Linux Audio

Check our new training course

Loading...
v3.15
 
  1/*
  2 * kernel/locking/mutex.c
  3 *
  4 * Mutexes: blocking mutual exclusion locks
  5 *
  6 * Started by Ingo Molnar:
  7 *
  8 *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  9 *
 10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
 11 * David Howells for suggestions and improvements.
 12 *
 13 *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
 14 *    from the -rt tree, where it was originally implemented for rtmutexes
 15 *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
 16 *    and Sven Dietrich.
 17 *
 18 * Also see Documentation/mutex-design.txt.
 19 */
 20#include <linux/mutex.h>
 21#include <linux/ww_mutex.h>
 22#include <linux/sched.h>
 23#include <linux/sched/rt.h>
 
 
 24#include <linux/export.h>
 25#include <linux/spinlock.h>
 26#include <linux/interrupt.h>
 27#include <linux/debug_locks.h>
 28#include "mcs_spinlock.h"
 29
 30/*
 31 * In the DEBUG case we are using the "NULL fastpath" for mutexes,
 32 * which forces all calls into the slowpath:
 33 */
 34#ifdef CONFIG_DEBUG_MUTEXES
 35# include "mutex-debug.h"
 36# include <asm-generic/mutex-null.h>
 37/*
 38 * Must be 0 for the debug case so we do not do the unlock outside of the
 39 * wait_lock region. debug_mutex_unlock() will do the actual unlock in this
 40 * case.
 41 */
 42# undef __mutex_slowpath_needs_to_unlock
 43# define  __mutex_slowpath_needs_to_unlock()	0
 44#else
 45# include "mutex.h"
 46# include <asm/mutex.h>
 47#endif
 48
 49/*
 50 * A negative mutex count indicates that waiters are sleeping waiting for the
 51 * mutex.
 52 */
 53#define	MUTEX_SHOW_NO_WAITER(mutex)	(atomic_read(&(mutex)->count) >= 0)
 54
 55void
 56__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
 57{
 58	atomic_set(&lock->count, 1);
 59	spin_lock_init(&lock->wait_lock);
 60	INIT_LIST_HEAD(&lock->wait_list);
 61	mutex_clear_owner(lock);
 62#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
 63	lock->osq = NULL;
 64#endif
 65
 66	debug_mutex_init(lock, name, key);
 67}
 68
 69EXPORT_SYMBOL(__mutex_init);
 70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 71#ifndef CONFIG_DEBUG_LOCK_ALLOC
 72/*
 73 * We split the mutex lock/unlock logic into separate fastpath and
 74 * slowpath functions, to reduce the register pressure on the fastpath.
 75 * We also put the fastpath first in the kernel image, to make sure the
 76 * branch is predicted by the CPU as default-untaken.
 77 */
 78__visible void __sched __mutex_lock_slowpath(atomic_t *lock_count);
 79
 80/**
 81 * mutex_lock - acquire the mutex
 82 * @lock: the mutex to be acquired
 83 *
 84 * Lock the mutex exclusively for this task. If the mutex is not
 85 * available right now, it will sleep until it can get it.
 86 *
 87 * The mutex must later on be released by the same task that
 88 * acquired it. Recursive locking is not allowed. The task
 89 * may not exit without first unlocking the mutex. Also, kernel
 90 * memory where the mutex resides mutex must not be freed with
 91 * the mutex still locked. The mutex must first be initialized
 92 * (or statically defined) before it can be locked. memset()-ing
 93 * the mutex to 0 is not allowed.
 94 *
 95 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
 96 *   checks that will enforce the restrictions and will also do
 97 *   deadlock debugging. )
 98 *
 99 * This function is similar to (but not equivalent to) down().
100 */
101void __sched mutex_lock(struct mutex *lock)
102{
103	might_sleep();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104	/*
105	 * The locking fastpath is the 1->0 transition from
106	 * 'unlocked' into 'locked' state.
 
 
107	 */
108	__mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
109	mutex_set_owner(lock);
110}
111
112EXPORT_SYMBOL(mutex_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114
115#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
116/*
117 * In order to avoid a stampede of mutex spinners from acquiring the mutex
118 * more or less simultaneously, the spinners need to acquire a MCS lock
119 * first before spinning on the owner field.
 
 
 
 
 
120 *
 
121 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122
123/*
124 * Mutex spinning code migrated from kernel/sched/core.c
 
125 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
126
127static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
 
 
128{
129	if (lock->owner != owner)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130		return false;
131
132	/*
133	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
134	 * lock->owner still matches owner, if that fails, owner might
135	 * point to free()d memory, if it still matches, the rcu_read_lock()
136	 * ensures the memory stays valid.
 
137	 */
138	barrier();
 
139
140	return owner->on_cpu;
 
 
 
 
 
 
 
141}
142
143/*
144 * Look out! "owner" is an entirely speculative pointer
145 * access and not reliable.
 
 
146 */
147static noinline
148int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
 
149{
 
 
150	rcu_read_lock();
151	while (owner_running(lock, owner)) {
152		if (need_resched())
 
 
 
 
 
 
 
 
 
 
 
 
 
153			break;
 
 
 
 
 
 
154
155		arch_mutex_cpu_relax();
156	}
157	rcu_read_unlock();
158
159	/*
160	 * We break out the loop above on need_resched() and when the
161	 * owner changed, which is a sign for heavy contention. Return
162	 * success only when lock->owner is NULL.
163	 */
164	return lock->owner == NULL;
165}
166
167/*
168 * Initial check for entering the mutex spinning loop
169 */
170static inline int mutex_can_spin_on_owner(struct mutex *lock)
171{
172	struct task_struct *owner;
173	int retval = 1;
174
175	if (need_resched())
176		return 0;
177
178	rcu_read_lock();
179	owner = ACCESS_ONCE(lock->owner);
 
 
 
 
 
180	if (owner)
181		retval = owner->on_cpu;
182	rcu_read_unlock();
 
183	/*
184	 * if lock->owner is not set, the mutex owner may have just acquired
185	 * it and not set the owner yet or the mutex has been released.
 
186	 */
187	return retval;
188}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
189#endif
190
191__visible __used noinline
192void __sched __mutex_unlock_slowpath(atomic_t *lock_count);
193
194/**
195 * mutex_unlock - release the mutex
196 * @lock: the mutex to be released
197 *
198 * Unlock a mutex that has been locked by this task previously.
199 *
200 * This function must not be used in interrupt context. Unlocking
201 * of a not locked mutex is not allowed.
202 *
203 * This function is similar to (but not equivalent to) up().
204 */
205void __sched mutex_unlock(struct mutex *lock)
206{
207	/*
208	 * The unlocking fastpath is the 0->1 transition from 'locked'
209	 * into 'unlocked' state:
210	 */
211#ifndef CONFIG_DEBUG_MUTEXES
212	/*
213	 * When debugging is enabled we must not clear the owner before time,
214	 * the slow path will always be taken, and that clears the owner field
215	 * after verifying that it was indeed current.
216	 */
217	mutex_clear_owner(lock);
218#endif
219	__mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
220}
221
222EXPORT_SYMBOL(mutex_unlock);
223
224/**
225 * ww_mutex_unlock - release the w/w mutex
226 * @lock: the mutex to be released
227 *
228 * Unlock a mutex that has been locked by this task previously with any of the
229 * ww_mutex_lock* functions (with or without an acquire context). It is
230 * forbidden to release the locks after releasing the acquire context.
231 *
232 * This function must not be used in interrupt context. Unlocking
233 * of a unlocked mutex is not allowed.
234 */
235void __sched ww_mutex_unlock(struct ww_mutex *lock)
236{
237	/*
238	 * The unlocking fastpath is the 0->1 transition from 'locked'
239	 * into 'unlocked' state:
240	 */
241	if (lock->ctx) {
242#ifdef CONFIG_DEBUG_MUTEXES
243		DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
244#endif
245		if (lock->ctx->acquired > 0)
246			lock->ctx->acquired--;
247		lock->ctx = NULL;
248	}
249
250#ifndef CONFIG_DEBUG_MUTEXES
251	/*
252	 * When debugging is enabled we must not clear the owner before time,
253	 * the slow path will always be taken, and that clears the owner field
254	 * after verifying that it was indeed current.
255	 */
256	mutex_clear_owner(&lock->base);
257#endif
258	__mutex_fastpath_unlock(&lock->base.count, __mutex_unlock_slowpath);
259}
260EXPORT_SYMBOL(ww_mutex_unlock);
261
262static inline int __sched
263__mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
264{
265	struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
266	struct ww_acquire_ctx *hold_ctx = ACCESS_ONCE(ww->ctx);
267
268	if (!hold_ctx)
269		return 0;
270
271	if (unlikely(ctx == hold_ctx))
272		return -EALREADY;
273
274	if (ctx->stamp - hold_ctx->stamp <= LONG_MAX &&
275	    (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) {
 
 
276#ifdef CONFIG_DEBUG_MUTEXES
277		DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
278		ctx->contending_lock = ww;
 
 
 
279#endif
280		return -EDEADLK;
281	}
282
283	return 0;
284}
285
286static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww,
287						   struct ww_acquire_ctx *ww_ctx)
 
 
 
 
 
 
 
 
 
 
 
 
 
288{
289#ifdef CONFIG_DEBUG_MUTEXES
290	/*
291	 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
292	 * but released with a normal mutex_unlock in this call.
293	 *
294	 * This should never happen, always use ww_mutex_unlock.
295	 */
296	DEBUG_LOCKS_WARN_ON(ww->ctx);
297
298	/*
299	 * Not quite done after calling ww_acquire_done() ?
300	 */
301	DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
302
303	if (ww_ctx->contending_lock) {
304		/*
305		 * After -EDEADLK you tried to
306		 * acquire a different ww_mutex? Bad!
307		 */
308		DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
309
310		/*
311		 * You called ww_mutex_lock after receiving -EDEADLK,
312		 * but 'forgot' to unlock everything else first?
313		 */
314		DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
315		ww_ctx->contending_lock = NULL;
316	}
317
 
 
 
318	/*
319	 * Naughty, using a different class will lead to undefined behavior!
 
