* CONFIG_NO_HZ_FULL */
683
684void sched_avg_update(struct rq *rq)
685{
686 s64 period = sched_avg_period();
687
688 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
689 /*
690 * Inline assembly required to prevent the compiler
691 * optimising this loop into a divmod call.
692 * See __iter_div_u64_rem() for another example of this.
693 */
694 asm("" : "+rm" (rq->age_stamp));
695 rq->age_stamp += period;
696 rq->rt_avg /= 2;
697 }
698}
699
700#endif /* CONFIG_SMP */
701
702#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
703 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
704/*
705 * Iterate task_group tree rooted at *from, calling @down when first entering a
706 * node and @up when leaving it for the final time.
707 *
708 * Caller must hold rcu_lock or sufficient equivalent.
709 */
710int walk_tg_tree_from(struct task_group *from,
711 tg_visitor down, tg_visitor up, void *data)
712{
713 struct task_group *parent, *child;
714 int ret;
715
716 parent = from;
717
718down:
719 ret = (*down)(parent, data);
720 if (ret)
721 goto out;
722 list_for_each_entry_rcu(child, &parent->children, siblings) {
723 parent = child;
724 goto down;
725
726up:
727 continue;
728 }
729 ret = (*up)(parent, data);
730 if (ret || parent == from)
731 goto out;
732
733 child = parent;
734 parent = parent->parent;
735 if (parent)
736 goto up;
737out:
738 return ret;
739}
740
741int tg_nop(struct task_group *tg, void *data)
742{
743 return 0;
744}
745#endif
746
747static void set_load_weight(struct task_struct *p)
748{
749 int prio = p->static_prio - MAX_RT_PRIO;
750 struct load_weight *load = &p->se.load;
751
752 /*
753 * SCHED_IDLE tasks get minimal weight:
754 */
755 if (p->policy == SCHED_IDLE) {
756 load->weight = scale_load(WEIGHT_IDLEPRIO);
757 load->inv_weight = WMULT_IDLEPRIO;
758 return;
759 }
760
761 load->weight = scale_load(prio_to_weight[prio]);
762 load->inv_weight = prio_to_wmult[prio];
763}
764
765static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
766{
767 update_rq_clock(rq);
768 sched_info_queued(rq, p);
769 p->sched_class->enqueue_task(rq, p, flags);
770}
771
772static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
773{
774 update_rq_clock(rq);
775 sched_info_dequeued(rq, p);
776 p->sched_class->dequeue_task(rq, p, flags);
777}
778
779void activate_task(struct rq *rq, struct task_struct *p, int flags)
780{
781 if (task_contributes_to_load(p))
782 rq->nr_uninterruptible--;
783
784 enqueue_task(rq, p, flags);
785}
786
787void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
788{
789 if (task_contributes_to_load(p))
790 rq->nr_uninterruptible++;
791
792 dequeue_task(rq, p, flags);
793}
794
795static void update_rq_clock_task(struct rq *rq, s64 delta)
796{
797/*
798 * In theory, the compile should just see 0 here, and optimize out the call
799 * to sched_rt_avg_update. But I don't trust it...
800 */
801#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
802 s64 steal = 0, irq_delta = 0;
803#endif
804#ifdef CONFIG_IRQ_TIME_ACCOUNTING
805 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
806
807 /*
808 * Since irq_time is only updated on {soft,}irq_exit, we might run into
809 * this case when a previous update_rq_clock() happened inside a
810 * {soft,}irq region.
811 *
812 * When this happens, we stop ->clock_task and only update the
813 * prev_irq_time stamp to account for the part that fit, so that a next
814 * update will consume the rest. This ensures ->clock_task is
815 * monotonic.
816 *
817 * It does however cause some slight miss-attribution of {soft,}irq
818 * time, a more accurate solution would be to update the irq_time using
819 * the current rq->clock timestamp, except that would require using
820 * atomic ops.
821 */
822 if (irq_delta > delta)
823 irq_delta = delta;
824
825 rq->prev_irq_time += irq_delta;
826 delta -= irq_delta;
827#endif
828#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
829 if (static_key_false((¶virt_steal_rq_enabled))) {
830 steal = paravirt_steal_clock(cpu_of(rq));
831 steal -= rq->prev_steal_time_rq;
832
833 if (unlikely(steal > delta))
834 steal = delta;
835
836 rq->prev_steal_time_rq += steal;
837 delta -= steal;
838 }
839#endif
840
841 rq->clock_task += delta;
842
843#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
844 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
845 sched_rt_avg_update(rq, irq_delta + steal);
846#endif
847}
848
849void sched_set_stop_task(int cpu, struct task_struct *stop)
850{
851 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
852 struct task_struct *old_stop = cpu_rq(cpu)->stop;
853
854 if (stop) {
855 /*
856 * Make it appear like a SCHED_FIFO task, its something
857 * userspace knows about and won't get confused about.
858 *
859 * Also, it will make PI more or less work without too
860 * much confusion -- but then, stop work should not
861 * rely on PI working anyway.
862 */
863 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
864
865 stop->sched_class = &stop_sched_class;
866 }
867
868 cpu_rq(cpu)->stop = stop;
869
870 if (old_stop) {
871 /*
872 * Reset it back to a normal scheduling class so that
873 * it can die in pieces.
874 */
875 old_stop->sched_class = &rt_sched_class;
876 }
877}
878
879/*
880 * __normal_prio - return the priority that is based on the static prio
881 */
882static inline int __normal_prio(struct task_struct *p)
883{
884 return p->static_prio;
885}
886
887/*
888 * Calculate the expected normal priority: i.e. priority
889 * without taking RT-inheritance into account. Might be
890 * boosted by interactivity modifiers. Changes upon fork,
891 * setprio syscalls, and whenever the interactivity
892 * estimator recalculates.
893 */
894static inline int normal_prio(struct task_struct *p)
895{
896 int prio;
897
898 if (task_has_dl_policy(p))
899 prio = MAX_DL_PRIO-1;
900 else if (task_has_rt_policy(p))
901 prio = MAX_RT_PRIO-1 - p->rt_priority;
902 else
903 prio = __normal_prio(p);
904 return prio;
905}
906
907/*
908 * Calculate the current priority, i.e. the priority
909 * taken into account by the scheduler. This value might
910 * be boosted by RT tasks, or might be boosted by
911 * interactivity modifiers. Will be RT if the task got
912 * RT-boosted. If not then it returns p->normal_prio.
913 */
914static int effective_prio(struct task_struct *p)
915{
916 p->normal_prio = normal_prio(p);
917 /*
918 * If we are RT tasks or we were boosted to RT priority,
919 * keep the priority unchanged. Otherwise, update priority
920 * to the normal priority:
921 */
922 if (!rt_prio(p->prio))
923 return p->normal_prio;
924 return p->prio;
925}
926
927/**
928 * task_curr - is this task currently executing on a CPU?
929 * @p: the task in question.
930 *
931 * Return: 1 if the task is currently executing. 0 otherwise.
932 */
933inline int task_curr(const struct task_struct *p)
934{
935 return cpu_curr(task_cpu(p)) == p;
936}
937
938static inline void check_class_changed(struct rq *rq, struct task_struct *p,
939 const struct sched_class *prev_class,
940 int oldprio)
941{
942 if (prev_class != p->sched_class) {
943 if (prev_class->switched_from)
944 prev_class->switched_from(rq, p);
945 p->sched_class->switched_to(rq, p);
946 } else if (oldprio != p->prio || dl_task(p))
947 p->sched_class->prio_changed(rq, p, oldprio);
948}
949
950void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
951{
952 const struct sched_class *class;
953
954 if (p->sched_class == rq->curr->sched_class) {
955 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
956 } else {
957 for_each_class(class) {
958 if (class == rq->curr->sched_class)
959 break;
960 if (class == p->sched_class) {
961 resched_task(rq->curr);
962 break;
963 }
964 }
965 }
966
967 /*
968 * A queue event has occurred, and we're going to schedule. In
969 * this case, we can save a useless back to back clock update.
970 */
971 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
972 rq->skip_clock_update = 1;
973}
974
975#ifdef CONFIG_SMP
976void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
977{
978#ifdef CONFIG_SCHED_DEBUG
979 /*
980 * We should never call set_task_cpu() on a blocked task,
981 * ttwu() will sort out the placement.
982 */
983 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
984 !(task_preempt_count(p) & PREEMPT_ACTIVE));
985
986#ifdef CONFIG_LOCKDEP
987 /*
988 * The caller should hold either p->pi_lock or rq->lock, when changing
989 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
990 *
991 * sched_move_task() holds both and thus holding either pins the cgroup,
992 * see task_group().
993 *
994 * Furthermore, all task_rq users should acquire both locks, see
995 * task_rq_lock().
996 */
997 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
998 lockdep_is_held(&task_rq(p)->lock)));
999#endif
1000#endif
1001
1002 trace_sched_migrate_task(p, new_cpu);
1003
1004 if (task_cpu(p) != new_cpu) {
1005 if (p->sched_class->migrate_task_rq)
1006 p->sched_class->migrate_task_rq(p, new_cpu);
1007 p->se.nr_migrations++;
1008 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1009 }
1010
1011 __set_task_cpu(p, new_cpu);
1012}
1013
1014static void __migrate_swap_task(struct task_struct *p, int cpu)
1015{
1016 if (p->on_rq) {
1017 struct rq *src_rq, *dst_rq;
1018
1019 src_rq = task_rq(p);
1020 dst_rq = cpu_rq(cpu);
1021
1022 deactivate_task(src_rq, p, 0);
1023 set_task_cpu(p, cpu);
1024 activate_task(dst_rq, p, 0);
1025 check_preempt_curr(dst_rq, p, 0);
1026 } else {
1027 /*
1028 * Task isn't running anymore; make it appear like we migrated
1029 * it before it went to sleep. This means on wakeup we make the
1030 * previous cpu our targer instead of where it really is.
1031 */
1032 p->wake_cpu = cpu;
1033 }
1034}
1035
1036struct migration_swap_arg {
1037 struct task_struct *src_task, *dst_task;
1038 int src_cpu, dst_cpu;
1039};
1040
1041static int migrate_swap_stop(void *data)
1042{
1043 struct migration_swap_arg *arg = data;
1044 struct rq *src_rq, *dst_rq;
1045 int ret = -EAGAIN;
1046
1047 src_rq = cpu_rq(arg->src_cpu);
1048 dst_rq = cpu_rq(arg->dst_cpu);
1049
1050 double_raw_lock(&arg->src_task->pi_lock,
1051 &arg->dst_task->pi_lock);
1052 double_rq_lock(src_rq, dst_rq);
1053 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1054 goto unlock;
1055
1056 if (task_cpu(arg->src_task) != arg->src_cpu)
1057 goto unlock;
1058
1059 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1060 goto unlock;
1061
1062 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1063 goto unlock;
1064
1065 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1066 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1067
1068 ret = 0;
1069
1070unlock:
1071 double_rq_unlock(src_rq, dst_rq);
1072 raw_spin_unlock(&arg->dst_task->pi_lock);
1073 raw_spin_unlock(&arg->src_task->pi_lock);
1074
1075 return ret;
1076}
1077
1078/*
1079 * Cross migrate two tasks
1080 */
1081int migrate_swap(struct task_struct *cur, struct task_struct *p)
1082{
1083 struct migration_swap_arg arg;
1084 int ret = -EINVAL;
1085
1086 arg = (struct migration_swap_arg){
1087 .src_task = cur,
1088 .src_cpu = task_cpu(cur),
1089 .dst_task = p,
1090 .dst_cpu = task_cpu(p),
1091 };
1092
1093 if (arg.src_cpu == arg.dst_cpu)
1094 goto out;
1095
1096 /*
1097 * These three tests are all lockless; this is OK since all of them
1098 * will be re-checked with proper locks held further down the line.
1099 */
1100 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1101 goto out;
1102
1103 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1104 goto out;
1105
1106 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1107 goto out;
1108
1109 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1110 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1111
1112out:
1113 return ret;
1114}
1115
1116struct migration_arg {
1117 struct task_struct *task;
1118 int dest_cpu;
1119};
1120
1121static int migration_cpu_stop(void *data);
1122
1123/*
1124 * wait_task_inactive - wait for a thread to unschedule.
1125 *
1126 * If @match_state is nonzero, it's the @p->state value just checked and
1127 * not expected to change. If it changes, i.e. @p might have woken up,
1128 * then return zero. When we succeed in waiting for @p to be off its CPU,
1129 * we return a positive number (its total switch count). If a second call
1130 * a short while later returns the same number, the caller can be sure that
1131 * @p has remained unscheduled the whole time.
1132 *
1133 * The caller must ensure that the task *will* unschedule sometime soon,
1134 * else this function might spin for a *long* time. This function can't
1135 * be called with interrupts off, or it may introduce deadlock with
1136 * smp_call_function() if an IPI is sent by the same process we are
1137 * waiting to become inactive.
1138 */
1139unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1140{
1141 unsigned long flags;
1142 int running, on_rq;
1143 unsigned long ncsw;
1144 struct rq *rq;
1145
1146 for (;;) {
1147 /*
1148 * We do the initial early heuristics without holding
1149 * any task-queue locks at all. We'll only try to get
1150 * the runqueue lock when things look like they will
1151 * work out!
1152 */
1153 rq = task_rq(p);
1154
1155 /*
1156 * If the task is actively running on another CPU
1157 * still, just relax and busy-wait without holding
1158 * any locks.
1159 *
1160 * NOTE! Since we don't hold any locks, it's not
1161 * even sure that "rq" stays as the right runqueue!
1162 * But we don't care, since "task_running()" will
1163 * return false if the runqueue has changed and p
1164 * is actually now running somewhere else!
1165 */
1166 while (task_running(rq, p)) {
1167 if (match_state && unlikely(p->state != match_state))
1168 return 0;
1169 cpu_relax();
1170 }
1171
1172 /*
1173 * Ok, time to look more closely! We need the rq
1174 * lock now, to be *sure*. If we're wrong, we'll
1175 * just go back and repeat.
1176 */
1177 rq = task_rq_lock(p, &flags);
1178 trace_sched_wait_task(p);
1179 running = task_running(rq, p);
1180 on_rq = p->on_rq;
1181 ncsw = 0;
1182 if (!match_state || p->state == match_state)
1183 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1184 task_rq_unlock(rq, p, &flags);
1185
1186 /*
1187 * If it changed from the expected state, bail out now.
1188 */
1189 if (unlikely(!ncsw))
1190 break;
1191
1192 /*
1193 * Was it really running after all now that we
1194 * checked with the proper locks actually held?
1195 *
1196 * Oops. Go back and try again..
1197 */
1198 if (unlikely(running)) {
1199 cpu_relax();
1200 continue;
1201 }
1202
1203 /*
1204 * It's not enough that it's not actively running,
1205 * it must be off the runqueue _entirely_, and not
1206 * preempted!
1207 *
1208 * So if it was still runnable (but just not actively
1209 * running right now), it's preempted, and we should
1210 * yield - it could be a while.
1211 */
1212 if (unlikely(on_rq)) {
1213 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1214
1215 set_current_state(TASK_UNINTERRUPTIBLE);
1216 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1217 continue;
1218 }
1219
1220 /*
1221 * Ahh, all good. It wasn't running, and it wasn't
1222 * runnable, which means that it will never become
1223 * running in the future either. We're all done!
1224 */
1225 break;
1226 }
1227
1228 return ncsw;
1229}
1230
1231/***
1232 * kick_process - kick a running thread to enter/exit the kernel
1233 * @p: the to-be-kicked thread
1234 *
1235 * Cause a process which is running on another CPU to enter
1236 * kernel-mode, without any delay. (to get signals handled.)
1237 *
1238 * NOTE: this function doesn't have to take the runqueue lock,
1239 * because all it wants to ensure is that the remote task enters
1240 * the kernel. If the IPI races and the task has been migrated
1241 * to another CPU then no harm is done and the purpose has been
1242 * achieved as well.
1243 */
1244void kick_process(struct task_struct *p)
1245{
1246 int cpu;
1247
1248 preempt_disable();
1249 cpu = task_cpu(p);
1250 if ((cpu != smp_processor_id()) && task_curr(p))
1251 smp_send_reschedule(cpu);
1252 preempt_enable();
1253}
1254EXPORT_SYMBOL_GPL(kick_process);
1255#endif /* CONFIG_SMP */
1256
1257#ifdef CONFIG_SMP
1258/*
1259 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1260 */
1261static int select_fallback_rq(int cpu, struct task_struct *p)
1262{
1263 int nid = cpu_to_node(cpu);
1264 const struct cpumask *nodemask = NULL;
1265 enum { cpuset, possible, fail } state = cpuset;
1266 int dest_cpu;
1267
1268 /*
1269 * If the node that the cpu is on has been offlined, cpu_to_node()
1270 * will return -1. There is no cpu on the node, and we should
1271 * select the cpu on the other node.
1272 */
1273 if (nid != -1) {
1274 nodemask = cpumask_of_node(nid);
1275
1276 /* Look for allowed, online CPU in same node. */
1277 for_each_cpu(dest_cpu, nodemask) {
1278 if (!cpu_online(dest_cpu))
1279 continue;
1280 if (!cpu_active(dest_cpu))
1281 continue;
1282 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1283 return dest_cpu;
1284 }
1285 }
1286
1287 for (;;) {
1288 /* Any allowed, online CPU? */
1289 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1290 if (!cpu_online(dest_cpu))
1291 continue;
1292 if (!cpu_active(dest_cpu))
1293 continue;
1294 goto out;
1295 }
1296
1297 switch (state) {
1298 case cpuset:
1299 /* No more Mr. Nice Guy. */
1300 cpuset_cpus_allowed_fallback(p);
1301 state = possible;
1302 break;
1303
1304 case possible:
1305 do_set_cpus_allowed(p, cpu_possible_mask);
1306 state = fail;
1307 break;
1308
1309 case fail:
1310 BUG();
1311 break;
1312 }
1313 }
1314
1315out:
1316 if (state != cpuset) {
1317 /*
1318 * Don't tell them about moving exiting tasks or
1319 * kernel threads (both mm NULL), since they never
1320 * leave kernel.
1321 */
1322 if (p->mm && printk_ratelimit()) {
1323 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1324 task_pid_nr(p), p->comm, cpu);
1325 }
1326 }
1327
1328 return dest_cpu;
1329}
1330
1331/*
1332 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1333 */
1334static inline
1335int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1336{
1337 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1338
1339 /*
1340 * In order not to call set_task_cpu() on a blocking task we need
1341 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1342 * cpu.
1343 *
1344 * Since this is common to all placement strategies, this lives here.
1345 *
1346 * [ this allows ->select_task() to simply return task_cpu(p) and
1347 * not worry about this generic constraint ]
1348 */
1349 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1350 !cpu_online(cpu)))
1351 cpu = select_fallback_rq(task_cpu(p), p);
1352
1353 return cpu;
1354}
1355
1356static void update_avg(u64 *avg, u64 sample)
1357{
1358 s64 diff = sample - *avg;
1359 *avg += diff >> 3;
1360}
1361#endif
1362
1363static void
1364ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1365{
1366#ifdef CONFIG_SCHEDSTATS
1367 struct rq *rq = this_rq();
1368
1369#ifdef CONFIG_SMP
1370 int this_cpu = smp_processor_id();
1371
1372 if (cpu == this_cpu) {
1373 schedstat_inc(rq, ttwu_local);
1374 schedstat_inc(p, se.statistics.nr_wakeups_local);
1375 } else {
1376 struct sched_domain *sd;
1377
1378 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1379 rcu_read_lock();
1380 for_each_domain(this_cpu, sd) {
1381 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1382 schedstat_inc(sd, ttwu_wake_remote);
1383 break;
1384 }
1385 }
1386 rcu_read_unlock();
1387 }
1388
1389 if (wake_flags & WF_MIGRATED)
1390 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1391
1392#endif /* CONFIG_SMP */
1393
1394 schedstat_inc(rq, ttwu_count);
1395 schedstat_inc(p, se.statistics.nr_wakeups);
1396
1397 if (wake_flags & WF_SYNC)
1398 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1399
1400#endif /* CONFIG_SCHEDSTATS */
1401}
1402
1403static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1404{
1405 activate_task(rq, p, en_flags);
1406 p->on_rq = 1;
1407
1408 /* if a worker is waking up, notify workqueue */
1409 if (p->flags & PF_WQ_WORKER)
1410 wq_worker_waking_up(p, cpu_of(rq));
1411}
1412
1413/*
1414 * Mark the task runnable and perform wakeup-preemption.
1415 */
1416static void
1417ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1418{
1419 check_preempt_curr(rq, p, wake_flags);
1420 trace_sched_wakeup(p, true);
1421
1422 p->state = TASK_RUNNING;
1423#ifdef CONFIG_SMP
1424 if (p->sched_class->task_woken)
1425 p->sched_class->task_woken(rq, p);
1426
1427 if (rq->idle_stamp) {
1428 u64 delta = rq_clock(rq) - rq->idle_stamp;
1429 u64 max = 2*rq->max_idle_balance_cost;
1430
1431 update_avg(&rq->avg_idle, delta);
1432
1433 if (rq->avg_idle > max)
1434 rq->avg_idle = max;
1435
1436 rq->idle_stamp = 0;
1437 }
1438#endif
1439}
1440
1441static void
1442ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1443{
1444#ifdef CONFIG_SMP
1445 if (p->sched_contributes_to_load)
1446 rq->nr_uninterruptible--;
1447#endif
1448
1449 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1450 ttwu_do_wakeup(rq, p, wake_flags);
1451}
1452
1453/*
1454 * Called in case the task @p isn't fully descheduled from its runqueue,
1455 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1456 * since all we need to do is flip p->state to TASK_RUNNING, since
1457 * the task is still ->on_rq.
1458 */
1459static int ttwu_remote(struct task_struct *p, int wake_flags)
1460{
1461 struct rq *rq;
1462 int ret = 0;
1463
1464 rq = __task_rq_lock(p);
1465 if (p->on_rq) {
1466 /* check_preempt_curr() may use rq clock */
1467 update_rq_clock(rq);
1468 ttwu_do_wakeup(rq, p, wake_flags);
1469 ret = 1;
1470 }
1471 __task_rq_unlock(rq);
1472
1473 return ret;
1474}
1475
1476#ifdef CONFIG_SMP
1477static void sched_ttwu_pending(void)
1478{
1479 struct rq *rq = this_rq();
1480 struct llist_node *llist = llist_del_all(&rq->wake_list);
1481 struct task_struct *p;
1482
1483 raw_spin_lock(&rq->lock);
1484
1485 while (llist) {
1486 p = llist_entry(llist, struct task_struct, wake_entry);
1487 llist = llist_next(llist);
1488 ttwu_do_activate(rq, p, 0);
1489 }
1490
1491 raw_spin_unlock(&rq->lock);
1492}
1493
1494void scheduler_ipi(void)
1495{
1496 /*
1497 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1498 * TIF_NEED_RESCHED remotely (for the first time) will also send
1499 * this IPI.
1500 */
1501 preempt_fold_need_resched();
1502
1503 if (llist_empty(&this_rq()->wake_list)
1504 && !tick_nohz_full_cpu(smp_processor_id())
1505 && !got_nohz_idle_kick())
1506 return;
1507
1508 /*
1509 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1510 * traditionally all their work was done from the interrupt return
1511 * path. Now that we actually do some work, we need to make sure
1512 * we do call them.
1513 *
1514 * Some archs already do call them, luckily irq_enter/exit nest
1515 * properly.
1516 *
1517 * Arguably we should visit all archs and update all handlers,
1518 * however a fair share of IPIs are still resched only so this would
1519 * somewhat pessimize the simple resched case.
1520 */
1521 irq_enter();
1522 tick_nohz_full_check();
1523 sched_ttwu_pending();
1524
1525 /*
1526 * Check if someone kicked us for doing the nohz idle load balance.
1527 */
1528 if (unlikely(got_nohz_idle_kick())) {
1529 this_rq()->idle_balance = 1;
1530 raise_softirq_irqoff(SCHED_SOFTIRQ);
1531 }
1532 irq_exit();
1533}
1534
1535static void ttwu_queue_remote(struct task_struct *p, int cpu)
1536{
1537 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1538 smp_send_reschedule(cpu);
1539}
1540
1541bool cpus_share_cache(int this_cpu, int that_cpu)
1542{
1543 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1544}
1545#endif /* CONFIG_SMP */
1546
1547static void ttwu_queue(struct task_struct *p, int cpu)
1548{
1549 struct rq *rq = cpu_rq(cpu);
1550
1551#if defined(CONFIG_SMP)
1552 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1553 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1554 ttwu_queue_remote(p, cpu);
1555 return;
1556 }
1557#endif
1558
1559 raw_spin_lock(&rq->lock);
1560 ttwu_do_activate(rq, p, 0);
1561 raw_spin_unlock(&rq->lock);
1562}
1563
1564/**
1565 * try_to_wake_up - wake up a thread
1566 * @p: the thread to be awakened
1567 * @state: the mask of task states that can be woken
1568 * @wake_flags: wake modifier flags (WF_*)
1569 *
1570 * Put it on the run-queue if it's not already there. The "current"
1571 * thread is always on the run-queue (except when the actual
1572 * re-schedule is in progress), and as such you're allowed to do
1573 * the simpler "current->state = TASK_RUNNING" to mark yourself
1574 * runnable without the overhead of this.
1575 *
1576 * Return: %true if @p was woken up, %false if it was already running.
1577 * or @state didn't match @p's state.
1578 */
1579static int
1580try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1581{
1582 unsigned long flags;
1583 int cpu, success = 0;
1584
1585 /*
1586 * If we are going to wake up a thread waiting for CONDITION we
1587 * need to ensure that CONDITION=1 done by the caller can not be
1588 * reordered with p->state check below. This pairs with mb() in
1589 * set_current_state() the waiting thread does.
1590 */
1591 smp_mb__before_spinlock();
1592 raw_spin_lock_irqsave(&p->pi_lock, flags);
1593 if (!(p->state & state))
1594 goto out;
1595
1596 success = 1; /* we're going to change ->state */
1597 cpu = task_cpu(p);
1598
1599 if (p->on_rq && ttwu_remote(p, wake_flags))
1600 goto stat;
1601
1602#ifdef CONFIG_SMP
1603 /*
1604 * If the owning (remote) cpu is still in the middle of schedule() with
1605 * this task as prev, wait until its done referencing the task.
1606 */
1607 while (p->on_cpu)
1608 cpu_relax();
1609 /*
1610 * Pairs with the smp_wmb() in finish_lock_switch().
1611 */
1612 smp_rmb();
1613
1614 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1615 p->state = TASK_WAKING;
1616
1617 if (p->sched_class->task_waking)
1618 p->sched_class->task_waking(p);
1619
1620 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1621 if (task_cpu(p) != cpu) {
1622 wake_flags |= WF_MIGRATED;
1623 set_task_cpu(p, cpu);
1624 }
1625#endif /* CONFIG_SMP */
1626
1627 ttwu_queue(p, cpu);
1628stat:
1629 ttwu_stat(p, cpu, wake_flags);
1630out:
1631 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1632
1633 return success;
1634}
1635
1636/**
1637 * try_to_wake_up_local - try to wake up a local task with rq lock held
1638 * @p: the thread to be awakened
1639 *
1640 * Put @p on the run-queue if it's not already there. The caller must
1641 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1642 * the current task.
1643 */
1644static void try_to_wake_up_local(struct task_struct *p)
1645{
1646 struct rq *rq = task_rq(p);
1647
1648 if (WARN_ON_ONCE(rq != this_rq()) ||
1649 WARN_ON_ONCE(p == current))
1650 return;
1651
1652 lockdep_assert_held(&rq->lock);
1653
1654 if (!raw_spin_trylock(&p->pi_lock)) {
1655 raw_spin_unlock(&rq->lock);
1656 raw_spin_lock(&p->pi_lock);
1657 raw_spin_lock(&rq->lock);
1658 }
1659
1660 if (!(p->state & TASK_NORMAL))
1661 goto out;
1662
1663 if (!p->on_rq)
1664 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1665
1666 ttwu_do_wakeup(rq, p, 0);
1667 ttwu_stat(p, smp_processor_id(), 0);
1668out:
1669 raw_spin_unlock(&p->pi_lock);
1670}
1671
1672/**
1673 * wake_up_process - Wake up a specific process
1674 * @p: The process to be woken up.
1675 *
1676 * Attempt to wake up the nominated process and move it to the set of runnable
1677 * processes.
1678 *
1679 * Return: 1 if the process was woken up, 0 if it was already running.
1680 *
1681 * It may be assumed that this function implies a write memory barrier before
1682 * changing the task state if and only if any tasks are woken up.
1683 */
1684int wake_up_process(struct task_struct *p)
1685{
1686 WARN_ON(task_is_stopped_or_traced(p));
1687 return try_to_wake_up(p, TASK_NORMAL, 0);
1688}
1689EXPORT_SYMBOL(wake_up_process);
1690
1691int wake_up_state(struct task_struct *p, unsigned int state)
1692{
1693 return try_to_wake_up(p, state, 0);
1694}
1695
1696/*
1697 * Perform scheduler related setup for a newly forked process p.
1698 * p is forked by current.
1699 *
1700 * __sched_fork() is basic setup used by init_idle() too:
1701 */
1702static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1703{
1704 p->on_rq = 0;
1705
1706 p->se.on_rq = 0;
1707 p->se.exec_start = 0;
1708 p->se.sum_exec_runtime = 0;
1709 p->se.prev_sum_exec_runtime = 0;
1710 p->se.nr_migrations = 0;
1711 p->se.vruntime = 0;
1712 INIT_LIST_HEAD(&p->se.group_node);
1713
1714#ifdef CONFIG_SCHEDSTATS
1715 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1716#endif
1717
1718 RB_CLEAR_NODE(&p->dl.rb_node);
1719 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1720 p->dl.dl_runtime = p->dl.runtime = 0;
1721 p->dl.dl_deadline = p->dl.deadline = 0;
1722 p->dl.dl_period = 0;
1723 p->dl.flags = 0;
1724
1725 INIT_LIST_HEAD(&p->rt.run_list);
1726
1727#ifdef CONFIG_PREEMPT_NOTIFIERS
1728 INIT_HLIST_HEAD(&p->preempt_notifiers);
1729#endif
1730
1731#ifdef CONFIG_NUMA_BALANCING
1732 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1733 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1734 p->mm->numa_scan_seq = 0;
1735 }
1736
1737 if (clone_flags & CLONE_VM)
1738 p->numa_preferred_nid = current->numa_preferred_nid;
1739 else
1740 p->numa_preferred_nid = -1;
1741
1742 p->node_stamp = 0ULL;
1743 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1744 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1745 p->numa_work.next = &p->numa_work;
1746 p->numa_faults_memory = NULL;
1747 p->numa_faults_buffer_memory = NULL;
1748 p->last_task_numa_placement = 0;
1749 p->last_sum_exec_runtime = 0;
1750
1751 INIT_LIST_HEAD(&p->numa_entry);
1752 p->numa_group = NULL;
1753#endif /* CONFIG_NUMA_BALANCING */
1754}
1755
1756#ifdef CONFIG_NUMA_BALANCING
1757#ifdef CONFIG_SCHED_DEBUG
1758void set_numabalancing_state(bool enabled)
1759{
1760 if (enabled)
1761 sched_feat_set("NUMA");
1762 else
1763 sched_feat_set("NO_NUMA");
1764}
1765#else
1766__read_mostly bool numabalancing_enabled;
1767
1768void set_numabalancing_state(bool enabled)
1769{
1770 numabalancing_enabled = enabled;
1771}
1772#endif /* CONFIG_SCHED_DEBUG */
1773
1774#ifdef CONFIG_PROC_SYSCTL
1775int sysctl_numa_balancing(struct ctl_table *table, int write,
1776 void __user *buffer, size_t *lenp, loff_t *ppos)
1777{
1778 struct ctl_table t;
1779 int err;
1780 int state = numabalancing_enabled;
1781
1782 if (write && !capable(CAP_SYS_ADMIN))
1783 return -EPERM;
1784
1785 t = *table;
1786 t.data = &state;
1787 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1788 if (err < 0)
1789 return err;
1790 if (write)
1791 set_numabalancing_state(state);
1792 return err;
1793}
1794#endif
1795#endif
1796
1797/*
1798 * fork()/clone()-time setup:
1799 */
1800int sched_fork(unsigned long clone_flags, struct task_struct *p)
1801{
1802 unsigned long flags;
1803 int cpu = get_cpu();
1804
1805 __sched_fork(clone_flags, p);
1806 /*
1807 * We mark the process as running here. This guarantees that
1808 * nobody will actually run it, and a signal or other external
1809 * event cannot wake it up and insert it on the runqueue either.
1810 */
1811 p->state = TASK_RUNNING;
1812
1813 /*
1814 * Make sure we do not leak PI boosting priority to the child.
1815 */
1816 p->prio = current->normal_prio;
1817
1818 /*
1819 * Revert to default priority/policy on fork if requested.
1820 */
1821 if (unlikely(p->sched_reset_on_fork)) {
1822 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1823 p->policy = SCHED_NORMAL;
1824 p->static_prio = NICE_TO_PRIO(0);
1825 p->rt_priority = 0;
1826 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1827 p->static_prio = NICE_TO_PRIO(0);
1828
1829 p->prio = p->normal_prio = __normal_prio(p);
1830 set_load_weight(p);
1831
1832 /*
1833 * We don't need the reset flag anymore after the fork. It has
1834 * fulfilled its duty:
1835 */
1836 p->sched_reset_on_fork = 0;
1837 }
1838
1839 if (dl_prio(p->prio)) {
1840 put_cpu();
1841 return -EAGAIN;
1842 } else if (rt_prio(p->prio)) {
1843 p->sched_class = &rt_sched_class;
1844 } else {
1845 p->sched_class = &fair_sched_class;
1846 }
1847
1848 if (p->sched_class->task_fork)
1849 p->sched_class->task_fork(p);
1850
1851 /*
1852 * The child is not yet in the pid-hash so no cgroup attach races,
1853 * and the cgroup is pinned to this child due to cgroup_fork()
1854 * is ran before sched_fork().
1855 *
1856 * Silence PROVE_RCU.
1857 */
1858 raw_spin_lock_irqsave(&p->pi_lock, flags);
1859 set_task_cpu(p, cpu);
1860 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1861
1862#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1863 if (likely(sched_info_on()))
1864 memset(&p->sched_info, 0, sizeof(p->sched_info));
1865#endif
1866#if defined(CONFIG_SMP)
1867 p->on_cpu = 0;
1868#endif
1869 init_task_preempt_count(p);
1870#ifdef CONFIG_SMP
1871 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1872 RB_CLEAR_NODE(&p->pushable_dl_tasks);
1873#endif
1874
1875 put_cpu();
1876 return 0;
1877}
1878
1879unsigned long to_ratio(u64 period, u64 runtime)
1880{
1881 if (runtime == RUNTIME_INF)
1882 return 1ULL << 20;
1883
1884 /*
1885 * Doing this here saves a lot of checks in all
1886 * the calling paths, and returning zero seems
1887 * safe for them anyway.
1888 */
1889 if (period == 0)
1890 return 0;
1891
1892 return div64_u64(runtime << 20, period);
1893}
1894
1895#ifdef CONFIG_SMP
1896inline struct dl_bw *dl_bw_of(int i)
1897{
1898 return &cpu_rq(i)->rd->dl_bw;
1899}
1900
1901static inline int dl_bw_cpus(int i)
1902{
1903 struct root_domain *rd = cpu_rq(i)->rd;
1904 int cpus = 0;
1905
1906 for_each_cpu_and(i, rd->span, cpu_active_mask)
1907 cpus++;
1908
1909 return cpus;
1910}
1911#else
1912inline struct dl_bw *dl_bw_of(int i)
1913{
1914 return &cpu_rq(i)->dl.dl_bw;
1915}
1916
1917static inline int dl_bw_cpus(int i)
1918{
1919 return 1;
1920}
1921#endif
1922
1923static inline
1924void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1925{
1926 dl_b->total_bw -= tsk_bw;
1927}
1928
1929static inline
1930void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1931{
1932 dl_b->total_bw += tsk_bw;
1933}
1934
1935static inline
1936bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1937{
1938 return dl_b->bw != -1 &&
1939 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1940}
1941
1942/*
1943 * We must be sure that accepting a new task (or allowing changing the
1944 * parameters of an existing one) is consistent with the bandwidth
1945 * constraints. If yes, this function also accordingly updates the currently
1946 * allocated bandwidth to reflect the new situation.
1947 *
1948 * This function is called while holding p's rq->lock.
1949 */
1950static int dl_overflow(struct task_struct *p, int policy,
1951 const struct sched_attr *attr)
1952{
1953
1954 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1955 u64 period = attr->sched_period ?: attr->sched_deadline;
1956 u64 runtime = attr->sched_runtime;
1957 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
1958 int cpus, err = -1;
1959
1960 if (new_bw == p->dl.dl_bw)
1961 return 0;
1962
1963 /*
1964 * Either if a task, enters, leave, or stays -deadline but changes
1965 * its parameters, we may need to update accordingly the total
1966 * allocated bandwidth of the container.
1967 */
1968 raw_spin_lock(&dl_b->lock);
1969 cpus = dl_bw_cpus(task_cpu(p));
1970 if (dl_policy(policy) && !task_has_dl_policy(p) &&
1971 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
1972 __dl_add(dl_b, new_bw);
1973 err = 0;
1974 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
1975 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
1976 __dl_clear(dl_b, p->dl.dl_bw);
1977 __dl_add(dl_b, new_bw);
1978 err = 0;
1979 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
1980 __dl_clear(dl_b, p->dl.dl_bw);
1981 err = 0;
1982 }
1983 raw_spin_unlock(&dl_b->lock);
1984
1985 return err;
1986}
1987
1988extern void init_dl_bw(struct dl_bw *dl_b);
1989
1990/*
1991 * wake_up_new_task - wake up a newly created task for the first time.
1992 *
1993 * This function will do some initial scheduler statistics housekeeping
1994 * that must be done for every newly created context, then puts the task
1995 * on the runqueue and wakes it.
1996 */
1997void wake_up_new_task(struct task_struct *p)
1998{
1999 unsigned long flags;
2000 struct rq *rq;
2001
2002 raw_spin_lock_irqsave(&p->pi_lock, flags);
2003#ifdef CONFIG_SMP
2004 /*
2005 * Fork balancing, do it here and not earlier because:
2006 * - cpus_allowed can change in the fork path
2007 * - any previously selected cpu might disappear through hotplug
2008 */
2009 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2010#endif
2011
2012 /* Initialize new task's runnable average */
2013 init_task_runnable_average(p);
2014 rq = __task_rq_lock(p);
2015 activate_task(rq, p, 0);
2016 p->on_rq = 1;
2017 trace_sched_wakeup_new(p, true);
2018 check_preempt_curr(rq, p, WF_FORK);
2019#ifdef CONFIG_SMP
2020 if (p->sched_class->task_woken)
2021 p->sched_class->task_woken(rq, p);
2022#endif
2023 task_rq_unlock(rq, p, &flags);
2024}
2025
2026#ifdef CONFIG_PREEMPT_NOTIFIERS
2027
2028/**
2029 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2030 * @notifier: notifier struct to register
2031 */
2032void preempt_notifier_register(struct preempt_notifier *notifier)
2033{
2034 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2035}
2036EXPORT_SYMBOL_GPL(preempt_notifier_register);
2037
2038/**
2039 * preempt_notifier_unregister - no longer interested in preemption notifications
2040 * @notifier: notifier struct to unregister
2041 *
2042 * This is safe to call from within a preemption notifier.
2043 */
2044void preempt_notifier_unregister(struct preempt_notifier *notifier)
2045{
2046 hlist_del(¬ifier->link);
2047}
2048EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2049
2050static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2051{
2052 struct preempt_notifier *notifier;
2053
2054 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2055 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2056}
2057
2058static void
2059fire_sched_out_preempt_notifiers(struct task_struct *curr,
2060 struct task_struct *next)
2061{
2062 struct preempt_notifier *notifier;
2063
2064 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2065 notifier->ops->sched_out(notifier, next);
2066}
2067
2068#else /* !CONFIG_PREEMPT_NOTIFIERS */
2069
2070static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2071{
2072}
2073
2074static void
2075fire_sched_out_preempt_notifiers(struct task_struct *curr,
2076 struct task_struct *next)
2077{
2078}
2079
2080#endif /* CONFIG_PREEMPT_NOTIFIERS */
2081
2082/**
2083 * prepare_task_switch - prepare to switch tasks
2084 * @rq: the runqueue preparing to switch
2085 * @prev: the current task that is being switched out
2086 * @next: the task we are going to switch to.
2087 *
2088 * This is called with the rq lock held and interrupts off. It must
2089 * be paired with a subsequent finish_task_switch after the context
2090 * switch.
2091 *
2092 * prepare_task_switch sets up locking and calls architecture specific
2093 * hooks.
2094 */
2095static inline void
2096prepare_task_switch(struct rq *rq, struct task_struct *prev,
2097 struct task_struct *next)
2098{
2099 trace_sched_switch(prev, next);
2100 sched_info_switch(rq, prev, next);
2101 perf_event_task_sched_out(prev, next);
2102 fire_sched_out_preempt_notifiers(prev, next);
2103 prepare_lock_switch(rq, next);
2104 prepare_arch_switch(next);
2105}
2106
2107/**
2108 * finish_task_switch - clean up after a task-switch
2109 * @rq: runqueue associated with task-switch
2110 * @prev: the thread we just switched away from.
2111 *
2112 * finish_task_switch must be called after the context switch, paired
2113 * with a prepare_task_switch call before the context switch.
2114 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2115 * and do any other architecture-specific cleanup actions.
2116 *
2117 * Note that we may have delayed dropping an mm in context_switch(). If
2118 * so, we finish that here outside of the runqueue lock. (Doing it
2119 * with the lock held can cause deadlocks; see schedule() for
2120 * details.)
2121 */
2122static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2123 __releases(rq->lock)
2124{
2125 struct mm_struct *mm = rq->prev_mm;
2126 long prev_state;
2127
2128 rq->prev_mm = NULL;
2129
2130 /*
2131 * A task struct has one reference for the use as "current".
2132 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2133 * schedule one last time. The schedule call will never return, and
2134 * the scheduled task must drop that reference.
2135 * The test for TASK_DEAD must occur while the runqueue locks are
2136 * still held, otherwise prev could be scheduled on another cpu, die
2137 * there before we look at prev->state, and then the reference would
2138 * be dropped twice.
2139 * Manfred Spraul <manfred@colorfullife.com>
2140 */
2141 prev_state = prev->state;
2142 vtime_task_switch(prev);
2143 finish_arch_switch(prev);
2144 perf_event_task_sched_in(prev, current);
2145 finish_lock_switch(rq, prev);
2146 finish_arch_post_lock_switch();
2147
2148 fire_sched_in_preempt_notifiers(current);
2149 if (mm)
2150 mmdrop(mm);
2151 if (unlikely(prev_state == TASK_DEAD)) {
2152 if (prev->sched_class->task_dead)
2153 prev->sched_class->task_dead(prev);
2154
2155 /*
2156 * Remove function-return probe instances associated with this
2157 * task and put them back on the free list.
2158 */
2159 kprobe_flush_task(prev);
2160 put_task_struct(prev);
2161 }
2162
2163 tick_nohz_task_switch(current);
2164}
2165
2166#ifdef CONFIG_SMP
2167
2168/* rq->lock is NOT held, but preemption is disabled */
2169static inline void post_schedule(struct rq *rq)
2170{
2171 if (rq->post_schedule) {
2172 unsigned long flags;
2173
2174 raw_spin_lock_irqsave(&rq->lock, flags);
2175 if (rq->curr->sched_class->post_schedule)
2176 rq->curr->sched_class->post_schedule(rq);
2177 raw_spin_unlock_irqrestore(&rq->lock, flags);
2178
2179 rq->post_schedule = 0;
2180 }
2181}
2182
2183#else
2184
2185static inline void post_schedule(struct rq *rq)
2186{
2187}
2188
2189#endif
2190
2191/**
2192 * schedule_tail - first thing a freshly forked thread must call.
2193 * @prev: the thread we just switched away from.
2194 */
2195asmlinkage __visible void schedule_tail(struct task_struct *prev)
2196 __releases(rq->lock)
2197{
2198 struct rq *rq = this_rq();
2199
2200 finish_task_switch(rq, prev);
2201
2202 /*
2203 * FIXME: do we need to worry about rq being invalidated by the
2204 * task_switch?
2205 */
2206 post_schedule(rq);
2207
2208#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2209 /* In this case, finish_task_switch does not reenable preemption */
2210 preempt_enable();
2211#endif
2212 if (current->set_child_tid)
2213 put_user(task_pid_vnr(current), current->set_child_tid);
2214}
2215
2216/*
2217 * context_switch - switch to the new MM and the new
2218 * thread's register state.
2219 */
2220static inline void
2221context_switch(struct rq *rq, struct task_struct *prev,
2222 struct task_struct *next)
2223{
2224 struct mm_struct *mm, *oldmm;
2225
2226 prepare_task_switch(rq, prev, next);
2227
2228 mm = next->mm;
2229 oldmm = prev->active_mm;
2230 /*
2231 * For paravirt, this is coupled with an exit in switch_to to
2232 * combine the page table reload and the switch backend into
2233 * one hypercall.
2234 */
2235 arch_start_context_switch(prev);
2236
2237 if (!mm) {
2238 next->active_mm = oldmm;
2239 atomic_inc(&oldmm->mm_count);
2240 enter_lazy_tlb(oldmm, next);
2241 } else
2242 switch_mm(oldmm, mm, next);
2243
2244 if (!prev->mm) {
2245 prev->active_mm = NULL;
2246 rq->prev_mm = oldmm;
2247 }
2248 /*
2249 * Since the runqueue lock will be released by the next
2250 * task (which is an invalid locking op but in the case
2251 * of the scheduler it's an obvious special-case), so we
2252 * do an early lockdep release here:
2253 */
2254#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2255 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2256#endif
2257
2258 context_tracking_task_switch(prev, next);
2259 /* Here we just switch the register state and the stack. */
2260 switch_to(prev, next, prev);
2261
2262 barrier();
2263 /*
2264 * this_rq must be evaluated again because prev may have moved
2265 * CPUs since it called schedule(), thus the 'rq' on its stack
2266 * frame will be invalid.
2267 */
2268 finish_task_switch(this_rq(), prev);
2269}
2270
2271/*
2272 * nr_running and nr_context_switches:
2273 *
2274 * externally visible scheduler statistics: current number of runnable
2275 * threads, total number of context switches performed since bootup.
2276 */
2277unsigned long nr_running(void)
2278{
2279 unsigned long i, sum = 0;
2280
2281 for_each_online_cpu(i)
2282 sum += cpu_rq(i)->nr_running;
2283
2284 return sum;
2285}
2286
2287unsigned long long nr_context_switches(void)
2288{
2289 int i;
2290 unsigned long long sum = 0;
2291
2292 for_each_possible_cpu(i)
2293 sum += cpu_rq(i)->nr_switches;
2294
2295 return sum;
2296}
2297
2298unsigned long nr_iowait(void)
2299{
2300 unsigned long i, sum = 0;
2301
2302 for_each_possible_cpu(i)
2303 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2304
2305 return sum;
2306}
2307
2308unsigned long nr_iowait_cpu(int cpu)
2309{
2310 struct rq *this = cpu_rq(cpu);
2311 return atomic_read(&this->nr_iowait);
2312}
2313
2314#ifdef CONFIG_SMP
2315
2316/*
2317 * sched_exec - execve() is a valuable balancing opportunity, because at
2318 * this point the task has the smallest effective memory and cache footprint.
2319 */
2320void sched_exec(void)
2321{
2322 struct task_struct *p = current;
2323 unsigned long flags;
2324 int dest_cpu;
2325
2326 raw_spin_lock_irqsave(&p->pi_lock, flags);
2327 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2328 if (dest_cpu == smp_processor_id())
2329 goto unlock;
2330
2331 if (likely(cpu_active(dest_cpu))) {
2332 struct migration_arg arg = { p, dest_cpu };
2333
2334 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2335 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2336 return;
2337 }
2338unlock:
2339 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2340}
2341
2342#endif
2343
2344DEFINE_PER_CPU(struct kernel_stat, kstat);
2345DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2346
2347EXPORT_PER_CPU_SYMBOL(kstat);
2348EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2349
2350/*
2351 * Return any ns on the sched_clock that have not yet been accounted in
2352 * @p in case that task is currently running.
2353 *
2354 * Called with task_rq_lock() held on @rq.
2355 */
2356static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2357{
2358 u64 ns = 0;
2359
2360 if (task_current(rq, p)) {
2361 update_rq_clock(rq);
2362 ns = rq_clock_task(rq) - p->se.exec_start;
2363 if ((s64)ns < 0)
2364 ns = 0;
2365 }
2366
2367 return ns;
2368}
2369
2370unsigned long long task_delta_exec(struct task_struct *p)
2371{
2372 unsigned long flags;
2373 struct rq *rq;
2374 u64 ns = 0;
2375
2376 rq = task_rq_lock(p, &flags);
2377 ns = do_task_delta_exec(p, rq);
2378 task_rq_unlock(rq, p, &flags);
2379
2380 return ns;
2381}
2382
2383/*
2384 * Return accounted runtime for the task.
2385 * In case the task is currently running, return the runtime plus current's
2386 * pending runtime that have not been accounted yet.
2387 */
2388unsigned long long task_sched_runtime(struct task_struct *p)
2389{
2390 unsigned long flags;
2391 struct rq *rq;
2392 u64 ns = 0;
2393
2394#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2395 /*
2396 * 64-bit doesn't need locks to atomically read a 64bit value.
2397 * So we have a optimization chance when the task's delta_exec is 0.
2398 * Reading ->on_cpu is racy, but this is ok.
2399 *
2400 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2401 * If we race with it entering cpu, unaccounted time is 0. This is
2402 * indistinguishable from the read occurring a few cycles earlier.
2403 */
2404 if (!p->on_cpu)
2405 return p->se.sum_exec_runtime;
2406#endif
2407
2408 rq = task_rq_lock(p, &flags);
2409 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2410 task_rq_unlock(rq, p, &flags);
2411
2412 return ns;
2413}
2414
2415/*
2416 * This function gets called by the timer code, with HZ frequency.
2417 * We call it with interrupts disabled.
2418 */
2419void scheduler_tick(void)
2420{
2421 int cpu = smp_processor_id();
2422 struct rq *rq = cpu_rq(cpu);
2423 struct task_struct *curr = rq->curr;
2424
2425 sched_clock_tick();
2426
2427 raw_spin_lock(&rq->lock);
2428 update_rq_clock(rq);
2429 curr->sched_class->task_tick(rq, curr, 0);
2430 update_cpu_load_active(rq);
2431 raw_spin_unlock(&rq->lock);
2432
2433 perf_event_task_tick();
2434
2435#ifdef CONFIG_SMP
2436 rq->idle_balance = idle_cpu(cpu);
2437 trigger_load_balance(rq);
2438#endif
2439 rq_last_tick_reset(rq);
2440}
2441
2442#ifdef CONFIG_NO_HZ_FULL
2443/**
2444 * scheduler_tick_max_deferment
2445 *
2446 * Keep at least one tick per second when a single
2447 * active task is running because the scheduler doesn't
2448 * yet completely support full dynticks environment.
2449 *
2450 * This makes sure that uptime, CFS vruntime, load
2451 * balancing, etc... continue to move forward, even
2452 * with a very low granularity.
2453 *
2454 * Return: Maximum deferment in nanoseconds.
2455 */
2456u64 scheduler_tick_max_deferment(void)
2457{
2458 struct rq *rq = this_rq();
2459 unsigned long next, now = ACCESS_ONCE(jiffies);
2460
2461 next = rq->last_sched_tick + HZ;
2462
2463 if (time_before_eq(next, now))
2464 return 0;
2465
2466 return jiffies_to_nsecs(next - now);
2467}
2468#endif
2469
2470notrace unsigned long get_parent_ip(unsigned long addr)
2471{
2472 if (in_lock_functions(addr)) {
2473 addr = CALLER_ADDR2;
2474 if (in_lock_functions(addr))
2475 addr = CALLER_ADDR3;
2476 }
2477 return addr;
2478}
2479
2480#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2481 defined(CONFIG_PREEMPT_TRACER))
2482
2483void __kprobes preempt_count_add(int val)
2484{
2485#ifdef CONFIG_DEBUG_PREEMPT
2486 /*
2487 * Underflow?
2488 */
2489 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2490 return;
2491#endif
2492 __preempt_count_add(val);
2493#ifdef CONFIG_DEBUG_PREEMPT
2494 /*
2495 * Spinlock count overflowing soon?
2496 */
2497 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2498 PREEMPT_MASK - 10);
2499#endif
2500 if (preempt_count() == val) {
2501 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2502#ifdef CONFIG_DEBUG_PREEMPT
2503 current->preempt_disable_ip = ip;
2504#endif
2505 trace_preempt_off(CALLER_ADDR0, ip);
2506 }
2507}
2508EXPORT_SYMBOL(preempt_count_add);
2509
2510void __kprobes preempt_count_sub(int val)
2511{
2512#ifdef CONFIG_DEBUG_PREEMPT
2513 /*
2514 * Underflow?
2515 */
2516 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2517 return;
2518 /*
2519 * Is the spinlock portion underflowing?
2520 */
2521 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2522 !(preempt_count() & PREEMPT_MASK)))
2523 return;
2524#endif
2525
2526 if (preempt_count() == val)
2527 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2528 __preempt_count_sub(val);
2529}
2530EXPORT_SYMBOL(preempt_count_sub);
2531
2532#endif
2533
2534/*
2535 * Print scheduling while atomic bug:
2536 */
2537static noinline void __schedule_bug(struct task_struct *prev)
2538{
2539 if (oops_in_progress)
2540 return;
2541
2542 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2543 prev->comm, prev->pid, preempt_count());
2544
2545 debug_show_held_locks(prev);
2546 print_modules();
2547 if (irqs_disabled())
2548 print_irqtrace_events(prev);
2549#ifdef CONFIG_DEBUG_PREEMPT
2550 if (in_atomic_preempt_off()) {
2551 pr_err("Preemption disabled at:");
2552 print_ip_sym(current->preempt_disable_ip);
2553 pr_cont("\n");
2554 }
2555#endif
2556 dump_stack();
2557 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2558}
2559
2560/*
2561 * Various schedule()-time debugging checks and statistics:
2562 */
2563static inline void schedule_debug(struct task_struct *prev)
2564{
2565 /*
2566 * Test if we are atomic. Since do_exit() needs to call into
2567 * schedule() atomically, we ignore that path. Otherwise whine
2568 * if we are scheduling when we should not.
2569 */
2570 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2571 __schedule_bug(prev);
2572 rcu_sleep_check();
2573
2574 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2575
2576 schedstat_inc(this_rq(), sched_count);
2577}
2578
2579/*
2580 * Pick up the highest-prio task:
2581 */
2582static inline struct task_struct *
2583pick_next_task(struct rq *rq, struct task_struct *prev)
2584{
2585 const struct sched_class *class = &fair_sched_class;
2586 struct task_struct *p;
2587
2588 /*
2589 * Optimization: we know that if all tasks are in
2590 * the fair class we can call that function directly:
2591 */
2592 if (likely(prev->sched_class == class &&
2593 rq->nr_running == rq->cfs.h_nr_running)) {
2594 p = fair_sched_class.pick_next_task(rq, prev);
2595 if (unlikely(p == RETRY_TASK))
2596 goto again;
2597
2598 /* assumes fair_sched_class->next == idle_sched_class */
2599 if (unlikely(!p))
2600 p = idle_sched_class.pick_next_task(rq, prev);
2601
2602 return p;
2603 }
2604
2605again:
2606 for_each_class(class) {
2607 p = class->pick_next_task(rq, prev);
2608 if (p) {
2609 if (unlikely(p == RETRY_TASK))
2610 goto again;
2611 return p;
2612 }
2613 }
2614
2615 BUG(); /* the idle class will always have a runnable task */
2616}
2617
2618/*
2619 * __schedule() is the main scheduler function.
2620 *
2621 * The main means of driving the scheduler and thus entering this function are:
2622 *
2623 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2624 *
2625 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2626 * paths. For example, see arch/x86/entry_64.S.
2627 *
2628 * To drive preemption between tasks, the scheduler sets the flag in timer
2629 * interrupt handler scheduler_tick().
2630 *
2631 * 3. Wakeups don't really cause entry into schedule(). They add a
2632 * task to the run-queue and that's it.
2633 *
2634 * Now, if the new task added to the run-queue preempts the current
2635 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2636 * called on the nearest possible occasion:
2637 *
2638 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2639 *
2640 * - in syscall or exception context, at the next outmost
2641 * preempt_enable(). (this might be as soon as the wake_up()'s
2642 * spin_unlock()!)
2643 *
2644 * - in IRQ context, return from interrupt-handler to
2645 * preemptible context
2646 *
2647 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2648 * then at the next:
2649 *
2650 * - cond_resched() call
2651 * - explicit schedule() call
2652 * - return from syscall or exception to user-space
2653 * - return from interrupt-handler to user-space
2654 */
2655static void __sched __schedule(void)
2656{
2657 struct task_struct *prev, *next;
2658 unsigned long *switch_count;
2659 struct rq *rq;
2660 int cpu;
2661
2662need_resched:
2663 preempt_disable();
2664 cpu = smp_processor_id();
2665 rq = cpu_rq(cpu);
2666 rcu_note_context_switch(cpu);
2667 prev = rq->curr;
2668
2669 schedule_debug(prev);
2670
2671 if (sched_feat(HRTICK))
2672 hrtick_clear(rq);
2673
2674 /*
2675 * Make sure that signal_pending_state()->signal_pending() below
2676 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2677 * done by the caller to avoid the race with signal_wake_up().
