Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Feb 10-13, 2025
Register
Loading...
v3.15
 
   1/*
   2 *  Kernel Probes (KProbes)
   3 *  kernel/kprobes.c
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License as published by
   7 * the Free Software Foundation; either version 2 of the License, or
   8 * (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  18 *
  19 * Copyright (C) IBM Corporation, 2002, 2004
  20 *
  21 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
  22 *		Probes initial implementation (includes suggestions from
  23 *		Rusty Russell).
  24 * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
  25 *		hlists and exceptions notifier as suggested by Andi Kleen.
  26 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
  27 *		interface to access function arguments.
  28 * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
  29 *		exceptions notifier to be first on the priority list.
  30 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
  31 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
  32 *		<prasanna@in.ibm.com> added function-return probes.
  33 */
  34#include <linux/kprobes.h>
  35#include <linux/hash.h>
  36#include <linux/init.h>
  37#include <linux/slab.h>
  38#include <linux/stddef.h>
  39#include <linux/export.h>
  40#include <linux/moduleloader.h>
  41#include <linux/kallsyms.h>
  42#include <linux/freezer.h>
  43#include <linux/seq_file.h>
  44#include <linux/debugfs.h>
  45#include <linux/sysctl.h>
  46#include <linux/kdebug.h>
  47#include <linux/memory.h>
  48#include <linux/ftrace.h>
  49#include <linux/cpu.h>
  50#include <linux/jump_label.h>
 
  51
  52#include <asm-generic/sections.h>
  53#include <asm/cacheflush.h>
  54#include <asm/errno.h>
  55#include <asm/uaccess.h>
  56
  57#define KPROBE_HASH_BITS 6
  58#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
  59
  60
  61/*
  62 * Some oddball architectures like 64bit powerpc have function descriptors
  63 * so this must be overridable.
  64 */
  65#ifndef kprobe_lookup_name
  66#define kprobe_lookup_name(name, addr) \
  67	addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
  68#endif
  69
  70static int kprobes_initialized;
 
 
 
 
 
  71static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
  72static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
  73
  74/* NOTE: change this value only with kprobe_mutex held */
  75static bool kprobes_all_disarmed;
  76
  77/* This protects kprobe_table and optimizing_list */
  78static DEFINE_MUTEX(kprobe_mutex);
  79static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
  80static struct {
  81	raw_spinlock_t lock ____cacheline_aligned_in_smp;
  82} kretprobe_table_locks[KPROBE_TABLE_SIZE];
  83
 
 
 
 
 
 
  84static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
  85{
  86	return &(kretprobe_table_locks[hash].lock);
  87}
  88
  89/*
  90 * Normally, functions that we'd want to prohibit kprobes in, are marked
  91 * __kprobes. But, there are cases where such functions already belong to
  92 * a different section (__sched for preempt_schedule)
  93 *
  94 * For such cases, we now have a blacklist
  95 */
  96static struct kprobe_blackpoint kprobe_blacklist[] = {
  97	{"preempt_schedule",},
  98	{"native_get_debugreg",},
  99	{"irq_entries_start",},
 100	{"common_interrupt",},
 101	{"mcount",},	/* mcount can be called from everywhere */
 102	{NULL}    /* Terminator */
 103};
 104
 105#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
 106/*
 107 * kprobe->ainsn.insn points to the copy of the instruction to be
 108 * single-stepped. x86_64, POWER4 and above have no-exec support and
 109 * stepping on the instruction on a vmalloced/kmalloced/data page
 110 * is a recipe for disaster
 111 */
 112struct kprobe_insn_page {
 113	struct list_head list;
 114	kprobe_opcode_t *insns;		/* Page of instruction slots */
 115	struct kprobe_insn_cache *cache;
 116	int nused;
 117	int ngarbage;
 118	char slot_used[];
 119};
 120
 121#define KPROBE_INSN_PAGE_SIZE(slots)			\
 122	(offsetof(struct kprobe_insn_page, slot_used) +	\
 123	 (sizeof(char) * (slots)))
 124
 125static int slots_per_page(struct kprobe_insn_cache *c)
 126{
 127	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
 128}
 129
 130enum kprobe_slot_state {
 131	SLOT_CLEAN = 0,
 132	SLOT_DIRTY = 1,
 133	SLOT_USED = 2,
 134};
 135
 136static void *alloc_insn_page(void)
 137{
 138	return module_alloc(PAGE_SIZE);
 139}
 140
 141static void free_insn_page(void *page)
 142{
 143	module_free(NULL, page);
 144}
 145
 146struct kprobe_insn_cache kprobe_insn_slots = {
 147	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
 148	.alloc = alloc_insn_page,
 149	.free = free_insn_page,
 
 150	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
 151	.insn_size = MAX_INSN_SIZE,
 152	.nr_garbage = 0,
 153};
 154static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
 155
 156/**
 157 * __get_insn_slot() - Find a slot on an executable page for an instruction.
 158 * We allocate an executable page if there's no room on existing ones.
 159 */
 160kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
 161{
 162	struct kprobe_insn_page *kip;
 163	kprobe_opcode_t *slot = NULL;
 164
 
 165	mutex_lock(&c->mutex);
 166 retry:
 167	list_for_each_entry(kip, &c->pages, list) {
 
 168		if (kip->nused < slots_per_page(c)) {
 169			int i;
 170			for (i = 0; i < slots_per_page(c); i++) {
 171				if (kip->slot_used[i] == SLOT_CLEAN) {
 172					kip->slot_used[i] = SLOT_USED;
 173					kip->nused++;
 174					slot = kip->insns + (i * c->insn_size);
 
 175					goto out;
 176				}
 177			}
 178			/* kip->nused is broken. Fix it. */
 179			kip->nused = slots_per_page(c);
 180			WARN_ON(1);
 181		}
 182	}
 
 183
 184	/* If there are any garbage slots, collect it and try again. */
 185	if (c->nr_garbage && collect_garbage_slots(c) == 0)
 186		goto retry;
 187
 188	/* All out of space.  Need to allocate a new page. */
 189	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
 190	if (!kip)
 191		goto out;
 192
 193	/*
 194	 * Use module_alloc so this page is within +/- 2GB of where the
 195	 * kernel image and loaded module images reside. This is required
 196	 * so x86_64 can correctly handle the %rip-relative fixups.
 197	 */
 198	kip->insns = c->alloc();
 199	if (!kip->insns) {
 200		kfree(kip);
 201		goto out;
 202	}
 203	INIT_LIST_HEAD(&kip->list);
 204	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
 205	kip->slot_used[0] = SLOT_USED;
 206	kip->nused = 1;
 207	kip->ngarbage = 0;
 208	kip->cache = c;
 209	list_add(&kip->list, &c->pages);
 210	slot = kip->insns;
 
 
 
 
 211out:
 212	mutex_unlock(&c->mutex);
 213	return slot;
 214}
 215
 216/* Return 1 if all garbages are collected, otherwise 0. */
 217static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
 218{
 219	kip->slot_used[idx] = SLOT_CLEAN;
 220	kip->nused--;
 221	if (kip->nused == 0) {
 222		/*
 223		 * Page is no longer in use.  Free it unless
 224		 * it's the last one.  We keep the last one
 225		 * so as not to have to set it up again the
 226		 * next time somebody inserts a probe.
 227		 */
 228		if (!list_is_singular(&kip->list)) {
 229			list_del(&kip->list);
 
 
 
 
 
 
 
 
 230			kip->cache->free(kip->insns);
 231			kfree(kip);
 232		}
 233		return 1;
 234	}
 235	return 0;
 236}
 237
 238static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
 239{
 240	struct kprobe_insn_page *kip, *next;
 241
 242	/* Ensure no-one is interrupted on the garbages */
 243	synchronize_sched();
 244
 245	list_for_each_entry_safe(kip, next, &c->pages, list) {
 246		int i;
 247		if (kip->ngarbage == 0)
 248			continue;
 249		kip->ngarbage = 0;	/* we will collect all garbages */
 250		for (i = 0; i < slots_per_page(c); i++) {
 251			if (kip->slot_used[i] == SLOT_DIRTY &&
 252			    collect_one_slot(kip, i))
 253				break;
 254		}
 255	}
 256	c->nr_garbage = 0;
 257	return 0;
 258}
 259
 260void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
 261				kprobe_opcode_t *slot, int dirty)
 262{
 263	struct kprobe_insn_page *kip;
 
 264
 265	mutex_lock(&c->mutex);
 266	list_for_each_entry(kip, &c->pages, list) {
 267		long idx = ((long)slot - (long)kip->insns) /
 268				(c->insn_size * sizeof(kprobe_opcode_t));
 269		if (idx >= 0 && idx < slots_per_page(c)) {
 270			WARN_ON(kip->slot_used[idx] != SLOT_USED);
 271			if (dirty) {
 272				kip->slot_used[idx] = SLOT_DIRTY;
 273				kip->ngarbage++;
 274				if (++c->nr_garbage > slots_per_page(c))
 275					collect_garbage_slots(c);
 276			} else
 277				collect_one_slot(kip, idx);
 278			goto out;
 279		}
 280	}
 281	/* Could not free this slot. */
 282	WARN_ON(1);
 
 283out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 284	mutex_unlock(&c->mutex);
 285}
 286
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 287#ifdef CONFIG_OPTPROBES
 288/* For optimized_kprobe buffer */
 289struct kprobe_insn_cache kprobe_optinsn_slots = {
 290	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
 291	.alloc = alloc_insn_page,
 292	.free = free_insn_page,
 
 293	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
 294	/* .insn_size is initialized later */
 295	.nr_garbage = 0,
 296};
 297#endif
 298#endif
 299
 300/* We have preemption disabled.. so it is safe to use __ versions */
 301static inline void set_kprobe_instance(struct kprobe *kp)
 302{
 303	__this_cpu_write(kprobe_instance, kp);
 304}
 305
 306static inline void reset_kprobe_instance(void)
 307{
 308	__this_cpu_write(kprobe_instance, NULL);
 309}
 310
 311/*
 312 * This routine is called either:
 313 * 	- under the kprobe_mutex - during kprobe_[un]register()
 314 * 				OR
 315 * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
 316 */
 317struct kprobe __kprobes *get_kprobe(void *addr)
 318{
 319	struct hlist_head *head;
 320	struct kprobe *p;
 321
 322	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
 323	hlist_for_each_entry_rcu(p, head, hlist) {
 
 324		if (p->addr == addr)
 325			return p;
 326	}
 327
 328	return NULL;
 329}
 
 330
 331static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
 332
 333/* Return true if the kprobe is an aggregator */
 334static inline int kprobe_aggrprobe(struct kprobe *p)
 335{
 336	return p->pre_handler == aggr_pre_handler;
 337}
 338
 339/* Return true(!0) if the kprobe is unused */
 340static inline int kprobe_unused(struct kprobe *p)
 341{
 342	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
 343	       list_empty(&p->list);
 344}
 345
 346/*
 347 * Keep all fields in the kprobe consistent
 348 */
 349static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
 350{
 351	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
 352	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
 353}
 354
 355#ifdef CONFIG_OPTPROBES
 356/* NOTE: change this value only with kprobe_mutex held */
 357static bool kprobes_allow_optimization;
 358
 359/*
 360 * Call all pre_handler on the list, but ignores its return value.
 361 * This must be called from arch-dep optimized caller.
 362 */
 363void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
 364{
 365	struct kprobe *kp;
 366
 367	list_for_each_entry_rcu(kp, &p->list, list) {
 368		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
 369			set_kprobe_instance(kp);
 370			kp->pre_handler(kp, regs);
 371		}
 372		reset_kprobe_instance();
 373	}
 374}
 
 375
 376/* Free optimized instructions and optimized_kprobe */
 377static __kprobes void free_aggr_kprobe(struct kprobe *p)
 378{
 379	struct optimized_kprobe *op;
 380
 381	op = container_of(p, struct optimized_kprobe, kp);
 382	arch_remove_optimized_kprobe(op);
 383	arch_remove_kprobe(p);
 384	kfree(op);
 385}
 386
 387/* Return true(!0) if the kprobe is ready for optimization. */
 388static inline int kprobe_optready(struct kprobe *p)
 389{
 390	struct optimized_kprobe *op;
 391
 392	if (kprobe_aggrprobe(p)) {
 393		op = container_of(p, struct optimized_kprobe, kp);
 394		return arch_prepared_optinsn(&op->optinsn);
 395	}
 396
 397	return 0;
 398}
 399
 400/* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
 401static inline int kprobe_disarmed(struct kprobe *p)
 402{
 403	struct optimized_kprobe *op;
 404
 405	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
 406	if (!kprobe_aggrprobe(p))
 407		return kprobe_disabled(p);
 408
 409	op = container_of(p, struct optimized_kprobe, kp);
 410
 411	return kprobe_disabled(p) && list_empty(&op->list);
 412}
 413
 414/* Return true(!0) if the probe is queued on (un)optimizing lists */
 415static int __kprobes kprobe_queued(struct kprobe *p)
 416{
 417	struct optimized_kprobe *op;
 418
 419	if (kprobe_aggrprobe(p)) {
 420		op = container_of(p, struct optimized_kprobe, kp);
 421		if (!list_empty(&op->list))
 422			return 1;
 423	}
 424	return 0;
 425}
 426
 427/*
 428 * Return an optimized kprobe whose optimizing code replaces
 429 * instructions including addr (exclude breakpoint).
 430 */
 431static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
 432{
 433	int i;
 434	struct kprobe *p = NULL;
 435	struct optimized_kprobe *op;
 436
 437	/* Don't check i == 0, since that is a breakpoint case. */
 438	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
 439		p = get_kprobe((void *)(addr - i));
 440
 441	if (p && kprobe_optready(p)) {
 442		op = container_of(p, struct optimized_kprobe, kp);
 443		if (arch_within_optimized_kprobe(op, addr))
 444			return p;
 445	}
 446
 447	return NULL;
 448}
 449
 450/* Optimization staging list, protected by kprobe_mutex */
 451static LIST_HEAD(optimizing_list);
 452static LIST_HEAD(unoptimizing_list);
 453static LIST_HEAD(freeing_list);
 454
 455static void kprobe_optimizer(struct work_struct *work);
 456static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
 457#define OPTIMIZE_DELAY 5
 458
 459/*
 460 * Optimize (replace a breakpoint with a jump) kprobes listed on
 461 * optimizing_list.
 462 */
 463static __kprobes void do_optimize_kprobes(void)
 464{
 465	/* Optimization never be done when disarmed */
 466	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
 467	    list_empty(&optimizing_list))
 468		return;
 469
 470	/*
 471	 * The optimization/unoptimization refers online_cpus via
 472	 * stop_machine() and cpu-hotplug modifies online_cpus.
 473	 * And same time, text_mutex will be held in cpu-hotplug and here.
 474	 * This combination can cause a deadlock (cpu-hotplug try to lock
 475	 * text_mutex but stop_machine can not be done because online_cpus
 476	 * has been changed)
 477	 * To avoid this deadlock, we need to call get_online_cpus()
 478	 * for preventing cpu-hotplug outside of text_mutex locking.
 479	 */
 480	get_online_cpus();
 481	mutex_lock(&text_mutex);
 
 
 
 
 
 482	arch_optimize_kprobes(&optimizing_list);
 483	mutex_unlock(&text_mutex);
 484	put_online_cpus();
 485}
 486
 487/*
 488 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
 489 * if need) kprobes listed on unoptimizing_list.
 490 */
 491static __kprobes void do_unoptimize_kprobes(void)
 492{
 493	struct optimized_kprobe *op, *tmp;
 494
 
 
 
 
 495	/* Unoptimization must be done anytime */
 496	if (list_empty(&unoptimizing_list))
 497		return;
 498
 499	/* Ditto to do_optimize_kprobes */
 500	get_online_cpus();
 501	mutex_lock(&text_mutex);
 502	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
 503	/* Loop free_list for disarming */
 504	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
 
 
 505		/* Disarm probes if marked disabled */
 506		if (kprobe_disabled(&op->kp))
 507			arch_disarm_kprobe(&op->kp);
 508		if (kprobe_unused(&op->kp)) {
 509			/*
 510			 * Remove unused probes from hash list. After waiting
 511			 * for synchronization, these probes are reclaimed.
 512			 * (reclaiming is done by do_free_cleaned_kprobes.)
 513			 */
 514			hlist_del_rcu(&op->kp.hlist);
 515		} else
 516			list_del_init(&op->list);
 517	}
 518	mutex_unlock(&text_mutex);
 519	put_online_cpus();
 520}
 521
 522/* Reclaim all kprobes on the free_list */
 523static __kprobes void do_free_cleaned_kprobes(void)
 524{
 525	struct optimized_kprobe *op, *tmp;
 526
 527	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
 528		BUG_ON(!kprobe_unused(&op->kp));
 529		list_del_init(&op->list);
 
 
 
 
 
 
 
 530		free_aggr_kprobe(&op->kp);
 531	}
 532}
 533
 534/* Start optimizer after OPTIMIZE_DELAY passed */
 535static __kprobes void kick_kprobe_optimizer(void)
 536{
 537	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
 538}
 539
 540/* Kprobe jump optimizer */
 541static __kprobes void kprobe_optimizer(struct work_struct *work)
 542{
 543	mutex_lock(&kprobe_mutex);
 544	/* Lock modules while optimizing kprobes */
 545	mutex_lock(&module_mutex);
 546
 547	/*
 548	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
 549	 * kprobes before waiting for quiesence period.
 550	 */
 551	do_unoptimize_kprobes();
 552
 553	/*
 554	 * Step 2: Wait for quiesence period to ensure all running interrupts
 555	 * are done. Because optprobe may modify multiple instructions
 556	 * there is a chance that Nth instruction is interrupted. In that
 557	 * case, running interrupt can return to 2nd-Nth byte of jump
 558	 * instruction. This wait is for avoiding it.
 