320	 */
321	DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
322#endif
323	ww_ctx->acquired++;
 
 
 
 
 
 
324}
325
326/*
327 * after acquiring lock with fastpath or when we lost out in contested
328 * slowpath, set ctx and wake up any waiters so they can recheck.
329 *
330 * This function is never called when CONFIG_DEBUG_LOCK_ALLOC is set,
331 * as the fastpath and opportunistic spinning are disabled in that case.
 
 
 
 
332 */
333static __always_inline void
334ww_mutex_set_context_fastpath(struct ww_mutex *lock,
335			       struct ww_acquire_ctx *ctx)
 
336{
337	unsigned long flags;
338	struct mutex_waiter *cur;
 
 
339
340	ww_mutex_lock_acquired(lock, ctx);
 
 
 
341
342	lock->ctx = ctx;
343
344	/*
345	 * The lock->ctx update should be visible on all cores before
346	 * the atomic read is done, otherwise contended waiters might be
347	 * missed. The contended waiters will either see ww_ctx == NULL
348	 * and keep spinning, or it will acquire wait_lock, add itself
349	 * to waiter list and sleep.
350	 */
351	smp_mb(); /* ^^^ */
 
 
 
352
353	/*
354	 * Check if lock is contended, if not there is nobody to wake up
355	 */
356	if (likely(atomic_read(&lock->base.count) == 0))
357		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358
359	/*
360	 * Uh oh, we raced in fastpath, wake up everyone in this case,
361	 * so they can see the new lock->ctx.
362	 */
363	spin_lock_mutex(&lock->base.wait_lock, flags);
364	list_for_each_entry(cur, &lock->base.wait_list, list) {
365		debug_mutex_wake_waiter(&lock->base, cur);
366		wake_up_process(cur->task);
 
 
 
 
 
 
367	}
368	spin_unlock_mutex(&lock->base.wait_lock, flags);
 
369}
370
371/*
372 * Lock a mutex (possibly interruptible), slowpath:
373 */
374static __always_inline int __sched
375__mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
376		    struct lockdep_map *nest_lock, unsigned long ip,
377		    struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
378{
379	struct task_struct *task = current;
380	struct mutex_waiter waiter;
381	unsigned long flags;
 
382	int ret;
383
384	preempt_disable();
385	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
386
387#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
388	/*
389	 * Optimistic spinning.
390	 *
391	 * We try to spin for acquisition when we find that there are no
392	 * pending waiters and the lock owner is currently running on a
393	 * (different) CPU.
394	 *
395	 * The rationale is that if the lock owner is running, it is likely to
396	 * release the lock soon.
397	 *
398	 * Since this needs the lock owner, and this mutex implementation
399	 * doesn't track the owner atomically in the lock field, we need to
400	 * track it non-atomically.
401	 *
402	 * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
403	 * to serialize everything.
404	 *
405	 * The mutex spinners are queued up using MCS lock so that only one
406	 * spinner can compete for the mutex. However, if mutex spinning isn't
407	 * going to happen, there is no point in going through the lock/unlock
408	 * overhead.
409	 */
410	if (!mutex_can_spin_on_owner(lock))
411		goto slowpath;
412
413	if (!osq_lock(&lock->osq))
414		goto slowpath;
415
416	for (;;) {
417		struct task_struct *owner;
418
419		if (use_ww_ctx && ww_ctx->acquired > 0) {
420			struct ww_mutex *ww;
 
421
422			ww = container_of(lock, struct ww_mutex, base);
423			/*
424			 * If ww->ctx is set the contents are undefined, only
425			 * by acquiring wait_lock there is a guarantee that
426			 * they are not invalid when reading.
427			 *
428			 * As such, when deadlock detection needs to be
429			 * performed the optimistic spinning cannot be done.
430			 */
431			if (ACCESS_ONCE(ww->ctx))
432				break;
433		}
434
435		/*
436		 * If there's an owner, wait for it to either
437		 * release the lock or go to sleep.
 
438		 */
439		owner = ACCESS_ONCE(lock->owner);
440		if (owner && !mutex_spin_on_owner(lock, owner))
441			break;
442
443		if ((atomic_read(&lock->count) == 1) &&
444		    (atomic_cmpxchg(&lock->count, 1, 0) == 1)) {
445			lock_acquired(&lock->dep_map, ip);
446			if (use_ww_ctx) {
447				struct ww_mutex *ww;
448				ww = container_of(lock, struct ww_mutex, base);
449
450				ww_mutex_set_context_fastpath(ww, ww_ctx);
451			}
452
453			mutex_set_owner(lock);
454			osq_unlock(&lock->osq);
455			preempt_enable();
456			return 0;
457		}
458
459		/*
460		 * When there's no owner, we might have preempted between the
461		 * owner acquiring the lock and setting the owner field. If
462		 * we're an RT task that will live-lock because we won't let
463		 * the owner complete.
464		 */
465		if (!owner && (need_resched() || rt_task(task)))
466			break;
467
468		/*
469		 * The cpu_relax() call is a compiler barrier which forces
470		 * everything in this loop to be re-loaded. We don't need
471		 * memory barriers as we'll eventually observe the right
472		 * values at the cost of a few extra spins.
473		 */
474		arch_mutex_cpu_relax();
 
475	}
476	osq_unlock(&lock->osq);
477slowpath:
478	/*
479	 * If we fell out of the spin path because of need_resched(),
480	 * reschedule now, before we try-lock the mutex. This avoids getting
481	 * scheduled out right after we obtained the mutex.
482	 */
483	if (need_resched())
484		schedule_preempt_disabled();
485#endif
486	spin_lock_mutex(&lock->wait_lock, flags);
487
488	/* once more, can we acquire the lock? */
489	if (MUTEX_SHOW_NO_WAITER(lock) && (atomic_xchg(&lock->count, 0) == 1))
490		goto skip_wait;
 
491
492	debug_mutex_lock_common(lock, &waiter);
493	debug_mutex_add_waiter(lock, &waiter, task_thread_info(task));
494
495	/* add waiting tasks to the end of the waitqueue (FIFO): */
496	list_add_tail(&waiter.list, &lock->wait_list);
497	waiter.task = task;
498
499	lock_contended(&lock->dep_map, ip);
500
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
501	for (;;) {
502		/*
503		 * Lets try to take the lock again - this is needed even if
504		 * we get here for the first time (shortly after failing to
505		 * acquire the lock), to make sure that we get a wakeup once
506		 * it's unlocked. Later on, if we sleep, this is the
507		 * operation that gives us the lock. We xchg it to -1, so
508		 * that when we release the lock, we properly wake up the
509		 * other waiters:
510		 */
511		if (MUTEX_SHOW_NO_WAITER(lock) &&
512		    (atomic_xchg(&lock->count, -1) == 1))
513			break;
514
515		/*
516		 * got a signal? (This code gets eliminated in the
517		 * TASK_UNINTERRUPTIBLE case.)
 
518		 */
519		if (unlikely(signal_pending_state(state, task))) {
520			ret = -EINTR;
521			goto err;
522		}
523
524		if (use_ww_ctx && ww_ctx->acquired > 0) {
525			ret = __mutex_lock_check_stamp(lock, ww_ctx);
526			if (ret)
527				goto err;
528		}
529
530		__set_task_state(task, state);
531
532		/* didn't get the lock, go to sleep: */
533		spin_unlock_mutex(&lock->wait_lock, flags);
534		schedule_preempt_disabled();
535		spin_lock_mutex(&lock->wait_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
536	}
537	mutex_remove_waiter(lock, &waiter, current_thread_info());
538	/* set it to 0 if there are no waiters left: */
539	if (likely(list_empty(&lock->wait_list)))
540		atomic_set(&lock->count, 0);
 
541	debug_mutex_free_waiter(&waiter);
542
543skip_wait:
544	/* got the lock - cleanup and rejoice! */
545	lock_acquired(&lock->dep_map, ip);
546	mutex_set_owner(lock);
547
548	if (use_ww_ctx) {
549		struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
550		struct mutex_waiter *cur;
551
552		/*
553		 * This branch gets optimized out for the common case,
554		 * and is only important for ww_mutex_lock.
555		 */
556		ww_mutex_lock_acquired(ww, ww_ctx);
557		ww->ctx = ww_ctx;
558
559		/*
560		 * Give any possible sleeping processes the chance to wake up,
561		 * so they can recheck if they have to back off.
562		 */
563		list_for_each_entry(cur, &lock->wait_list, list) {
564			debug_mutex_wake_waiter(lock, cur);
565			wake_up_process(cur->task);
566		}
567	}
568
569	spin_unlock_mutex(&lock->wait_lock, flags);
570	preempt_enable();
571	return 0;
572
573err:
574	mutex_remove_waiter(lock, &waiter, task_thread_info(task));
575	spin_unlock_mutex(&lock->wait_lock, flags);
 