2678 */
2679 smp_mb__before_spinlock();
2680 raw_spin_lock_irq(&rq->lock);
2681
2682 switch_count = &prev->nivcsw;
2683 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2684 if (unlikely(signal_pending_state(prev->state, prev))) {
2685 prev->state = TASK_RUNNING;
2686 } else {
2687 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2688 prev->on_rq = 0;
2689
2690 /*
2691 * If a worker went to sleep, notify and ask workqueue
2692 * whether it wants to wake up a task to maintain
2693 * concurrency.
2694 */
2695 if (prev->flags & PF_WQ_WORKER) {
2696 struct task_struct *to_wakeup;
2697
2698 to_wakeup = wq_worker_sleeping(prev, cpu);
2699 if (to_wakeup)
2700 try_to_wake_up_local(to_wakeup);
2701 }
2702 }
2703 switch_count = &prev->nvcsw;
2704 }
2705
2706 if (prev->on_rq || rq->skip_clock_update < 0)
2707 update_rq_clock(rq);
2708
2709 next = pick_next_task(rq, prev);
2710 clear_tsk_need_resched(prev);
2711 clear_preempt_need_resched();
2712 rq->skip_clock_update = 0;
2713
2714 if (likely(prev != next)) {
2715 rq->nr_switches++;
2716 rq->curr = next;
2717 ++*switch_count;
2718
2719 context_switch(rq, prev, next); /* unlocks the rq */
2720 /*
2721 * The context switch have flipped the stack from under us
2722 * and restored the local variables which were saved when
2723 * this task called schedule() in the past. prev == current
2724 * is still correct, but it can be moved to another cpu/rq.
2725 */
2726 cpu = smp_processor_id();
2727 rq = cpu_rq(cpu);
2728 } else
2729 raw_spin_unlock_irq(&rq->lock);
2730
2731 post_schedule(rq);
2732
2733 sched_preempt_enable_no_resched();
2734 if (need_resched())
2735 goto need_resched;
2736}
2737
2738static inline void sched_submit_work(struct task_struct *tsk)
2739{
2740 if (!tsk->state || tsk_is_pi_blocked(tsk))
2741 return;
2742 /*
2743 * If we are going to sleep and we have plugged IO queued,
2744 * make sure to submit it to avoid deadlocks.
2745 */
2746 if (blk_needs_flush_plug(tsk))
2747 blk_schedule_flush_plug(tsk);
2748}
2749
2750asmlinkage __visible void __sched schedule(void)
2751{
2752 struct task_struct *tsk = current;
2753
2754 sched_submit_work(tsk);
2755 __schedule();
2756}
2757EXPORT_SYMBOL(schedule);
2758
2759#ifdef CONFIG_CONTEXT_TRACKING
2760asmlinkage __visible void __sched schedule_user(void)
2761{
2762 /*
2763 * If we come here after a random call to set_need_resched(),
2764 * or we have been woken up remotely but the IPI has not yet arrived,
2765 * we haven't yet exited the RCU idle mode. Do it here manually until
2766 * we find a better solution.
2767 */
2768 user_exit();
2769 schedule();
2770 user_enter();
2771}
2772#endif
2773
2774/**
2775 * schedule_preempt_disabled - called with preemption disabled
2776 *
2777 * Returns with preemption disabled. Note: preempt_count must be 1
2778 */
2779void __sched schedule_preempt_disabled(void)
2780{
2781 sched_preempt_enable_no_resched();
2782 schedule();
2783 preempt_disable();
2784}
2785
2786#ifdef CONFIG_PREEMPT
2787/*
2788 * this is the entry point to schedule() from in-kernel preemption
2789 * off of preempt_enable. Kernel preemptions off return from interrupt
2790 * occur there and call schedule directly.
2791 */
2792asmlinkage __visible void __sched notrace preempt_schedule(void)
2793{
2794 /*
2795 * If there is a non-zero preempt_count or interrupts are disabled,
2796 * we do not want to preempt the current task. Just return..
2797 */
2798 if (likely(!preemptible()))
2799 return;
2800
2801 do {
2802 __preempt_count_add(PREEMPT_ACTIVE);
2803 __schedule();
2804 __preempt_count_sub(PREEMPT_ACTIVE);
2805
2806 /*
2807 * Check again in case we missed a preemption opportunity
2808 * between schedule and now.
2809 */
2810 barrier();
2811 } while (need_resched());
2812}
2813EXPORT_SYMBOL(preempt_schedule);
2814#endif /* CONFIG_PREEMPT */
2815
2816/*
2817 * this is the entry point to schedule() from kernel preemption
2818 * off of irq context.
2819 * Note, that this is called and return with irqs disabled. This will
2820 * protect us against recursive calling from irq.
2821 */
2822asmlinkage __visible void __sched preempt_schedule_irq(void)
2823{
2824 enum ctx_state prev_state;
2825
2826 /* Catch callers which need to be fixed */
2827 BUG_ON(preempt_count() || !irqs_disabled());
2828
2829 prev_state = exception_enter();
2830
2831 do {
2832 __preempt_count_add(PREEMPT_ACTIVE);
2833 local_irq_enable();
2834 __schedule();
2835 local_irq_disable();
2836 __preempt_count_sub(PREEMPT_ACTIVE);
2837
2838 /*
2839 * Check again in case we missed a preemption opportunity
2840 * between schedule and now.
2841 */
2842 barrier();
2843 } while (need_resched());
2844
2845 exception_exit(prev_state);
2846}
2847
2848int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2849 void *key)
2850{
2851 return try_to_wake_up(curr->private, mode, wake_flags);
2852}
2853EXPORT_SYMBOL(default_wake_function);
2854
2855#ifdef CONFIG_RT_MUTEXES
2856
2857/*
2858 * rt_mutex_setprio - set the current priority of a task
2859 * @p: task
2860 * @prio: prio value (kernel-internal form)
2861 *
2862 * This function changes the 'effective' priority of a task. It does
2863 * not touch ->normal_prio like __setscheduler().
2864 *
2865 * Used by the rt_mutex code to implement priority inheritance
2866 * logic. Call site only calls if the priority of the task changed.
2867 */
2868void rt_mutex_setprio(struct task_struct *p, int prio)
2869{
2870 int oldprio, on_rq, running, enqueue_flag = 0;
2871 struct rq *rq;
2872 const struct sched_class *prev_class;
2873
2874 BUG_ON(prio > MAX_PRIO);
2875
2876 rq = __task_rq_lock(p);
2877
2878 /*
2879 * Idle task boosting is a nono in general. There is one
2880 * exception, when PREEMPT_RT and NOHZ is active:
2881 *
2882 * The idle task calls get_next_timer_interrupt() and holds
2883 * the timer wheel base->lock on the CPU and another CPU wants
2884 * to access the timer (probably to cancel it). We can safely
2885 * ignore the boosting request, as the idle CPU runs this code
2886 * with interrupts disabled and will complete the lock
2887 * protected section without being interrupted. So there is no
2888 * real need to boost.
2889 */
2890 if (unlikely(p == rq->idle)) {
2891 WARN_ON(p != rq->curr);
2892 WARN_ON(p->pi_blocked_on);
2893 goto out_unlock;
2894 }
2895
2896 trace_sched_pi_setprio(p, prio);
2897 p->pi_top_task = rt_mutex_get_top_task(p);
2898 oldprio = p->prio;
2899 prev_class = p->sched_class;
2900 on_rq = p->on_rq;
2901 running = task_current(rq, p);
2902 if (on_rq)
2903 dequeue_task(rq, p, 0);
2904 if (running)
2905 p->sched_class->put_prev_task(rq, p);
2906
2907 /*
2908 * Boosting condition are:
2909 * 1. -rt task is running and holds mutex A
2910 * --> -dl task blocks on mutex A
2911 *
2912 * 2. -dl task is running and holds mutex A
2913 * --> -dl task blocks on mutex A and could preempt the
2914 * running task
2915 */
2916 if (dl_prio(prio)) {
2917 if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2918 dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2919 p->dl.dl_boosted = 1;
2920 p->dl.dl_throttled = 0;
2921 enqueue_flag = ENQUEUE_REPLENISH;
2922 } else
2923 p->dl.dl_boosted = 0;
2924 p->sched_class = &dl_sched_class;
2925 } else if (rt_prio(prio)) {
2926 if (dl_prio(oldprio))
2927 p->dl.dl_boosted = 0;
2928 if (oldprio < prio)
2929 enqueue_flag = ENQUEUE_HEAD;
2930 p->sched_class = &rt_sched_class;
2931 } else {
2932 if (dl_prio(oldprio))
2933 p->dl.dl_boosted = 0;
2934 p->sched_class = &fair_sched_class;
2935 }
2936
2937 p->prio = prio;
2938
2939 if (running)
2940 p->sched_class->set_curr_task(rq);
2941 if (on_rq)
2942 enqueue_task(rq, p, enqueue_flag);
2943
2944 check_class_changed(rq, p, prev_class, oldprio);
2945out_unlock:
2946 __task_rq_unlock(rq);
2947}
2948#endif
2949
2950void set_user_nice(struct task_struct *p, long nice)
2951{
2952 int old_prio, delta, on_rq;
2953 unsigned long flags;
2954 struct rq *rq;
2955
2956 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
2957 return;
2958 /*
2959 * We have to be careful, if called from sys_setpriority(),
2960 * the task might be in the middle of scheduling on another CPU.
2961 */
2962 rq = task_rq_lock(p, &flags);
2963 /*
2964 * The RT priorities are set via sched_setscheduler(), but we still
2965 * allow the 'normal' nice value to be set - but as expected
2966 * it wont have any effect on scheduling until the task is
2967 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
2968 */
2969 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2970 p->static_prio = NICE_TO_PRIO(nice);
2971 goto out_unlock;
2972 }
2973 on_rq = p->on_rq;
2974 if (on_rq)
2975 dequeue_task(rq, p, 0);
2976
2977 p->static_prio = NICE_TO_PRIO(nice);
2978 set_load_weight(p);
2979 old_prio = p->prio;
2980 p->prio = effective_prio(p);
2981 delta = p->prio - old_prio;
2982
2983 if (on_rq) {
2984 enqueue_task(rq, p, 0);
2985 /*
2986 * If the task increased its priority or is running and
2987 * lowered its priority, then reschedule its CPU:
2988 */
2989 if (delta < 0 || (delta > 0 && task_running(rq, p)))
2990 resched_task(rq->curr);
2991 }
2992out_unlock:
2993 task_rq_unlock(rq, p, &flags);
2994}
2995EXPORT_SYMBOL(set_user_nice);
2996
2997/*
2998 * can_nice - check if a task can reduce its nice value
2999 * @p: task
3000 * @nice: nice value
3001 */
3002int can_nice(const struct task_struct *p, const int nice)
3003{
3004 /* convert nice value [19,-20] to rlimit style value [1,40] */
3005 int nice_rlim = 20 - nice;
3006
3007 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3008 capable(CAP_SYS_NICE));
3009}
3010
3011#ifdef __ARCH_WANT_SYS_NICE
3012
3013/*
3014 * sys_nice - change the priority of the current process.
3015 * @increment: priority increment
3016 *
3017 * sys_setpriority is a more generic, but much slower function that
3018 * does similar things.
3019 */
3020SYSCALL_DEFINE1(nice, int, increment)
3021{
3022 long nice, retval;
3023
3024 /*
3025 * Setpriority might change our priority at the same moment.
3026 * We don't have to worry. Conceptually one call occurs first
3027 * and we have a single winner.
3028 */
3029 if (increment < -40)
3030 increment = -40;
3031 if (increment > 40)
3032 increment = 40;
3033
3034 nice = task_nice(current) + increment;
3035 if (nice < MIN_NICE)
3036 nice = MIN_NICE;
3037 if (nice > MAX_NICE)
3038 nice = MAX_NICE;
3039
3040 if (increment < 0 && !can_nice(current, nice))
3041 return -EPERM;
3042
3043 retval = security_task_setnice(current, nice);
3044 if (retval)
3045 return retval;
3046
3047 set_user_nice(current, nice);
3048 return 0;
3049}
3050
3051#endif
3052
3053/**
3054 * task_prio - return the priority value of a given task.
3055 * @p: the task in question.
3056 *
3057 * Return: The priority value as seen by users in /proc.
3058 * RT tasks are offset by -200. Normal tasks are centered
3059 * around 0, value goes from -16 to +15.
3060 */
3061int task_prio(const struct task_struct *p)
3062{
3063 return p->prio - MAX_RT_PRIO;
3064}
3065
3066/**
3067 * idle_cpu - is a given cpu idle currently?
3068 * @cpu: the processor in question.
3069 *
3070 * Return: 1 if the CPU is currently idle. 0 otherwise.
3071 */
3072int idle_cpu(int cpu)
3073{
3074 struct rq *rq = cpu_rq(cpu);
3075
3076 if (rq->curr != rq->idle)
3077 return 0;
3078
3079 if (rq->nr_running)
3080 return 0;
3081
3082#ifdef CONFIG_SMP
3083 if (!llist_empty(&rq->wake_list))
3084 return 0;
3085#endif
3086
3087 return 1;
3088}
3089
3090/**
3091 * idle_task - return the idle task for a given cpu.
3092 * @cpu: the processor in question.
3093 *
3094 * Return: The idle task for the cpu @cpu.
3095 */
3096struct task_struct *idle_task(int cpu)
3097{
3098 return cpu_rq(cpu)->idle;
3099}
3100
3101/**
3102 * find_process_by_pid - find a process with a matching PID value.
3103 * @pid: the pid in question.
3104 *
3105 * The task of @pid, if found. %NULL otherwise.
3106 */
3107static struct task_struct *find_process_by_pid(pid_t pid)
3108{
3109 return pid ? find_task_by_vpid(pid) : current;
3110}
3111
3112/*
3113 * This function initializes the sched_dl_entity of a newly becoming
3114 * SCHED_DEADLINE task.
3115 *
3116 * Only the static values are considered here, the actual runtime and the
3117 * absolute deadline will be properly calculated when the task is enqueued
3118 * for the first time with its new policy.
3119 */
3120static void
3121__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3122{
3123 struct sched_dl_entity *dl_se = &p->dl;
3124
3125 init_dl_task_timer(dl_se);
3126 dl_se->dl_runtime = attr->sched_runtime;
3127 dl_se->dl_deadline = attr->sched_deadline;
3128 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3129 dl_se->flags = attr->sched_flags;
3130 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3131 dl_se->dl_throttled = 0;
3132 dl_se->dl_new = 1;
3133 dl_se->dl_yielded = 0;
3134}
3135
3136static void __setscheduler_params(struct task_struct *p,
3137 const struct sched_attr *attr)
3138{
3139 int policy = attr->sched_policy;
3140
3141 if (policy == -1) /* setparam */
3142 policy = p->policy;
3143
3144 p->policy = policy;
3145
3146 if (dl_policy(policy))
3147 __setparam_dl(p, attr);
3148 else if (fair_policy(policy))
3149 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3150
3151 /*
3152 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3153 * !rt_policy. Always setting this ensures that things like
3154 * getparam()/getattr() don't report silly values for !rt tasks.
3155 */
3156 p->rt_priority = attr->sched_priority;
3157 p->normal_prio = normal_prio(p);
3158 set_load_weight(p);
3159}
3160
3161/* Actually do priority change: must hold pi & rq lock. */
3162static void __setscheduler(struct rq *rq, struct task_struct *p,
3163 const struct sched_attr *attr)
3164{
3165 __setscheduler_params(p, attr);
3166
3167 /*
3168 * If we get here, there was no pi waiters boosting the
3169 * task. It is safe to use the normal prio.
3170 */
3171 p->prio = normal_prio(p);
3172
3173 if (dl_prio(p->prio))
3174 p->sched_class = &dl_sched_class;
3175 else if (rt_prio(p->prio))
3176 p->sched_class = &rt_sched_class;
3177 else
3178 p->sched_class = &fair_sched_class;
3179}
3180
3181static void
3182__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3183{
3184 struct sched_dl_entity *dl_se = &p->dl;
3185
3186 attr->sched_priority = p->rt_priority;
3187 attr->sched_runtime = dl_se->dl_runtime;
3188 attr->sched_deadline = dl_se->dl_deadline;
3189 attr->sched_period = dl_se->dl_period;
3190 attr->sched_flags = dl_se->flags;
3191}
3192
3193/*
3194 * This function validates the new parameters of a -deadline task.
3195 * We ask for the deadline not being zero, and greater or equal
3196 * than the runtime, as well as the period of being zero or
3197 * greater than deadline. Furthermore, we have to be sure that
3198 * user parameters are above the internal resolution of 1us (we
3199 * check sched_runtime only since it is always the smaller one) and
3200 * below 2^63 ns (we have to check both sched_deadline and
3201 * sched_period, as the latter can be zero).
3202 */
3203static bool
3204__checkparam_dl(const struct sched_attr *attr)
3205{
3206 /* deadline != 0 */
3207 if (attr->sched_deadline == 0)
3208 return false;
3209
3210 /*
3211 * Since we truncate DL_SCALE bits, make sure we're at least
3212 * that big.
3213 */
3214 if (attr->sched_runtime < (1ULL << DL_SCALE))
3215 return false;
3216
3217 /*
3218 * Since we use the MSB for wrap-around and sign issues, make
3219 * sure it's not set (mind that period can be equal to zero).
3220 */
3221 if (attr->sched_deadline & (1ULL << 63) ||
3222 attr->sched_period & (1ULL << 63))
3223 return false;
3224
3225 /* runtime <= deadline <= period (if period != 0) */
3226 if ((attr->sched_period != 0 &&
3227 attr->sched_period < attr->sched_deadline) ||
3228 attr->sched_deadline < attr->sched_runtime)
3229 return false;
3230
3231 return true;
3232}
3233
3234/*
3235 * check the target process has a UID that matches the current process's
3236 */
3237static bool check_same_owner(struct task_struct *p)
3238{
3239 const struct cred *cred = current_cred(), *pcred;
3240 bool match;
3241
3242 rcu_read_lock();
3243 pcred = __task_cred(p);
3244 match = (uid_eq(cred->euid, pcred->euid) ||
3245 uid_eq(cred->euid, pcred->uid));
3246 rcu_read_unlock();
3247 return match;
3248}
3249
3250static int __sched_setscheduler(struct task_struct *p,
3251 const struct sched_attr *attr,
3252 bool user)
3253{
3254 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3255 MAX_RT_PRIO - 1 - attr->sched_priority;
3256 int retval, oldprio, oldpolicy = -1, on_rq, running;
3257 int policy = attr->sched_policy;
3258 unsigned long flags;
3259 const struct sched_class *prev_class;
3260 struct rq *rq;
3261 int reset_on_fork;
3262
3263 /* may grab non-irq protected spin_locks */
3264 BUG_ON(in_interrupt());
3265recheck:
3266 /* double check policy once rq lock held */
3267 if (policy < 0) {
3268 reset_on_fork = p->sched_reset_on_fork;
3269 policy = oldpolicy = p->policy;
3270 } else {
3271 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3272
3273 if (policy != SCHED_DEADLINE &&
3274 policy != SCHED_FIFO && policy != SCHED_RR &&
3275 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3276 policy != SCHED_IDLE)
3277 return -EINVAL;
3278 }
3279
3280 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3281 return -EINVAL;
3282
3283 /*
3284 * Valid priorities for SCHED_FIFO and SCHED_RR are
3285 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3286 * SCHED_BATCH and SCHED_IDLE is 0.
3287 */
3288 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3289 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3290 return -EINVAL;
3291 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3292 (rt_policy(policy) != (attr->sched_priority != 0)))
3293 return -EINVAL;
3294
3295 /*
3296 * Allow unprivileged RT tasks to decrease priority:
3297 */
3298 if (user && !capable(CAP_SYS_NICE)) {
3299 if (fair_policy(policy)) {
3300 if (attr->sched_nice < task_nice(p) &&
3301 !can_nice(p, attr->sched_nice))
3302 return -EPERM;
3303 }
3304
3305 if (rt_policy(policy)) {
3306 unsigned long rlim_rtprio =
3307 task_rlimit(p, RLIMIT_RTPRIO);
3308
3309 /* can't set/change the rt policy */
3310 if (policy != p->policy && !rlim_rtprio)
3311 return -EPERM;
3312
3313 /* can't increase priority */
3314 if (attr->sched_priority > p->rt_priority &&
3315 attr->sched_priority > rlim_rtprio)
3316 return -EPERM;
3317 }
3318
3319 /*
3320 * Can't set/change SCHED_DEADLINE policy at all for now
3321 * (safest behavior); in the future we would like to allow
3322 * unprivileged DL tasks to increase their relative deadline
3323 * or reduce their runtime (both ways reducing utilization)
3324 */
3325 if (dl_policy(policy))
3326 return -EPERM;
3327
3328 /*
3329 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3330 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3331 */
3332 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3333 if (!can_nice(p, task_nice(p)))
3334 return -EPERM;
3335 }
3336
3337 /* can't change other user's priorities */
3338 if (!check_same_owner(p))
3339 return -EPERM;
3340
3341 /* Normal users shall not reset the sched_reset_on_fork flag */
3342 if (p->sched_reset_on_fork && !reset_on_fork)
3343 return -EPERM;
3344 }
3345
3346 if (user) {
3347 retval = security_task_setscheduler(p);
3348 if (retval)
3349 return retval;
3350 }
3351
3352 /*
3353 * make sure no PI-waiters arrive (or leave) while we are
3354 * changing the priority of the task:
3355 *
3356 * To be able to change p->policy safely, the appropriate
3357 * runqueue lock must be held.
3358 */
3359 rq = task_rq_lock(p, &flags);
3360
3361 /*
3362 * Changing the policy of the stop threads its a very bad idea
3363 */
3364 if (p == rq->stop) {
3365 task_rq_unlock(rq, p, &flags);
3366 return -EINVAL;
3367 }
3368
3369 /*
3370 * If not changing anything there's no need to proceed further,
3371 * but store a possible modification of reset_on_fork.
3372 */
3373 if (unlikely(policy == p->policy)) {
3374 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3375 goto change;
3376 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3377 goto change;
3378 if (dl_policy(policy))
3379 goto change;
3380
3381 p->sched_reset_on_fork = reset_on_fork;
3382 task_rq_unlock(rq, p, &flags);
3383 return 0;
3384 }
3385change:
3386
3387 if (user) {
3388#ifdef CONFIG_RT_GROUP_SCHED
3389 /*
3390 * Do not allow realtime tasks into groups that have no runtime
3391 * assigned.
3392 */
3393 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3394 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3395 !task_group_is_autogroup(task_group(p))) {
3396 task_rq_unlock(rq, p, &flags);
3397 return -EPERM;
3398 }
3399#endif
3400#ifdef CONFIG_SMP
3401 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3402 cpumask_t *span = rq->rd->span;
3403
3404 /*
3405 * Don't allow tasks with an affinity mask smaller than
3406 * the entire root_domain to become SCHED_DEADLINE. We
3407 * will also fail if there's no bandwidth available.
3408 */
3409 if (!cpumask_subset(span, &p->cpus_allowed) ||
3410 rq->rd->dl_bw.bw == 0) {
3411 task_rq_unlock(rq, p, &flags);
3412 return -EPERM;
3413 }
3414 }
3415#endif
3416 }
3417
3418 /* recheck policy now with rq lock held */
3419 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3420 policy = oldpolicy = -1;
3421 task_rq_unlock(rq, p, &flags);
3422 goto recheck;
3423 }
3424
3425 /*
3426 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3427 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3428 * is available.
3429 */
3430 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3431 task_rq_unlock(rq, p, &flags);
3432 return -EBUSY;
3433 }
3434
3435 p->sched_reset_on_fork = reset_on_fork;
3436 oldprio = p->prio;
3437
3438 /*
3439 * Special case for priority boosted tasks.
3440 *
3441 * If the new priority is lower or equal (user space view)
3442 * than the current (boosted) priority, we just store the new
3443 * normal parameters and do not touch the scheduler class and
3444 * the runqueue. This will be done when the task deboost
3445 * itself.
3446 */
3447 if (rt_mutex_check_prio(p, newprio)) {
3448 __setscheduler_params(p, attr);
3449 task_rq_unlock(rq, p, &flags);
3450 return 0;
3451 }
3452
3453 on_rq = p->on_rq;
3454 running = task_current(rq, p);
3455 if (on_rq)
3456 dequeue_task(rq, p, 0);
3457 if (running)
3458 p->sched_class->put_prev_task(rq, p);
3459
3460 prev_class = p->sched_class;
3461 __setscheduler(rq, p, attr);
3462
3463 if (running)
3464 p->sched_class->set_curr_task(rq);
3465 if (on_rq) {
3466 /*
3467 * We enqueue to tail when the priority of a task is
3468 * increased (user space view).
3469 */
3470 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3471 }
3472
3473 check_class_changed(rq, p, prev_class, oldprio);
3474 task_rq_unlock(rq, p, &flags);
3475
3476 rt_mutex_adjust_pi(p);
3477
3478 return 0;
3479}
3480
3481static int _sched_setscheduler(struct task_struct *p, int policy,
3482 const struct sched_param *param, bool check)
3483{
3484 struct sched_attr attr = {
3485 .sched_policy = policy,
3486 .sched_priority = param->sched_priority,
3487 .sched_nice = PRIO_TO_NICE(p->static_prio),
3488 };
3489
3490 /*
3491 * Fixup the legacy SCHED_RESET_ON_FORK hack
3492 */
3493 if (policy & SCHED_RESET_ON_FORK) {
3494 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3495 policy &= ~SCHED_RESET_ON_FORK;
3496 attr.sched_policy = policy;
3497 }
3498
3499 return __sched_setscheduler(p, &attr, check);
3500}
3501/**
3502 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3503 * @p: the task in question.
3504 * @policy: new policy.
3505 * @param: structure containing the new RT priority.
3506 *
3507 * Return: 0 on success. An error code otherwise.
3508 *
3509 * NOTE that the task may be already dead.
3510 */
3511int sched_setscheduler(struct task_struct *p, int policy,
3512 const struct sched_param *param)
3513{
3514 return _sched_setscheduler(p, policy, param, true);
3515}
3516EXPORT_SYMBOL_GPL(sched_setscheduler);
3517
3518int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3519{
3520 return __sched_setscheduler(p, attr, true);
3521}
3522EXPORT_SYMBOL_GPL(sched_setattr);
3523
3524/**
3525 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3526 * @p: the task in question.
3527 * @policy: new policy.
3528 * @param: structure containing the new RT priority.
3529 *
3530 * Just like sched_setscheduler, only don't bother checking if the
3531 * current context has permission. For example, this is needed in
3532 * stop_machine(): we create temporary high priority worker threads,
3533 * but our caller might not have that capability.
3534 *
3535 * Return: 0 on success. An error code otherwise.
3536 */
3537int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3538 const struct sched_param *param)
3539{
3540 return _sched_setscheduler(p, policy, param, false);
3541}
3542
3543static int
3544do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3545{
3546 struct sched_param lparam;
3547 struct task_struct *p;
3548 int retval;
3549
3550 if (!param || pid < 0)
3551 return -EINVAL;
3552 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3553 return -EFAULT;
3554
3555 rcu_read_lock();
3556 retval = -ESRCH;
3557 p = find_process_by_pid(pid);
3558 if (p != NULL)
3559 retval = sched_setscheduler(p, policy, &lparam);
3560 rcu_read_unlock();
3561
3562 return retval;
3563}
3564
3565/*
3566 * Mimics kernel/events/core.c perf_copy_attr().
3567 */
3568static int sched_copy_attr(struct sched_attr __user *uattr,
3569 struct sched_attr *attr)
3570{
3571 u32 size;
3572 int ret;
3573
3574 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3575 return -EFAULT;
3576
3577 /*
3578 * zero the full structure, so that a short copy will be nice.
3579 */
3580 memset(attr, 0, sizeof(*attr));
3581
3582 ret = get_user(size, &uattr->size);
3583 if (ret)
3584 return ret;
3585
3586 if (size > PAGE_SIZE) /* silly large */
3587 goto err_size;
3588
3589 if (!size) /* abi compat */
3590 size = SCHED_ATTR_SIZE_VER0;
3591
3592 if (size < SCHED_ATTR_SIZE_VER0)
3593 goto err_size;
3594
3595 /*
3596 * If we're handed a bigger struct than we know of,
3597 * ensure all the unknown bits are 0 - i.e. new
3598 * user-space does not rely on any kernel feature
3599 * extensions we dont know about yet.
3600 */
3601 if (size > sizeof(*attr)) {
3602 unsigned char __user *addr;
3603 unsigned char __user *end;
3604 unsigned char val;
3605
3606 addr = (void __user *)uattr + sizeof(*attr);
3607 end = (void __user *)uattr + size;
3608
3609 for (; addr < end; addr++) {
3610 ret = get_user(val, addr);
3611 if (ret)
3612 return ret;
3613 if (val)
3614 goto err_size;
3615 }
3616 size = sizeof(*attr);
3617 }
3618
3619 ret = copy_from_user(attr, uattr, size);
3620 if (ret)
3621 return -EFAULT;
3622
3623 /*
3624 * XXX: do we want to be lenient like existing syscalls; or do we want
3625 * to be strict and return an error on out-of-bounds values?
3626 */
3627 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3628
3629out:
3630 return ret;
3631
3632err_size:
3633 put_user(sizeof(*attr), &uattr->size);
3634 ret = -E2BIG;
3635 goto out;
3636}
3637
3638/**
3639 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3640 * @pid: the pid in question.
3641 * @policy: new policy.
3642 * @param: structure containing the new RT priority.
3643 *
3644 * Return: 0 on success. An error code otherwise.
3645 */
3646SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3647 struct sched_param __user *, param)
3648{
3649 /* negative values for policy are not valid */
3650 if (policy < 0)
3651 return -EINVAL;
3652
3653 return do_sched_setscheduler(pid, policy, param);
3654}
3655
3656/**
3657 * sys_sched_setparam - set/change the RT priority of a thread
3658 * @pid: the pid in question.
3659 * @param: structure containing the new RT priority.
3660 *
3661 * Return: 0 on success. An error code otherwise.
3662 */
3663SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3664{
3665 return do_sched_setscheduler(pid, -1, param);
3666}
3667
3668/**
3669 * sys_sched_setattr - same as above, but with extended sched_attr
3670 * @pid: the pid in question.
3671 * @uattr: structure containing the extended parameters.
3672 * @flags: for future extension.
3673 */
3674SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3675 unsigned int, flags)
3676{
3677 struct sched_attr attr;
3678 struct task_struct *p;
3679 int retval;
3680
3681 if (!uattr || pid < 0 || flags)
3682 return -EINVAL;
3683
3684 retval = sched_copy_attr(uattr, &attr);
3685 if (retval)
3686 return retval;
3687
3688 if ((int)attr.sched_policy < 0)
3689 return -EINVAL;
3690
3691 rcu_read_lock();
3692 retval = -ESRCH;
3693 p = find_process_by_pid(pid);
3694 if (p != NULL)
3695 retval = sched_setattr(p, &attr);
3696 rcu_read_unlock();
3697
3698 return retval;
3699}
3700
3701/**
3702 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3703 * @pid: the pid in question.
3704 *
3705 * Return: On success, the policy of the thread. Otherwise, a negative error
3706 * code.
3707 */
3708SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3709{
3710 struct task_struct *p;
3711 int retval;
3712
3713 if (pid < 0)
3714 return -EINVAL;
3715
3716 retval = -ESRCH;
3717 rcu_read_lock();
3718 p = find_process_by_pid(pid);
3719 if (p) {
3720 retval = security_task_getscheduler(p);
3721 if (!retval)
3722 retval = p->policy
3723 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3724 }
3725 rcu_read_unlock();
3726 return retval;
3727}
3728
3729/**
3730 * sys_sched_getparam - get the RT priority of a thread
3731 * @pid: the pid in question.
3732 * @param: structure containing the RT priority.
3733 *
3734 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3735 * code.
3736 */
3737SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3738{
3739 struct sched_param lp = { .sched_priority = 0 };
3740 struct task_struct *p;
3741 int retval;
3742
3743 if (!param || pid < 0)
3744 return -EINVAL;
3745
3746 rcu_read_lock();
3747 p = find_process_by_pid(pid);
3748 retval = -ESRCH;
3749 if (!p)
3750 goto out_unlock;
3751
3752 retval = security_task_getscheduler(p);
3753 if (retval)
3754 goto out_unlock;
3755
3756 if (task_has_rt_policy(p))
3757 lp.sched_priority = p->rt_priority;
3758 rcu_read_unlock();
3759
3760 /*
3761 * This one might sleep, we cannot do it with a spinlock held ...
3762 */
3763 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3764
3765 return retval;
3766
3767out_unlock:
3768 rcu_read_unlock();
3769 return retval;
3770}
3771
3772static int sched_read_attr(struct sched_attr __user *uattr,
3773 struct sched_attr *attr,
3774 unsigned int usize)
3775{
3776 int ret;
3777
3778 if (!access_ok(VERIFY_WRITE, uattr, usize))
3779 return -EFAULT;
3780
3781 /*
3782 * If we're handed a smaller struct than we know of,
3783 * ensure all the unknown bits are 0 - i.e. old
3784 * user-space does not get uncomplete information.
3785 */
3786 if (usize < sizeof(*attr)) {
3787 unsigned char *addr;
3788 unsigned char *end;
3789
3790 addr = (void *)attr + usize;
3791 end = (void *)attr + sizeof(*attr);
3792
3793 for (; addr < end; addr++) {
3794 if (*addr)
3795 goto err_size;
3796 }
3797
3798 attr->size = usize;
3799 }
3800
3801 ret = copy_to_user(uattr, attr, attr->size);
3802 if (ret)
3803 return -EFAULT;
3804
3805out:
3806 return ret;
3807
3808err_size:
3809 ret = -E2BIG;
3810 goto out;
3811}
3812
3813/**
3814 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3815 * @pid: the pid in question.
3816 * @uattr: structure containing the extended parameters.
3817 * @size: sizeof(attr) for fwd/bwd comp.
3818 * @flags: for future extension.
3819 */
3820SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3821 unsigned int, size, unsigned int, flags)
3822{
3823 struct sched_attr attr = {
3824 .size = sizeof(struct sched_attr),
3825 };
3826 struct task_struct *p;
3827 int retval;
3828
3829 if (!uattr || pid < 0 || size > PAGE_SIZE ||
3830 size < SCHED_ATTR_SIZE_VER0 || flags)
3831 return -EINVAL;
3832
3833 rcu_read_lock();
3834 p = find_process_by_pid(pid);
3835 retval = -ESRCH;
3836 if (!p)
3837 goto out_unlock;
3838
3839 retval = security_task_getscheduler(p);
3840 if (retval)
3841 goto out_unlock;
3842
3843 attr.sched_policy = p->policy;
3844 if (p->sched_reset_on_fork)
3845 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3846 if (task_has_dl_policy(p))
3847 __getparam_dl(p, &attr);
3848 else if (task_has_rt_policy(p))
3849 attr.sched_priority = p->rt_priority;
3850 else
3851 attr.sched_nice = task_nice(p);
3852
3853 rcu_read_unlock();
3854
3855 retval = sched_read_attr(uattr, &attr, size);
3856 return retval;
3857
3858out_unlock:
3859 rcu_read_unlock();
3860 return retval;
3861}
3862
3863long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3864{
3865 cpumask_var_t cpus_allowed, new_mask;
3866 struct task_struct *p;
3867 int retval;
3868
3869 rcu_read_lock();
3870
3871 p = find_process_by_pid(pid);
3872 if (!p) {
3873 rcu_read_unlock();
3874 return -ESRCH;
3875 }
3876
3877 /* Prevent p going away */
3878 get_task_struct(p);
3879 rcu_read_unlock();
3880
3881 if (p->flags & PF_NO_SETAFFINITY) {
3882 retval = -EINVAL;
3883 goto out_put_task;
3884 }
3885 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3886 retval = -ENOMEM;
3887 goto out_put_task;
3888 }
3889 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3890 retval = -ENOMEM;
3891 goto out_free_cpus_allowed;
3892 }
3893 retval = -EPERM;
3894 if (!check_same_owner(p)) {
3895 rcu_read_lock();
3896 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3897 rcu_read_unlock();
3898 goto out_unlock;
3899 }
3900 rcu_read_unlock();
3901 }
3902
3903 retval = security_task_setscheduler(p);
3904 if (retval)
3905 goto out_unlock;
3906
3907
3908 cpuset_cpus_allowed(p, cpus_allowed);
3909 cpumask_and(new_mask, in_mask, cpus_allowed);
3910
3911 /*
3912 * Since bandwidth control happens on root_domain basis,
3913 * if admission test is enabled, we only admit -deadline
3914 * tasks allowed to run on all the CPUs in the task's
3915 * root_domain.
3916 */
3917#ifdef CONFIG_SMP
3918 if (task_has_dl_policy(p)) {
3919 const struct cpumask *span = task_rq(p)->rd->span;
3920
3921 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3922 retval = -EBUSY;
3923 goto out_unlock;
3924 }
3925 }
3926#endif
3927again:
3928 retval = set_cpus_allowed_ptr(p, new_mask);
3929
3930 if (!retval) {
3931 cpuset_cpus_allowed(p, cpus_allowed);
3932 if (!cpumask_subset(new_mask, cpus_allowed)) {
3933 /*
3934 * We must have raced with a concurrent cpuset
3935 * update. Just reset the cpus_allowed to the
3936 * cpuset's cpus_allowed
3937 */
3938 cpumask_copy(new_mask, cpus_allowed);
3939 goto again;
3940 }
3941 }
3942out_unlock:
3943 free_cpumask_var(new_mask);
3944out_free_cpus_allowed:
3945 free_cpumask_var(cpus_allowed);
3946out_put_task:
3947 put_task_struct(p);
3948 return retval;
3949}
3950
3951static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3952 struct cpumask *new_mask)
3953{
3954 if (len < cpumask_size())
3955 cpumask_clear(new_mask);
3956 else if (len > cpumask_size())
3957 len = cpumask_size();
3958
3959 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3960}
3961
3962/**
3963 * sys_sched_setaffinity - set the cpu affinity of a process
3964 * @pid: pid of the process
3965 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3966 * @user_mask_ptr: user-space pointer to the new cpu mask
3967 *
3968 * Return: 0 on success. An error code otherwise.
3969 */
3970SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3971 unsigned long __user *, user_mask_ptr)
3972{
3973 cpumask_var_t new_mask;
3974 int retval;
3975
3976 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3977 return -ENOMEM;
3978
3979 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3980 if (retval == 0)
3981 retval = sched_setaffinity(pid, new_mask);
3982 free_cpumask_var(new_mask);
3983 return retval;
3984}
3985
3986long sched_getaffinity(pid_t pid, struct cpumask *mask)
3987{
3988 struct task_struct *p;
3989 unsigned long flags;
3990 int retval;
3991
3992 rcu_read_lock();
3993
3994 retval = -ESRCH;
3995 p = find_process_by_pid(pid);
3996 if (!p)
3997 goto out_unlock;
3998
3999 retval = security_task_getscheduler(p);
4000 if (retval)
4001 goto out_unlock;
4002
4003 raw_spin_lock_irqsave(&p->pi_lock, flags);
4004 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4005 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4006
4007out_unlock:
4008 rcu_read_unlock();
4009
4010 return retval;
4011}
4012
4013/**
4014 * sys_sched_getaffinity - get the cpu affinity of a process
4015 * @pid: pid of the process
4016 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4017 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4018 *
4019 * Return: 0 on success. An error code otherwise.
4020 */
4021SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4022 unsigned long __user *, user_mask_ptr)
4023{
4024 int ret;
4025 cpumask_var_t mask;
4026
4027 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4028 return -EINVAL;
4029 if (len & (sizeof(unsigned long)-1))
4030 return -EINVAL;
4031
4032 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4033 return -ENOMEM;
4034
4035 ret = sched_getaffinity(pid, mask);
4036 if (ret == 0) {
4037 size_t retlen = min_t(size_t, len, cpumask_size());
4038
4039 if (copy_to_user(user_mask_ptr, mask, retlen))
4040 ret = -EFAULT;
4041 else
4042 ret = retlen;
4043 }
4044 free_cpumask_var(mask);
4045
4046 return ret;
4047}
4048
4049/**
4050 * sys_sched_yield - yield the current processor to other threads.
4051 *
4052 * This function yields the current CPU to other tasks. If there are no
4053 * other threads running on this CPU then this function will return.
4054 *
4055 * Return: 0.
4056 */
4057SYSCALL_DEFINE0(sched_yield)
4058{
4059 struct rq *rq = this_rq_lock();
4060
4061 schedstat_inc(rq, yld_count);
4062 current->sched_class->yield_task(rq);
4063
4064 /*
4065 * Since we are going to call schedule() anyway, there's
4066 * no need to preempt or enable interrupts:
4067 */
4068 __release(rq->lock);
4069 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4070 do_raw_spin_unlock(&rq->lock);
4071 sched_preempt_enable_no_resched();
4072
4073 schedule();
4074
4075 return 0;
4076}
4077
4078static void __cond_resched(void)
4079{
4080 __preempt_count_add(PREEMPT_ACTIVE);
4081 __schedule();
4082 __preempt_count_sub(PREEMPT_ACTIVE);
4083}
4084
4085int __sched _cond_resched(void)
4086{
4087 if (should_resched()) {
4088 __cond_resched();
4089 return 1;
4090 }
4091 return 0;
4092}
4093EXPORT_SYMBOL(_cond_resched);
4094
4095/*
4096 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4097 * call schedule, and on return reacquire the lock.
4098 *
4099 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4100 * operations here to prevent schedule() from being called twice (once via
4101 * spin_unlock(), once by hand).
4102 */
4103int __cond_resched_lock(spinlock_t *lock)
4104{
4105 int resched = should_resched();
4106 int ret = 0;
4107
4108 lockdep_assert_held(lock);
4109
4110 if (spin_needbreak(lock) || resched) {
4111 spin_unlock(lock);
4112 if (resched)
4113 __cond_resched();
4114 else
4115 cpu_relax();
4116 ret = 1;
4117 spin_lock(lock);
4118 }
4119 return ret;
4120}
4121EXPORT_SYMBOL(__cond_resched_lock);
4122
4123int __sched __cond_resched_softirq(void)
4124{
4125 BUG_ON(!in_softirq());
4126
4127 if (should_resched()) {
4128 local_bh_enable();
4129 __cond_resched();
4130 local_bh_disable();
4131 return 1;
4132 }
4133 return 0;
4134}
4135EXPORT_SYMBOL(__cond_resched_softirq);
4136
4137/**
4138 * yield - yield the current processor to other threads.
4139 *
4140 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4141 *
4142 * The scheduler is at all times free to pick the calling task as the most
4143 * eligible task to run, if removing the yield() call from your code breaks
4144 * it, its already broken.
4145 *
4146 * Typical broken usage is:
4147 *
4148 * while (!event)
4149 * yield();
4150 *
4151 * where one assumes that yield() will let 'the other' process run that will
4152 * make event true. If the current task is a SCHED_FIFO task that will never
4153 * happen. Never use yield() as a progress guarantee!!
4154 *
4155 * If you want to use yield() to wait for something, use wait_event().
4156 * If you want to use yield() to be 'nice' for others, use cond_resched().
4157 * If you still want to use yield(), do not!
4158 */
4159void __sched yield(void)
4160{
4161 set_current_state(TASK_RUNNING);
4162 sys_sched_yield();
4163}
4164EXPORT_SYMBOL(yield);
4165
4166/**
4167 * yield_to - yield the current processor to another thread in
4168 * your thread group, or accelerate that thread toward the
4169 * processor it's on.
4170 * @p: target task
4171 * @preempt: whether task preemption is allowed or not
4172 *
4173 * It's the caller's job to ensure that the target task struct
4174 * can't go away on us before we can do any checks.
4175 *
4176 * Return:
4177 * true (>0) if we indeed boosted the target task.
4178 * false (0) if we failed to boost the target.
4179 * -ESRCH if there's no task to yield to.
4180 */
4181bool __sched yield_to(struct task_struct *p, bool preempt)
4182{
4183 struct task_struct *curr = current;
4184 struct rq *rq, *p_rq;
4185 unsigned long flags;
4186 int yielded = 0;
4187
4188 local_irq_save(flags);
4189 rq = this_rq();
4190
4191again:
4192 p_rq = task_rq(p);
4193 /*
4194 * If we're the only runnable task on the rq and target rq also
4195 * has only one task, there's absolutely no point in yielding.
4196 */
4197 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4198 yielded = -ESRCH;
4199 goto out_irq;
4200 }
4201
4202 double_rq_lock(rq, p_rq);
4203 if (task_rq(p) != p_rq) {
4204 double_rq_unlock(rq, p_rq);
4205 goto again;
4206 }
4207
4208 if (!curr->sched_class->yield_to_task)
4209 goto out_unlock;
4210
4211 if (curr->sched_class != p->sched_class)
4212 goto out_unlock;
4213
4214 if (task_running(p_rq, p) || p->state)
4215 goto out_unlock;
4216
4217 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4218 if (yielded) {
4219 schedstat_inc(rq, yld_count);
4220 /*
4221 * Make p's CPU reschedule; pick_next_entity takes care of
4222 * fairness.
4223 */
4224 if (preempt && rq != p_rq)
4225 resched_task(p_rq->curr);
4226 }
4227
4228out_unlock:
4229 double_rq_unlock(rq, p_rq);
4230out_irq:
4231 local_irq_restore(flags);
4232
4233 if (yielded > 0)
4234 schedule();
4235
4236 return yielded;
4237}
4238EXPORT_SYMBOL_GPL(yield_to);
4239
4240/*
4241 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4242 * that process accounting knows that this is a task in IO wait state.
4243 */
4244void __sched io_schedule(void)
4245{
4246 struct rq *rq = raw_rq();
4247
4248 delayacct_blkio_start();
4249 atomic_inc(&rq->nr_iowait);
4250 blk_flush_plug(current);
4251 current->in_iowait = 1;
4252 schedule();
4253 current->in_iowait = 0;
4254 atomic_dec(&rq->nr_iowait);
4255 delayacct_blkio_end();
4256}
4257EXPORT_SYMBOL(io_schedule);
4258
4259long __sched io_schedule_timeout(long timeout)
4260{
4261 struct rq *rq = raw_rq();
4262 long ret;
4263
4264 delayacct_blkio_start();
4265 atomic_inc(&rq->nr_iowait);
4266 blk_flush_plug(current);
4267 current->in_iowait = 1;
4268 ret = schedule_timeout(timeout);
4269 current->in_iowait = 0;
4270 atomic_dec(&rq->nr_iowait);
4271 delayacct_blkio_end();
4272 return ret;
4273}
4274
4275/**
4276 * sys_sched_get_priority_max - return maximum RT priority.
4277 * @policy: scheduling class.
4278 *
4279 * Return: On success, this syscall returns the maximum
4280 * rt_priority that can be used by a given scheduling class.
4281 * On failure, a negative error code is returned.
4282 */
4283SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4284{
4285 int ret = -EINVAL;
4286
4287 switch (policy) {
4288 case SCHED_FIFO:
4289 case SCHED_RR:
4290 ret = MAX_USER_RT_PRIO-1;
4291 break;
4292 case SCHED_DEADLINE:
4293 case SCHED_NORMAL:
4294 case SCHED_BATCH:
4295 case SCHED_IDLE:
4296 ret = 0;
4297 break;
4298 }
4299 return ret;
4300}
4301
4302/**
4303 * sys_sched_get_priority_min - return minimum RT priority.
4304 * @policy: scheduling class.
4305 *
4306 * Return: On success, this syscall returns the minimum
4307 * rt_priority that can be used by a given scheduling class.
4308 * On failure, a negative error code is returned.
4309 */
4310SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4311{
4312 int ret = -EINVAL;
4313
4314 switch (policy) {
4315 case SCHED_FIFO:
4316 case SCHED_RR:
4317 ret = 1;
4318 break;
4319 case SCHED_DEADLINE:
4320 case SCHED_NORMAL:
4321 case SCHED_BATCH:
4322 case SCHED_IDLE:
4323 ret = 0;
4324 }
4325 return ret;
4326}
4327
4328/**
4329 * sys_sched_rr_get_interval - return the default timeslice of a process.
4330 * @pid: pid of the process.
4331 * @interval: userspace pointer to the timeslice value.
4332 *
4333 * this syscall writes the default timeslice value of a given process
4334 * into the user-space timespec buffer. A value of '0' means infinity.
4335 *
4336 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4337 * an error code.
4338 */
4339SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4340 struct timespec __user *, interval)
4341{
4342 struct task_struct *p;
4343 unsigned int time_slice;
4344 unsigned long flags;
4345 struct rq *rq;
4346 int retval;
4347 struct timespec t;
4348
4349 if (pid < 0)
4350 return -EINVAL;
4351
4352 retval = -ESRCH;
4353 rcu_read_lock();
4354 p = find_process_by_pid(pid);
4355 if (!p)
4356 goto out_unlock;
4357
4358 retval = security_task_getscheduler(p);
4359 if (retval)
4360 goto out_unlock;
4361
4362 rq = task_rq_lock(p, &flags);
4363 time_slice = 0;
4364 if (p->sched_class->get_rr_interval)
4365 time_slice = p->sched_class->get_rr_interval(rq, p);
4366 task_rq_unlock(rq, p, &flags);
4367
4368 rcu_read_unlock();
4369 jiffies_to_timespec(time_slice, &t);
4370 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4371 return retval;
4372
4373out_unlock:
4374 rcu_read_unlock();
4375 return retval;
4376}
4377
4378static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4379
4380void sched_show_task(struct task_struct *p)
4381{
4382 unsigned long free = 0;
4383 int ppid;
4384 unsigned state;
4385
4386 state = p->state ? __ffs(p->state) + 1 : 0;
4387 printk(KERN_INFO "%-15.15s %c", p->comm,
4388 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4389#if BITS_PER_LONG == 32
4390 if (state == TASK_RUNNING)
4391 printk(KERN_CONT " running ");
4392 else
4393 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4394#else
4395 if (state == TASK_RUNNING)
4396 printk(KERN_CONT " running task ");
4397 else
4398 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4399#endif
4400#ifdef CONFIG_DEBUG_STACK_USAGE
4401 free = stack_not_used(p);
4402#endif
4403 rcu_read_lock();
4404 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4405 rcu_read_unlock();
4406 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4407 task_pid_nr(p), ppid,
4408 (unsigned long)task_thread_info(p)->flags);
4409
4410 print_worker_info(KERN_INFO, p);
4411 show_stack(p, NULL);
4412}
4413
4414void show_state_filter(unsigned long state_filter)
4415{
4416 struct task_struct *g, *p;
4417
4418#if BITS_PER_LONG == 32
4419 printk(KERN_INFO
4420 " task PC stack pid father\n");
4421#else
4422 printk(KERN_INFO
4423 " task PC stack pid father\n");
4424#endif
4425 rcu_read_lock();
4426 do_each_thread(g, p) {
4427 /*
4428 * reset the NMI-timeout, listing all files on a slow
4429 * console might take a lot of time:
4430 */
4431 touch_nmi_watchdog();
4432 if (!state_filter || (p->state & state_filter))
4433 sched_show_task(p);
4434 } while_each_thread(g, p);
4435
4436 touch_all_softlockup_watchdogs();
4437
4438#ifdef CONFIG_SCHED_DEBUG
4439 sysrq_sched_debug_show();
4440#endif
4441 rcu_read_unlock();
4442 /*
4443 * Only show locks if all tasks are dumped:
4444 */
4445 if (!state_filter)
4446 debug_show_all_locks();
4447}
4448
4449void init_idle_bootup_task(struct task_struct *idle)
4450{
4451 idle->sched_class = &idle_sched_class;
4452}
4453
4454/**
4455 * init_idle - set up an idle thread for a given CPU
4456 * @idle: task in question
4457 * @cpu: cpu the idle task belongs to
4458 *
4459 * NOTE: this function does not set the idle thread's NEED_RESCHED
4460 * flag, to make booting more robust.
4461 */
4462void init_idle(struct task_struct *idle, int cpu)
4463{
4464 struct rq *rq = cpu_rq(cpu);
4465 unsigned long flags;
4466
4467 raw_spin_lock_irqsave(&rq->lock, flags);
4468
4469 __sched_fork(0, idle);
4470 idle->state = TASK_RUNNING;
4471 idle->se.exec_start = sched_clock();
4472
4473 do_set_cpus_allowed(idle, cpumask_of(cpu));
4474 /*
4475 * We're having a chicken and egg problem, even though we are
4476 * holding rq->lock, the cpu isn't yet set to this cpu so the
4477 * lockdep check in task_group() will fail.
4478 *
4479 * Similar case to sched_fork(). / Alternatively we could
4480 * use task_rq_lock() here and obtain the other rq->lock.
4481 *
4482 * Silence PROVE_RCU
4483 */
4484 rcu_read_lock();
4485 __set_task_cpu(idle, cpu);
4486 rcu_read_unlock();
4487
4488 rq->curr = rq->idle = idle;
4489 idle->on_rq = 1;
4490#if defined(CONFIG_SMP)
4491 idle->on_cpu = 1;
4492#endif
4493 raw_spin_unlock_irqrestore(&rq->lock, flags);
4494
4495 /* Set the preempt count _outside_ the spinlocks! */
4496 init_idle_preempt_count(idle, cpu);
4497
4498 /*
4499 * The idle tasks have their own, simple scheduling class:
4500 */
4501 idle->sched_class = &idle_sched_class;
4502 ftrace_graph_init_idle_task(idle, cpu);
4503 vtime_init_idle(idle, cpu);
4504#if defined(CONFIG_SMP)
4505 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4506#endif
4507}
4508
4509#ifdef CONFIG_SMP
4510void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4511{
4512 if (p->sched_class && p->sched_class->set_cpus_allowed)
4513 p->sched_class->set_cpus_allowed(p, new_mask);
4514
4515 cpumask_copy(&p->cpus_allowed, new_mask);
4516 p->nr_cpus_allowed = cpumask_weight(new_mask);
4517}
4518
4519/*
4520 * This is how migration works:
4521 *
4522 * 1) we invoke migration_cpu_stop() on the target CPU using
4523 * stop_one_cpu().
4524 * 2) stopper starts to run (implicitly forcing the migrated thread
4525 * off the CPU)
4526 * 3) it checks whether the migrated task is still in the wrong runqueue.
4527 * 4) if it's in the wrong runqueue then the migration thread removes
4528 * it and puts it into the right queue.
4529 * 5) stopper completes and stop_one_cpu() returns and the migration
4530 * is done.
4531 */
4532
4533/*
4534 * Change a given task's CPU affinity. Migrate the thread to a
4535 * proper CPU and schedule it away if the CPU it's executing on
4536 * is removed from the allowed bitmask.
4537 *
4538 * NOTE: the caller must have a valid reference to the task, the
4539 * task must not exit() & deallocate itself prematurely. The
4540 * call is not atomic; no spinlocks may be held.
4541 */
4542int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4543{
4544 unsigned long flags;
4545 struct rq *rq;
4546 unsigned int dest_cpu;
4547 int ret = 0;
4548
4549 rq = task_rq_lock(p, &flags);
4550
4551 if (cpumask_equal(&p->cpus_allowed, new_mask))
4552 goto out;
4553
4554 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4555 ret = -EINVAL;
4556 goto out;
4557 }
4558
4559 do_set_cpus_allowed(p, new_mask);
4560
4561 /* Can the task run on the task's current CPU? If so, we're done */
4562 if (cpumask_test_cpu(task_cpu(p), new_mask))
4563 goto out;
4564
4565 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4566 if (p->on_rq) {
4567 struct migration_arg arg = { p, dest_cpu };
4568 /* Need help from migration thread: drop lock and wait. */
4569 task_rq_unlock(rq, p, &flags);
4570 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4571 tlb_migrate_finish(p->mm);
4572 return 0;
4573 }
4574out:
4575 task_rq_unlock(rq, p, &flags);
4576
4577 return ret;
4578}
4579EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4580
4581/*
4582 * Move (not current) task off this cpu, onto dest cpu. We're doing
4583 * this because either it can't run here any more (set_cpus_allowed()
4584 * away from this CPU, or CPU going down), or because we're
4585 * attempting to rebalance this task on exec (sched_exec).
4586 *
4587 * So we race with normal scheduler movements, but that's OK, as long
4588 * as the task is no longer on this CPU.
4589 *
4590 * Returns non-zero if task was successfully migrated.
4591 */
4592static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4593{
4594 struct rq *rq_dest, *rq_src;
4595 int ret = 0;
4596
4597 if (unlikely(!cpu_active(dest_cpu)))
4598 return ret;
4599
4600 rq_src = cpu_rq(src_cpu);
4601 rq_dest = cpu_rq(dest_cpu);
4602
4603 raw_spin_lock(&p->pi_lock);
4604 double_rq_lock(rq_src, rq_dest);
4605 /* Already moved. */
4606 if (task_cpu(p) != src_cpu)
4607 goto done;
4608 /* Affinity changed (again). */
4609 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4610 goto fail;
4611
4612 /*
4613 * If we're not on a rq, the next wake-up will ensure we're
4614 * placed properly.
4615 */
4616 if (p->on_rq) {
4617 dequeue_task(rq_src, p, 0);
4618 set_task_cpu(p, dest_cpu);
4619 enqueue_task(rq_dest, p, 0);
4620 check_preempt_curr(rq_dest, p, 0);
4621 }
4622done:
4623 ret = 1;
4624fail:
4625 double_rq_unlock(rq_src, rq_dest);
4626 raw_spin_unlock(&p->pi_lock);
4627 return ret;
4628}
4629
4630#ifdef CONFIG_NUMA_BALANCING
4631/* Migrate current task p to target_cpu */
4632int migrate_task_to(struct task_struct *p, int target_cpu)
4633{
4634 struct migration_arg arg = { p, target_cpu };
4635 int curr_cpu = task_cpu(p);
4636
4637 if (curr_cpu == target_cpu)
4638 return 0;
4639
4640 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4641 return -EINVAL;
4642
4643 /* TODO: This is not properly updating schedstats */
4644
4645 trace_sched_move_numa(p, curr_cpu, target_cpu);
4646 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4647}
4648
4649/*
4650 * Requeue a task on a given node and accurately track the number of NUMA
4651 * tasks on the runqueues
4652 */
4653void sched_setnuma(struct task_struct *p, int nid)
4654{
4655 struct rq *rq;
4656 unsigned long flags;
4657 bool on_rq, running;
4658
4659 rq = task_rq_lock(p, &flags);
4660 on_rq = p->on_rq;
4661 running = task_current(rq, p);
4662
4663 if (on_rq)
4664 dequeue_task(rq, p, 0);
4665 if (running)
4666 p->sched_class->put_prev_task(rq, p);
4667
4668 p->numa_preferred_nid = nid;
4669
4670 if (running)
4671 p->sched_class->set_curr_task(rq);
4672 if (on_rq)
4673 enqueue_task(rq, p, 0);
4674 task_rq_unlock(rq, p, &flags);
4675}
4676#endif
4677
4678/*
4679 * migration_cpu_stop - this will be executed by a highprio stopper thread
4680 * and performs thread migration by bumping thread off CPU then
4681 * 'pushing' onto another runqueue.