 
 559	 */
 560	synchronize_sched();
 561
 562	/* Step 3: Optimize kprobes after quiesence period */
 563	do_optimize_kprobes();
 564
 565	/* Step 4: Free cleaned kprobes after quiesence period */
 566	do_free_cleaned_kprobes();
 567
 568	mutex_unlock(&module_mutex);
 569	mutex_unlock(&kprobe_mutex);
 570
 571	/* Step 5: Kick optimizer again if needed */
 572	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
 573		kick_kprobe_optimizer();
 
 
 574}
 575
 576/* Wait for completing optimization and unoptimization */
 577static __kprobes void wait_for_kprobe_optimizer(void)
 578{
 579	mutex_lock(&kprobe_mutex);
 580
 581	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
 582		mutex_unlock(&kprobe_mutex);
 583
 584		/* this will also make optimizing_work execute immmediately */
 585		flush_delayed_work(&optimizing_work);
 586		/* @optimizing_work might not have been queued yet, relax */
 587		cpu_relax();
 588
 589		mutex_lock(&kprobe_mutex);
 590	}
 591
 592	mutex_unlock(&kprobe_mutex);
 593}
 594
 
 
 
 
 
 
 
 
 
 
 
 
 595/* Optimize kprobe if p is ready to be optimized */
 596static __kprobes void optimize_kprobe(struct kprobe *p)
 597{
 598	struct optimized_kprobe *op;
 599
 600	/* Check if the kprobe is disabled or not ready for optimization. */
 601	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
 602	    (kprobe_disabled(p) || kprobes_all_disarmed))
 603		return;
 604
 605	/* Both of break_handler and post_handler are not supported. */
 606	if (p->break_handler || p->post_handler)
 607		return;
 608
 609	op = container_of(p, struct optimized_kprobe, kp);
 610
 611	/* Check there is no other kprobes at the optimized instructions */
 612	if (arch_check_optimized_kprobe(op) < 0)
 613		return;
 614
 615	/* Check if it is already optimized. */
 616	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
 
 
 
 
 617		return;
 
 618	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
 619
 620	if (!list_empty(&op->list))
 621		/* This is under unoptimizing. Just dequeue the probe */
 622		list_del_init(&op->list);
 623	else {
 624		list_add(&op->list, &optimizing_list);
 625		kick_kprobe_optimizer();
 626	}
 627}
 628
 629/* Short cut to direct unoptimizing */
 630static __kprobes void force_unoptimize_kprobe(struct optimized_kprobe *op)
 631{
 632	get_online_cpus();
 633	arch_unoptimize_kprobe(op);
 634	put_online_cpus();
 635	if (kprobe_disabled(&op->kp))
 636		arch_disarm_kprobe(&op->kp);
 637}
 638
 639/* Unoptimize a kprobe if p is optimized */
 640static __kprobes void unoptimize_kprobe(struct kprobe *p, bool force)
 641{
 642	struct optimized_kprobe *op;
 643
 644	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
 645		return; /* This is not an optprobe nor optimized */
 646
 647	op = container_of(p, struct optimized_kprobe, kp);
 648	if (!kprobe_optimized(p)) {
 649		/* Unoptimized or unoptimizing case */
 650		if (force && !list_empty(&op->list)) {
 651			/*
 652			 * Only if this is unoptimizing kprobe and forced,
 653			 * forcibly unoptimize it. (No need to unoptimize
 654			 * unoptimized kprobe again :)
 655			 */
 656			list_del_init(&op->list);
 657			force_unoptimize_kprobe(op);
 658		}
 659		return;
 660	}
 661
 662	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 663	if (!list_empty(&op->list)) {
 664		/* Dequeue from the optimization queue */
 665		list_del_init(&op->list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 666		return;
 667	}
 
 668	/* Optimized kprobe case */
 669	if (force)
 670		/* Forcibly update the code: this is a special case */
 671		force_unoptimize_kprobe(op);
 672	else {
 673		list_add(&op->list, &unoptimizing_list);
 674		kick_kprobe_optimizer();
 675	}
 676}
 677
 678/* Cancel unoptimizing for reusing */
 679static void reuse_unused_kprobe(struct kprobe *ap)
 680{
 681	struct optimized_kprobe *op;
 682
 683	BUG_ON(!kprobe_unused(ap));
 684	/*
 685	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
 686	 * there is still a relative jump) and disabled.
 687	 */
 688	op = container_of(ap, struct optimized_kprobe, kp);
 689	if (unlikely(list_empty(&op->list)))
 690		printk(KERN_WARNING "Warning: found a stray unused "
 691			"aggrprobe@%p\n", ap->addr);
 692	/* Enable the probe again */
 693	ap->flags &= ~KPROBE_FLAG_DISABLED;
 694	/* Optimize it again (remove from op->list) */
 695	BUG_ON(!kprobe_optready(ap));
 
 
 696	optimize_kprobe(ap);
 
 697}
 698
 699/* Remove optimized instructions */
 700static void __kprobes kill_optimized_kprobe(struct kprobe *p)
 701{
 702	struct optimized_kprobe *op;
 703
 704	op = container_of(p, struct optimized_kprobe, kp);
 705	if (!list_empty(&op->list))
 706		/* Dequeue from the (un)optimization queue */
 707		list_del_init(&op->list);
 708	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 709
 710	if (kprobe_unused(p)) {
 711		/* Enqueue if it is unused */
 712		list_add(&op->list, &freeing_list);
 713		/*
 714		 * Remove unused probes from the hash list. After waiting
 715		 * for synchronization, this probe is reclaimed.
 716		 * (reclaiming is done by do_free_cleaned_kprobes().)
 717		 */
 718		hlist_del_rcu(&op->kp.hlist);
 719	}
 720
 721	/* Don't touch the code, because it is already freed. */
 722	arch_remove_optimized_kprobe(op);
 723}
 724
 
 
 
 
 
 
 
 725/* Try to prepare optimized instructions */
 726static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
 727{
 728	struct optimized_kprobe *op;
 729
 730	op = container_of(p, struct optimized_kprobe, kp);
 731	arch_prepare_optimized_kprobe(op);
 732}
 733
 734/* Allocate new optimized_kprobe and try to prepare optimized instructions */
 735static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
 736{
 737	struct optimized_kprobe *op;
 738
 739	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
 740	if (!op)
 741		return NULL;
 742
 743	INIT_LIST_HEAD(&op->list);
 744	op->kp.addr = p->addr;
 745	arch_prepare_optimized_kprobe(op);
 746
 747	return &op->kp;
 748}
 749
 750static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
 751
 752/*
 753 * Prepare an optimized_kprobe and optimize it
 754 * NOTE: p must be a normal registered kprobe
 755 */
 756static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
 757{
 758	struct kprobe *ap;
 759	struct optimized_kprobe *op;
 760
 761	/* Impossible to optimize ftrace-based kprobe */
 762	if (kprobe_ftrace(p))
 763		return;
 764
 765	/* For preparing optimization, jump_label_text_reserved() is called */
 
 766	jump_label_lock();
 767	mutex_lock(&text_mutex);
 768
 769	ap = alloc_aggr_kprobe(p);
 770	if (!ap)
 771		goto out;
 772
 773	op = container_of(ap, struct optimized_kprobe, kp);
 774	if (!arch_prepared_optinsn(&op->optinsn)) {
 775		/* If failed to setup optimizing, fallback to kprobe */
 776		arch_remove_optimized_kprobe(op);
 777		kfree(op);
 778		goto out;
 779	}
 780
 781	init_aggr_kprobe(ap, p);
 782	optimize_kprobe(ap);	/* This just kicks optimizer thread */
 783
 784out:
 785	mutex_unlock(&text_mutex);
 786	jump_label_unlock();
 
 787}
 788
 789#ifdef CONFIG_SYSCTL
 790static void __kprobes optimize_all_kprobes(void)
 791{
 792	struct hlist_head *head;
 793	struct kprobe *p;
 794	unsigned int i;
 795
 796	mutex_lock(&kprobe_mutex);
 797	/* If optimization is already allowed, just return */
 798	if (kprobes_allow_optimization)
 799		goto out;
 800
 
 801	kprobes_allow_optimization = true;
 802	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
 803		head = &kprobe_table[i];
 804		hlist_for_each_entry_rcu(p, head, hlist)
 805			if (!kprobe_disabled(p))
 806				optimize_kprobe(p);
 807	}
 
 808	printk(KERN_INFO "Kprobes globally optimized\n");
 809out:
 810	mutex_unlock(&kprobe_mutex);
 811}
 812
 813static void __kprobes unoptimize_all_kprobes(void)
 814{
 815	struct hlist_head *head;
 816	struct kprobe *p;
 817	unsigned int i;
 818
 819	mutex_lock(&kprobe_mutex);
 820	/* If optimization is already prohibited, just return */
 821	if (!kprobes_allow_optimization) {
 822		mutex_unlock(&kprobe_mutex);
 823		return;
 824	}
 825
 
 826	kprobes_allow_optimization = false;
 827	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
 828		head = &kprobe_table[i];
 829		hlist_for_each_entry_rcu(p, head, hlist) {
 830			if (!kprobe_disabled(p))
 831				unoptimize_kprobe(p, false);
 832		}
 833	}
 
 834	mutex_unlock(&kprobe_mutex);
 835
 836	/* Wait for unoptimizing completion */
 837	wait_for_kprobe_optimizer();
 838	printk(KERN_INFO "Kprobes globally unoptimized\n");
 839}
 840
 841static DEFINE_MUTEX(kprobe_sysctl_mutex);
 842int sysctl_kprobes_optimization;
 843int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
 844				      void __user *buffer, size_t *length,
 845				      loff_t *ppos)
 846{
 847	int ret;
 848
 849	mutex_lock(&kprobe_sysctl_mutex);
 850	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
 851	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
 852
 853	if (sysctl_kprobes_optimization)
 854		optimize_all_kprobes();
 855	else
 856		unoptimize_all_kprobes();
 857	mutex_unlock(&kprobe_sysctl_mutex);
 858
 859	return ret;
 860}
 861#endif /* CONFIG_SYSCTL */
 862
 863/* Put a breakpoint for a probe. Must be called with text_mutex locked */
 864static void __kprobes __arm_kprobe(struct kprobe *p)
 865{
 866	struct kprobe *_p;
 867
 868	/* Check collision with other optimized kprobes */
 869	_p = get_optimized_kprobe((unsigned long)p->addr);
 870	if (unlikely(_p))
 871		/* Fallback to unoptimized kprobe */
 872		unoptimize_kprobe(_p, true);
 873
 874	arch_arm_kprobe(p);
 875	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
 876}
 877
 878/* Remove the breakpoint of a probe. Must be called with text_mutex locked */
 879static void __kprobes __disarm_kprobe(struct kprobe *p, bool reopt)
 880{
 881	struct kprobe *_p;
 882
 883	unoptimize_kprobe(p, false);	/* Try to unoptimize */
 
 884
 885	if (!kprobe_queued(p)) {
 886		arch_disarm_kprobe(p);
 887		/* If another kprobe was blocked, optimize it. */
 888		_p = get_optimized_kprobe((unsigned long)p->addr);
 889		if (unlikely(_p) && reopt)
 890			optimize_kprobe(_p);
 891	}
 892	/* TODO: reoptimize others after unoptimized this probe */
 893}
 894
 895#else /* !CONFIG_OPTPROBES */
 896
 897#define optimize_kprobe(p)			do {} while (0)
 898#define unoptimize_kprobe(p, f)			do {} while (0)
 899#define kill_optimized_kprobe(p)		do {} while (0)
 900#define prepare_optimized_kprobe(p)		do {} while (0)
 901#define try_to_optimize_kprobe(p)		do {} while (0)
 902#define __arm_kprobe(p)				arch_arm_kprobe(p)
 903#define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
 904#define kprobe_disarmed(p)			kprobe_disabled(p)
 905#define wait_for_kprobe_optimizer()		do {} while (0)
 906
 907/* There should be no unused kprobes can be reused without optimization */
 908static void reuse_unused_kprobe(struct kprobe *ap)
 909{
 
 
 
 
 
 
 910	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
 911	BUG_ON(kprobe_unused(ap));
 912}
 913
 914static __kprobes void free_aggr_kprobe(struct kprobe *p)
 915{
 916	arch_remove_kprobe(p);
 917	kfree(p);
 918}
 919
 920static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
 921{
 922	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
 923}
 924#endif /* CONFIG_OPTPROBES */
 925
 926#ifdef CONFIG_KPROBES_ON_FTRACE
 927static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
 928	.func = kprobe_ftrace_handler,
 929	.flags = FTRACE_OPS_FL_SAVE_REGS,
 930};
 
 
 
 
 
 
 
 931static int kprobe_ftrace_enabled;
 932
 933/* Must ensure p->addr is really on ftrace */
 934static int __kprobes prepare_kprobe(struct kprobe *p)
 935{
 936	if (!kprobe_ftrace(p))
 937		return arch_prepare_kprobe(p);
 938
 939	return arch_prepare_kprobe_ftrace(p);
 940}
 941
 942/* Caller must lock kprobe_mutex */
 943static void __kprobes arm_kprobe_ftrace(struct kprobe *p)
 
 944{
 945	int ret;
 
 
 
 
 
 
 
 946
 947	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
 948				   (unsigned long)p->addr, 0, 0);
 949	WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
 950	kprobe_ftrace_enabled++;
 951	if (kprobe_ftrace_enabled == 1) {
 952		ret = register_ftrace_function(&kprobe_ftrace_ops);
 953		WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
 954	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 955}
 956
 957/* Caller must lock kprobe_mutex */
 958static void __kprobes disarm_kprobe_ftrace(struct kprobe *p)
 
 959{
 960	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 961
 962	kprobe_ftrace_enabled--;
 963	if (kprobe_ftrace_enabled == 0) {
 964		ret = unregister_ftrace_function(&kprobe_ftrace_ops);
 965		WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
 966	}
 967	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
 968			   (unsigned long)p->addr, 1, 0);
 969	WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
 970}
 971#else	/* !CONFIG_KPROBES_ON_FTRACE */
 972#define prepare_kprobe(p)	arch_prepare_kprobe(p)
 973#define arm_kprobe_ftrace(p)	do {} while (0)
 974#define disarm_kprobe_ftrace(p)	do {} while (0)
 
 
 
 
 
 
 
 
 
 
 
 975#endif
 976
 977/* Arm a kprobe with text_mutex */
 978static void __kprobes arm_kprobe(struct kprobe *kp)
 979{
 980	if (unlikely(kprobe_ftrace(kp))) {
 981		arm_kprobe_ftrace(kp);
 982		return;
 983	}
 984	/*
 985	 * Here, since __arm_kprobe() doesn't use stop_machine(),
 986	 * this doesn't cause deadlock on text_mutex. So, we don't
 987	 * need get_online_cpus().
 988	 */
 989	mutex_lock(&text_mutex);
 990	__arm_kprobe(kp);
 991	mutex_unlock(&text_mutex);
 
 
 
 992}
 993
 994/* Disarm a kprobe with text_mutex */
 995static void __kprobes disarm_kprobe(struct kprobe *kp, bool reopt)
 996{
 997	if (unlikely(kprobe_ftrace(kp))) {
 998		disarm_kprobe_ftrace(kp);
 999		return;
1000	}
1001	/* Ditto */
1002	mutex_lock(&text_mutex);
1003	__disarm_kprobe(kp, reopt);
1004	mutex_unlock(&text_mutex);
 
 
 
1005}
1006
1007/*
1008 * Aggregate handlers for multiple kprobes support - these handlers
1009 * take care of invoking the individual kprobe handlers on p->list
1010 */
1011static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1012{
1013	struct kprobe *kp;
1014
1015	list_for_each_entry_rcu(kp, &p->list, list) {
1016		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1017			set_kprobe_instance(kp);
1018			if (kp->pre_handler(kp, regs))
1019				return 1;
1020		}
1021		reset_kprobe_instance();
1022	}
1023	return 0;
1024}
 
1025
1026static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1027					unsigned long flags)
1028{
1029	struct kprobe *kp;
1030
1031	list_for_each_entry_rcu(kp, &p->list, list) {
1032		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1033			set_kprobe_instance(kp);
1034			kp->post_handler(kp, regs, flags);
1035			reset_kprobe_instance();
1036		}
1037	}
1038}
 
1039
1040static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1041					int trapnr)
1042{
1043	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1044
1045	/*
1046	 * if we faulted "during" the execution of a user specified
1047	 * probe handler, invoke just that probe's fault handler
1048	 */
1049	if (cur && cur->fault_handler) {
1050		if (cur->fault_handler(cur, regs, trapnr))
1051			return 1;
1052	}
1053	return 0;
1054}
1055
1056static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1057{
1058	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1059	int ret = 0;
1060
1061	if (cur && cur->break_handler) {
1062		if (cur->break_handler(cur, regs))
1063			ret = 1;
1064	}
1065	reset_kprobe_instance();
1066	return ret;
1067}
1068
1069/* Walks the list and increments nmissed count for multiprobe case */
1070void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
1071{
1072	struct kprobe *kp;
1073	if (!kprobe_aggrprobe(p)) {
1074		p->nmissed++;
1075	} else {
1076		list_for_each_entry_rcu(kp, &p->list, list)
1077			kp->nmissed++;
1078	}
1079	return;
1080}
 