 
576	debug_mutex_free_waiter(&waiter);
577	mutex_release(&lock->dep_map, 1, ip);
578	preempt_enable();
579	return ret;
580}
581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
582#ifdef CONFIG_DEBUG_LOCK_ALLOC
583void __sched
584mutex_lock_nested(struct mutex *lock, unsigned int subclass)
585{
586	might_sleep();
587	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
588			    subclass, NULL, _RET_IP_, NULL, 0);
589}
590
591EXPORT_SYMBOL_GPL(mutex_lock_nested);
592
593void __sched
594_mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
595{
596	might_sleep();
597	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
598			    0, nest, _RET_IP_, NULL, 0);
599}
600
601EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
602
603int __sched
604mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
605{
606	might_sleep();
607	return __mutex_lock_common(lock, TASK_KILLABLE,
608				   subclass, NULL, _RET_IP_, NULL, 0);
609}
610EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
611
612int __sched
613mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
614{
615	might_sleep();
616	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
617				   subclass, NULL, _RET_IP_, NULL, 0);
618}
619
620EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
621
 
 
 
 
 
 
 
 
 
 
 
 
 
 
622static inline int
623ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
624{
625#ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
626	unsigned tmp;
627
628	if (ctx->deadlock_inject_countdown-- == 0) {
629		tmp = ctx->deadlock_inject_interval;
630		if (tmp > UINT_MAX/4)
631			tmp = UINT_MAX;
632		else
633			tmp = tmp*2 + tmp + tmp/2;
634
635		ctx->deadlock_inject_interval = tmp;
636		ctx->deadlock_inject_countdown = tmp;
637		ctx->contending_lock = lock;
638
639		ww_mutex_unlock(lock);
640
641		return -EDEADLK;
642	}
643#endif
644
645	return 0;
646}
647
648int __sched
649__ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
650{
651	int ret;
652
653	might_sleep();
654	ret =  __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE,
655				   0, &ctx->dep_map, _RET_IP_, ctx, 1);
656	if (!ret && ctx->acquired > 1)
 
657		return ww_mutex_deadlock_injection(lock, ctx);
658
659	return ret;
660}
661EXPORT_SYMBOL_GPL(__ww_mutex_lock);
662
663int __sched
664__ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
665{
666	int ret;
667
668	might_sleep();
669	ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE,
670				  0, &ctx->dep_map, _RET_IP_, ctx, 1);
 
671
672	if (!ret && ctx->acquired > 1)
673		return ww_mutex_deadlock_injection(lock, ctx);
674
675	return ret;
676}
677EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible);
678
679#endif
680
681/*
682 * Release the lock, slowpath:
683 */
684static inline void
685__mutex_unlock_common_slowpath(atomic_t *lock_count, int nested)
686{
687	struct mutex *lock = container_of(lock_count, struct mutex, count);
688	unsigned long flags;
 
 
 
689
690	/*
691	 * some architectures leave the lock unlocked in the fastpath failure
692	 * case, others need to leave it locked. In the later case we have to
693	 * unlock it here
 
 
694	 */
695	if (__mutex_slowpath_needs_to_unlock())
696		atomic_set(&lock->count, 1);
 
697
698	spin_lock_mutex(&lock->wait_lock, flags);
699	mutex_release(&lock->dep_map, nested, _RET_IP_);
700	debug_mutex_unlock(lock);
 
 
 
 
 
 
 
 
 
 
701
 
 
 
 
 
 
 
 
702	if (!list_empty(&lock->wait_list)) {
703		/* get the first entry from the wait-list: */
704		struct mutex_waiter *waiter =
705				list_entry(lock->wait_list.next,
706					   struct mutex_waiter, list);
707
708		debug_mutex_wake_waiter(lock, waiter);
709
710		wake_up_process(waiter->task);
 
711	}
712
713	spin_unlock_mutex(&lock->wait_lock, flags);
714}
715
716/*
717 * Release the lock, slowpath:
718 */
719__visible void
720__mutex_unlock_slowpath(atomic_t *lock_count)
721{
722	__mutex_unlock_common_slowpath(lock_count, 1);
723}
724
725#ifndef CONFIG_DEBUG_LOCK_ALLOC
726/*
727 * Here come the less common (and hence less performance-critical) APIs:
728 * mutex_lock_interruptible() and mutex_trylock().
729 */
730static noinline int __sched
731__mutex_lock_killable_slowpath(struct mutex *lock);
732
733static noinline int __sched
734__mutex_lock_interruptible_slowpath(struct mutex *lock);
735
736/**
737 * mutex_lock_interruptible - acquire the mutex, interruptible
738 * @lock: the mutex to be acquired
739 *
740 * Lock the mutex like mutex_lock(), and return 0 if the mutex has
741 * been acquired or sleep until the mutex becomes available. If a
742 * signal arrives while waiting for the lock then this function
743 * returns -EINTR.
744 *
745 * This function is similar to (but not equivalent to) down_interruptible().
 
 
746 */
747int __sched mutex_lock_interruptible(struct mutex *lock)
748{
749	int ret;
750
751	might_sleep();
752	ret =  __mutex_fastpath_lock_retval(&lock->count);
753	if (likely(!ret)) {
754		mutex_set_owner(lock);
755		return 0;
756	} else
757		return __mutex_lock_interruptible_slowpath(lock);
758}
759
760EXPORT_SYMBOL(mutex_lock_interruptible);
761
 
 
 
 
 
 
 
 
 
 
 
 
762int __sched mutex_lock_killable(struct mutex *lock)
763{
764	int ret;
765
766	might_sleep();
767	ret = __mutex_fastpath_lock_retval(&lock->count);
768	if (likely(!ret)) {
769		mutex_set_owner(lock);
770		return 0;
771	} else
772		return __mutex_lock_killable_slowpath(lock);
773}
774EXPORT_SYMBOL(mutex_lock_killable);
775
776__visible void __sched
777__mutex_lock_slowpath(atomic_t *lock_count)
 
 
 
 
 
 
 
 
 
778{
779	struct mutex *lock = container_of(lock_count, struct mutex, count);
780
781	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0,
782			    NULL, _RET_IP_, NULL, 0);
 
 
 
 
 
 
 
 
783}
784
785static noinline int __sched
786__mutex_lock_killable_slowpath(struct mutex *lock)
787{
788	return __mutex_lock_common(lock, TASK_KILLABLE, 0,
789				   NULL, _RET_IP_, NULL, 0);
790}
791
792static noinline int __sched
793__mutex_lock_interruptible_slowpath(struct mutex *lock)
794{
795	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0,
796				   NULL, _RET_IP_, NULL, 0);
797}
798
799static noinline int __sched
800__ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
801{
802	return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0,
803				   NULL, _RET_IP_, ctx, 1);
804}
805
806static noinline int __sched
807__ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
808					    struct ww_acquire_ctx *ctx)
809{
810	return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0,
811				   NULL, _RET_IP_, ctx, 1);
812}
813
814#endif
815
816/*
817 * Spinlock based trylock, we take the spinlock and check whether we
818 * can get the lock:
819 */
820static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
821{
822	struct mutex *lock = container_of(lock_count, struct mutex, count);
823	unsigned long flags;
824	int prev;
825
826	spin_lock_mutex(&lock->wait_lock, flags);
827
828	prev = atomic_xchg(&lock->count, -1);
829	if (likely(prev == 1)) {
830		mutex_set_owner(lock);
831		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
832	}
833
834	/* Set it back to 0 if there are no waiters: */
835	if (likely(list_empty(&lock->wait_list)))
836		atomic_set(&lock->count, 0);
837
838	spin_unlock_mutex(&lock->wait_lock, flags);
839
840	return prev == 1;
841}
842
843/**
844 * mutex_trylock - try to acquire the mutex, without waiting
845 * @lock: the mutex to be acquired
846 *
847 * Try to acquire the mutex atomically. Returns 1 if the mutex
848 * has been acquired successfully, and 0 on contention.
849 *
850 * NOTE: this function follows the spin_trylock() convention, so
851 * it is negated from the down_trylock() return values! Be careful
852 * about this when converting semaphore users to mutexes.
853 *
854 * This function must not be used in interrupt context. The
855 * mutex must be released by the same task that acquired it.
856 */
857int __sched mutex_trylock(struct mutex *lock)
858{
859	int ret;
860
861	ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath);
862	if (ret)
863		mutex_set_owner(lock);
864
865	return ret;
 
 
 
 
866}
867EXPORT_SYMBOL(mutex_trylock);
868
869#ifndef CONFIG_DEBUG_LOCK_ALLOC
870int __sched
871__ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
872{
873	int ret;
874
875	might_sleep();
876
877	ret = __mutex_fastpath_lock_retval(&lock->base.count);
 
 
 
 
878
879	if (likely(!ret)) {
880		ww_mutex_set_context_fastpath(lock, ctx);
881		mutex_set_owner(&lock->base);
882	} else
883		ret = __ww_mutex_lock_slowpath(lock, ctx);
884	return ret;
885}
886EXPORT_SYMBOL(__ww_mutex_lock);
887
888int __sched
889__ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
890{
891	int ret;
892
893	might_sleep();
894
895	ret = __mutex_fastpath_lock_retval(&lock->base.count);
 
 
 