4682 */
4683static int migration_cpu_stop(void *data)
4684{
4685 struct migration_arg *arg = data;
4686
4687 /*
4688 * The original target cpu might have gone down and we might
4689 * be on another cpu but it doesn't matter.
4690 */
4691 local_irq_disable();
4692 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4693 local_irq_enable();
4694 return 0;
4695}
4696
4697#ifdef CONFIG_HOTPLUG_CPU
4698
4699/*
4700 * Ensures that the idle task is using init_mm right before its cpu goes
4701 * offline.
4702 */
4703void idle_task_exit(void)
4704{
4705 struct mm_struct *mm = current->active_mm;
4706
4707 BUG_ON(cpu_online(smp_processor_id()));
4708
4709 if (mm != &init_mm) {
4710 switch_mm(mm, &init_mm, current);
4711 finish_arch_post_lock_switch();
4712 }
4713 mmdrop(mm);
4714}
4715
4716/*
4717 * Since this CPU is going 'away' for a while, fold any nr_active delta
4718 * we might have. Assumes we're called after migrate_tasks() so that the
4719 * nr_active count is stable.
4720 *
4721 * Also see the comment "Global load-average calculations".
4722 */
4723static void calc_load_migrate(struct rq *rq)
4724{
4725 long delta = calc_load_fold_active(rq);
4726 if (delta)
4727 atomic_long_add(delta, &calc_load_tasks);
4728}
4729
4730static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4731{
4732}
4733
4734static const struct sched_class fake_sched_class = {
4735 .put_prev_task = put_prev_task_fake,
4736};
4737
4738static struct task_struct fake_task = {
4739 /*
4740 * Avoid pull_{rt,dl}_task()
4741 */
4742 .prio = MAX_PRIO + 1,
4743 .sched_class = &fake_sched_class,
4744};
4745
4746/*
4747 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4748 * try_to_wake_up()->select_task_rq().
4749 *
4750 * Called with rq->lock held even though we'er in stop_machine() and
4751 * there's no concurrency possible, we hold the required locks anyway
4752 * because of lock validation efforts.
4753 */
4754static void migrate_tasks(unsigned int dead_cpu)
4755{
4756 struct rq *rq = cpu_rq(dead_cpu);
4757 struct task_struct *next, *stop = rq->stop;
4758 int dest_cpu;
4759
4760 /*
4761 * Fudge the rq selection such that the below task selection loop
4762 * doesn't get stuck on the currently eligible stop task.
4763 *
4764 * We're currently inside stop_machine() and the rq is either stuck
4765 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4766 * either way we should never end up calling schedule() until we're
4767 * done here.
4768 */
4769 rq->stop = NULL;
4770
4771 /*
4772 * put_prev_task() and pick_next_task() sched
4773 * class method both need to have an up-to-date
4774 * value of rq->clock[_task]
4775 */
4776 update_rq_clock(rq);
4777
4778 for ( ; ; ) {
4779 /*
4780 * There's this thread running, bail when that's the only
4781 * remaining thread.
4782 */
4783 if (rq->nr_running == 1)
4784 break;
4785
4786 next = pick_next_task(rq, &fake_task);
4787 BUG_ON(!next);
4788 next->sched_class->put_prev_task(rq, next);
4789
4790 /* Find suitable destination for @next, with force if needed. */
4791 dest_cpu = select_fallback_rq(dead_cpu, next);
4792 raw_spin_unlock(&rq->lock);
4793
4794 __migrate_task(next, dead_cpu, dest_cpu);
4795
4796 raw_spin_lock(&rq->lock);
4797 }
4798
4799 rq->stop = stop;
4800}
4801
4802#endif /* CONFIG_HOTPLUG_CPU */
4803
4804#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4805
4806static struct ctl_table sd_ctl_dir[] = {
4807 {
4808 .procname = "sched_domain",
4809 .mode = 0555,
4810 },
4811 {}
4812};
4813
4814static struct ctl_table sd_ctl_root[] = {
4815 {
4816 .procname = "kernel",
4817 .mode = 0555,
4818 .child = sd_ctl_dir,
4819 },
4820 {}
4821};
4822
4823static struct ctl_table *sd_alloc_ctl_entry(int n)
4824{
4825 struct ctl_table *entry =
4826 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4827
4828 return entry;
4829}
4830
4831static void sd_free_ctl_entry(struct ctl_table **tablep)
4832{
4833 struct ctl_table *entry;
4834
4835 /*
4836 * In the intermediate directories, both the child directory and
4837 * procname are dynamically allocated and could fail but the mode
4838 * will always be set. In the lowest directory the names are
4839 * static strings and all have proc handlers.
4840 */
4841 for (entry = *tablep; entry->mode; entry++) {
4842 if (entry->child)
4843 sd_free_ctl_entry(&entry->child);
4844 if (entry->proc_handler == NULL)
4845 kfree(entry->procname);
4846 }
4847
4848 kfree(*tablep);
4849 *tablep = NULL;
4850}
4851
4852static int min_load_idx = 0;
4853static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4854
4855static void
4856set_table_entry(struct ctl_table *entry,
4857 const char *procname, void *data, int maxlen,
4858 umode_t mode, proc_handler *proc_handler,
4859 bool load_idx)
4860{
4861 entry->procname = procname;
4862 entry->data = data;
4863 entry->maxlen = maxlen;
4864 entry->mode = mode;
4865 entry->proc_handler = proc_handler;
4866
4867 if (load_idx) {
4868 entry->extra1 = &min_load_idx;
4869 entry->extra2 = &max_load_idx;
4870 }
4871}
4872
4873static struct ctl_table *
4874sd_alloc_ctl_domain_table(struct sched_domain *sd)
4875{
4876 struct ctl_table *table = sd_alloc_ctl_entry(14);
4877
4878 if (table == NULL)
4879 return NULL;
4880
4881 set_table_entry(&table[0], "min_interval", &sd->min_interval,
4882 sizeof(long), 0644, proc_doulongvec_minmax, false);
4883 set_table_entry(&table[1], "max_interval", &sd->max_interval,
4884 sizeof(long), 0644, proc_doulongvec_minmax, false);
4885 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4886 sizeof(int), 0644, proc_dointvec_minmax, true);
4887 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4888 sizeof(int), 0644, proc_dointvec_minmax, true);
4889 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4890 sizeof(int), 0644, proc_dointvec_minmax, true);
4891 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4892 sizeof(int), 0644, proc_dointvec_minmax, true);
4893 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4894 sizeof(int), 0644, proc_dointvec_minmax, true);
4895 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4896 sizeof(int), 0644, proc_dointvec_minmax, false);
4897 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4898 sizeof(int), 0644, proc_dointvec_minmax, false);
4899 set_table_entry(&table[9], "cache_nice_tries",
4900 &sd->cache_nice_tries,
4901 sizeof(int), 0644, proc_dointvec_minmax, false);
4902 set_table_entry(&table[10], "flags", &sd->flags,
4903 sizeof(int), 0644, proc_dointvec_minmax, false);
4904 set_table_entry(&table[11], "max_newidle_lb_cost",
4905 &sd->max_newidle_lb_cost,
4906 sizeof(long), 0644, proc_doulongvec_minmax, false);
4907 set_table_entry(&table[12], "name", sd->name,
4908 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4909 /* &table[13] is terminator */
4910
4911 return table;
4912}
4913
4914static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4915{
4916 struct ctl_table *entry, *table;
4917 struct sched_domain *sd;
4918 int domain_num = 0, i;
4919 char buf[32];
4920
4921 for_each_domain(cpu, sd)
4922 domain_num++;
4923 entry = table = sd_alloc_ctl_entry(domain_num + 1);
4924 if (table == NULL)
4925 return NULL;
4926
4927 i = 0;
4928 for_each_domain(cpu, sd) {
4929 snprintf(buf, 32, "domain%d", i);
4930 entry->procname = kstrdup(buf, GFP_KERNEL);
4931 entry->mode = 0555;
4932 entry->child = sd_alloc_ctl_domain_table(sd);
4933 entry++;
4934 i++;
4935 }
4936 return table;
4937}
4938
4939static struct ctl_table_header *sd_sysctl_header;
4940static void register_sched_domain_sysctl(void)
4941{
4942 int i, cpu_num = num_possible_cpus();
4943 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4944 char buf[32];
4945
4946 WARN_ON(sd_ctl_dir[0].child);
4947 sd_ctl_dir[0].child = entry;
4948
4949 if (entry == NULL)
4950 return;
4951
4952 for_each_possible_cpu(i) {
4953 snprintf(buf, 32, "cpu%d", i);
4954 entry->procname = kstrdup(buf, GFP_KERNEL);
4955 entry->mode = 0555;
4956 entry->child = sd_alloc_ctl_cpu_table(i);
4957 entry++;
4958 }
4959
4960 WARN_ON(sd_sysctl_header);
4961 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4962}
4963
4964/* may be called multiple times per register */
4965static void unregister_sched_domain_sysctl(void)
4966{
4967 if (sd_sysctl_header)
4968 unregister_sysctl_table(sd_sysctl_header);
4969 sd_sysctl_header = NULL;
4970 if (sd_ctl_dir[0].child)
4971 sd_free_ctl_entry(&sd_ctl_dir[0].child);
4972}
4973#else
4974static void register_sched_domain_sysctl(void)
4975{
4976}
4977static void unregister_sched_domain_sysctl(void)
4978{
4979}
4980#endif
4981
4982static void set_rq_online(struct rq *rq)
4983{
4984 if (!rq->online) {
4985 const struct sched_class *class;
4986
4987 cpumask_set_cpu(rq->cpu, rq->rd->online);
4988 rq->online = 1;
4989
4990 for_each_class(class) {
4991 if (class->rq_online)
4992 class->rq_online(rq);
4993 }
4994 }
4995}
4996
4997static void set_rq_offline(struct rq *rq)
4998{
4999 if (rq->online) {
5000 const struct sched_class *class;
5001
5002 for_each_class(class) {
5003 if (class->rq_offline)
5004 class->rq_offline(rq);
5005 }
5006
5007 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5008 rq->online = 0;
5009 }
5010}
5011
5012/*
5013 * migration_call - callback that gets triggered when a CPU is added.
5014 * Here we can start up the necessary migration thread for the new CPU.
5015 */
5016static int
5017migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5018{
5019 int cpu = (long)hcpu;
5020 unsigned long flags;
5021 struct rq *rq = cpu_rq(cpu);
5022
5023 switch (action & ~CPU_TASKS_FROZEN) {
5024
5025 case CPU_UP_PREPARE:
5026 rq->calc_load_update = calc_load_update;
5027 break;
5028
5029 case CPU_ONLINE:
5030 /* Update our root-domain */
5031 raw_spin_lock_irqsave(&rq->lock, flags);
5032 if (rq->rd) {
5033 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5034
5035 set_rq_online(rq);
5036 }
5037 raw_spin_unlock_irqrestore(&rq->lock, flags);
5038 break;
5039
5040#ifdef CONFIG_HOTPLUG_CPU
5041 case CPU_DYING:
5042 sched_ttwu_pending();
5043 /* Update our root-domain */
5044 raw_spin_lock_irqsave(&rq->lock, flags);
5045 if (rq->rd) {
5046 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5047 set_rq_offline(rq);
5048 }
5049 migrate_tasks(cpu);
5050 BUG_ON(rq->nr_running != 1); /* the migration thread */
5051 raw_spin_unlock_irqrestore(&rq->lock, flags);
5052 break;
5053
5054 case CPU_DEAD:
5055 calc_load_migrate(rq);
5056 break;
5057#endif
5058 }
5059
5060 update_max_interval();
5061
5062 return NOTIFY_OK;
5063}
5064
5065/*
5066 * Register at high priority so that task migration (migrate_all_tasks)
5067 * happens before everything else. This has to be lower priority than
5068 * the notifier in the perf_event subsystem, though.
5069 */
5070static struct notifier_block migration_notifier = {
5071 .notifier_call = migration_call,
5072 .priority = CPU_PRI_MIGRATION,
5073};
5074
5075static int sched_cpu_active(struct notifier_block *nfb,
5076 unsigned long action, void *hcpu)
5077{
5078 switch (action & ~CPU_TASKS_FROZEN) {
5079 case CPU_DOWN_FAILED:
5080 set_cpu_active((long)hcpu, true);
5081 return NOTIFY_OK;
5082 default:
5083 return NOTIFY_DONE;
5084 }
5085}
5086
5087static int sched_cpu_inactive(struct notifier_block *nfb,
5088 unsigned long action, void *hcpu)
5089{
5090 unsigned long flags;
5091 long cpu = (long)hcpu;
5092
5093 switch (action & ~CPU_TASKS_FROZEN) {
5094 case CPU_DOWN_PREPARE:
5095 set_cpu_active(cpu, false);
5096
5097 /* explicitly allow suspend */
5098 if (!(action & CPU_TASKS_FROZEN)) {
5099 struct dl_bw *dl_b = dl_bw_of(cpu);
5100 bool overflow;
5101 int cpus;
5102
5103 raw_spin_lock_irqsave(&dl_b->lock, flags);
5104 cpus = dl_bw_cpus(cpu);
5105 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5106 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5107
5108 if (overflow)
5109 return notifier_from_errno(-EBUSY);
5110 }
5111 return NOTIFY_OK;
5112 }
5113
5114 return NOTIFY_DONE;
5115}
5116
5117static int __init migration_init(void)
5118{
5119 void *cpu = (void *)(long)smp_processor_id();
5120 int err;
5121
5122 /* Initialize migration for the boot CPU */
5123 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5124 BUG_ON(err == NOTIFY_BAD);
5125 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5126 register_cpu_notifier(&migration_notifier);
5127
5128 /* Register cpu active notifiers */
5129 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5130 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5131
5132 return 0;
5133}
5134early_initcall(migration_init);
5135#endif
5136
5137#ifdef CONFIG_SMP
5138
5139static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5140
5141#ifdef CONFIG_SCHED_DEBUG
5142
5143static __read_mostly int sched_debug_enabled;
5144
5145static int __init sched_debug_setup(char *str)
5146{
5147 sched_debug_enabled = 1;
5148
5149 return 0;
5150}
5151early_param("sched_debug", sched_debug_setup);
5152
5153static inline bool sched_debug(void)
5154{
5155 return sched_debug_enabled;
5156}
5157
5158static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5159 struct cpumask *groupmask)
5160{
5161 struct sched_group *group = sd->groups;
5162 char str[256];
5163
5164 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5165 cpumask_clear(groupmask);
5166
5167 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5168
5169 if (!(sd->flags & SD_LOAD_BALANCE)) {
5170 printk("does not load-balance\n");
5171 if (sd->parent)
5172 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5173 " has parent");
5174 return -1;
5175 }
5176
5177 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5178
5179 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5180 printk(KERN_ERR "ERROR: domain->span does not contain "
5181 "CPU%d\n", cpu);
5182 }
5183 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5184 printk(KERN_ERR "ERROR: domain->groups does not contain"
5185 " CPU%d\n", cpu);
5186 }
5187
5188 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5189 do {
5190 if (!group) {
5191 printk("\n");
5192 printk(KERN_ERR "ERROR: group is NULL\n");
5193 break;
5194 }
5195
5196 /*
5197 * Even though we initialize ->power to something semi-sane,
5198 * we leave power_orig unset. This allows us to detect if
5199 * domain iteration is still funny without causing /0 traps.
5200 */
5201 if (!group->sgp->power_orig) {
5202 printk(KERN_CONT "\n");
5203 printk(KERN_ERR "ERROR: domain->cpu_power not "
5204 "set\n");
5205 break;
5206 }
5207
5208 if (!cpumask_weight(sched_group_cpus(group))) {
5209 printk(KERN_CONT "\n");
5210 printk(KERN_ERR "ERROR: empty group\n");
5211 break;
5212 }
5213
5214 if (!(sd->flags & SD_OVERLAP) &&
5215 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5216 printk(KERN_CONT "\n");
5217 printk(KERN_ERR "ERROR: repeated CPUs\n");
5218 break;
5219 }
5220
5221 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5222
5223 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5224
5225 printk(KERN_CONT " %s", str);
5226 if (group->sgp->power != SCHED_POWER_SCALE) {
5227 printk(KERN_CONT " (cpu_power = %d)",
5228 group->sgp->power);
5229 }
5230
5231 group = group->next;
5232 } while (group != sd->groups);
5233 printk(KERN_CONT "\n");
5234
5235 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5236 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5237
5238 if (sd->parent &&
5239 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5240 printk(KERN_ERR "ERROR: parent span is not a superset "
5241 "of domain->span\n");
5242 return 0;
5243}
5244
5245static void sched_domain_debug(struct sched_domain *sd, int cpu)
5246{
5247 int level = 0;
5248
5249 if (!sched_debug_enabled)
5250 return;
5251
5252 if (!sd) {
5253 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5254 return;
5255 }
5256
5257 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5258
5259 for (;;) {
5260 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5261 break;
5262 level++;
5263 sd = sd->parent;
5264 if (!sd)
5265 break;
5266 }
5267}
5268#else /* !CONFIG_SCHED_DEBUG */
5269# define sched_domain_debug(sd, cpu) do { } while (0)
5270static inline bool sched_debug(void)
5271{
5272 return false;
5273}
5274#endif /* CONFIG_SCHED_DEBUG */
5275
5276static int sd_degenerate(struct sched_domain *sd)
5277{
5278 if (cpumask_weight(sched_domain_span(sd)) == 1)
5279 return 1;
5280
5281 /* Following flags need at least 2 groups */
5282 if (sd->flags & (SD_LOAD_BALANCE |
5283 SD_BALANCE_NEWIDLE |
5284 SD_BALANCE_FORK |
5285 SD_BALANCE_EXEC |
5286 SD_SHARE_CPUPOWER |
5287 SD_SHARE_PKG_RESOURCES)) {
5288 if (sd->groups != sd->groups->next)
5289 return 0;
5290 }
5291
5292 /* Following flags don't use groups */
5293 if (sd->flags & (SD_WAKE_AFFINE))
5294 return 0;
5295
5296 return 1;
5297}
5298
5299static int
5300sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5301{
5302 unsigned long cflags = sd->flags, pflags = parent->flags;
5303
5304 if (sd_degenerate(parent))
5305 return 1;
5306
5307 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5308 return 0;
5309
5310 /* Flags needing groups don't count if only 1 group in parent */
5311 if (parent->groups == parent->groups->next) {
5312 pflags &= ~(SD_LOAD_BALANCE |
5313 SD_BALANCE_NEWIDLE |
5314 SD_BALANCE_FORK |
5315 SD_BALANCE_EXEC |
5316 SD_SHARE_CPUPOWER |
5317 SD_SHARE_PKG_RESOURCES |
5318 SD_PREFER_SIBLING);
5319 if (nr_node_ids == 1)
5320 pflags &= ~SD_SERIALIZE;
5321 }
5322 if (~cflags & pflags)
5323 return 0;
5324
5325 return 1;
5326}
5327
5328static void free_rootdomain(struct rcu_head *rcu)
5329{
5330 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5331
5332 cpupri_cleanup(&rd->cpupri);
5333 cpudl_cleanup(&rd->cpudl);
5334 free_cpumask_var(rd->dlo_mask);
5335 free_cpumask_var(rd->rto_mask);
5336 free_cpumask_var(rd->online);
5337 free_cpumask_var(rd->span);
5338 kfree(rd);
5339}
5340
5341static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5342{
5343 struct root_domain *old_rd = NULL;
5344 unsigned long flags;
5345
5346 raw_spin_lock_irqsave(&rq->lock, flags);
5347
5348 if (rq->rd) {
5349 old_rd = rq->rd;
5350
5351 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5352 set_rq_offline(rq);
5353
5354 cpumask_clear_cpu(rq->cpu, old_rd->span);
5355
5356 /*
5357 * If we dont want to free the old_rd yet then
5358 * set old_rd to NULL to skip the freeing later
5359 * in this function:
5360 */
5361 if (!atomic_dec_and_test(&old_rd->refcount))
5362 old_rd = NULL;
5363 }
5364
5365 atomic_inc(&rd->refcount);
5366 rq->rd = rd;
5367
5368 cpumask_set_cpu(rq->cpu, rd->span);
5369 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5370 set_rq_online(rq);
5371
5372 raw_spin_unlock_irqrestore(&rq->lock, flags);
5373
5374 if (old_rd)
5375 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5376}
5377
5378static int init_rootdomain(struct root_domain *rd)
5379{
5380 memset(rd, 0, sizeof(*rd));
5381
5382 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5383 goto out;
5384 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5385 goto free_span;
5386 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5387 goto free_online;
5388 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5389 goto free_dlo_mask;
5390
5391 init_dl_bw(&rd->dl_bw);
5392 if (cpudl_init(&rd->cpudl) != 0)
5393 goto free_dlo_mask;
5394
5395 if (cpupri_init(&rd->cpupri) != 0)
5396 goto free_rto_mask;
5397 return 0;
5398
5399free_rto_mask:
5400 free_cpumask_var(rd->rto_mask);
5401free_dlo_mask:
5402 free_cpumask_var(rd->dlo_mask);
5403free_online:
5404 free_cpumask_var(rd->online);
5405free_span:
5406 free_cpumask_var(rd->span);
5407out:
5408 return -ENOMEM;
5409}
5410
5411/*
5412 * By default the system creates a single root-domain with all cpus as
5413 * members (mimicking the global state we have today).
5414 */
5415struct root_domain def_root_domain;
5416
5417static void init_defrootdomain(void)
5418{
5419 init_rootdomain(&def_root_domain);
5420
5421 atomic_set(&def_root_domain.refcount, 1);
5422}
5423
5424static struct root_domain *alloc_rootdomain(void)
5425{
5426 struct root_domain *rd;
5427
5428 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5429 if (!rd)
5430 return NULL;
5431
5432 if (init_rootdomain(rd) != 0) {
5433 kfree(rd);
5434 return NULL;
5435 }
5436
5437 return rd;
5438}
5439
5440static void free_sched_groups(struct sched_group *sg, int free_sgp)
5441{
5442 struct sched_group *tmp, *first;
5443
5444 if (!sg)
5445 return;
5446
5447 first = sg;
5448 do {
5449 tmp = sg->next;
5450
5451 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5452 kfree(sg->sgp);
5453
5454 kfree(sg);
5455 sg = tmp;
5456 } while (sg != first);
5457}
5458
5459static void free_sched_domain(struct rcu_head *rcu)
5460{
5461 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5462
5463 /*
5464 * If its an overlapping domain it has private groups, iterate and
5465 * nuke them all.
5466 */
5467 if (sd->flags & SD_OVERLAP) {
5468 free_sched_groups(sd->groups, 1);
5469 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5470 kfree(sd->groups->sgp);
5471 kfree(sd->groups);
5472 }
5473 kfree(sd);
5474}
5475
5476static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5477{
5478 call_rcu(&sd->rcu, free_sched_domain);
5479}
5480
5481static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5482{
5483 for (; sd; sd = sd->parent)
5484 destroy_sched_domain(sd, cpu);
5485}
5486
5487/*
5488 * Keep a special pointer to the highest sched_domain that has
5489 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5490 * allows us to avoid some pointer chasing select_idle_sibling().
5491 *
5492 * Also keep a unique ID per domain (we use the first cpu number in
5493 * the cpumask of the domain), this allows us to quickly tell if
5494 * two cpus are in the same cache domain, see cpus_share_cache().
5495 */
5496DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5497DEFINE_PER_CPU(int, sd_llc_size);
5498DEFINE_PER_CPU(int, sd_llc_id);
5499DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5500DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5501DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5502
5503static void update_top_cache_domain(int cpu)
5504{
5505 struct sched_domain *sd;
5506 struct sched_domain *busy_sd = NULL;
5507 int id = cpu;
5508 int size = 1;
5509
5510 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5511 if (sd) {
5512 id = cpumask_first(sched_domain_span(sd));
5513 size = cpumask_weight(sched_domain_span(sd));
5514 busy_sd = sd->parent; /* sd_busy */
5515 }
5516 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5517
5518 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5519 per_cpu(sd_llc_size, cpu) = size;
5520 per_cpu(sd_llc_id, cpu) = id;
5521
5522 sd = lowest_flag_domain(cpu, SD_NUMA);
5523 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5524
5525 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5526 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5527}
5528
5529/*
5530 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5531 * hold the hotplug lock.
5532 */
5533static void
5534cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5535{
5536 struct rq *rq = cpu_rq(cpu);
5537 struct sched_domain *tmp;
5538
5539 /* Remove the sched domains which do not contribute to scheduling. */
5540 for (tmp = sd; tmp; ) {
5541 struct sched_domain *parent = tmp->parent;
5542 if (!parent)
5543 break;
5544
5545 if (sd_parent_degenerate(tmp, parent)) {
5546 tmp->parent = parent->parent;
5547 if (parent->parent)
5548 parent->parent->child = tmp;
5549 /*
5550 * Transfer SD_PREFER_SIBLING down in case of a
5551 * degenerate parent; the spans match for this
5552 * so the property transfers.
5553 */
5554 if (parent->flags & SD_PREFER_SIBLING)
5555 tmp->flags |= SD_PREFER_SIBLING;
5556 destroy_sched_domain(parent, cpu);
5557 } else
5558 tmp = tmp->parent;
5559 }
5560
5561 if (sd && sd_degenerate(sd)) {
5562 tmp = sd;
5563 sd = sd->parent;
5564 destroy_sched_domain(tmp, cpu);
5565 if (sd)
5566 sd->child = NULL;
5567 }
5568
5569 sched_domain_debug(sd, cpu);
5570
5571 rq_attach_root(rq, rd);
5572 tmp = rq->sd;
5573 rcu_assign_pointer(rq->sd, sd);
5574 destroy_sched_domains(tmp, cpu);
5575
5576 update_top_cache_domain(cpu);
5577}
5578
5579/* cpus with isolated domains */
5580static cpumask_var_t cpu_isolated_map;
5581
5582/* Setup the mask of cpus configured for isolated domains */
5583static int __init isolated_cpu_setup(char *str)
5584{
5585 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5586 cpulist_parse(str, cpu_isolated_map);
5587 return 1;
5588}
5589
5590__setup("isolcpus=", isolated_cpu_setup);
5591
5592static const struct cpumask *cpu_cpu_mask(int cpu)
5593{
5594 return cpumask_of_node(cpu_to_node(cpu));
5595}
5596
5597struct sd_data {
5598 struct sched_domain **__percpu sd;
5599 struct sched_group **__percpu sg;
5600 struct sched_group_power **__percpu sgp;
5601};
5602
5603struct s_data {
5604 struct sched_domain ** __percpu sd;
5605 struct root_domain *rd;
5606};
5607
5608enum s_alloc {
5609 sa_rootdomain,
5610 sa_sd,
5611 sa_sd_storage,
5612 sa_none,
5613};
5614
5615struct sched_domain_topology_level;
5616
5617typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5618typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5619
5620#define SDTL_OVERLAP 0x01
5621
5622struct sched_domain_topology_level {
5623 sched_domain_init_f init;
5624 sched_domain_mask_f mask;
5625 int flags;
5626 int numa_level;
5627 struct sd_data data;
5628};
5629
5630/*
5631 * Build an iteration mask that can exclude certain CPUs from the upwards
5632 * domain traversal.
5633 *
5634 * Asymmetric node setups can result in situations where the domain tree is of
5635 * unequal depth, make sure to skip domains that already cover the entire
5636 * range.
5637 *
5638 * In that case build_sched_domains() will have terminated the iteration early
5639 * and our sibling sd spans will be empty. Domains should always include the
5640 * cpu they're built on, so check that.
5641 *
5642 */
5643static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5644{
5645 const struct cpumask *span = sched_domain_span(sd);
5646 struct sd_data *sdd = sd->private;
5647 struct sched_domain *sibling;
5648 int i;
5649
5650 for_each_cpu(i, span) {
5651 sibling = *per_cpu_ptr(sdd->sd, i);
5652 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5653 continue;
5654
5655 cpumask_set_cpu(i, sched_group_mask(sg));
5656 }
5657}
5658
5659/*
5660 * Return the canonical balance cpu for this group, this is the first cpu
5661 * of this group that's also in the iteration mask.
5662 */
5663int group_balance_cpu(struct sched_group *sg)
5664{
5665 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5666}
5667
5668static int
5669build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5670{
5671 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5672 const struct cpumask *span = sched_domain_span(sd);
5673 struct cpumask *covered = sched_domains_tmpmask;
5674 struct sd_data *sdd = sd->private;
5675 struct sched_domain *child;
5676 int i;
5677
5678 cpumask_clear(covered);
5679
5680 for_each_cpu(i, span) {
5681 struct cpumask *sg_span;
5682
5683 if (cpumask_test_cpu(i, covered))
5684 continue;
5685
5686 child = *per_cpu_ptr(sdd->sd, i);
5687
5688 /* See the comment near build_group_mask(). */
5689 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5690 continue;
5691
5692 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5693 GFP_KERNEL, cpu_to_node(cpu));
5694
5695 if (!sg)
5696 goto fail;
5697
5698 sg_span = sched_group_cpus(sg);
5699 if (child->child) {
5700 child = child->child;
5701 cpumask_copy(sg_span, sched_domain_span(child));
5702 } else
5703 cpumask_set_cpu(i, sg_span);
5704
5705 cpumask_or(covered, covered, sg_span);
5706
5707 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5708 if (atomic_inc_return(&sg->sgp->ref) == 1)
5709 build_group_mask(sd, sg);
5710
5711 /*
5712 * Initialize sgp->power such that even if we mess up the
5713 * domains and no possible iteration will get us here, we won't
5714 * die on a /0 trap.
5715 */
5716 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5717 sg->sgp->power_orig = sg->sgp->power;
5718
5719 /*
5720 * Make sure the first group of this domain contains the
5721 * canonical balance cpu. Otherwise the sched_domain iteration
5722 * breaks. See update_sg_lb_stats().
5723 */
5724 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5725 group_balance_cpu(sg) == cpu)
5726 groups = sg;
5727
5728 if (!first)
5729 first = sg;
5730 if (last)
5731 last->next = sg;
5732 last = sg;
5733 last->next = first;
5734 }
5735 sd->groups = groups;
5736
5737 return 0;
5738
5739fail:
5740 free_sched_groups(first, 0);
5741
5742 return -ENOMEM;
5743}
5744
5745static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5746{
5747 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5748 struct sched_domain *child = sd->child;
5749
5750 if (child)
5751 cpu = cpumask_first(sched_domain_span(child));
5752
5753 if (sg) {
5754 *sg = *per_cpu_ptr(sdd->sg, cpu);
5755 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5756 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5757 }
5758
5759 return cpu;
5760}
5761
5762/*
5763 * build_sched_groups will build a circular linked list of the groups
5764 * covered by the given span, and will set each group's ->cpumask correctly,
5765 * and ->cpu_power to 0.
5766 *
5767 * Assumes the sched_domain tree is fully constructed
5768 */
5769static int
5770build_sched_groups(struct sched_domain *sd, int cpu)
5771{
5772 struct sched_group *first = NULL, *last = NULL;
5773 struct sd_data *sdd = sd->private;
5774 const struct cpumask *span = sched_domain_span(sd);
5775 struct cpumask *covered;
5776 int i;
5777
5778 get_group(cpu, sdd, &sd->groups);
5779 atomic_inc(&sd->groups->ref);
5780
5781 if (cpu != cpumask_first(span))
5782 return 0;
5783
5784 lockdep_assert_held(&sched_domains_mutex);
5785 covered = sched_domains_tmpmask;
5786
5787 cpumask_clear(covered);
5788
5789 for_each_cpu(i, span) {
5790 struct sched_group *sg;
5791 int group, j;
5792
5793 if (cpumask_test_cpu(i, covered))
5794 continue;
5795
5796 group = get_group(i, sdd, &sg);
5797 cpumask_clear(sched_group_cpus(sg));
5798 sg->sgp->power = 0;
5799 cpumask_setall(sched_group_mask(sg));
5800
5801 for_each_cpu(j, span) {
5802 if (get_group(j, sdd, NULL) != group)
5803 continue;
5804
5805 cpumask_set_cpu(j, covered);
5806 cpumask_set_cpu(j, sched_group_cpus(sg));
5807 }
5808
5809 if (!first)
5810 first = sg;
5811 if (last)
5812 last->next = sg;
5813 last = sg;
5814 }
5815 last->next = first;
5816
5817 return 0;
5818}
5819
5820/*
5821 * Initialize sched groups cpu_power.
5822 *
5823 * cpu_power indicates the capacity of sched group, which is used while
5824 * distributing the load between different sched groups in a sched domain.
5825 * Typically cpu_power for all the groups in a sched domain will be same unless
5826 * there are asymmetries in the topology. If there are asymmetries, group
5827 * having more cpu_power will pickup more load compared to the group having
5828 * less cpu_power.
5829 */
5830static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5831{
5832 struct sched_group *sg = sd->groups;
5833
5834 WARN_ON(!sg);
5835
5836 do {
5837 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5838 sg = sg->next;
5839 } while (sg != sd->groups);
5840
5841 if (cpu != group_balance_cpu(sg))
5842 return;
5843
5844 update_group_power(sd, cpu);
5845 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5846}
5847
5848int __weak arch_sd_sibling_asym_packing(void)
5849{
5850 return 0*SD_ASYM_PACKING;
5851}
5852
5853/*
5854 * Initializers for schedule domains
5855 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5856 */
5857
5858#ifdef CONFIG_SCHED_DEBUG
5859# define SD_INIT_NAME(sd, type) sd->name = #type
5860#else
5861# define SD_INIT_NAME(sd, type) do { } while (0)
5862#endif
5863
5864#define SD_INIT_FUNC(type) \
5865static noinline struct sched_domain * \
5866sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5867{ \
5868 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5869 *sd = SD_##type##_INIT; \
5870 SD_INIT_NAME(sd, type); \
5871 sd->private = &tl->data; \
5872 return sd; \
5873}
5874
5875SD_INIT_FUNC(CPU)
5876#ifdef CONFIG_SCHED_SMT
5877 SD_INIT_FUNC(SIBLING)
5878#endif
5879#ifdef CONFIG_SCHED_MC
5880 SD_INIT_FUNC(MC)
5881#endif
5882#ifdef CONFIG_SCHED_BOOK
5883 SD_INIT_FUNC(BOOK)
5884#endif
5885
5886static int default_relax_domain_level = -1;
5887int sched_domain_level_max;
5888
5889static int __init setup_relax_domain_level(char *str)
5890{
5891 if (kstrtoint(str, 0, &default_relax_domain_level))
5892 pr_warn("Unable to set relax_domain_level\n");
5893
5894 return 1;
5895}
5896__setup("relax_domain_level=", setup_relax_domain_level);
5897
5898static void set_domain_attribute(struct sched_domain *sd,
5899 struct sched_domain_attr *attr)
5900{
5901 int request;
5902
5903 if (!attr || attr->relax_domain_level < 0) {
5904 if (default_relax_domain_level < 0)
5905 return;
5906 else
5907 request = default_relax_domain_level;
5908 } else
5909 request = attr->relax_domain_level;
5910 if (request < sd->level) {
5911 /* turn off idle balance on this domain */
5912 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5913 } else {
5914 /* turn on idle balance on this domain */
5915 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5916 }
5917}
5918
5919static void __sdt_free(const struct cpumask *cpu_map);
5920static int __sdt_alloc(const struct cpumask *cpu_map);
5921
5922static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5923 const struct cpumask *cpu_map)
5924{
5925 switch (what) {
5926 case sa_rootdomain:
5927 if (!atomic_read(&d->rd->refcount))
5928 free_rootdomain(&d->rd->rcu); /* fall through */
5929 case sa_sd:
5930 free_percpu(d->sd); /* fall through */
5931 case sa_sd_storage:
5932 __sdt_free(cpu_map); /* fall through */
5933 case sa_none:
5934 break;
5935 }
5936}
5937
5938static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5939 const struct cpumask *cpu_map)
5940{
5941 memset(d, 0, sizeof(*d));
5942
5943 if (__sdt_alloc(cpu_map))
5944 return sa_sd_storage;
5945 d->sd = alloc_percpu(struct sched_domain *);
5946 if (!d->sd)
5947 return sa_sd_storage;
5948 d->rd = alloc_rootdomain();
5949 if (!d->rd)
5950 return sa_sd;
5951 return sa_rootdomain;
5952}
5953
5954/*
5955 * NULL the sd_data elements we've used to build the sched_domain and
5956 * sched_group structure so that the subsequent __free_domain_allocs()
5957 * will not free the data we're using.
5958 */
5959static void claim_allocations(int cpu, struct sched_domain *sd)
5960{
5961 struct sd_data *sdd = sd->private;
5962
5963 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5964 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5965
5966 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5967 *per_cpu_ptr(sdd->sg, cpu) = NULL;
5968
5969 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5970 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
5971}
5972
5973#ifdef CONFIG_SCHED_SMT
5974static const struct cpumask *cpu_smt_mask(int cpu)
5975{
5976 return topology_thread_cpumask(cpu);
5977}
5978#endif
5979
5980/*
5981 * Topology list, bottom-up.
5982 */
5983static struct sched_domain_topology_level default_topology[] = {
5984#ifdef CONFIG_SCHED_SMT
5985 { sd_init_SIBLING, cpu_smt_mask, },
5986#endif
5987#ifdef CONFIG_SCHED_MC
5988 { sd_init_MC, cpu_coregroup_mask, },
5989#endif
5990#ifdef CONFIG_SCHED_BOOK
5991 { sd_init_BOOK, cpu_book_mask, },
5992#endif
5993 { sd_init_CPU, cpu_cpu_mask, },
5994 { NULL, },
5995};
5996
5997static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5998
5999#define for_each_sd_topology(tl) \
6000 for (tl = sched_domain_topology; tl->init; tl++)
6001
6002#ifdef CONFIG_NUMA
6003
6004static int sched_domains_numa_levels;
6005static int *sched_domains_numa_distance;
6006static struct cpumask ***sched_domains_numa_masks;
6007static int sched_domains_curr_level;
6008
6009static inline int sd_local_flags(int level)
6010{
6011 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6012 return 0;
6013
6014 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6015}
6016
6017static struct sched_domain *
6018sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6019{
6020 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6021 int level = tl->numa_level;
6022 int sd_weight = cpumask_weight(
6023 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6024
6025 *sd = (struct sched_domain){
6026 .min_interval = sd_weight,
6027 .max_interval = 2*sd_weight,
6028 .busy_factor = 32,
6029 .imbalance_pct = 125,
6030 .cache_nice_tries = 2,
6031 .busy_idx = 3,
6032 .idle_idx = 2,
6033 .newidle_idx = 0,
6034 .wake_idx = 0,
6035 .forkexec_idx = 0,
6036
6037 .flags = 1*SD_LOAD_BALANCE
6038 | 1*SD_BALANCE_NEWIDLE
6039 | 0*SD_BALANCE_EXEC
6040 | 0*SD_BALANCE_FORK
6041 | 0*SD_BALANCE_WAKE
6042 | 0*SD_WAKE_AFFINE
6043 | 0*SD_SHARE_CPUPOWER
6044 | 0*SD_SHARE_PKG_RESOURCES
6045 | 1*SD_SERIALIZE
6046 | 0*SD_PREFER_SIBLING
6047 | 1*SD_NUMA
6048 | sd_local_flags(level)
6049 ,
6050 .last_balance = jiffies,
6051 .balance_interval = sd_weight,
6052 .max_newidle_lb_cost = 0,
6053 .next_decay_max_lb_cost = jiffies,
6054 };
6055 SD_INIT_NAME(sd, NUMA);
6056 sd->private = &tl->data;
6057
6058 /*
6059 * Ugly hack to pass state to sd_numa_mask()...
6060 */
6061 sched_domains_curr_level = tl->numa_level;
6062
6063 return sd;
6064}
6065
6066static const struct cpumask *sd_numa_mask(int cpu)
6067{
6068 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6069}
6070
6071static void sched_numa_warn(const char *str)
6072{
6073 static int done = false;
6074 int i,j;
6075
6076 if (done)
6077 return;
6078
6079 done = true;
6080
6081 printk(KERN_WARNING "ERROR: %s\n\n", str);
6082
6083 for (i = 0; i < nr_node_ids; i++) {
6084 printk(KERN_WARNING " ");
6085 for (j = 0; j < nr_node_ids; j++)
6086 printk(KERN_CONT "%02d ", node_distance(i,j));
6087 printk(KERN_CONT "\n");
6088 }
6089 printk(KERN_WARNING "\n");
6090}
6091
6092static bool find_numa_distance(int distance)
6093{
6094 int i;
6095
6096 if (distance == node_distance(0, 0))
6097 return true;
6098
6099 for (i = 0; i < sched_domains_numa_levels; i++) {
6100 if (sched_domains_numa_distance[i] == distance)
6101 return true;
6102 }
6103
6104 return false;
6105}
6106
6107static void sched_init_numa(void)
6108{
6109 int next_distance, curr_distance = node_distance(0, 0);
6110 struct sched_domain_topology_level *tl;
6111 int level = 0;
6112 int i, j, k;
6113
6114 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6115 if (!sched_domains_numa_distance)
6116 return;
6117
6118 /*
6119 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6120 * unique distances in the node_distance() table.
6121 *
6122 * Assumes node_distance(0,j) includes all distances in
6123 * node_distance(i,j) in order to avoid cubic time.
6124 */
6125 next_distance = curr_distance;
6126 for (i = 0; i < nr_node_ids; i++) {
6127 for (j = 0; j < nr_node_ids; j++) {
6128 for (k = 0; k < nr_node_ids; k++) {
6129 int distance = node_distance(i, k);
6130
6131 if (distance > curr_distance &&
6132 (distance < next_distance ||
6133 next_distance == curr_distance))
6134 next_distance = distance;
6135
6136 /*
6137 * While not a strong assumption it would be nice to know
6138 * about cases where if node A is connected to B, B is not
6139 * equally connected to A.
6140 */
6141 if (sched_debug() && node_distance(k, i) != distance)
6142 sched_numa_warn("Node-distance not symmetric");
6143
6144 if (sched_debug() && i && !find_numa_distance(distance))
6145 sched_numa_warn("Node-0 not representative");
6146 }
6147 if (next_distance != curr_distance) {
6148 sched_domains_numa_distance[level++] = next_distance;
6149 sched_domains_numa_levels = level;
6150 curr_distance = next_distance;
6151 } else break;
6152 }
6153
6154 /*
6155 * In case of sched_debug() we verify the above assumption.
6156 */
6157 if (!sched_debug())
6158 break;
6159 }
6160 /*
6161 * 'level' contains the number of unique distances, excluding the
6162 * identity distance node_distance(i,i).
6163 *
6164 * The sched_domains_numa_distance[] array includes the actual distance
6165 * numbers.
6166 */
6167
6168 /*
6169 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6170 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6171 * the array will contain less then 'level' members. This could be
6172 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6173 * in other functions.
6174 *
6175 * We reset it to 'level' at the end of this function.
6176 */
6177 sched_domains_numa_levels = 0;
6178
6179 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6180 if (!sched_domains_numa_masks)
6181 return;
6182
6183 /*
6184 * Now for each level, construct a mask per node which contains all
6185 * cpus of nodes that are that many hops away from us.
6186 */
6187 for (i = 0; i < level; i++) {
6188 sched_domains_numa_masks[i] =
6189 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6190 if (!sched_domains_numa_masks[i])
6191 return;
6192
6193 for (j = 0; j < nr_node_ids; j++) {
6194 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6195 if (!mask)
6196 return;
6197
6198 sched_domains_numa_masks[i][j] = mask;
6199
6200 for (k = 0; k < nr_node_ids; k++) {
6201 if (node_distance(j, k) > sched_domains_numa_distance[i])
6202 continue;
6203
6204 cpumask_or(mask, mask, cpumask_of_node(k));
6205 }
6206 }
6207 }
6208
6209 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6210 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6211 if (!tl)
6212 return;
6213
6214 /*
6215 * Copy the default topology bits..
6216 */
6217 for (i = 0; default_topology[i].init; i++)
6218 tl[i] = default_topology[i];
6219
6220 /*
6221 * .. and append 'j' levels of NUMA goodness.
6222 */
6223 for (j = 0; j < level; i++, j++) {
6224 tl[i] = (struct sched_domain_topology_level){
6225 .init = sd_numa_init,
6226 .mask = sd_numa_mask,
6227 .flags = SDTL_OVERLAP,
6228 .numa_level = j,
6229 };
6230 }
6231
6232 sched_domain_topology = tl;
6233
6234 sched_domains_numa_levels = level;
6235}
6236
6237static void sched_domains_numa_masks_set(int cpu)
6238{
6239 int i, j;
6240 int node = cpu_to_node(cpu);
6241
6242 for (i = 0; i < sched_domains_numa_levels; i++) {
6243 for (j = 0; j < nr_node_ids; j++) {
6244 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6245 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6246 }
6247 }
6248}
6249
6250static void sched_domains_numa_masks_clear(int cpu)
6251{
6252 int i, j;
6253 for (i = 0; i < sched_domains_numa_levels; i++) {
6254 for (j = 0; j < nr_node_ids; j++)
6255 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6256 }
6257}
6258
6259/*
6260 * Update sched_domains_numa_masks[level][node] array when new cpus
6261 * are onlined.
6262 */
6263static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6264 unsigned long action,
6265 void *hcpu)
6266{
6267 int cpu = (long)hcpu;
6268
6269 switch (action & ~CPU_TASKS_FROZEN) {
6270 case CPU_ONLINE:
6271 sched_domains_numa_masks_set(cpu);
6272 break;
6273
6274 case CPU_DEAD:
6275 sched_domains_numa_masks_clear(cpu);
6276 break;
6277
6278 default:
6279 return NOTIFY_DONE;
6280 }
6281
6282 return NOTIFY_OK;
6283}
6284#else
6285static inline void sched_init_numa(void)
6286{
6287}
6288
6289static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6290 unsigned long action,
6291 void *hcpu)
6292{
6293 return 0;
6294}
6295#endif /* CONFIG_NUMA */
6296
6297static int __sdt_alloc(const struct cpumask *cpu_map)
6298{
6299 struct sched_domain_topology_level *tl;
6300 int j;
6301
6302 for_each_sd_topology(tl) {
6303 struct sd_data *sdd = &tl->data;
6304
6305 sdd->sd = alloc_percpu(struct sched_domain *);
6306 if (!sdd->sd)
6307 return -ENOMEM;
6308
6309 sdd->sg = alloc_percpu(struct sched_group *);
6310 if (!sdd->sg)
6311 return -ENOMEM;
6312
6313 sdd->sgp = alloc_percpu(struct sched_group_power *);
6314 if (!sdd->sgp)
6315 return -ENOMEM;
6316
6317 for_each_cpu(j, cpu_map) {
6318 struct sched_domain *sd;
6319 struct sched_group *sg;
6320 struct sched_group_power *sgp;
6321
6322 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6323 GFP_KERNEL, cpu_to_node(j));
6324 if (!sd)
6325 return -ENOMEM;
6326
6327 *per_cpu_ptr(sdd->sd, j) = sd;
6328
6329 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6330 GFP_KERNEL, cpu_to_node(j));
6331 if (!sg)
6332 return -ENOMEM;
6333
6334 sg->next = sg;
6335
6336 *per_cpu_ptr(sdd->sg, j) = sg;
6337
6338 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6339 GFP_KERNEL, cpu_to_node(j));
6340 if (!sgp)
6341 return -ENOMEM;
6342
6343 *per_cpu_ptr(sdd->sgp, j) = sgp;
6344 }
6345 }
6346
6347 return 0;
6348}
6349
6350static void __sdt_free(const struct cpumask *cpu_map)
6351{
6352 struct sched_domain_topology_level *tl;
6353 int j;
6354
6355 for_each_sd_topology(tl) {
6356 struct sd_data *sdd = &tl->data;
6357
6358 for_each_cpu(j, cpu_map) {
6359 struct sched_domain *sd;
6360
6361 if (sdd->sd) {
6362 sd = *per_cpu_ptr(sdd->sd, j);
6363 if (sd && (sd->flags & SD_OVERLAP))
6364 free_sched_groups(sd->groups, 0);
6365 kfree(*per_cpu_ptr(sdd->sd, j));
6366 }
6367
6368 if (sdd->sg)
6369 kfree(*per_cpu_ptr(sdd->sg, j));
6370 if (sdd->sgp)
6371 kfree(*per_cpu_ptr(sdd->sgp, j));
6372 }
6373 free_percpu(sdd->sd);
6374 sdd->sd = NULL;
6375 free_percpu(sdd->sg);
6376 sdd->sg = NULL;
6377 free_percpu(sdd->sgp);
6378 sdd->sgp = NULL;
6379 }
6380}
6381
6382struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6383 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6384 struct sched_domain *child, int cpu)
6385{
6386 struct sched_domain *sd = tl->init(tl, cpu);
6387 if (!sd)
6388 return child;
6389
6390 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6391 if (child) {
6392 sd->level = child->level + 1;
6393 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6394 child->parent = sd;
6395 sd->child = child;
6396 }
6397 set_domain_attribute(sd, attr);
6398
6399 return sd;
6400}
6401
6402/*
6403 * Build sched domains for a given set of cpus and attach the sched domains
6404 * to the individual cpus
6405 */
6406static int build_sched_domains(const struct cpumask *cpu_map,
6407 struct sched_domain_attr *attr)
6408{
6409 enum s_alloc alloc_state;
6410 struct sched_domain *sd;
6411 struct s_data d;
6412 int i, ret = -ENOMEM;
6413
6414 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6415 if (alloc_state != sa_rootdomain)
6416 goto error;
6417
6418 /* Set up domains for cpus specified by the cpu_map. */
6419 for_each_cpu(i, cpu_map) {
6420 struct sched_domain_topology_level *tl;
6421
6422 sd = NULL;
6423 for_each_sd_topology(tl) {
6424 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6425 if (tl == sched_domain_topology)
6426 *per_cpu_ptr(d.sd, i) = sd;
6427 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6428 sd->flags |= SD_OVERLAP;
6429 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6430 break;
6431 }
6432 }
6433
6434 /* Build the groups for the domains */
6435 for_each_cpu(i, cpu_map) {
6436 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6437 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6438 if (sd->flags & SD_OVERLAP) {
6439 if (build_overlap_sched_groups(sd, i))
6440 goto error;
6441 } else {
6442 if (build_sched_groups(sd, i))
6443 goto error;
6444 }
6445 }
6446 }
6447
6448 /* Calculate CPU power for physical packages and nodes */
6449 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6450 if (!cpumask_test_cpu(i, cpu_map))
6451 continue;
6452
6453 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6454 claim_allocations(i, sd);
6455 init_sched_groups_power(i, sd);
6456 }
6457 }
6458
6459 /* Attach the domains */
6460 rcu_read_lock();
6461 for_each_cpu(i, cpu_map) {
6462 sd = *per_cpu_ptr(d.sd, i);
6463 cpu_attach_domain(sd, d.rd, i);
6464 }
6465 rcu_read_unlock();
6466
6467 ret = 0;
6468error:
6469 __free_domain_allocs(&d, alloc_state, cpu_map);
6470 return ret;
6471}
6472
6473static cpumask_var_t *doms_cur; /* current sched domains */
6474static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6475static struct sched_domain_attr *dattr_cur;
6476 /* attribues of custom domains in 'doms_cur' */
6477
6478/*
6479 * Special case: If a kmalloc of a doms_cur partition (array of
6480 * cpumask) fails, then fallback to a single sched domain,
6481 * as determined by the single cpumask fallback_doms.
6482 */
6483static cpumask_var_t fallback_doms;
6484
6485/*
6486 * arch_update_cpu_topology lets virtualized architectures update the
6487 * cpu core maps. It is supposed to return 1 if the topology changed
6488 * or 0 if it stayed the same.
6489 */
6490int __weak arch_update_cpu_topology(void)
6491{
6492 return 0;
6493}
6494
6495cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6496{
6497 int i;
6498 cpumask_var_t *doms;
6499
6500 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6501 if (!doms)
6502 return NULL;
6503 for (i = 0; i < ndoms; i++) {
6504 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6505 free_sched_domains(doms, i);
6506 return NULL;
6507 }
6508 }
6509 return doms;
6510}
6511
6512void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6513{
6514 unsigned int i;
6515 for (i = 0; i < ndoms; i++)
6516 free_cpumask_var(doms[i]);
6517 kfree(doms);
6518}
6519
6520/*
6521 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6522 * For now this just excludes isolated cpus, but could be used to
6523 * exclude other special cases in the future.
6524 */
6525static int init_sched_domains(const struct cpumask *cpu_map)
6526{
6527 int err;
6528
6529 arch_update_cpu_topology();
6530 ndoms_cur = 1;
6531 doms_cur = alloc_sched_domains(ndoms_cur);
6532 if (!doms_cur)
6533 doms_cur = &fallback_doms;
6534 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6535 err = build_sched_domains(doms_cur[0], NULL);
6536 register_sched_domain_sysctl();
6537
6538 return err;
6539}
6540
6541/*
6542 * Detach sched domains from a group of cpus specified in cpu_map
6543 * These cpus will now be attached to the NULL domain
6544 */
6545static void detach_destroy_domains(const struct cpumask *cpu_map)
6546{
6547 int i;
6548
6549 rcu_read_lock();
6550 for_each_cpu(i, cpu_map)
6551 cpu_attach_domain(NULL, &def_root_domain, i);
6552 rcu_read_unlock();
6553}
6554
6555/* handle null as "default" */
6556static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6557 struct sched_domain_attr *new, int idx_new)
6558{
6559 struct sched_domain_attr tmp;
6560
6561 /* fast path */
6562 if (!new && !cur)
6563 return 1;
6564
6565 tmp = SD_ATTR_INIT;
6566 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6567 new ? (new + idx_new) : &tmp,
6568 sizeof(struct sched_domain_attr));
6569}
6570
6571/*
6572 * Partition sched domains as specified by the 'ndoms_new'
6573 * cpumasks in the array doms_new[] of cpumasks. This compares
6574 * doms_new[] to the current sched domain partitioning, doms_cur[].
6575 * It destroys each deleted domain and builds each new domain.
6576 *
6577 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6578 * The masks don't intersect (don't overlap.) We should setup one
6579 * sched domain for each mask. CPUs not in any of the cpumasks will
6580 * not be load balanced. If the same cpumask appears both in the
6581 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6582 * it as it is.
6583 *
6584 * The passed in 'doms_new' should be allocated using
6585 * alloc_sched_domains. This routine takes ownership of it and will
6586 * free_sched_domains it when done with it. If the caller failed the
6587 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6588 * and partition_sched_domains() will fallback to the single partition
6589 * 'fallback_doms', it also forces the domains to be rebuilt.
6590 *
6591 * If doms_new == NULL it will be replaced with cpu_online_mask.
6592 * ndoms_new == 0 is a special case for destroying existing domains,
6593 * and it will not create the default domain.
6594 *
6595 * Call with hotplug lock held
6596 */
6597void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6598 struct sched_domain_attr *dattr_new)
6599{
6600 int i, j, n;
6601 int new_topology;
6602
6603 mutex_lock(&sched_domains_mutex);
6604
6605 /* always unregister in case we don't destroy any domains */
6606 unregister_sched_domain_sysctl();
6607
6608 /* Let architecture update cpu core mappings. */
6609 new_topology = arch_update_cpu_topology();
6610
6611 n = doms_new ? ndoms_new : 0;
6612
6613 /* Destroy deleted domains */
6614 for (i = 0; i < ndoms_cur; i++) {
6615 for (j = 0; j < n && !new_topology; j++) {
6616 if (cpumask_equal(doms_cur[i], doms_new[j])
6617 && dattrs_equal(dattr_cur, i, dattr_new, j))
6618 goto match1;
6619 }
6620 /* no match - a current sched domain not in new doms_new[] */
6621 detach_destroy_domains(doms_cur[i]);
6622match1:
6623 ;
6624 }
6625
6626 n = ndoms_cur;
6627 if (doms_new == NULL) {
6628 n = 0;
6629 doms_new = &fallback_doms;
6630 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6631 WARN_ON_ONCE(dattr_new);
6632 }
6633
6634 /* Build new domains */
6635 for (i = 0; i < ndoms_new; i++) {
6636 for (j = 0; j < n && !new_topology; j++) {
6637 if (cpumask_equal(doms_new[i], doms_cur[j])
6638 && dattrs_equal(dattr_new, i, dattr_cur, j))
6639 goto match2;
6640 }
6641 /* no match - add a new doms_new */
6642 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6643match2:
6644 ;
6645 }
6646
6647 /* Remember the new sched domains */
6648 if (doms_cur != &fallback_doms)
6649 free_sched_domains(doms_cur, ndoms_cur);
6650 kfree(dattr_cur); /* kfree(NULL) is safe */
6651 doms_cur = doms_new;
6652 dattr_cur = dattr_new;
6653 ndoms_cur = ndoms_new;
6654
6655 register_sched_domain_sysctl();
6656
6657 mutex_unlock(&sched_domains_mutex);
6658}
6659
6660static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6661
6662/*
6663 * Update cpusets according to cpu_active mask. If cpusets are
6664 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6665 * around partition_sched_domains().