1081
1082void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
1083				struct hlist_head *head)
1084{
1085	struct kretprobe *rp = ri->rp;
1086
1087	/* remove rp inst off the rprobe_inst_table */
1088	hlist_del(&ri->hlist);
1089	INIT_HLIST_NODE(&ri->hlist);
1090	if (likely(rp)) {
1091		raw_spin_lock(&rp->lock);
1092		hlist_add_head(&ri->hlist, &rp->free_instances);
1093		raw_spin_unlock(&rp->lock);
1094	} else
1095		/* Unregistering */
1096		hlist_add_head(&ri->hlist, head);
1097}
 
1098
1099void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
1100			 struct hlist_head **head, unsigned long *flags)
1101__acquires(hlist_lock)
1102{
1103	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1104	raw_spinlock_t *hlist_lock;
1105
1106	*head = &kretprobe_inst_table[hash];
1107	hlist_lock = kretprobe_table_lock_ptr(hash);
1108	raw_spin_lock_irqsave(hlist_lock, *flags);
1109}
 
1110
1111static void __kprobes kretprobe_table_lock(unsigned long hash,
1112	unsigned long *flags)
1113__acquires(hlist_lock)
1114{
1115	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1116	raw_spin_lock_irqsave(hlist_lock, *flags);
1117}
 
1118
1119void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
1120	unsigned long *flags)
1121__releases(hlist_lock)
1122{
1123	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1124	raw_spinlock_t *hlist_lock;
1125
1126	hlist_lock = kretprobe_table_lock_ptr(hash);
1127	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1128}
 
1129
1130static void __kprobes kretprobe_table_unlock(unsigned long hash,
1131       unsigned long *flags)
1132__releases(hlist_lock)
1133{
1134	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1135	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1136}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1137
1138/*
1139 * This function is called from finish_task_switch when task tk becomes dead,
1140 * so that we can recycle any function-return probe instances associated
1141 * with this task. These left over instances represent probed functions
1142 * that have been called but will never return.
1143 */
1144void __kprobes kprobe_flush_task(struct task_struct *tk)
1145{
1146	struct kretprobe_instance *ri;
1147	struct hlist_head *head, empty_rp;
1148	struct hlist_node *tmp;
1149	unsigned long hash, flags = 0;
1150
1151	if (unlikely(!kprobes_initialized))
1152		/* Early boot.  kretprobe_table_locks not yet initialized. */
1153		return;
1154
 
 
1155	INIT_HLIST_HEAD(&empty_rp);
1156	hash = hash_ptr(tk, KPROBE_HASH_BITS);
1157	head = &kretprobe_inst_table[hash];
1158	kretprobe_table_lock(hash, &flags);
1159	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1160		if (ri->task == tk)
1161			recycle_rp_inst(ri, &empty_rp);
1162	}
1163	kretprobe_table_unlock(hash, &flags);
1164	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1165		hlist_del(&ri->hlist);
1166		kfree(ri);
1167	}
 
 
1168}
 
1169
1170static inline void free_rp_inst(struct kretprobe *rp)
1171{
1172	struct kretprobe_instance *ri;
1173	struct hlist_node *next;
1174
1175	hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1176		hlist_del(&ri->hlist);
1177		kfree(ri);
1178	}
1179}
1180
1181static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
1182{
1183	unsigned long flags, hash;
1184	struct kretprobe_instance *ri;
1185	struct hlist_node *next;
1186	struct hlist_head *head;
1187
1188	/* No race here */
1189	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1190		kretprobe_table_lock(hash, &flags);
1191		head = &kretprobe_inst_table[hash];
1192		hlist_for_each_entry_safe(ri, next, head, hlist) {
1193			if (ri->rp == rp)
1194				ri->rp = NULL;
1195		}
1196		kretprobe_table_unlock(hash, &flags);
1197	}
1198	free_rp_inst(rp);
1199}
 
1200
1201/*
1202* Add the new probe to ap->list. Fail if this is the
1203* second jprobe at the address - two jprobes can't coexist
1204*/
1205static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1206{
1207	BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1208
1209	if (p->break_handler || p->post_handler)
1210		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1211
1212	if (p->break_handler) {
1213		if (ap->break_handler)
1214			return -EEXIST;
1215		list_add_tail_rcu(&p->list, &ap->list);
1216		ap->break_handler = aggr_break_handler;
1217	} else
1218		list_add_rcu(&p->list, &ap->list);
1219	if (p->post_handler && !ap->post_handler)
1220		ap->post_handler = aggr_post_handler;
1221
1222	return 0;
1223}
1224
1225/*
1226 * Fill in the required fields of the "manager kprobe". Replace the
1227 * earlier kprobe in the hlist with the manager kprobe
1228 */
1229static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1230{
1231	/* Copy p's insn slot to ap */
1232	copy_kprobe(p, ap);
1233	flush_insn_slot(ap);
1234	ap->addr = p->addr;
1235	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1236	ap->pre_handler = aggr_pre_handler;
1237	ap->fault_handler = aggr_fault_handler;
1238	/* We don't care the kprobe which has gone. */
1239	if (p->post_handler && !kprobe_gone(p))
1240		ap->post_handler = aggr_post_handler;
1241	if (p->break_handler && !kprobe_gone(p))
1242		ap->break_handler = aggr_break_handler;
1243
1244	INIT_LIST_HEAD(&ap->list);
1245	INIT_HLIST_NODE(&ap->hlist);
1246
1247	list_add_rcu(&p->list, &ap->list);
1248	hlist_replace_rcu(&p->hlist, &ap->hlist);
1249}
1250
1251/*
1252 * This is the second or subsequent kprobe at the address - handle
1253 * the intricacies
1254 */
1255static int __kprobes register_aggr_kprobe(struct kprobe *orig_p,
1256					  struct kprobe *p)
1257{
1258	int ret = 0;
1259	struct kprobe *ap = orig_p;
1260
 
 
1261	/* For preparing optimization, jump_label_text_reserved() is called */
1262	jump_label_lock();
1263	/*
1264	 * Get online CPUs to avoid text_mutex deadlock.with stop machine,
1265	 * which is invoked by unoptimize_kprobe() in add_new_kprobe()
1266	 */
1267	get_online_cpus();
1268	mutex_lock(&text_mutex);
1269
1270	if (!kprobe_aggrprobe(orig_p)) {
1271		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1272		ap = alloc_aggr_kprobe(orig_p);
1273		if (!ap) {
1274			ret = -ENOMEM;
1275			goto out;
1276		}
1277		init_aggr_kprobe(ap, orig_p);
1278	} else if (kprobe_unused(ap))
1279		/* This probe is going to die. Rescue it */
1280		reuse_unused_kprobe(ap);
 
 
 
1281
1282	if (kprobe_gone(ap)) {
1283		/*
1284		 * Attempting to insert new probe at the same location that
1285		 * had a probe in the module vaddr area which already
1286		 * freed. So, the instruction slot has already been
1287		 * released. We need a new slot for the new probe.
1288		 */
1289		ret = arch_prepare_kprobe(ap);
1290		if (ret)
1291			/*
1292			 * Even if fail to allocate new slot, don't need to
1293			 * free aggr_probe. It will be used next time, or
1294			 * freed by unregister_kprobe.
1295			 */
1296			goto out;
1297
1298		/* Prepare optimized instructions if possible. */
1299		prepare_optimized_kprobe(ap);
1300
1301		/*
1302		 * Clear gone flag to prevent allocating new slot again, and
1303		 * set disabled flag because it is not armed yet.
1304		 */
1305		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1306			    | KPROBE_FLAG_DISABLED;
1307	}
1308
1309	/* Copy ap's insn slot to p */
1310	copy_kprobe(ap, p);
1311	ret = add_new_kprobe(ap, p);
1312
1313out:
1314	mutex_unlock(&text_mutex);
1315	put_online_cpus();
1316	jump_label_unlock();
 
1317
1318	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1319		ap->flags &= ~KPROBE_FLAG_DISABLED;
1320		if (!kprobes_all_disarmed)
1321			/* Arm the breakpoint again. */
1322			arm_kprobe(ap);
 
 
 
 
 
 
1323	}
1324	return ret;
1325}
1326
1327static int __kprobes in_kprobes_functions(unsigned long addr)
1328{
1329	struct kprobe_blackpoint *kb;
 
 
 
1330
1331	if (addr >= (unsigned long)__kprobes_text_start &&
1332	    addr < (unsigned long)__kprobes_text_end)
1333		return -EINVAL;
 
 
 
1334	/*
1335	 * If there exists a kprobe_blacklist, verify and
1336	 * fail any probe registration in the prohibited area
1337	 */
1338	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1339		if (kb->start_addr) {
1340			if (addr >= kb->start_addr &&
1341			    addr < (kb->start_addr + kb->range))
1342				return -EINVAL;
1343		}
1344	}
1345	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1346}
1347
1348/*
1349 * If we have a symbol_name argument, look it up and add the offset field
1350 * to it. This way, we can specify a relative address to a symbol.
1351 * This returns encoded errors if it fails to look up symbol or invalid
1352 * combination of parameters.
1353 */
1354static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
 
1355{
1356	kprobe_opcode_t *addr = p->addr;
1357
1358	if ((p->symbol_name && p->addr) ||
1359	    (!p->symbol_name && !p->addr))
1360		goto invalid;
1361
1362	if (p->symbol_name) {
1363		kprobe_lookup_name(p->symbol_name, addr);
1364		if (!addr)
1365			return ERR_PTR(-ENOENT);
1366	}
1367
1368	addr = (kprobe_opcode_t *)(((char *)addr) + p->offset);
1369	if (addr)
1370		return addr;
1371
1372invalid:
1373	return ERR_PTR(-EINVAL);
1374}
1375
 
 
 
 
 
1376/* Check passed kprobe is valid and return kprobe in kprobe_table. */
1377static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
1378{
1379	struct kprobe *ap, *list_p;
1380
 
 
1381	ap = get_kprobe(p->addr);
1382	if (unlikely(!ap))
1383		return NULL;
1384
1385	if (p != ap) {
1386		list_for_each_entry_rcu(list_p, &ap->list, list)
1387			if (list_p == p)
1388			/* kprobe p is a valid probe */
1389				goto valid;
1390		return NULL;
1391	}
1392valid:
1393	return ap;
1394}
1395
1396/* Return error if the kprobe is being re-registered */
1397static inline int check_kprobe_rereg(struct kprobe *p)
1398{
1399	int ret = 0;
1400
1401	mutex_lock(&kprobe_mutex);
1402	if (__get_valid_kprobe(p))
1403		ret = -EINVAL;
1404	mutex_unlock(&kprobe_mutex);
1405
1406	return ret;
1407}
1408
1409static __kprobes int check_kprobe_address_safe(struct kprobe *p,
1410					       struct module **probed_mod)
1411{
1412	int ret = 0;
1413	unsigned long ftrace_addr;
1414
1415	/*
1416	 * If the address is located on a ftrace nop, set the
1417	 * breakpoint to the following instruction.
1418	 */
1419	ftrace_addr = ftrace_location((unsigned long)p->addr);
1420	if (ftrace_addr) {
1421#ifdef CONFIG_KPROBES_ON_FTRACE
1422		/* Given address is not on the instruction boundary */
1423		if ((unsigned long)p->addr != ftrace_addr)
1424			return -EILSEQ;
1425		p->flags |= KPROBE_FLAG_FTRACE;
1426#else	/* !CONFIG_KPROBES_ON_FTRACE */
1427		return -EINVAL;
1428#endif
1429	}
 
 
1430
 
 
 
 
 
 
 
 
1431	jump_label_lock();
1432	preempt_disable();
1433
1434	/* Ensure it is not in reserved area nor out of text */
1435	if (!kernel_text_address((unsigned long) p->addr) ||
1436	    in_kprobes_functions((unsigned long) p->addr) ||
1437	    jump_label_text_reserved(p->addr, p->addr)) {
 
1438		ret = -EINVAL;
1439		goto out;
1440	}
1441
1442	/* Check if are we probing a module */
1443	*probed_mod = __module_text_address((unsigned long) p->addr);
1444	if (*probed_mod) {
1445		/*
1446		 * We must hold a refcount of the probed module while updating
1447		 * its code to prohibit unexpected unloading.
1448		 */
1449		if (unlikely(!try_module_get(*probed_mod))) {
1450			ret = -ENOENT;
1451			goto out;
1452		}
1453
1454		/*
1455		 * If the module freed .init.text, we couldn't insert
1456		 * kprobes in there.
1457		 */
1458		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1459		    (*probed_mod)->state != MODULE_STATE_COMING) {
1460			module_put(*probed_mod);
1461			*probed_mod = NULL;
1462			ret = -ENOENT;
1463		}
1464	}
1465out:
1466	preempt_enable();
1467	jump_label_unlock();
1468
1469	return ret;
1470}
1471
1472int __kprobes register_kprobe(struct kprobe *p)
1473{
1474	int ret;
1475	struct kprobe *old_p;
1476	struct module *probed_mod;
1477	kprobe_opcode_t *addr;
1478
1479	/* Adjust probe address from symbol */
1480	addr = kprobe_addr(p);
1481	if (IS_ERR(addr))
1482		return PTR_ERR(addr);
1483	p->addr = addr;
1484
1485	ret = check_kprobe_rereg(p);
1486	if (ret)
1487		return ret;
1488
1489	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1490	p->flags &= KPROBE_FLAG_DISABLED;
1491	p->nmissed = 0;
1492	INIT_LIST_HEAD(&p->list);
1493
1494	ret = check_kprobe_address_safe(p, &probed_mod);
1495	if (ret)
1496		return ret;
1497
1498	mutex_lock(&kprobe_mutex);
1499
1500	old_p = get_kprobe(p->addr);
1501	if (old_p) {
1502		/* Since this may unoptimize old_p, locking text_mutex. */
1503		ret = register_aggr_kprobe(old_p, p);
1504		goto out;
1505	}
1506
1507	mutex_lock(&text_mutex);	/* Avoiding text modification */
 
 
1508	ret = prepare_kprobe(p);
1509	mutex_unlock(&text_mutex);
 
1510	if (ret)
1511		goto out;
1512
1513	INIT_HLIST_NODE(&p->hlist);
1514	hlist_add_head_rcu(&p->hlist,
1515		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1516
1517	if (!kprobes_all_disarmed && !kprobe_disabled(p))
1518		arm_kprobe(p);
 
 
 
 
 
 
1519
1520	/* Try to optimize kprobe */
1521	try_to_optimize_kprobe(p);
1522
1523out:
1524	mutex_unlock(&kprobe_mutex);
1525
1526	if (probed_mod)
1527		module_put(probed_mod);
1528
1529	return ret;
1530}
1531EXPORT_SYMBOL_GPL(register_kprobe);
1532
1533/* Check if all probes on the aggrprobe are disabled */
1534static int __kprobes aggr_kprobe_disabled(struct kprobe *ap)
1535{
1536	struct kprobe *kp;
1537
1538	list_for_each_entry_rcu(kp, &ap->list, list)
 
 
1539		if (!kprobe_disabled(kp))
1540			/*
1541			 * There is an active probe on the list.
1542			 * We can't disable this ap.
1543			 */
1544			return 0;
1545
1546	return 1;
1547}
1548
1549/* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1550static struct kprobe *__kprobes __disable_kprobe(struct kprobe *p)
1551{
1552	struct kprobe *orig_p;
 
1553
1554	/* Get an original kprobe for return */
1555	orig_p = __get_valid_kprobe(p);
1556	if (unlikely(orig_p == NULL))
1557		return NULL;
1558
1559	if (!kprobe_disabled(p)) {
1560		/* Disable probe if it is a child probe */
1561		if (p != orig_p)
1562			p->flags |= KPROBE_FLAG_DISABLED;
1563
1564		/* Try to disarm and disable this/parent probe */
1565		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1566			disarm_kprobe(orig_p, true);
 
 
 
 
 
 
 
 
 
 
 
1567			orig_p->flags |= KPROBE_FLAG_DISABLED;
1568		}
1569	}
1570
1571	return orig_p;
1572}
1573
1574/*
1575 * Unregister a kprobe without a scheduler synchronization.
1576 */
1577static int __kprobes __unregister_kprobe_top(struct kprobe *p)
1578{
1579	struct kprobe *ap, *list_p;
1580
1581	/* Disable kprobe. This will disarm it if needed. */
1582	ap = __disable_kprobe(p);
1583	if (ap == NULL)
1584		return -EINVAL;
1585
1586	if (ap == p)
1587		/*
1588		 * This probe is an independent(and non-optimized) kprobe
1589		 * (not an aggrprobe). Remove from the hash list.
1590		 */
1591		goto disarmed;
1592
1593	/* Following process expects this probe is an aggrprobe */
1594	WARN_ON(!kprobe_aggrprobe(ap));
1595
1596	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1597		/*
1598		 * !disarmed could be happen if the probe is under delayed
1599		 * unoptimizing.
1600		 */
1601		goto disarmed;
1602	else {
1603		/* If disabling probe has special handlers, update aggrprobe */
1604		if (p->break_handler && !kprobe_gone(p))
1605			ap->break_handler = NULL;
1606		if (p->post_handler && !kprobe_gone(p)) {
1607			list_for_each_entry_rcu(list_p, &ap->list, list) {
1608				if ((list_p != p) && (list_p->post_handler))
1609					goto noclean;
1610			}
1611			ap->post_handler = NULL;
1612		}
1613noclean:
1614		/*
1615		 * Remove from the aggrprobe: this path will do nothing in
1616		 * __unregister_kprobe_bottom().
1617		 */
1618		list_del_rcu(&p->list);
1619		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1620			/*
1621			 * Try to optimize this probe again, because post
1622			 * handler may have been changed.
1623			 */
1624			optimize_kprobe(ap);
1625	}
1626	return 0;
1627
1628disarmed:
1629	BUG_ON(!kprobe_disarmed(ap));
1630	hlist_del_rcu(&ap->hlist);
1631	return 0;
1632}
1633
1634static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
1635{
1636	struct kprobe *ap;
1637
1638	if (list_empty(&p->list))
1639		/* This is an independent kprobe */
1640		arch_remove_kprobe(p);
1641	else if (list_is_singular(&p->list)) {
1642		/* This is the last child of an aggrprobe */
1643		ap = list_entry(p->list.next, struct kprobe, list);
1644		list_del(&p->list);
1645		free_aggr_kprobe(ap);
1646	}
1647	/* Otherwise, do nothing. */
1648}
1649
1650int __kprobes register_kprobes(struct kprobe **kps, int num)
1651{
1652	int i, ret = 0;
1653
1654	if (num <= 0)
1655		return -EINVAL;
1656	for (i = 0; i < num; i++) {
1657		ret = register_kprobe(kps[i]);
1658		if (ret < 0) {
1659			if (i > 0)
1660				unregister_kprobes(kps, i);
1661			break;
1662		}
1663	}
1664	return ret;
1665}
1666EXPORT_SYMBOL_GPL(register_kprobes);
1667
1668void __kprobes unregister_kprobe(struct kprobe *p)
1669{
1670	unregister_kprobes(&p, 1);
1671}
1672EXPORT_SYMBOL_GPL(unregister_kprobe);
1673
1674void __kprobes unregister_kprobes(struct kprobe **kps, int num)
1675{
1676	int i;
1677
1678	if (num <= 0)
1679		return;
1680	mutex_lock(&kprobe_mutex);
1681	for (i = 0; i < num; i++)
1682		if (__unregister_kprobe_top(kps[i]) < 0)
1683			kps[i]->addr = NULL;
1684	mutex_unlock(&kprobe_mutex);
1685
1686	synchronize_sched();
1687	for (i = 0; i < num; i++)
1688		if (kps[i]->addr)
1689			__unregister_kprobe_bottom(kps[i]);
1690}
1691EXPORT_SYMBOL_GPL(unregister_kprobes);
1692
 