 
896
897	if (likely(!ret)) {
898		ww_mutex_set_context_fastpath(lock, ctx);
899		mutex_set_owner(&lock->base);
900	} else
901		ret = __ww_mutex_lock_interruptible_slowpath(lock, ctx);
902	return ret;
903}
904EXPORT_SYMBOL(__ww_mutex_lock_interruptible);
905
906#endif
907
908/**
909 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
910 * @cnt: the atomic which we are to dec
911 * @lock: the mutex to return holding if we dec to 0
912 *
913 * return true and hold lock if we dec to 0, return false otherwise
914 */
915int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
916{
917	/* dec if we can't possibly hit 0 */
918	if (atomic_add_unless(cnt, -1, 1))
919		return 0;
920	/* we might hit 0, so take the lock */
921	mutex_lock(lock);
922	if (!atomic_dec_and_test(cnt)) {
923		/* when we actually did the dec, we didn't hit 0 */
924		mutex_unlock(lock);
925		return 0;
926	}
927	/* we hit 0, and we hold the lock */
928	return 1;
929}
930EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kernel/locking/mutex.c
   4 *
   5 * Mutexes: blocking mutual exclusion locks
   6 *
   7 * Started by Ingo Molnar:
   8 *
   9 *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  10 *
  11 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
  12 * David Howells for suggestions and improvements.
  13 *
  14 *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
  15 *    from the -rt tree, where it was originally implemented for rtmutexes
  16 *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
  17 *    and Sven Dietrich.
  18 *
  19 * Also see Documentation/locking/mutex-design.rst.
  20 */
  21#include <linux/mutex.h>
  22#include <linux/ww_mutex.h>
  23#include <linux/sched/signal.h>
  24#include <linux/sched/rt.h>
  25#include <linux/sched/wake_q.h>
  26#include <linux/sched/debug.h>
  27#include <linux/export.h>
  28#include <linux/spinlock.h>
  29#include <linux/interrupt.h>
  30#include <linux/debug_locks.h>
  31#include <linux/osq_lock.h>
  32
 
 
 
 
  33#ifdef CONFIG_DEBUG_MUTEXES
  34# include "mutex-debug.h"
 
 
 
 
 
 
 
 
  35#else
  36# include "mutex.h"
 
  37#endif
  38
 
 
 
 
 
 
  39void
  40__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
  41{
  42	atomic_long_set(&lock->owner, 0);
  43	spin_lock_init(&lock->wait_lock);
  44	INIT_LIST_HEAD(&lock->wait_list);
 
  45#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  46	osq_lock_init(&lock->osq);
  47#endif
  48
  49	debug_mutex_init(lock, name, key);
  50}
 
  51EXPORT_SYMBOL(__mutex_init);
  52
  53/*
  54 * @owner: contains: 'struct task_struct *' to the current lock owner,
  55 * NULL means not owned. Since task_struct pointers are aligned at
  56 * at least L1_CACHE_BYTES, we have low bits to store extra state.
  57 *
  58 * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup.
  59 * Bit1 indicates unlock needs to hand the lock to the top-waiter
  60 * Bit2 indicates handoff has been done and we're waiting for pickup.
  61 */
  62#define MUTEX_FLAG_WAITERS	0x01
  63#define MUTEX_FLAG_HANDOFF	0x02
  64#define MUTEX_FLAG_PICKUP	0x04
  65
  66#define MUTEX_FLAGS		0x07
  67
  68/*
  69 * Internal helper function; C doesn't allow us to hide it :/
  70 *
  71 * DO NOT USE (outside of mutex code).
  72 */
  73static inline struct task_struct *__mutex_owner(struct mutex *lock)
  74{
  75	return (struct task_struct *)(atomic_long_read(&lock->owner) & ~MUTEX_FLAGS);
  76}
  77
  78static inline struct task_struct *__owner_task(unsigned long owner)
  79{
  80	return (struct task_struct *)(owner & ~MUTEX_FLAGS);
  81}
  82
  83bool mutex_is_locked(struct mutex *lock)
  84{
  85	return __mutex_owner(lock) != NULL;
  86}
  87EXPORT_SYMBOL(mutex_is_locked);
  88
  89__must_check enum mutex_trylock_recursive_enum
  90mutex_trylock_recursive(struct mutex *lock)
  91{
  92	if (unlikely(__mutex_owner(lock) == current))
  93		return MUTEX_TRYLOCK_RECURSIVE;
  94
  95	return mutex_trylock(lock);
  96}
  97EXPORT_SYMBOL(mutex_trylock_recursive);
  98
  99static inline unsigned long __owner_flags(unsigned long owner)
 100{
 101	return owner & MUTEX_FLAGS;
 102}
 103
 104/*
 105 * Trylock variant that retuns the owning task on failure.
 106 */
 107static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock)
 108{
 109	unsigned long owner, curr = (unsigned long)current;
 110
 111	owner = atomic_long_read(&lock->owner);
 112	for (;;) { /* must loop, can race against a flag */
 113		unsigned long old, flags = __owner_flags(owner);
 114		unsigned long task = owner & ~MUTEX_FLAGS;
 115
 116		if (task) {
 117			if (likely(task != curr))
 118				break;
 119
 120			if (likely(!(flags & MUTEX_FLAG_PICKUP)))
 121				break;
 122
 123			flags &= ~MUTEX_FLAG_PICKUP;
 124		} else {
 125#ifdef CONFIG_DEBUG_MUTEXES
 126			DEBUG_LOCKS_WARN_ON(flags & MUTEX_FLAG_PICKUP);
 127#endif
 128		}
 129
 130		/*
 131		 * We set the HANDOFF bit, we must make sure it doesn't live
 132		 * past the point where we acquire it. This would be possible
 133		 * if we (accidentally) set the bit on an unlocked mutex.
 134		 */
 135		flags &= ~MUTEX_FLAG_HANDOFF;
 136
 137		old = atomic_long_cmpxchg_acquire(&lock->owner, owner, curr | flags);
 138		if (old == owner)
 139			return NULL;
 140
 141		owner = old;
 142	}
 143
 144	return __owner_task(owner);
 145}
 146
 147/*
 148 * Actual trylock that will work on any unlocked state.
 149 */
 150static inline bool __mutex_trylock(struct mutex *lock)
 151{
 152	return !__mutex_trylock_or_owner(lock);
 153}
 154
 155#ifndef CONFIG_DEBUG_LOCK_ALLOC
 156/*
 157 * Lockdep annotations are contained to the slow paths for simplicity.
 158 * There is nothing that would stop spreading the lockdep annotations outwards
 159 * except more code.
 160 */
 161
 162/*
 163 * Optimistic trylock that only works in the uncontended case. Make sure to
 164 * follow with a __mutex_trylock() before failing.
 165 */
 166static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
 167{
 168	unsigned long curr = (unsigned long)current;
 169	unsigned long zero = 0UL;
 170
 171	if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr))
 172		return true;
 173
 174	return false;
 175}
 176
 177static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
 178{
 179	unsigned long curr = (unsigned long)current;
 180
 181	if (atomic_long_cmpxchg_release(&lock->owner, curr, 0UL) == curr)
 182		return true;
 183
 184	return false;
 185}
 186#endif
 187
 188static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
 189{
 190	atomic_long_or(flag, &lock->owner);
 191}
 192
 193static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
 194{
 195	atomic_long_andnot(flag, &lock->owner);
 196}
 197
 198static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
 199{
 200	return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
 201}
 202
 203/*
 204 * Add @waiter to a given location in the lock wait_list and set the
 205 * FLAG_WAITERS flag if it's the first waiter.
 206 */
 207static void __sched
 208__mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter,
 209		   struct list_head *list)
 210{
 211	debug_mutex_add_waiter(lock, waiter, current);
 212
 213	list_add_tail(&waiter->list, list);
 214	if (__mutex_waiter_is_first(lock, waiter))
 215		__mutex_set_flag(lock, MUTEX_FLAG_WAITERS);
 216}
 217
 218/*
 219 * Give up ownership to a specific task, when @task = NULL, this is equivalent
 220 * to a regular unlock. Sets PICKUP on a handoff, clears HANDOF, preserves
 221 * WAITERS. Provides RELEASE semantics like a regular unlock, the
 222 * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff.
 223 */
 224static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
 225{
 226	unsigned long owner = atomic_long_read(&lock->owner);
 227
 228	for (;;) {
 229		unsigned long old, new;
 230
 231#ifdef CONFIG_DEBUG_MUTEXES
 232		DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
 233		DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
 234#endif
 235
 236		new = (owner & MUTEX_FLAG_WAITERS);
 237		new |= (unsigned long)task;
 238		if (task)
 239			new |= MUTEX_FLAG_PICKUP;
 240
 241		old = atomic_long_cmpxchg_release(&lock->owner, owner, new);
 242		if (old == owner)
 243			break;
 244
 245		owner = old;
 246	}
 247}
 248
 249#ifndef CONFIG_DEBUG_LOCK_ALLOC
 250/*
 251 * We split the mutex lock/unlock logic into separate fastpath and
 252 * slowpath functions, to reduce the register pressure on the fastpath.
 253 * We also put the fastpath first in the kernel image, to make sure the
 254 * branch is predicted by the CPU as default-untaken.
 255 */
 256static void __sched __mutex_lock_slowpath(struct mutex *lock);
 257
 258/**
 259 * mutex_lock - acquire the mutex
 260 * @lock: the mutex to be acquired
 261 *
 262 * Lock the mutex exclusively for this task. If the mutex is not
 263 * available right now, it will sleep until it can get it.
 264 *
 265 * The mutex must later on be released by the same task that
 266 * acquired it. Recursive locking is not allowed. The task
 267 * may not exit without first unlocking the mutex. Also, kernel
 268 * memory where the mutex resides must not be freed with
 269 * the mutex still locked. The mutex must first be initialized
 270 * (or statically defined) before it can be locked. memset()-ing
 271 * the mutex to 0 is not allowed.
 272 *
 273 * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging
 274 * checks that will enforce the restrictions and will also do
 275 * deadlock debugging)
 276 *
 277 * This function is similar to (but not equivalent to) down().
 278 */
 279void __sched mutex_lock(struct mutex *lock)
 280{
 281	might_sleep();
 282
 283	if (!__mutex_trylock_fast(lock))
 284		__mutex_lock_slowpath(lock);
 285}
 286EXPORT_SYMBOL(mutex_lock);
 287#endif
 288
 289/*
 290 * Wait-Die:
 291 *   The newer transactions are killed when:
 292 *     It (the new transaction) makes a request for a lock being held
 293 *     by an older transaction.
 294 *
 295 * Wound-Wait:
 296 *   The newer transactions are wounded when:
 297 *     An older transaction makes a request for a lock being held by
 298 *     the newer transaction.
 299 */
 300
 301/*
 302 * Associate the ww_mutex @ww with the context @ww_ctx under which we acquired
 303 * it.
 304 */
 305static __always_inline void
 306ww_mutex_lock_acquired(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx)
 307{
 308#ifdef CONFIG_DEBUG_MUTEXES
 309	/*
 310	 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
 311	 * but released with a normal mutex_unlock in this call.
 312	 *
 313	 * This should never happen, always use ww_mutex_unlock.
 314	 */
 315	DEBUG_LOCKS_WARN_ON(ww->ctx);
 