6666 *
6667 * If we come here as part of a suspend/resume, don't touch cpusets because we
6668 * want to restore it back to its original state upon resume anyway.
6669 */
6670static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6671 void *hcpu)
6672{
6673 switch (action) {
6674 case CPU_ONLINE_FROZEN:
6675 case CPU_DOWN_FAILED_FROZEN:
6676
6677 /*
6678 * num_cpus_frozen tracks how many CPUs are involved in suspend
6679 * resume sequence. As long as this is not the last online
6680 * operation in the resume sequence, just build a single sched
6681 * domain, ignoring cpusets.
6682 */
6683 num_cpus_frozen--;
6684 if (likely(num_cpus_frozen)) {
6685 partition_sched_domains(1, NULL, NULL);
6686 break;
6687 }
6688
6689 /*
6690 * This is the last CPU online operation. So fall through and
6691 * restore the original sched domains by considering the
6692 * cpuset configurations.
6693 */
6694
6695 case CPU_ONLINE:
6696 case CPU_DOWN_FAILED:
6697 cpuset_update_active_cpus(true);
6698 break;
6699 default:
6700 return NOTIFY_DONE;
6701 }
6702 return NOTIFY_OK;
6703}
6704
6705static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6706 void *hcpu)
6707{
6708 switch (action) {
6709 case CPU_DOWN_PREPARE:
6710 cpuset_update_active_cpus(false);
6711 break;
6712 case CPU_DOWN_PREPARE_FROZEN:
6713 num_cpus_frozen++;
6714 partition_sched_domains(1, NULL, NULL);
6715 break;
6716 default:
6717 return NOTIFY_DONE;
6718 }
6719 return NOTIFY_OK;
6720}
6721
6722void __init sched_init_smp(void)
6723{
6724 cpumask_var_t non_isolated_cpus;
6725
6726 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6727 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6728
6729 sched_init_numa();
6730
6731 /*
6732 * There's no userspace yet to cause hotplug operations; hence all the
6733 * cpu masks are stable and all blatant races in the below code cannot
6734 * happen.
6735 */
6736 mutex_lock(&sched_domains_mutex);
6737 init_sched_domains(cpu_active_mask);
6738 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6739 if (cpumask_empty(non_isolated_cpus))
6740 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6741 mutex_unlock(&sched_domains_mutex);
6742
6743 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6744 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6745 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6746
6747 init_hrtick();
6748
6749 /* Move init over to a non-isolated CPU */
6750 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6751 BUG();
6752 sched_init_granularity();
6753 free_cpumask_var(non_isolated_cpus);
6754
6755 init_sched_rt_class();
6756 init_sched_dl_class();
6757}
6758#else
6759void __init sched_init_smp(void)
6760{
6761 sched_init_granularity();
6762}
6763#endif /* CONFIG_SMP */
6764
6765const_debug unsigned int sysctl_timer_migration = 1;
6766
6767int in_sched_functions(unsigned long addr)
6768{
6769 return in_lock_functions(addr) ||
6770 (addr >= (unsigned long)__sched_text_start
6771 && addr < (unsigned long)__sched_text_end);
6772}
6773
6774#ifdef CONFIG_CGROUP_SCHED
6775/*
6776 * Default task group.
6777 * Every task in system belongs to this group at bootup.
6778 */
6779struct task_group root_task_group;
6780LIST_HEAD(task_groups);
6781#endif
6782
6783DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6784
6785void __init sched_init(void)
6786{
6787 int i, j;
6788 unsigned long alloc_size = 0, ptr;
6789
6790#ifdef CONFIG_FAIR_GROUP_SCHED
6791 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6792#endif
6793#ifdef CONFIG_RT_GROUP_SCHED
6794 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6795#endif
6796#ifdef CONFIG_CPUMASK_OFFSTACK
6797 alloc_size += num_possible_cpus() * cpumask_size();
6798#endif
6799 if (alloc_size) {
6800 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6801
6802#ifdef CONFIG_FAIR_GROUP_SCHED
6803 root_task_group.se = (struct sched_entity **)ptr;
6804 ptr += nr_cpu_ids * sizeof(void **);
6805
6806 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6807 ptr += nr_cpu_ids * sizeof(void **);
6808
6809#endif /* CONFIG_FAIR_GROUP_SCHED */
6810#ifdef CONFIG_RT_GROUP_SCHED
6811 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6812 ptr += nr_cpu_ids * sizeof(void **);
6813
6814 root_task_group.rt_rq = (struct rt_rq **)ptr;
6815 ptr += nr_cpu_ids * sizeof(void **);
6816
6817#endif /* CONFIG_RT_GROUP_SCHED */
6818#ifdef CONFIG_CPUMASK_OFFSTACK
6819 for_each_possible_cpu(i) {
6820 per_cpu(load_balance_mask, i) = (void *)ptr;
6821 ptr += cpumask_size();
6822 }
6823#endif /* CONFIG_CPUMASK_OFFSTACK */
6824 }
6825
6826 init_rt_bandwidth(&def_rt_bandwidth,
6827 global_rt_period(), global_rt_runtime());
6828 init_dl_bandwidth(&def_dl_bandwidth,
6829 global_rt_period(), global_rt_runtime());
6830
6831#ifdef CONFIG_SMP
6832 init_defrootdomain();
6833#endif
6834
6835#ifdef CONFIG_RT_GROUP_SCHED
6836 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6837 global_rt_period(), global_rt_runtime());
6838#endif /* CONFIG_RT_GROUP_SCHED */
6839
6840#ifdef CONFIG_CGROUP_SCHED
6841 list_add(&root_task_group.list, &task_groups);
6842 INIT_LIST_HEAD(&root_task_group.children);
6843 INIT_LIST_HEAD(&root_task_group.siblings);
6844 autogroup_init(&init_task);
6845
6846#endif /* CONFIG_CGROUP_SCHED */
6847
6848 for_each_possible_cpu(i) {
6849 struct rq *rq;
6850
6851 rq = cpu_rq(i);
6852 raw_spin_lock_init(&rq->lock);
6853 rq->nr_running = 0;
6854 rq->calc_load_active = 0;
6855 rq->calc_load_update = jiffies + LOAD_FREQ;
6856 init_cfs_rq(&rq->cfs);
6857 init_rt_rq(&rq->rt, rq);
6858 init_dl_rq(&rq->dl, rq);
6859#ifdef CONFIG_FAIR_GROUP_SCHED
6860 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6861 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6862 /*
6863 * How much cpu bandwidth does root_task_group get?
6864 *
6865 * In case of task-groups formed thr' the cgroup filesystem, it
6866 * gets 100% of the cpu resources in the system. This overall
6867 * system cpu resource is divided among the tasks of
6868 * root_task_group and its child task-groups in a fair manner,
6869 * based on each entity's (task or task-group's) weight
6870 * (se->load.weight).
6871 *
6872 * In other words, if root_task_group has 10 tasks of weight
6873 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6874 * then A0's share of the cpu resource is:
6875 *
6876 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6877 *
6878 * We achieve this by letting root_task_group's tasks sit
6879 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6880 */
6881 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6882 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6883#endif /* CONFIG_FAIR_GROUP_SCHED */
6884
6885 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6886#ifdef CONFIG_RT_GROUP_SCHED
6887 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6888#endif
6889
6890 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6891 rq->cpu_load[j] = 0;
6892
6893 rq->last_load_update_tick = jiffies;
6894
6895#ifdef CONFIG_SMP
6896 rq->sd = NULL;
6897 rq->rd = NULL;
6898 rq->cpu_power = SCHED_POWER_SCALE;
6899 rq->post_schedule = 0;
6900 rq->active_balance = 0;
6901 rq->next_balance = jiffies;
6902 rq->push_cpu = 0;
6903 rq->cpu = i;
6904 rq->online = 0;
6905 rq->idle_stamp = 0;
6906 rq->avg_idle = 2*sysctl_sched_migration_cost;
6907 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6908
6909 INIT_LIST_HEAD(&rq->cfs_tasks);
6910
6911 rq_attach_root(rq, &def_root_domain);
6912#ifdef CONFIG_NO_HZ_COMMON
6913 rq->nohz_flags = 0;
6914#endif
6915#ifdef CONFIG_NO_HZ_FULL
6916 rq->last_sched_tick = 0;
6917#endif
6918#endif
6919 init_rq_hrtick(rq);
6920 atomic_set(&rq->nr_iowait, 0);
6921 }
6922
6923 set_load_weight(&init_task);
6924
6925#ifdef CONFIG_PREEMPT_NOTIFIERS
6926 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6927#endif
6928
6929 /*
6930 * The boot idle thread does lazy MMU switching as well:
6931 */
6932 atomic_inc(&init_mm.mm_count);
6933 enter_lazy_tlb(&init_mm, current);
6934
6935 /*
6936 * Make us the idle thread. Technically, schedule() should not be
6937 * called from this thread, however somewhere below it might be,
6938 * but because we are the idle thread, we just pick up running again
6939 * when this runqueue becomes "idle".
6940 */
6941 init_idle(current, smp_processor_id());
6942
6943 calc_load_update = jiffies + LOAD_FREQ;
6944
6945 /*
6946 * During early bootup we pretend to be a normal task:
6947 */
6948 current->sched_class = &fair_sched_class;
6949
6950#ifdef CONFIG_SMP
6951 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6952 /* May be allocated at isolcpus cmdline parse time */
6953 if (cpu_isolated_map == NULL)
6954 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6955 idle_thread_set_boot_cpu();
6956#endif
6957 init_sched_fair_class();
6958
6959 scheduler_running = 1;
6960}
6961
6962#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6963static inline int preempt_count_equals(int preempt_offset)
6964{
6965 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6966
6967 return (nested == preempt_offset);
6968}
6969
6970void __might_sleep(const char *file, int line, int preempt_offset)
6971{
6972 static unsigned long prev_jiffy; /* ratelimiting */
6973
6974 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6975 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6976 !is_idle_task(current)) ||
6977 system_state != SYSTEM_RUNNING || oops_in_progress)
6978 return;
6979 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6980 return;
6981 prev_jiffy = jiffies;
6982
6983 printk(KERN_ERR
6984 "BUG: sleeping function called from invalid context at %s:%d\n",
6985 file, line);
6986 printk(KERN_ERR
6987 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6988 in_atomic(), irqs_disabled(),
6989 current->pid, current->comm);
6990
6991 debug_show_held_locks(current);
6992 if (irqs_disabled())
6993 print_irqtrace_events(current);
6994#ifdef CONFIG_DEBUG_PREEMPT
6995 if (!preempt_count_equals(preempt_offset)) {
6996 pr_err("Preemption disabled at:");
6997 print_ip_sym(current->preempt_disable_ip);
6998 pr_cont("\n");
6999 }
7000#endif
7001 dump_stack();
7002}
7003EXPORT_SYMBOL(__might_sleep);
7004#endif
7005
7006#ifdef CONFIG_MAGIC_SYSRQ
7007static void normalize_task(struct rq *rq, struct task_struct *p)
7008{
7009 const struct sched_class *prev_class = p->sched_class;
7010 struct sched_attr attr = {
7011 .sched_policy = SCHED_NORMAL,
7012 };
7013 int old_prio = p->prio;
7014 int on_rq;
7015
7016 on_rq = p->on_rq;
7017 if (on_rq)
7018 dequeue_task(rq, p, 0);
7019 __setscheduler(rq, p, &attr);
7020 if (on_rq) {
7021 enqueue_task(rq, p, 0);
7022 resched_task(rq->curr);
7023 }
7024
7025 check_class_changed(rq, p, prev_class, old_prio);
7026}
7027
7028void normalize_rt_tasks(void)
7029{
7030 struct task_struct *g, *p;
7031 unsigned long flags;
7032 struct rq *rq;
7033
7034 read_lock_irqsave(&tasklist_lock, flags);
7035 do_each_thread(g, p) {
7036 /*
7037 * Only normalize user tasks:
7038 */
7039 if (!p->mm)
7040 continue;
7041
7042 p->se.exec_start = 0;
7043#ifdef CONFIG_SCHEDSTATS
7044 p->se.statistics.wait_start = 0;
7045 p->se.statistics.sleep_start = 0;
7046 p->se.statistics.block_start = 0;
7047#endif
7048
7049 if (!dl_task(p) && !rt_task(p)) {
7050 /*
7051 * Renice negative nice level userspace
7052 * tasks back to 0:
7053 */
7054 if (task_nice(p) < 0 && p->mm)
7055 set_user_nice(p, 0);
7056 continue;
7057 }
7058
7059 raw_spin_lock(&p->pi_lock);
7060 rq = __task_rq_lock(p);
7061
7062 normalize_task(rq, p);
7063
7064 __task_rq_unlock(rq);
7065 raw_spin_unlock(&p->pi_lock);
7066 } while_each_thread(g, p);
7067
7068 read_unlock_irqrestore(&tasklist_lock, flags);
7069}
7070
7071#endif /* CONFIG_MAGIC_SYSRQ */
7072
7073#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7074/*
7075 * These functions are only useful for the IA64 MCA handling, or kdb.
7076 *
7077 * They can only be called when the whole system has been
7078 * stopped - every CPU needs to be quiescent, and no scheduling
7079 * activity can take place. Using them for anything else would
7080 * be a serious bug, and as a result, they aren't even visible
7081 * under any other configuration.
7082 */
7083
7084/**
7085 * curr_task - return the current task for a given cpu.
7086 * @cpu: the processor in question.
7087 *
7088 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7089 *
7090 * Return: The current task for @cpu.
7091 */
7092struct task_struct *curr_task(int cpu)
7093{
7094 return cpu_curr(cpu);
7095}
7096
7097#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7098
7099#ifdef CONFIG_IA64
7100/**
7101 * set_curr_task - set the current task for a given cpu.
7102 * @cpu: the processor in question.
7103 * @p: the task pointer to set.
7104 *
7105 * Description: This function must only be used when non-maskable interrupts
7106 * are serviced on a separate stack. It allows the architecture to switch the
7107 * notion of the current task on a cpu in a non-blocking manner. This function
7108 * must be called with all CPU's synchronized, and interrupts disabled, the
7109 * and caller must save the original value of the current task (see
7110 * curr_task() above) and restore that value before reenabling interrupts and
7111 * re-starting the system.
7112 *
7113 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7114 */
7115void set_curr_task(int cpu, struct task_struct *p)
7116{
7117 cpu_curr(cpu) = p;
7118}
7119
7120#endif
7121
7122#ifdef CONFIG_CGROUP_SCHED
7123/* task_group_lock serializes the addition/removal of task groups */
7124static DEFINE_SPINLOCK(task_group_lock);
7125
7126static void free_sched_group(struct task_group *tg)
7127{
7128 free_fair_sched_group(tg);
7129 free_rt_sched_group(tg);
7130 autogroup_free(tg);
7131 kfree(tg);
7132}
7133
7134/* allocate runqueue etc for a new task group */
7135struct task_group *sched_create_group(struct task_group *parent)
7136{
7137 struct task_group *tg;
7138
7139 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7140 if (!tg)
7141 return ERR_PTR(-ENOMEM);
7142
7143 if (!alloc_fair_sched_group(tg, parent))
7144 goto err;
7145
7146 if (!alloc_rt_sched_group(tg, parent))
7147 goto err;
7148
7149 return tg;
7150
7151err:
7152 free_sched_group(tg);
7153 return ERR_PTR(-ENOMEM);
7154}
7155
7156void sched_online_group(struct task_group *tg, struct task_group *parent)
7157{
7158 unsigned long flags;
7159
7160 spin_lock_irqsave(&task_group_lock, flags);
7161 list_add_rcu(&tg->list, &task_groups);
7162
7163 WARN_ON(!parent); /* root should already exist */
7164
7165 tg->parent = parent;
7166 INIT_LIST_HEAD(&tg->children);
7167 list_add_rcu(&tg->siblings, &parent->children);
7168 spin_unlock_irqrestore(&task_group_lock, flags);
7169}
7170
7171/* rcu callback to free various structures associated with a task group */
7172static void free_sched_group_rcu(struct rcu_head *rhp)
7173{
7174 /* now it should be safe to free those cfs_rqs */
7175 free_sched_group(container_of(rhp, struct task_group, rcu));
7176}
7177
7178/* Destroy runqueue etc associated with a task group */
7179void sched_destroy_group(struct task_group *tg)
7180{
7181 /* wait for possible concurrent references to cfs_rqs complete */
7182 call_rcu(&tg->rcu, free_sched_group_rcu);
7183}
7184
7185void sched_offline_group(struct task_group *tg)
7186{
7187 unsigned long flags;
7188 int i;
7189
7190 /* end participation in shares distribution */
7191 for_each_possible_cpu(i)
7192 unregister_fair_sched_group(tg, i);
7193
7194 spin_lock_irqsave(&task_group_lock, flags);
7195 list_del_rcu(&tg->list);
7196 list_del_rcu(&tg->siblings);
7197 spin_unlock_irqrestore(&task_group_lock, flags);
7198}
7199
7200/* change task's runqueue when it moves between groups.
7201 * The caller of this function should have put the task in its new group
7202 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7203 * reflect its new group.
7204 */
7205void sched_move_task(struct task_struct *tsk)
7206{
7207 struct task_group *tg;
7208 int on_rq, running;
7209 unsigned long flags;
7210 struct rq *rq;
7211
7212 rq = task_rq_lock(tsk, &flags);
7213
7214 running = task_current(rq, tsk);
7215 on_rq = tsk->on_rq;
7216
7217 if (on_rq)
7218 dequeue_task(rq, tsk, 0);
7219 if (unlikely(running))
7220 tsk->sched_class->put_prev_task(rq, tsk);
7221
7222 tg = container_of(task_css_check(tsk, cpu_cgrp_id,
7223 lockdep_is_held(&tsk->sighand->siglock)),
7224 struct task_group, css);
7225 tg = autogroup_task_group(tsk, tg);
7226 tsk->sched_task_group = tg;
7227
7228#ifdef CONFIG_FAIR_GROUP_SCHED
7229 if (tsk->sched_class->task_move_group)
7230 tsk->sched_class->task_move_group(tsk, on_rq);
7231 else
7232#endif
7233 set_task_rq(tsk, task_cpu(tsk));
7234
7235 if (unlikely(running))
7236 tsk->sched_class->set_curr_task(rq);
7237 if (on_rq)
7238 enqueue_task(rq, tsk, 0);
7239
7240 task_rq_unlock(rq, tsk, &flags);
7241}
7242#endif /* CONFIG_CGROUP_SCHED */
7243
7244#ifdef CONFIG_RT_GROUP_SCHED
7245/*
7246 * Ensure that the real time constraints are schedulable.
7247 */
7248static DEFINE_MUTEX(rt_constraints_mutex);
7249
7250/* Must be called with tasklist_lock held */
7251static inline int tg_has_rt_tasks(struct task_group *tg)
7252{
7253 struct task_struct *g, *p;
7254
7255 do_each_thread(g, p) {
7256 if (rt_task(p) && task_rq(p)->rt.tg == tg)
7257 return 1;
7258 } while_each_thread(g, p);
7259
7260 return 0;
7261}
7262
7263struct rt_schedulable_data {
7264 struct task_group *tg;
7265 u64 rt_period;
7266 u64 rt_runtime;
7267};
7268
7269static int tg_rt_schedulable(struct task_group *tg, void *data)
7270{
7271 struct rt_schedulable_data *d = data;
7272 struct task_group *child;
7273 unsigned long total, sum = 0;
7274 u64 period, runtime;
7275
7276 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7277 runtime = tg->rt_bandwidth.rt_runtime;
7278
7279 if (tg == d->tg) {
7280 period = d->rt_period;
7281 runtime = d->rt_runtime;
7282 }
7283
7284 /*
7285 * Cannot have more runtime than the period.
7286 */
7287 if (runtime > period && runtime != RUNTIME_INF)
7288 return -EINVAL;
7289
7290 /*
7291 * Ensure we don't starve existing RT tasks.
7292 */
7293 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7294 return -EBUSY;
7295
7296 total = to_ratio(period, runtime);
7297
7298 /*
7299 * Nobody can have more than the global setting allows.
7300 */
7301 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7302 return -EINVAL;
7303
7304 /*
7305 * The sum of our children's runtime should not exceed our own.
7306 */
7307 list_for_each_entry_rcu(child, &tg->children, siblings) {
7308 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7309 runtime = child->rt_bandwidth.rt_runtime;
7310
7311 if (child == d->tg) {
7312 period = d->rt_period;
7313 runtime = d->rt_runtime;
7314 }
7315
7316 sum += to_ratio(period, runtime);
7317 }
7318
7319 if (sum > total)
7320 return -EINVAL;
7321
7322 return 0;
7323}
7324
7325static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7326{
7327 int ret;
7328
7329 struct rt_schedulable_data data = {
7330 .tg = tg,
7331 .rt_period = period,
7332 .rt_runtime = runtime,
7333 };
7334
7335 rcu_read_lock();
7336 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7337 rcu_read_unlock();
7338
7339 return ret;
7340}
7341
7342static int tg_set_rt_bandwidth(struct task_group *tg,
7343 u64 rt_period, u64 rt_runtime)
7344{
7345 int i, err = 0;
7346
7347 mutex_lock(&rt_constraints_mutex);
7348 read_lock(&tasklist_lock);
7349 err = __rt_schedulable(tg, rt_period, rt_runtime);
7350 if (err)
7351 goto unlock;
7352
7353 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7354 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7355 tg->rt_bandwidth.rt_runtime = rt_runtime;
7356
7357 for_each_possible_cpu(i) {
7358 struct rt_rq *rt_rq = tg->rt_rq[i];
7359
7360 raw_spin_lock(&rt_rq->rt_runtime_lock);
7361 rt_rq->rt_runtime = rt_runtime;
7362 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7363 }
7364 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7365unlock:
7366 read_unlock(&tasklist_lock);
7367 mutex_unlock(&rt_constraints_mutex);
7368
7369 return err;
7370}
7371
7372static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7373{
7374 u64 rt_runtime, rt_period;
7375
7376 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7377 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7378 if (rt_runtime_us < 0)
7379 rt_runtime = RUNTIME_INF;
7380
7381 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7382}
7383
7384static long sched_group_rt_runtime(struct task_group *tg)
7385{
7386 u64 rt_runtime_us;
7387
7388 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7389 return -1;
7390
7391 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7392 do_div(rt_runtime_us, NSEC_PER_USEC);
7393 return rt_runtime_us;
7394}
7395
7396static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7397{
7398 u64 rt_runtime, rt_period;
7399
7400 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7401 rt_runtime = tg->rt_bandwidth.rt_runtime;
7402
7403 if (rt_period == 0)
7404 return -EINVAL;
7405
7406 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7407}
7408
7409static long sched_group_rt_period(struct task_group *tg)
7410{
7411 u64 rt_period_us;
7412
7413 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7414 do_div(rt_period_us, NSEC_PER_USEC);
7415 return rt_period_us;
7416}
7417#endif /* CONFIG_RT_GROUP_SCHED */
7418
7419#ifdef CONFIG_RT_GROUP_SCHED
7420static int sched_rt_global_constraints(void)
7421{
7422 int ret = 0;
7423
7424 mutex_lock(&rt_constraints_mutex);
7425 read_lock(&tasklist_lock);
7426 ret = __rt_schedulable(NULL, 0, 0);
7427 read_unlock(&tasklist_lock);
7428 mutex_unlock(&rt_constraints_mutex);
7429
7430 return ret;
7431}
7432
7433static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7434{
7435 /* Don't accept realtime tasks when there is no way for them to run */
7436 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7437 return 0;
7438
7439 return 1;
7440}
7441
7442#else /* !CONFIG_RT_GROUP_SCHED */
7443static int sched_rt_global_constraints(void)
7444{
7445 unsigned long flags;
7446 int i, ret = 0;
7447
7448 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7449 for_each_possible_cpu(i) {
7450 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7451
7452 raw_spin_lock(&rt_rq->rt_runtime_lock);
7453 rt_rq->rt_runtime = global_rt_runtime();
7454 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7455 }
7456 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7457
7458 return ret;
7459}
7460#endif /* CONFIG_RT_GROUP_SCHED */
7461
7462static int sched_dl_global_constraints(void)
7463{
7464 u64 runtime = global_rt_runtime();
7465 u64 period = global_rt_period();
7466 u64 new_bw = to_ratio(period, runtime);
7467 int cpu, ret = 0;
7468 unsigned long flags;
7469
7470 /*
7471 * Here we want to check the bandwidth not being set to some
7472 * value smaller than the currently allocated bandwidth in
7473 * any of the root_domains.
7474 *
7475 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7476 * cycling on root_domains... Discussion on different/better
7477 * solutions is welcome!
7478 */
7479 for_each_possible_cpu(cpu) {
7480 struct dl_bw *dl_b = dl_bw_of(cpu);
7481
7482 raw_spin_lock_irqsave(&dl_b->lock, flags);
7483 if (new_bw < dl_b->total_bw)
7484 ret = -EBUSY;
7485 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7486
7487 if (ret)
7488 break;
7489 }
7490
7491 return ret;
7492}
7493
7494static void sched_dl_do_global(void)
7495{
7496 u64 new_bw = -1;
7497 int cpu;
7498 unsigned long flags;
7499
7500 def_dl_bandwidth.dl_period = global_rt_period();
7501 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7502
7503 if (global_rt_runtime() != RUNTIME_INF)
7504 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7505
7506 /*
7507 * FIXME: As above...
7508 */
7509 for_each_possible_cpu(cpu) {
7510 struct dl_bw *dl_b = dl_bw_of(cpu);
7511
7512 raw_spin_lock_irqsave(&dl_b->lock, flags);
7513 dl_b->bw = new_bw;
7514 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7515 }
7516}
7517
7518static int sched_rt_global_validate(void)
7519{
7520 if (sysctl_sched_rt_period <= 0)
7521 return -EINVAL;
7522
7523 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7524 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7525 return -EINVAL;
7526
7527 return 0;
7528}
7529
7530static void sched_rt_do_global(void)
7531{
7532 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7533 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7534}
7535
7536int sched_rt_handler(struct ctl_table *table, int write,
7537 void __user *buffer, size_t *lenp,
7538 loff_t *ppos)
7539{
7540 int old_period, old_runtime;
7541 static DEFINE_MUTEX(mutex);
7542 int ret;
7543
7544 mutex_lock(&mutex);
7545 old_period = sysctl_sched_rt_period;
7546 old_runtime = sysctl_sched_rt_runtime;
7547
7548 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7549
7550 if (!ret && write) {
7551 ret = sched_rt_global_validate();
7552 if (ret)
7553 goto undo;
7554
7555 ret = sched_rt_global_constraints();
7556 if (ret)
7557 goto undo;
7558
7559 ret = sched_dl_global_constraints();
7560 if (ret)
7561 goto undo;
7562
7563 sched_rt_do_global();
7564 sched_dl_do_global();
7565 }
7566 if (0) {
7567undo:
7568 sysctl_sched_rt_period = old_period;
7569 sysctl_sched_rt_runtime = old_runtime;
7570 }
7571 mutex_unlock(&mutex);
7572
7573 return ret;
7574}
7575
7576int sched_rr_handler(struct ctl_table *table, int write,
7577 void __user *buffer, size_t *lenp,
7578 loff_t *ppos)
7579{
7580 int ret;
7581 static DEFINE_MUTEX(mutex);
7582
7583 mutex_lock(&mutex);
7584 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7585 /* make sure that internally we keep jiffies */
7586 /* also, writing zero resets timeslice to default */
7587 if (!ret && write) {
7588 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7589 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7590 }
7591 mutex_unlock(&mutex);
7592 return ret;
7593}
7594
7595#ifdef CONFIG_CGROUP_SCHED
7596
7597static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7598{
7599 return css ? container_of(css, struct task_group, css) : NULL;
7600}
7601
7602static struct cgroup_subsys_state *
7603cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7604{
7605 struct task_group *parent = css_tg(parent_css);
7606 struct task_group *tg;
7607
7608 if (!parent) {
7609 /* This is early initialization for the top cgroup */
7610 return &root_task_group.css;
7611 }
7612
7613 tg = sched_create_group(parent);
7614 if (IS_ERR(tg))
7615 return ERR_PTR(-ENOMEM);
7616
7617 return &tg->css;
7618}
7619
7620static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7621{
7622 struct task_group *tg = css_tg(css);
7623 struct task_group *parent = css_tg(css_parent(css));
7624
7625 if (parent)
7626 sched_online_group(tg, parent);
7627 return 0;
7628}
7629
7630static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7631{
7632 struct task_group *tg = css_tg(css);
7633
7634 sched_destroy_group(tg);
7635}
7636
7637static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7638{
7639 struct task_group *tg = css_tg(css);
7640
7641 sched_offline_group(tg);
7642}
7643
7644static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7645 struct cgroup_taskset *tset)
7646{
7647 struct task_struct *task;
7648
7649 cgroup_taskset_for_each(task, tset) {
7650#ifdef CONFIG_RT_GROUP_SCHED
7651 if (!sched_rt_can_attach(css_tg(css), task))
7652 return -EINVAL;
7653#else
7654 /* We don't support RT-tasks being in separate groups */
7655 if (task->sched_class != &fair_sched_class)
7656 return -EINVAL;
7657#endif
7658 }
7659 return 0;
7660}
7661
7662static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7663 struct cgroup_taskset *tset)
7664{
7665 struct task_struct *task;
7666
7667 cgroup_taskset_for_each(task, tset)
7668 sched_move_task(task);
7669}
7670
7671static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7672 struct cgroup_subsys_state *old_css,
7673 struct task_struct *task)
7674{
7675 /*
7676 * cgroup_exit() is called in the copy_process() failure path.
7677 * Ignore this case since the task hasn't ran yet, this avoids
7678 * trying to poke a half freed task state from generic code.
7679 */
7680 if (!(task->flags & PF_EXITING))
7681 return;
7682
7683 sched_move_task(task);
7684}
7685
7686#ifdef CONFIG_FAIR_GROUP_SCHED
7687static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7688 struct cftype *cftype, u64 shareval)
7689{
7690 return sched_group_set_shares(css_tg(css), scale_load(shareval));
7691}
7692
7693static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7694 struct cftype *cft)
7695{
7696 struct task_group *tg = css_tg(css);
7697
7698 return (u64) scale_load_down(tg->shares);
7699}
7700
7701#ifdef CONFIG_CFS_BANDWIDTH
7702static DEFINE_MUTEX(cfs_constraints_mutex);
7703
7704const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7705const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7706
7707static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7708
7709static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7710{
7711 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7712 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7713
7714 if (tg == &root_task_group)
7715 return -EINVAL;
7716
7717 /*
7718 * Ensure we have at some amount of bandwidth every period. This is
7719 * to prevent reaching a state of large arrears when throttled via
7720 * entity_tick() resulting in prolonged exit starvation.
7721 */
7722 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7723 return -EINVAL;
7724
7725 /*
7726 * Likewise, bound things on the otherside by preventing insane quota
7727 * periods. This also allows us to normalize in computing quota
7728 * feasibility.
7729 */
7730 if (period > max_cfs_quota_period)
7731 return -EINVAL;
7732
7733 mutex_lock(&cfs_constraints_mutex);
7734 ret = __cfs_schedulable(tg, period, quota);
7735 if (ret)
7736 goto out_unlock;
7737
7738 runtime_enabled = quota != RUNTIME_INF;
7739 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7740 /*
7741 * If we need to toggle cfs_bandwidth_used, off->on must occur
7742 * before making related changes, and on->off must occur afterwards
7743 */
7744 if (runtime_enabled && !runtime_was_enabled)
7745 cfs_bandwidth_usage_inc();
7746 raw_spin_lock_irq(&cfs_b->lock);
7747 cfs_b->period = ns_to_ktime(period);
7748 cfs_b->quota = quota;
7749
7750 __refill_cfs_bandwidth_runtime(cfs_b);
7751 /* restart the period timer (if active) to handle new period expiry */
7752 if (runtime_enabled && cfs_b->timer_active) {
7753 /* force a reprogram */
7754 __start_cfs_bandwidth(cfs_b, true);
7755 }
7756 raw_spin_unlock_irq(&cfs_b->lock);
7757
7758 for_each_possible_cpu(i) {
7759 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7760 struct rq *rq = cfs_rq->rq;
7761
7762 raw_spin_lock_irq(&rq->lock);
7763 cfs_rq->runtime_enabled = runtime_enabled;
7764 cfs_rq->runtime_remaining = 0;
7765
7766 if (cfs_rq->throttled)
7767 unthrottle_cfs_rq(cfs_rq);
7768 raw_spin_unlock_irq(&rq->lock);
7769 }
7770 if (runtime_was_enabled && !runtime_enabled)
7771 cfs_bandwidth_usage_dec();
7772out_unlock:
7773 mutex_unlock(&cfs_constraints_mutex);
7774
7775 return ret;
7776}
7777
7778int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7779{
7780 u64 quota, period;
7781
7782 period = ktime_to_ns(tg->cfs_bandwidth.period);
7783 if (cfs_quota_us < 0)
7784 quota = RUNTIME_INF;
7785 else
7786 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7787
7788 return tg_set_cfs_bandwidth(tg, period, quota);
7789}
7790
7791long tg_get_cfs_quota(struct task_group *tg)
7792{
7793 u64 quota_us;
7794
7795 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7796 return -1;
7797
7798 quota_us = tg->cfs_bandwidth.quota;
7799 do_div(quota_us, NSEC_PER_USEC);
7800
7801 return quota_us;
7802}
7803
7804int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7805{
7806 u64 quota, period;
7807
7808 period = (u64)cfs_period_us * NSEC_PER_USEC;
7809 quota = tg->cfs_bandwidth.quota;
7810
7811 return tg_set_cfs_bandwidth(tg, period, quota);
7812}
7813
7814long tg_get_cfs_period(struct task_group *tg)
7815{
7816 u64 cfs_period_us;
7817
7818 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7819 do_div(cfs_period_us, NSEC_PER_USEC);
7820
7821 return cfs_period_us;
7822}
7823
7824static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7825 struct cftype *cft)
7826{
7827 return tg_get_cfs_quota(css_tg(css));
7828}
7829
7830static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7831 struct cftype *cftype, s64 cfs_quota_us)
7832{
7833 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7834}
7835
7836static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7837 struct cftype *cft)
7838{
7839 return tg_get_cfs_period(css_tg(css));
7840}
7841
7842static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7843 struct cftype *cftype, u64 cfs_period_us)
7844{
7845 return tg_set_cfs_period(css_tg(css), cfs_period_us);
7846}
7847
7848struct cfs_schedulable_data {
7849 struct task_group *tg;
7850 u64 period, quota;
7851};
7852
7853/*
7854 * normalize group quota/period to be quota/max_period
7855 * note: units are usecs
7856 */
7857static u64 normalize_cfs_quota(struct task_group *tg,
7858 struct cfs_schedulable_data *d)
7859{
7860 u64 quota, period;
7861
7862 if (tg == d->tg) {
7863 period = d->period;
7864 quota = d->quota;
7865 } else {
7866 period = tg_get_cfs_period(tg);
7867 quota = tg_get_cfs_quota(tg);
7868 }
7869
7870 /* note: these should typically be equivalent */
7871 if (quota == RUNTIME_INF || quota == -1)
7872 return RUNTIME_INF;
7873
7874 return to_ratio(period, quota);
7875}
7876
7877static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7878{
7879 struct cfs_schedulable_data *d = data;
7880 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7881 s64 quota = 0, parent_quota = -1;
7882
7883 if (!tg->parent) {
7884 quota = RUNTIME_INF;
7885 } else {
7886 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7887
7888 quota = normalize_cfs_quota(tg, d);
7889 parent_quota = parent_b->hierarchal_quota;
7890
7891 /*
7892 * ensure max(child_quota) <= parent_quota, inherit when no
7893 * limit is set
7894 */
7895 if (quota == RUNTIME_INF)
7896 quota = parent_quota;
7897 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7898 return -EINVAL;
7899 }
7900 cfs_b->hierarchal_quota = quota;
7901
7902 return 0;
7903}
7904
7905static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7906{
7907 int ret;
7908 struct cfs_schedulable_data data = {
7909 .tg = tg,
7910 .period = period,
7911 .quota = quota,
7912 };
7913
7914 if (quota != RUNTIME_INF) {
7915 do_div(data.period, NSEC_PER_USEC);
7916 do_div(data.quota, NSEC_PER_USEC);
7917 }
7918
7919 rcu_read_lock();
7920 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7921 rcu_read_unlock();
7922
7923 return ret;
7924}
7925
7926static int cpu_stats_show(struct seq_file *sf, void *v)
7927{
7928 struct task_group *tg = css_tg(seq_css(sf));
7929 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7930
7931 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7932 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7933 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7934
7935 return 0;
7936}
7937#endif /* CONFIG_CFS_BANDWIDTH */
7938#endif /* CONFIG_FAIR_GROUP_SCHED */
7939
7940#ifdef CONFIG_RT_GROUP_SCHED
7941static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7942 struct cftype *cft, s64 val)
7943{
7944 return sched_group_set_rt_runtime(css_tg(css), val);
7945}
7946
7947static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7948 struct cftype *cft)
7949{
7950 return sched_group_rt_runtime(css_tg(css));
7951}
7952
7953static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7954 struct cftype *cftype, u64 rt_period_us)
7955{
7956 return sched_group_set_rt_period(css_tg(css), rt_period_us);
7957}
7958
7959static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7960 struct cftype *cft)
7961{
7962 return sched_group_rt_period(css_tg(css));
7963}
7964#endif /* CONFIG_RT_GROUP_SCHED */
7965
7966static struct cftype cpu_files[] = {
7967#ifdef CONFIG_FAIR_GROUP_SCHED
7968 {
7969 .name = "shares",
7970 .read_u64 = cpu_shares_read_u64,
7971 .write_u64 = cpu_shares_write_u64,
7972 },
7973#endif
7974#ifdef CONFIG_CFS_BANDWIDTH
7975 {
7976 .name = "cfs_quota_us",
7977 .read_s64 = cpu_cfs_quota_read_s64,
7978 .write_s64 = cpu_cfs_quota_write_s64,
7979 },
7980 {
7981 .name = "cfs_period_us",
7982 .read_u64 = cpu_cfs_period_read_u64,
7983 .write_u64 = cpu_cfs_period_write_u64,
7984 },
7985 {
7986 .name = "stat",
7987 .seq_show = cpu_stats_show,
7988 },
7989#endif
7990#ifdef CONFIG_RT_GROUP_SCHED
7991 {
7992 .name = "rt_runtime_us",
7993 .read_s64 = cpu_rt_runtime_read,
7994 .write_s64 = cpu_rt_runtime_write,
7995 },
7996 {
7997 .name = "rt_period_us",
7998 .read_u64 = cpu_rt_period_read_uint,
7999 .write_u64 = cpu_rt_period_write_uint,
8000 },
8001#endif
8002 { } /* terminate */
8003};
8004
8005struct cgroup_subsys cpu_cgrp_subsys = {
8006 .css_alloc = cpu_cgroup_css_alloc,
8007 .css_free = cpu_cgroup_css_free,
8008 .css_online = cpu_cgroup_css_online,
8009 .css_offline = cpu_cgroup_css_offline,
8010 .can_attach = cpu_cgroup_can_attach,
8011 .attach = cpu_cgroup_attach,
8012 .exit = cpu_cgroup_exit,
8013 .base_cftypes = cpu_files,
8014 .early_init = 1,
8015};
8016
8017#endif /* CONFIG_CGROUP_SCHED */
8018
8019void dump_cpu_task(int cpu)
8020{
8021 pr_info("Task dump for CPU %d:\n", cpu);
8022 sched_show_task(cpu_curr(cpu));
8023}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * kernel/sched/core.c
4 *
5 * Core kernel scheduler code and related syscalls
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
8 */
9#define CREATE_TRACE_POINTS
10#include <trace/events/sched.h>
11#undef CREATE_TRACE_POINTS
12
13#include "sched.h"
14
15#include <linux/nospec.h>
16
17#include <linux/kcov.h>
18#include <linux/scs.h>
19
20#include <asm/switch_to.h>
21#include <asm/tlb.h>
22
23#include "../workqueue_internal.h"
24#include "../../fs/io-wq.h"
25#include "../smpboot.h"
26
27#include "pelt.h"
28#include "smp.h"
29
30/*
31 * Export tracepoints that act as a bare tracehook (ie: have no trace event
32 * associated with them) to allow external modules to probe them.
33 */
34EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
35EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
36EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
37EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
38EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
39EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
40EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
41EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
42EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
43
44DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
45
46#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
47/*
48 * Debugging: various feature bits
49 *
50 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
51 * sysctl_sched_features, defined in sched.h, to allow constants propagation
52 * at compile time and compiler optimization based on features default.
53 */
54#define SCHED_FEAT(name, enabled) \
55 (1UL << __SCHED_FEAT_##name) * enabled |
56const_debug unsigned int sysctl_sched_features =
57#include "features.h"
58 0;
59#undef SCHED_FEAT
60#endif
61
62/*
63 * Number of tasks to iterate in a single balance run.
64 * Limited because this is done with IRQs disabled.
65 */
66const_debug unsigned int sysctl_sched_nr_migrate = 32;
67
68/*
69 * period over which we measure -rt task CPU usage in us.
70 * default: 1s
71 */
72unsigned int sysctl_sched_rt_period = 1000000;
73
74__read_mostly int scheduler_running;
75
76/*
77 * part of the period that we allow rt tasks to run in us.
78 * default: 0.95s
79 */
80int sysctl_sched_rt_runtime = 950000;
81
82
83/*
84 * Serialization rules:
85 *
86 * Lock order:
87 *
88 * p->pi_lock
89 * rq->lock
90 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
91 *
92 * rq1->lock
93 * rq2->lock where: rq1 < rq2
94 *
95 * Regular state:
96 *
97 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
98 * local CPU's rq->lock, it optionally removes the task from the runqueue and
99 * always looks at the local rq data structures to find the most elegible task
100 * to run next.
101 *
102 * Task enqueue is also under rq->lock, possibly taken from another CPU.
103 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
104 * the local CPU to avoid bouncing the runqueue state around [ see
105 * ttwu_queue_wakelist() ]
106 *
107 * Task wakeup, specifically wakeups that involve migration, are horribly
108 * complicated to avoid having to take two rq->locks.
109 *
110 * Special state:
111 *
112 * System-calls and anything external will use task_rq_lock() which acquires
113 * both p->pi_lock and rq->lock. As a consequence the state they change is
114 * stable while holding either lock:
115 *
116 * - sched_setaffinity()/
117 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
118 * - set_user_nice(): p->se.load, p->*prio
119 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
120 * p->se.load, p->rt_priority,
121 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
122 * - sched_setnuma(): p->numa_preferred_nid
123 * - sched_move_task()/
124 * cpu_cgroup_fork(): p->sched_task_group
125 * - uclamp_update_active() p->uclamp*
126 *
127 * p->state <- TASK_*:
128 *
129 * is changed locklessly using set_current_state(), __set_current_state() or
130 * set_special_state(), see their respective comments, or by
131 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
132 * concurrent self.
133 *
134 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
135 *
136 * is set by activate_task() and cleared by deactivate_task(), under
137 * rq->lock. Non-zero indicates the task is runnable, the special
138 * ON_RQ_MIGRATING state is used for migration without holding both
139 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
140 *
141 * p->on_cpu <- { 0, 1 }:
142 *
143 * is set by prepare_task() and cleared by finish_task() such that it will be
144 * set before p is scheduled-in and cleared after p is scheduled-out, both
145 * under rq->lock. Non-zero indicates the task is running on its CPU.
146 *
147 * [ The astute reader will observe that it is possible for two tasks on one
148 * CPU to have ->on_cpu = 1 at the same time. ]
149 *
150 * task_cpu(p): is changed by set_task_cpu(), the rules are:
151 *
152 * - Don't call set_task_cpu() on a blocked task:
153 *
154 * We don't care what CPU we're not running on, this simplifies hotplug,
155 * the CPU assignment of blocked tasks isn't required to be valid.
156 *
157 * - for try_to_wake_up(), called under p->pi_lock:
158 *
159 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
160 *
161 * - for migration called under rq->lock:
162 * [ see task_on_rq_migrating() in task_rq_lock() ]
163 *
164 * o move_queued_task()
165 * o detach_task()
166 *
167 * - for migration called under double_rq_lock():
168 *
169 * o __migrate_swap_task()
170 * o push_rt_task() / pull_rt_task()
171 * o push_dl_task() / pull_dl_task()
172 * o dl_task_offline_migration()
173 *
174 */
175
176/*
177 * __task_rq_lock - lock the rq @p resides on.
178 */
179struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
180 __acquires(rq->lock)
181{
182 struct rq *rq;
183
184 lockdep_assert_held(&p->pi_lock);
185
186 for (;;) {
187 rq = task_rq(p);
188 raw_spin_lock(&rq->lock);
189 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
190 rq_pin_lock(rq, rf);
191 return rq;
192 }
193 raw_spin_unlock(&rq->lock);
194
195 while (unlikely(task_on_rq_migrating(p)))
196 cpu_relax();
197 }
198}
199
200/*
201 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
202 */
203struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
204 __acquires(p->pi_lock)
205 __acquires(rq->lock)
206{
207 struct rq *rq;
208
209 for (;;) {
210 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
211 rq = task_rq(p);
212 raw_spin_lock(&rq->lock);
213 /*
214 * move_queued_task() task_rq_lock()
215 *
216 * ACQUIRE (rq->lock)
217 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
218 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
219 * [S] ->cpu = new_cpu [L] task_rq()
220 * [L] ->on_rq
221 * RELEASE (rq->lock)
222 *
223 * If we observe the old CPU in task_rq_lock(), the acquire of
224 * the old rq->lock will fully serialize against the stores.
225 *
226 * If we observe the new CPU in task_rq_lock(), the address
227 * dependency headed by '[L] rq = task_rq()' and the acquire
228 * will pair with the WMB to ensure we then also see migrating.
229 */
230 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
231 rq_pin_lock(rq, rf);
232 return rq;
233 }
234 raw_spin_unlock(&rq->lock);
235 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
236
237 while (unlikely(task_on_rq_migrating(p)))
238 cpu_relax();
239 }
240}
241
242/*
243 * RQ-clock updating methods:
244 */
245
246static void update_rq_clock_task(struct rq *rq, s64 delta)
247{
248/*
249 * In theory, the compile should just see 0 here, and optimize out the call
250 * to sched_rt_avg_update. But I don't trust it...
251 */
252 s64 __maybe_unused steal = 0, irq_delta = 0;
253
254#ifdef CONFIG_IRQ_TIME_ACCOUNTING
255 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
256
257 /*
258 * Since irq_time is only updated on {soft,}irq_exit, we might run into
259 * this case when a previous update_rq_clock() happened inside a
260 * {soft,}irq region.
261 *
262 * When this happens, we stop ->clock_task and only update the
263 * prev_irq_time stamp to account for the part that fit, so that a next
264 * update will consume the rest. This ensures ->clock_task is
265 * monotonic.
266 *
267 * It does however cause some slight miss-attribution of {soft,}irq
268 * time, a more accurate solution would be to update the irq_time using
269 * the current rq->clock timestamp, except that would require using
270 * atomic ops.
271 */
272 if (irq_delta > delta)
273 irq_delta = delta;
274
275 rq->prev_irq_time += irq_delta;
276 delta -= irq_delta;
277#endif
278#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
279 if (static_key_false((¶virt_steal_rq_enabled))) {
280 steal = paravirt_steal_clock(cpu_of(rq));
281 steal -= rq->prev_steal_time_rq;
282
283 if (unlikely(steal > delta))
284 steal = delta;
285
286 rq->prev_steal_time_rq += steal;
287 delta -= steal;
288 }
289#endif
290
291 rq->clock_task += delta;
292
293#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
294 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
295 update_irq_load_avg(rq, irq_delta + steal);
296#endif
297 update_rq_clock_pelt(rq, delta);
298}
299
300void update_rq_clock(struct rq *rq)
301{
302 s64 delta;
303
304 lockdep_assert_held(&rq->lock);
305
306 if (rq->clock_update_flags & RQCF_ACT_SKIP)
307 return;
308
309#ifdef CONFIG_SCHED_DEBUG
310 if (sched_feat(WARN_DOUBLE_CLOCK))
311 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
312 rq->clock_update_flags |= RQCF_UPDATED;
313#endif
314
315 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
316 if (delta < 0)
317 return;
318 rq->clock += delta;
319 update_rq_clock_task(rq, delta);
320}
321
322static inline void
323rq_csd_init(struct rq *rq, call_single_data_t *csd, smp_call_func_t func)
324{
325 csd->flags = 0;
326 csd->func = func;
327 csd->info = rq;
328}
329
330#ifdef CONFIG_SCHED_HRTICK
331/*
332 * Use HR-timers to deliver accurate preemption points.
333 */
334
335static void hrtick_clear(struct rq *rq)
336{
337 if (hrtimer_active(&rq->hrtick_timer))
338 hrtimer_cancel(&rq->hrtick_timer);
339}
340
341/*
342 * High-resolution timer tick.
343 * Runs from hardirq context with interrupts disabled.
344 */
345static enum hrtimer_restart hrtick(struct hrtimer *timer)
346{
347 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
348 struct rq_flags rf;
349
350 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
351
352 rq_lock(rq, &rf);
353 update_rq_clock(rq);
354 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
355 rq_unlock(rq, &rf);
356
357 return HRTIMER_NORESTART;
358}
359
360#ifdef CONFIG_SMP
361
362static void __hrtick_restart(struct rq *rq)
363{
364 struct hrtimer *timer = &rq->hrtick_timer;
365
366 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
367}
368
369/*
370 * called from hardirq (IPI) context
371 */
372static void __hrtick_start(void *arg)
373{
374 struct rq *rq = arg;
375 struct rq_flags rf;
376
377 rq_lock(rq, &rf);
378 __hrtick_restart(rq);
379 rq_unlock(rq, &rf);
380}
381
382/*
383 * Called to set the hrtick timer state.
384 *
385 * called with rq->lock held and irqs disabled
386 */
387void hrtick_start(struct rq *rq, u64 delay)
388{
389 struct hrtimer *timer = &rq->hrtick_timer;
390 ktime_t time;
391 s64 delta;
392
393 /*
394 * Don't schedule slices shorter than 10000ns, that just
395 * doesn't make sense and can cause timer DoS.
396 */
397 delta = max_t(s64, delay, 10000LL);
398 time = ktime_add_ns(timer->base->get_time(), delta);
399
400 hrtimer_set_expires(timer, time);
401
402 if (rq == this_rq())
403 __hrtick_restart(rq);
404 else
405 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
406}
407
408#else
409/*
410 * Called to set the hrtick timer state.
411 *
412 * called with rq->lock held and irqs disabled
413 */
414void hrtick_start(struct rq *rq, u64 delay)
415{
416 /*
417 * Don't schedule slices shorter than 10000ns, that just
418 * doesn't make sense. Rely on vruntime for fairness.
419 */
420 delay = max_t(u64, delay, 10000LL);
421 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
422 HRTIMER_MODE_REL_PINNED_HARD);
423}
424
425#endif /* CONFIG_SMP */
426
427static void hrtick_rq_init(struct rq *rq)
428{
429#ifdef CONFIG_SMP
430 rq_csd_init(rq, &rq->hrtick_csd, __hrtick_start);
431#endif
432 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
433 rq->hrtick_timer.function = hrtick;
434}
435#else /* CONFIG_SCHED_HRTICK */
436static inline void hrtick_clear(struct rq *rq)
437{
438}
439
440static inline void hrtick_rq_init(struct rq *rq)
441{
442}
443#endif /* CONFIG_SCHED_HRTICK */
444
445/*
446 * cmpxchg based fetch_or, macro so it works for different integer types
447 */
448#define fetch_or(ptr, mask) \
449 ({ \
450 typeof(ptr) _ptr = (ptr); \
451 typeof(mask) _mask = (mask); \
452 typeof(*_ptr) _old, _val = *_ptr; \
453 \
454 for (;;) { \
455 _old = cmpxchg(_ptr, _val, _val | _mask); \
456 if (_old == _val) \
457 break; \
458 _val = _old; \
459 } \
460 _old; \
461})
462
463#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
464/*
465 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
466 * this avoids any races wrt polling state changes and thereby avoids
467 * spurious IPIs.
468 */
469static bool set_nr_and_not_polling(struct task_struct *p)
470{
471 struct thread_info *ti = task_thread_info(p);
472 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
473}
474
475/*
476 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
477 *
478 * If this returns true, then the idle task promises to call
479 * sched_ttwu_pending() and reschedule soon.
480 */
481static bool set_nr_if_polling(struct task_struct *p)
482{
483 struct thread_info *ti = task_thread_info(p);
484 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
485
486 for (;;) {
487 if (!(val & _TIF_POLLING_NRFLAG))
488 return false;
489 if (val & _TIF_NEED_RESCHED)
490 return true;
491 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
492 if (old == val)
493 break;
494 val = old;
495 }
496 return true;
497}
498
499#else
500static bool set_nr_and_not_polling(struct task_struct *p)
501{
502 set_tsk_need_resched(p);
503 return true;
504}
505
506#ifdef CONFIG_SMP
507static bool set_nr_if_polling(struct task_struct *p)
508{
509 return false;
510}
511#endif
512#endif
513
514static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
515{
516 struct wake_q_node *node = &task->wake_q;
517
518 /*
519 * Atomically grab the task, if ->wake_q is !nil already it means
520 * its already queued (either by us or someone else) and will get the
521 * wakeup due to that.
522 *
523 * In order to ensure that a pending wakeup will observe our pending
524 * state, even in the failed case, an explicit smp_mb() must be used.
525 */
526 smp_mb__before_atomic();
527 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
528 return false;
529
530 /*
531 * The head is context local, there can be no concurrency.
532 */
533 *head->lastp = node;
534 head->lastp = &node->next;
535 return true;
536}
537
538/**
539 * wake_q_add() - queue a wakeup for 'later' waking.
540 * @head: the wake_q_head to add @task to
541 * @task: the task to queue for 'later' wakeup
542 *
543 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
544 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
545 * instantly.
546 *
547 * This function must be used as-if it were wake_up_process(); IOW the task
548 * must be ready to be woken at this location.
549 */
550void wake_q_add(struct wake_q_head *head, struct task_struct *task)
551{
552 if (__wake_q_add(head, task))
553 get_task_struct(task);
554}
555
556/**
557 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
558 * @head: the wake_q_head to add @task to
559 * @task: the task to queue for 'later' wakeup
560 *
561 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
562 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
563 * instantly.
564 *
565 * This function must be used as-if it were wake_up_process(); IOW the task
566 * must be ready to be woken at this location.
567 *
568 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
569 * that already hold reference to @task can call the 'safe' version and trust
570 * wake_q to do the right thing depending whether or not the @task is already
571 * queued for wakeup.
572 */
573void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
574{
575 if (!__wake_q_add(head, task))
576 put_task_struct(task);
577}
578
579void wake_up_q(struct wake_q_head *head)
580{
581 struct wake_q_node *node = head->first;
582
583 while (node != WAKE_Q_TAIL) {
584 struct task_struct *task;
585
586 task = container_of(node, struct task_struct, wake_q);
587 BUG_ON(!task);
588 /* Task can safely be re-inserted now: */
589 node = node->next;
590 task->wake_q.next = NULL;
591
592 /*
593 * wake_up_process() executes a full barrier, which pairs with
594 * the queueing in wake_q_add() so as not to miss wakeups.
595 */
596 wake_up_process(task);
597 put_task_struct(task);
598 }
599}
600
601/*
602 * resched_curr - mark rq's current task 'to be rescheduled now'.
603 *
604 * On UP this means the setting of the need_resched flag, on SMP it
605 * might also involve a cross-CPU call to trigger the scheduler on
606 * the target CPU.
607 */
608void resched_curr(struct rq *rq)
609{
610 struct task_struct *curr = rq->curr;
611 int cpu;
612
613 lockdep_assert_held(&rq->lock);
614
615 if (test_tsk_need_resched(curr))
616 return;
617
618 cpu = cpu_of(rq);
619
620 if (cpu == smp_processor_id()) {
621 set_tsk_need_resched(curr);
622 set_preempt_need_resched();
623 return;
624 }
625
626 if (set_nr_and_not_polling(curr))
627 smp_send_reschedule(cpu);
628 else
629 trace_sched_wake_idle_without_ipi(cpu);
630}
631
632void resched_cpu(int cpu)
633{
634 struct rq *rq = cpu_rq(cpu);
635 unsigned long flags;
636
637 raw_spin_lock_irqsave(&rq->lock, flags);
638 if (cpu_online(cpu) || cpu == smp_processor_id())
639 resched_curr(rq);
640 raw_spin_unlock_irqrestore(&rq->lock, flags);
641}
642
643#ifdef CONFIG_SMP
644#ifdef CONFIG_NO_HZ_COMMON
645/*
646 * In the semi idle case, use the nearest busy CPU for migrating timers
647 * from an idle CPU. This is good for power-savings.
648 *
649 * We don't do similar optimization for completely idle system, as
650 * selecting an idle CPU will add more delays to the timers than intended
651 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
652 */
653int get_nohz_timer_target(void)
654{
655 int i, cpu = smp_processor_id(), default_cpu = -1;
656 struct sched_domain *sd;
657
658 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
659 if (!idle_cpu(cpu))
660 return cpu;
661 default_cpu = cpu;
662 }
663
664 rcu_read_lock();
665 for_each_domain(cpu, sd) {
666 for_each_cpu_and(i, sched_domain_span(sd),
667 housekeeping_cpumask(HK_FLAG_TIMER)) {
668 if (cpu == i)
669 continue;
670
671 if (!idle_cpu(i)) {
672 cpu = i;
673 goto unlock;
674 }
675 }
676 }
677
678 if (default_cpu == -1)
679 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
680 cpu = default_cpu;
681unlock:
682 rcu_read_unlock();
683 return cpu;
684}
685
686/*
687 * When add_timer_on() enqueues a timer into the timer wheel of an
688 * idle CPU then this timer might expire before the next timer event
689 * which is scheduled to wake up that CPU. In case of a completely
690 * idle system the next event might even be infinite time into the
691 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
692 * leaves the inner idle loop so the newly added timer is taken into
693 * account when the CPU goes back to idle and evaluates the timer
694 * wheel for the next timer event.