 
 
 
 
 
 
1693static struct notifier_block kprobe_exceptions_nb = {
1694	.notifier_call = kprobe_exceptions_notify,
1695	.priority = 0x7fffffff /* we need to be notified first */
1696};
1697
1698unsigned long __weak arch_deref_entry_point(void *entry)
1699{
1700	return (unsigned long)entry;
1701}
1702
1703int __kprobes register_jprobes(struct jprobe **jps, int num)
1704{
1705	struct jprobe *jp;
1706	int ret = 0, i;
1707
1708	if (num <= 0)
1709		return -EINVAL;
1710	for (i = 0; i < num; i++) {
1711		unsigned long addr, offset;
1712		jp = jps[i];
1713		addr = arch_deref_entry_point(jp->entry);
1714
1715		/* Verify probepoint is a function entry point */
1716		if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1717		    offset == 0) {
1718			jp->kp.pre_handler = setjmp_pre_handler;
1719			jp->kp.break_handler = longjmp_break_handler;
1720			ret = register_kprobe(&jp->kp);
1721		} else
1722			ret = -EINVAL;
1723
1724		if (ret < 0) {
1725			if (i > 0)
1726				unregister_jprobes(jps, i);
1727			break;
1728		}
1729	}
1730	return ret;
1731}
1732EXPORT_SYMBOL_GPL(register_jprobes);
1733
1734int __kprobes register_jprobe(struct jprobe *jp)
1735{
1736	return register_jprobes(&jp, 1);
1737}
1738EXPORT_SYMBOL_GPL(register_jprobe);
1739
1740void __kprobes unregister_jprobe(struct jprobe *jp)
1741{
1742	unregister_jprobes(&jp, 1);
1743}
1744EXPORT_SYMBOL_GPL(unregister_jprobe);
1745
1746void __kprobes unregister_jprobes(struct jprobe **jps, int num)
1747{
1748	int i;
1749
1750	if (num <= 0)
1751		return;
1752	mutex_lock(&kprobe_mutex);
1753	for (i = 0; i < num; i++)
1754		if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1755			jps[i]->kp.addr = NULL;
1756	mutex_unlock(&kprobe_mutex);
1757
1758	synchronize_sched();
1759	for (i = 0; i < num; i++) {
1760		if (jps[i]->kp.addr)
1761			__unregister_kprobe_bottom(&jps[i]->kp);
1762	}
1763}
1764EXPORT_SYMBOL_GPL(unregister_jprobes);
1765
1766#ifdef CONFIG_KRETPROBES
1767/*
1768 * This kprobe pre_handler is registered with every kretprobe. When probe
1769 * hits it will set up the return probe.
1770 */
1771static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1772					   struct pt_regs *regs)
1773{
1774	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1775	unsigned long hash, flags = 0;
1776	struct kretprobe_instance *ri;
1777
1778	/*TODO: consider to only swap the RA after the last pre_handler fired */
 
 
 
 
 
 
 
 
 
 
 
1779	hash = hash_ptr(current, KPROBE_HASH_BITS);
1780	raw_spin_lock_irqsave(&rp->lock, flags);
1781	if (!hlist_empty(&rp->free_instances)) {
1782		ri = hlist_entry(rp->free_instances.first,
1783				struct kretprobe_instance, hlist);
1784		hlist_del(&ri->hlist);
1785		raw_spin_unlock_irqrestore(&rp->lock, flags);
1786
1787		ri->rp = rp;
1788		ri->task = current;
1789
1790		if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1791			raw_spin_lock_irqsave(&rp->lock, flags);
1792			hlist_add_head(&ri->hlist, &rp->free_instances);
1793			raw_spin_unlock_irqrestore(&rp->lock, flags);
1794			return 0;
1795		}
1796
1797		arch_prepare_kretprobe(ri, regs);
1798
1799		/* XXX(hch): why is there no hlist_move_head? */
1800		INIT_HLIST_NODE(&ri->hlist);
1801		kretprobe_table_lock(hash, &flags);
1802		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1803		kretprobe_table_unlock(hash, &flags);
1804	} else {
1805		rp->nmissed++;
1806		raw_spin_unlock_irqrestore(&rp->lock, flags);
1807	}
1808	return 0;
1809}
 
 
 
 
 
 
1810
1811int __kprobes register_kretprobe(struct kretprobe *rp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1812{
1813	int ret = 0;
1814	struct kretprobe_instance *inst;
1815	int i;
1816	void *addr;
1817
 
 
 
1818	if (kretprobe_blacklist_size) {
1819		addr = kprobe_addr(&rp->kp);
1820		if (IS_ERR(addr))
1821			return PTR_ERR(addr);
1822
1823		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1824			if (kretprobe_blacklist[i].addr == addr)
1825				return -EINVAL;
1826		}
1827	}
1828
1829	rp->kp.pre_handler = pre_handler_kretprobe;
1830	rp->kp.post_handler = NULL;
1831	rp->kp.fault_handler = NULL;
1832	rp->kp.break_handler = NULL;
1833
1834	/* Pre-allocate memory for max kretprobe instances */
1835	if (rp->maxactive <= 0) {
1836#ifdef CONFIG_PREEMPT
1837		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1838#else
1839		rp->maxactive = num_possible_cpus();
1840#endif
1841	}
1842	raw_spin_lock_init(&rp->lock);
1843	INIT_HLIST_HEAD(&rp->free_instances);
1844	for (i = 0; i < rp->maxactive; i++) {
1845		inst = kmalloc(sizeof(struct kretprobe_instance) +
1846			       rp->data_size, GFP_KERNEL);
1847		if (inst == NULL) {
1848			free_rp_inst(rp);
1849			return -ENOMEM;
1850		}
1851		INIT_HLIST_NODE(&inst->hlist);
1852		hlist_add_head(&inst->hlist, &rp->free_instances);
1853	}
1854
1855	rp->nmissed = 0;
1856	/* Establish function entry probe point */
1857	ret = register_kprobe(&rp->kp);
1858	if (ret != 0)
1859		free_rp_inst(rp);
1860	return ret;
1861}
1862EXPORT_SYMBOL_GPL(register_kretprobe);
1863
1864int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1865{
1866	int ret = 0, i;
1867
1868	if (num <= 0)
1869		return -EINVAL;
1870	for (i = 0; i < num; i++) {
1871		ret = register_kretprobe(rps[i]);
1872		if (ret < 0) {
1873			if (i > 0)
1874				unregister_kretprobes(rps, i);
1875			break;
1876		}
1877	}
1878	return ret;
1879}
1880EXPORT_SYMBOL_GPL(register_kretprobes);
1881
1882void __kprobes unregister_kretprobe(struct kretprobe *rp)
1883{
1884	unregister_kretprobes(&rp, 1);
1885}
1886EXPORT_SYMBOL_GPL(unregister_kretprobe);
1887
1888void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1889{
1890	int i;
1891
1892	if (num <= 0)
1893		return;
1894	mutex_lock(&kprobe_mutex);
1895	for (i = 0; i < num; i++)
1896		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1897			rps[i]->kp.addr = NULL;
1898	mutex_unlock(&kprobe_mutex);
1899
1900	synchronize_sched();
1901	for (i = 0; i < num; i++) {
1902		if (rps[i]->kp.addr) {
1903			__unregister_kprobe_bottom(&rps[i]->kp);
1904			cleanup_rp_inst(rps[i]);
1905		}
1906	}
1907}
1908EXPORT_SYMBOL_GPL(unregister_kretprobes);
1909
1910#else /* CONFIG_KRETPROBES */
1911int __kprobes register_kretprobe(struct kretprobe *rp)
1912{
1913	return -ENOSYS;
1914}
1915EXPORT_SYMBOL_GPL(register_kretprobe);
1916
1917int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1918{
1919	return -ENOSYS;
1920}
1921EXPORT_SYMBOL_GPL(register_kretprobes);
1922
1923void __kprobes unregister_kretprobe(struct kretprobe *rp)
1924{
1925}
1926EXPORT_SYMBOL_GPL(unregister_kretprobe);
1927
1928void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1929{
1930}
1931EXPORT_SYMBOL_GPL(unregister_kretprobes);
1932
1933static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1934					   struct pt_regs *regs)
1935{
1936	return 0;
1937}
 
1938
1939#endif /* CONFIG_KRETPROBES */
1940
1941/* Set the kprobe gone and remove its instruction buffer. */
1942static void __kprobes kill_kprobe(struct kprobe *p)
1943{
1944	struct kprobe *kp;
1945
 
 
 
 
 
1946	p->flags |= KPROBE_FLAG_GONE;
1947	if (kprobe_aggrprobe(p)) {
1948		/*
1949		 * If this is an aggr_kprobe, we have to list all the
1950		 * chained probes and mark them GONE.
1951		 */
1952		list_for_each_entry_rcu(kp, &p->list, list)
1953			kp->flags |= KPROBE_FLAG_GONE;
1954		p->post_handler = NULL;
1955		p->break_handler = NULL;
1956		kill_optimized_kprobe(p);
1957	}
1958	/*
1959	 * Here, we can remove insn_slot safely, because no thread calls
1960	 * the original probed function (which will be freed soon) any more.
1961	 */
1962	arch_remove_kprobe(p);
 
 
 
 
 
 
 
 
1963}
1964
1965/* Disable one kprobe */
1966int __kprobes disable_kprobe(struct kprobe *kp)
1967{
1968	int ret = 0;
 
1969
1970	mutex_lock(&kprobe_mutex);
1971
1972	/* Disable this kprobe */
1973	if (__disable_kprobe(kp) == NULL)
1974		ret = -EINVAL;
 
1975
1976	mutex_unlock(&kprobe_mutex);
1977	return ret;
1978}
1979EXPORT_SYMBOL_GPL(disable_kprobe);
1980
1981/* Enable one kprobe */
1982int __kprobes enable_kprobe(struct kprobe *kp)
1983{
1984	int ret = 0;
1985	struct kprobe *p;
1986
1987	mutex_lock(&kprobe_mutex);
1988
1989	/* Check whether specified probe is valid. */
1990	p = __get_valid_kprobe(kp);
1991	if (unlikely(p == NULL)) {
1992		ret = -EINVAL;
1993		goto out;
1994	}
1995
1996	if (kprobe_gone(kp)) {
1997		/* This kprobe has gone, we couldn't enable it. */
1998		ret = -EINVAL;
1999		goto out;
2000	}
2001
2002	if (p != kp)
2003		kp->flags &= ~KPROBE_FLAG_DISABLED;
2004
2005	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2006		p->flags &= ~KPROBE_FLAG_DISABLED;
2007		arm_kprobe(p);
 
 
2008	}
2009out:
2010	mutex_unlock(&kprobe_mutex);
2011	return ret;
2012}
2013EXPORT_SYMBOL_GPL(enable_kprobe);
2014
2015void __kprobes dump_kprobe(struct kprobe *kp)
 
2016{
2017	printk(KERN_WARNING "Dumping kprobe:\n");
2018	printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2019	       kp->symbol_name, kp->addr, kp->offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2020}
2021
2022/* Module notifier call back, checking kprobes on the module */
2023static int __kprobes kprobes_module_callback(struct notifier_block *nb,
2024					     unsigned long val, void *data)
2025{
2026	struct module *mod = data;
2027	struct hlist_head *head;
2028	struct kprobe *p;
2029	unsigned int i;
2030	int checkcore = (val == MODULE_STATE_GOING);
2031
 
 
 
 
 
2032	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2033		return NOTIFY_DONE;
2034
2035	/*
2036	 * When MODULE_STATE_GOING was notified, both of module .text and
2037	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2038	 * notified, only .init.text section would be freed. We need to
2039	 * disable kprobes which have been inserted in the sections.
2040	 */
2041	mutex_lock(&kprobe_mutex);
2042	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2043		head = &kprobe_table[i];
2044		hlist_for_each_entry_rcu(p, head, hlist)
 
 
 
2045			if (within_module_init((unsigned long)p->addr, mod) ||
2046			    (checkcore &&
2047			     within_module_core((unsigned long)p->addr, mod))) {
2048				/*
2049				 * The vaddr this probe is installed will soon
2050				 * be vfreed buy not synced to disk. Hence,
2051				 * disarming the breakpoint isn't needed.
 
 
 
 
 
 
2052				 */
2053				kill_kprobe(p);
2054			}
 
2055	}
 
 
2056	mutex_unlock(&kprobe_mutex);
2057	return NOTIFY_DONE;
2058}
2059
2060static struct notifier_block kprobe_module_nb = {
2061	.notifier_call = kprobes_module_callback,
2062	.priority = 0
2063};
2064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2065static int __init init_kprobes(void)
2066{
2067	int i, err = 0;
2068	unsigned long offset = 0, size = 0;
2069	char *modname, namebuf[KSYM_NAME_LEN];
2070	const char *symbol_name;
2071	void *addr;
2072	struct kprobe_blackpoint *kb;
2073
2074	/* FIXME allocate the probe table, currently defined statically */
2075	/* initialize all list heads */
2076	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2077		INIT_HLIST_HEAD(&kprobe_table[i]);
2078		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2079		raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2080	}
2081
2082	/*
2083	 * Lookup and populate the kprobe_blacklist.
2084	 *
2085	 * Unlike the kretprobe blacklist, we'll need to determine
2086	 * the range of addresses that belong to the said functions,
2087	 * since a kprobe need not necessarily be at the beginning
2088	 * of a function.
2089	 */
2090	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
2091		kprobe_lookup_name(kb->name, addr);
2092		if (!addr)
2093			continue;
2094
2095		kb->start_addr = (unsigned long)addr;
2096		symbol_name = kallsyms_lookup(kb->start_addr,
2097				&size, &offset, &modname, namebuf);
2098		if (!symbol_name)
2099			kb->range = 0;
2100		else
2101			kb->range = size;
2102	}
2103
2104	if (kretprobe_blacklist_size) {
2105		/* lookup the function address from its name */
2106		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2107			kprobe_lookup_name(kretprobe_blacklist[i].name,
2108					   kretprobe_blacklist[i].addr);
2109			if (!kretprobe_blacklist[i].addr)
2110				printk("kretprobe: lookup failed: %s\n",
2111				       kretprobe_blacklist[i].name);
2112		}
2113	}
2114
2115#if defined(CONFIG_OPTPROBES)
2116#if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2117	/* Init kprobe_optinsn_slots */
2118	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2119#endif
2120	/* By default, kprobes can be optimized */
2121	kprobes_allow_optimization = true;
2122#endif
2123
2124	/* By default, kprobes are armed */
2125	kprobes_all_disarmed = false;
2126
2127	err = arch_init_kprobes();
2128	if (!err)
2129		err = register_die_notifier(&kprobe_exceptions_nb);
2130	if (!err)
2131		err = register_module_notifier(&kprobe_module_nb);
2132
2133	kprobes_initialized = (err == 0);
2134
2135	if (!err)
2136		init_test_probes();
2137	return err;
2138}
 
2139
2140#ifdef CONFIG_DEBUG_FS
2141static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
2142		const char *sym, int offset, char *modname, struct kprobe *pp)
2143{
2144	char *kprobe_type;
 
2145
2146	if (p->pre_handler == pre_handler_kretprobe)
2147		kprobe_type = "r";
2148	else if (p->pre_handler == setjmp_pre_handler)
2149		kprobe_type = "j";
2150	else
2151		kprobe_type = "k";
2152
 
 
 