 
 316
 317	/*
 318	 * Not quite done after calling ww_acquire_done() ?
 319	 */
 320	DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
 321
 322	if (ww_ctx->contending_lock) {
 323		/*
 324		 * After -EDEADLK you tried to
 325		 * acquire a different ww_mutex? Bad!
 326		 */
 327		DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
 328
 329		/*
 330		 * You called ww_mutex_lock after receiving -EDEADLK,
 331		 * but 'forgot' to unlock everything else first?
 332		 */
 333		DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
 334		ww_ctx->contending_lock = NULL;
 335	}
 336
 337	/*
 338	 * Naughty, using a different class will lead to undefined behavior!
 339	 */
 340	DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
 341#endif
 342	ww_ctx->acquired++;
 343	ww->ctx = ww_ctx;
 344}
 345
 346/*
 347 * Determine if context @a is 'after' context @b. IOW, @a is a younger
 348 * transaction than @b and depending on algorithm either needs to wait for
 349 * @b or die.
 350 */
 351static inline bool __sched
 352__ww_ctx_stamp_after(struct ww_acquire_ctx *a, struct ww_acquire_ctx *b)
 353{
 354
 355	return (signed long)(a->stamp - b->stamp) > 0;
 356}
 357
 358/*
 359 * Wait-Die; wake a younger waiter context (when locks held) such that it can
 360 * die.
 361 *
 362 * Among waiters with context, only the first one can have other locks acquired
 363 * already (ctx->acquired > 0), because __ww_mutex_add_waiter() and
 364 * __ww_mutex_check_kill() wake any but the earliest context.
 365 */
 366static bool __sched
 367__ww_mutex_die(struct mutex *lock, struct mutex_waiter *waiter,
 368	       struct ww_acquire_ctx *ww_ctx)
 369{
 370	if (!ww_ctx->is_wait_die)
 371		return false;
 372
 373	if (waiter->ww_ctx->acquired > 0 &&
 374			__ww_ctx_stamp_after(waiter->ww_ctx, ww_ctx)) {
 375		debug_mutex_wake_waiter(lock, waiter);
 376		wake_up_process(waiter->task);
 377	}
 378
 379	return true;
 380}
 381
 382/*
 383 * Wound-Wait; wound a younger @hold_ctx if it holds the lock.
 384 *
 385 * Wound the lock holder if there are waiters with older transactions than
 386 * the lock holders. Even if multiple waiters may wound the lock holder,
 387 * it's sufficient that only one does.
 388 */
 389static bool __ww_mutex_wound(struct mutex *lock,
 390			     struct ww_acquire_ctx *ww_ctx,
 391			     struct ww_acquire_ctx *hold_ctx)
 392{
 393	struct task_struct *owner = __mutex_owner(lock);
 394
 395	lockdep_assert_held(&lock->wait_lock);
 396
 397	/*
 398	 * Possible through __ww_mutex_add_waiter() when we race with
 399	 * ww_mutex_set_context_fastpath(). In that case we'll get here again
 400	 * through __ww_mutex_check_waiters().
 401	 */
 402	if (!hold_ctx)
 403		return false;
 404
 405	/*
 406	 * Can have !owner because of __mutex_unlock_slowpath(), but if owner,
 407	 * it cannot go away because we'll have FLAG_WAITERS set and hold
 408	 * wait_lock.
 409	 */
 410	if (!owner)
 411		return false;
 412
 413	if (ww_ctx->acquired > 0 && __ww_ctx_stamp_after(hold_ctx, ww_ctx)) {
 414		hold_ctx->wounded = 1;
 415
 416		/*
 417		 * wake_up_process() paired with set_current_state()
 418		 * inserts sufficient barriers to make sure @owner either sees
 419		 * it's wounded in __ww_mutex_check_kill() or has a
 420		 * wakeup pending to re-read the wounded state.
 421		 */
 422		if (owner != current)
 423			wake_up_process(owner);
 424
 425		return true;
 426	}
 427
 428	return false;
 429}
 430
 
 431/*
 432 * We just acquired @lock under @ww_ctx, if there are later contexts waiting
 433 * behind us on the wait-list, check if they need to die, or wound us.
 434 *
 435 * See __ww_mutex_add_waiter() for the list-order construction; basically the
 436 * list is ordered by stamp, smallest (oldest) first.
 437 *
 438 * This relies on never mixing wait-die/wound-wait on the same wait-list;
 439 * which is currently ensured by that being a ww_class property.
 440 *
 441 * The current task must not be on the wait list.
 442 */
 443static void __sched
 444__ww_mutex_check_waiters(struct mutex *lock, struct ww_acquire_ctx *ww_ctx)
 445{
 446	struct mutex_waiter *cur;
 447
 448	lockdep_assert_held(&lock->wait_lock);
 449
 450	list_for_each_entry(cur, &lock->wait_list, list) {
 451		if (!cur->ww_ctx)
 452			continue;
 453
 454		if (__ww_mutex_die(lock, cur, ww_ctx) ||
 455		    __ww_mutex_wound(lock, cur->ww_ctx, ww_ctx))
 456			break;
 457	}
 458}
 459
 460/*
 461 * After acquiring lock with fastpath, where we do not hold wait_lock, set ctx
 462 * and wake up any waiters so they can recheck.
 463 */
 464static __always_inline void
 465ww_mutex_set_context_fastpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
 466{
 467	ww_mutex_lock_acquired(lock, ctx);
 468
 469	/*
 470	 * The lock->ctx update should be visible on all cores before
 471	 * the WAITERS check is done, otherwise contended waiters might be
 472	 * missed. The contended waiters will either see ww_ctx == NULL
 473	 * and keep spinning, or it will acquire wait_lock, add itself
 474	 * to waiter list and sleep.
 475	 */
 476	smp_mb(); /* See comments above and below. */
 477
 478	/*
 479	 * [W] ww->ctx = ctx	    [W] MUTEX_FLAG_WAITERS
 480	 *     MB		        MB
 481	 * [R] MUTEX_FLAG_WAITERS   [R] ww->ctx
 482	 *
 483	 * The memory barrier above pairs with the memory barrier in
 484	 * __ww_mutex_add_waiter() and makes sure we either observe ww->ctx
 485	 * and/or !empty list.
 486	 */
 487	if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS)))
 488		return;
 489
 490	/*
 491	 * Uh oh, we raced in fastpath, check if any of the waiters need to
 492	 * die or wound us.
 493	 */
 494	spin_lock(&lock->base.wait_lock);
 495	__ww_mutex_check_waiters(&lock->base, ctx);
 496	spin_unlock(&lock->base.wait_lock);
 497}
 498
 499#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
 500
 501static inline
 502bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
 503			    struct mutex_waiter *waiter)
 504{
 505	struct ww_mutex *ww;
 506
 507	ww = container_of(lock, struct ww_mutex, base);
 508
 509	/*
 510	 * If ww->ctx is set the contents are undefined, only
 511	 * by acquiring wait_lock there is a guarantee that
 512	 * they are not invalid when reading.
 513	 *
 514	 * As such, when deadlock detection needs to be
 515	 * performed the optimistic spinning cannot be done.
 516	 *
 517	 * Check this in every inner iteration because we may
 518	 * be racing against another thread's ww_mutex_lock.
 519	 */
 520	if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx))
 521		return false;
 522
 523	/*
 524	 * If we aren't on the wait list yet, cancel the spin
 525	 * if there are waiters. We want  to avoid stealing the
 526	 * lock from a waiter with an earlier stamp, since the
 527	 * other thread may already own a lock that we also
 528	 * need.
 529	 */
 530	if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS))
 531		return false;
 532
 533	/*
 534	 * Similarly, stop spinning if we are no longer the
 535	 * first waiter.
 536	 */
 537	if (waiter && !__mutex_waiter_is_first(lock, waiter))
 538		return false;
 539
 540	return true;
 541}
 542
 543/*
 544 * Look out! "owner" is an entirely speculative pointer access and not
 545 * reliable.
 546 *
 547 * "noinline" so that this function shows up on perf profiles.
 548 */
 549static noinline
 550bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner,
 551			 struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter)
 552{
 553	bool ret = true;
 554
 555	rcu_read_lock();
 556	while (__mutex_owner(lock) == owner) {
 557		/*
 558		 * Ensure we emit the owner->on_cpu, dereference _after_
 559		 * checking lock->owner still matches owner. If that fails,
 560		 * owner might point to freed memory. If it still matches,
 561		 * the rcu_read_lock() ensures the memory stays valid.
 562		 */
 563		barrier();
 564
 565		/*
 566		 * Use vcpu_is_preempted to detect lock holder preemption issue.
 567		 */
 568		if (!owner->on_cpu || need_resched() ||
 569				vcpu_is_preempted(task_cpu(owner))) {
 570			ret = false;
 571			break;
 572		}
 573
 574		if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) {
 575			ret = false;
 576			break;
 577		}
 578
 579		cpu_relax();
 580	}
 581	rcu_read_unlock();
 582
 583	return ret;
 