695 */
696static void wake_up_idle_cpu(int cpu)
697{
698 struct rq *rq = cpu_rq(cpu);
699
700 if (cpu == smp_processor_id())
701 return;
702
703 if (set_nr_and_not_polling(rq->idle))
704 smp_send_reschedule(cpu);
705 else
706 trace_sched_wake_idle_without_ipi(cpu);
707}
708
709static bool wake_up_full_nohz_cpu(int cpu)
710{
711 /*
712 * We just need the target to call irq_exit() and re-evaluate
713 * the next tick. The nohz full kick at least implies that.
714 * If needed we can still optimize that later with an
715 * empty IRQ.
716 */
717 if (cpu_is_offline(cpu))
718 return true; /* Don't try to wake offline CPUs. */
719 if (tick_nohz_full_cpu(cpu)) {
720 if (cpu != smp_processor_id() ||
721 tick_nohz_tick_stopped())
722 tick_nohz_full_kick_cpu(cpu);
723 return true;
724 }
725
726 return false;
727}
728
729/*
730 * Wake up the specified CPU. If the CPU is going offline, it is the
731 * caller's responsibility to deal with the lost wakeup, for example,
732 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
733 */
734void wake_up_nohz_cpu(int cpu)
735{
736 if (!wake_up_full_nohz_cpu(cpu))
737 wake_up_idle_cpu(cpu);
738}
739
740static void nohz_csd_func(void *info)
741{
742 struct rq *rq = info;
743 int cpu = cpu_of(rq);
744 unsigned int flags;
745
746 /*
747 * Release the rq::nohz_csd.
748 */
749 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
750 WARN_ON(!(flags & NOHZ_KICK_MASK));
751
752 rq->idle_balance = idle_cpu(cpu);
753 if (rq->idle_balance && !need_resched()) {
754 rq->nohz_idle_balance = flags;
755 raise_softirq_irqoff(SCHED_SOFTIRQ);
756 }
757}
758
759#endif /* CONFIG_NO_HZ_COMMON */
760
761#ifdef CONFIG_NO_HZ_FULL
762bool sched_can_stop_tick(struct rq *rq)
763{
764 int fifo_nr_running;
765
766 /* Deadline tasks, even if single, need the tick */
767 if (rq->dl.dl_nr_running)
768 return false;
769
770 /*
771 * If there are more than one RR tasks, we need the tick to effect the
772 * actual RR behaviour.
773 */
774 if (rq->rt.rr_nr_running) {
775 if (rq->rt.rr_nr_running == 1)
776 return true;
777 else
778 return false;
779 }
780
781 /*
782 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
783 * forced preemption between FIFO tasks.
784 */
785 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
786 if (fifo_nr_running)
787 return true;
788
789 /*
790 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
791 * if there's more than one we need the tick for involuntary
792 * preemption.
793 */
794 if (rq->nr_running > 1)
795 return false;
796
797 return true;
798}
799#endif /* CONFIG_NO_HZ_FULL */
800#endif /* CONFIG_SMP */
801
802#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
803 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
804/*
805 * Iterate task_group tree rooted at *from, calling @down when first entering a
806 * node and @up when leaving it for the final time.
807 *
808 * Caller must hold rcu_lock or sufficient equivalent.
809 */
810int walk_tg_tree_from(struct task_group *from,
811 tg_visitor down, tg_visitor up, void *data)
812{
813 struct task_group *parent, *child;
814 int ret;
815
816 parent = from;
817
818down:
819 ret = (*down)(parent, data);
820 if (ret)
821 goto out;
822 list_for_each_entry_rcu(child, &parent->children, siblings) {
823 parent = child;
824 goto down;
825
826up:
827 continue;
828 }
829 ret = (*up)(parent, data);
830 if (ret || parent == from)
831 goto out;
832
833 child = parent;
834 parent = parent->parent;
835 if (parent)
836 goto up;
837out:
838 return ret;
839}
840
841int tg_nop(struct task_group *tg, void *data)
842{
843 return 0;
844}
845#endif
846
847static void set_load_weight(struct task_struct *p, bool update_load)
848{
849 int prio = p->static_prio - MAX_RT_PRIO;
850 struct load_weight *load = &p->se.load;
851
852 /*
853 * SCHED_IDLE tasks get minimal weight:
854 */
855 if (task_has_idle_policy(p)) {
856 load->weight = scale_load(WEIGHT_IDLEPRIO);
857 load->inv_weight = WMULT_IDLEPRIO;
858 return;
859 }
860
861 /*
862 * SCHED_OTHER tasks have to update their load when changing their
863 * weight
864 */
865 if (update_load && p->sched_class == &fair_sched_class) {
866 reweight_task(p, prio);
867 } else {
868 load->weight = scale_load(sched_prio_to_weight[prio]);
869 load->inv_weight = sched_prio_to_wmult[prio];
870 }
871}
872
873#ifdef CONFIG_UCLAMP_TASK
874/*
875 * Serializes updates of utilization clamp values
876 *
877 * The (slow-path) user-space triggers utilization clamp value updates which
878 * can require updates on (fast-path) scheduler's data structures used to
879 * support enqueue/dequeue operations.
880 * While the per-CPU rq lock protects fast-path update operations, user-space
881 * requests are serialized using a mutex to reduce the risk of conflicting
882 * updates or API abuses.
883 */
884static DEFINE_MUTEX(uclamp_mutex);
885
886/* Max allowed minimum utilization */
887unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
888
889/* Max allowed maximum utilization */
890unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
891
892/*
893 * By default RT tasks run at the maximum performance point/capacity of the
894 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
895 * SCHED_CAPACITY_SCALE.
896 *
897 * This knob allows admins to change the default behavior when uclamp is being
898 * used. In battery powered devices, particularly, running at the maximum
899 * capacity and frequency will increase energy consumption and shorten the
900 * battery life.
901 *
902 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
903 *
904 * This knob will not override the system default sched_util_clamp_min defined
905 * above.
906 */
907unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
908
909/* All clamps are required to be less or equal than these values */
910static struct uclamp_se uclamp_default[UCLAMP_CNT];
911
912/*
913 * This static key is used to reduce the uclamp overhead in the fast path. It
914 * primarily disables the call to uclamp_rq_{inc, dec}() in
915 * enqueue/dequeue_task().
916 *
917 * This allows users to continue to enable uclamp in their kernel config with
918 * minimum uclamp overhead in the fast path.
919 *
920 * As soon as userspace modifies any of the uclamp knobs, the static key is
921 * enabled, since we have an actual users that make use of uclamp
922 * functionality.
923 *
924 * The knobs that would enable this static key are:
925 *
926 * * A task modifying its uclamp value with sched_setattr().
927 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
928 * * An admin modifying the cgroup cpu.uclamp.{min, max}
929 */
930DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
931
932/* Integer rounded range for each bucket */
933#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
934
935#define for_each_clamp_id(clamp_id) \
936 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
937
938static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
939{
940 return clamp_value / UCLAMP_BUCKET_DELTA;
941}
942
943static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
944{
945 return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
946}
947
948static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
949{
950 if (clamp_id == UCLAMP_MIN)
951 return 0;
952 return SCHED_CAPACITY_SCALE;
953}
954
955static inline void uclamp_se_set(struct uclamp_se *uc_se,
956 unsigned int value, bool user_defined)
957{
958 uc_se->value = value;
959 uc_se->bucket_id = uclamp_bucket_id(value);
960 uc_se->user_defined = user_defined;
961}
962
963static inline unsigned int
964uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
965 unsigned int clamp_value)
966{
967 /*
968 * Avoid blocked utilization pushing up the frequency when we go
969 * idle (which drops the max-clamp) by retaining the last known
970 * max-clamp.
971 */
972 if (clamp_id == UCLAMP_MAX) {
973 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
974 return clamp_value;
975 }
976
977 return uclamp_none(UCLAMP_MIN);
978}
979
980static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
981 unsigned int clamp_value)
982{
983 /* Reset max-clamp retention only on idle exit */
984 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
985 return;
986
987 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
988}
989
990static inline
991unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
992 unsigned int clamp_value)
993{
994 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
995 int bucket_id = UCLAMP_BUCKETS - 1;
996
997 /*
998 * Since both min and max clamps are max aggregated, find the
999 * top most bucket with tasks in.
1000 */
1001 for ( ; bucket_id >= 0; bucket_id--) {
1002 if (!bucket[bucket_id].tasks)
1003 continue;
1004 return bucket[bucket_id].value;
1005 }
1006
1007 /* No tasks -- default clamp values */
1008 return uclamp_idle_value(rq, clamp_id, clamp_value);
1009}
1010
1011static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1012{
1013 unsigned int default_util_min;
1014 struct uclamp_se *uc_se;
1015
1016 lockdep_assert_held(&p->pi_lock);
1017
1018 uc_se = &p->uclamp_req[UCLAMP_MIN];
1019
1020 /* Only sync if user didn't override the default */
1021 if (uc_se->user_defined)
1022 return;
1023
1024 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1025 uclamp_se_set(uc_se, default_util_min, false);
1026}
1027
1028static void uclamp_update_util_min_rt_default(struct task_struct *p)
1029{
1030 struct rq_flags rf;
1031 struct rq *rq;
1032
1033 if (!rt_task(p))
1034 return;
1035
1036 /* Protect updates to p->uclamp_* */
1037 rq = task_rq_lock(p, &rf);
1038 __uclamp_update_util_min_rt_default(p);
1039 task_rq_unlock(rq, p, &rf);
1040}
1041
1042static void uclamp_sync_util_min_rt_default(void)
1043{
1044 struct task_struct *g, *p;
1045
1046 /*
1047 * copy_process() sysctl_uclamp
1048 * uclamp_min_rt = X;
1049 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1050 * // link thread smp_mb__after_spinlock()
1051 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1052 * sched_post_fork() for_each_process_thread()
1053 * __uclamp_sync_rt() __uclamp_sync_rt()
1054 *
1055 * Ensures that either sched_post_fork() will observe the new
1056 * uclamp_min_rt or for_each_process_thread() will observe the new
1057 * task.
1058 */
1059 read_lock(&tasklist_lock);
1060 smp_mb__after_spinlock();
1061 read_unlock(&tasklist_lock);
1062
1063 rcu_read_lock();
1064 for_each_process_thread(g, p)
1065 uclamp_update_util_min_rt_default(p);
1066 rcu_read_unlock();
1067}
1068
1069static inline struct uclamp_se
1070uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1071{
1072 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1073#ifdef CONFIG_UCLAMP_TASK_GROUP
1074 struct uclamp_se uc_max;
1075
1076 /*
1077 * Tasks in autogroups or root task group will be
1078 * restricted by system defaults.
1079 */
1080 if (task_group_is_autogroup(task_group(p)))
1081 return uc_req;
1082 if (task_group(p) == &root_task_group)
1083 return uc_req;
1084
1085 uc_max = task_group(p)->uclamp[clamp_id];
1086 if (uc_req.value > uc_max.value || !uc_req.user_defined)
1087 return uc_max;
1088#endif
1089
1090 return uc_req;
1091}
1092
1093/*
1094 * The effective clamp bucket index of a task depends on, by increasing
1095 * priority:
1096 * - the task specific clamp value, when explicitly requested from userspace
1097 * - the task group effective clamp value, for tasks not either in the root
1098 * group or in an autogroup
1099 * - the system default clamp value, defined by the sysadmin
1100 */
1101static inline struct uclamp_se
1102uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1103{
1104 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1105 struct uclamp_se uc_max = uclamp_default[clamp_id];
1106
1107 /* System default restrictions always apply */
1108 if (unlikely(uc_req.value > uc_max.value))
1109 return uc_max;
1110
1111 return uc_req;
1112}
1113
1114unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1115{
1116 struct uclamp_se uc_eff;
1117
1118 /* Task currently refcounted: use back-annotated (effective) value */
1119 if (p->uclamp[clamp_id].active)
1120 return (unsigned long)p->uclamp[clamp_id].value;
1121
1122 uc_eff = uclamp_eff_get(p, clamp_id);
1123
1124 return (unsigned long)uc_eff.value;
1125}
1126
1127/*
1128 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1129 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1130 * updates the rq's clamp value if required.
1131 *
1132 * Tasks can have a task-specific value requested from user-space, track
1133 * within each bucket the maximum value for tasks refcounted in it.
1134 * This "local max aggregation" allows to track the exact "requested" value
1135 * for each bucket when all its RUNNABLE tasks require the same clamp.
1136 */
1137static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1138 enum uclamp_id clamp_id)
1139{
1140 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1141 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1142 struct uclamp_bucket *bucket;
1143
1144 lockdep_assert_held(&rq->lock);
1145
1146 /* Update task effective clamp */
1147 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1148
1149 bucket = &uc_rq->bucket[uc_se->bucket_id];
1150 bucket->tasks++;
1151 uc_se->active = true;
1152
1153 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1154
1155 /*
1156 * Local max aggregation: rq buckets always track the max
1157 * "requested" clamp value of its RUNNABLE tasks.
1158 */
1159 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1160 bucket->value = uc_se->value;
1161
1162 if (uc_se->value > READ_ONCE(uc_rq->value))
1163 WRITE_ONCE(uc_rq->value, uc_se->value);
1164}
1165
1166/*
1167 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1168 * is released. If this is the last task reference counting the rq's max
1169 * active clamp value, then the rq's clamp value is updated.
1170 *
1171 * Both refcounted tasks and rq's cached clamp values are expected to be
1172 * always valid. If it's detected they are not, as defensive programming,
1173 * enforce the expected state and warn.
1174 */
1175static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1176 enum uclamp_id clamp_id)
1177{
1178 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1179 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1180 struct uclamp_bucket *bucket;
1181 unsigned int bkt_clamp;
1182 unsigned int rq_clamp;
1183
1184 lockdep_assert_held(&rq->lock);
1185
1186 /*
1187 * If sched_uclamp_used was enabled after task @p was enqueued,
1188 * we could end up with unbalanced call to uclamp_rq_dec_id().
1189 *
1190 * In this case the uc_se->active flag should be false since no uclamp
1191 * accounting was performed at enqueue time and we can just return
1192 * here.
1193 *
1194 * Need to be careful of the following enqeueue/dequeue ordering
1195 * problem too
1196 *
1197 * enqueue(taskA)
1198 * // sched_uclamp_used gets enabled
1199 * enqueue(taskB)
1200 * dequeue(taskA)
1201 * // Must not decrement bukcet->tasks here
1202 * dequeue(taskB)
1203 *
1204 * where we could end up with stale data in uc_se and
1205 * bucket[uc_se->bucket_id].
1206 *
1207 * The following check here eliminates the possibility of such race.
1208 */
1209 if (unlikely(!uc_se->active))
1210 return;
1211
1212 bucket = &uc_rq->bucket[uc_se->bucket_id];
1213
1214 SCHED_WARN_ON(!bucket->tasks);
1215 if (likely(bucket->tasks))
1216 bucket->tasks--;
1217
1218 uc_se->active = false;
1219
1220 /*
1221 * Keep "local max aggregation" simple and accept to (possibly)
1222 * overboost some RUNNABLE tasks in the same bucket.
1223 * The rq clamp bucket value is reset to its base value whenever
1224 * there are no more RUNNABLE tasks refcounting it.
1225 */
1226 if (likely(bucket->tasks))
1227 return;
1228
1229 rq_clamp = READ_ONCE(uc_rq->value);
1230 /*
1231 * Defensive programming: this should never happen. If it happens,
1232 * e.g. due to future modification, warn and fixup the expected value.
1233 */
1234 SCHED_WARN_ON(bucket->value > rq_clamp);
1235 if (bucket->value >= rq_clamp) {
1236 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1237 WRITE_ONCE(uc_rq->value, bkt_clamp);
1238 }
1239}
1240
1241static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1242{
1243 enum uclamp_id clamp_id;
1244
1245 /*
1246 * Avoid any overhead until uclamp is actually used by the userspace.
1247 *
1248 * The condition is constructed such that a NOP is generated when
1249 * sched_uclamp_used is disabled.
1250 */
1251 if (!static_branch_unlikely(&sched_uclamp_used))
1252 return;
1253
1254 if (unlikely(!p->sched_class->uclamp_enabled))
1255 return;
1256
1257 for_each_clamp_id(clamp_id)
1258 uclamp_rq_inc_id(rq, p, clamp_id);
1259
1260 /* Reset clamp idle holding when there is one RUNNABLE task */
1261 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1262 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1263}
1264
1265static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1266{
1267 enum uclamp_id clamp_id;
1268
1269 /*
1270 * Avoid any overhead until uclamp is actually used by the userspace.
1271 *
1272 * The condition is constructed such that a NOP is generated when
1273 * sched_uclamp_used is disabled.
1274 */
1275 if (!static_branch_unlikely(&sched_uclamp_used))
1276 return;
1277
1278 if (unlikely(!p->sched_class->uclamp_enabled))
1279 return;
1280
1281 for_each_clamp_id(clamp_id)
1282 uclamp_rq_dec_id(rq, p, clamp_id);
1283}
1284
1285static inline void
1286uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1287{
1288 struct rq_flags rf;
1289 struct rq *rq;
1290
1291 /*
1292 * Lock the task and the rq where the task is (or was) queued.
1293 *
1294 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1295 * price to pay to safely serialize util_{min,max} updates with
1296 * enqueues, dequeues and migration operations.
1297 * This is the same locking schema used by __set_cpus_allowed_ptr().
1298 */
1299 rq = task_rq_lock(p, &rf);
1300
1301 /*
1302 * Setting the clamp bucket is serialized by task_rq_lock().
1303 * If the task is not yet RUNNABLE and its task_struct is not
1304 * affecting a valid clamp bucket, the next time it's enqueued,
1305 * it will already see the updated clamp bucket value.
1306 */
1307 if (p->uclamp[clamp_id].active) {
1308 uclamp_rq_dec_id(rq, p, clamp_id);
1309 uclamp_rq_inc_id(rq, p, clamp_id);
1310 }
1311
1312 task_rq_unlock(rq, p, &rf);
1313}
1314
1315#ifdef CONFIG_UCLAMP_TASK_GROUP
1316static inline void
1317uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1318 unsigned int clamps)
1319{
1320 enum uclamp_id clamp_id;
1321 struct css_task_iter it;
1322 struct task_struct *p;
1323
1324 css_task_iter_start(css, 0, &it);
1325 while ((p = css_task_iter_next(&it))) {
1326 for_each_clamp_id(clamp_id) {
1327 if ((0x1 << clamp_id) & clamps)
1328 uclamp_update_active(p, clamp_id);
1329 }
1330 }
1331 css_task_iter_end(&it);
1332}
1333
1334static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1335static void uclamp_update_root_tg(void)
1336{
1337 struct task_group *tg = &root_task_group;
1338
1339 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1340 sysctl_sched_uclamp_util_min, false);
1341 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1342 sysctl_sched_uclamp_util_max, false);
1343
1344 rcu_read_lock();
1345 cpu_util_update_eff(&root_task_group.css);
1346 rcu_read_unlock();
1347}
1348#else
1349static void uclamp_update_root_tg(void) { }
1350#endif
1351
1352int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1353 void *buffer, size_t *lenp, loff_t *ppos)
1354{
1355 bool update_root_tg = false;
1356 int old_min, old_max, old_min_rt;
1357 int result;
1358
1359 mutex_lock(&uclamp_mutex);
1360 old_min = sysctl_sched_uclamp_util_min;
1361 old_max = sysctl_sched_uclamp_util_max;
1362 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1363
1364 result = proc_dointvec(table, write, buffer, lenp, ppos);
1365 if (result)
1366 goto undo;
1367 if (!write)
1368 goto done;
1369
1370 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1371 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1372 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1373
1374 result = -EINVAL;
1375 goto undo;
1376 }
1377
1378 if (old_min != sysctl_sched_uclamp_util_min) {
1379 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1380 sysctl_sched_uclamp_util_min, false);
1381 update_root_tg = true;
1382 }
1383 if (old_max != sysctl_sched_uclamp_util_max) {
1384 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1385 sysctl_sched_uclamp_util_max, false);
1386 update_root_tg = true;
1387 }
1388
1389 if (update_root_tg) {
1390 static_branch_enable(&sched_uclamp_used);
1391 uclamp_update_root_tg();
1392 }
1393
1394 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1395 static_branch_enable(&sched_uclamp_used);
1396 uclamp_sync_util_min_rt_default();
1397 }
1398
1399 /*
1400 * We update all RUNNABLE tasks only when task groups are in use.
1401 * Otherwise, keep it simple and do just a lazy update at each next
1402 * task enqueue time.
1403 */
1404
1405 goto done;
1406
1407undo:
1408 sysctl_sched_uclamp_util_min = old_min;
1409 sysctl_sched_uclamp_util_max = old_max;
1410 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1411done:
1412 mutex_unlock(&uclamp_mutex);
1413
1414 return result;
1415}
1416
1417static int uclamp_validate(struct task_struct *p,
1418 const struct sched_attr *attr)
1419{
1420 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1421 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1422
1423 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1424 lower_bound = attr->sched_util_min;
1425 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1426 upper_bound = attr->sched_util_max;
1427
1428 if (lower_bound > upper_bound)
1429 return -EINVAL;
1430 if (upper_bound > SCHED_CAPACITY_SCALE)
1431 return -EINVAL;
1432
1433 /*
1434 * We have valid uclamp attributes; make sure uclamp is enabled.
1435 *
1436 * We need to do that here, because enabling static branches is a
1437 * blocking operation which obviously cannot be done while holding
1438 * scheduler locks.
1439 */
1440 static_branch_enable(&sched_uclamp_used);
1441
1442 return 0;
1443}
1444
1445static void __setscheduler_uclamp(struct task_struct *p,
1446 const struct sched_attr *attr)
1447{
1448 enum uclamp_id clamp_id;
1449
1450 /*
1451 * On scheduling class change, reset to default clamps for tasks
1452 * without a task-specific value.
1453 */
1454 for_each_clamp_id(clamp_id) {
1455 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1456
1457 /* Keep using defined clamps across class changes */
1458 if (uc_se->user_defined)
1459 continue;
1460
1461 /*
1462 * RT by default have a 100% boost value that could be modified
1463 * at runtime.
1464 */
1465 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1466 __uclamp_update_util_min_rt_default(p);
1467 else
1468 uclamp_se_set(uc_se, uclamp_none(clamp_id), false);
1469
1470 }
1471
1472 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1473 return;
1474
1475 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1476 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1477 attr->sched_util_min, true);
1478 }
1479
1480 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1481 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1482 attr->sched_util_max, true);
1483 }
1484}
1485
1486static void uclamp_fork(struct task_struct *p)
1487{
1488 enum uclamp_id clamp_id;
1489
1490 /*
1491 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1492 * as the task is still at its early fork stages.
1493 */
1494 for_each_clamp_id(clamp_id)
1495 p->uclamp[clamp_id].active = false;
1496
1497 if (likely(!p->sched_reset_on_fork))
1498 return;
1499
1500 for_each_clamp_id(clamp_id) {
1501 uclamp_se_set(&p->uclamp_req[clamp_id],
1502 uclamp_none(clamp_id), false);
1503 }
1504}
1505
1506static void uclamp_post_fork(struct task_struct *p)
1507{
1508 uclamp_update_util_min_rt_default(p);
1509}
1510
1511static void __init init_uclamp_rq(struct rq *rq)
1512{
1513 enum uclamp_id clamp_id;
1514 struct uclamp_rq *uc_rq = rq->uclamp;
1515
1516 for_each_clamp_id(clamp_id) {
1517 uc_rq[clamp_id] = (struct uclamp_rq) {
1518 .value = uclamp_none(clamp_id)
1519 };
1520 }
1521
1522 rq->uclamp_flags = 0;
1523}
1524
1525static void __init init_uclamp(void)
1526{
1527 struct uclamp_se uc_max = {};
1528 enum uclamp_id clamp_id;
1529 int cpu;
1530
1531 for_each_possible_cpu(cpu)
1532 init_uclamp_rq(cpu_rq(cpu));
1533
1534 for_each_clamp_id(clamp_id) {
1535 uclamp_se_set(&init_task.uclamp_req[clamp_id],
1536 uclamp_none(clamp_id), false);
1537 }
1538
1539 /* System defaults allow max clamp values for both indexes */
1540 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1541 for_each_clamp_id(clamp_id) {
1542 uclamp_default[clamp_id] = uc_max;
1543#ifdef CONFIG_UCLAMP_TASK_GROUP
1544 root_task_group.uclamp_req[clamp_id] = uc_max;
1545 root_task_group.uclamp[clamp_id] = uc_max;
1546#endif
1547 }
1548}
1549
1550#else /* CONFIG_UCLAMP_TASK */
1551static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1552static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1553static inline int uclamp_validate(struct task_struct *p,
1554 const struct sched_attr *attr)
1555{
1556 return -EOPNOTSUPP;
1557}
1558static void __setscheduler_uclamp(struct task_struct *p,
1559 const struct sched_attr *attr) { }
1560static inline void uclamp_fork(struct task_struct *p) { }
1561static inline void uclamp_post_fork(struct task_struct *p) { }
1562static inline void init_uclamp(void) { }
1563#endif /* CONFIG_UCLAMP_TASK */
1564
1565static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1566{
1567 if (!(flags & ENQUEUE_NOCLOCK))
1568 update_rq_clock(rq);
1569
1570 if (!(flags & ENQUEUE_RESTORE)) {
1571 sched_info_queued(rq, p);
1572 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1573 }
1574
1575 uclamp_rq_inc(rq, p);
1576 p->sched_class->enqueue_task(rq, p, flags);
1577}
1578
1579static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1580{
1581 if (!(flags & DEQUEUE_NOCLOCK))
1582 update_rq_clock(rq);
1583
1584 if (!(flags & DEQUEUE_SAVE)) {
1585 sched_info_dequeued(rq, p);
1586 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1587 }
1588
1589 uclamp_rq_dec(rq, p);
1590 p->sched_class->dequeue_task(rq, p, flags);
1591}
1592
1593void activate_task(struct rq *rq, struct task_struct *p, int flags)
1594{
1595 enqueue_task(rq, p, flags);
1596
1597 p->on_rq = TASK_ON_RQ_QUEUED;
1598}
1599
1600void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1601{
1602 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1603
1604 dequeue_task(rq, p, flags);
1605}
1606
1607/*
1608 * __normal_prio - return the priority that is based on the static prio
1609 */
1610static inline int __normal_prio(struct task_struct *p)
1611{
1612 return p->static_prio;
1613}
1614
1615/*
1616 * Calculate the expected normal priority: i.e. priority
1617 * without taking RT-inheritance into account. Might be
1618 * boosted by interactivity modifiers. Changes upon fork,
1619 * setprio syscalls, and whenever the interactivity
1620 * estimator recalculates.
1621 */
1622static inline int normal_prio(struct task_struct *p)
1623{
1624 int prio;
1625
1626 if (task_has_dl_policy(p))
1627 prio = MAX_DL_PRIO-1;
1628 else if (task_has_rt_policy(p))
1629 prio = MAX_RT_PRIO-1 - p->rt_priority;
1630 else
1631 prio = __normal_prio(p);
1632 return prio;
1633}
1634
1635/*
1636 * Calculate the current priority, i.e. the priority
1637 * taken into account by the scheduler. This value might
1638 * be boosted by RT tasks, or might be boosted by
1639 * interactivity modifiers. Will be RT if the task got
1640 * RT-boosted. If not then it returns p->normal_prio.
1641 */
1642static int effective_prio(struct task_struct *p)
1643{
1644 p->normal_prio = normal_prio(p);
1645 /*
1646 * If we are RT tasks or we were boosted to RT priority,
1647 * keep the priority unchanged. Otherwise, update priority
1648 * to the normal priority:
1649 */
1650 if (!rt_prio(p->prio))
1651 return p->normal_prio;
1652 return p->prio;
1653}
1654
1655/**
1656 * task_curr - is this task currently executing on a CPU?
1657 * @p: the task in question.
1658 *
1659 * Return: 1 if the task is currently executing. 0 otherwise.
1660 */
1661inline int task_curr(const struct task_struct *p)
1662{
1663 return cpu_curr(task_cpu(p)) == p;
1664}
1665
1666/*
1667 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1668 * use the balance_callback list if you want balancing.
1669 *
1670 * this means any call to check_class_changed() must be followed by a call to
1671 * balance_callback().
1672 */
1673static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1674 const struct sched_class *prev_class,
1675 int oldprio)
1676{
1677 if (prev_class != p->sched_class) {
1678 if (prev_class->switched_from)
1679 prev_class->switched_from(rq, p);
1680
1681 p->sched_class->switched_to(rq, p);
1682 } else if (oldprio != p->prio || dl_task(p))
1683 p->sched_class->prio_changed(rq, p, oldprio);
1684}
1685
1686void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1687{
1688 if (p->sched_class == rq->curr->sched_class)
1689 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1690 else if (p->sched_class > rq->curr->sched_class)
1691 resched_curr(rq);
1692
1693 /*
1694 * A queue event has occurred, and we're going to schedule. In
1695 * this case, we can save a useless back to back clock update.
1696 */
1697 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1698 rq_clock_skip_update(rq);
1699}
1700
1701#ifdef CONFIG_SMP
1702
1703/*
1704 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1705 * __set_cpus_allowed_ptr() and select_fallback_rq().
1706 */
1707static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1708{
1709 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1710 return false;
1711
1712 if (is_per_cpu_kthread(p))
1713 return cpu_online(cpu);
1714
1715 return cpu_active(cpu);
1716}
1717
1718/*
1719 * This is how migration works:
1720 *
1721 * 1) we invoke migration_cpu_stop() on the target CPU using
1722 * stop_one_cpu().
1723 * 2) stopper starts to run (implicitly forcing the migrated thread
1724 * off the CPU)
1725 * 3) it checks whether the migrated task is still in the wrong runqueue.
1726 * 4) if it's in the wrong runqueue then the migration thread removes
1727 * it and puts it into the right queue.
1728 * 5) stopper completes and stop_one_cpu() returns and the migration
1729 * is done.
1730 */
1731
1732/*
1733 * move_queued_task - move a queued task to new rq.
1734 *
1735 * Returns (locked) new rq. Old rq's lock is released.
1736 */
1737static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1738 struct task_struct *p, int new_cpu)
1739{
1740 lockdep_assert_held(&rq->lock);
1741
1742 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
1743 set_task_cpu(p, new_cpu);
1744 rq_unlock(rq, rf);
1745
1746 rq = cpu_rq(new_cpu);
1747
1748 rq_lock(rq, rf);
1749 BUG_ON(task_cpu(p) != new_cpu);
1750 activate_task(rq, p, 0);
1751 check_preempt_curr(rq, p, 0);
1752
1753 return rq;
1754}
1755
1756struct migration_arg {
1757 struct task_struct *task;
1758 int dest_cpu;
1759};
1760
1761/*
1762 * Move (not current) task off this CPU, onto the destination CPU. We're doing
1763 * this because either it can't run here any more (set_cpus_allowed()
1764 * away from this CPU, or CPU going down), or because we're
1765 * attempting to rebalance this task on exec (sched_exec).
1766 *
1767 * So we race with normal scheduler movements, but that's OK, as long
1768 * as the task is no longer on this CPU.
1769 */
1770static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1771 struct task_struct *p, int dest_cpu)
1772{
1773 /* Affinity changed (again). */
1774 if (!is_cpu_allowed(p, dest_cpu))
1775 return rq;
1776
1777 update_rq_clock(rq);
1778 rq = move_queued_task(rq, rf, p, dest_cpu);
1779
1780 return rq;
1781}
1782
1783/*
1784 * migration_cpu_stop - this will be executed by a highprio stopper thread
1785 * and performs thread migration by bumping thread off CPU then
1786 * 'pushing' onto another runqueue.
1787 */
1788static int migration_cpu_stop(void *data)
1789{
1790 struct migration_arg *arg = data;
1791 struct task_struct *p = arg->task;
1792 struct rq *rq = this_rq();
1793 struct rq_flags rf;
1794
1795 /*
1796 * The original target CPU might have gone down and we might
1797 * be on another CPU but it doesn't matter.
1798 */
1799 local_irq_disable();
1800 /*
1801 * We need to explicitly wake pending tasks before running
1802 * __migrate_task() such that we will not miss enforcing cpus_ptr
1803 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1804 */
1805 flush_smp_call_function_from_idle();
1806
1807 raw_spin_lock(&p->pi_lock);
1808 rq_lock(rq, &rf);
1809 /*
1810 * If task_rq(p) != rq, it cannot be migrated here, because we're
1811 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1812 * we're holding p->pi_lock.
1813 */
1814 if (task_rq(p) == rq) {
1815 if (task_on_rq_queued(p))
1816 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1817 else
1818 p->wake_cpu = arg->dest_cpu;
1819 }
1820 rq_unlock(rq, &rf);
1821 raw_spin_unlock(&p->pi_lock);
1822
1823 local_irq_enable();
1824 return 0;
1825}
1826
1827/*
1828 * sched_class::set_cpus_allowed must do the below, but is not required to
1829 * actually call this function.
1830 */
1831void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1832{
1833 cpumask_copy(&p->cpus_mask, new_mask);
1834 p->nr_cpus_allowed = cpumask_weight(new_mask);
1835}
1836
1837void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1838{
1839 struct rq *rq = task_rq(p);
1840 bool queued, running;
1841
1842 lockdep_assert_held(&p->pi_lock);
1843
1844 queued = task_on_rq_queued(p);
1845 running = task_current(rq, p);
1846
1847 if (queued) {
1848 /*
1849 * Because __kthread_bind() calls this on blocked tasks without
1850 * holding rq->lock.
1851 */
1852 lockdep_assert_held(&rq->lock);
1853 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1854 }
1855 if (running)
1856 put_prev_task(rq, p);
1857
1858 p->sched_class->set_cpus_allowed(p, new_mask);
1859
1860 if (queued)
1861 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1862 if (running)
1863 set_next_task(rq, p);
1864}
1865
1866/*
1867 * Change a given task's CPU affinity. Migrate the thread to a
1868 * proper CPU and schedule it away if the CPU it's executing on
1869 * is removed from the allowed bitmask.
1870 *
1871 * NOTE: the caller must have a valid reference to the task, the
1872 * task must not exit() & deallocate itself prematurely. The
1873 * call is not atomic; no spinlocks may be held.
1874 */
1875static int __set_cpus_allowed_ptr(struct task_struct *p,
1876 const struct cpumask *new_mask, bool check)
1877{
1878 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1879 unsigned int dest_cpu;
1880 struct rq_flags rf;
1881 struct rq *rq;
1882 int ret = 0;
1883
1884 rq = task_rq_lock(p, &rf);
1885 update_rq_clock(rq);
1886
1887 if (p->flags & PF_KTHREAD) {
1888 /*
1889 * Kernel threads are allowed on online && !active CPUs
1890 */
1891 cpu_valid_mask = cpu_online_mask;
1892 }
1893
1894 /*
1895 * Must re-check here, to close a race against __kthread_bind(),
1896 * sched_setaffinity() is not guaranteed to observe the flag.
1897 */
1898 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1899 ret = -EINVAL;
1900 goto out;
1901 }
1902
1903 if (cpumask_equal(&p->cpus_mask, new_mask))
1904 goto out;
1905
1906 /*
1907 * Picking a ~random cpu helps in cases where we are changing affinity
1908 * for groups of tasks (ie. cpuset), so that load balancing is not
1909 * immediately required to distribute the tasks within their new mask.
1910 */
1911 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
1912 if (dest_cpu >= nr_cpu_ids) {
1913 ret = -EINVAL;
1914 goto out;
1915 }
1916
1917 do_set_cpus_allowed(p, new_mask);
1918
1919 if (p->flags & PF_KTHREAD) {
1920 /*
1921 * For kernel threads that do indeed end up on online &&
1922 * !active we want to ensure they are strict per-CPU threads.
1923 */
1924 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1925 !cpumask_intersects(new_mask, cpu_active_mask) &&
1926 p->nr_cpus_allowed != 1);
1927 }
1928
1929 /* Can the task run on the task's current CPU? If so, we're done */
1930 if (cpumask_test_cpu(task_cpu(p), new_mask))
1931 goto out;
1932
1933 if (task_running(rq, p) || p->state == TASK_WAKING) {
1934 struct migration_arg arg = { p, dest_cpu };
1935 /* Need help from migration thread: drop lock and wait. */
1936 task_rq_unlock(rq, p, &rf);
1937 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1938 return 0;
1939 } else if (task_on_rq_queued(p)) {
1940 /*
1941 * OK, since we're going to drop the lock immediately
1942 * afterwards anyway.
1943 */
1944 rq = move_queued_task(rq, &rf, p, dest_cpu);
1945 }
1946out:
1947 task_rq_unlock(rq, p, &rf);
1948
1949 return ret;
1950}
1951
1952int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1953{
1954 return __set_cpus_allowed_ptr(p, new_mask, false);
1955}
1956EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1957
1958void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1959{
1960#ifdef CONFIG_SCHED_DEBUG
1961 /*
1962 * We should never call set_task_cpu() on a blocked task,
1963 * ttwu() will sort out the placement.
1964 */
1965 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1966 !p->on_rq);
1967
1968 /*
1969 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1970 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1971 * time relying on p->on_rq.
1972 */
1973 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1974 p->sched_class == &fair_sched_class &&
1975 (p->on_rq && !task_on_rq_migrating(p)));
1976
1977#ifdef CONFIG_LOCKDEP
1978 /*
1979 * The caller should hold either p->pi_lock or rq->lock, when changing
1980 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1981 *
1982 * sched_move_task() holds both and thus holding either pins the cgroup,
1983 * see task_group().
1984 *
1985 * Furthermore, all task_rq users should acquire both locks, see
1986 * task_rq_lock().
1987 */
1988 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1989 lockdep_is_held(&task_rq(p)->lock)));
1990#endif
1991 /*
1992 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1993 */
1994 WARN_ON_ONCE(!cpu_online(new_cpu));
1995#endif
1996
1997 trace_sched_migrate_task(p, new_cpu);
1998
1999 if (task_cpu(p) != new_cpu) {
2000 if (p->sched_class->migrate_task_rq)
2001 p->sched_class->migrate_task_rq(p, new_cpu);
2002 p->se.nr_migrations++;
2003 rseq_migrate(p);
2004 perf_event_task_migrate(p);
2005 }
2006
2007 __set_task_cpu(p, new_cpu);
2008}
2009
2010#ifdef CONFIG_NUMA_BALANCING
2011static void __migrate_swap_task(struct task_struct *p, int cpu)
2012{
2013 if (task_on_rq_queued(p)) {
2014 struct rq *src_rq, *dst_rq;
2015 struct rq_flags srf, drf;
2016
2017 src_rq = task_rq(p);
2018 dst_rq = cpu_rq(cpu);
2019
2020 rq_pin_lock(src_rq, &srf);
2021 rq_pin_lock(dst_rq, &drf);
2022
2023 deactivate_task(src_rq, p, 0);
2024 set_task_cpu(p, cpu);
2025 activate_task(dst_rq, p, 0);
2026 check_preempt_curr(dst_rq, p, 0);
2027
2028 rq_unpin_lock(dst_rq, &drf);
2029 rq_unpin_lock(src_rq, &srf);
2030
2031 } else {
2032 /*
2033 * Task isn't running anymore; make it appear like we migrated
2034 * it before it went to sleep. This means on wakeup we make the
2035 * previous CPU our target instead of where it really is.
2036 */
2037 p->wake_cpu = cpu;
2038 }
2039}
2040
2041struct migration_swap_arg {
2042 struct task_struct *src_task, *dst_task;
2043 int src_cpu, dst_cpu;
2044};
2045
2046static int migrate_swap_stop(void *data)
2047{
2048 struct migration_swap_arg *arg = data;
2049 struct rq *src_rq, *dst_rq;
2050 int ret = -EAGAIN;
2051
2052 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2053 return -EAGAIN;
2054
2055 src_rq = cpu_rq(arg->src_cpu);
2056 dst_rq = cpu_rq(arg->dst_cpu);
2057
2058 double_raw_lock(&arg->src_task->pi_lock,
2059 &arg->dst_task->pi_lock);
2060 double_rq_lock(src_rq, dst_rq);
2061
2062 if (task_cpu(arg->dst_task) != arg->dst_cpu)
2063 goto unlock;
2064
2065 if (task_cpu(arg->src_task) != arg->src_cpu)
2066 goto unlock;
2067
2068 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
2069 goto unlock;
2070
2071 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
2072 goto unlock;
2073
2074 __migrate_swap_task(arg->src_task, arg->dst_cpu);
2075 __migrate_swap_task(arg->dst_task, arg->src_cpu);
2076
2077 ret = 0;
2078
2079unlock:
2080 double_rq_unlock(src_rq, dst_rq);
2081 raw_spin_unlock(&arg->dst_task->pi_lock);
2082 raw_spin_unlock(&arg->src_task->pi_lock);
2083
2084 return ret;
2085}
2086
2087/*
2088 * Cross migrate two tasks
2089 */
2090int migrate_swap(struct task_struct *cur, struct task_struct *p,
2091 int target_cpu, int curr_cpu)
2092{
2093 struct migration_swap_arg arg;
2094 int ret = -EINVAL;
2095
2096 arg = (struct migration_swap_arg){
2097 .src_task = cur,
2098 .src_cpu = curr_cpu,
2099 .dst_task = p,
2100 .dst_cpu = target_cpu,
2101 };
2102
2103 if (arg.src_cpu == arg.dst_cpu)
2104 goto out;
2105
2106 /*
2107 * These three tests are all lockless; this is OK since all of them
2108 * will be re-checked with proper locks held further down the line.
2109 */
2110 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2111 goto out;
2112
2113 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
2114 goto out;
2115
2116 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
2117 goto out;
2118
2119 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
2120 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2121
2122out:
2123 return ret;
2124}
2125#endif /* CONFIG_NUMA_BALANCING */
2126
2127/*
2128 * wait_task_inactive - wait for a thread to unschedule.
2129 *
2130 * If @match_state is nonzero, it's the @p->state value just checked and
2131 * not expected to change. If it changes, i.e. @p might have woken up,
2132 * then return zero. When we succeed in waiting for @p to be off its CPU,
2133 * we return a positive number (its total switch count). If a second call
2134 * a short while later returns the same number, the caller can be sure that
2135 * @p has remained unscheduled the whole time.
2136 *
2137 * The caller must ensure that the task *will* unschedule sometime soon,
2138 * else this function might spin for a *long* time. This function can't
2139 * be called with interrupts off, or it may introduce deadlock with
2140 * smp_call_function() if an IPI is sent by the same process we are
2141 * waiting to become inactive.
2142 */
2143unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2144{
2145 int running, queued;
2146 struct rq_flags rf;
2147 unsigned long ncsw;
2148 struct rq *rq;
2149
2150 for (;;) {
2151 /*
2152 * We do the initial early heuristics without holding
2153 * any task-queue locks at all. We'll only try to get
2154 * the runqueue lock when things look like they will
2155 * work out!
2156 */
2157 rq = task_rq(p);
2158
2159 /*
2160 * If the task is actively running on another CPU
2161 * still, just relax and busy-wait without holding
2162 * any locks.
2163 *
2164 * NOTE! Since we don't hold any locks, it's not
2165 * even sure that "rq" stays as the right runqueue!
2166 * But we don't care, since "task_running()" will
2167 * return false if the runqueue has changed and p
2168 * is actually now running somewhere else!
2169 */
2170 while (task_running(rq, p)) {
2171 if (match_state && unlikely(p->state != match_state))
2172 return 0;
2173 cpu_relax();
2174 }
2175
2176 /*
2177 * Ok, time to look more closely! We need the rq
2178 * lock now, to be *sure*. If we're wrong, we'll
2179 * just go back and repeat.
2180 */
2181 rq = task_rq_lock(p, &rf);
2182 trace_sched_wait_task(p);
2183 running = task_running(rq, p);
2184 queued = task_on_rq_queued(p);
2185 ncsw = 0;
2186 if (!match_state || p->state == match_state)
2187 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2188 task_rq_unlock(rq, p, &rf);
2189
2190 /*
2191 * If it changed from the expected state, bail out now.
2192 */
2193 if (unlikely(!ncsw))
2194 break;
2195
2196 /*
2197 * Was it really running after all now that we
2198 * checked with the proper locks actually held?
2199 *
2200 * Oops. Go back and try again..
2201 */
2202 if (unlikely(running)) {
2203 cpu_relax();
2204 continue;
2205 }
2206
2207 /*
2208 * It's not enough that it's not actively running,
2209 * it must be off the runqueue _entirely_, and not
2210 * preempted!
2211 *
2212 * So if it was still runnable (but just not actively
2213 * running right now), it's preempted, and we should
2214 * yield - it could be a while.
2215 */
2216 if (unlikely(queued)) {
2217 ktime_t to = NSEC_PER_SEC / HZ;
2218
2219 set_current_state(TASK_UNINTERRUPTIBLE);
2220 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2221 continue;
2222 }
2223
2224 /*
2225 * Ahh, all good. It wasn't running, and it wasn't
2226 * runnable, which means that it will never become
2227 * running in the future either. We're all done!
2228 */
2229 break;
2230 }
2231
2232 return ncsw;
2233}
2234
2235/***
2236 * kick_process - kick a running thread to enter/exit the kernel
2237 * @p: the to-be-kicked thread
2238 *
2239 * Cause a process which is running on another CPU to enter
2240 * kernel-mode, without any delay. (to get signals handled.)
2241 *
2242 * NOTE: this function doesn't have to take the runqueue lock,
2243 * because all it wants to ensure is that the remote task enters
2244 * the kernel. If the IPI races and the task has been migrated
2245 * to another CPU then no harm is done and the purpose has been
2246 * achieved as well.
2247 */
2248void kick_process(struct task_struct *p)
2249{
2250 int cpu;
2251
2252 preempt_disable();
2253 cpu = task_cpu(p);
2254 if ((cpu != smp_processor_id()) && task_curr(p))
2255 smp_send_reschedule(cpu);
2256 preempt_enable();
2257}
2258EXPORT_SYMBOL_GPL(kick_process);
2259
2260/*
2261 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2262 *
2263 * A few notes on cpu_active vs cpu_online:
2264 *
2265 * - cpu_active must be a subset of cpu_online
2266 *
2267 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2268 * see __set_cpus_allowed_ptr(). At this point the newly online
2269 * CPU isn't yet part of the sched domains, and balancing will not
2270 * see it.
2271 *
2272 * - on CPU-down we clear cpu_active() to mask the sched domains and
2273 * avoid the load balancer to place new tasks on the to be removed
2274 * CPU. Existing tasks will remain running there and will be taken
2275 * off.
2276 *
2277 * This means that fallback selection must not select !active CPUs.
2278 * And can assume that any active CPU must be online. Conversely
2279 * select_task_rq() below may allow selection of !active CPUs in order
2280 * to satisfy the above rules.
2281 */
2282static int select_fallback_rq(int cpu, struct task_struct *p)
2283{
2284 int nid = cpu_to_node(cpu);
2285 const struct cpumask *nodemask = NULL;
2286 enum { cpuset, possible, fail } state = cpuset;
2287 int dest_cpu;
2288
2289 /*
2290 * If the node that the CPU is on has been offlined, cpu_to_node()
2291 * will return -1. There is no CPU on the node, and we should
2292 * select the CPU on the other node.
2293 */
2294 if (nid != -1) {
2295 nodemask = cpumask_of_node(nid);
2296
2297 /* Look for allowed, online CPU in same node. */
2298 for_each_cpu(dest_cpu, nodemask) {
2299 if (!cpu_active(dest_cpu))
2300 continue;
2301 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2302 return dest_cpu;
2303 }
2304 }
2305
2306 for (;;) {
2307 /* Any allowed, online CPU? */
2308 for_each_cpu(dest_cpu, p->cpus_ptr) {
2309 if (!is_cpu_allowed(p, dest_cpu))
2310 continue;
2311
2312 goto out;
2313 }
2314
2315 /* No more Mr. Nice Guy. */
2316 switch (state) {
2317 case cpuset:
2318 if (IS_ENABLED(CONFIG_CPUSETS)) {
2319 cpuset_cpus_allowed_fallback(p);
2320 state = possible;
2321 break;
2322 }
2323 fallthrough;
2324 case possible:
2325 do_set_cpus_allowed(p, cpu_possible_mask);
2326 state = fail;
2327 break;
2328
2329 case fail:
2330 BUG();
2331 break;
2332 }
2333 }
2334
2335out:
2336 if (state != cpuset) {
2337 /*
2338 * Don't tell them about moving exiting tasks or
2339 * kernel threads (both mm NULL), since they never
2340 * leave kernel.
2341 */
2342 if (p->mm && printk_ratelimit()) {
2343 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2344 task_pid_nr(p), p->comm, cpu);
2345 }
2346 }
2347
2348 return dest_cpu;
2349}
2350
2351/*
2352 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2353 */
2354static inline
2355int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2356{
2357 lockdep_assert_held(&p->pi_lock);
2358
2359 if (p->nr_cpus_allowed > 1)
2360 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2361 else
2362 cpu = cpumask_any(p->cpus_ptr);
2363
2364 /*
2365 * In order not to call set_task_cpu() on a blocking task we need
2366 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2367 * CPU.
2368 *
2369 * Since this is common to all placement strategies, this lives here.
2370 *
2371 * [ this allows ->select_task() to simply return task_cpu(p) and
2372 * not worry about this generic constraint ]
2373 */
2374 if (unlikely(!is_cpu_allowed(p, cpu)))
2375 cpu = select_fallback_rq(task_cpu(p), p);
2376
2377 return cpu;
2378}
2379
2380void sched_set_stop_task(int cpu, struct task_struct *stop)
2381{
2382 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2383 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2384
2385 if (stop) {
2386 /*
2387 * Make it appear like a SCHED_FIFO task, its something
2388 * userspace knows about and won't get confused about.
2389 *
2390 * Also, it will make PI more or less work without too
2391 * much confusion -- but then, stop work should not
2392 * rely on PI working anyway.
2393 */
2394 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
2395
2396 stop->sched_class = &stop_sched_class;
2397 }
2398
2399 cpu_rq(cpu)->stop = stop;
2400
2401 if (old_stop) {
2402 /*
2403 * Reset it back to a normal scheduling class so that
2404 * it can die in pieces.
2405 */
2406 old_stop->sched_class = &rt_sched_class;
2407 }
2408}
2409
2410#else
2411
2412static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2413 const struct cpumask *new_mask, bool check)
2414{
2415 return set_cpus_allowed_ptr(p, new_mask);
2416}
2417
2418#endif /* CONFIG_SMP */
2419
2420static void
2421ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2422{
2423 struct rq *rq;
2424
2425 if (!schedstat_enabled())
2426 return;
2427
2428 rq = this_rq();
2429
2430#ifdef CONFIG_SMP
2431 if (cpu == rq->cpu) {
2432 __schedstat_inc(rq->ttwu_local);
2433 __schedstat_inc(p->se.statistics.nr_wakeups_local);
2434 } else {
2435 struct sched_domain *sd;
2436
2437 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
2438 rcu_read_lock();
2439 for_each_domain(rq->cpu, sd) {
2440 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2441 __schedstat_inc(sd->ttwu_wake_remote);
2442 break;
2443 }
2444 }
2445 rcu_read_unlock();
2446 }
2447
2448 if (wake_flags & WF_MIGRATED)
2449 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2450#endif /* CONFIG_SMP */
2451
2452 __schedstat_inc(rq->ttwu_count);
2453 __schedstat_inc(p->se.statistics.nr_wakeups);
2454
2455 if (wake_flags & WF_SYNC)
2456 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
2457}
2458
2459/*
2460 * Mark the task runnable and perform wakeup-preemption.
2461 */
2462static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2463 struct rq_flags *rf)
2464{
2465 check_preempt_curr(rq, p, wake_flags);
2466 p->state = TASK_RUNNING;
2467 trace_sched_wakeup(p);
2468
2469#ifdef CONFIG_SMP
2470 if (p->sched_class->task_woken) {
2471 /*
2472 * Our task @p is fully woken up and running; so its safe to
2473 * drop the rq->lock, hereafter rq is only used for statistics.
2474 */
2475 rq_unpin_lock(rq, rf);
2476 p->sched_class->task_woken(rq, p);
2477 rq_repin_lock(rq, rf);
2478 }
2479
2480 if (rq->idle_stamp) {
2481 u64 delta = rq_clock(rq) - rq->idle_stamp;
2482 u64 max = 2*rq->max_idle_balance_cost;
2483
2484 update_avg(&rq->avg_idle, delta);
2485
2486 if (rq->avg_idle > max)
2487 rq->avg_idle = max;
2488
2489 rq->idle_stamp = 0;
2490 }
2491#endif
2492}
2493
2494static void
2495ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2496 struct rq_flags *rf)
2497{
2498 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2499
2500 lockdep_assert_held(&rq->lock);
2501
2502 if (p->sched_contributes_to_load)
2503 rq->nr_uninterruptible--;
2504
2505#ifdef CONFIG_SMP
2506 if (wake_flags & WF_MIGRATED)
2507 en_flags |= ENQUEUE_MIGRATED;
2508#endif
2509
2510 activate_task(rq, p, en_flags);
2511 ttwu_do_wakeup(rq, p, wake_flags, rf);
2512}
2513
2514/*
2515 * Consider @p being inside a wait loop:
2516 *
2517 * for (;;) {
2518 * set_current_state(TASK_UNINTERRUPTIBLE);
2519 *
2520 * if (CONDITION)
2521 * break;
2522 *
2523 * schedule();
2524 * }
2525 * __set_current_state(TASK_RUNNING);
2526 *
2527 * between set_current_state() and schedule(). In this case @p is still
2528 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
2529 * an atomic manner.
2530 *
2531 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
2532 * then schedule() must still happen and p->state can be changed to
2533 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
2534 * need to do a full wakeup with enqueue.
2535 *
2536 * Returns: %true when the wakeup is done,
2537 * %false otherwise.
2538 */
2539static int ttwu_runnable(struct task_struct *p, int wake_flags)
2540{
2541 struct rq_flags rf;
2542 struct rq *rq;
2543 int ret = 0;
2544
2545 rq = __task_rq_lock(p, &rf);
2546 if (task_on_rq_queued(p)) {
2547 /* check_preempt_curr() may use rq clock */
2548 update_rq_clock(rq);
2549 ttwu_do_wakeup(rq, p, wake_flags, &rf);
2550 ret = 1;
2551 }
2552 __task_rq_unlock(rq, &rf);
2553
2554 return ret;
2555}
2556
2557#ifdef CONFIG_SMP
2558void sched_ttwu_pending(void *arg)
2559{
2560 struct llist_node *llist = arg;
2561 struct rq *rq = this_rq();
2562 struct task_struct *p, *t;
2563 struct rq_flags rf;
2564
2565 if (!llist)
2566 return;
2567
2568 /*
2569 * rq::ttwu_pending racy indication of out-standing wakeups.
2570 * Races such that false-negatives are possible, since they
2571 * are shorter lived that false-positives would be.
2572 */
2573 WRITE_ONCE(rq->ttwu_pending, 0);
2574
2575 rq_lock_irqsave(rq, &rf);
2576 update_rq_clock(rq);
2577
2578 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
2579 if (WARN_ON_ONCE(p->on_cpu))
2580 smp_cond_load_acquire(&p->on_cpu, !VAL);
2581
2582 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
2583 set_task_cpu(p, cpu_of(rq));
2584
2585 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2586 }
2587
2588 rq_unlock_irqrestore(rq, &rf);
2589}
2590
2591void send_call_function_single_ipi(int cpu)
2592{
2593 struct rq *rq = cpu_rq(cpu);
2594
2595 if (!set_nr_if_polling(rq->idle))
2596 arch_send_call_function_single_ipi(cpu);
2597 else
2598 trace_sched_wake_idle_without_ipi(cpu);
2599}
2600
2601/*
2602 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
2603 * necessary. The wakee CPU on receipt of the IPI will queue the task
2604 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
2605 * of the wakeup instead of the waker.
2606 */
2607static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2608{
2609 struct rq *rq = cpu_rq(cpu);
2610
2611 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2612
2613 WRITE_ONCE(rq->ttwu_pending, 1);
2614 __smp_call_single_queue(cpu, &p->wake_entry.llist);
2615}
2616
2617void wake_up_if_idle(int cpu)
2618{
2619 struct rq *rq = cpu_rq(cpu);
2620 struct rq_flags rf;
2621
2622 rcu_read_lock();
2623
2624 if (!is_idle_task(rcu_dereference(rq->curr)))
2625 goto out;
2626
2627 if (set_nr_if_polling(rq->idle)) {
2628 trace_sched_wake_idle_without_ipi(cpu);
2629 } else {
2630 rq_lock_irqsave(rq, &rf);
2631 if (is_idle_task(rq->curr))
2632 smp_send_reschedule(cpu);
2633 /* Else CPU is not idle, do nothing here: */
2634 rq_unlock_irqrestore(rq, &rf);
2635 }
2636
2637out:
2638 rcu_read_unlock();
2639}
2640
2641bool cpus_share_cache(int this_cpu, int that_cpu)
2642{
2643 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2644}
2645
2646static inline bool ttwu_queue_cond(int cpu, int wake_flags)
2647{
2648 /*
2649 * If the CPU does not share cache, then queue the task on the
2650 * remote rqs wakelist to avoid accessing remote data.
2651 */
2652 if (!cpus_share_cache(smp_processor_id(), cpu))
2653 return true;
2654
2655 /*
2656 * If the task is descheduling and the only running task on the
2657 * CPU then use the wakelist to offload the task activation to
2658 * the soon-to-be-idle CPU as the current CPU is likely busy.
2659 * nr_running is checked to avoid unnecessary task stacking.