2153	if (sym)
2154		seq_printf(pi, "%p  %s  %s+0x%x  %s ",
2155			p->addr, kprobe_type, sym, offset,
2156			(modname ? modname : " "));
2157	else
2158		seq_printf(pi, "%p  %s  %p ",
2159			p->addr, kprobe_type, p->addr);
2160
2161	if (!pp)
2162		pp = p;
2163	seq_printf(pi, "%s%s%s%s\n",
2164		(kprobe_gone(p) ? "[GONE]" : ""),
2165		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2166		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2167		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2168}
2169
2170static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2171{
2172	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2173}
2174
2175static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2176{
2177	(*pos)++;
2178	if (*pos >= KPROBE_TABLE_SIZE)
2179		return NULL;
2180	return pos;
2181}
2182
2183static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
2184{
2185	/* Nothing to do */
2186}
2187
2188static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
2189{
2190	struct hlist_head *head;
2191	struct kprobe *p, *kp;
2192	const char *sym = NULL;
2193	unsigned int i = *(loff_t *) v;
2194	unsigned long offset = 0;
2195	char *modname, namebuf[KSYM_NAME_LEN];
2196
2197	head = &kprobe_table[i];
2198	preempt_disable();
2199	hlist_for_each_entry_rcu(p, head, hlist) {
2200		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2201					&offset, &modname, namebuf);
2202		if (kprobe_aggrprobe(p)) {
2203			list_for_each_entry_rcu(kp, &p->list, list)
2204				report_probe(pi, kp, sym, offset, modname, p);
2205		} else
2206			report_probe(pi, p, sym, offset, modname, NULL);
2207	}
2208	preempt_enable();
2209	return 0;
2210}
2211
2212static const struct seq_operations kprobes_seq_ops = {
2213	.start = kprobe_seq_start,
2214	.next  = kprobe_seq_next,
2215	.stop  = kprobe_seq_stop,
2216	.show  = show_kprobe_addr
2217};
2218
2219static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
 
 
 
2220{
2221	return seq_open(filp, &kprobes_seq_ops);
 
 
 
 
 
 
2222}
2223
2224static const struct file_operations debugfs_kprobes_operations = {
2225	.open           = kprobes_open,
2226	.read           = seq_read,
2227	.llseek         = seq_lseek,
2228	.release        = seq_release,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2229};
 
2230
2231static void __kprobes arm_all_kprobes(void)
2232{
2233	struct hlist_head *head;
2234	struct kprobe *p;
2235	unsigned int i;
 
2236
2237	mutex_lock(&kprobe_mutex);
2238
2239	/* If kprobes are armed, just return */
2240	if (!kprobes_all_disarmed)
2241		goto already_enabled;
2242
 
 
 
 
 
 
2243	/* Arming kprobes doesn't optimize kprobe itself */
2244	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2245		head = &kprobe_table[i];
2246		hlist_for_each_entry_rcu(p, head, hlist)
2247			if (!kprobe_disabled(p))
2248				arm_kprobe(p);
 
 
 
 
 
 
 
 
2249	}
2250
2251	kprobes_all_disarmed = false;
2252	printk(KERN_INFO "Kprobes globally enabled\n");
 
 
 
2253
2254already_enabled:
2255	mutex_unlock(&kprobe_mutex);
2256	return;
2257}
2258
2259static void __kprobes disarm_all_kprobes(void)
2260{
2261	struct hlist_head *head;
2262	struct kprobe *p;
2263	unsigned int i;
 
2264
2265	mutex_lock(&kprobe_mutex);
2266
2267	/* If kprobes are already disarmed, just return */
2268	if (kprobes_all_disarmed) {
2269		mutex_unlock(&kprobe_mutex);
2270		return;
2271	}
2272
2273	kprobes_all_disarmed = true;
2274	printk(KERN_INFO "Kprobes globally disabled\n");
2275
2276	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2277		head = &kprobe_table[i];
2278		hlist_for_each_entry_rcu(p, head, hlist) {
2279			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2280				disarm_kprobe(p, false);
 
 
 
 
 
 
 
2281		}
2282	}
 
 
 
 
 
 
 
2283	mutex_unlock(&kprobe_mutex);
2284
2285	/* Wait for disarming all kprobes by optimizer */
2286	wait_for_kprobe_optimizer();
 
 
2287}
2288
2289/*
2290 * XXX: The debugfs bool file interface doesn't allow for callbacks
2291 * when the bool state is switched. We can reuse that facility when
2292 * available
2293 */
2294static ssize_t read_enabled_file_bool(struct file *file,
2295	       char __user *user_buf, size_t count, loff_t *ppos)
2296{
2297	char buf[3];
2298
2299	if (!kprobes_all_disarmed)
2300		buf[0] = '1';
2301	else
2302		buf[0] = '0';
2303	buf[1] = '\n';
2304	buf[2] = 0x00;
2305	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2306}
2307
2308static ssize_t write_enabled_file_bool(struct file *file,
2309	       const char __user *user_buf, size_t count, loff_t *ppos)
2310{
2311	char buf[32];
2312	size_t buf_size;
 
2313
2314	buf_size = min(count, (sizeof(buf)-1));
2315	if (copy_from_user(buf, user_buf, buf_size))
2316		return -EFAULT;
2317
2318	buf[buf_size] = '\0';
2319	switch (buf[0]) {
2320	case 'y':
2321	case 'Y':
2322	case '1':
2323		arm_all_kprobes();
2324		break;
2325	case 'n':
2326	case 'N':
2327	case '0':
2328		disarm_all_kprobes();
2329		break;
2330	default:
2331		return -EINVAL;
2332	}
2333
 
 
 
2334	return count;
2335}
2336
2337static const struct file_operations fops_kp = {
2338	.read =         read_enabled_file_bool,
2339	.write =        write_enabled_file_bool,
2340	.llseek =	default_llseek,
2341};
2342
2343static int __kprobes debugfs_kprobe_init(void)
2344{
2345	struct dentry *dir, *file;
2346	unsigned int value = 1;
2347
2348	dir = debugfs_create_dir("kprobes", NULL);
2349	if (!dir)
2350		return -ENOMEM;
2351
2352	file = debugfs_create_file("list", 0444, dir, NULL,
2353				&debugfs_kprobes_operations);
2354	if (!file) {
2355		debugfs_remove(dir);
2356		return -ENOMEM;
2357	}
2358
2359	file = debugfs_create_file("enabled", 0600, dir,
2360					&value, &fops_kp);
2361	if (!file) {
2362		debugfs_remove(dir);
2363		return -ENOMEM;
2364	}
2365
2366	return 0;
2367}
2368
2369late_initcall(debugfs_kprobe_init);
2370#endif /* CONFIG_DEBUG_FS */
2371
2372module_init(init_kprobes);
2373
2374/* defined in arch/.../kernel/kprobes.c */
2375EXPORT_SYMBOL_GPL(jprobe_return);
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Kernel Probes (KProbes)
   4 *  kernel/kprobes.c
   5 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 * Copyright (C) IBM Corporation, 2002, 2004
   7 *
   8 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
   9 *		Probes initial implementation (includes suggestions from
  10 *		Rusty Russell).
  11 * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
  12 *		hlists and exceptions notifier as suggested by Andi Kleen.
  13 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
  14 *		interface to access function arguments.
  15 * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
  16 *		exceptions notifier to be first on the priority list.
  17 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
  18 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
  19 *		<prasanna@in.ibm.com> added function-return probes.
  20 */
  21#include <linux/kprobes.h>
  22#include <linux/hash.h>
  23#include <linux/init.h>
  24#include <linux/slab.h>
  25#include <linux/stddef.h>
  26#include <linux/export.h>
  27#include <linux/moduleloader.h>
  28#include <linux/kallsyms.h>
  29#include <linux/freezer.h>
  30#include <linux/seq_file.h>
  31#include <linux/debugfs.h>
  32#include <linux/sysctl.h>
  33#include <linux/kdebug.h>
  34#include <linux/memory.h>
  35#include <linux/ftrace.h>
  36#include <linux/cpu.h>
  37#include <linux/jump_label.h>
  38#include <linux/perf_event.h>
  39
  40#include <asm/sections.h>
  41#include <asm/cacheflush.h>
  42#include <asm/errno.h>
  43#include <linux/uaccess.h>
  44
  45#define KPROBE_HASH_BITS 6
  46#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
  47
  48
 
 
 
 
 
 
 
 
 
  49static int kprobes_initialized;
  50/* kprobe_table can be accessed by
  51 * - Normal hlist traversal and RCU add/del under kprobe_mutex is held.
  52 * Or
  53 * - RCU hlist traversal under disabling preempt (breakpoint handlers)
  54 */
  55static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
  56static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
  57
  58/* NOTE: change this value only with kprobe_mutex held */
  59static bool kprobes_all_disarmed;
  60
  61/* This protects kprobe_table and optimizing_list */
  62static DEFINE_MUTEX(kprobe_mutex);
  63static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
  64static struct {
  65	raw_spinlock_t lock ____cacheline_aligned_in_smp;
  66} kretprobe_table_locks[KPROBE_TABLE_SIZE];
  67
  68kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
  69					unsigned int __unused)
  70{
  71	return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
  72}
  73
  74static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
  75{
  76	return &(kretprobe_table_locks[hash].lock);
  77}
  78
  79/* Blacklist -- list of struct kprobe_blacklist_entry */
  80static LIST_HEAD(kprobe_blacklist);
 
 
 
 
 
 
 
 
 
 
 
 
 
  81
  82#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
  83/*
  84 * kprobe->ainsn.insn points to the copy of the instruction to be
  85 * single-stepped. x86_64, POWER4 and above have no-exec support and
  86 * stepping on the instruction on a vmalloced/kmalloced/data page
  87 * is a recipe for disaster
  88 */
  89struct kprobe_insn_page {
  90	struct list_head list;
  91	kprobe_opcode_t *insns;		/* Page of instruction slots */
  92	struct kprobe_insn_cache *cache;
  93	int nused;
  94	int ngarbage;
  95	char slot_used[];
  96};
  97
  98#define KPROBE_INSN_PAGE_SIZE(slots)			\
  99	(offsetof(struct kprobe_insn_page, slot_used) +	\
 100	 (sizeof(char) * (slots)))
 101
 102static int slots_per_page(struct kprobe_insn_cache *c)
 103{
 104	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
 105}
 106
 107enum kprobe_slot_state {
 108	SLOT_CLEAN = 0,
 109	SLOT_DIRTY = 1,
 110	SLOT_USED = 2,
 111};
 112
 113void __weak *alloc_insn_page(void)
 114{
 115	return module_alloc(PAGE_SIZE);
 116}
 117
 118void __weak free_insn_page(void *page)
 119{
 120	module_memfree(page);
 121}
 122
 123struct kprobe_insn_cache kprobe_insn_slots = {
 124	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
 125	.alloc = alloc_insn_page,
 126	.free = free_insn_page,
 127	.sym = KPROBE_INSN_PAGE_SYM,
 128	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
 129	.insn_size = MAX_INSN_SIZE,
 130	.nr_garbage = 0,
 131};
 132static int collect_garbage_slots(struct kprobe_insn_cache *c);
 133
 134/**
 135 * __get_insn_slot() - Find a slot on an executable page for an instruction.
 136 * We allocate an executable page if there's no room on existing ones.
 137 */
 138kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
 139{
 140	struct kprobe_insn_page *kip;
 141	kprobe_opcode_t *slot = NULL;
 142
 143	/* Since the slot array is not protected by rcu, we need a mutex */
 144	mutex_lock(&c->mutex);
 145 retry:
 146	rcu_read_lock();
 147	list_for_each_entry_rcu(kip, &c->pages, list) {
 148		if (kip->nused < slots_per_page(c)) {
 149			int i;
 150			for (i = 0; i < slots_per_page(c); i++) {
 151				if (kip->slot_used[i] == SLOT_CLEAN) {
 152					kip->slot_used[i] = SLOT_USED;
 153					kip->nused++;
 154					slot = kip->insns + (i * c->insn_size);
 155					rcu_read_unlock();
 156					goto out;
 157				}
 158			}
 159			/* kip->nused is broken. Fix it. */
 160			kip->nused = slots_per_page(c);
 161			WARN_ON(1);
 162		}
 163	}
 164	rcu_read_unlock();
 165
 166	/* If there are any garbage slots, collect it and try again. */
 167	if (c->nr_garbage && collect_garbage_slots(c) == 0)
 168		goto retry;
 169
 170	/* All out of space.  Need to allocate a new page. */
 171	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
 172	if (!kip)
 173		goto out;
 174
 175	/*
 176	 * Use module_alloc so this page is within +/- 2GB of where the
 177	 * kernel image and loaded module images reside. This is required
 178	 * so x86_64 can correctly handle the %rip-relative fixups.
 179	 */
 180	kip->insns = c->alloc();
 181	if (!kip->insns) {
 182		kfree(kip);
 183		goto out;
 184	}
 185	INIT_LIST_HEAD(&kip->list);
 186	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
 187	kip->slot_used[0] = SLOT_USED;
 188	kip->nused = 1;
 189	kip->ngarbage = 0;
 190	kip->cache = c;
 191	list_add_rcu(&kip->list, &c->pages);
 192	slot = kip->insns;
 193
 194	/* Record the perf ksymbol register event after adding the page */
 195	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
 196			   PAGE_SIZE, false, c->sym);
 197out:
 198	mutex_unlock(&c->mutex);
 199	return slot;
 200}
 201
 202/* Return 1 if all garbages are collected, otherwise 0. */
 203static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
 204{
 205	kip->slot_used[idx] = SLOT_CLEAN;
 206	kip->nused--;
 207	if (kip->nused == 0) {
 208		/*
 209		 * Page is no longer in use.  Free it unless
 210		 * it's the last one.  We keep the last one
 211		 * so as not to have to set it up again the
 212		 * next time somebody inserts a probe.
 213		 */
 214		if (!list_is_singular(&kip->list)) {
 215			/*
 216			 * Record perf ksymbol unregister event before removing
 217			 * the page.
 218			 */
 219			perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
 220					   (unsigned long)kip->insns, PAGE_SIZE, true,
 221					   kip->cache->sym);
 222			list_del_rcu(&kip->list);
 223			synchronize_rcu();
 224			kip->cache->free(kip->insns);
 225			kfree(kip);
 226		}
 227		return 1;
 228	}
 229	return 0;
 230}
 231
 232static int collect_garbage_slots(struct kprobe_insn_cache *c)
 233{
 234	struct kprobe_insn_page *kip, *next;
 235
 236	/* Ensure no-one is interrupted on the garbages */
 237	synchronize_rcu();
 238
 239	list_for_each_entry_safe(kip, next, &c->pages, list) {
 240		int i;
 241		if (kip->ngarbage == 0)
 242			continue;
 243		kip->ngarbage = 0;	/* we will collect all garbages */
 244		for (i = 0; i < slots_per_page(c); i++) {
 245			if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
 
 246				break;
 247		}
 248	}
 249	c->nr_garbage = 0;
 250	return 0;
 251}
 252
 253void __free_insn_slot(struct kprobe_insn_cache *c,
 254		      kprobe_opcode_t *slot, int dirty)
 255{
 256	struct kprobe_insn_page *kip;
 257	long idx;
 258
 259	mutex_lock(&c->mutex);
 260	rcu_read_lock();
 261	list_for_each_entry_rcu(kip, &c->pages, list) {
 262		idx = ((long)slot - (long)kip->insns) /
 263			(c->insn_size * sizeof(kprobe_opcode_t));
 264		if (idx >= 0 && idx < slots_per_page(c))
 
 
 
 
 
 
 
 265			goto out;
 