 
 
 
 
 584}
 585
 586/*
 587 * Initial check for entering the mutex spinning loop
 588 */
 589static inline int mutex_can_spin_on_owner(struct mutex *lock)
 590{
 591	struct task_struct *owner;
 592	int retval = 1;
 593
 594	if (need_resched())
 595		return 0;
 596
 597	rcu_read_lock();
 598	owner = __mutex_owner(lock);
 599
 600	/*
 601	 * As lock holder preemption issue, we both skip spinning if task is not
 602	 * on cpu or its cpu is preempted
 603	 */
 604	if (owner)
 605		retval = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
 606	rcu_read_unlock();
 607
 608	/*
 609	 * If lock->owner is not set, the mutex has been released. Return true
 610	 * such that we'll trylock in the spin path, which is a faster option
 611	 * than the blocking slow path.
 612	 */
 613	return retval;
 614}
 615
 616/*
 617 * Optimistic spinning.
 618 *
 619 * We try to spin for acquisition when we find that the lock owner
 620 * is currently running on a (different) CPU and while we don't
 621 * need to reschedule. The rationale is that if the lock owner is
 622 * running, it is likely to release the lock soon.
 623 *
 624 * The mutex spinners are queued up using MCS lock so that only one
 625 * spinner can compete for the mutex. However, if mutex spinning isn't
 626 * going to happen, there is no point in going through the lock/unlock
 627 * overhead.
 628 *
 629 * Returns true when the lock was taken, otherwise false, indicating
 630 * that we need to jump to the slowpath and sleep.
 631 *
 632 * The waiter flag is set to true if the spinner is a waiter in the wait
 633 * queue. The waiter-spinner will spin on the lock directly and concurrently
 634 * with the spinner at the head of the OSQ, if present, until the owner is
 635 * changed to itself.
 636 */
 637static __always_inline bool
 638mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
 639		      const bool use_ww_ctx, struct mutex_waiter *waiter)
 640{
 641	if (!waiter) {
 642		/*
 643		 * The purpose of the mutex_can_spin_on_owner() function is
 644		 * to eliminate the overhead of osq_lock() and osq_unlock()
 645		 * in case spinning isn't possible. As a waiter-spinner
 646		 * is not going to take OSQ lock anyway, there is no need
 647		 * to call mutex_can_spin_on_owner().
 648		 */
 649		if (!mutex_can_spin_on_owner(lock))
 650			goto fail;
 651
 652		/*
 653		 * In order to avoid a stampede of mutex spinners trying to
 654		 * acquire the mutex all at once, the spinners need to take a
 655		 * MCS (queued) lock first before spinning on the owner field.
 656		 */
 657		if (!osq_lock(&lock->osq))
 658			goto fail;
 659	}
 660
 661	for (;;) {
 662		struct task_struct *owner;
 663
 664		/* Try to acquire the mutex... */
 665		owner = __mutex_trylock_or_owner(lock);
 666		if (!owner)
 667			break;
 668
 669		/*
 670		 * There's an owner, wait for it to either
 671		 * release the lock or go to sleep.
 672		 */
 673		if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter))
 674			goto fail_unlock;
 675
 676		/*
 677		 * The cpu_relax() call is a compiler barrier which forces
 678		 * everything in this loop to be re-loaded. We don't need
 679		 * memory barriers as we'll eventually observe the right
 680		 * values at the cost of a few extra spins.
 681		 */
 682		cpu_relax();
 683	}
 684
 685	if (!waiter)
 686		osq_unlock(&lock->osq);
 687
 688	return true;
 689
 690
 691fail_unlock:
 692	if (!waiter)
 693		osq_unlock(&lock->osq);
 694
 695fail:
 696	/*
 697	 * If we fell out of the spin path because of need_resched(),
 698	 * reschedule now, before we try-lock the mutex. This avoids getting
 699	 * scheduled out right after we obtained the mutex.
 700	 */
 701	if (need_resched()) {
 702		/*
 703		 * We _should_ have TASK_RUNNING here, but just in case
 704		 * we do not, make it so, otherwise we might get stuck.
 705		 */
 706		__set_current_state(TASK_RUNNING);
 707		schedule_preempt_disabled();
 708	}
 709
 710	return false;
 711}
 712#else
 713static __always_inline bool
 714mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
 715		      const bool use_ww_ctx, struct mutex_waiter *waiter)
 716{
 717	return false;
 718}
 719#endif
 720
 721static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
 
 722
 723/**
 724 * mutex_unlock - release the mutex
 725 * @lock: the mutex to be released
 726 *
 727 * Unlock a mutex that has been locked by this task previously.
 728 *
 729 * This function must not be used in interrupt context. Unlocking
 730 * of a not locked mutex is not allowed.
 731 *
 732 * This function is similar to (but not equivalent to) up().
 733 */
 734void __sched mutex_unlock(struct mutex *lock)
 735{
 736#ifndef CONFIG_DEBUG_LOCK_ALLOC
 737	if (__mutex_unlock_fast(lock))
 738		return;
 
 
 
 
 
 
 
 
 739#endif
 740	__mutex_unlock_slowpath(lock, _RET_IP_);
 741}
 
 742EXPORT_SYMBOL(mutex_unlock);
 743
 744/**
 745 * ww_mutex_unlock - release the w/w mutex
 746 * @lock: the mutex to be released
 747 *
 748 * Unlock a mutex that has been locked by this task previously with any of the
 749 * ww_mutex_lock* functions (with or without an acquire context). It is
 750 * forbidden to release the locks after releasing the acquire context.
 751 *
 752 * This function must not be used in interrupt context. Unlocking
 753 * of a unlocked mutex is not allowed.
 754 */
 755void __sched ww_mutex_unlock(struct ww_mutex *lock)
 756{
 757	/*
 758	 * The unlocking fastpath is the 0->1 transition from 'locked'
 759	 * into 'unlocked' state:
 760	 */
 761	if (lock->ctx) {
 762#ifdef CONFIG_DEBUG_MUTEXES
 763		DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
 764#endif
 765		if (lock->ctx->acquired > 0)
 766			lock->ctx->acquired--;
 767		lock->ctx = NULL;
 768	}
 769
 770	mutex_unlock(&lock->base);
 
 
 
 
 
 
 
 
 771}
 772EXPORT_SYMBOL(ww_mutex_unlock);
 773
 
 
 
 
 
 
 
 
 
 
 
 774
 775static __always_inline int __sched
 776__ww_mutex_kill(struct mutex *lock, struct ww_acquire_ctx *ww_ctx)
 777{
 778	if (ww_ctx->acquired > 0) {
 779#ifdef CONFIG_DEBUG_MUTEXES
 780		struct ww_mutex *ww;
 781
 782		ww = container_of(lock, struct ww_mutex, base);
 783		DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock);
 784		ww_ctx->contending_lock = ww;
 785#endif
 786		return -EDEADLK;
 787	}
 788
 789	return 0;
 790}
 791
 792
 793/*
 794 * Check the wound condition for the current lock acquire.
 795 *
 796 * Wound-Wait: If we're wounded, kill ourself.
 797 *
 798 * Wait-Die: If we're trying to acquire a lock already held by an older
 799 *           context, kill ourselves.
 800 *
 801 * Since __ww_mutex_add_waiter() orders the wait-list on stamp, we only have to
 802 * look at waiters before us in the wait-list.
 803 */
 804static inline int __sched
 805__ww_mutex_check_kill(struct mutex *lock, struct mutex_waiter *waiter,
 806		      struct ww_acquire_ctx *ctx)
 807{
 808	struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
 809	struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx);
 810	struct mutex_waiter *cur;
 
 
 
 
 
 811
 812	if (ctx->acquired == 0)
 813		return 0;
 
 
 814
 815	if (!ctx->is_wait_die) {
 816		if (ctx->wounded)
 817			return __ww_mutex_kill(lock, ctx);
 
 
 
 818
 819		return 0;
 
 
 
 
 
 820	}
 821
 822	if (hold_ctx && __ww_ctx_stamp_after(ctx, hold_ctx))
 823		return __ww_mutex_kill(lock, ctx);
 824
 825	/*
 826	 * If there is a waiter in front of us that has a context, then its
 827	 * stamp is earlier than ours and we must kill ourself.
 828	 */
 829	cur = waiter;
 830	list_for_each_entry_continue_reverse(cur, &lock->wait_list, list) {
 831		if (!cur->ww_ctx)
 832			continue;
 833
 834		return __ww_mutex_kill(lock, ctx);
 835	}
 836
 837	return 0;
 838}
 839
 840/*
 841 * Add @waiter to the wait-list, keep the wait-list ordered by stamp, smallest
 842 * first. Such that older contexts are preferred to acquire the lock over
 843 * younger contexts.
 844 *
 845 * Waiters without context are interspersed in FIFO order.
 846 *
 847 * Furthermore, for Wait-Die kill ourself immediately when possible (there are
 848 * older contexts already waiting) to avoid unnecessary waiting and for
 849 * Wound-Wait ensure we wound the owning context when it is younger.
 850 */
 851static inline int __sched
 852__ww_mutex_add_waiter(struct mutex_waiter *waiter,
 853		      struct mutex *lock,
 854		      struct ww_acquire_ctx *ww_ctx)
 855{
 