2660 */
2661 if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
2662 return true;
2663
2664 return false;
2665}
2666
2667static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2668{
2669 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
2670 if (WARN_ON_ONCE(cpu == smp_processor_id()))
2671 return false;
2672
2673 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2674 __ttwu_queue_wakelist(p, cpu, wake_flags);
2675 return true;
2676 }
2677
2678 return false;
2679}
2680
2681#else /* !CONFIG_SMP */
2682
2683static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2684{
2685 return false;
2686}
2687
2688#endif /* CONFIG_SMP */
2689
2690static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2691{
2692 struct rq *rq = cpu_rq(cpu);
2693 struct rq_flags rf;
2694
2695 if (ttwu_queue_wakelist(p, cpu, wake_flags))
2696 return;
2697
2698 rq_lock(rq, &rf);
2699 update_rq_clock(rq);
2700 ttwu_do_activate(rq, p, wake_flags, &rf);
2701 rq_unlock(rq, &rf);
2702}
2703
2704/*
2705 * Notes on Program-Order guarantees on SMP systems.
2706 *
2707 * MIGRATION
2708 *
2709 * The basic program-order guarantee on SMP systems is that when a task [t]
2710 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2711 * execution on its new CPU [c1].
2712 *
2713 * For migration (of runnable tasks) this is provided by the following means:
2714 *
2715 * A) UNLOCK of the rq(c0)->lock scheduling out task t
2716 * B) migration for t is required to synchronize *both* rq(c0)->lock and
2717 * rq(c1)->lock (if not at the same time, then in that order).
2718 * C) LOCK of the rq(c1)->lock scheduling in task
2719 *
2720 * Release/acquire chaining guarantees that B happens after A and C after B.
2721 * Note: the CPU doing B need not be c0 or c1
2722 *
2723 * Example:
2724 *
2725 * CPU0 CPU1 CPU2
2726 *
2727 * LOCK rq(0)->lock
2728 * sched-out X
2729 * sched-in Y
2730 * UNLOCK rq(0)->lock
2731 *
2732 * LOCK rq(0)->lock // orders against CPU0
2733 * dequeue X
2734 * UNLOCK rq(0)->lock
2735 *
2736 * LOCK rq(1)->lock
2737 * enqueue X
2738 * UNLOCK rq(1)->lock
2739 *
2740 * LOCK rq(1)->lock // orders against CPU2
2741 * sched-out Z
2742 * sched-in X
2743 * UNLOCK rq(1)->lock
2744 *
2745 *
2746 * BLOCKING -- aka. SLEEP + WAKEUP
2747 *
2748 * For blocking we (obviously) need to provide the same guarantee as for
2749 * migration. However the means are completely different as there is no lock
2750 * chain to provide order. Instead we do:
2751 *
2752 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
2753 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
2754 *
2755 * Example:
2756 *
2757 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
2758 *
2759 * LOCK rq(0)->lock LOCK X->pi_lock
2760 * dequeue X
2761 * sched-out X
2762 * smp_store_release(X->on_cpu, 0);
2763 *
2764 * smp_cond_load_acquire(&X->on_cpu, !VAL);
2765 * X->state = WAKING
2766 * set_task_cpu(X,2)
2767 *
2768 * LOCK rq(2)->lock
2769 * enqueue X
2770 * X->state = RUNNING
2771 * UNLOCK rq(2)->lock
2772 *
2773 * LOCK rq(2)->lock // orders against CPU1
2774 * sched-out Z
2775 * sched-in X
2776 * UNLOCK rq(2)->lock
2777 *
2778 * UNLOCK X->pi_lock
2779 * UNLOCK rq(0)->lock
2780 *
2781 *
2782 * However, for wakeups there is a second guarantee we must provide, namely we
2783 * must ensure that CONDITION=1 done by the caller can not be reordered with
2784 * accesses to the task state; see try_to_wake_up() and set_current_state().
2785 */
2786
2787/**
2788 * try_to_wake_up - wake up a thread
2789 * @p: the thread to be awakened
2790 * @state: the mask of task states that can be woken
2791 * @wake_flags: wake modifier flags (WF_*)
2792 *
2793 * Conceptually does:
2794 *
2795 * If (@state & @p->state) @p->state = TASK_RUNNING.
2796 *
2797 * If the task was not queued/runnable, also place it back on a runqueue.
2798 *
2799 * This function is atomic against schedule() which would dequeue the task.
2800 *
2801 * It issues a full memory barrier before accessing @p->state, see the comment
2802 * with set_current_state().
2803 *
2804 * Uses p->pi_lock to serialize against concurrent wake-ups.
2805 *
2806 * Relies on p->pi_lock stabilizing:
2807 * - p->sched_class
2808 * - p->cpus_ptr
2809 * - p->sched_task_group
2810 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
2811 *
2812 * Tries really hard to only take one task_rq(p)->lock for performance.
2813 * Takes rq->lock in:
2814 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
2815 * - ttwu_queue() -- new rq, for enqueue of the task;
2816 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
2817 *
2818 * As a consequence we race really badly with just about everything. See the
2819 * many memory barriers and their comments for details.
2820 *
2821 * Return: %true if @p->state changes (an actual wakeup was done),
2822 * %false otherwise.
2823 */
2824static int
2825try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2826{
2827 unsigned long flags;
2828 int cpu, success = 0;
2829
2830 preempt_disable();
2831 if (p == current) {
2832 /*
2833 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2834 * == smp_processor_id()'. Together this means we can special
2835 * case the whole 'p->on_rq && ttwu_runnable()' case below
2836 * without taking any locks.
2837 *
2838 * In particular:
2839 * - we rely on Program-Order guarantees for all the ordering,
2840 * - we're serialized against set_special_state() by virtue of
2841 * it disabling IRQs (this allows not taking ->pi_lock).
2842 */
2843 if (!(p->state & state))
2844 goto out;
2845
2846 success = 1;
2847 trace_sched_waking(p);
2848 p->state = TASK_RUNNING;
2849 trace_sched_wakeup(p);
2850 goto out;
2851 }
2852
2853 /*
2854 * If we are going to wake up a thread waiting for CONDITION we
2855 * need to ensure that CONDITION=1 done by the caller can not be
2856 * reordered with p->state check below. This pairs with smp_store_mb()
2857 * in set_current_state() that the waiting thread does.
2858 */
2859 raw_spin_lock_irqsave(&p->pi_lock, flags);
2860 smp_mb__after_spinlock();
2861 if (!(p->state & state))
2862 goto unlock;
2863
2864 trace_sched_waking(p);
2865
2866 /* We're going to change ->state: */
2867 success = 1;
2868
2869 /*
2870 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2871 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2872 * in smp_cond_load_acquire() below.
2873 *
2874 * sched_ttwu_pending() try_to_wake_up()
2875 * STORE p->on_rq = 1 LOAD p->state
2876 * UNLOCK rq->lock
2877 *
2878 * __schedule() (switch to task 'p')
2879 * LOCK rq->lock smp_rmb();
2880 * smp_mb__after_spinlock();
2881 * UNLOCK rq->lock
2882 *
2883 * [task p]
2884 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
2885 *
2886 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2887 * __schedule(). See the comment for smp_mb__after_spinlock().
2888 *
2889 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
2890 */
2891 smp_rmb();
2892 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
2893 goto unlock;
2894
2895 if (p->in_iowait) {
2896 delayacct_blkio_end(p);
2897 atomic_dec(&task_rq(p)->nr_iowait);
2898 }
2899
2900#ifdef CONFIG_SMP
2901 /*
2902 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2903 * possible to, falsely, observe p->on_cpu == 0.
2904 *
2905 * One must be running (->on_cpu == 1) in order to remove oneself
2906 * from the runqueue.
2907 *
2908 * __schedule() (switch to task 'p') try_to_wake_up()
2909 * STORE p->on_cpu = 1 LOAD p->on_rq
2910 * UNLOCK rq->lock
2911 *
2912 * __schedule() (put 'p' to sleep)
2913 * LOCK rq->lock smp_rmb();
2914 * smp_mb__after_spinlock();
2915 * STORE p->on_rq = 0 LOAD p->on_cpu
2916 *
2917 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2918 * __schedule(). See the comment for smp_mb__after_spinlock().
2919 *
2920 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
2921 * schedule()'s deactivate_task() has 'happened' and p will no longer
2922 * care about it's own p->state. See the comment in __schedule().
2923 */
2924 smp_acquire__after_ctrl_dep();
2925
2926 /*
2927 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
2928 * == 0), which means we need to do an enqueue, change p->state to
2929 * TASK_WAKING such that we can unlock p->pi_lock before doing the
2930 * enqueue, such as ttwu_queue_wakelist().
2931 */
2932 p->state = TASK_WAKING;
2933
2934 /*
2935 * If the owning (remote) CPU is still in the middle of schedule() with
2936 * this task as prev, considering queueing p on the remote CPUs wake_list
2937 * which potentially sends an IPI instead of spinning on p->on_cpu to
2938 * let the waker make forward progress. This is safe because IRQs are
2939 * disabled and the IPI will deliver after on_cpu is cleared.
2940 *
2941 * Ensure we load task_cpu(p) after p->on_cpu:
2942 *
2943 * set_task_cpu(p, cpu);
2944 * STORE p->cpu = @cpu
2945 * __schedule() (switch to task 'p')
2946 * LOCK rq->lock
2947 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
2948 * STORE p->on_cpu = 1 LOAD p->cpu
2949 *
2950 * to ensure we observe the correct CPU on which the task is currently
2951 * scheduling.
2952 */
2953 if (smp_load_acquire(&p->on_cpu) &&
2954 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
2955 goto unlock;
2956
2957 /*
2958 * If the owning (remote) CPU is still in the middle of schedule() with
2959 * this task as prev, wait until its done referencing the task.
2960 *
2961 * Pairs with the smp_store_release() in finish_task().
2962 *
2963 * This ensures that tasks getting woken will be fully ordered against
2964 * their previous state and preserve Program Order.
2965 */
2966 smp_cond_load_acquire(&p->on_cpu, !VAL);
2967
2968 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2969 if (task_cpu(p) != cpu) {
2970 wake_flags |= WF_MIGRATED;
2971 psi_ttwu_dequeue(p);
2972 set_task_cpu(p, cpu);
2973 }
2974#else
2975 cpu = task_cpu(p);
2976#endif /* CONFIG_SMP */
2977
2978 ttwu_queue(p, cpu, wake_flags);
2979unlock:
2980 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2981out:
2982 if (success)
2983 ttwu_stat(p, task_cpu(p), wake_flags);
2984 preempt_enable();
2985
2986 return success;
2987}
2988
2989/**
2990 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
2991 * @p: Process for which the function is to be invoked.
2992 * @func: Function to invoke.
2993 * @arg: Argument to function.
2994 *
2995 * If the specified task can be quickly locked into a definite state
2996 * (either sleeping or on a given runqueue), arrange to keep it in that
2997 * state while invoking @func(@arg). This function can use ->on_rq and
2998 * task_curr() to work out what the state is, if required. Given that
2999 * @func can be invoked with a runqueue lock held, it had better be quite
3000 * lightweight.
3001 *
3002 * Returns:
3003 * @false if the task slipped out from under the locks.
3004 * @true if the task was locked onto a runqueue or is sleeping.
3005 * However, @func can override this by returning @false.
3006 */
3007bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3008{
3009 bool ret = false;
3010 struct rq_flags rf;
3011 struct rq *rq;
3012
3013 lockdep_assert_irqs_enabled();
3014 raw_spin_lock_irq(&p->pi_lock);
3015 if (p->on_rq) {
3016 rq = __task_rq_lock(p, &rf);
3017 if (task_rq(p) == rq)
3018 ret = func(p, arg);
3019 rq_unlock(rq, &rf);
3020 } else {
3021 switch (p->state) {
3022 case TASK_RUNNING:
3023 case TASK_WAKING:
3024 break;
3025 default:
3026 smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3027 if (!p->on_rq)
3028 ret = func(p, arg);
3029 }
3030 }
3031 raw_spin_unlock_irq(&p->pi_lock);
3032 return ret;
3033}
3034
3035/**
3036 * wake_up_process - Wake up a specific process
3037 * @p: The process to be woken up.
3038 *
3039 * Attempt to wake up the nominated process and move it to the set of runnable
3040 * processes.
3041 *
3042 * Return: 1 if the process was woken up, 0 if it was already running.
3043 *
3044 * This function executes a full memory barrier before accessing the task state.
3045 */
3046int wake_up_process(struct task_struct *p)
3047{
3048 return try_to_wake_up(p, TASK_NORMAL, 0);
3049}
3050EXPORT_SYMBOL(wake_up_process);
3051
3052int wake_up_state(struct task_struct *p, unsigned int state)
3053{
3054 return try_to_wake_up(p, state, 0);
3055}
3056
3057/*
3058 * Perform scheduler related setup for a newly forked process p.
3059 * p is forked by current.
3060 *
3061 * __sched_fork() is basic setup used by init_idle() too:
3062 */
3063static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
3064{
3065 p->on_rq = 0;
3066
3067 p->se.on_rq = 0;
3068 p->se.exec_start = 0;
3069 p->se.sum_exec_runtime = 0;
3070 p->se.prev_sum_exec_runtime = 0;
3071 p->se.nr_migrations = 0;
3072 p->se.vruntime = 0;
3073 INIT_LIST_HEAD(&p->se.group_node);
3074
3075#ifdef CONFIG_FAIR_GROUP_SCHED
3076 p->se.cfs_rq = NULL;
3077#endif
3078
3079#ifdef CONFIG_SCHEDSTATS
3080 /* Even if schedstat is disabled, there should not be garbage */
3081 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
3082#endif
3083
3084 RB_CLEAR_NODE(&p->dl.rb_node);
3085 init_dl_task_timer(&p->dl);
3086 init_dl_inactive_task_timer(&p->dl);
3087 __dl_clear_params(p);
3088
3089 INIT_LIST_HEAD(&p->rt.run_list);
3090 p->rt.timeout = 0;
3091 p->rt.time_slice = sched_rr_timeslice;
3092 p->rt.on_rq = 0;
3093 p->rt.on_list = 0;
3094
3095#ifdef CONFIG_PREEMPT_NOTIFIERS
3096 INIT_HLIST_HEAD(&p->preempt_notifiers);
3097#endif
3098
3099#ifdef CONFIG_COMPACTION
3100 p->capture_control = NULL;
3101#endif
3102 init_numa_balancing(clone_flags, p);
3103#ifdef CONFIG_SMP
3104 p->wake_entry.u_flags = CSD_TYPE_TTWU;
3105#endif
3106}
3107
3108DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3109
3110#ifdef CONFIG_NUMA_BALANCING
3111
3112void set_numabalancing_state(bool enabled)
3113{
3114 if (enabled)
3115 static_branch_enable(&sched_numa_balancing);
3116 else
3117 static_branch_disable(&sched_numa_balancing);
3118}
3119
3120#ifdef CONFIG_PROC_SYSCTL
3121int sysctl_numa_balancing(struct ctl_table *table, int write,
3122 void *buffer, size_t *lenp, loff_t *ppos)
3123{
3124 struct ctl_table t;
3125 int err;
3126 int state = static_branch_likely(&sched_numa_balancing);
3127
3128 if (write && !capable(CAP_SYS_ADMIN))
3129 return -EPERM;
3130
3131 t = *table;
3132 t.data = &state;
3133 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3134 if (err < 0)
3135 return err;
3136 if (write)
3137 set_numabalancing_state(state);
3138 return err;
3139}
3140#endif
3141#endif
3142
3143#ifdef CONFIG_SCHEDSTATS
3144
3145DEFINE_STATIC_KEY_FALSE(sched_schedstats);
3146static bool __initdata __sched_schedstats = false;
3147
3148static void set_schedstats(bool enabled)
3149{
3150 if (enabled)
3151 static_branch_enable(&sched_schedstats);
3152 else
3153 static_branch_disable(&sched_schedstats);
3154}
3155
3156void force_schedstat_enabled(void)
3157{
3158 if (!schedstat_enabled()) {
3159 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
3160 static_branch_enable(&sched_schedstats);
3161 }
3162}
3163
3164static int __init setup_schedstats(char *str)
3165{
3166 int ret = 0;
3167 if (!str)
3168 goto out;
3169
3170 /*
3171 * This code is called before jump labels have been set up, so we can't
3172 * change the static branch directly just yet. Instead set a temporary
3173 * variable so init_schedstats() can do it later.
3174 */
3175 if (!strcmp(str, "enable")) {
3176 __sched_schedstats = true;
3177 ret = 1;
3178 } else if (!strcmp(str, "disable")) {
3179 __sched_schedstats = false;
3180 ret = 1;
3181 }
3182out:
3183 if (!ret)
3184 pr_warn("Unable to parse schedstats=\n");
3185
3186 return ret;
3187}
3188__setup("schedstats=", setup_schedstats);
3189
3190static void __init init_schedstats(void)
3191{
3192 set_schedstats(__sched_schedstats);
3193}
3194
3195#ifdef CONFIG_PROC_SYSCTL
3196int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
3197 size_t *lenp, loff_t *ppos)
3198{
3199 struct ctl_table t;
3200 int err;
3201 int state = static_branch_likely(&sched_schedstats);
3202
3203 if (write && !capable(CAP_SYS_ADMIN))
3204 return -EPERM;
3205
3206 t = *table;
3207 t.data = &state;
3208 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3209 if (err < 0)
3210 return err;
3211 if (write)
3212 set_schedstats(state);
3213 return err;
3214}
3215#endif /* CONFIG_PROC_SYSCTL */
3216#else /* !CONFIG_SCHEDSTATS */
3217static inline void init_schedstats(void) {}
3218#endif /* CONFIG_SCHEDSTATS */
3219
3220/*
3221 * fork()/clone()-time setup:
3222 */
3223int sched_fork(unsigned long clone_flags, struct task_struct *p)
3224{
3225 unsigned long flags;
3226
3227 __sched_fork(clone_flags, p);
3228 /*
3229 * We mark the process as NEW here. This guarantees that
3230 * nobody will actually run it, and a signal or other external
3231 * event cannot wake it up and insert it on the runqueue either.
3232 */
3233 p->state = TASK_NEW;
3234
3235 /*
3236 * Make sure we do not leak PI boosting priority to the child.
3237 */
3238 p->prio = current->normal_prio;
3239
3240 uclamp_fork(p);
3241
3242 /*
3243 * Revert to default priority/policy on fork if requested.
3244 */
3245 if (unlikely(p->sched_reset_on_fork)) {
3246 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3247 p->policy = SCHED_NORMAL;
3248 p->static_prio = NICE_TO_PRIO(0);
3249 p->rt_priority = 0;
3250 } else if (PRIO_TO_NICE(p->static_prio) < 0)
3251 p->static_prio = NICE_TO_PRIO(0);
3252
3253 p->prio = p->normal_prio = __normal_prio(p);
3254 set_load_weight(p, false);
3255
3256 /*
3257 * We don't need the reset flag anymore after the fork. It has
3258 * fulfilled its duty:
3259 */
3260 p->sched_reset_on_fork = 0;
3261 }
3262
3263 if (dl_prio(p->prio))
3264 return -EAGAIN;
3265 else if (rt_prio(p->prio))
3266 p->sched_class = &rt_sched_class;
3267 else
3268 p->sched_class = &fair_sched_class;
3269
3270 init_entity_runnable_average(&p->se);
3271
3272 /*
3273 * The child is not yet in the pid-hash so no cgroup attach races,
3274 * and the cgroup is pinned to this child due to cgroup_fork()
3275 * is ran before sched_fork().
3276 *
3277 * Silence PROVE_RCU.
3278 */
3279 raw_spin_lock_irqsave(&p->pi_lock, flags);
3280 rseq_migrate(p);
3281 /*
3282 * We're setting the CPU for the first time, we don't migrate,
3283 * so use __set_task_cpu().
3284 */
3285 __set_task_cpu(p, smp_processor_id());
3286 if (p->sched_class->task_fork)
3287 p->sched_class->task_fork(p);
3288 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3289
3290#ifdef CONFIG_SCHED_INFO
3291 if (likely(sched_info_on()))
3292 memset(&p->sched_info, 0, sizeof(p->sched_info));
3293#endif
3294#if defined(CONFIG_SMP)
3295 p->on_cpu = 0;
3296#endif
3297 init_task_preempt_count(p);
3298#ifdef CONFIG_SMP
3299 plist_node_init(&p->pushable_tasks, MAX_PRIO);
3300 RB_CLEAR_NODE(&p->pushable_dl_tasks);
3301#endif
3302 return 0;
3303}
3304
3305void sched_post_fork(struct task_struct *p)
3306{
3307 uclamp_post_fork(p);
3308}
3309
3310unsigned long to_ratio(u64 period, u64 runtime)
3311{
3312 if (runtime == RUNTIME_INF)
3313 return BW_UNIT;
3314
3315 /*
3316 * Doing this here saves a lot of checks in all
3317 * the calling paths, and returning zero seems
3318 * safe for them anyway.
3319 */
3320 if (period == 0)
3321 return 0;
3322
3323 return div64_u64(runtime << BW_SHIFT, period);
3324}
3325
3326/*
3327 * wake_up_new_task - wake up a newly created task for the first time.
3328 *
3329 * This function will do some initial scheduler statistics housekeeping
3330 * that must be done for every newly created context, then puts the task
3331 * on the runqueue and wakes it.
3332 */
3333void wake_up_new_task(struct task_struct *p)
3334{
3335 struct rq_flags rf;
3336 struct rq *rq;
3337
3338 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3339 p->state = TASK_RUNNING;
3340#ifdef CONFIG_SMP
3341 /*
3342 * Fork balancing, do it here and not earlier because:
3343 * - cpus_ptr can change in the fork path
3344 * - any previously selected CPU might disappear through hotplug
3345 *
3346 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3347 * as we're not fully set-up yet.
3348 */
3349 p->recent_used_cpu = task_cpu(p);
3350 rseq_migrate(p);
3351 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
3352#endif
3353 rq = __task_rq_lock(p, &rf);
3354 update_rq_clock(rq);
3355 post_init_entity_util_avg(p);
3356
3357 activate_task(rq, p, ENQUEUE_NOCLOCK);
3358 trace_sched_wakeup_new(p);
3359 check_preempt_curr(rq, p, WF_FORK);
3360#ifdef CONFIG_SMP
3361 if (p->sched_class->task_woken) {
3362 /*
3363 * Nothing relies on rq->lock after this, so its fine to
3364 * drop it.
3365 */
3366 rq_unpin_lock(rq, &rf);
3367 p->sched_class->task_woken(rq, p);
3368 rq_repin_lock(rq, &rf);
3369 }
3370#endif
3371 task_rq_unlock(rq, p, &rf);
3372}
3373
3374#ifdef CONFIG_PREEMPT_NOTIFIERS
3375
3376static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
3377
3378void preempt_notifier_inc(void)
3379{
3380 static_branch_inc(&preempt_notifier_key);
3381}
3382EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3383
3384void preempt_notifier_dec(void)
3385{
3386 static_branch_dec(&preempt_notifier_key);
3387}
3388EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3389
3390/**
3391 * preempt_notifier_register - tell me when current is being preempted & rescheduled
3392 * @notifier: notifier struct to register
3393 */
3394void preempt_notifier_register(struct preempt_notifier *notifier)
3395{
3396 if (!static_branch_unlikely(&preempt_notifier_key))
3397 WARN(1, "registering preempt_notifier while notifiers disabled\n");
3398
3399 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
3400}
3401EXPORT_SYMBOL_GPL(preempt_notifier_register);
3402
3403/**
3404 * preempt_notifier_unregister - no longer interested in preemption notifications
3405 * @notifier: notifier struct to unregister
3406 *
3407 * This is *not* safe to call from within a preemption notifier.
3408 */
3409void preempt_notifier_unregister(struct preempt_notifier *notifier)
3410{
3411 hlist_del(¬ifier->link);
3412}
3413EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3414
3415static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3416{
3417 struct preempt_notifier *notifier;
3418
3419 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3420 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3421}
3422
3423static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3424{
3425 if (static_branch_unlikely(&preempt_notifier_key))
3426 __fire_sched_in_preempt_notifiers(curr);
3427}
3428
3429static void
3430__fire_sched_out_preempt_notifiers(struct task_struct *curr,
3431 struct task_struct *next)
3432{
3433 struct preempt_notifier *notifier;
3434
3435 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3436 notifier->ops->sched_out(notifier, next);
3437}
3438
3439static __always_inline void
3440fire_sched_out_preempt_notifiers(struct task_struct *curr,
3441 struct task_struct *next)
3442{
3443 if (static_branch_unlikely(&preempt_notifier_key))
3444 __fire_sched_out_preempt_notifiers(curr, next);
3445}
3446
3447#else /* !CONFIG_PREEMPT_NOTIFIERS */
3448
3449static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3450{
3451}
3452
3453static inline void
3454fire_sched_out_preempt_notifiers(struct task_struct *curr,
3455 struct task_struct *next)
3456{
3457}
3458
3459#endif /* CONFIG_PREEMPT_NOTIFIERS */
3460
3461static inline void prepare_task(struct task_struct *next)
3462{
3463#ifdef CONFIG_SMP
3464 /*
3465 * Claim the task as running, we do this before switching to it
3466 * such that any running task will have this set.
3467 *
3468 * See the ttwu() WF_ON_CPU case and its ordering comment.
3469 */
3470 WRITE_ONCE(next->on_cpu, 1);
3471#endif
3472}
3473
3474static inline void finish_task(struct task_struct *prev)
3475{
3476#ifdef CONFIG_SMP
3477 /*
3478 * This must be the very last reference to @prev from this CPU. After
3479 * p->on_cpu is cleared, the task can be moved to a different CPU. We
3480 * must ensure this doesn't happen until the switch is completely
3481 * finished.
3482 *
3483 * In particular, the load of prev->state in finish_task_switch() must
3484 * happen before this.
3485 *
3486 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3487 */
3488 smp_store_release(&prev->on_cpu, 0);
3489#endif
3490}
3491
3492static inline void
3493prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3494{
3495 /*
3496 * Since the runqueue lock will be released by the next
3497 * task (which is an invalid locking op but in the case
3498 * of the scheduler it's an obvious special-case), so we
3499 * do an early lockdep release here:
3500 */
3501 rq_unpin_lock(rq, rf);
3502 spin_release(&rq->lock.dep_map, _THIS_IP_);
3503#ifdef CONFIG_DEBUG_SPINLOCK
3504 /* this is a valid case when another task releases the spinlock */
3505 rq->lock.owner = next;
3506#endif
3507}
3508
3509static inline void finish_lock_switch(struct rq *rq)
3510{
3511 /*
3512 * If we are tracking spinlock dependencies then we have to
3513 * fix up the runqueue lock - which gets 'carried over' from
3514 * prev into current:
3515 */
3516 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3517 raw_spin_unlock_irq(&rq->lock);
3518}
3519
3520/*
3521 * NOP if the arch has not defined these:
3522 */
3523
3524#ifndef prepare_arch_switch
3525# define prepare_arch_switch(next) do { } while (0)
3526#endif
3527
3528#ifndef finish_arch_post_lock_switch
3529# define finish_arch_post_lock_switch() do { } while (0)
3530#endif
3531
3532/**
3533 * prepare_task_switch - prepare to switch tasks
3534 * @rq: the runqueue preparing to switch
3535 * @prev: the current task that is being switched out
3536 * @next: the task we are going to switch to.
3537 *
3538 * This is called with the rq lock held and interrupts off. It must
3539 * be paired with a subsequent finish_task_switch after the context
3540 * switch.
3541 *
3542 * prepare_task_switch sets up locking and calls architecture specific
3543 * hooks.
3544 */
3545static inline void
3546prepare_task_switch(struct rq *rq, struct task_struct *prev,
3547 struct task_struct *next)
3548{
3549 kcov_prepare_switch(prev);
3550 sched_info_switch(rq, prev, next);
3551 perf_event_task_sched_out(prev, next);
3552 rseq_preempt(prev);
3553 fire_sched_out_preempt_notifiers(prev, next);
3554 prepare_task(next);
3555 prepare_arch_switch(next);
3556}
3557
3558/**
3559 * finish_task_switch - clean up after a task-switch
3560 * @prev: the thread we just switched away from.
3561 *
3562 * finish_task_switch must be called after the context switch, paired
3563 * with a prepare_task_switch call before the context switch.
3564 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3565 * and do any other architecture-specific cleanup actions.
3566 *
3567 * Note that we may have delayed dropping an mm in context_switch(). If
3568 * so, we finish that here outside of the runqueue lock. (Doing it
3569 * with the lock held can cause deadlocks; see schedule() for
3570 * details.)
3571 *
3572 * The context switch have flipped the stack from under us and restored the
3573 * local variables which were saved when this task called schedule() in the
3574 * past. prev == current is still correct but we need to recalculate this_rq
3575 * because prev may have moved to another CPU.
3576 */
3577static struct rq *finish_task_switch(struct task_struct *prev)
3578 __releases(rq->lock)
3579{
3580 struct rq *rq = this_rq();
3581 struct mm_struct *mm = rq->prev_mm;
3582 long prev_state;
3583
3584 /*
3585 * The previous task will have left us with a preempt_count of 2
3586 * because it left us after:
3587 *
3588 * schedule()
3589 * preempt_disable(); // 1
3590 * __schedule()
3591 * raw_spin_lock_irq(&rq->lock) // 2
3592 *
3593 * Also, see FORK_PREEMPT_COUNT.
3594 */
3595 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3596 "corrupted preempt_count: %s/%d/0x%x\n",
3597 current->comm, current->pid, preempt_count()))
3598 preempt_count_set(FORK_PREEMPT_COUNT);
3599
3600 rq->prev_mm = NULL;
3601
3602 /*
3603 * A task struct has one reference for the use as "current".
3604 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3605 * schedule one last time. The schedule call will never return, and
3606 * the scheduled task must drop that reference.
3607 *
3608 * We must observe prev->state before clearing prev->on_cpu (in
3609 * finish_task), otherwise a concurrent wakeup can get prev
3610 * running on another CPU and we could rave with its RUNNING -> DEAD
3611 * transition, resulting in a double drop.
3612 */
3613 prev_state = prev->state;
3614 vtime_task_switch(prev);
3615 perf_event_task_sched_in(prev, current);
3616 finish_task(prev);
3617 finish_lock_switch(rq);
3618 finish_arch_post_lock_switch();
3619 kcov_finish_switch(current);
3620
3621 fire_sched_in_preempt_notifiers(current);
3622 /*
3623 * When switching through a kernel thread, the loop in
3624 * membarrier_{private,global}_expedited() may have observed that
3625 * kernel thread and not issued an IPI. It is therefore possible to
3626 * schedule between user->kernel->user threads without passing though
3627 * switch_mm(). Membarrier requires a barrier after storing to
3628 * rq->curr, before returning to userspace, so provide them here:
3629 *
3630 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3631 * provided by mmdrop(),
3632 * - a sync_core for SYNC_CORE.
3633 */
3634 if (mm) {
3635 membarrier_mm_sync_core_before_usermode(mm);
3636 mmdrop(mm);
3637 }
3638 if (unlikely(prev_state == TASK_DEAD)) {
3639 if (prev->sched_class->task_dead)
3640 prev->sched_class->task_dead(prev);
3641
3642 /*
3643 * Remove function-return probe instances associated with this
3644 * task and put them back on the free list.
3645 */
3646 kprobe_flush_task(prev);
3647
3648 /* Task is done with its stack. */
3649 put_task_stack(prev);
3650
3651 put_task_struct_rcu_user(prev);
3652 }
3653
3654 tick_nohz_task_switch();
3655 return rq;
3656}
3657
3658#ifdef CONFIG_SMP
3659
3660/* rq->lock is NOT held, but preemption is disabled */
3661static void __balance_callback(struct rq *rq)
3662{
3663 struct callback_head *head, *next;
3664 void (*func)(struct rq *rq);
3665 unsigned long flags;
3666
3667 raw_spin_lock_irqsave(&rq->lock, flags);
3668 head = rq->balance_callback;
3669 rq->balance_callback = NULL;
3670 while (head) {
3671 func = (void (*)(struct rq *))head->func;
3672 next = head->next;
3673 head->next = NULL;
3674 head = next;
3675
3676 func(rq);
3677 }
3678 raw_spin_unlock_irqrestore(&rq->lock, flags);
3679}
3680
3681static inline void balance_callback(struct rq *rq)
3682{
3683 if (unlikely(rq->balance_callback))
3684 __balance_callback(rq);
3685}
3686
3687#else
3688
3689static inline void balance_callback(struct rq *rq)
3690{
3691}
3692
3693#endif
3694
3695/**
3696 * schedule_tail - first thing a freshly forked thread must call.
3697 * @prev: the thread we just switched away from.
3698 */
3699asmlinkage __visible void schedule_tail(struct task_struct *prev)
3700 __releases(rq->lock)
3701{
3702 struct rq *rq;
3703
3704 /*
3705 * New tasks start with FORK_PREEMPT_COUNT, see there and
3706 * finish_task_switch() for details.
3707 *
3708 * finish_task_switch() will drop rq->lock() and lower preempt_count
3709 * and the preempt_enable() will end up enabling preemption (on
3710 * PREEMPT_COUNT kernels).
3711 */
3712
3713 rq = finish_task_switch(prev);
3714 balance_callback(rq);
3715 preempt_enable();
3716
3717 if (current->set_child_tid)
3718 put_user(task_pid_vnr(current), current->set_child_tid);
3719
3720 calculate_sigpending();
3721}
3722
3723/*
3724 * context_switch - switch to the new MM and the new thread's register state.
3725 */
3726static __always_inline struct rq *
3727context_switch(struct rq *rq, struct task_struct *prev,
3728 struct task_struct *next, struct rq_flags *rf)
3729{
3730 prepare_task_switch(rq, prev, next);
3731
3732 /*
3733 * For paravirt, this is coupled with an exit in switch_to to
3734 * combine the page table reload and the switch backend into
3735 * one hypercall.
3736 */
3737 arch_start_context_switch(prev);
3738
3739 /*
3740 * kernel -> kernel lazy + transfer active
3741 * user -> kernel lazy + mmgrab() active
3742 *
3743 * kernel -> user switch + mmdrop() active
3744 * user -> user switch
3745 */
3746 if (!next->mm) { // to kernel
3747 enter_lazy_tlb(prev->active_mm, next);
3748
3749 next->active_mm = prev->active_mm;
3750 if (prev->mm) // from user
3751 mmgrab(prev->active_mm);
3752 else
3753 prev->active_mm = NULL;
3754 } else { // to user
3755 membarrier_switch_mm(rq, prev->active_mm, next->mm);
3756 /*
3757 * sys_membarrier() requires an smp_mb() between setting
3758 * rq->curr / membarrier_switch_mm() and returning to userspace.
3759 *
3760 * The below provides this either through switch_mm(), or in
3761 * case 'prev->active_mm == next->mm' through
3762 * finish_task_switch()'s mmdrop().
3763 */
3764 switch_mm_irqs_off(prev->active_mm, next->mm, next);
3765
3766 if (!prev->mm) { // from kernel
3767 /* will mmdrop() in finish_task_switch(). */
3768 rq->prev_mm = prev->active_mm;
3769 prev->active_mm = NULL;
3770 }
3771 }
3772
3773 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3774
3775 prepare_lock_switch(rq, next, rf);
3776
3777 /* Here we just switch the register state and the stack. */
3778 switch_to(prev, next, prev);
3779 barrier();
3780
3781 return finish_task_switch(prev);
3782}
3783
3784/*
3785 * nr_running and nr_context_switches:
3786 *
3787 * externally visible scheduler statistics: current number of runnable
3788 * threads, total number of context switches performed since bootup.
3789 */
3790unsigned long nr_running(void)
3791{
3792 unsigned long i, sum = 0;
3793
3794 for_each_online_cpu(i)
3795 sum += cpu_rq(i)->nr_running;
3796
3797 return sum;
3798}
3799
3800/*
3801 * Check if only the current task is running on the CPU.
3802 *
3803 * Caution: this function does not check that the caller has disabled
3804 * preemption, thus the result might have a time-of-check-to-time-of-use
3805 * race. The caller is responsible to use it correctly, for example:
3806 *
3807 * - from a non-preemptible section (of course)
3808 *
3809 * - from a thread that is bound to a single CPU
3810 *
3811 * - in a loop with very short iterations (e.g. a polling loop)
3812 */
3813bool single_task_running(void)
3814{
3815 return raw_rq()->nr_running == 1;
3816}
3817EXPORT_SYMBOL(single_task_running);
3818
3819unsigned long long nr_context_switches(void)
3820{
3821 int i;
3822 unsigned long long sum = 0;
3823
3824 for_each_possible_cpu(i)
3825 sum += cpu_rq(i)->nr_switches;
3826
3827 return sum;
3828}
3829
3830/*
3831 * Consumers of these two interfaces, like for example the cpuidle menu
3832 * governor, are using nonsensical data. Preferring shallow idle state selection
3833 * for a CPU that has IO-wait which might not even end up running the task when
3834 * it does become runnable.
3835 */
3836
3837unsigned long nr_iowait_cpu(int cpu)
3838{
3839 return atomic_read(&cpu_rq(cpu)->nr_iowait);
3840}
3841
3842/*
3843 * IO-wait accounting, and how its mostly bollocks (on SMP).
3844 *
3845 * The idea behind IO-wait account is to account the idle time that we could
3846 * have spend running if it were not for IO. That is, if we were to improve the
3847 * storage performance, we'd have a proportional reduction in IO-wait time.
3848 *
3849 * This all works nicely on UP, where, when a task blocks on IO, we account
3850 * idle time as IO-wait, because if the storage were faster, it could've been
3851 * running and we'd not be idle.
3852 *
3853 * This has been extended to SMP, by doing the same for each CPU. This however
3854 * is broken.
3855 *
3856 * Imagine for instance the case where two tasks block on one CPU, only the one
3857 * CPU will have IO-wait accounted, while the other has regular idle. Even
3858 * though, if the storage were faster, both could've ran at the same time,
3859 * utilising both CPUs.
3860 *
3861 * This means, that when looking globally, the current IO-wait accounting on
3862 * SMP is a lower bound, by reason of under accounting.
3863 *
3864 * Worse, since the numbers are provided per CPU, they are sometimes
3865 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3866 * associated with any one particular CPU, it can wake to another CPU than it
3867 * blocked on. This means the per CPU IO-wait number is meaningless.
3868 *
3869 * Task CPU affinities can make all that even more 'interesting'.
3870 */
3871
3872unsigned long nr_iowait(void)
3873{
3874 unsigned long i, sum = 0;
3875
3876 for_each_possible_cpu(i)
3877 sum += nr_iowait_cpu(i);
3878
3879 return sum;
3880}
3881
3882#ifdef CONFIG_SMP
3883
3884/*
3885 * sched_exec - execve() is a valuable balancing opportunity, because at
3886 * this point the task has the smallest effective memory and cache footprint.
3887 */
3888void sched_exec(void)
3889{
3890 struct task_struct *p = current;
3891 unsigned long flags;
3892 int dest_cpu;
3893
3894 raw_spin_lock_irqsave(&p->pi_lock, flags);
3895 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3896 if (dest_cpu == smp_processor_id())
3897 goto unlock;
3898
3899 if (likely(cpu_active(dest_cpu))) {
3900 struct migration_arg arg = { p, dest_cpu };
3901
3902 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3903 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3904 return;
3905 }
3906unlock:
3907 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3908}
3909
3910#endif
3911
3912DEFINE_PER_CPU(struct kernel_stat, kstat);
3913DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3914
3915EXPORT_PER_CPU_SYMBOL(kstat);
3916EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3917
3918/*
3919 * The function fair_sched_class.update_curr accesses the struct curr
3920 * and its field curr->exec_start; when called from task_sched_runtime(),
3921 * we observe a high rate of cache misses in practice.
3922 * Prefetching this data results in improved performance.
3923 */
3924static inline void prefetch_curr_exec_start(struct task_struct *p)
3925{
3926#ifdef CONFIG_FAIR_GROUP_SCHED
3927 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3928#else
3929 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3930#endif
3931 prefetch(curr);
3932 prefetch(&curr->exec_start);
3933}
3934
3935/*
3936 * Return accounted runtime for the task.
3937 * In case the task is currently running, return the runtime plus current's
3938 * pending runtime that have not been accounted yet.
3939 */
3940unsigned long long task_sched_runtime(struct task_struct *p)
3941{
3942 struct rq_flags rf;
3943 struct rq *rq;
3944 u64 ns;
3945
3946#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3947 /*
3948 * 64-bit doesn't need locks to atomically read a 64-bit value.
3949 * So we have a optimization chance when the task's delta_exec is 0.
3950 * Reading ->on_cpu is racy, but this is ok.
3951 *
3952 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3953 * If we race with it entering CPU, unaccounted time is 0. This is
3954 * indistinguishable from the read occurring a few cycles earlier.
3955 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3956 * been accounted, so we're correct here as well.
3957 */
3958 if (!p->on_cpu || !task_on_rq_queued(p))
3959 return p->se.sum_exec_runtime;
3960#endif
3961
3962 rq = task_rq_lock(p, &rf);
3963 /*
3964 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3965 * project cycles that may never be accounted to this
3966 * thread, breaking clock_gettime().
3967 */
3968 if (task_current(rq, p) && task_on_rq_queued(p)) {
3969 prefetch_curr_exec_start(p);
3970 update_rq_clock(rq);
3971 p->sched_class->update_curr(rq);
3972 }
3973 ns = p->se.sum_exec_runtime;
3974 task_rq_unlock(rq, p, &rf);
3975
3976 return ns;
3977}
3978
3979/*
3980 * This function gets called by the timer code, with HZ frequency.
3981 * We call it with interrupts disabled.
3982 */
3983void scheduler_tick(void)
3984{
3985 int cpu = smp_processor_id();
3986 struct rq *rq = cpu_rq(cpu);
3987 struct task_struct *curr = rq->curr;
3988 struct rq_flags rf;
3989 unsigned long thermal_pressure;
3990
3991 arch_scale_freq_tick();
3992 sched_clock_tick();
3993
3994 rq_lock(rq, &rf);
3995
3996 update_rq_clock(rq);
3997 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
3998 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
3999 curr->sched_class->task_tick(rq, curr, 0);
4000 calc_global_load_tick(rq);
4001 psi_task_tick(rq);
4002
4003 rq_unlock(rq, &rf);
4004
4005 perf_event_task_tick();
4006
4007#ifdef CONFIG_SMP
4008 rq->idle_balance = idle_cpu(cpu);
4009 trigger_load_balance(rq);
4010#endif
4011}
4012
4013#ifdef CONFIG_NO_HZ_FULL
4014
4015struct tick_work {
4016 int cpu;
4017 atomic_t state;
4018 struct delayed_work work;
4019};
4020/* Values for ->state, see diagram below. */
4021#define TICK_SCHED_REMOTE_OFFLINE 0
4022#define TICK_SCHED_REMOTE_OFFLINING 1
4023#define TICK_SCHED_REMOTE_RUNNING 2
4024
4025/*
4026 * State diagram for ->state:
4027 *
4028 *
4029 * TICK_SCHED_REMOTE_OFFLINE
4030 * | ^
4031 * | |
4032 * | | sched_tick_remote()
4033 * | |
4034 * | |
4035 * +--TICK_SCHED_REMOTE_OFFLINING
4036 * | ^
4037 * | |
4038 * sched_tick_start() | | sched_tick_stop()
4039 * | |
4040 * V |
4041 * TICK_SCHED_REMOTE_RUNNING
4042 *
4043 *
4044 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
4045 * and sched_tick_start() are happy to leave the state in RUNNING.
4046 */
4047
4048static struct tick_work __percpu *tick_work_cpu;
4049
4050static void sched_tick_remote(struct work_struct *work)
4051{
4052 struct delayed_work *dwork = to_delayed_work(work);
4053 struct tick_work *twork = container_of(dwork, struct tick_work, work);
4054 int cpu = twork->cpu;
4055 struct rq *rq = cpu_rq(cpu);
4056 struct task_struct *curr;
4057 struct rq_flags rf;
4058 u64 delta;
4059 int os;
4060
4061 /*
4062 * Handle the tick only if it appears the remote CPU is running in full
4063 * dynticks mode. The check is racy by nature, but missing a tick or
4064 * having one too much is no big deal because the scheduler tick updates
4065 * statistics and checks timeslices in a time-independent way, regardless
4066 * of when exactly it is running.
4067 */
4068 if (!tick_nohz_tick_stopped_cpu(cpu))
4069 goto out_requeue;
4070
4071 rq_lock_irq(rq, &rf);
4072 curr = rq->curr;
4073 if (cpu_is_offline(cpu))
4074 goto out_unlock;
4075
4076 update_rq_clock(rq);
4077
4078 if (!is_idle_task(curr)) {
4079 /*
4080 * Make sure the next tick runs within a reasonable
4081 * amount of time.
4082 */
4083 delta = rq_clock_task(rq) - curr->se.exec_start;
4084 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
4085 }
4086 curr->sched_class->task_tick(rq, curr, 0);
4087
4088 calc_load_nohz_remote(rq);
4089out_unlock:
4090 rq_unlock_irq(rq, &rf);
4091out_requeue:
4092
4093 /*
4094 * Run the remote tick once per second (1Hz). This arbitrary
4095 * frequency is large enough to avoid overload but short enough
4096 * to keep scheduler internal stats reasonably up to date. But
4097 * first update state to reflect hotplug activity if required.
4098 */
4099 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
4100 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
4101 if (os == TICK_SCHED_REMOTE_RUNNING)
4102 queue_delayed_work(system_unbound_wq, dwork, HZ);
4103}
4104
4105static void sched_tick_start(int cpu)
4106{
4107 int os;
4108 struct tick_work *twork;
4109
4110 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4111 return;
4112
4113 WARN_ON_ONCE(!tick_work_cpu);
4114
4115 twork = per_cpu_ptr(tick_work_cpu, cpu);
4116 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
4117 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
4118 if (os == TICK_SCHED_REMOTE_OFFLINE) {
4119 twork->cpu = cpu;
4120 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
4121 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
4122 }
4123}
4124
4125#ifdef CONFIG_HOTPLUG_CPU
4126static void sched_tick_stop(int cpu)
4127{
4128 struct tick_work *twork;
4129 int os;
4130
4131 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4132 return;
4133
4134 WARN_ON_ONCE(!tick_work_cpu);
4135
4136 twork = per_cpu_ptr(tick_work_cpu, cpu);
4137 /* There cannot be competing actions, but don't rely on stop-machine. */
4138 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
4139 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
4140 /* Don't cancel, as this would mess up the state machine. */
4141}
4142#endif /* CONFIG_HOTPLUG_CPU */
4143
4144int __init sched_tick_offload_init(void)
4145{
4146 tick_work_cpu = alloc_percpu(struct tick_work);
4147 BUG_ON(!tick_work_cpu);
4148 return 0;
4149}
4150
4151#else /* !CONFIG_NO_HZ_FULL */
4152static inline void sched_tick_start(int cpu) { }
4153static inline void sched_tick_stop(int cpu) { }
4154#endif
4155
4156#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
4157 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
4158/*
4159 * If the value passed in is equal to the current preempt count
4160 * then we just disabled preemption. Start timing the latency.
4161 */
4162static inline void preempt_latency_start(int val)
4163{
4164 if (preempt_count() == val) {
4165 unsigned long ip = get_lock_parent_ip();
4166#ifdef CONFIG_DEBUG_PREEMPT
4167 current->preempt_disable_ip = ip;
4168#endif
4169 trace_preempt_off(CALLER_ADDR0, ip);
4170 }
4171}
4172
4173void preempt_count_add(int val)
4174{
4175#ifdef CONFIG_DEBUG_PREEMPT
4176 /*
4177 * Underflow?
4178 */
4179 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4180 return;
4181#endif
4182 __preempt_count_add(val);
4183#ifdef CONFIG_DEBUG_PREEMPT
4184 /*
4185 * Spinlock count overflowing soon?
4186 */
4187 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4188 PREEMPT_MASK - 10);
4189#endif
4190 preempt_latency_start(val);
4191}
4192EXPORT_SYMBOL(preempt_count_add);
4193NOKPROBE_SYMBOL(preempt_count_add);
4194
4195/*
4196 * If the value passed in equals to the current preempt count
4197 * then we just enabled preemption. Stop timing the latency.
4198 */
4199static inline void preempt_latency_stop(int val)
4200{
4201 if (preempt_count() == val)
4202 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
4203}
4204
4205void preempt_count_sub(int val)
4206{
4207#ifdef CONFIG_DEBUG_PREEMPT
4208 /*
4209 * Underflow?
4210 */
4211 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4212 return;
4213 /*
4214 * Is the spinlock portion underflowing?
4215 */
4216 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4217 !(preempt_count() & PREEMPT_MASK)))
4218 return;
4219#endif
4220
4221 preempt_latency_stop(val);
4222 __preempt_count_sub(val);
4223}
4224EXPORT_SYMBOL(preempt_count_sub);
4225NOKPROBE_SYMBOL(preempt_count_sub);
4226
4227#else
4228static inline void preempt_latency_start(int val) { }
4229static inline void preempt_latency_stop(int val) { }
4230#endif
4231
4232static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
4233{
4234#ifdef CONFIG_DEBUG_PREEMPT
4235 return p->preempt_disable_ip;
4236#else
4237 return 0;
4238#endif
4239}
4240
4241/*
4242 * Print scheduling while atomic bug:
4243 */
4244static noinline void __schedule_bug(struct task_struct *prev)
4245{
4246 /* Save this before calling printk(), since that will clobber it */
4247 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
4248
4249 if (oops_in_progress)
4250 return;
4251
4252 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4253 prev->comm, prev->pid, preempt_count());
4254
4255 debug_show_held_locks(prev);
4256 print_modules();
4257 if (irqs_disabled())
4258 print_irqtrace_events(prev);
4259 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
4260 && in_atomic_preempt_off()) {
4261 pr_err("Preemption disabled at:");
4262 print_ip_sym(KERN_ERR, preempt_disable_ip);
4263 }
4264 if (panic_on_warn)
4265 panic("scheduling while atomic\n");
4266
4267 dump_stack();
4268 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4269}
4270
4271/*
4272 * Various schedule()-time debugging checks and statistics:
4273 */
4274static inline void schedule_debug(struct task_struct *prev, bool preempt)
4275{
4276#ifdef CONFIG_SCHED_STACK_END_CHECK
4277 if (task_stack_end_corrupted(prev))
4278 panic("corrupted stack end detected inside scheduler\n");
4279
4280 if (task_scs_end_corrupted(prev))
4281 panic("corrupted shadow stack detected inside scheduler\n");
4282#endif
4283
4284#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
4285 if (!preempt && prev->state && prev->non_block_count) {
4286 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
4287 prev->comm, prev->pid, prev->non_block_count);
4288 dump_stack();
4289 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4290 }
4291#endif
4292
4293 if (unlikely(in_atomic_preempt_off())) {
4294 __schedule_bug(prev);
4295 preempt_count_set(PREEMPT_DISABLED);
4296 }
4297 rcu_sleep_check();
4298
4299 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4300
4301 schedstat_inc(this_rq()->sched_count);
4302}
4303
4304static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
4305 struct rq_flags *rf)
4306{
4307#ifdef CONFIG_SMP
4308 const struct sched_class *class;
4309 /*
4310 * We must do the balancing pass before put_prev_task(), such
4311 * that when we release the rq->lock the task is in the same
4312 * state as before we took rq->lock.
4313 *
4314 * We can terminate the balance pass as soon as we know there is
4315 * a runnable task of @class priority or higher.
4316 */
4317 for_class_range(class, prev->sched_class, &idle_sched_class) {
4318 if (class->balance(rq, prev, rf))
4319 break;
4320 }
4321#endif
4322
4323 put_prev_task(rq, prev);
4324}
4325
4326/*
4327 * Pick up the highest-prio task:
4328 */
4329static inline struct task_struct *
4330pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
4331{
4332 const struct sched_class *class;
4333 struct task_struct *p;
4334
4335 /*
4336 * Optimization: we know that if all tasks are in the fair class we can
4337 * call that function directly, but only if the @prev task wasn't of a
4338 * higher scheduling class, because otherwise those loose the
4339 * opportunity to pull in more work from other CPUs.
4340 */
4341 if (likely(prev->sched_class <= &fair_sched_class &&
4342 rq->nr_running == rq->cfs.h_nr_running)) {
4343
4344 p = pick_next_task_fair(rq, prev, rf);
4345 if (unlikely(p == RETRY_TASK))
4346 goto restart;
4347
4348 /* Assumes fair_sched_class->next == idle_sched_class */
4349 if (!p) {
4350 put_prev_task(rq, prev);
4351 p = pick_next_task_idle(rq);
4352 }
4353
4354 return p;
4355 }
4356
4357restart:
4358 put_prev_task_balance(rq, prev, rf);
4359
4360 for_each_class(class) {
4361 p = class->pick_next_task(rq);
4362 if (p)
4363 return p;
4364 }
4365
4366 /* The idle class should always have a runnable task: */
4367 BUG();
4368}
4369
4370/*
4371 * __schedule() is the main scheduler function.
4372 *
4373 * The main means of driving the scheduler and thus entering this function are:
4374 *
4375 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4376 *
4377 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4378 * paths. For example, see arch/x86/entry_64.S.
4379 *
4380 * To drive preemption between tasks, the scheduler sets the flag in timer
4381 * interrupt handler scheduler_tick().
4382 *
4383 * 3. Wakeups don't really cause entry into schedule(). They add a
4384 * task to the run-queue and that's it.
4385 *
4386 * Now, if the new task added to the run-queue preempts the current
4387 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4388 * called on the nearest possible occasion:
4389 *
4390 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
4391 *
4392 * - in syscall or exception context, at the next outmost
4393 * preempt_enable(). (this might be as soon as the wake_up()'s
4394 * spin_unlock()!)
4395 *
4396 * - in IRQ context, return from interrupt-handler to
4397 * preemptible context
4398 *
4399 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
4400 * then at the next:
4401 *
4402 * - cond_resched() call
4403 * - explicit schedule() call
4404 * - return from syscall or exception to user-space
4405 * - return from interrupt-handler to user-space
4406 *
4407 * WARNING: must be called with preemption disabled!
4408 */
4409static void __sched notrace __schedule(bool preempt)
4410{
4411 struct task_struct *prev, *next;
4412 unsigned long *switch_count;
4413 unsigned long prev_state;
4414 struct rq_flags rf;
4415 struct rq *rq;
4416 int cpu;
4417
4418 cpu = smp_processor_id();
4419 rq = cpu_rq(cpu);
4420 prev = rq->curr;
4421
4422 schedule_debug(prev, preempt);
4423
4424 if (sched_feat(HRTICK))
4425 hrtick_clear(rq);
4426
4427 local_irq_disable();
4428 rcu_note_context_switch(preempt);
4429
4430 /*
4431 * Make sure that signal_pending_state()->signal_pending() below
4432 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4433 * done by the caller to avoid the race with signal_wake_up():
4434 *
4435 * __set_current_state(@state) signal_wake_up()
4436 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
4437 * wake_up_state(p, state)
4438 * LOCK rq->lock LOCK p->pi_state
4439 * smp_mb__after_spinlock() smp_mb__after_spinlock()
4440 * if (signal_pending_state()) if (p->state & @state)
4441 *
4442 * Also, the membarrier system call requires a full memory barrier
4443 * after coming from user-space, before storing to rq->curr.
4444 */
4445 rq_lock(rq, &rf);
4446 smp_mb__after_spinlock();
4447
4448 /* Promote REQ to ACT */
4449 rq->clock_update_flags <<= 1;
4450 update_rq_clock(rq);
4451
4452 switch_count = &prev->nivcsw;
4453
4454 /*
4455 * We must load prev->state once (task_struct::state is volatile), such
4456 * that:
4457 *
4458 * - we form a control dependency vs deactivate_task() below.
4459 * - ptrace_{,un}freeze_traced() can change ->state underneath us.
4460 */
4461 prev_state = prev->state;
4462 if (!preempt && prev_state) {
4463 if (signal_pending_state(prev_state, prev)) {
4464 prev->state = TASK_RUNNING;
4465 } else {
4466 prev->sched_contributes_to_load =
4467 (prev_state & TASK_UNINTERRUPTIBLE) &&
4468 !(prev_state & TASK_NOLOAD) &&
4469 !(prev->flags & PF_FROZEN);
4470
4471 if (prev->sched_contributes_to_load)
4472 rq->nr_uninterruptible++;
4473
4474 /*
4475 * __schedule() ttwu()
4476 * prev_state = prev->state; if (p->on_rq && ...)
4477 * if (prev_state) goto out;
4478 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
4479 * p->state = TASK_WAKING
4480 *
4481 * Where __schedule() and ttwu() have matching control dependencies.
4482 *
4483 * After this, schedule() must not care about p->state any more.
4484 */
4485 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
4486
4487 if (prev->in_iowait) {
4488 atomic_inc(&rq->nr_iowait);
4489 delayacct_blkio_start();
4490 }
4491 }
4492 switch_count = &prev->nvcsw;
4493 }
4494
4495 next = pick_next_task(rq, prev, &rf);
4496 clear_tsk_need_resched(prev);
4497 clear_preempt_need_resched();
4498
4499 if (likely(prev != next)) {
4500 rq->nr_switches++;
4501 /*
4502 * RCU users of rcu_dereference(rq->curr) may not see
4503 * changes to task_struct made by pick_next_task().
4504 */
4505 RCU_INIT_POINTER(rq->curr, next);
4506 /*
4507 * The membarrier system call requires each architecture
4508 * to have a full memory barrier after updating
4509 * rq->curr, before returning to user-space.
4510 *
4511 * Here are the schemes providing that barrier on the
4512 * various architectures:
4513 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4514 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4515 * - finish_lock_switch() for weakly-ordered
4516 * architectures where spin_unlock is a full barrier,
4517 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4518 * is a RELEASE barrier),
4519 */
4520 ++*switch_count;
4521
4522 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
4523
4524 trace_sched_switch(preempt, prev, next);
4525
4526 /* Also unlocks the rq: */
4527 rq = context_switch(rq, prev, next, &rf);
4528 } else {
4529 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4530 rq_unlock_irq(rq, &rf);
4531 }
4532
4533 balance_callback(rq);
4534}
4535
4536void __noreturn do_task_dead(void)
4537{
4538 /* Causes final put_task_struct in finish_task_switch(): */
4539 set_special_state(TASK_DEAD);
4540
4541 /* Tell freezer to ignore us: */
4542 current->flags |= PF_NOFREEZE;
4543
4544 __schedule(false);
4545 BUG();
4546
4547 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4548 for (;;)
4549 cpu_relax();
4550}
4551
4552static inline void sched_submit_work(struct task_struct *tsk)
4553{
4554 if (!tsk->state)
4555 return;
4556
4557 /*
4558 * If a worker went to sleep, notify and ask workqueue whether
4559 * it wants to wake up a task to maintain concurrency.