 266	}
 267	/* Could not find this slot. */
 268	WARN_ON(1);
 269	kip = NULL;
 270out:
 271	rcu_read_unlock();
 272	/* Mark and sweep: this may sleep */
 273	if (kip) {
 274		/* Check double free */
 275		WARN_ON(kip->slot_used[idx] != SLOT_USED);
 276		if (dirty) {
 277			kip->slot_used[idx] = SLOT_DIRTY;
 278			kip->ngarbage++;
 279			if (++c->nr_garbage > slots_per_page(c))
 280				collect_garbage_slots(c);
 281		} else {
 282			collect_one_slot(kip, idx);
 283		}
 284	}
 285	mutex_unlock(&c->mutex);
 286}
 287
 288/*
 289 * Check given address is on the page of kprobe instruction slots.
 290 * This will be used for checking whether the address on a stack
 291 * is on a text area or not.
 292 */
 293bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
 294{
 295	struct kprobe_insn_page *kip;
 296	bool ret = false;
 297
 298	rcu_read_lock();
 299	list_for_each_entry_rcu(kip, &c->pages, list) {
 300		if (addr >= (unsigned long)kip->insns &&
 301		    addr < (unsigned long)kip->insns + PAGE_SIZE) {
 302			ret = true;
 303			break;
 304		}
 305	}
 306	rcu_read_unlock();
 307
 308	return ret;
 309}
 310
 311int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
 312			     unsigned long *value, char *type, char *sym)
 313{
 314	struct kprobe_insn_page *kip;
 315	int ret = -ERANGE;
 316
 317	rcu_read_lock();
 318	list_for_each_entry_rcu(kip, &c->pages, list) {
 319		if ((*symnum)--)
 320			continue;
 321		strlcpy(sym, c->sym, KSYM_NAME_LEN);
 322		*type = 't';
 323		*value = (unsigned long)kip->insns;
 324		ret = 0;
 325		break;
 326	}
 327	rcu_read_unlock();
 328
 329	return ret;
 330}
 331
 332#ifdef CONFIG_OPTPROBES
 333/* For optimized_kprobe buffer */
 334struct kprobe_insn_cache kprobe_optinsn_slots = {
 335	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
 336	.alloc = alloc_insn_page,
 337	.free = free_insn_page,
 338	.sym = KPROBE_OPTINSN_PAGE_SYM,
 339	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
 340	/* .insn_size is initialized later */
 341	.nr_garbage = 0,
 342};
 343#endif
 344#endif
 345
 346/* We have preemption disabled.. so it is safe to use __ versions */
 347static inline void set_kprobe_instance(struct kprobe *kp)
 348{
 349	__this_cpu_write(kprobe_instance, kp);
 350}
 351
 352static inline void reset_kprobe_instance(void)
 353{
 354	__this_cpu_write(kprobe_instance, NULL);
 355}
 356
 357/*
 358 * This routine is called either:
 359 * 	- under the kprobe_mutex - during kprobe_[un]register()
 360 * 				OR
 361 * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
 362 */
 363struct kprobe *get_kprobe(void *addr)
 364{
 365	struct hlist_head *head;
 366	struct kprobe *p;
 367
 368	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
 369	hlist_for_each_entry_rcu(p, head, hlist,
 370				 lockdep_is_held(&kprobe_mutex)) {
 371		if (p->addr == addr)
 372			return p;
 373	}
 374
 375	return NULL;
 376}
 377NOKPROBE_SYMBOL(get_kprobe);
 378
 379static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
 380
 381/* Return true if the kprobe is an aggregator */
 382static inline int kprobe_aggrprobe(struct kprobe *p)
 383{
 384	return p->pre_handler == aggr_pre_handler;
 385}
 386
 387/* Return true(!0) if the kprobe is unused */
 388static inline int kprobe_unused(struct kprobe *p)
 389{
 390	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
 391	       list_empty(&p->list);
 392}
 393
 394/*
 395 * Keep all fields in the kprobe consistent
 396 */
 397static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
 398{
 399	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
 400	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
 401}
 402
 403#ifdef CONFIG_OPTPROBES
 404/* NOTE: change this value only with kprobe_mutex held */
 405static bool kprobes_allow_optimization;
 406
 407/*
 408 * Call all pre_handler on the list, but ignores its return value.
 409 * This must be called from arch-dep optimized caller.
 410 */
 411void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
 412{
 413	struct kprobe *kp;
 414
 415	list_for_each_entry_rcu(kp, &p->list, list) {
 416		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
 417			set_kprobe_instance(kp);
 418			kp->pre_handler(kp, regs);
 419		}
 420		reset_kprobe_instance();
 421	}
 422}
 423NOKPROBE_SYMBOL(opt_pre_handler);
 424
 425/* Free optimized instructions and optimized_kprobe */
 426static void free_aggr_kprobe(struct kprobe *p)
 427{
 428	struct optimized_kprobe *op;
 429
 430	op = container_of(p, struct optimized_kprobe, kp);
 431	arch_remove_optimized_kprobe(op);
 432	arch_remove_kprobe(p);
 433	kfree(op);
 434}
 435
 436/* Return true(!0) if the kprobe is ready for optimization. */
 437static inline int kprobe_optready(struct kprobe *p)
 438{
 439	struct optimized_kprobe *op;
 440
 441	if (kprobe_aggrprobe(p)) {
 442		op = container_of(p, struct optimized_kprobe, kp);
 443		return arch_prepared_optinsn(&op->optinsn);
 444	}
 445
 446	return 0;
 447}
 448
 449/* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
 450static inline int kprobe_disarmed(struct kprobe *p)
 451{
 452	struct optimized_kprobe *op;
 453
 454	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
 455	if (!kprobe_aggrprobe(p))
 456		return kprobe_disabled(p);
 457
 458	op = container_of(p, struct optimized_kprobe, kp);
 459
 460	return kprobe_disabled(p) && list_empty(&op->list);
 461}
 462
 463/* Return true(!0) if the probe is queued on (un)optimizing lists */
 464static int kprobe_queued(struct kprobe *p)
 465{
 466	struct optimized_kprobe *op;
 467
 468	if (kprobe_aggrprobe(p)) {
 469		op = container_of(p, struct optimized_kprobe, kp);
 470		if (!list_empty(&op->list))
 471			return 1;
 472	}
 473	return 0;
 474}
 475
 476/*
 477 * Return an optimized kprobe whose optimizing code replaces
 478 * instructions including addr (exclude breakpoint).
 479 */
 480static struct kprobe *get_optimized_kprobe(unsigned long addr)
 481{
 482	int i;
 483	struct kprobe *p = NULL;
 484	struct optimized_kprobe *op;
 485
 486	/* Don't check i == 0, since that is a breakpoint case. */
 487	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
 488		p = get_kprobe((void *)(addr - i));
 489
 490	if (p && kprobe_optready(p)) {
 491		op = container_of(p, struct optimized_kprobe, kp);
 492		if (arch_within_optimized_kprobe(op, addr))
 493			return p;
 494	}
 495
 496	return NULL;
 497}
 498
 499/* Optimization staging list, protected by kprobe_mutex */
 500static LIST_HEAD(optimizing_list);
 501static LIST_HEAD(unoptimizing_list);
 502static LIST_HEAD(freeing_list);
 503
 504static void kprobe_optimizer(struct work_struct *work);
 505static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
 506#define OPTIMIZE_DELAY 5
 507
 508/*
 509 * Optimize (replace a breakpoint with a jump) kprobes listed on
 510 * optimizing_list.
 511 */
 512static void do_optimize_kprobes(void)
 513{
 514	lockdep_assert_held(&text_mutex);
 
 
 
 
 515	/*
 516	 * The optimization/unoptimization refers online_cpus via
 517	 * stop_machine() and cpu-hotplug modifies online_cpus.
 518	 * And same time, text_mutex will be held in cpu-hotplug and here.
 519	 * This combination can cause a deadlock (cpu-hotplug try to lock
 520	 * text_mutex but stop_machine can not be done because online_cpus
 521	 * has been changed)
 522	 * To avoid this deadlock, caller must have locked cpu hotplug
 523	 * for preventing cpu-hotplug outside of text_mutex locking.
 524	 */
 525	lockdep_assert_cpus_held();
 526
 527	/* Optimization never be done when disarmed */
 528	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
 529	    list_empty(&optimizing_list))
 530		return;
 531
 532	arch_optimize_kprobes(&optimizing_list);
 
 
 533}
 534
 535/*
 536 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
 537 * if need) kprobes listed on unoptimizing_list.
 538 */
 539static void do_unoptimize_kprobes(void)
 540{
 541	struct optimized_kprobe *op, *tmp;
 542
 543	lockdep_assert_held(&text_mutex);
 544	/* See comment in do_optimize_kprobes() */
 545	lockdep_assert_cpus_held();
 546
 547	/* Unoptimization must be done anytime */
 548	if (list_empty(&unoptimizing_list))
 549		return;
 550
 
 
 
 551	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
 552	/* Loop free_list for disarming */
 553	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
 554		/* Switching from detour code to origin */
 555		op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 556		/* Disarm probes if marked disabled */
 557		if (kprobe_disabled(&op->kp))
 558			arch_disarm_kprobe(&op->kp);
 559		if (kprobe_unused(&op->kp)) {
 560			/*
 561			 * Remove unused probes from hash list. After waiting
 562			 * for synchronization, these probes are reclaimed.
 563			 * (reclaiming is done by do_free_cleaned_kprobes.)
 564			 */
 565			hlist_del_rcu(&op->kp.hlist);
 566		} else
 567			list_del_init(&op->list);
 568	}
 
 
 569}
 570
 571/* Reclaim all kprobes on the free_list */
 572static void do_free_cleaned_kprobes(void)
 573{
 574	struct optimized_kprobe *op, *tmp;
 575
 576	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
 
 577		list_del_init(&op->list);
 578		if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
 579			/*
 580			 * This must not happen, but if there is a kprobe
 581			 * still in use, keep it on kprobes hash list.
 582			 */
 583			continue;
 584		}
 585		free_aggr_kprobe(&op->kp);
 586	}
 587}
 588
 589/* Start optimizer after OPTIMIZE_DELAY passed */
 590static void kick_kprobe_optimizer(void)
 591{
 592	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
 593}
 594
 595/* Kprobe jump optimizer */
 596static void kprobe_optimizer(struct work_struct *work)
 597{
 598	mutex_lock(&kprobe_mutex);
 599	cpus_read_lock();
 600	mutex_lock(&text_mutex);
 601
 602	/*
 603	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
 604	 * kprobes before waiting for quiesence period.
 605	 */
 606	do_unoptimize_kprobes();
 607
 608	/*
 609	 * Step 2: Wait for quiesence period to ensure all potentially
 610	 * preempted tasks to have normally scheduled. Because optprobe
 611	 * may modify multiple instructions, there is a chance that Nth
 612	 * instruction is preempted. In that case, such tasks can return
 613	 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
 614	 * Note that on non-preemptive kernel, this is transparently converted
 615	 * to synchronoze_sched() to wait for all interrupts to have completed.
 616	 */
 617	synchronize_rcu_tasks();
 618
 619	/* Step 3: Optimize kprobes after quiesence period */
 620	do_optimize_kprobes();
 621
 622	/* Step 4: Free cleaned kprobes after quiesence period */
 623	do_free_cleaned_kprobes();
 624
 625	mutex_unlock(&text_mutex);
 626	cpus_read_unlock();
 627
 628	/* Step 5: Kick optimizer again if needed */
 629	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
 630		kick_kprobe_optimizer();
 631
 632	mutex_unlock(&kprobe_mutex);
 633}
 634
 635/* Wait for completing optimization and unoptimization */
 636void wait_for_kprobe_optimizer(void)
 637{
 638	mutex_lock(&kprobe_mutex);
 639
 640	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
 641		mutex_unlock(&kprobe_mutex);
 642
 643		/* this will also make optimizing_work execute immmediately */
 644		flush_delayed_work(&optimizing_work);
 645		/* @optimizing_work might not have been queued yet, relax */
 646		cpu_relax();
 647
 648		mutex_lock(&kprobe_mutex);
 649	}
 650
 651	mutex_unlock(&kprobe_mutex);
 652}
 653
 654static bool optprobe_queued_unopt(struct optimized_kprobe *op)
 655{
 656	struct optimized_kprobe *_op;
 657
 658	list_for_each_entry(_op, &unoptimizing_list, list) {
 659		if (op == _op)
 660			return true;
 661	}
 662
 663	return false;
 664}
 665
 666/* Optimize kprobe if p is ready to be optimized */
 667static void optimize_kprobe(struct kprobe *p)
 668{
 669	struct optimized_kprobe *op;
 670
 671	/* Check if the kprobe is disabled or not ready for optimization. */
 672	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
 673	    (kprobe_disabled(p) || kprobes_all_disarmed))
 674		return;
 675
 676	/* kprobes with post_handler can not be optimized */
 677	if (p->post_handler)
 678		return;
 679
 680	op = container_of(p, struct optimized_kprobe, kp);
 681
 682	/* Check there is no other kprobes at the optimized instructions */
 683	if (arch_check_optimized_kprobe(op) < 0)
 684		return;
 685
 686	/* Check if it is already optimized. */
 687	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
 688		if (optprobe_queued_unopt(op)) {
 689			/* This is under unoptimizing. Just dequeue the probe */
 690			list_del_init(&op->list);
 691		}
 692		return;
 693	}
 694	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
 695
 696	/* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
 697	if (WARN_ON_ONCE(!list_empty(&op->list)))
 698		return;
 699
 700	list_add(&op->list, &optimizing_list);
 701	kick_kprobe_optimizer();
 
 702}
 703
 704/* Short cut to direct unoptimizing */
 705static void force_unoptimize_kprobe(struct optimized_kprobe *op)
 706{
 707	lockdep_assert_cpus_held();
 708	arch_unoptimize_kprobe(op);
 709	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 
 
 710}
 711
 712/* Unoptimize a kprobe if p is optimized */
 713static void unoptimize_kprobe(struct kprobe *p, bool force)
 714{
 715	struct optimized_kprobe *op;
 716
 717	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
 718		return; /* This is not an optprobe nor optimized */
 719
 720	op = container_of(p, struct optimized_kprobe, kp);
 721	if (!kprobe_optimized(p))
 
 
 
 
 
 
 
 
 
 
 722		return;
 
 723
 
 724	if (!list_empty(&op->list)) {
 725		if (optprobe_queued_unopt(op)) {
 726			/* Queued in unoptimizing queue */
 727			if (force) {
 728				/*
 729				 * Forcibly unoptimize the kprobe here, and queue it
 730				 * in the freeing list for release afterwards.
 731				 */
 732				force_unoptimize_kprobe(op);
 733				list_move(&op->list, &freeing_list);
 734			}
 735		} else {
 736			/* Dequeue from the optimizing queue */
 737			list_del_init(&op->list);
 738			op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 739		}
 740		return;
 741	}
 742
 743	/* Optimized kprobe case */
 744	if (force) {
 745		/* Forcibly update the code: this is a special case */
 746		force_unoptimize_kprobe(op);
 747	} else {
 748		list_add(&op->list, &unoptimizing_list);
 749		kick_kprobe_optimizer();
 750	}
 751}
 752
 753/* Cancel unoptimizing for reusing */
 754static int reuse_unused_kprobe(struct kprobe *ap)
 755{
 756	struct optimized_kprobe *op;
 757
 
 758	/*
 759	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
 760	 * there is still a relative jump) and disabled.
 761	 */
 762	op = container_of(ap, struct optimized_kprobe, kp);
 763	WARN_ON_ONCE(list_empty(&op->list));
 
 
 764	/* Enable the probe again */
 765	ap->flags &= ~KPROBE_FLAG_DISABLED;
 766	/* Optimize it again (remove from op->list) */
 767	if (!kprobe_optready(ap))
 768		return -EINVAL;
 769
 770	optimize_kprobe(ap);
 771	return 0;
 772}
 773
 774/* Remove optimized instructions */
 775static void kill_optimized_kprobe(struct kprobe *p)
 776{
 777	struct optimized_kprobe *op;
 778
 779	op = container_of(p, struct optimized_kprobe, kp);
 780	if (!list_empty(&op->list))
 781		/* Dequeue from the (un)optimization queue */
 782		list_del_init(&op->list);
 783	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 784
 785	if (kprobe_unused(p)) {
 786		/* Enqueue if it is unused */
 787		list_add(&op->list, &freeing_list);
 788		/*
 789		 * Remove unused probes from the hash list. After waiting
 790		 * for synchronization, this probe is reclaimed.
 791		 * (reclaiming is done by do_free_cleaned_kprobes().)
 792		 */
 793		hlist_del_rcu(&op->kp.hlist);
 794	}
 795
 796	/* Don't touch the code, because it is already freed. */
 797	arch_remove_optimized_kprobe(op);
 798}
 799
 800static inline
 801void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
 802{
 803	if (!kprobe_ftrace(p))
 804		arch_prepare_optimized_kprobe(op, p);
 805}
 806
 807/* Try to prepare optimized instructions */
 808static void prepare_optimized_kprobe(struct kprobe *p)
 809{
 810	struct optimized_kprobe *op;
 811
 812	op = container_of(p, struct optimized_kprobe, kp);
 813	__prepare_optimized_kprobe(op, p);
 814}
 815
 816/* Allocate new optimized_kprobe and try to prepare optimized instructions */
 817static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
 818{
 819	struct optimized_kprobe *op;
 820
 821	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
 822	if (!op)
 823		return NULL;
 824
 825	INIT_LIST_HEAD(&op->list);
 826	op->kp.addr = p->addr;
 827	__prepare_optimized_kprobe(op, p);
 828
 829	return &op->kp;
 830}
 831
 832static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
 833
 834/*
 835 * Prepare an optimized_kprobe and optimize it
 836 * NOTE: p must be a normal registered kprobe
 837 */
 838static void try_to_optimize_kprobe(struct kprobe *p)
 839{
 840	struct kprobe *ap;
 841	struct optimized_kprobe *op;
 842
 843	/* Impossible to optimize ftrace-based kprobe */
 844	if (kprobe_ftrace(p))
 845		return;
 846
 847	/* For preparing optimization, jump_label_text_reserved() is called */
 848	cpus_read_lock();
 849	jump_label_lock();
 850	mutex_lock(&text_mutex);
 851
 852	ap = alloc_aggr_kprobe(p);
 853	if (!ap)
 854		goto out;
 855
 856	op = container_of(ap, struct optimized_kprobe, kp);
 857	if (!arch_prepared_optinsn(&op->optinsn)) {
 858		/* If failed to setup optimizing, fallback to kprobe */
 859		arch_remove_optimized_kprobe(op);
 860		kfree(op);
 861		goto out;
 862	}
 863
 864	init_aggr_kprobe(ap, p);
 865	optimize_kprobe(ap);	/* This just kicks optimizer thread */
 866
 867out:
 868	mutex_unlock(&text_mutex);
 869	jump_label_unlock();
 870	cpus_read_unlock();
 871}
 872
 873#ifdef CONFIG_SYSCTL
 874static void optimize_all_kprobes(void)
 875{
 876	struct hlist_head *head;
 877	struct kprobe *p;
 878	unsigned int i;
 879
 880	mutex_lock(&kprobe_mutex);
 881	/* If optimization is already allowed, just return */
 882	if (kprobes_allow_optimization)
 883		goto out;
 884
 885	cpus_read_lock();
 886	kprobes_allow_optimization = true;
 887	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
 888		head = &kprobe_table[i];
 889		hlist_for_each_entry(p, head, hlist)
 890			if (!kprobe_disabled(p))
 891				optimize_kprobe(p);
 892	}
 893	cpus_read_unlock();
 894	printk(KERN_INFO "Kprobes globally optimized\n");
 895out:
 896	mutex_unlock(&kprobe_mutex);
 897}
 898
 899static void unoptimize_all_kprobes(void)
 900{
 901	struct hlist_head *head;
 902	struct kprobe *p;
 903	unsigned int i;
 904
 905	mutex_lock(&kprobe_mutex);
 906	/* If optimization is already prohibited, just return */
 907	if (!kprobes_allow_optimization) {
 908		mutex_unlock(&kprobe_mutex);
 909		return;
 910	}
 911
 912	cpus_read_lock();
 913	kprobes_allow_optimization = false;
 914	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
 915		head = &kprobe_table[i];
 916		hlist_for_each_entry(p, head, hlist) {
 917			if (!kprobe_disabled(p))
 918				unoptimize_kprobe(p, false);
 919		}
 920	}
 921	cpus_read_unlock();
 922	mutex_unlock(&kprobe_mutex);
 923
 924	/* Wait for unoptimizing completion */
 925	wait_for_kprobe_optimizer();
 926	printk(KERN_INFO "Kprobes globally unoptimized\n");
 927}
 928
 929static DEFINE_MUTEX(kprobe_sysctl_mutex);
 930int sysctl_kprobes_optimization;
 931int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
 932				      void *buffer, size_t *length,
 933				      loff_t *ppos)
 934{
 935	int ret;
 936
 937	mutex_lock(&kprobe_sysctl_mutex);
 938	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
 939	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
 940
 941	if (sysctl_kprobes_optimization)
 942		optimize_all_kprobes();
 943	else
 944		unoptimize_all_kprobes();
 945	mutex_unlock(&kprobe_sysctl_mutex);
 946
 947	return ret;
 948}
 949#endif /* CONFIG_SYSCTL */
 950
 951/* Put a breakpoint for a probe. Must be called with text_mutex locked */
 952static void __arm_kprobe(struct kprobe *p)
 953{
 954	struct kprobe *_p;
 955
 956	/* Check collision with other optimized kprobes */
 957	_p = get_optimized_kprobe((unsigned long)p->addr);
 958	if (unlikely(_p))
 959		/* Fallback to unoptimized kprobe */
 960		unoptimize_kprobe(_p, true);
 961
 962	arch_arm_kprobe(p);
 963	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
 964}
 965
 966/* Remove the breakpoint of a probe. Must be called with text_mutex locked */
 967static void __disarm_kprobe(struct kprobe *p, bool reopt)
 968{
 969	struct kprobe *_p;
 970
 971	/* Try to unoptimize */
 972	unoptimize_kprobe(p, kprobes_all_disarmed);
 973
 974	if (!kprobe_queued(p)) {
 975		arch_disarm_kprobe(p);
 976		/* If another kprobe was blocked, optimize it. */
 977		_p = get_optimized_kprobe((unsigned long)p->addr);
 978		if (unlikely(_p) && reopt)
 979			optimize_kprobe(_p);
 980	}
 981	/* TODO: reoptimize others after unoptimized this probe */
 982}
 983
 984#else /* !CONFIG_OPTPROBES */
 985
 986#define optimize_kprobe(p)			do {} while (0)
 987#define unoptimize_kprobe(p, f)			do {} while (0)
 988#define kill_optimized_kprobe(p)		do {} while (0)
 989#define prepare_optimized_kprobe(p)		do {} while (0)
 990#define try_to_optimize_kprobe(p)		do {} while (0)
 991#define __arm_kprobe(p)				arch_arm_kprobe(p)
 992#define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
 993#define kprobe_disarmed(p)			kprobe_disabled(p)
 994#define wait_for_kprobe_optimizer()		do {} while (0)
 995
 996static int reuse_unused_kprobe(struct kprobe *ap)
 