 856	struct mutex_waiter *cur;
 857	struct list_head *pos;
 858	bool is_wait_die;
 859
 860	if (!ww_ctx) {
 861		__mutex_add_waiter(lock, waiter, &lock->wait_list);
 862		return 0;
 863	}
 864
 865	is_wait_die = ww_ctx->is_wait_die;
 866
 867	/*
 868	 * Add the waiter before the first waiter with a higher stamp.
 869	 * Waiters without a context are skipped to avoid starving
 870	 * them. Wait-Die waiters may die here. Wound-Wait waiters
 871	 * never die here, but they are sorted in stamp order and
 872	 * may wound the lock holder.
 873	 */
 874	pos = &lock->wait_list;
 875	list_for_each_entry_reverse(cur, &lock->wait_list, list) {
 876		if (!cur->ww_ctx)
 877			continue;
 878
 879		if (__ww_ctx_stamp_after(ww_ctx, cur->ww_ctx)) {
 880			/*
 881			 * Wait-Die: if we find an older context waiting, there
 882			 * is no point in queueing behind it, as we'd have to
 883			 * die the moment it would acquire the lock.
 884			 */
 885			if (is_wait_die) {
 886				int ret = __ww_mutex_kill(lock, ww_ctx);
 887
 888				if (ret)
 889					return ret;
 890			}
 891
 892			break;
 893		}
 894
 895		pos = &cur->list;
 896
 897		/* Wait-Die: ensure younger waiters die. */
 898		__ww_mutex_die(lock, cur, ww_ctx);
 899	}
 900
 901	__mutex_add_waiter(lock, waiter, pos);
 902
 903	/*
 904	 * Wound-Wait: if we're blocking on a mutex owned by a younger context,
 905	 * wound that such that we might proceed.
 906	 */
 907	if (!is_wait_die) {
 908		struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
 909
 910		/*
 911		 * See ww_mutex_set_context_fastpath(). Orders setting
 912		 * MUTEX_FLAG_WAITERS vs the ww->ctx load,
 913		 * such that either we or the fastpath will wound @ww->ctx.
 914		 */
 915		smp_mb();
 916		__ww_mutex_wound(lock, ww_ctx, ww->ctx);
 917	}
 918
 919	return 0;
 920}
 921
 922/*
 923 * Lock a mutex (possibly interruptible), slowpath:
 924 */
 925static __always_inline int __sched
 926__mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
 927		    struct lockdep_map *nest_lock, unsigned long ip,
 928		    struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
 929{
 
 930	struct mutex_waiter waiter;
 931	bool first = false;
 932	struct ww_mutex *ww;
 933	int ret;
 934
 935	might_sleep();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 936
 937#ifdef CONFIG_DEBUG_MUTEXES
 938	DEBUG_LOCKS_WARN_ON(lock->magic != lock);
 939#endif
 940
 941	ww = container_of(lock, struct ww_mutex, base);
 942	if (use_ww_ctx && ww_ctx) {
 943		if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
 944			return -EALREADY;
 
 
 
 
 
 
 
 
 945
 946		/*
 947		 * Reset the wounded flag after a kill. No other process can
 948		 * race and wound us here since they can't have a valid owner
 949		 * pointer if we don't have any locks held.
 950		 */
 951		if (ww_ctx->acquired == 0)
 952			ww_ctx->wounded = 0;
 953	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 954
 955	preempt_disable();
 956	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
 
 
 
 
 
 
 957
 958	if (__mutex_trylock(lock) ||
 959	    mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, NULL)) {
 960		/* got the lock, yay! */
 961		lock_acquired(&lock->dep_map, ip);
 962		if (use_ww_ctx && ww_ctx)
 963			ww_mutex_set_context_fastpath(ww, ww_ctx);
 964		preempt_enable();
 965		return 0;
 966	}
 967
 968	spin_lock(&lock->wait_lock);
 969	/*
 970	 * After waiting to acquire the wait_lock, try again.
 
 
 971	 */
 972	if (__mutex_trylock(lock)) {
 973		if (use_ww_ctx && ww_ctx)
 974			__ww_mutex_check_waiters(lock, ww_ctx);
 
 975
 
 
 976		goto skip_wait;
 977	}
 978
 979	debug_mutex_lock_common(lock, &waiter);
 
 
 
 
 
 980
 981	lock_contended(&lock->dep_map, ip);
 982
 983	if (!use_ww_ctx) {
 984		/* add waiting tasks to the end of the waitqueue (FIFO): */
 985		__mutex_add_waiter(lock, &waiter, &lock->wait_list);
 986
 987
 988#ifdef CONFIG_DEBUG_MUTEXES
 989		waiter.ww_ctx = MUTEX_POISON_WW_CTX;
 990#endif
 991	} else {
 992		/*
 993		 * Add in stamp order, waking up waiters that must kill
 994		 * themselves.
 995		 */
 996		ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx);
 997		if (ret)
 998			goto err_early_kill;
 999
1000		waiter.ww_ctx = ww_ctx;
1001	}
1002
1003	waiter.task = current;
1004
1005	set_current_state(state);
1006	for (;;) {
1007		/*
1008		 * Once we hold wait_lock, we're serialized against
1009		 * mutex_unlock() handing the lock off to us, do a trylock
1010		 * before testing the error conditions to make sure we pick up
1011		 * the handoff.
 
 
 
1012		 */
1013		if (__mutex_trylock(lock))
1014			goto acquired;
 
1015
1016		/*
1017		 * Check for signals and kill conditions while holding
1018		 * wait_lock. This ensures the lock cancellation is ordered
1019		 * against mutex_unlock() and wake-ups do not go missing.
1020		 */
1021		if (signal_pending_state(state, current)) {
1022			ret = -EINTR;
1023			goto err;
1024		}
1025
1026		if (use_ww_ctx && ww_ctx) {
1027			ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx);
1028			if (ret)
1029				goto err;
1030		}
1031
1032		spin_unlock(&lock->wait_lock);
 
 
 
1033		schedule_preempt_disabled();
1034
1035		/*
1036		 * ww_mutex needs to always recheck its position since its waiter
1037		 * list is not FIFO ordered.
1038		 */
1039		if ((use_ww_ctx && ww_ctx) || !first) {
1040			first = __mutex_waiter_is_first(lock, &waiter);
1041			if (first)
1042				__mutex_set_flag(lock, MUTEX_FLAG_HANDOFF);
1043		}
1044
1045		set_current_state(state);
1046		/*
1047		 * Here we order against unlock; we must either see it change
1048		 * state back to RUNNING and fall through the next schedule(),
1049		 * or we must see its unlock and acquire.
1050		 */
1051		if (__mutex_trylock(lock) ||
1052		    (first && mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, &waiter)))
1053			break;
1054
1055		spin_lock(&lock->wait_lock);
1056	}
1057	spin_lock(&lock->wait_lock);
1058acquired:
1059	__set_current_state(TASK_RUNNING);
1060
1061	if (use_ww_ctx && ww_ctx) {
1062		/*
1063		 * Wound-Wait; we stole the lock (!first_waiter), check the
1064		 * waiters as anyone might want to wound us.
1065		 */
1066		if (!ww_ctx->is_wait_die &&
1067		    !__mutex_waiter_is_first(lock, &waiter))
1068			__ww_mutex_check_waiters(lock, ww_ctx);
1069	}
1070
1071	mutex_remove_waiter(lock, &waiter, current);
1072	if (likely(list_empty(&lock->wait_list)))
1073		__mutex_clear_flag(lock, MUTEX_FLAGS);
1074
1075	debug_mutex_free_waiter(&waiter);
1076
1077skip_wait:
1078	/* got the lock - cleanup and rejoice! */
1079	lock_acquired(&lock->dep_map, ip);
 
1080
1081	if (use_ww_ctx && ww_ctx)
 
 
 
 
 
 
 
1082		ww_mutex_lock_acquired(ww, ww_ctx);
 
 
 
 
 
 
 
 
 
 
 
1083
1084	spin_unlock(&lock->wait_lock);
1085	preempt_enable();
1086	return 0;
1087
1088err:
1089	__set_current_state(TASK_RUNNING);
1090	mutex_remove_waiter(lock, &waiter, current);
1091err_early_kill:
1092	spin_unlock(&lock->wait_lock);
1093	debug_mutex_free_waiter(&waiter);
1094	mutex_release(&lock->dep_map, ip);
1095	preempt_enable();
1096	return ret;
1097}
1098
1099static int __sched
1100__mutex_lock(struct mutex *lock, long state, unsigned int subclass,
1101	     struct lockdep_map *nest_lock, unsigned long ip)
1102{
1103	return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false);
1104}
1105
1106static int __sched
1107__ww_mutex_lock(struct mutex *lock, long state, unsigned int subclass,
1108		struct lockdep_map *nest_lock, unsigned long ip,
1109		struct ww_acquire_ctx *ww_ctx)
1110{
1111	return __mutex_lock_common(lock, state, subclass, nest_lock, ip, ww_ctx, true);
1112}
1113
1114#ifdef CONFIG_DEBUG_LOCK_ALLOC
1115void __sched
1116mutex_lock_nested(struct mutex *lock, unsigned int subclass)
1117{
1118	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
 
 
1119}
1120
1121EXPORT_SYMBOL_GPL(mutex_lock_nested);
1122
1123void __sched
1124_mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
1125{
1126	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_);
 
 
1127}
 
1128EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
1129
1130int __sched
1131mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
1132{
1133	return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
 
 
1134}
1135EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
1136
1137int __sched
1138mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
1139{
1140	return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_);
 