4560 * As this function is called inside the schedule() context,
4561 * we disable preemption to avoid it calling schedule() again
4562 * in the possible wakeup of a kworker and because wq_worker_sleeping()
4563 * requires it.
4564 */
4565 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4566 preempt_disable();
4567 if (tsk->flags & PF_WQ_WORKER)
4568 wq_worker_sleeping(tsk);
4569 else
4570 io_wq_worker_sleeping(tsk);
4571 preempt_enable_no_resched();
4572 }
4573
4574 if (tsk_is_pi_blocked(tsk))
4575 return;
4576
4577 /*
4578 * If we are going to sleep and we have plugged IO queued,
4579 * make sure to submit it to avoid deadlocks.
4580 */
4581 if (blk_needs_flush_plug(tsk))
4582 blk_schedule_flush_plug(tsk);
4583}
4584
4585static void sched_update_worker(struct task_struct *tsk)
4586{
4587 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4588 if (tsk->flags & PF_WQ_WORKER)
4589 wq_worker_running(tsk);
4590 else
4591 io_wq_worker_running(tsk);
4592 }
4593}
4594
4595asmlinkage __visible void __sched schedule(void)
4596{
4597 struct task_struct *tsk = current;
4598
4599 sched_submit_work(tsk);
4600 do {
4601 preempt_disable();
4602 __schedule(false);
4603 sched_preempt_enable_no_resched();
4604 } while (need_resched());
4605 sched_update_worker(tsk);
4606}
4607EXPORT_SYMBOL(schedule);
4608
4609/*
4610 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4611 * state (have scheduled out non-voluntarily) by making sure that all
4612 * tasks have either left the run queue or have gone into user space.
4613 * As idle tasks do not do either, they must not ever be preempted
4614 * (schedule out non-voluntarily).
4615 *
4616 * schedule_idle() is similar to schedule_preempt_disable() except that it
4617 * never enables preemption because it does not call sched_submit_work().
4618 */
4619void __sched schedule_idle(void)
4620{
4621 /*
4622 * As this skips calling sched_submit_work(), which the idle task does
4623 * regardless because that function is a nop when the task is in a
4624 * TASK_RUNNING state, make sure this isn't used someplace that the
4625 * current task can be in any other state. Note, idle is always in the
4626 * TASK_RUNNING state.
4627 */
4628 WARN_ON_ONCE(current->state);
4629 do {
4630 __schedule(false);
4631 } while (need_resched());
4632}
4633
4634#ifdef CONFIG_CONTEXT_TRACKING
4635asmlinkage __visible void __sched schedule_user(void)
4636{
4637 /*
4638 * If we come here after a random call to set_need_resched(),
4639 * or we have been woken up remotely but the IPI has not yet arrived,
4640 * we haven't yet exited the RCU idle mode. Do it here manually until
4641 * we find a better solution.
4642 *
4643 * NB: There are buggy callers of this function. Ideally we
4644 * should warn if prev_state != CONTEXT_USER, but that will trigger
4645 * too frequently to make sense yet.
4646 */
4647 enum ctx_state prev_state = exception_enter();
4648 schedule();
4649 exception_exit(prev_state);
4650}
4651#endif
4652
4653/**
4654 * schedule_preempt_disabled - called with preemption disabled
4655 *
4656 * Returns with preemption disabled. Note: preempt_count must be 1
4657 */
4658void __sched schedule_preempt_disabled(void)
4659{
4660 sched_preempt_enable_no_resched();
4661 schedule();
4662 preempt_disable();
4663}
4664
4665static void __sched notrace preempt_schedule_common(void)
4666{
4667 do {
4668 /*
4669 * Because the function tracer can trace preempt_count_sub()
4670 * and it also uses preempt_enable/disable_notrace(), if
4671 * NEED_RESCHED is set, the preempt_enable_notrace() called
4672 * by the function tracer will call this function again and
4673 * cause infinite recursion.
4674 *
4675 * Preemption must be disabled here before the function
4676 * tracer can trace. Break up preempt_disable() into two
4677 * calls. One to disable preemption without fear of being
4678 * traced. The other to still record the preemption latency,
4679 * which can also be traced by the function tracer.
4680 */
4681 preempt_disable_notrace();
4682 preempt_latency_start(1);
4683 __schedule(true);
4684 preempt_latency_stop(1);
4685 preempt_enable_no_resched_notrace();
4686
4687 /*
4688 * Check again in case we missed a preemption opportunity
4689 * between schedule and now.
4690 */
4691 } while (need_resched());
4692}
4693
4694#ifdef CONFIG_PREEMPTION
4695/*
4696 * This is the entry point to schedule() from in-kernel preemption
4697 * off of preempt_enable.
4698 */
4699asmlinkage __visible void __sched notrace preempt_schedule(void)
4700{
4701 /*
4702 * If there is a non-zero preempt_count or interrupts are disabled,
4703 * we do not want to preempt the current task. Just return..
4704 */
4705 if (likely(!preemptible()))
4706 return;
4707
4708 preempt_schedule_common();
4709}
4710NOKPROBE_SYMBOL(preempt_schedule);
4711EXPORT_SYMBOL(preempt_schedule);
4712
4713/**
4714 * preempt_schedule_notrace - preempt_schedule called by tracing
4715 *
4716 * The tracing infrastructure uses preempt_enable_notrace to prevent
4717 * recursion and tracing preempt enabling caused by the tracing
4718 * infrastructure itself. But as tracing can happen in areas coming
4719 * from userspace or just about to enter userspace, a preempt enable
4720 * can occur before user_exit() is called. This will cause the scheduler
4721 * to be called when the system is still in usermode.
4722 *
4723 * To prevent this, the preempt_enable_notrace will use this function
4724 * instead of preempt_schedule() to exit user context if needed before
4725 * calling the scheduler.
4726 */
4727asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4728{
4729 enum ctx_state prev_ctx;
4730
4731 if (likely(!preemptible()))
4732 return;
4733
4734 do {
4735 /*
4736 * Because the function tracer can trace preempt_count_sub()
4737 * and it also uses preempt_enable/disable_notrace(), if
4738 * NEED_RESCHED is set, the preempt_enable_notrace() called
4739 * by the function tracer will call this function again and
4740 * cause infinite recursion.
4741 *
4742 * Preemption must be disabled here before the function
4743 * tracer can trace. Break up preempt_disable() into two
4744 * calls. One to disable preemption without fear of being
4745 * traced. The other to still record the preemption latency,
4746 * which can also be traced by the function tracer.
4747 */
4748 preempt_disable_notrace();
4749 preempt_latency_start(1);
4750 /*
4751 * Needs preempt disabled in case user_exit() is traced
4752 * and the tracer calls preempt_enable_notrace() causing
4753 * an infinite recursion.
4754 */
4755 prev_ctx = exception_enter();
4756 __schedule(true);
4757 exception_exit(prev_ctx);
4758
4759 preempt_latency_stop(1);
4760 preempt_enable_no_resched_notrace();
4761 } while (need_resched());
4762}
4763EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4764
4765#endif /* CONFIG_PREEMPTION */
4766
4767/*
4768 * This is the entry point to schedule() from kernel preemption
4769 * off of irq context.
4770 * Note, that this is called and return with irqs disabled. This will
4771 * protect us against recursive calling from irq.
4772 */
4773asmlinkage __visible void __sched preempt_schedule_irq(void)
4774{
4775 enum ctx_state prev_state;
4776
4777 /* Catch callers which need to be fixed */
4778 BUG_ON(preempt_count() || !irqs_disabled());
4779
4780 prev_state = exception_enter();
4781
4782 do {
4783 preempt_disable();
4784 local_irq_enable();
4785 __schedule(true);
4786 local_irq_disable();
4787 sched_preempt_enable_no_resched();
4788 } while (need_resched());
4789
4790 exception_exit(prev_state);
4791}
4792
4793int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4794 void *key)
4795{
4796 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
4797 return try_to_wake_up(curr->private, mode, wake_flags);
4798}
4799EXPORT_SYMBOL(default_wake_function);
4800
4801#ifdef CONFIG_RT_MUTEXES
4802
4803static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4804{
4805 if (pi_task)
4806 prio = min(prio, pi_task->prio);
4807
4808 return prio;
4809}
4810
4811static inline int rt_effective_prio(struct task_struct *p, int prio)
4812{
4813 struct task_struct *pi_task = rt_mutex_get_top_task(p);
4814
4815 return __rt_effective_prio(pi_task, prio);
4816}
4817
4818/*
4819 * rt_mutex_setprio - set the current priority of a task
4820 * @p: task to boost
4821 * @pi_task: donor task
4822 *
4823 * This function changes the 'effective' priority of a task. It does
4824 * not touch ->normal_prio like __setscheduler().
4825 *
4826 * Used by the rt_mutex code to implement priority inheritance
4827 * logic. Call site only calls if the priority of the task changed.
4828 */
4829void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4830{
4831 int prio, oldprio, queued, running, queue_flag =
4832 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4833 const struct sched_class *prev_class;
4834 struct rq_flags rf;
4835 struct rq *rq;
4836
4837 /* XXX used to be waiter->prio, not waiter->task->prio */
4838 prio = __rt_effective_prio(pi_task, p->normal_prio);
4839
4840 /*
4841 * If nothing changed; bail early.
4842 */
4843 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4844 return;
4845
4846 rq = __task_rq_lock(p, &rf);
4847 update_rq_clock(rq);
4848 /*
4849 * Set under pi_lock && rq->lock, such that the value can be used under
4850 * either lock.
4851 *
4852 * Note that there is loads of tricky to make this pointer cache work
4853 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4854 * ensure a task is de-boosted (pi_task is set to NULL) before the
4855 * task is allowed to run again (and can exit). This ensures the pointer
4856 * points to a blocked task -- which guaratees the task is present.
4857 */
4858 p->pi_top_task = pi_task;
4859
4860 /*
4861 * For FIFO/RR we only need to set prio, if that matches we're done.
4862 */
4863 if (prio == p->prio && !dl_prio(prio))
4864 goto out_unlock;
4865
4866 /*
4867 * Idle task boosting is a nono in general. There is one
4868 * exception, when PREEMPT_RT and NOHZ is active:
4869 *
4870 * The idle task calls get_next_timer_interrupt() and holds
4871 * the timer wheel base->lock on the CPU and another CPU wants
4872 * to access the timer (probably to cancel it). We can safely
4873 * ignore the boosting request, as the idle CPU runs this code
4874 * with interrupts disabled and will complete the lock
4875 * protected section without being interrupted. So there is no
4876 * real need to boost.
4877 */
4878 if (unlikely(p == rq->idle)) {
4879 WARN_ON(p != rq->curr);
4880 WARN_ON(p->pi_blocked_on);
4881 goto out_unlock;
4882 }
4883
4884 trace_sched_pi_setprio(p, pi_task);
4885 oldprio = p->prio;
4886
4887 if (oldprio == prio)
4888 queue_flag &= ~DEQUEUE_MOVE;
4889
4890 prev_class = p->sched_class;
4891 queued = task_on_rq_queued(p);
4892 running = task_current(rq, p);
4893 if (queued)
4894 dequeue_task(rq, p, queue_flag);
4895 if (running)
4896 put_prev_task(rq, p);
4897
4898 /*
4899 * Boosting condition are:
4900 * 1. -rt task is running and holds mutex A
4901 * --> -dl task blocks on mutex A
4902 *
4903 * 2. -dl task is running and holds mutex A
4904 * --> -dl task blocks on mutex A and could preempt the
4905 * running task
4906 */
4907 if (dl_prio(prio)) {
4908 if (!dl_prio(p->normal_prio) ||
4909 (pi_task && dl_prio(pi_task->prio) &&
4910 dl_entity_preempt(&pi_task->dl, &p->dl))) {
4911 p->dl.dl_boosted = 1;
4912 queue_flag |= ENQUEUE_REPLENISH;
4913 } else
4914 p->dl.dl_boosted = 0;
4915 p->sched_class = &dl_sched_class;
4916 } else if (rt_prio(prio)) {
4917 if (dl_prio(oldprio))
4918 p->dl.dl_boosted = 0;
4919 if (oldprio < prio)
4920 queue_flag |= ENQUEUE_HEAD;
4921 p->sched_class = &rt_sched_class;
4922 } else {
4923 if (dl_prio(oldprio))
4924 p->dl.dl_boosted = 0;
4925 if (rt_prio(oldprio))
4926 p->rt.timeout = 0;
4927 p->sched_class = &fair_sched_class;
4928 }
4929
4930 p->prio = prio;
4931
4932 if (queued)
4933 enqueue_task(rq, p, queue_flag);
4934 if (running)
4935 set_next_task(rq, p);
4936
4937 check_class_changed(rq, p, prev_class, oldprio);
4938out_unlock:
4939 /* Avoid rq from going away on us: */
4940 preempt_disable();
4941 __task_rq_unlock(rq, &rf);
4942
4943 balance_callback(rq);
4944 preempt_enable();
4945}
4946#else
4947static inline int rt_effective_prio(struct task_struct *p, int prio)
4948{
4949 return prio;
4950}
4951#endif
4952
4953void set_user_nice(struct task_struct *p, long nice)
4954{
4955 bool queued, running;
4956 int old_prio;
4957 struct rq_flags rf;
4958 struct rq *rq;
4959
4960 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
4961 return;
4962 /*
4963 * We have to be careful, if called from sys_setpriority(),
4964 * the task might be in the middle of scheduling on another CPU.
4965 */
4966 rq = task_rq_lock(p, &rf);
4967 update_rq_clock(rq);
4968
4969 /*
4970 * The RT priorities are set via sched_setscheduler(), but we still
4971 * allow the 'normal' nice value to be set - but as expected
4972 * it wont have any effect on scheduling until the task is
4973 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
4974 */
4975 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4976 p->static_prio = NICE_TO_PRIO(nice);
4977 goto out_unlock;
4978 }
4979 queued = task_on_rq_queued(p);
4980 running = task_current(rq, p);
4981 if (queued)
4982 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
4983 if (running)
4984 put_prev_task(rq, p);
4985
4986 p->static_prio = NICE_TO_PRIO(nice);
4987 set_load_weight(p, true);
4988 old_prio = p->prio;
4989 p->prio = effective_prio(p);
4990
4991 if (queued)
4992 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
4993 if (running)
4994 set_next_task(rq, p);
4995
4996 /*
4997 * If the task increased its priority or is running and
4998 * lowered its priority, then reschedule its CPU:
4999 */
5000 p->sched_class->prio_changed(rq, p, old_prio);
5001
5002out_unlock:
5003 task_rq_unlock(rq, p, &rf);
5004}
5005EXPORT_SYMBOL(set_user_nice);
5006
5007/*
5008 * can_nice - check if a task can reduce its nice value
5009 * @p: task
5010 * @nice: nice value
5011 */
5012int can_nice(const struct task_struct *p, const int nice)
5013{
5014 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
5015 int nice_rlim = nice_to_rlimit(nice);
5016
5017 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
5018 capable(CAP_SYS_NICE));
5019}
5020
5021#ifdef __ARCH_WANT_SYS_NICE
5022
5023/*
5024 * sys_nice - change the priority of the current process.
5025 * @increment: priority increment
5026 *
5027 * sys_setpriority is a more generic, but much slower function that
5028 * does similar things.
5029 */
5030SYSCALL_DEFINE1(nice, int, increment)
5031{
5032 long nice, retval;
5033
5034 /*
5035 * Setpriority might change our priority at the same moment.
5036 * We don't have to worry. Conceptually one call occurs first
5037 * and we have a single winner.
5038 */
5039 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
5040 nice = task_nice(current) + increment;
5041
5042 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
5043 if (increment < 0 && !can_nice(current, nice))
5044 return -EPERM;
5045
5046 retval = security_task_setnice(current, nice);
5047 if (retval)
5048 return retval;
5049
5050 set_user_nice(current, nice);
5051 return 0;
5052}
5053
5054#endif
5055
5056/**
5057 * task_prio - return the priority value of a given task.
5058 * @p: the task in question.
5059 *
5060 * Return: The priority value as seen by users in /proc.
5061 * RT tasks are offset by -200. Normal tasks are centered
5062 * around 0, value goes from -16 to +15.
5063 */
5064int task_prio(const struct task_struct *p)
5065{
5066 return p->prio - MAX_RT_PRIO;
5067}
5068
5069/**
5070 * idle_cpu - is a given CPU idle currently?
5071 * @cpu: the processor in question.
5072 *
5073 * Return: 1 if the CPU is currently idle. 0 otherwise.
5074 */
5075int idle_cpu(int cpu)
5076{
5077 struct rq *rq = cpu_rq(cpu);
5078
5079 if (rq->curr != rq->idle)
5080 return 0;
5081
5082 if (rq->nr_running)
5083 return 0;
5084
5085#ifdef CONFIG_SMP
5086 if (rq->ttwu_pending)
5087 return 0;
5088#endif
5089
5090 return 1;
5091}
5092
5093/**
5094 * available_idle_cpu - is a given CPU idle for enqueuing work.
5095 * @cpu: the CPU in question.
5096 *
5097 * Return: 1 if the CPU is currently idle. 0 otherwise.
5098 */
5099int available_idle_cpu(int cpu)
5100{
5101 if (!idle_cpu(cpu))
5102 return 0;
5103
5104 if (vcpu_is_preempted(cpu))
5105 return 0;
5106
5107 return 1;
5108}
5109
5110/**
5111 * idle_task - return the idle task for a given CPU.
5112 * @cpu: the processor in question.
5113 *
5114 * Return: The idle task for the CPU @cpu.
5115 */
5116struct task_struct *idle_task(int cpu)
5117{
5118 return cpu_rq(cpu)->idle;
5119}
5120
5121/**
5122 * find_process_by_pid - find a process with a matching PID value.
5123 * @pid: the pid in question.
5124 *
5125 * The task of @pid, if found. %NULL otherwise.
5126 */
5127static struct task_struct *find_process_by_pid(pid_t pid)
5128{
5129 return pid ? find_task_by_vpid(pid) : current;
5130}
5131
5132/*
5133 * sched_setparam() passes in -1 for its policy, to let the functions
5134 * it calls know not to change it.
5135 */
5136#define SETPARAM_POLICY -1
5137
5138static void __setscheduler_params(struct task_struct *p,
5139 const struct sched_attr *attr)
5140{
5141 int policy = attr->sched_policy;
5142
5143 if (policy == SETPARAM_POLICY)
5144 policy = p->policy;
5145
5146 p->policy = policy;
5147
5148 if (dl_policy(policy))
5149 __setparam_dl(p, attr);
5150 else if (fair_policy(policy))
5151 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
5152
5153 /*
5154 * __sched_setscheduler() ensures attr->sched_priority == 0 when
5155 * !rt_policy. Always setting this ensures that things like
5156 * getparam()/getattr() don't report silly values for !rt tasks.
5157 */
5158 p->rt_priority = attr->sched_priority;
5159 p->normal_prio = normal_prio(p);
5160 set_load_weight(p, true);
5161}
5162
5163/* Actually do priority change: must hold pi & rq lock. */
5164static void __setscheduler(struct rq *rq, struct task_struct *p,
5165 const struct sched_attr *attr, bool keep_boost)
5166{
5167 /*
5168 * If params can't change scheduling class changes aren't allowed
5169 * either.
5170 */
5171 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
5172 return;
5173
5174 __setscheduler_params(p, attr);
5175
5176 /*
5177 * Keep a potential priority boosting if called from
5178 * sched_setscheduler().
5179 */
5180 p->prio = normal_prio(p);
5181 if (keep_boost)
5182 p->prio = rt_effective_prio(p, p->prio);
5183
5184 if (dl_prio(p->prio))
5185 p->sched_class = &dl_sched_class;
5186 else if (rt_prio(p->prio))
5187 p->sched_class = &rt_sched_class;
5188 else
5189 p->sched_class = &fair_sched_class;
5190}
5191
5192/*
5193 * Check the target process has a UID that matches the current process's:
5194 */
5195static bool check_same_owner(struct task_struct *p)
5196{
5197 const struct cred *cred = current_cred(), *pcred;
5198 bool match;
5199
5200 rcu_read_lock();
5201 pcred = __task_cred(p);
5202 match = (uid_eq(cred->euid, pcred->euid) ||
5203 uid_eq(cred->euid, pcred->uid));
5204 rcu_read_unlock();
5205 return match;
5206}
5207
5208static int __sched_setscheduler(struct task_struct *p,
5209 const struct sched_attr *attr,
5210 bool user, bool pi)
5211{
5212 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
5213 MAX_RT_PRIO - 1 - attr->sched_priority;
5214 int retval, oldprio, oldpolicy = -1, queued, running;
5215 int new_effective_prio, policy = attr->sched_policy;
5216 const struct sched_class *prev_class;
5217 struct rq_flags rf;
5218 int reset_on_fork;
5219 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
5220 struct rq *rq;
5221
5222 /* The pi code expects interrupts enabled */
5223 BUG_ON(pi && in_interrupt());
5224recheck:
5225 /* Double check policy once rq lock held: */
5226 if (policy < 0) {
5227 reset_on_fork = p->sched_reset_on_fork;
5228 policy = oldpolicy = p->policy;
5229 } else {
5230 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
5231
5232 if (!valid_policy(policy))
5233 return -EINVAL;
5234 }
5235
5236 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
5237 return -EINVAL;
5238
5239 /*
5240 * Valid priorities for SCHED_FIFO and SCHED_RR are
5241 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5242 * SCHED_BATCH and SCHED_IDLE is 0.
5243 */
5244 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
5245 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
5246 return -EINVAL;
5247 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
5248 (rt_policy(policy) != (attr->sched_priority != 0)))
5249 return -EINVAL;
5250
5251 /*
5252 * Allow unprivileged RT tasks to decrease priority:
5253 */
5254 if (user && !capable(CAP_SYS_NICE)) {
5255 if (fair_policy(policy)) {
5256 if (attr->sched_nice < task_nice(p) &&
5257 !can_nice(p, attr->sched_nice))
5258 return -EPERM;
5259 }
5260
5261 if (rt_policy(policy)) {
5262 unsigned long rlim_rtprio =
5263 task_rlimit(p, RLIMIT_RTPRIO);
5264
5265 /* Can't set/change the rt policy: */
5266 if (policy != p->policy && !rlim_rtprio)
5267 return -EPERM;
5268
5269 /* Can't increase priority: */
5270 if (attr->sched_priority > p->rt_priority &&
5271 attr->sched_priority > rlim_rtprio)
5272 return -EPERM;
5273 }
5274
5275 /*
5276 * Can't set/change SCHED_DEADLINE policy at all for now
5277 * (safest behavior); in the future we would like to allow
5278 * unprivileged DL tasks to increase their relative deadline
5279 * or reduce their runtime (both ways reducing utilization)
5280 */
5281 if (dl_policy(policy))
5282 return -EPERM;
5283
5284 /*
5285 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5286 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5287 */
5288 if (task_has_idle_policy(p) && !idle_policy(policy)) {
5289 if (!can_nice(p, task_nice(p)))
5290 return -EPERM;
5291 }
5292
5293 /* Can't change other user's priorities: */
5294 if (!check_same_owner(p))
5295 return -EPERM;
5296
5297 /* Normal users shall not reset the sched_reset_on_fork flag: */
5298 if (p->sched_reset_on_fork && !reset_on_fork)
5299 return -EPERM;
5300 }
5301
5302 if (user) {
5303 if (attr->sched_flags & SCHED_FLAG_SUGOV)
5304 return -EINVAL;
5305
5306 retval = security_task_setscheduler(p);
5307 if (retval)
5308 return retval;
5309 }
5310
5311 /* Update task specific "requested" clamps */
5312 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
5313 retval = uclamp_validate(p, attr);
5314 if (retval)
5315 return retval;
5316 }
5317
5318 if (pi)
5319 cpuset_read_lock();
5320
5321 /*
5322 * Make sure no PI-waiters arrive (or leave) while we are
5323 * changing the priority of the task:
5324 *
5325 * To be able to change p->policy safely, the appropriate
5326 * runqueue lock must be held.
5327 */
5328 rq = task_rq_lock(p, &rf);
5329 update_rq_clock(rq);
5330
5331 /*
5332 * Changing the policy of the stop threads its a very bad idea:
5333 */
5334 if (p == rq->stop) {
5335 retval = -EINVAL;
5336 goto unlock;
5337 }
5338
5339 /*
5340 * If not changing anything there's no need to proceed further,
5341 * but store a possible modification of reset_on_fork.
5342 */
5343 if (unlikely(policy == p->policy)) {
5344 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
5345 goto change;
5346 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
5347 goto change;
5348 if (dl_policy(policy) && dl_param_changed(p, attr))
5349 goto change;
5350 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
5351 goto change;
5352
5353 p->sched_reset_on_fork = reset_on_fork;
5354 retval = 0;
5355 goto unlock;
5356 }
5357change:
5358
5359 if (user) {
5360#ifdef CONFIG_RT_GROUP_SCHED
5361 /*
5362 * Do not allow realtime tasks into groups that have no runtime
5363 * assigned.
5364 */
5365 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5366 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5367 !task_group_is_autogroup(task_group(p))) {
5368 retval = -EPERM;
5369 goto unlock;
5370 }
5371#endif
5372#ifdef CONFIG_SMP
5373 if (dl_bandwidth_enabled() && dl_policy(policy) &&
5374 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
5375 cpumask_t *span = rq->rd->span;
5376
5377 /*
5378 * Don't allow tasks with an affinity mask smaller than
5379 * the entire root_domain to become SCHED_DEADLINE. We
5380 * will also fail if there's no bandwidth available.
5381 */
5382 if (!cpumask_subset(span, p->cpus_ptr) ||
5383 rq->rd->dl_bw.bw == 0) {
5384 retval = -EPERM;
5385 goto unlock;
5386 }
5387 }
5388#endif
5389 }
5390
5391 /* Re-check policy now with rq lock held: */
5392 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5393 policy = oldpolicy = -1;
5394 task_rq_unlock(rq, p, &rf);
5395 if (pi)
5396 cpuset_read_unlock();
5397 goto recheck;
5398 }
5399
5400 /*
5401 * If setscheduling to SCHED_DEADLINE (or changing the parameters
5402 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
5403 * is available.
5404 */
5405 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
5406 retval = -EBUSY;
5407 goto unlock;
5408 }
5409
5410 p->sched_reset_on_fork = reset_on_fork;
5411 oldprio = p->prio;
5412
5413 if (pi) {
5414 /*
5415 * Take priority boosted tasks into account. If the new
5416 * effective priority is unchanged, we just store the new
5417 * normal parameters and do not touch the scheduler class and
5418 * the runqueue. This will be done when the task deboost
5419 * itself.
5420 */
5421 new_effective_prio = rt_effective_prio(p, newprio);
5422 if (new_effective_prio == oldprio)
5423 queue_flags &= ~DEQUEUE_MOVE;
5424 }
5425
5426 queued = task_on_rq_queued(p);
5427 running = task_current(rq, p);
5428 if (queued)
5429 dequeue_task(rq, p, queue_flags);
5430 if (running)
5431 put_prev_task(rq, p);
5432
5433 prev_class = p->sched_class;
5434
5435 __setscheduler(rq, p, attr, pi);
5436 __setscheduler_uclamp(p, attr);
5437
5438 if (queued) {
5439 /*
5440 * We enqueue to tail when the priority of a task is
5441 * increased (user space view).
5442 */
5443 if (oldprio < p->prio)
5444 queue_flags |= ENQUEUE_HEAD;
5445
5446 enqueue_task(rq, p, queue_flags);
5447 }
5448 if (running)
5449 set_next_task(rq, p);
5450
5451 check_class_changed(rq, p, prev_class, oldprio);
5452
5453 /* Avoid rq from going away on us: */
5454 preempt_disable();
5455 task_rq_unlock(rq, p, &rf);
5456
5457 if (pi) {
5458 cpuset_read_unlock();
5459 rt_mutex_adjust_pi(p);
5460 }
5461
5462 /* Run balance callbacks after we've adjusted the PI chain: */
5463 balance_callback(rq);
5464 preempt_enable();
5465
5466 return 0;
5467
5468unlock:
5469 task_rq_unlock(rq, p, &rf);
5470 if (pi)
5471 cpuset_read_unlock();
5472 return retval;
5473}
5474
5475static int _sched_setscheduler(struct task_struct *p, int policy,
5476 const struct sched_param *param, bool check)
5477{
5478 struct sched_attr attr = {
5479 .sched_policy = policy,
5480 .sched_priority = param->sched_priority,
5481 .sched_nice = PRIO_TO_NICE(p->static_prio),
5482 };
5483
5484 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5485 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5486 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5487 policy &= ~SCHED_RESET_ON_FORK;
5488 attr.sched_policy = policy;
5489 }
5490
5491 return __sched_setscheduler(p, &attr, check, true);
5492}
5493/**
5494 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5495 * @p: the task in question.
5496 * @policy: new policy.
5497 * @param: structure containing the new RT priority.
5498 *
5499 * Use sched_set_fifo(), read its comment.
5500 *
5501 * Return: 0 on success. An error code otherwise.
5502 *
5503 * NOTE that the task may be already dead.
5504 */
5505int sched_setscheduler(struct task_struct *p, int policy,
5506 const struct sched_param *param)
5507{
5508 return _sched_setscheduler(p, policy, param, true);
5509}
5510
5511int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5512{
5513 return __sched_setscheduler(p, attr, true, true);
5514}
5515
5516int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5517{
5518 return __sched_setscheduler(p, attr, false, true);
5519}
5520
5521/**
5522 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5523 * @p: the task in question.
5524 * @policy: new policy.
5525 * @param: structure containing the new RT priority.
5526 *
5527 * Just like sched_setscheduler, only don't bother checking if the
5528 * current context has permission. For example, this is needed in
5529 * stop_machine(): we create temporary high priority worker threads,
5530 * but our caller might not have that capability.
5531 *
5532 * Return: 0 on success. An error code otherwise.
5533 */
5534int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5535 const struct sched_param *param)
5536{
5537 return _sched_setscheduler(p, policy, param, false);
5538}
5539
5540/*
5541 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
5542 * incapable of resource management, which is the one thing an OS really should
5543 * be doing.
5544 *
5545 * This is of course the reason it is limited to privileged users only.
5546 *
5547 * Worse still; it is fundamentally impossible to compose static priority
5548 * workloads. You cannot take two correctly working static prio workloads
5549 * and smash them together and still expect them to work.
5550 *
5551 * For this reason 'all' FIFO tasks the kernel creates are basically at:
5552 *
5553 * MAX_RT_PRIO / 2
5554 *
5555 * The administrator _MUST_ configure the system, the kernel simply doesn't
5556 * know enough information to make a sensible choice.
5557 */
5558void sched_set_fifo(struct task_struct *p)
5559{
5560 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
5561 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
5562}
5563EXPORT_SYMBOL_GPL(sched_set_fifo);
5564
5565/*
5566 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
5567 */
5568void sched_set_fifo_low(struct task_struct *p)
5569{
5570 struct sched_param sp = { .sched_priority = 1 };
5571 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
5572}
5573EXPORT_SYMBOL_GPL(sched_set_fifo_low);
5574
5575void sched_set_normal(struct task_struct *p, int nice)
5576{
5577 struct sched_attr attr = {
5578 .sched_policy = SCHED_NORMAL,
5579 .sched_nice = nice,
5580 };
5581 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
5582}
5583EXPORT_SYMBOL_GPL(sched_set_normal);
5584
5585static int
5586do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5587{
5588 struct sched_param lparam;
5589 struct task_struct *p;
5590 int retval;
5591
5592 if (!param || pid < 0)
5593 return -EINVAL;
5594 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5595 return -EFAULT;
5596
5597 rcu_read_lock();
5598 retval = -ESRCH;
5599 p = find_process_by_pid(pid);
5600 if (likely(p))
5601 get_task_struct(p);
5602 rcu_read_unlock();
5603
5604 if (likely(p)) {
5605 retval = sched_setscheduler(p, policy, &lparam);
5606 put_task_struct(p);
5607 }
5608
5609 return retval;
5610}
5611
5612/*
5613 * Mimics kernel/events/core.c perf_copy_attr().
5614 */
5615static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
5616{
5617 u32 size;
5618 int ret;
5619
5620 /* Zero the full structure, so that a short copy will be nice: */
5621 memset(attr, 0, sizeof(*attr));
5622
5623 ret = get_user(size, &uattr->size);
5624 if (ret)
5625 return ret;
5626
5627 /* ABI compatibility quirk: */
5628 if (!size)
5629 size = SCHED_ATTR_SIZE_VER0;
5630 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
5631 goto err_size;
5632
5633 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5634 if (ret) {
5635 if (ret == -E2BIG)
5636 goto err_size;
5637 return ret;
5638 }
5639
5640 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5641 size < SCHED_ATTR_SIZE_VER1)
5642 return -EINVAL;
5643
5644 /*
5645 * XXX: Do we want to be lenient like existing syscalls; or do we want
5646 * to be strict and return an error on out-of-bounds values?
5647 */
5648 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5649
5650 return 0;
5651
5652err_size:
5653 put_user(sizeof(*attr), &uattr->size);
5654 return -E2BIG;
5655}
5656
5657/**
5658 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5659 * @pid: the pid in question.
5660 * @policy: new policy.
5661 * @param: structure containing the new RT priority.
5662 *
5663 * Return: 0 on success. An error code otherwise.
5664 */
5665SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
5666{
5667 if (policy < 0)
5668 return -EINVAL;
5669
5670 return do_sched_setscheduler(pid, policy, param);
5671}
5672
5673/**
5674 * sys_sched_setparam - set/change the RT priority of a thread
5675 * @pid: the pid in question.
5676 * @param: structure containing the new RT priority.
5677 *
5678 * Return: 0 on success. An error code otherwise.
5679 */
5680SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5681{
5682 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5683}
5684
5685/**
5686 * sys_sched_setattr - same as above, but with extended sched_attr
5687 * @pid: the pid in question.
5688 * @uattr: structure containing the extended parameters.
5689 * @flags: for future extension.
5690 */
5691SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5692 unsigned int, flags)
5693{
5694 struct sched_attr attr;
5695 struct task_struct *p;
5696 int retval;
5697
5698 if (!uattr || pid < 0 || flags)
5699 return -EINVAL;
5700
5701 retval = sched_copy_attr(uattr, &attr);
5702 if (retval)
5703 return retval;
5704
5705 if ((int)attr.sched_policy < 0)
5706 return -EINVAL;
5707 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5708 attr.sched_policy = SETPARAM_POLICY;
5709
5710 rcu_read_lock();
5711 retval = -ESRCH;
5712 p = find_process_by_pid(pid);
5713 if (likely(p))
5714 get_task_struct(p);
5715 rcu_read_unlock();
5716
5717 if (likely(p)) {
5718 retval = sched_setattr(p, &attr);
5719 put_task_struct(p);
5720 }
5721
5722 return retval;
5723}
5724
5725/**
5726 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5727 * @pid: the pid in question.
5728 *
5729 * Return: On success, the policy of the thread. Otherwise, a negative error
5730 * code.
5731 */
5732SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5733{
5734 struct task_struct *p;
5735 int retval;
5736
5737 if (pid < 0)
5738 return -EINVAL;
5739
5740 retval = -ESRCH;
5741 rcu_read_lock();
5742 p = find_process_by_pid(pid);
5743 if (p) {
5744 retval = security_task_getscheduler(p);
5745 if (!retval)
5746 retval = p->policy
5747 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5748 }
5749 rcu_read_unlock();
5750 return retval;
5751}
5752
5753/**
5754 * sys_sched_getparam - get the RT priority of a thread
5755 * @pid: the pid in question.
5756 * @param: structure containing the RT priority.
5757 *
5758 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5759 * code.
5760 */
5761SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5762{
5763 struct sched_param lp = { .sched_priority = 0 };
5764 struct task_struct *p;
5765 int retval;
5766
5767 if (!param || pid < 0)
5768 return -EINVAL;
5769
5770 rcu_read_lock();
5771 p = find_process_by_pid(pid);
5772 retval = -ESRCH;
5773 if (!p)
5774 goto out_unlock;
5775
5776 retval = security_task_getscheduler(p);
5777 if (retval)
5778 goto out_unlock;
5779
5780 if (task_has_rt_policy(p))
5781 lp.sched_priority = p->rt_priority;
5782 rcu_read_unlock();
5783
5784 /*
5785 * This one might sleep, we cannot do it with a spinlock held ...
5786 */
5787 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5788
5789 return retval;
5790
5791out_unlock:
5792 rcu_read_unlock();
5793 return retval;
5794}
5795
5796/*
5797 * Copy the kernel size attribute structure (which might be larger
5798 * than what user-space knows about) to user-space.
5799 *
5800 * Note that all cases are valid: user-space buffer can be larger or
5801 * smaller than the kernel-space buffer. The usual case is that both
5802 * have the same size.
5803 */
5804static int
5805sched_attr_copy_to_user(struct sched_attr __user *uattr,
5806 struct sched_attr *kattr,
5807 unsigned int usize)
5808{
5809 unsigned int ksize = sizeof(*kattr);
5810
5811 if (!access_ok(uattr, usize))
5812 return -EFAULT;
5813
5814 /*
5815 * sched_getattr() ABI forwards and backwards compatibility:
5816 *
5817 * If usize == ksize then we just copy everything to user-space and all is good.
5818 *
5819 * If usize < ksize then we only copy as much as user-space has space for,
5820 * this keeps ABI compatibility as well. We skip the rest.
5821 *
5822 * If usize > ksize then user-space is using a newer version of the ABI,
5823 * which part the kernel doesn't know about. Just ignore it - tooling can
5824 * detect the kernel's knowledge of attributes from the attr->size value
5825 * which is set to ksize in this case.
5826 */
5827 kattr->size = min(usize, ksize);
5828
5829 if (copy_to_user(uattr, kattr, kattr->size))
5830 return -EFAULT;
5831
5832 return 0;
5833}
5834
5835/**
5836 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5837 * @pid: the pid in question.
5838 * @uattr: structure containing the extended parameters.
5839 * @usize: sizeof(attr) for fwd/bwd comp.
5840 * @flags: for future extension.
5841 */
5842SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5843 unsigned int, usize, unsigned int, flags)
5844{
5845 struct sched_attr kattr = { };
5846 struct task_struct *p;
5847 int retval;
5848
5849 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5850 usize < SCHED_ATTR_SIZE_VER0 || flags)
5851 return -EINVAL;
5852
5853 rcu_read_lock();
5854 p = find_process_by_pid(pid);
5855 retval = -ESRCH;
5856 if (!p)
5857 goto out_unlock;
5858
5859 retval = security_task_getscheduler(p);
5860 if (retval)
5861 goto out_unlock;
5862
5863 kattr.sched_policy = p->policy;
5864 if (p->sched_reset_on_fork)
5865 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5866 if (task_has_dl_policy(p))
5867 __getparam_dl(p, &kattr);
5868 else if (task_has_rt_policy(p))
5869 kattr.sched_priority = p->rt_priority;
5870 else
5871 kattr.sched_nice = task_nice(p);
5872
5873#ifdef CONFIG_UCLAMP_TASK
5874 /*
5875 * This could race with another potential updater, but this is fine
5876 * because it'll correctly read the old or the new value. We don't need
5877 * to guarantee who wins the race as long as it doesn't return garbage.
5878 */
5879 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5880 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5881#endif
5882
5883 rcu_read_unlock();
5884
5885 return sched_attr_copy_to_user(uattr, &kattr, usize);
5886
5887out_unlock:
5888 rcu_read_unlock();
5889 return retval;
5890}
5891
5892long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5893{
5894 cpumask_var_t cpus_allowed, new_mask;
5895 struct task_struct *p;
5896 int retval;
5897
5898 rcu_read_lock();
5899
5900 p = find_process_by_pid(pid);
5901 if (!p) {
5902 rcu_read_unlock();
5903 return -ESRCH;
5904 }
5905
5906 /* Prevent p going away */
5907 get_task_struct(p);
5908 rcu_read_unlock();
5909
5910 if (p->flags & PF_NO_SETAFFINITY) {
5911 retval = -EINVAL;
5912 goto out_put_task;
5913 }
5914 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5915 retval = -ENOMEM;
5916 goto out_put_task;
5917 }
5918 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5919 retval = -ENOMEM;
5920 goto out_free_cpus_allowed;
5921 }
5922 retval = -EPERM;
5923 if (!check_same_owner(p)) {
5924 rcu_read_lock();
5925 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5926 rcu_read_unlock();
5927 goto out_free_new_mask;
5928 }
5929 rcu_read_unlock();
5930 }
5931
5932 retval = security_task_setscheduler(p);
5933 if (retval)
5934 goto out_free_new_mask;
5935
5936
5937 cpuset_cpus_allowed(p, cpus_allowed);
5938 cpumask_and(new_mask, in_mask, cpus_allowed);
5939
5940 /*
5941 * Since bandwidth control happens on root_domain basis,
5942 * if admission test is enabled, we only admit -deadline
5943 * tasks allowed to run on all the CPUs in the task's
5944 * root_domain.
5945 */
5946#ifdef CONFIG_SMP
5947 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5948 rcu_read_lock();
5949 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
5950 retval = -EBUSY;
5951 rcu_read_unlock();
5952 goto out_free_new_mask;
5953 }
5954 rcu_read_unlock();
5955 }
5956#endif
5957again:
5958 retval = __set_cpus_allowed_ptr(p, new_mask, true);
5959
5960 if (!retval) {
5961 cpuset_cpus_allowed(p, cpus_allowed);
5962 if (!cpumask_subset(new_mask, cpus_allowed)) {
5963 /*
5964 * We must have raced with a concurrent cpuset
5965 * update. Just reset the cpus_allowed to the
5966 * cpuset's cpus_allowed
5967 */
5968 cpumask_copy(new_mask, cpus_allowed);
5969 goto again;
5970 }
5971 }
5972out_free_new_mask:
5973 free_cpumask_var(new_mask);
5974out_free_cpus_allowed:
5975 free_cpumask_var(cpus_allowed);
5976out_put_task:
5977 put_task_struct(p);
5978 return retval;
5979}
5980
5981static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5982 struct cpumask *new_mask)
5983{
5984 if (len < cpumask_size())
5985 cpumask_clear(new_mask);
5986 else if (len > cpumask_size())
5987 len = cpumask_size();
5988
5989 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5990}
5991
5992/**
5993 * sys_sched_setaffinity - set the CPU affinity of a process
5994 * @pid: pid of the process
5995 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5996 * @user_mask_ptr: user-space pointer to the new CPU mask
5997 *
5998 * Return: 0 on success. An error code otherwise.
5999 */
6000SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6001 unsigned long __user *, user_mask_ptr)
6002{
6003 cpumask_var_t new_mask;
6004 int retval;
6005
6006 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6007 return -ENOMEM;
6008
6009 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6010 if (retval == 0)
6011 retval = sched_setaffinity(pid, new_mask);
6012 free_cpumask_var(new_mask);
6013 return retval;
6014}
6015
6016long sched_getaffinity(pid_t pid, struct cpumask *mask)
6017{
6018 struct task_struct *p;
6019 unsigned long flags;
6020 int retval;
6021
6022 rcu_read_lock();
6023
6024 retval = -ESRCH;
6025 p = find_process_by_pid(pid);
6026 if (!p)
6027 goto out_unlock;
6028
6029 retval = security_task_getscheduler(p);
6030 if (retval)
6031 goto out_unlock;
6032
6033 raw_spin_lock_irqsave(&p->pi_lock, flags);
6034 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
6035 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6036
6037out_unlock:
6038 rcu_read_unlock();
6039
6040 return retval;
6041}
6042
6043/**
6044 * sys_sched_getaffinity - get the CPU affinity of a process
6045 * @pid: pid of the process
6046 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6047 * @user_mask_ptr: user-space pointer to hold the current CPU mask
6048 *
6049 * Return: size of CPU mask copied to user_mask_ptr on success. An
6050 * error code otherwise.
6051 */
6052SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6053 unsigned long __user *, user_mask_ptr)
6054{
6055 int ret;
6056 cpumask_var_t mask;
6057
6058 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
6059 return -EINVAL;
6060 if (len & (sizeof(unsigned long)-1))
6061 return -EINVAL;
6062
6063 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6064 return -ENOMEM;
6065
6066 ret = sched_getaffinity(pid, mask);
6067 if (ret == 0) {
6068 unsigned int retlen = min(len, cpumask_size());
6069
6070 if (copy_to_user(user_mask_ptr, mask, retlen))
6071 ret = -EFAULT;
6072 else
6073 ret = retlen;
6074 }
6075 free_cpumask_var(mask);
6076
6077 return ret;
6078}
6079
6080/**
6081 * sys_sched_yield - yield the current processor to other threads.
6082 *
6083 * This function yields the current CPU to other tasks. If there are no
6084 * other threads running on this CPU then this function will return.
6085 *
6086 * Return: 0.
6087 */
6088static void do_sched_yield(void)
6089{
6090 struct rq_flags rf;
6091 struct rq *rq;
6092
6093 rq = this_rq_lock_irq(&rf);
6094
6095 schedstat_inc(rq->yld_count);
6096 current->sched_class->yield_task(rq);
6097
6098 /*
6099 * Since we are going to call schedule() anyway, there's
6100 * no need to preempt or enable interrupts:
6101 */
6102 preempt_disable();
6103 rq_unlock(rq, &rf);
6104 sched_preempt_enable_no_resched();
6105
6106 schedule();
6107}
6108
6109SYSCALL_DEFINE0(sched_yield)
6110{
6111 do_sched_yield();
6112 return 0;
6113}
6114
6115#ifndef CONFIG_PREEMPTION
6116int __sched _cond_resched(void)
6117{
6118 if (should_resched(0)) {
6119 preempt_schedule_common();
6120 return 1;
6121 }
6122 rcu_all_qs();
6123 return 0;
6124}
6125EXPORT_SYMBOL(_cond_resched);
6126#endif
6127
6128/*
6129 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6130 * call schedule, and on return reacquire the lock.
6131 *
6132 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
6133 * operations here to prevent schedule() from being called twice (once via
6134 * spin_unlock(), once by hand).
6135 */
6136int __cond_resched_lock(spinlock_t *lock)
6137{
6138 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6139 int ret = 0;
6140
6141 lockdep_assert_held(lock);
6142
6143 if (spin_needbreak(lock) || resched) {
6144 spin_unlock(lock);
6145 if (resched)
6146 preempt_schedule_common();
6147 else
6148 cpu_relax();
6149 ret = 1;
6150 spin_lock(lock);
6151 }
6152 return ret;
6153}
6154EXPORT_SYMBOL(__cond_resched_lock);
6155
6156/**
6157 * yield - yield the current processor to other threads.
6158 *
6159 * Do not ever use this function, there's a 99% chance you're doing it wrong.
6160 *
6161 * The scheduler is at all times free to pick the calling task as the most
6162 * eligible task to run, if removing the yield() call from your code breaks
6163 * it, its already broken.
6164 *
6165 * Typical broken usage is:
6166 *
6167 * while (!event)
6168 * yield();
6169 *
6170 * where one assumes that yield() will let 'the other' process run that will
6171 * make event true. If the current task is a SCHED_FIFO task that will never
6172 * happen. Never use yield() as a progress guarantee!!
6173 *
6174 * If you want to use yield() to wait for something, use wait_event().
6175 * If you want to use yield() to be 'nice' for others, use cond_resched().
6176 * If you still want to use yield(), do not!
6177 */
6178void __sched yield(void)
6179{
6180 set_current_state(TASK_RUNNING);
6181 do_sched_yield();
6182}
6183EXPORT_SYMBOL(yield);
6184
6185/**
6186 * yield_to - yield the current processor to another thread in
6187 * your thread group, or accelerate that thread toward the
6188 * processor it's on.
6189 * @p: target task
6190 * @preempt: whether task preemption is allowed or not
6191 *
6192 * It's the caller's job to ensure that the target task struct
6193 * can't go away on us before we can do any checks.
6194 *
6195 * Return:
6196 * true (>0) if we indeed boosted the target task.
6197 * false (0) if we failed to boost the target.
6198 * -ESRCH if there's no task to yield to.
6199 */
6200int __sched yield_to(struct task_struct *p, bool preempt)
6201{
6202 struct task_struct *curr = current;
6203 struct rq *rq, *p_rq;
6204 unsigned long flags;
6205 int yielded = 0;
6206
6207 local_irq_save(flags);
6208 rq = this_rq();
6209
6210again:
6211 p_rq = task_rq(p);
6212 /*
6213 * If we're the only runnable task on the rq and target rq also
6214 * has only one task, there's absolutely no point in yielding.
6215 */
6216 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
6217 yielded = -ESRCH;
6218 goto out_irq;
6219 }
6220
6221 double_rq_lock(rq, p_rq);
6222 if (task_rq(p) != p_rq) {
6223 double_rq_unlock(rq, p_rq);
6224 goto again;
6225 }
6226
6227 if (!curr->sched_class->yield_to_task)
6228 goto out_unlock;
6229
6230 if (curr->sched_class != p->sched_class)
6231 goto out_unlock;
6232
6233 if (task_running(p_rq, p) || p->state)
6234 goto out_unlock;
6235
6236 yielded = curr->sched_class->yield_to_task(rq, p);
6237 if (yielded) {
6238 schedstat_inc(rq->yld_count);
6239 /*
6240 * Make p's CPU reschedule; pick_next_entity takes care of
6241 * fairness.
6242 */
6243 if (preempt && rq != p_rq)
6244 resched_curr(p_rq);
6245 }
6246
6247out_unlock:
6248 double_rq_unlock(rq, p_rq);
6249out_irq:
6250 local_irq_restore(flags);
6251
6252 if (yielded > 0)
6253 schedule();
6254
6255 return yielded;
6256}
6257EXPORT_SYMBOL_GPL(yield_to);
6258
6259int io_schedule_prepare(void)
6260{
6261 int old_iowait = current->in_iowait;
6262
6263 current->in_iowait = 1;
6264 blk_schedule_flush_plug(current);
6265
6266 return old_iowait;
6267}
6268
6269void io_schedule_finish(int token)
6270{
6271 current->in_iowait = token;
6272}
6273
6274/*
6275 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6276 * that process accounting knows that this is a task in IO wait state.
6277 */
6278long __sched io_schedule_timeout(long timeout)
6279{
6280 int token;
6281 long ret;
6282
6283 token = io_schedule_prepare();
6284 ret = schedule_timeout(timeout);
6285 io_schedule_finish(token);
6286
6287 return ret;
6288}
6289EXPORT_SYMBOL(io_schedule_timeout);
6290
6291void __sched io_schedule(void)
6292{
6293 int token;
6294
6295 token = io_schedule_prepare();
6296 schedule();
6297 io_schedule_finish(token);
6298}
6299EXPORT_SYMBOL(io_schedule);
6300
6301/**
6302 * sys_sched_get_priority_max - return maximum RT priority.
6303 * @policy: scheduling class.
6304 *
6305 * Return: On success, this syscall returns the maximum
6306 * rt_priority that can be used by a given scheduling class.
6307 * On failure, a negative error code is returned.
6308 */
6309SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6310{
6311 int ret = -EINVAL;
6312
6313 switch (policy) {
6314 case SCHED_FIFO:
6315 case SCHED_RR:
6316 ret = MAX_USER_RT_PRIO-1;
6317 break;
6318 case SCHED_DEADLINE:
6319 case SCHED_NORMAL:
6320 case SCHED_BATCH:
6321 case SCHED_IDLE:
6322 ret = 0;
6323 break;
6324 }
6325 return ret;
6326}
6327
6328/**
6329 * sys_sched_get_priority_min - return minimum RT priority.
6330 * @policy: scheduling class.
6331 *
6332 * Return: On success, this syscall returns the minimum
6333 * rt_priority that can be used by a given scheduling class.
6334 * On failure, a negative error code is returned.
6335 */
6336SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6337{
6338 int ret = -EINVAL;
6339
6340 switch (policy) {
6341 case SCHED_FIFO:
6342 case SCHED_RR:
6343 ret = 1;
6344 break;
6345 case SCHED_DEADLINE:
6346 case SCHED_NORMAL:
6347 case SCHED_BATCH:
6348 case SCHED_IDLE:
6349 ret = 0;
6350 }
6351 return ret;
6352}
6353
6354static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
6355{
6356 struct task_struct *p;
6357 unsigned int time_slice;
6358 struct rq_flags rf;
6359 struct rq *rq;
6360 int retval;
6361
6362 if (pid < 0)
6363 return -EINVAL;
6364
6365 retval = -ESRCH;
6366 rcu_read_lock();
6367 p = find_process_by_pid(pid);
6368 if (!p)
6369 goto out_unlock;
6370
6371 retval = security_task_getscheduler(p);
6372 if (retval)
6373 goto out_unlock;
6374
6375 rq = task_rq_lock(p, &rf);
6376 time_slice = 0;
6377 if (p->sched_class->get_rr_interval)
6378 time_slice = p->sched_class->get_rr_interval(rq, p);
6379 task_rq_unlock(rq, p, &rf);
6380
6381 rcu_read_unlock();
6382 jiffies_to_timespec64(time_slice, t);
6383 return 0;
6384
6385out_unlock:
6386 rcu_read_unlock();
6387 return retval;
6388}
6389
6390/**
6391 * sys_sched_rr_get_interval - return the default timeslice of a process.
6392 * @pid: pid of the process.
6393 * @interval: userspace pointer to the timeslice value.
6394 *
6395 * this syscall writes the default timeslice value of a given process
6396 * into the user-space timespec buffer. A value of '0' means infinity.
6397 *
6398 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
6399 * an error code.
6400 */
6401SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6402 struct __kernel_timespec __user *, interval)
6403{
6404 struct timespec64 t;
6405 int retval = sched_rr_get_interval(pid, &t);
6406
6407 if (retval == 0)
6408 retval = put_timespec64(&t, interval);
6409
6410 return retval;
6411}
6412
6413#ifdef CONFIG_COMPAT_32BIT_TIME
6414SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
6415 struct old_timespec32 __user *, interval)
6416{
6417 struct timespec64 t;
6418 int retval = sched_rr_get_interval(pid, &t);
6419
6420 if (retval == 0)
6421 retval = put_old_timespec32(&t, interval);
6422 return retval;
6423}
6424#endif
6425
6426void sched_show_task(struct task_struct *p)
6427{
6428 unsigned long free = 0;
6429 int ppid;
6430
6431 if (!try_get_task_stack(p))
6432 return;
6433
6434 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
6435
6436 if (p->state == TASK_RUNNING)
6437 pr_cont(" running task ");
6438#ifdef CONFIG_DEBUG_STACK_USAGE
6439 free = stack_not_used(p);
6440#endif
6441 ppid = 0;
6442 rcu_read_lock();
6443 if (pid_alive(p))
6444 ppid = task_pid_nr(rcu_dereference(p->real_parent));
6445 rcu_read_unlock();
6446 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
6447 free, task_pid_nr(p), ppid,
6448 (unsigned long)task_thread_info(p)->flags);
6449
6450 print_worker_info(KERN_INFO, p);
6451 show_stack(p, NULL, KERN_INFO);
6452 put_task_stack(p);
6453}
6454EXPORT_SYMBOL_GPL(sched_show_task);
6455
6456static inline bool
6457state_filter_match(unsigned long state_filter, struct task_struct *p)
6458{
6459 /* no filter, everything matches */
6460 if (!state_filter)
6461 return true;
6462
6463 /* filter, but doesn't match */
6464 if (!(p->state & state_filter))
6465 return false;
6466
6467 /*
6468 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
6469 * TASK_KILLABLE).
6470 */
6471 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
6472 return false;
6473
6474 return true;
6475}
6476
6477
6478void show_state_filter(unsigned long state_filter)
6479{
6480 struct task_struct *g, *p;
6481
6482 rcu_read_lock();
6483 for_each_process_thread(g, p) {
6484 /*
6485 * reset the NMI-timeout, listing all files on a slow
6486 * console might take a lot of time:
6487 * Also, reset softlockup watchdogs on all CPUs, because
6488 * another CPU might be blocked waiting for us to process
6489 * an IPI.
6490 */
6491 touch_nmi_watchdog();
6492 touch_all_softlockup_watchdogs();
6493 if (state_filter_match(state_filter, p))
6494 sched_show_task(p);
6495 }
6496
6497#ifdef CONFIG_SCHED_DEBUG
6498 if (!state_filter)
6499 sysrq_sched_debug_show();
6500#endif
6501 rcu_read_unlock();
6502 /*
6503 * Only show locks if all tasks are dumped:
6504 */
6505 if (!state_filter)
6506 debug_show_all_locks();
6507}
6508
6509/**
6510 * init_idle - set up an idle thread for a given CPU
6511 * @idle: task in question
6512 * @cpu: CPU the idle task belongs to
6513 *
6514 * NOTE: this function does not set the idle thread's NEED_RESCHED
6515 * flag, to make booting more robust.
6516 */
6517void init_idle(struct task_struct *idle, int cpu)
6518{
6519 struct rq *rq = cpu_rq(cpu);
6520 unsigned long flags;
6521
6522 __sched_fork(0, idle);
6523
6524 raw_spin_lock_irqsave(&idle->pi_lock, flags);
6525 raw_spin_lock(&rq->lock);
6526
6527 idle->state = TASK_RUNNING;
6528 idle->se.exec_start = sched_clock();
6529 idle->flags |= PF_IDLE;
6530
6531 scs_task_reset(idle);
6532 kasan_unpoison_task_stack(idle);
6533
6534#ifdef CONFIG_SMP
6535 /*
6536 * Its possible that init_idle() gets called multiple times on a task,
6537 * in that case do_set_cpus_allowed() will not do the right thing.