 997{
 998	/*
 999	 * If the optimized kprobe is NOT supported, the aggr kprobe is
1000	 * released at the same time that the last aggregated kprobe is
1001	 * unregistered.
1002	 * Thus there should be no chance to reuse unused kprobe.
1003	 */
1004	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
1005	return -EINVAL;
1006}
1007
1008static void free_aggr_kprobe(struct kprobe *p)
1009{
1010	arch_remove_kprobe(p);
1011	kfree(p);
1012}
1013
1014static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1015{
1016	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1017}
1018#endif /* CONFIG_OPTPROBES */
1019
1020#ifdef CONFIG_KPROBES_ON_FTRACE
1021static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1022	.func = kprobe_ftrace_handler,
1023	.flags = FTRACE_OPS_FL_SAVE_REGS,
1024};
1025
1026static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1027	.func = kprobe_ftrace_handler,
1028	.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1029};
1030
1031static int kprobe_ipmodify_enabled;
1032static int kprobe_ftrace_enabled;
1033
1034/* Must ensure p->addr is really on ftrace */
1035static int prepare_kprobe(struct kprobe *p)
1036{
1037	if (!kprobe_ftrace(p))
1038		return arch_prepare_kprobe(p);
1039
1040	return arch_prepare_kprobe_ftrace(p);
1041}
1042
1043/* Caller must lock kprobe_mutex */
1044static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1045			       int *cnt)
1046{
1047	int ret = 0;
1048
1049	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1050	if (ret) {
1051		pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1052			 p->addr, ret);
1053		return ret;
1054	}
1055
1056	if (*cnt == 0) {
1057		ret = register_ftrace_function(ops);
1058		if (ret) {
1059			pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1060			goto err_ftrace;
1061		}
 
1062	}
1063
1064	(*cnt)++;
1065	return ret;
1066
1067err_ftrace:
1068	/*
1069	 * At this point, sinec ops is not registered, we should be sefe from
1070	 * registering empty filter.
1071	 */
1072	ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1073	return ret;
1074}
1075
1076static int arm_kprobe_ftrace(struct kprobe *p)
1077{
1078	bool ipmodify = (p->post_handler != NULL);
1079
1080	return __arm_kprobe_ftrace(p,
1081		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1082		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1083}
1084
1085/* Caller must lock kprobe_mutex */
1086static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1087				  int *cnt)
1088{
1089	int ret = 0;
1090
1091	if (*cnt == 1) {
1092		ret = unregister_ftrace_function(ops);
1093		if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1094			return ret;
1095	}
1096
1097	(*cnt)--;
1098
1099	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1100	WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1101		  p->addr, ret);
1102	return ret;
1103}
1104
1105static int disarm_kprobe_ftrace(struct kprobe *p)
1106{
1107	bool ipmodify = (p->post_handler != NULL);
1108
1109	return __disarm_kprobe_ftrace(p,
1110		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1111		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
 
 
 
 
 
1112}
1113#else	/* !CONFIG_KPROBES_ON_FTRACE */
1114static inline int prepare_kprobe(struct kprobe *p)
1115{
1116	return arch_prepare_kprobe(p);
1117}
1118
1119static inline int arm_kprobe_ftrace(struct kprobe *p)
1120{
1121	return -ENODEV;
1122}
1123
1124static inline int disarm_kprobe_ftrace(struct kprobe *p)
1125{
1126	return -ENODEV;
1127}
1128#endif
1129
1130/* Arm a kprobe with text_mutex */
1131static int arm_kprobe(struct kprobe *kp)
1132{
1133	if (unlikely(kprobe_ftrace(kp)))
1134		return arm_kprobe_ftrace(kp);
1135
1136	cpus_read_lock();
 
 
 
 
 
1137	mutex_lock(&text_mutex);
1138	__arm_kprobe(kp);
1139	mutex_unlock(&text_mutex);
1140	cpus_read_unlock();
1141
1142	return 0;
1143}
1144
1145/* Disarm a kprobe with text_mutex */
1146static int disarm_kprobe(struct kprobe *kp, bool reopt)
1147{
1148	if (unlikely(kprobe_ftrace(kp)))
1149		return disarm_kprobe_ftrace(kp);
1150
1151	cpus_read_lock();
 
1152	mutex_lock(&text_mutex);
1153	__disarm_kprobe(kp, reopt);
1154	mutex_unlock(&text_mutex);
1155	cpus_read_unlock();
1156
1157	return 0;
1158}
1159
1160/*
1161 * Aggregate handlers for multiple kprobes support - these handlers
1162 * take care of invoking the individual kprobe handlers on p->list
1163 */
1164static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1165{
1166	struct kprobe *kp;
1167
1168	list_for_each_entry_rcu(kp, &p->list, list) {
1169		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1170			set_kprobe_instance(kp);
1171			if (kp->pre_handler(kp, regs))
1172				return 1;
1173		}
1174		reset_kprobe_instance();
1175	}
1176	return 0;
1177}
1178NOKPROBE_SYMBOL(aggr_pre_handler);
1179
1180static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1181			      unsigned long flags)
1182{
1183	struct kprobe *kp;
1184
1185	list_for_each_entry_rcu(kp, &p->list, list) {
1186		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1187			set_kprobe_instance(kp);
1188			kp->post_handler(kp, regs, flags);
1189			reset_kprobe_instance();
1190		}
1191	}
1192}
1193NOKPROBE_SYMBOL(aggr_post_handler);
1194
1195static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1196			      int trapnr)
1197{
1198	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1199
1200	/*
1201	 * if we faulted "during" the execution of a user specified
1202	 * probe handler, invoke just that probe's fault handler
1203	 */
1204	if (cur && cur->fault_handler) {
1205		if (cur->fault_handler(cur, regs, trapnr))
1206			return 1;
1207	}
1208	return 0;
1209}
1210NOKPROBE_SYMBOL(aggr_fault_handler);
 
 
 
 
 
 
 
 
 
 
 
 
1211
1212/* Walks the list and increments nmissed count for multiprobe case */
1213void kprobes_inc_nmissed_count(struct kprobe *p)
1214{
1215	struct kprobe *kp;
1216	if (!kprobe_aggrprobe(p)) {
1217		p->nmissed++;
1218	} else {
1219		list_for_each_entry_rcu(kp, &p->list, list)
1220			kp->nmissed++;
1221	}
1222	return;
1223}
1224NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1225
1226void recycle_rp_inst(struct kretprobe_instance *ri,
1227		     struct hlist_head *head)
1228{
1229	struct kretprobe *rp = ri->rp;
1230
1231	/* remove rp inst off the rprobe_inst_table */
1232	hlist_del(&ri->hlist);
1233	INIT_HLIST_NODE(&ri->hlist);
1234	if (likely(rp)) {
1235		raw_spin_lock(&rp->lock);
1236		hlist_add_head(&ri->hlist, &rp->free_instances);
1237		raw_spin_unlock(&rp->lock);
1238	} else
1239		/* Unregistering */
1240		hlist_add_head(&ri->hlist, head);
1241}
1242NOKPROBE_SYMBOL(recycle_rp_inst);
1243
1244void kretprobe_hash_lock(struct task_struct *tsk,
1245			 struct hlist_head **head, unsigned long *flags)
1246__acquires(hlist_lock)
1247{
1248	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1249	raw_spinlock_t *hlist_lock;
1250
1251	*head = &kretprobe_inst_table[hash];
1252	hlist_lock = kretprobe_table_lock_ptr(hash);
1253	raw_spin_lock_irqsave(hlist_lock, *flags);
1254}
1255NOKPROBE_SYMBOL(kretprobe_hash_lock);
1256
1257static void kretprobe_table_lock(unsigned long hash,
1258				 unsigned long *flags)
1259__acquires(hlist_lock)
1260{
1261	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1262	raw_spin_lock_irqsave(hlist_lock, *flags);
1263}
1264NOKPROBE_SYMBOL(kretprobe_table_lock);
1265
1266void kretprobe_hash_unlock(struct task_struct *tsk,
1267			   unsigned long *flags)
1268__releases(hlist_lock)
1269{
1270	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1271	raw_spinlock_t *hlist_lock;
1272
1273	hlist_lock = kretprobe_table_lock_ptr(hash);
1274	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1275}
1276NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1277
1278static void kretprobe_table_unlock(unsigned long hash,
1279				   unsigned long *flags)
1280__releases(hlist_lock)
1281{
1282	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1283	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1284}
1285NOKPROBE_SYMBOL(kretprobe_table_unlock);
1286
1287struct kprobe kprobe_busy = {
1288	.addr = (void *) get_kprobe,
1289};
1290
1291void kprobe_busy_begin(void)
1292{
1293	struct kprobe_ctlblk *kcb;
1294
1295	preempt_disable();
1296	__this_cpu_write(current_kprobe, &kprobe_busy);
1297	kcb = get_kprobe_ctlblk();
1298	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1299}
1300
1301void kprobe_busy_end(void)
1302{
1303	__this_cpu_write(current_kprobe, NULL);
1304	preempt_enable();
1305}
1306
1307/*
1308 * This function is called from finish_task_switch when task tk becomes dead,
1309 * so that we can recycle any function-return probe instances associated
1310 * with this task. These left over instances represent probed functions
1311 * that have been called but will never return.
1312 */
1313void kprobe_flush_task(struct task_struct *tk)
1314{
1315	struct kretprobe_instance *ri;
1316	struct hlist_head *head, empty_rp;
1317	struct hlist_node *tmp;
1318	unsigned long hash, flags = 0;
1319
1320	if (unlikely(!kprobes_initialized))
1321		/* Early boot.  kretprobe_table_locks not yet initialized. */
1322		return;
1323
1324	kprobe_busy_begin();
1325
1326	INIT_HLIST_HEAD(&empty_rp);
1327	hash = hash_ptr(tk, KPROBE_HASH_BITS);
1328	head = &kretprobe_inst_table[hash];
1329	kretprobe_table_lock(hash, &flags);
1330	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1331		if (ri->task == tk)
1332			recycle_rp_inst(ri, &empty_rp);
1333	}
1334	kretprobe_table_unlock(hash, &flags);
1335	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1336		hlist_del(&ri->hlist);
1337		kfree(ri);
1338	}
1339
1340	kprobe_busy_end();
1341}
1342NOKPROBE_SYMBOL(kprobe_flush_task);
1343
1344static inline void free_rp_inst(struct kretprobe *rp)
1345{
1346	struct kretprobe_instance *ri;
1347	struct hlist_node *next;
1348
1349	hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1350		hlist_del(&ri->hlist);
1351		kfree(ri);
1352	}
1353}
1354
1355static void cleanup_rp_inst(struct kretprobe *rp)
1356{
1357	unsigned long flags, hash;
1358	struct kretprobe_instance *ri;
1359	struct hlist_node *next;
1360	struct hlist_head *head;
1361
1362	/* No race here */
1363	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1364		kretprobe_table_lock(hash, &flags);
1365		head = &kretprobe_inst_table[hash];
1366		hlist_for_each_entry_safe(ri, next, head, hlist) {
1367			if (ri->rp == rp)
1368				ri->rp = NULL;
1369		}
1370		kretprobe_table_unlock(hash, &flags);
1371	}
1372	free_rp_inst(rp);
1373}
1374NOKPROBE_SYMBOL(cleanup_rp_inst);
1375
1376/* Add the new probe to ap->list */
1377static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
 
 
 
1378{
1379	if (p->post_handler)
 
 
1380		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1381
1382	list_add_rcu(&p->list, &ap->list);
 
 
 
 
 
 
1383	if (p->post_handler && !ap->post_handler)
1384		ap->post_handler = aggr_post_handler;
1385
1386	return 0;
1387}
1388
1389/*
1390 * Fill in the required fields of the "manager kprobe". Replace the
1391 * earlier kprobe in the hlist with the manager kprobe
1392 */
1393static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1394{
1395	/* Copy p's insn slot to ap */
1396	copy_kprobe(p, ap);
1397	flush_insn_slot(ap);
1398	ap->addr = p->addr;
1399	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1400	ap->pre_handler = aggr_pre_handler;
1401	ap->fault_handler = aggr_fault_handler;
1402	/* We don't care the kprobe which has gone. */
1403	if (p->post_handler && !kprobe_gone(p))
1404		ap->post_handler = aggr_post_handler;
 
 
1405
1406	INIT_LIST_HEAD(&ap->list);
1407	INIT_HLIST_NODE(&ap->hlist);
1408
1409	list_add_rcu(&p->list, &ap->list);
1410	hlist_replace_rcu(&p->hlist, &ap->hlist);
1411}
1412
1413/*
1414 * This is the second or subsequent kprobe at the address - handle
1415 * the intricacies
1416 */
1417static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
 
1418{
1419	int ret = 0;
1420	struct kprobe *ap = orig_p;
1421
1422	cpus_read_lock();
1423
1424	/* For preparing optimization, jump_label_text_reserved() is called */
1425	jump_label_lock();
 
 
 
 
 
1426	mutex_lock(&text_mutex);
1427
1428	if (!kprobe_aggrprobe(orig_p)) {
1429		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1430		ap = alloc_aggr_kprobe(orig_p);
1431		if (!ap) {
1432			ret = -ENOMEM;
1433			goto out;
1434		}
1435		init_aggr_kprobe(ap, orig_p);
1436	} else if (kprobe_unused(ap)) {
1437		/* This probe is going to die. Rescue it */
1438		ret = reuse_unused_kprobe(ap);
1439		if (ret)
1440			goto out;
1441	}
1442
1443	if (kprobe_gone(ap)) {
1444		/*
1445		 * Attempting to insert new probe at the same location that
1446		 * had a probe in the module vaddr area which already
1447		 * freed. So, the instruction slot has already been
1448		 * released. We need a new slot for the new probe.
1449		 */
1450		ret = arch_prepare_kprobe(ap);
1451		if (ret)
1452			/*
1453			 * Even if fail to allocate new slot, don't need to
1454			 * free aggr_probe. It will be used next time, or
1455			 * freed by unregister_kprobe.
1456			 */
1457			goto out;
1458
1459		/* Prepare optimized instructions if possible. */
1460		prepare_optimized_kprobe(ap);
1461
1462		/*
1463		 * Clear gone flag to prevent allocating new slot again, and
1464		 * set disabled flag because it is not armed yet.
1465		 */
1466		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1467			    | KPROBE_FLAG_DISABLED;
1468	}
1469
1470	/* Copy ap's insn slot to p */
1471	copy_kprobe(ap, p);
1472	ret = add_new_kprobe(ap, p);
1473
1474out:
1475	mutex_unlock(&text_mutex);
 