 
1141}
 
1142EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
1143
1144void __sched
1145mutex_lock_io_nested(struct mutex *lock, unsigned int subclass)
1146{
1147	int token;
1148
1149	might_sleep();
1150
1151	token = io_schedule_prepare();
1152	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
1153			    subclass, NULL, _RET_IP_, NULL, 0);
1154	io_schedule_finish(token);
1155}
1156EXPORT_SYMBOL_GPL(mutex_lock_io_nested);
1157
1158static inline int
1159ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1160{
1161#ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
1162	unsigned tmp;
1163
1164	if (ctx->deadlock_inject_countdown-- == 0) {
1165		tmp = ctx->deadlock_inject_interval;
1166		if (tmp > UINT_MAX/4)
1167			tmp = UINT_MAX;
1168		else
1169			tmp = tmp*2 + tmp + tmp/2;
1170
1171		ctx->deadlock_inject_interval = tmp;
1172		ctx->deadlock_inject_countdown = tmp;
1173		ctx->contending_lock = lock;
1174
1175		ww_mutex_unlock(lock);
1176
1177		return -EDEADLK;
1178	}
1179#endif
1180
1181	return 0;
1182}
1183
1184int __sched
1185ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1186{
1187	int ret;
1188
1189	might_sleep();
1190	ret =  __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE,
1191			       0, ctx ? &ctx->dep_map : NULL, _RET_IP_,
1192			       ctx);
1193	if (!ret && ctx && ctx->acquired > 1)
1194		return ww_mutex_deadlock_injection(lock, ctx);
1195
1196	return ret;
1197}
1198EXPORT_SYMBOL_GPL(ww_mutex_lock);
1199
1200int __sched
1201ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1202{
1203	int ret;
1204
1205	might_sleep();
1206	ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE,
1207			      0, ctx ? &ctx->dep_map : NULL, _RET_IP_,
1208			      ctx);
1209
1210	if (!ret && ctx && ctx->acquired > 1)
1211		return ww_mutex_deadlock_injection(lock, ctx);
1212
1213	return ret;
1214}
1215EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible);
1216
1217#endif
1218
1219/*
1220 * Release the lock, slowpath:
1221 */
1222static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
 
1223{
1224	struct task_struct *next = NULL;
1225	DEFINE_WAKE_Q(wake_q);
1226	unsigned long owner;
1227
1228	mutex_release(&lock->dep_map, ip);
1229
1230	/*
1231	 * Release the lock before (potentially) taking the spinlock such that
1232	 * other contenders can get on with things ASAP.
1233	 *
1234	 * Except when HANDOFF, in that case we must not clear the owner field,
1235	 * but instead set it to the top waiter.
1236	 */
1237	owner = atomic_long_read(&lock->owner);
1238	for (;;) {
1239		unsigned long old;
1240
1241#ifdef CONFIG_DEBUG_MUTEXES
1242		DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
1243		DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
1244#endif
1245
1246		if (owner & MUTEX_FLAG_HANDOFF)
1247			break;
1248
1249		old = atomic_long_cmpxchg_release(&lock->owner, owner,
1250						  __owner_flags(owner));
1251		if (old == owner) {
1252			if (owner & MUTEX_FLAG_WAITERS)
1253				break;
1254
1255			return;
1256		}
1257
1258		owner = old;
1259	}
1260
1261	spin_lock(&lock->wait_lock);
1262	debug_mutex_unlock(lock);
1263	if (!list_empty(&lock->wait_list)) {
1264		/* get the first entry from the wait-list: */
1265		struct mutex_waiter *waiter =
1266			list_first_entry(&lock->wait_list,
1267					 struct mutex_waiter, list);
1268
1269		next = waiter->task;
1270
1271		debug_mutex_wake_waiter(lock, waiter);
1272		wake_q_add(&wake_q, next);
1273	}
1274
1275	if (owner & MUTEX_FLAG_HANDOFF)
1276		__mutex_handoff(lock, next);
1277
1278	spin_unlock(&lock->wait_lock);
1279
1280	wake_up_q(&wake_q);
 
 
 
 
1281}
1282
1283#ifndef CONFIG_DEBUG_LOCK_ALLOC
1284/*
1285 * Here come the less common (and hence less performance-critical) APIs:
1286 * mutex_lock_interruptible() and mutex_trylock().
1287 */
1288static noinline int __sched
1289__mutex_lock_killable_slowpath(struct mutex *lock);
1290
1291static noinline int __sched
1292__mutex_lock_interruptible_slowpath(struct mutex *lock);
1293
1294/**
1295 * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals.
1296 * @lock: The mutex to be acquired.
1297 *
1298 * Lock the mutex like mutex_lock().  If a signal is delivered while the
1299 * process is sleeping, this function will return without acquiring the
1300 * mutex.
 
1301 *
1302 * Context: Process context.
1303 * Return: 0 if the lock was successfully acquired or %-EINTR if a
1304 * signal arrived.
1305 */
1306int __sched mutex_lock_interruptible(struct mutex *lock)
1307{
 
 
1308	might_sleep();
1309
1310	if (__mutex_trylock_fast(lock))
 
1311		return 0;
1312
1313	return __mutex_lock_interruptible_slowpath(lock);
1314}
1315
1316EXPORT_SYMBOL(mutex_lock_interruptible);
1317
1318/**
1319 * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals.
1320 * @lock: The mutex to be acquired.
1321 *
1322 * Lock the mutex like mutex_lock().  If a signal which will be fatal to
1323 * the current process is delivered while the process is sleeping, this
1324 * function will return without acquiring the mutex.
1325 *
1326 * Context: Process context.
1327 * Return: 0 if the lock was successfully acquired or %-EINTR if a
1328 * fatal signal arrived.
1329 */
1330int __sched mutex_lock_killable(struct mutex *lock)
1331{
 
 
1332	might_sleep();
1333
1334	if (__mutex_trylock_fast(lock))
 
1335		return 0;
1336
1337	return __mutex_lock_killable_slowpath(lock);
1338}
1339EXPORT_SYMBOL(mutex_lock_killable);
1340
1341/**
1342 * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O
1343 * @lock: The mutex to be acquired.
1344 *
1345 * Lock the mutex like mutex_lock().  While the task is waiting for this
1346 * mutex, it will be accounted as being in the IO wait state by the
1347 * scheduler.
1348 *
1349 * Context: Process context.
1350 */
1351void __sched mutex_lock_io(struct mutex *lock)
1352{
1353	int token;
1354
1355	token = io_schedule_prepare();
1356	mutex_lock(lock);
1357	io_schedule_finish(token);
1358}
1359EXPORT_SYMBOL_GPL(mutex_lock_io);
1360
1361static noinline void __sched
1362__mutex_lock_slowpath(struct mutex *lock)
1363{
1364	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
1365}
1366
1367static noinline int __sched
1368__mutex_lock_killable_slowpath(struct mutex *lock)
1369{
1370	return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
 
1371}
1372
1373static noinline int __sched
1374__mutex_lock_interruptible_slowpath(struct mutex *lock)
1375{
1376	return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
 
1377}
1378
1379static noinline int __sched
1380__ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1381{
1382	return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0, NULL,
1383			       _RET_IP_, ctx);
1384}
1385
1386static noinline int __sched
1387__ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
1388					    struct ww_acquire_ctx *ctx)
1389{
1390	return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0, NULL,
1391			       _RET_IP_, ctx);
1392}
1393
1394#endif
1395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1396/**
1397 * mutex_trylock - try to acquire the mutex, without waiting
1398 * @lock: the mutex to be acquired
1399 *
1400 * Try to acquire the mutex atomically. Returns 1 if the mutex
1401 * has been acquired successfully, and 0 on contention.
1402 *
1403 * NOTE: this function follows the spin_trylock() convention, so
1404 * it is negated from the down_trylock() return values! Be careful
1405 * about this when converting semaphore users to mutexes.
1406 *
1407 * This function must not be used in interrupt context. The
1408 * mutex must be released by the same task that acquired it.
1409 */
1410int __sched mutex_trylock(struct mutex *lock)
1411{
1412	bool locked;
1413
1414#ifdef CONFIG_DEBUG_MUTEXES
1415	DEBUG_LOCKS_WARN_ON(lock->magic != lock);
1416#endif
1417
1418	locked = __mutex_trylock(lock);
1419	if (locked)
1420		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1421
1422	return locked;
1423}
1424EXPORT_SYMBOL(mutex_trylock);
1425
1426#ifndef CONFIG_DEBUG_LOCK_ALLOC
1427int __sched
1428ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1429{
 
 
1430	might_sleep();
1431
1432	if (__mutex_trylock_fast(&lock->base)) {
1433		if (ctx)
1434			ww_mutex_set_context_fastpath(lock, ctx);
1435		return 0;
1436	}
1437
1438	return __ww_mutex_lock_slowpath(lock, ctx);
 
 
 
 
 
1439}
1440EXPORT_SYMBOL(ww_mutex_lock);
1441
1442int __sched
1443ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1444{
 
 
1445	might_sleep();
1446
1447	if (__mutex_trylock_fast(&lock->base)) {
1448		if (ctx)
1449			ww_mutex_set_context_fastpath(lock, ctx);
1450		return 0;
1451	}
1452
1453	return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
 
 
 
 
 
1454}
1455EXPORT_SYMBOL(ww_mutex_lock_interruptible);
1456
1457#endif
1458
1459/**
1460 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
1461 * @cnt: the atomic which we are to dec
1462 * @lock: the mutex to return holding if we dec to 0
1463 *
1464 * return true and hold lock if we dec to 0, return false otherwise
1465 */
1466int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
1467{
1468	/* dec if we can't possibly hit 0 */
1469	if (atomic_add_unless(cnt, -1, 1))
1470		return 0;
1471	/* we might hit 0, so take the lock */
1472	mutex_lock(lock);
1473	if (!atomic_dec_and_test(cnt)) {
1474		/* when we actually did the dec, we didn't hit 0 */
1475		mutex_unlock(lock);
1476		return 0;
1477	}
1478	/* we hit 0, and we hold the lock */
1479	return 1;
1480}
1481EXPORT_SYMBOL(atomic_dec_and_mutex_lock);