6538 *
6539 * And since this is boot we can forgo the serialization.
6540 */
6541 set_cpus_allowed_common(idle, cpumask_of(cpu));
6542#endif
6543 /*
6544 * We're having a chicken and egg problem, even though we are
6545 * holding rq->lock, the CPU isn't yet set to this CPU so the
6546 * lockdep check in task_group() will fail.
6547 *
6548 * Similar case to sched_fork(). / Alternatively we could
6549 * use task_rq_lock() here and obtain the other rq->lock.
6550 *
6551 * Silence PROVE_RCU
6552 */
6553 rcu_read_lock();
6554 __set_task_cpu(idle, cpu);
6555 rcu_read_unlock();
6556
6557 rq->idle = idle;
6558 rcu_assign_pointer(rq->curr, idle);
6559 idle->on_rq = TASK_ON_RQ_QUEUED;
6560#ifdef CONFIG_SMP
6561 idle->on_cpu = 1;
6562#endif
6563 raw_spin_unlock(&rq->lock);
6564 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6565
6566 /* Set the preempt count _outside_ the spinlocks! */
6567 init_idle_preempt_count(idle, cpu);
6568
6569 /*
6570 * The idle tasks have their own, simple scheduling class:
6571 */
6572 idle->sched_class = &idle_sched_class;
6573 ftrace_graph_init_idle_task(idle, cpu);
6574 vtime_init_idle(idle, cpu);
6575#ifdef CONFIG_SMP
6576 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6577#endif
6578}
6579
6580#ifdef CONFIG_SMP
6581
6582int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6583 const struct cpumask *trial)
6584{
6585 int ret = 1;
6586
6587 if (!cpumask_weight(cur))
6588 return ret;
6589
6590 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
6591
6592 return ret;
6593}
6594
6595int task_can_attach(struct task_struct *p,
6596 const struct cpumask *cs_cpus_allowed)
6597{
6598 int ret = 0;
6599
6600 /*
6601 * Kthreads which disallow setaffinity shouldn't be moved
6602 * to a new cpuset; we don't want to change their CPU
6603 * affinity and isolating such threads by their set of
6604 * allowed nodes is unnecessary. Thus, cpusets are not
6605 * applicable for such threads. This prevents checking for
6606 * success of set_cpus_allowed_ptr() on all attached tasks
6607 * before cpus_mask may be changed.
6608 */
6609 if (p->flags & PF_NO_SETAFFINITY) {
6610 ret = -EINVAL;
6611 goto out;
6612 }
6613
6614 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
6615 cs_cpus_allowed))
6616 ret = dl_task_can_attach(p, cs_cpus_allowed);
6617
6618out:
6619 return ret;
6620}
6621
6622bool sched_smp_initialized __read_mostly;
6623
6624#ifdef CONFIG_NUMA_BALANCING
6625/* Migrate current task p to target_cpu */
6626int migrate_task_to(struct task_struct *p, int target_cpu)
6627{
6628 struct migration_arg arg = { p, target_cpu };
6629 int curr_cpu = task_cpu(p);
6630
6631 if (curr_cpu == target_cpu)
6632 return 0;
6633
6634 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6635 return -EINVAL;
6636
6637 /* TODO: This is not properly updating schedstats */
6638
6639 trace_sched_move_numa(p, curr_cpu, target_cpu);
6640 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6641}
6642
6643/*
6644 * Requeue a task on a given node and accurately track the number of NUMA
6645 * tasks on the runqueues
6646 */
6647void sched_setnuma(struct task_struct *p, int nid)
6648{
6649 bool queued, running;
6650 struct rq_flags rf;
6651 struct rq *rq;
6652
6653 rq = task_rq_lock(p, &rf);
6654 queued = task_on_rq_queued(p);
6655 running = task_current(rq, p);
6656
6657 if (queued)
6658 dequeue_task(rq, p, DEQUEUE_SAVE);
6659 if (running)
6660 put_prev_task(rq, p);
6661
6662 p->numa_preferred_nid = nid;
6663
6664 if (queued)
6665 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6666 if (running)
6667 set_next_task(rq, p);
6668 task_rq_unlock(rq, p, &rf);
6669}
6670#endif /* CONFIG_NUMA_BALANCING */
6671
6672#ifdef CONFIG_HOTPLUG_CPU
6673/*
6674 * Ensure that the idle task is using init_mm right before its CPU goes
6675 * offline.
6676 */
6677void idle_task_exit(void)
6678{
6679 struct mm_struct *mm = current->active_mm;
6680
6681 BUG_ON(cpu_online(smp_processor_id()));
6682 BUG_ON(current != this_rq()->idle);
6683
6684 if (mm != &init_mm) {
6685 switch_mm(mm, &init_mm, current);
6686 finish_arch_post_lock_switch();
6687 }
6688
6689 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
6690}
6691
6692/*
6693 * Since this CPU is going 'away' for a while, fold any nr_active delta
6694 * we might have. Assumes we're called after migrate_tasks() so that the
6695 * nr_active count is stable. We need to take the teardown thread which
6696 * is calling this into account, so we hand in adjust = 1 to the load
6697 * calculation.
6698 *
6699 * Also see the comment "Global load-average calculations".
6700 */
6701static void calc_load_migrate(struct rq *rq)
6702{
6703 long delta = calc_load_fold_active(rq, 1);
6704 if (delta)
6705 atomic_long_add(delta, &calc_load_tasks);
6706}
6707
6708static struct task_struct *__pick_migrate_task(struct rq *rq)
6709{
6710 const struct sched_class *class;
6711 struct task_struct *next;
6712
6713 for_each_class(class) {
6714 next = class->pick_next_task(rq);
6715 if (next) {
6716 next->sched_class->put_prev_task(rq, next);
6717 return next;
6718 }
6719 }
6720
6721 /* The idle class should always have a runnable task */
6722 BUG();
6723}
6724
6725/*
6726 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6727 * try_to_wake_up()->select_task_rq().
6728 *
6729 * Called with rq->lock held even though we'er in stop_machine() and
6730 * there's no concurrency possible, we hold the required locks anyway
6731 * because of lock validation efforts.
6732 */
6733static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
6734{
6735 struct rq *rq = dead_rq;
6736 struct task_struct *next, *stop = rq->stop;
6737 struct rq_flags orf = *rf;
6738 int dest_cpu;
6739
6740 /*
6741 * Fudge the rq selection such that the below task selection loop
6742 * doesn't get stuck on the currently eligible stop task.
6743 *
6744 * We're currently inside stop_machine() and the rq is either stuck
6745 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6746 * either way we should never end up calling schedule() until we're
6747 * done here.
6748 */
6749 rq->stop = NULL;
6750
6751 /*
6752 * put_prev_task() and pick_next_task() sched
6753 * class method both need to have an up-to-date
6754 * value of rq->clock[_task]
6755 */
6756 update_rq_clock(rq);
6757
6758 for (;;) {
6759 /*
6760 * There's this thread running, bail when that's the only
6761 * remaining thread:
6762 */
6763 if (rq->nr_running == 1)
6764 break;
6765
6766 next = __pick_migrate_task(rq);
6767
6768 /*
6769 * Rules for changing task_struct::cpus_mask are holding
6770 * both pi_lock and rq->lock, such that holding either
6771 * stabilizes the mask.
6772 *
6773 * Drop rq->lock is not quite as disastrous as it usually is
6774 * because !cpu_active at this point, which means load-balance
6775 * will not interfere. Also, stop-machine.
6776 */
6777 rq_unlock(rq, rf);
6778 raw_spin_lock(&next->pi_lock);
6779 rq_relock(rq, rf);
6780
6781 /*
6782 * Since we're inside stop-machine, _nothing_ should have
6783 * changed the task, WARN if weird stuff happened, because in
6784 * that case the above rq->lock drop is a fail too.
6785 */
6786 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6787 raw_spin_unlock(&next->pi_lock);
6788 continue;
6789 }
6790
6791 /* Find suitable destination for @next, with force if needed. */
6792 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
6793 rq = __migrate_task(rq, rf, next, dest_cpu);
6794 if (rq != dead_rq) {
6795 rq_unlock(rq, rf);
6796 rq = dead_rq;
6797 *rf = orf;
6798 rq_relock(rq, rf);
6799 }
6800 raw_spin_unlock(&next->pi_lock);
6801 }
6802
6803 rq->stop = stop;
6804}
6805#endif /* CONFIG_HOTPLUG_CPU */
6806
6807void set_rq_online(struct rq *rq)
6808{
6809 if (!rq->online) {
6810 const struct sched_class *class;
6811
6812 cpumask_set_cpu(rq->cpu, rq->rd->online);
6813 rq->online = 1;
6814
6815 for_each_class(class) {
6816 if (class->rq_online)
6817 class->rq_online(rq);
6818 }
6819 }
6820}
6821
6822void set_rq_offline(struct rq *rq)
6823{
6824 if (rq->online) {
6825 const struct sched_class *class;
6826
6827 for_each_class(class) {
6828 if (class->rq_offline)
6829 class->rq_offline(rq);
6830 }
6831
6832 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6833 rq->online = 0;
6834 }
6835}
6836
6837/*
6838 * used to mark begin/end of suspend/resume:
6839 */
6840static int num_cpus_frozen;
6841
6842/*
6843 * Update cpusets according to cpu_active mask. If cpusets are
6844 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6845 * around partition_sched_domains().
6846 *
6847 * If we come here as part of a suspend/resume, don't touch cpusets because we
6848 * want to restore it back to its original state upon resume anyway.
6849 */
6850static void cpuset_cpu_active(void)
6851{
6852 if (cpuhp_tasks_frozen) {
6853 /*
6854 * num_cpus_frozen tracks how many CPUs are involved in suspend
6855 * resume sequence. As long as this is not the last online
6856 * operation in the resume sequence, just build a single sched
6857 * domain, ignoring cpusets.
6858 */
6859 partition_sched_domains(1, NULL, NULL);
6860 if (--num_cpus_frozen)
6861 return;
6862 /*
6863 * This is the last CPU online operation. So fall through and
6864 * restore the original sched domains by considering the
6865 * cpuset configurations.
6866 */
6867 cpuset_force_rebuild();
6868 }
6869 cpuset_update_active_cpus();
6870}
6871
6872static int cpuset_cpu_inactive(unsigned int cpu)
6873{
6874 if (!cpuhp_tasks_frozen) {
6875 if (dl_cpu_busy(cpu))
6876 return -EBUSY;
6877 cpuset_update_active_cpus();
6878 } else {
6879 num_cpus_frozen++;
6880 partition_sched_domains(1, NULL, NULL);
6881 }
6882 return 0;
6883}
6884
6885int sched_cpu_activate(unsigned int cpu)
6886{
6887 struct rq *rq = cpu_rq(cpu);
6888 struct rq_flags rf;
6889
6890#ifdef CONFIG_SCHED_SMT
6891 /*
6892 * When going up, increment the number of cores with SMT present.
6893 */
6894 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6895 static_branch_inc_cpuslocked(&sched_smt_present);
6896#endif
6897 set_cpu_active(cpu, true);
6898
6899 if (sched_smp_initialized) {
6900 sched_domains_numa_masks_set(cpu);
6901 cpuset_cpu_active();
6902 }
6903
6904 /*
6905 * Put the rq online, if not already. This happens:
6906 *
6907 * 1) In the early boot process, because we build the real domains
6908 * after all CPUs have been brought up.
6909 *
6910 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6911 * domains.
6912 */
6913 rq_lock_irqsave(rq, &rf);
6914 if (rq->rd) {
6915 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6916 set_rq_online(rq);
6917 }
6918 rq_unlock_irqrestore(rq, &rf);
6919
6920 return 0;
6921}
6922
6923int sched_cpu_deactivate(unsigned int cpu)
6924{
6925 int ret;
6926
6927 set_cpu_active(cpu, false);
6928 /*
6929 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6930 * users of this state to go away such that all new such users will
6931 * observe it.
6932 *
6933 * Do sync before park smpboot threads to take care the rcu boost case.
6934 */
6935 synchronize_rcu();
6936
6937#ifdef CONFIG_SCHED_SMT
6938 /*
6939 * When going down, decrement the number of cores with SMT present.
6940 */
6941 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6942 static_branch_dec_cpuslocked(&sched_smt_present);
6943#endif
6944
6945 if (!sched_smp_initialized)
6946 return 0;
6947
6948 ret = cpuset_cpu_inactive(cpu);
6949 if (ret) {
6950 set_cpu_active(cpu, true);
6951 return ret;
6952 }
6953 sched_domains_numa_masks_clear(cpu);
6954 return 0;
6955}
6956
6957static void sched_rq_cpu_starting(unsigned int cpu)
6958{
6959 struct rq *rq = cpu_rq(cpu);
6960
6961 rq->calc_load_update = calc_load_update;
6962 update_max_interval();
6963}
6964
6965int sched_cpu_starting(unsigned int cpu)
6966{
6967 sched_rq_cpu_starting(cpu);
6968 sched_tick_start(cpu);
6969 return 0;
6970}
6971
6972#ifdef CONFIG_HOTPLUG_CPU
6973int sched_cpu_dying(unsigned int cpu)
6974{
6975 struct rq *rq = cpu_rq(cpu);
6976 struct rq_flags rf;
6977
6978 /* Handle pending wakeups and then migrate everything off */
6979 sched_tick_stop(cpu);
6980
6981 rq_lock_irqsave(rq, &rf);
6982 if (rq->rd) {
6983 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6984 set_rq_offline(rq);
6985 }
6986 migrate_tasks(rq, &rf);
6987 BUG_ON(rq->nr_running != 1);
6988 rq_unlock_irqrestore(rq, &rf);
6989
6990 calc_load_migrate(rq);
6991 update_max_interval();
6992 nohz_balance_exit_idle(rq);
6993 hrtick_clear(rq);
6994 return 0;
6995}
6996#endif
6997
6998void __init sched_init_smp(void)
6999{
7000 sched_init_numa();
7001
7002 /*
7003 * There's no userspace yet to cause hotplug operations; hence all the
7004 * CPU masks are stable and all blatant races in the below code cannot
7005 * happen.
7006 */
7007 mutex_lock(&sched_domains_mutex);
7008 sched_init_domains(cpu_active_mask);
7009 mutex_unlock(&sched_domains_mutex);
7010
7011 /* Move init over to a non-isolated CPU */
7012 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
7013 BUG();
7014 sched_init_granularity();
7015
7016 init_sched_rt_class();
7017 init_sched_dl_class();
7018
7019 sched_smp_initialized = true;
7020}
7021
7022static int __init migration_init(void)
7023{
7024 sched_cpu_starting(smp_processor_id());
7025 return 0;
7026}
7027early_initcall(migration_init);
7028
7029#else
7030void __init sched_init_smp(void)
7031{
7032 sched_init_granularity();
7033}
7034#endif /* CONFIG_SMP */
7035
7036int in_sched_functions(unsigned long addr)
7037{
7038 return in_lock_functions(addr) ||
7039 (addr >= (unsigned long)__sched_text_start
7040 && addr < (unsigned long)__sched_text_end);
7041}
7042
7043#ifdef CONFIG_CGROUP_SCHED
7044/*
7045 * Default task group.
7046 * Every task in system belongs to this group at bootup.
7047 */
7048struct task_group root_task_group;
7049LIST_HEAD(task_groups);
7050
7051/* Cacheline aligned slab cache for task_group */
7052static struct kmem_cache *task_group_cache __read_mostly;
7053#endif
7054
7055DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7056DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
7057
7058void __init sched_init(void)
7059{
7060 unsigned long ptr = 0;
7061 int i;
7062
7063 /* Make sure the linker didn't screw up */
7064 BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
7065 &fair_sched_class + 1 != &rt_sched_class ||
7066 &rt_sched_class + 1 != &dl_sched_class);
7067#ifdef CONFIG_SMP
7068 BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
7069#endif
7070
7071 wait_bit_init();
7072
7073#ifdef CONFIG_FAIR_GROUP_SCHED
7074 ptr += 2 * nr_cpu_ids * sizeof(void **);
7075#endif
7076#ifdef CONFIG_RT_GROUP_SCHED
7077 ptr += 2 * nr_cpu_ids * sizeof(void **);
7078#endif
7079 if (ptr) {
7080 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
7081
7082#ifdef CONFIG_FAIR_GROUP_SCHED
7083 root_task_group.se = (struct sched_entity **)ptr;
7084 ptr += nr_cpu_ids * sizeof(void **);
7085
7086 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7087 ptr += nr_cpu_ids * sizeof(void **);
7088
7089 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7090 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7091#endif /* CONFIG_FAIR_GROUP_SCHED */
7092#ifdef CONFIG_RT_GROUP_SCHED
7093 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7094 ptr += nr_cpu_ids * sizeof(void **);
7095
7096 root_task_group.rt_rq = (struct rt_rq **)ptr;
7097 ptr += nr_cpu_ids * sizeof(void **);
7098
7099#endif /* CONFIG_RT_GROUP_SCHED */
7100 }
7101#ifdef CONFIG_CPUMASK_OFFSTACK
7102 for_each_possible_cpu(i) {
7103 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7104 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7105 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
7106 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7107 }
7108#endif /* CONFIG_CPUMASK_OFFSTACK */
7109
7110 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
7111 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
7112
7113#ifdef CONFIG_SMP
7114 init_defrootdomain();
7115#endif
7116
7117#ifdef CONFIG_RT_GROUP_SCHED
7118 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7119 global_rt_period(), global_rt_runtime());
7120#endif /* CONFIG_RT_GROUP_SCHED */
7121
7122#ifdef CONFIG_CGROUP_SCHED
7123 task_group_cache = KMEM_CACHE(task_group, 0);
7124
7125 list_add(&root_task_group.list, &task_groups);
7126 INIT_LIST_HEAD(&root_task_group.children);
7127 INIT_LIST_HEAD(&root_task_group.siblings);
7128 autogroup_init(&init_task);
7129#endif /* CONFIG_CGROUP_SCHED */
7130
7131 for_each_possible_cpu(i) {
7132 struct rq *rq;
7133
7134 rq = cpu_rq(i);
7135 raw_spin_lock_init(&rq->lock);
7136 rq->nr_running = 0;
7137 rq->calc_load_active = 0;
7138 rq->calc_load_update = jiffies + LOAD_FREQ;
7139 init_cfs_rq(&rq->cfs);
7140 init_rt_rq(&rq->rt);
7141 init_dl_rq(&rq->dl);
7142#ifdef CONFIG_FAIR_GROUP_SCHED
7143 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7144 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
7145 /*
7146 * How much CPU bandwidth does root_task_group get?
7147 *
7148 * In case of task-groups formed thr' the cgroup filesystem, it
7149 * gets 100% of the CPU resources in the system. This overall
7150 * system CPU resource is divided among the tasks of
7151 * root_task_group and its child task-groups in a fair manner,
7152 * based on each entity's (task or task-group's) weight
7153 * (se->load.weight).
7154 *
7155 * In other words, if root_task_group has 10 tasks of weight
7156 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7157 * then A0's share of the CPU resource is:
7158 *
7159 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7160 *
7161 * We achieve this by letting root_task_group's tasks sit
7162 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7163 */
7164 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7165#endif /* CONFIG_FAIR_GROUP_SCHED */
7166
7167 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7168#ifdef CONFIG_RT_GROUP_SCHED
7169 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7170#endif
7171#ifdef CONFIG_SMP
7172 rq->sd = NULL;
7173 rq->rd = NULL;
7174 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7175 rq->balance_callback = NULL;
7176 rq->active_balance = 0;
7177 rq->next_balance = jiffies;
7178 rq->push_cpu = 0;
7179 rq->cpu = i;
7180 rq->online = 0;
7181 rq->idle_stamp = 0;
7182 rq->avg_idle = 2*sysctl_sched_migration_cost;
7183 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7184
7185 INIT_LIST_HEAD(&rq->cfs_tasks);
7186
7187 rq_attach_root(rq, &def_root_domain);
7188#ifdef CONFIG_NO_HZ_COMMON
7189 rq->last_blocked_load_update_tick = jiffies;
7190 atomic_set(&rq->nohz_flags, 0);
7191
7192 rq_csd_init(rq, &rq->nohz_csd, nohz_csd_func);
7193#endif
7194#endif /* CONFIG_SMP */
7195 hrtick_rq_init(rq);
7196 atomic_set(&rq->nr_iowait, 0);
7197 }
7198
7199 set_load_weight(&init_task, false);
7200
7201 /*
7202 * The boot idle thread does lazy MMU switching as well:
7203 */
7204 mmgrab(&init_mm);
7205 enter_lazy_tlb(&init_mm, current);
7206
7207 /*
7208 * Make us the idle thread. Technically, schedule() should not be
7209 * called from this thread, however somewhere below it might be,
7210 * but because we are the idle thread, we just pick up running again
7211 * when this runqueue becomes "idle".
7212 */
7213 init_idle(current, smp_processor_id());
7214
7215 calc_load_update = jiffies + LOAD_FREQ;
7216
7217#ifdef CONFIG_SMP
7218 idle_thread_set_boot_cpu();
7219#endif
7220 init_sched_fair_class();
7221
7222 init_schedstats();
7223
7224 psi_init();
7225
7226 init_uclamp();
7227
7228 scheduler_running = 1;
7229}
7230
7231#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7232static inline int preempt_count_equals(int preempt_offset)
7233{
7234 int nested = preempt_count() + rcu_preempt_depth();
7235
7236 return (nested == preempt_offset);
7237}
7238
7239void __might_sleep(const char *file, int line, int preempt_offset)
7240{
7241 /*
7242 * Blocking primitives will set (and therefore destroy) current->state,
7243 * since we will exit with TASK_RUNNING make sure we enter with it,
7244 * otherwise we will destroy state.
7245 */
7246 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7247 "do not call blocking ops when !TASK_RUNNING; "
7248 "state=%lx set at [<%p>] %pS\n",
7249 current->state,
7250 (void *)current->task_state_change,
7251 (void *)current->task_state_change);
7252
7253 ___might_sleep(file, line, preempt_offset);
7254}
7255EXPORT_SYMBOL(__might_sleep);
7256
7257void ___might_sleep(const char *file, int line, int preempt_offset)
7258{
7259 /* Ratelimiting timestamp: */
7260 static unsigned long prev_jiffy;
7261
7262 unsigned long preempt_disable_ip;
7263
7264 /* WARN_ON_ONCE() by default, no rate limit required: */
7265 rcu_sleep_check();
7266
7267 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7268 !is_idle_task(current) && !current->non_block_count) ||
7269 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
7270 oops_in_progress)
7271 return;
7272
7273 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7274 return;
7275 prev_jiffy = jiffies;
7276
7277 /* Save this before calling printk(), since that will clobber it: */
7278 preempt_disable_ip = get_preempt_disable_ip(current);
7279
7280 printk(KERN_ERR
7281 "BUG: sleeping function called from invalid context at %s:%d\n",
7282 file, line);
7283 printk(KERN_ERR
7284 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
7285 in_atomic(), irqs_disabled(), current->non_block_count,
7286 current->pid, current->comm);
7287
7288 if (task_stack_end_corrupted(current))
7289 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7290
7291 debug_show_held_locks(current);
7292 if (irqs_disabled())
7293 print_irqtrace_events(current);
7294 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7295 && !preempt_count_equals(preempt_offset)) {
7296 pr_err("Preemption disabled at:");
7297 print_ip_sym(KERN_ERR, preempt_disable_ip);
7298 }
7299 dump_stack();
7300 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7301}
7302EXPORT_SYMBOL(___might_sleep);
7303
7304void __cant_sleep(const char *file, int line, int preempt_offset)
7305{
7306 static unsigned long prev_jiffy;
7307
7308 if (irqs_disabled())
7309 return;
7310
7311 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
7312 return;
7313
7314 if (preempt_count() > preempt_offset)
7315 return;
7316
7317 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7318 return;
7319 prev_jiffy = jiffies;
7320
7321 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
7322 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7323 in_atomic(), irqs_disabled(),
7324 current->pid, current->comm);
7325
7326 debug_show_held_locks(current);
7327 dump_stack();
7328 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7329}
7330EXPORT_SYMBOL_GPL(__cant_sleep);
7331#endif
7332
7333#ifdef CONFIG_MAGIC_SYSRQ
7334void normalize_rt_tasks(void)
7335{
7336 struct task_struct *g, *p;
7337 struct sched_attr attr = {
7338 .sched_policy = SCHED_NORMAL,
7339 };
7340
7341 read_lock(&tasklist_lock);
7342 for_each_process_thread(g, p) {
7343 /*
7344 * Only normalize user tasks:
7345 */
7346 if (p->flags & PF_KTHREAD)
7347 continue;
7348
7349 p->se.exec_start = 0;
7350 schedstat_set(p->se.statistics.wait_start, 0);
7351 schedstat_set(p->se.statistics.sleep_start, 0);
7352 schedstat_set(p->se.statistics.block_start, 0);
7353
7354 if (!dl_task(p) && !rt_task(p)) {
7355 /*
7356 * Renice negative nice level userspace
7357 * tasks back to 0:
7358 */
7359 if (task_nice(p) < 0)
7360 set_user_nice(p, 0);
7361 continue;
7362 }
7363
7364 __sched_setscheduler(p, &attr, false, false);
7365 }
7366 read_unlock(&tasklist_lock);
7367}
7368
7369#endif /* CONFIG_MAGIC_SYSRQ */
7370
7371#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7372/*
7373 * These functions are only useful for the IA64 MCA handling, or kdb.
7374 *
7375 * They can only be called when the whole system has been
7376 * stopped - every CPU needs to be quiescent, and no scheduling
7377 * activity can take place. Using them for anything else would
7378 * be a serious bug, and as a result, they aren't even visible
7379 * under any other configuration.
7380 */
7381
7382/**
7383 * curr_task - return the current task for a given CPU.
7384 * @cpu: the processor in question.
7385 *
7386 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7387 *
7388 * Return: The current task for @cpu.
7389 */
7390struct task_struct *curr_task(int cpu)
7391{
7392 return cpu_curr(cpu);
7393}
7394
7395#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7396
7397#ifdef CONFIG_IA64
7398/**
7399 * ia64_set_curr_task - set the current task for a given CPU.
7400 * @cpu: the processor in question.
7401 * @p: the task pointer to set.
7402 *
7403 * Description: This function must only be used when non-maskable interrupts
7404 * are serviced on a separate stack. It allows the architecture to switch the
7405 * notion of the current task on a CPU in a non-blocking manner. This function
7406 * must be called with all CPU's synchronized, and interrupts disabled, the
7407 * and caller must save the original value of the current task (see
7408 * curr_task() above) and restore that value before reenabling interrupts and
7409 * re-starting the system.
7410 *
7411 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7412 */
7413void ia64_set_curr_task(int cpu, struct task_struct *p)
7414{
7415 cpu_curr(cpu) = p;
7416}
7417
7418#endif
7419
7420#ifdef CONFIG_CGROUP_SCHED
7421/* task_group_lock serializes the addition/removal of task groups */
7422static DEFINE_SPINLOCK(task_group_lock);
7423
7424static inline void alloc_uclamp_sched_group(struct task_group *tg,
7425 struct task_group *parent)
7426{
7427#ifdef CONFIG_UCLAMP_TASK_GROUP
7428 enum uclamp_id clamp_id;
7429
7430 for_each_clamp_id(clamp_id) {
7431 uclamp_se_set(&tg->uclamp_req[clamp_id],
7432 uclamp_none(clamp_id), false);
7433 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
7434 }
7435#endif
7436}
7437
7438static void sched_free_group(struct task_group *tg)
7439{
7440 free_fair_sched_group(tg);
7441 free_rt_sched_group(tg);
7442 autogroup_free(tg);
7443 kmem_cache_free(task_group_cache, tg);
7444}
7445
7446/* allocate runqueue etc for a new task group */
7447struct task_group *sched_create_group(struct task_group *parent)
7448{
7449 struct task_group *tg;
7450
7451 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7452 if (!tg)
7453 return ERR_PTR(-ENOMEM);
7454
7455 if (!alloc_fair_sched_group(tg, parent))
7456 goto err;
7457
7458 if (!alloc_rt_sched_group(tg, parent))
7459 goto err;
7460
7461 alloc_uclamp_sched_group(tg, parent);
7462
7463 return tg;
7464
7465err:
7466 sched_free_group(tg);
7467 return ERR_PTR(-ENOMEM);
7468}
7469
7470void sched_online_group(struct task_group *tg, struct task_group *parent)
7471{
7472 unsigned long flags;
7473
7474 spin_lock_irqsave(&task_group_lock, flags);
7475 list_add_rcu(&tg->list, &task_groups);
7476
7477 /* Root should already exist: */
7478 WARN_ON(!parent);
7479
7480 tg->parent = parent;
7481 INIT_LIST_HEAD(&tg->children);
7482 list_add_rcu(&tg->siblings, &parent->children);
7483 spin_unlock_irqrestore(&task_group_lock, flags);
7484
7485 online_fair_sched_group(tg);
7486}
7487
7488/* rcu callback to free various structures associated with a task group */
7489static void sched_free_group_rcu(struct rcu_head *rhp)
7490{
7491 /* Now it should be safe to free those cfs_rqs: */
7492 sched_free_group(container_of(rhp, struct task_group, rcu));
7493}
7494
7495void sched_destroy_group(struct task_group *tg)
7496{
7497 /* Wait for possible concurrent references to cfs_rqs complete: */
7498 call_rcu(&tg->rcu, sched_free_group_rcu);
7499}
7500
7501void sched_offline_group(struct task_group *tg)
7502{
7503 unsigned long flags;
7504
7505 /* End participation in shares distribution: */
7506 unregister_fair_sched_group(tg);
7507
7508 spin_lock_irqsave(&task_group_lock, flags);
7509 list_del_rcu(&tg->list);
7510 list_del_rcu(&tg->siblings);
7511 spin_unlock_irqrestore(&task_group_lock, flags);
7512}
7513
7514static void sched_change_group(struct task_struct *tsk, int type)
7515{
7516 struct task_group *tg;
7517
7518 /*
7519 * All callers are synchronized by task_rq_lock(); we do not use RCU
7520 * which is pointless here. Thus, we pass "true" to task_css_check()
7521 * to prevent lockdep warnings.
7522 */
7523 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7524 struct task_group, css);
7525 tg = autogroup_task_group(tsk, tg);
7526 tsk->sched_task_group = tg;
7527
7528#ifdef CONFIG_FAIR_GROUP_SCHED
7529 if (tsk->sched_class->task_change_group)
7530 tsk->sched_class->task_change_group(tsk, type);
7531 else
7532#endif
7533 set_task_rq(tsk, task_cpu(tsk));
7534}
7535
7536/*
7537 * Change task's runqueue when it moves between groups.
7538 *
7539 * The caller of this function should have put the task in its new group by
7540 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7541 * its new group.
7542 */
7543void sched_move_task(struct task_struct *tsk)
7544{
7545 int queued, running, queue_flags =
7546 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7547 struct rq_flags rf;
7548 struct rq *rq;
7549
7550 rq = task_rq_lock(tsk, &rf);
7551 update_rq_clock(rq);
7552
7553 running = task_current(rq, tsk);
7554 queued = task_on_rq_queued(tsk);
7555
7556 if (queued)
7557 dequeue_task(rq, tsk, queue_flags);
7558 if (running)
7559 put_prev_task(rq, tsk);
7560
7561 sched_change_group(tsk, TASK_MOVE_GROUP);
7562
7563 if (queued)
7564 enqueue_task(rq, tsk, queue_flags);
7565 if (running) {
7566 set_next_task(rq, tsk);
7567 /*
7568 * After changing group, the running task may have joined a
7569 * throttled one but it's still the running task. Trigger a
7570 * resched to make sure that task can still run.
7571 */
7572 resched_curr(rq);
7573 }
7574
7575 task_rq_unlock(rq, tsk, &rf);
7576}
7577
7578static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7579{
7580 return css ? container_of(css, struct task_group, css) : NULL;
7581}
7582
7583static struct cgroup_subsys_state *
7584cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7585{
7586 struct task_group *parent = css_tg(parent_css);
7587 struct task_group *tg;
7588
7589 if (!parent) {
7590 /* This is early initialization for the top cgroup */
7591 return &root_task_group.css;
7592 }
7593
7594 tg = sched_create_group(parent);
7595 if (IS_ERR(tg))
7596 return ERR_PTR(-ENOMEM);
7597
7598 return &tg->css;
7599}
7600
7601/* Expose task group only after completing cgroup initialization */
7602static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7603{
7604 struct task_group *tg = css_tg(css);
7605 struct task_group *parent = css_tg(css->parent);
7606
7607 if (parent)
7608 sched_online_group(tg, parent);
7609
7610#ifdef CONFIG_UCLAMP_TASK_GROUP
7611 /* Propagate the effective uclamp value for the new group */
7612 cpu_util_update_eff(css);
7613#endif
7614
7615 return 0;
7616}
7617
7618static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
7619{
7620 struct task_group *tg = css_tg(css);
7621
7622 sched_offline_group(tg);
7623}
7624
7625static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7626{
7627 struct task_group *tg = css_tg(css);
7628
7629 /*
7630 * Relies on the RCU grace period between css_released() and this.
7631 */
7632 sched_free_group(tg);
7633}
7634
7635/*
7636 * This is called before wake_up_new_task(), therefore we really only
7637 * have to set its group bits, all the other stuff does not apply.
7638 */
7639static void cpu_cgroup_fork(struct task_struct *task)
7640{
7641 struct rq_flags rf;
7642 struct rq *rq;
7643
7644 rq = task_rq_lock(task, &rf);
7645
7646 update_rq_clock(rq);
7647 sched_change_group(task, TASK_SET_GROUP);
7648
7649 task_rq_unlock(rq, task, &rf);
7650}
7651
7652static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
7653{
7654 struct task_struct *task;
7655 struct cgroup_subsys_state *css;
7656 int ret = 0;
7657
7658 cgroup_taskset_for_each(task, css, tset) {
7659#ifdef CONFIG_RT_GROUP_SCHED
7660 if (!sched_rt_can_attach(css_tg(css), task))
7661 return -EINVAL;
7662#endif
7663 /*
7664 * Serialize against wake_up_new_task() such that if its
7665 * running, we're sure to observe its full state.
7666 */
7667 raw_spin_lock_irq(&task->pi_lock);
7668 /*
7669 * Avoid calling sched_move_task() before wake_up_new_task()
7670 * has happened. This would lead to problems with PELT, due to
7671 * move wanting to detach+attach while we're not attached yet.
7672 */
7673 if (task->state == TASK_NEW)
7674 ret = -EINVAL;
7675 raw_spin_unlock_irq(&task->pi_lock);
7676
7677 if (ret)
7678 break;
7679 }
7680 return ret;
7681}
7682
7683static void cpu_cgroup_attach(struct cgroup_taskset *tset)
7684{
7685 struct task_struct *task;
7686 struct cgroup_subsys_state *css;
7687
7688 cgroup_taskset_for_each(task, css, tset)
7689 sched_move_task(task);
7690}
7691
7692#ifdef CONFIG_UCLAMP_TASK_GROUP
7693static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7694{
7695 struct cgroup_subsys_state *top_css = css;
7696 struct uclamp_se *uc_parent = NULL;
7697 struct uclamp_se *uc_se = NULL;
7698 unsigned int eff[UCLAMP_CNT];
7699 enum uclamp_id clamp_id;
7700 unsigned int clamps;
7701
7702 css_for_each_descendant_pre(css, top_css) {
7703 uc_parent = css_tg(css)->parent
7704 ? css_tg(css)->parent->uclamp : NULL;
7705
7706 for_each_clamp_id(clamp_id) {
7707 /* Assume effective clamps matches requested clamps */
7708 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7709 /* Cap effective clamps with parent's effective clamps */
7710 if (uc_parent &&
7711 eff[clamp_id] > uc_parent[clamp_id].value) {
7712 eff[clamp_id] = uc_parent[clamp_id].value;
7713 }
7714 }
7715 /* Ensure protection is always capped by limit */
7716 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7717
7718 /* Propagate most restrictive effective clamps */
7719 clamps = 0x0;
7720 uc_se = css_tg(css)->uclamp;
7721 for_each_clamp_id(clamp_id) {
7722 if (eff[clamp_id] == uc_se[clamp_id].value)
7723 continue;
7724 uc_se[clamp_id].value = eff[clamp_id];
7725 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7726 clamps |= (0x1 << clamp_id);
7727 }
7728 if (!clamps) {
7729 css = css_rightmost_descendant(css);
7730 continue;
7731 }
7732
7733 /* Immediately update descendants RUNNABLE tasks */
7734 uclamp_update_active_tasks(css, clamps);
7735 }
7736}
7737
7738/*
7739 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7740 * C expression. Since there is no way to convert a macro argument (N) into a
7741 * character constant, use two levels of macros.
7742 */
7743#define _POW10(exp) ((unsigned int)1e##exp)
7744#define POW10(exp) _POW10(exp)
7745
7746struct uclamp_request {
7747#define UCLAMP_PERCENT_SHIFT 2
7748#define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
7749 s64 percent;
7750 u64 util;
7751 int ret;
7752};
7753
7754static inline struct uclamp_request
7755capacity_from_percent(char *buf)
7756{
7757 struct uclamp_request req = {
7758 .percent = UCLAMP_PERCENT_SCALE,
7759 .util = SCHED_CAPACITY_SCALE,
7760 .ret = 0,
7761 };
7762
7763 buf = strim(buf);
7764 if (strcmp(buf, "max")) {
7765 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7766 &req.percent);
7767 if (req.ret)
7768 return req;
7769 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
7770 req.ret = -ERANGE;
7771 return req;
7772 }
7773
7774 req.util = req.percent << SCHED_CAPACITY_SHIFT;
7775 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7776 }
7777
7778 return req;
7779}
7780
7781static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7782 size_t nbytes, loff_t off,
7783 enum uclamp_id clamp_id)
7784{
7785 struct uclamp_request req;
7786 struct task_group *tg;
7787
7788 req = capacity_from_percent(buf);
7789 if (req.ret)
7790 return req.ret;
7791
7792 static_branch_enable(&sched_uclamp_used);
7793
7794 mutex_lock(&uclamp_mutex);
7795 rcu_read_lock();
7796
7797 tg = css_tg(of_css(of));
7798 if (tg->uclamp_req[clamp_id].value != req.util)
7799 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7800
7801 /*
7802 * Because of not recoverable conversion rounding we keep track of the
7803 * exact requested value
7804 */
7805 tg->uclamp_pct[clamp_id] = req.percent;
7806
7807 /* Update effective clamps to track the most restrictive value */
7808 cpu_util_update_eff(of_css(of));
7809
7810 rcu_read_unlock();
7811 mutex_unlock(&uclamp_mutex);
7812
7813 return nbytes;
7814}
7815
7816static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7817 char *buf, size_t nbytes,
7818 loff_t off)
7819{
7820 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
7821}
7822
7823static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7824 char *buf, size_t nbytes,
7825 loff_t off)
7826{
7827 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
7828}
7829
7830static inline void cpu_uclamp_print(struct seq_file *sf,
7831 enum uclamp_id clamp_id)
7832{
7833 struct task_group *tg;
7834 u64 util_clamp;
7835 u64 percent;
7836 u32 rem;
7837
7838 rcu_read_lock();
7839 tg = css_tg(seq_css(sf));
7840 util_clamp = tg->uclamp_req[clamp_id].value;
7841 rcu_read_unlock();
7842
7843 if (util_clamp == SCHED_CAPACITY_SCALE) {
7844 seq_puts(sf, "max\n");
7845 return;
7846 }
7847
7848 percent = tg->uclamp_pct[clamp_id];
7849 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7850 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7851}
7852
7853static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7854{
7855 cpu_uclamp_print(sf, UCLAMP_MIN);
7856 return 0;
7857}
7858
7859static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7860{
7861 cpu_uclamp_print(sf, UCLAMP_MAX);
7862 return 0;
7863}
7864#endif /* CONFIG_UCLAMP_TASK_GROUP */
7865
7866#ifdef CONFIG_FAIR_GROUP_SCHED
7867static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7868 struct cftype *cftype, u64 shareval)
7869{
7870 if (shareval > scale_load_down(ULONG_MAX))
7871 shareval = MAX_SHARES;
7872 return sched_group_set_shares(css_tg(css), scale_load(shareval));
7873}
7874
7875static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7876 struct cftype *cft)
7877{
7878 struct task_group *tg = css_tg(css);
7879
7880 return (u64) scale_load_down(tg->shares);
7881}
7882
7883#ifdef CONFIG_CFS_BANDWIDTH
7884static DEFINE_MUTEX(cfs_constraints_mutex);
7885
7886const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7887static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7888/* More than 203 days if BW_SHIFT equals 20. */
7889static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
7890
7891static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7892
7893static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7894{
7895 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7896 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7897
7898 if (tg == &root_task_group)
7899 return -EINVAL;
7900
7901 /*
7902 * Ensure we have at some amount of bandwidth every period. This is
7903 * to prevent reaching a state of large arrears when throttled via
7904 * entity_tick() resulting in prolonged exit starvation.
7905 */
7906 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7907 return -EINVAL;
7908
7909 /*
7910 * Likewise, bound things on the otherside by preventing insane quota
7911 * periods. This also allows us to normalize in computing quota
7912 * feasibility.
7913 */
7914 if (period > max_cfs_quota_period)
7915 return -EINVAL;
7916
7917 /*
7918 * Bound quota to defend quota against overflow during bandwidth shift.
7919 */
7920 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
7921 return -EINVAL;
7922
7923 /*
7924 * Prevent race between setting of cfs_rq->runtime_enabled and
7925 * unthrottle_offline_cfs_rqs().
7926 */
7927 get_online_cpus();
7928 mutex_lock(&cfs_constraints_mutex);
7929 ret = __cfs_schedulable(tg, period, quota);
7930 if (ret)
7931 goto out_unlock;
7932
7933 runtime_enabled = quota != RUNTIME_INF;
7934 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7935 /*
7936 * If we need to toggle cfs_bandwidth_used, off->on must occur
7937 * before making related changes, and on->off must occur afterwards
7938 */
7939 if (runtime_enabled && !runtime_was_enabled)
7940 cfs_bandwidth_usage_inc();
7941 raw_spin_lock_irq(&cfs_b->lock);
7942 cfs_b->period = ns_to_ktime(period);
7943 cfs_b->quota = quota;
7944
7945 __refill_cfs_bandwidth_runtime(cfs_b);
7946
7947 /* Restart the period timer (if active) to handle new period expiry: */
7948 if (runtime_enabled)
7949 start_cfs_bandwidth(cfs_b);
7950
7951 raw_spin_unlock_irq(&cfs_b->lock);
7952
7953 for_each_online_cpu(i) {
7954 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7955 struct rq *rq = cfs_rq->rq;
7956 struct rq_flags rf;
7957
7958 rq_lock_irq(rq, &rf);
7959 cfs_rq->runtime_enabled = runtime_enabled;
7960 cfs_rq->runtime_remaining = 0;
7961
7962 if (cfs_rq->throttled)
7963 unthrottle_cfs_rq(cfs_rq);
7964 rq_unlock_irq(rq, &rf);
7965 }
7966 if (runtime_was_enabled && !runtime_enabled)
7967 cfs_bandwidth_usage_dec();
7968out_unlock:
7969 mutex_unlock(&cfs_constraints_mutex);
7970 put_online_cpus();
7971
7972 return ret;
7973}
7974
7975static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7976{
7977 u64 quota, period;
7978
7979 period = ktime_to_ns(tg->cfs_bandwidth.period);
7980 if (cfs_quota_us < 0)
7981 quota = RUNTIME_INF;
7982 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
7983 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7984 else
7985 return -EINVAL;
7986
7987 return tg_set_cfs_bandwidth(tg, period, quota);
7988}
7989
7990static long tg_get_cfs_quota(struct task_group *tg)
7991{
7992 u64 quota_us;
7993
7994 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7995 return -1;
7996
7997 quota_us = tg->cfs_bandwidth.quota;
7998 do_div(quota_us, NSEC_PER_USEC);
7999
8000 return quota_us;
8001}
8002
8003static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8004{
8005 u64 quota, period;
8006
8007 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
8008 return -EINVAL;
8009
8010 period = (u64)cfs_period_us * NSEC_PER_USEC;
8011 quota = tg->cfs_bandwidth.quota;
8012
8013 return tg_set_cfs_bandwidth(tg, period, quota);
8014}
8015
8016static long tg_get_cfs_period(struct task_group *tg)
8017{
8018 u64 cfs_period_us;
8019
8020 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8021 do_div(cfs_period_us, NSEC_PER_USEC);
8022
8023 return cfs_period_us;
8024}
8025
8026static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8027 struct cftype *cft)
8028{
8029 return tg_get_cfs_quota(css_tg(css));
8030}
8031
8032static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8033 struct cftype *cftype, s64 cfs_quota_us)
8034{
8035 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8036}
8037
8038static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8039 struct cftype *cft)
8040{
8041 return tg_get_cfs_period(css_tg(css));
8042}
8043
8044static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8045 struct cftype *cftype, u64 cfs_period_us)
8046{
8047 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8048}
8049
8050struct cfs_schedulable_data {
8051 struct task_group *tg;
8052 u64 period, quota;
8053};
8054
8055/*
8056 * normalize group quota/period to be quota/max_period
8057 * note: units are usecs
8058 */
8059static u64 normalize_cfs_quota(struct task_group *tg,
8060 struct cfs_schedulable_data *d)
8061{
8062 u64 quota, period;
8063
8064 if (tg == d->tg) {
8065 period = d->period;
8066 quota = d->quota;
8067 } else {
8068 period = tg_get_cfs_period(tg);
8069 quota = tg_get_cfs_quota(tg);
8070 }
8071
8072 /* note: these should typically be equivalent */
8073 if (quota == RUNTIME_INF || quota == -1)
8074 return RUNTIME_INF;
8075
8076 return to_ratio(period, quota);
8077}
8078
8079static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8080{
8081 struct cfs_schedulable_data *d = data;
8082 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8083 s64 quota = 0, parent_quota = -1;
8084
8085 if (!tg->parent) {
8086 quota = RUNTIME_INF;
8087 } else {
8088 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8089
8090 quota = normalize_cfs_quota(tg, d);
8091 parent_quota = parent_b->hierarchical_quota;
8092
8093 /*
8094 * Ensure max(child_quota) <= parent_quota. On cgroup2,
8095 * always take the min. On cgroup1, only inherit when no
8096 * limit is set:
8097 */
8098 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
8099 quota = min(quota, parent_quota);
8100 } else {
8101 if (quota == RUNTIME_INF)
8102 quota = parent_quota;
8103 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8104 return -EINVAL;
8105 }
8106 }
8107 cfs_b->hierarchical_quota = quota;
8108
8109 return 0;
8110}
8111
8112static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8113{
8114 int ret;
8115 struct cfs_schedulable_data data = {
8116 .tg = tg,
8117 .period = period,
8118 .quota = quota,
8119 };
8120
8121 if (quota != RUNTIME_INF) {
8122 do_div(data.period, NSEC_PER_USEC);
8123 do_div(data.quota, NSEC_PER_USEC);
8124 }
8125
8126 rcu_read_lock();
8127 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8128 rcu_read_unlock();
8129
8130 return ret;
8131}
8132
8133static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
8134{
8135 struct task_group *tg = css_tg(seq_css(sf));
8136 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8137
8138 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8139 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8140 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8141
8142 if (schedstat_enabled() && tg != &root_task_group) {
8143 u64 ws = 0;
8144 int i;
8145
8146 for_each_possible_cpu(i)
8147 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
8148
8149 seq_printf(sf, "wait_sum %llu\n", ws);
8150 }
8151
8152 return 0;
8153}
8154#endif /* CONFIG_CFS_BANDWIDTH */
8155#endif /* CONFIG_FAIR_GROUP_SCHED */
8156
8157#ifdef CONFIG_RT_GROUP_SCHED
8158static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8159 struct cftype *cft, s64 val)
8160{
8161 return sched_group_set_rt_runtime(css_tg(css), val);
8162}
8163
8164static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8165 struct cftype *cft)
8166{
8167 return sched_group_rt_runtime(css_tg(css));
8168}
8169
8170static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8171 struct cftype *cftype, u64 rt_period_us)
8172{
8173 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8174}
8175
8176static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8177 struct cftype *cft)
8178{
8179 return sched_group_rt_period(css_tg(css));
8180}
8181#endif /* CONFIG_RT_GROUP_SCHED */
8182
8183static struct cftype cpu_legacy_files[] = {
8184#ifdef CONFIG_FAIR_GROUP_SCHED
8185 {
8186 .name = "shares",
8187 .read_u64 = cpu_shares_read_u64,
8188 .write_u64 = cpu_shares_write_u64,
8189 },
8190#endif
8191#ifdef CONFIG_CFS_BANDWIDTH
8192 {
8193 .name = "cfs_quota_us",
8194 .read_s64 = cpu_cfs_quota_read_s64,
8195 .write_s64 = cpu_cfs_quota_write_s64,
8196 },
8197 {
8198 .name = "cfs_period_us",
8199 .read_u64 = cpu_cfs_period_read_u64,
8200 .write_u64 = cpu_cfs_period_write_u64,
8201 },
8202 {
8203 .name = "stat",
8204 .seq_show = cpu_cfs_stat_show,
8205 },
8206#endif
8207#ifdef CONFIG_RT_GROUP_SCHED
8208 {
8209 .name = "rt_runtime_us",
8210 .read_s64 = cpu_rt_runtime_read,
8211 .write_s64 = cpu_rt_runtime_write,
8212 },
8213 {
8214 .name = "rt_period_us",
8215 .read_u64 = cpu_rt_period_read_uint,
8216 .write_u64 = cpu_rt_period_write_uint,
8217 },
8218#endif
8219#ifdef CONFIG_UCLAMP_TASK_GROUP
8220 {
8221 .name = "uclamp.min",
8222 .flags = CFTYPE_NOT_ON_ROOT,
8223 .seq_show = cpu_uclamp_min_show,
8224 .write = cpu_uclamp_min_write,
8225 },
8226 {
8227 .name = "uclamp.max",
8228 .flags = CFTYPE_NOT_ON_ROOT,
8229 .seq_show = cpu_uclamp_max_show,
8230 .write = cpu_uclamp_max_write,
8231 },
8232#endif
8233 { } /* Terminate */
8234};
8235
8236static int cpu_extra_stat_show(struct seq_file *sf,
8237 struct cgroup_subsys_state *css)
8238{
8239#ifdef CONFIG_CFS_BANDWIDTH
8240 {
8241 struct task_group *tg = css_tg(css);
8242 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8243 u64 throttled_usec;
8244
8245 throttled_usec = cfs_b->throttled_time;
8246 do_div(throttled_usec, NSEC_PER_USEC);
8247
8248 seq_printf(sf, "nr_periods %d\n"
8249 "nr_throttled %d\n"
8250 "throttled_usec %llu\n",
8251 cfs_b->nr_periods, cfs_b->nr_throttled,
8252 throttled_usec);
8253 }
8254#endif
8255 return 0;
8256}
8257
8258#ifdef CONFIG_FAIR_GROUP_SCHED
8259static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
8260 struct cftype *cft)
8261{
8262 struct task_group *tg = css_tg(css);
8263 u64 weight = scale_load_down(tg->shares);
8264
8265 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
8266}
8267
8268static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
8269 struct cftype *cft, u64 weight)
8270{
8271 /*
8272 * cgroup weight knobs should use the common MIN, DFL and MAX
8273 * values which are 1, 100 and 10000 respectively. While it loses
8274 * a bit of range on both ends, it maps pretty well onto the shares
8275 * value used by scheduler and the round-trip conversions preserve
8276 * the original value over the entire range.
8277 */
8278 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
8279 return -ERANGE;
8280
8281 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
8282
8283 return sched_group_set_shares(css_tg(css), scale_load(weight));
8284}
8285
8286static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
8287 struct cftype *cft)
8288{
8289 unsigned long weight = scale_load_down(css_tg(css)->shares);
8290 int last_delta = INT_MAX;
8291 int prio, delta;
8292
8293 /* find the closest nice value to the current weight */
8294 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
8295 delta = abs(sched_prio_to_weight[prio] - weight);
8296 if (delta >= last_delta)
8297 break;
8298 last_delta = delta;
8299 }
8300
8301 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
8302}
8303
8304static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
8305 struct cftype *cft, s64 nice)
8306{
8307 unsigned long weight;
8308 int idx;
8309
8310 if (nice < MIN_NICE || nice > MAX_NICE)
8311 return -ERANGE;
8312
8313 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
8314 idx = array_index_nospec(idx, 40);
8315 weight = sched_prio_to_weight[idx];
8316
8317 return sched_group_set_shares(css_tg(css), scale_load(weight));
8318}
8319#endif
8320
8321static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
8322 long period, long quota)
8323{
8324 if (quota < 0)
8325 seq_puts(sf, "max");
8326 else
8327 seq_printf(sf, "%ld", quota);
8328
8329 seq_printf(sf, " %ld\n", period);
8330}
8331
8332/* caller should put the current value in *@periodp before calling */
8333static int __maybe_unused cpu_period_quota_parse(char *buf,
8334 u64 *periodp, u64 *quotap)
8335{
8336 char tok[21]; /* U64_MAX */
8337
8338 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
8339 return -EINVAL;
8340
8341 *periodp *= NSEC_PER_USEC;
8342
8343 if (sscanf(tok, "%llu", quotap))
8344 *quotap *= NSEC_PER_USEC;
8345 else if (!strcmp(tok, "max"))
8346 *quotap = RUNTIME_INF;
8347 else
8348 return -EINVAL;
8349
8350 return 0;
8351}
8352
8353#ifdef CONFIG_CFS_BANDWIDTH
8354static int cpu_max_show(struct seq_file *sf, void *v)
8355{
8356 struct task_group *tg = css_tg(seq_css(sf));
8357
8358 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
8359 return 0;
8360}
8361
8362static ssize_t cpu_max_write(struct kernfs_open_file *of,
8363 char *buf, size_t nbytes, loff_t off)
8364{
8365 struct task_group *tg = css_tg(of_css(of));
8366 u64 period = tg_get_cfs_period(tg);
8367 u64 quota;
8368 int ret;
8369
8370 ret = cpu_period_quota_parse(buf, &period, "a);
8371 if (!ret)
8372 ret = tg_set_cfs_bandwidth(tg, period, quota);
8373 return ret ?: nbytes;
8374}
8375#endif
8376
8377static struct cftype cpu_files[] = {
8378#ifdef CONFIG_FAIR_GROUP_SCHED
8379 {
8380 .name = "weight",
8381 .flags = CFTYPE_NOT_ON_ROOT,
8382 .read_u64 = cpu_weight_read_u64,
8383 .write_u64 = cpu_weight_write_u64,
8384 },
8385 {
8386 .name = "weight.nice",
8387 .flags = CFTYPE_NOT_ON_ROOT,
8388 .read_s64 = cpu_weight_nice_read_s64,
8389 .write_s64 = cpu_weight_nice_write_s64,
8390 },
8391#endif
8392#ifdef CONFIG_CFS_BANDWIDTH
8393 {
8394 .name = "max",
8395 .flags = CFTYPE_NOT_ON_ROOT,
8396 .seq_show = cpu_max_show,
8397 .write = cpu_max_write,
8398 },
8399#endif
8400#ifdef CONFIG_UCLAMP_TASK_GROUP
8401 {
8402 .name = "uclamp.min",
8403 .flags = CFTYPE_NOT_ON_ROOT,
8404 .seq_show = cpu_uclamp_min_show,
8405 .write = cpu_uclamp_min_write,
8406 },
8407 {
8408 .name = "uclamp.max",
8409 .flags = CFTYPE_NOT_ON_ROOT,
8410 .seq_show = cpu_uclamp_max_show,
8411 .write = cpu_uclamp_max_write,
8412 },
8413#endif
8414 { } /* terminate */
8415};
8416
8417struct cgroup_subsys cpu_cgrp_subsys = {
8418 .css_alloc = cpu_cgroup_css_alloc,
8419 .css_online = cpu_cgroup_css_online,
8420 .css_released = cpu_cgroup_css_released,
8421 .css_free = cpu_cgroup_css_free,
8422 .css_extra_stat_show = cpu_extra_stat_show,
8423 .fork = cpu_cgroup_fork,
8424 .can_attach = cpu_cgroup_can_attach,
8425 .attach = cpu_cgroup_attach,
8426 .legacy_cftypes = cpu_legacy_files,
8427 .dfl_cftypes = cpu_files,
8428 .early_init = true,
8429 .threaded = true,
8430};
8431
8432#endif /* CONFIG_CGROUP_SCHED */
8433
8434void dump_cpu_task(int cpu)
8435{
8436 pr_info("Task dump for CPU %d:\n", cpu);
8437 sched_show_task(cpu_curr(cpu));
8438}
8439
8440/*
8441 * Nice levels are multiplicative, with a gentle 10% change for every
8442 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8443 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8444 * that remained on nice 0.
8445 *
8446 * The "10% effect" is relative and cumulative: from _any_ nice level,
8447 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8448 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8449 * If a task goes up by ~10% and another task goes down by ~10% then
8450 * the relative distance between them is ~25%.)
8451 */
8452const int sched_prio_to_weight[40] = {
8453 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8454 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8455 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8456 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8457 /* 0 */ 1024, 820, 655, 526, 423,
8458 /* 5 */ 335, 272, 215, 172, 137,
8459 /* 10 */ 110, 87, 70, 56, 45,
8460 /* 15 */ 36, 29, 23, 18, 15,
8461};
8462
8463/*
8464 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8465 *
8466 * In cases where the weight does not change often, we can use the
8467 * precalculated inverse to speed up arithmetics by turning divisions
8468 * into multiplications:
8469 */
8470const u32 sched_prio_to_wmult[40] = {
8471 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8472 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8473 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8474 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8475 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8476 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8477 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8478 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8479};
8480
8481void call_trace_sched_update_nr_running(struct rq *rq, int count)
8482{
8483 trace_sched_update_nr_running_tp(rq, count);
8484}