1476	jump_label_unlock();
1477	cpus_read_unlock();
1478
1479	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1480		ap->flags &= ~KPROBE_FLAG_DISABLED;
1481		if (!kprobes_all_disarmed) {
1482			/* Arm the breakpoint again. */
1483			ret = arm_kprobe(ap);
1484			if (ret) {
1485				ap->flags |= KPROBE_FLAG_DISABLED;
1486				list_del_rcu(&p->list);
1487				synchronize_rcu();
1488			}
1489		}
1490	}
1491	return ret;
1492}
1493
1494bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1495{
1496	/* The __kprobes marked functions and entry code must not be probed */
1497	return addr >= (unsigned long)__kprobes_text_start &&
1498	       addr < (unsigned long)__kprobes_text_end;
1499}
1500
1501static bool __within_kprobe_blacklist(unsigned long addr)
1502{
1503	struct kprobe_blacklist_entry *ent;
1504
1505	if (arch_within_kprobe_blacklist(addr))
1506		return true;
1507	/*
1508	 * If there exists a kprobe_blacklist, verify and
1509	 * fail any probe registration in the prohibited area
1510	 */
1511	list_for_each_entry(ent, &kprobe_blacklist, list) {
1512		if (addr >= ent->start_addr && addr < ent->end_addr)
1513			return true;
 
 
 
1514	}
1515	return false;
1516}
1517
1518bool within_kprobe_blacklist(unsigned long addr)
1519{
1520	char symname[KSYM_NAME_LEN], *p;
1521
1522	if (__within_kprobe_blacklist(addr))
1523		return true;
1524
1525	/* Check if the address is on a suffixed-symbol */
1526	if (!lookup_symbol_name(addr, symname)) {
1527		p = strchr(symname, '.');
1528		if (!p)
1529			return false;
1530		*p = '\0';
1531		addr = (unsigned long)kprobe_lookup_name(symname, 0);
1532		if (addr)
1533			return __within_kprobe_blacklist(addr);
1534	}
1535	return false;
1536}
1537
1538/*
1539 * If we have a symbol_name argument, look it up and add the offset field
1540 * to it. This way, we can specify a relative address to a symbol.
1541 * This returns encoded errors if it fails to look up symbol or invalid
1542 * combination of parameters.
1543 */
1544static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1545			const char *symbol_name, unsigned int offset)
1546{
1547	if ((symbol_name && addr) || (!symbol_name && !addr))
 
 
 
1548		goto invalid;
1549
1550	if (symbol_name) {
1551		addr = kprobe_lookup_name(symbol_name, offset);
1552		if (!addr)
1553			return ERR_PTR(-ENOENT);
1554	}
1555
1556	addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1557	if (addr)
1558		return addr;
1559
1560invalid:
1561	return ERR_PTR(-EINVAL);
1562}
1563
1564static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1565{
1566	return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1567}
1568
1569/* Check passed kprobe is valid and return kprobe in kprobe_table. */
1570static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1571{
1572	struct kprobe *ap, *list_p;
1573
1574	lockdep_assert_held(&kprobe_mutex);
1575
1576	ap = get_kprobe(p->addr);
1577	if (unlikely(!ap))
1578		return NULL;
1579
1580	if (p != ap) {
1581		list_for_each_entry(list_p, &ap->list, list)
1582			if (list_p == p)
1583			/* kprobe p is a valid probe */
1584				goto valid;
1585		return NULL;
1586	}
1587valid:
1588	return ap;
1589}
1590
1591/* Return error if the kprobe is being re-registered */
1592static inline int check_kprobe_rereg(struct kprobe *p)
1593{
1594	int ret = 0;
1595
1596	mutex_lock(&kprobe_mutex);
1597	if (__get_valid_kprobe(p))
1598		ret = -EINVAL;
1599	mutex_unlock(&kprobe_mutex);
1600
1601	return ret;
1602}
1603
1604int __weak arch_check_ftrace_location(struct kprobe *p)
 
1605{
 
1606	unsigned long ftrace_addr;
1607
 
 
 
 
1608	ftrace_addr = ftrace_location((unsigned long)p->addr);
1609	if (ftrace_addr) {
1610#ifdef CONFIG_KPROBES_ON_FTRACE
1611		/* Given address is not on the instruction boundary */
1612		if ((unsigned long)p->addr != ftrace_addr)
1613			return -EILSEQ;
1614		p->flags |= KPROBE_FLAG_FTRACE;
1615#else	/* !CONFIG_KPROBES_ON_FTRACE */
1616		return -EINVAL;
1617#endif
1618	}
1619	return 0;
1620}
1621
1622static int check_kprobe_address_safe(struct kprobe *p,
1623				     struct module **probed_mod)
1624{
1625	int ret;
1626
1627	ret = arch_check_ftrace_location(p);
1628	if (ret)
1629		return ret;
1630	jump_label_lock();
1631	preempt_disable();
1632
1633	/* Ensure it is not in reserved area nor out of text */
1634	if (!kernel_text_address((unsigned long) p->addr) ||
1635	    within_kprobe_blacklist((unsigned long) p->addr) ||
1636	    jump_label_text_reserved(p->addr, p->addr) ||
1637	    find_bug((unsigned long)p->addr)) {
1638		ret = -EINVAL;
1639		goto out;
1640	}
1641
1642	/* Check if are we probing a module */
1643	*probed_mod = __module_text_address((unsigned long) p->addr);
1644	if (*probed_mod) {
1645		/*
1646		 * We must hold a refcount of the probed module while updating
1647		 * its code to prohibit unexpected unloading.
1648		 */
1649		if (unlikely(!try_module_get(*probed_mod))) {
1650			ret = -ENOENT;
1651			goto out;
1652		}
1653
1654		/*
1655		 * If the module freed .init.text, we couldn't insert
1656		 * kprobes in there.
1657		 */
1658		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1659		    (*probed_mod)->state != MODULE_STATE_COMING) {
1660			module_put(*probed_mod);
1661			*probed_mod = NULL;
1662			ret = -ENOENT;
1663		}
1664	}
1665out:
1666	preempt_enable();
1667	jump_label_unlock();
1668
1669	return ret;
1670}
1671
1672int register_kprobe(struct kprobe *p)
1673{
1674	int ret;
1675	struct kprobe *old_p;
1676	struct module *probed_mod;
1677	kprobe_opcode_t *addr;
1678
1679	/* Adjust probe address from symbol */
1680	addr = kprobe_addr(p);
1681	if (IS_ERR(addr))
1682		return PTR_ERR(addr);
1683	p->addr = addr;
1684
1685	ret = check_kprobe_rereg(p);
1686	if (ret)
1687		return ret;
1688
1689	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1690	p->flags &= KPROBE_FLAG_DISABLED;
1691	p->nmissed = 0;
1692	INIT_LIST_HEAD(&p->list);
1693
1694	ret = check_kprobe_address_safe(p, &probed_mod);
1695	if (ret)
1696		return ret;
1697
1698	mutex_lock(&kprobe_mutex);
1699
1700	old_p = get_kprobe(p->addr);
1701	if (old_p) {
1702		/* Since this may unoptimize old_p, locking text_mutex. */
1703		ret = register_aggr_kprobe(old_p, p);
1704		goto out;
1705	}
1706
1707	cpus_read_lock();
1708	/* Prevent text modification */
1709	mutex_lock(&text_mutex);
1710	ret = prepare_kprobe(p);
1711	mutex_unlock(&text_mutex);
1712	cpus_read_unlock();
1713	if (ret)
1714		goto out;
1715
1716	INIT_HLIST_NODE(&p->hlist);
1717	hlist_add_head_rcu(&p->hlist,
1718		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1719
1720	if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1721		ret = arm_kprobe(p);
1722		if (ret) {
1723			hlist_del_rcu(&p->hlist);
1724			synchronize_rcu();
1725			goto out;
1726		}
1727	}
1728
1729	/* Try to optimize kprobe */
1730	try_to_optimize_kprobe(p);
 
1731out:
1732	mutex_unlock(&kprobe_mutex);
1733
1734	if (probed_mod)
1735		module_put(probed_mod);
1736
1737	return ret;
1738}
1739EXPORT_SYMBOL_GPL(register_kprobe);
1740
1741/* Check if all probes on the aggrprobe are disabled */
1742static int aggr_kprobe_disabled(struct kprobe *ap)
1743{
1744	struct kprobe *kp;
1745
1746	lockdep_assert_held(&kprobe_mutex);
1747
1748	list_for_each_entry(kp, &ap->list, list)
1749		if (!kprobe_disabled(kp))
1750			/*
1751			 * There is an active probe on the list.
1752			 * We can't disable this ap.
1753			 */
1754			return 0;
1755
1756	return 1;
1757}
1758
1759/* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1760static struct kprobe *__disable_kprobe(struct kprobe *p)
1761{
1762	struct kprobe *orig_p;
1763	int ret;
1764
1765	/* Get an original kprobe for return */
1766	orig_p = __get_valid_kprobe(p);
1767	if (unlikely(orig_p == NULL))
1768		return ERR_PTR(-EINVAL);
1769
1770	if (!kprobe_disabled(p)) {
1771		/* Disable probe if it is a child probe */
1772		if (p != orig_p)
1773			p->flags |= KPROBE_FLAG_DISABLED;
1774
1775		/* Try to disarm and disable this/parent probe */
1776		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1777			/*
1778			 * If kprobes_all_disarmed is set, orig_p
1779			 * should have already been disarmed, so
1780			 * skip unneed disarming process.
1781			 */
1782			if (!kprobes_all_disarmed) {
1783				ret = disarm_kprobe(orig_p, true);
1784				if (ret) {
1785					p->flags &= ~KPROBE_FLAG_DISABLED;
1786					return ERR_PTR(ret);
1787				}
1788			}
1789			orig_p->flags |= KPROBE_FLAG_DISABLED;
1790		}
1791	}
1792
1793	return orig_p;
1794}
1795
1796/*
1797 * Unregister a kprobe without a scheduler synchronization.
1798 */
1799static int __unregister_kprobe_top(struct kprobe *p)
1800{
1801	struct kprobe *ap, *list_p;
1802
1803	/* Disable kprobe. This will disarm it if needed. */
1804	ap = __disable_kprobe(p);
1805	if (IS_ERR(ap))
1806		return PTR_ERR(ap);
1807
1808	if (ap == p)
1809		/*
1810		 * This probe is an independent(and non-optimized) kprobe
1811		 * (not an aggrprobe). Remove from the hash list.
1812		 */
1813		goto disarmed;
1814
1815	/* Following process expects this probe is an aggrprobe */
1816	WARN_ON(!kprobe_aggrprobe(ap));
1817
1818	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1819		/*
1820		 * !disarmed could be happen if the probe is under delayed
1821		 * unoptimizing.
1822		 */
1823		goto disarmed;
1824	else {
1825		/* If disabling probe has special handlers, update aggrprobe */
 
 
1826		if (p->post_handler && !kprobe_gone(p)) {
1827			list_for_each_entry(list_p, &ap->list, list) {
1828				if ((list_p != p) && (list_p->post_handler))
1829					goto noclean;
1830			}
1831			ap->post_handler = NULL;
1832		}
1833noclean:
1834		/*
1835		 * Remove from the aggrprobe: this path will do nothing in
1836		 * __unregister_kprobe_bottom().
1837		 */
1838		list_del_rcu(&p->list);
1839		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1840			/*
1841			 * Try to optimize this probe again, because post
1842			 * handler may have been changed.
1843			 */
1844			optimize_kprobe(ap);
1845	}
1846	return 0;
1847
1848disarmed:
 
1849	hlist_del_rcu(&ap->hlist);
1850	return 0;
1851}
1852
1853static void __unregister_kprobe_bottom(struct kprobe *p)
1854{
1855	struct kprobe *ap;
1856
1857	if (list_empty(&p->list))
1858		/* This is an independent kprobe */
1859		arch_remove_kprobe(p);
1860	else if (list_is_singular(&p->list)) {
1861		/* This is the last child of an aggrprobe */
1862		ap = list_entry(p->list.next, struct kprobe, list);
1863		list_del(&p->list);
1864		free_aggr_kprobe(ap);
1865	}
1866	/* Otherwise, do nothing. */
1867}
1868
1869int register_kprobes(struct kprobe **kps, int num)
1870{
1871	int i, ret = 0;
1872
1873	if (num <= 0)
1874		return -EINVAL;
1875	for (i = 0; i < num; i++) {
1876		ret = register_kprobe(kps[i]);
1877		if (ret < 0) {
1878			if (i > 0)
1879				unregister_kprobes(kps, i);
1880			break;
1881		}
1882	}
1883	return ret;
1884}
1885EXPORT_SYMBOL_GPL(register_kprobes);
1886
1887void unregister_kprobe(struct kprobe *p)
1888{
1889	unregister_kprobes(&p, 1);
1890}
1891EXPORT_SYMBOL_GPL(unregister_kprobe);
1892
1893void unregister_kprobes(struct kprobe **kps, int num)
1894{
1895	int i;
1896
1897	if (num <= 0)
1898		return;
1899	mutex_lock(&kprobe_mutex);
1900	for (i = 0; i < num; i++)
1901		if (__unregister_kprobe_top(kps[i]) < 0)
1902			kps[i]->addr = NULL;
1903	mutex_unlock(&kprobe_mutex);
1904
1905	synchronize_rcu();
1906	for (i = 0; i < num; i++)
1907		if (kps[i]->addr)
1908			__unregister_kprobe_bottom(kps[i]);
1909}
1910EXPORT_SYMBOL_GPL(unregister_kprobes);
1911
1912int __weak kprobe_exceptions_notify(struct notifier_block *self,
1913					unsigned long val, void *data)
1914{
1915	return NOTIFY_DONE;
1916}
1917NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1918
1919static struct notifier_block kprobe_exceptions_nb = {
1920	.notifier_call = kprobe_exceptions_notify,
1921	.priority = 0x7fffffff /* we need to be notified first */
1922};
1923
1924unsigned long __weak arch_deref_entry_point(void *entry)
1925{
1926	return (unsigned long)entry;
1927}
1928
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1929#ifdef CONFIG_KRETPROBES
1930/*
1931 * This kprobe pre_handler is registered with every kretprobe. When probe
1932 * hits it will set up the return probe.
1933 */
1934static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
 
1935{
1936	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1937	unsigned long hash, flags = 0;
1938	struct kretprobe_instance *ri;
1939
1940	/*
1941	 * To avoid deadlocks, prohibit return probing in NMI contexts,
1942	 * just skip the probe and increase the (inexact) 'nmissed'
1943	 * statistical counter, so that the user is informed that
1944	 * something happened:
1945	 */
1946	if (unlikely(in_nmi())) {
1947		rp->nmissed++;
1948		return 0;
1949	}
1950
1951	/* TODO: consider to only swap the RA after the last pre_handler fired */
1952	hash = hash_ptr(current, KPROBE_HASH_BITS);
1953	raw_spin_lock_irqsave(&rp->lock, flags);
1954	if (!hlist_empty(&rp->free_instances)) {
1955		ri = hlist_entry(rp->free_instances.first,
1956				struct kretprobe_instance, hlist);
1957		hlist_del(&ri->hlist);
1958		raw_spin_unlock_irqrestore(&rp->lock, flags);
1959
1960		ri->rp = rp;
1961		ri->task = current;
1962
1963		if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1964			raw_spin_lock_irqsave(&rp->lock, flags);
1965			hlist_add_head(&ri->hlist, &rp->free_instances);
1966			raw_spin_unlock_irqrestore(&rp->lock, flags);
1967			return 0;
1968		}
1969
1970		arch_prepare_kretprobe(ri, regs);
1971
1972		/* XXX(hch): why is there no hlist_move_head? */
1973		INIT_HLIST_NODE(&ri->hlist);
1974		kretprobe_table_lock(hash, &flags);
1975		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1976		kretprobe_table_unlock(hash, &flags);
1977	} else {
1978		rp->nmissed++;
1979		raw_spin_unlock_irqrestore(&rp->lock, flags);
1980	}
1981	return 0;
1982}
1983NOKPROBE_SYMBOL(pre_handler_kretprobe);
1984
1985bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1986{
1987	return !offset;
1988}
1989
1990bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1991{
1992	kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1993
1994	if (IS_ERR(kp_addr))
1995		return false;
1996
1997	if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1998						!arch_kprobe_on_func_entry(offset))
1999		return false;
2000
2001	return true;
2002}
2003
2004int register_kretprobe(struct kretprobe *rp)
2005{
2006	int ret = 0;
2007	struct kretprobe_instance *inst;
2008	int i;
2009	void *addr;
2010
2011	if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
2012		return -EINVAL;
2013
2014	if (kretprobe_blacklist_size) {
2015		addr = kprobe_addr(&rp->kp);
2016		if (IS_ERR(addr))
2017			return PTR_ERR(addr);
2018
2019		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2020			if (kretprobe_blacklist[i].addr == addr)
2021				return -EINVAL;
2022		}
2023	}
2024
2025	rp->kp.pre_handler = pre_handler_kretprobe;
2026	rp->kp.post_handler = NULL;
2027	rp->kp.fault_handler = NULL;
 
2028
2029	/* Pre-allocate memory for max kretprobe instances */
2030	if (rp->maxactive <= 0) {
2031#ifdef CONFIG_PREEMPTION
2032		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2033#else
2034		rp->maxactive = num_possible_cpus();
2035#endif
2036	}
2037	raw_spin_lock_init(&rp->lock);
2038	INIT_HLIST_HEAD(&rp->free_instances);
2039	for (i = 0; i < rp->maxactive; i++) {
2040		inst = kmalloc(sizeof(struct kretprobe_instance) +
2041			       rp->data_size, GFP_KERNEL);
2042		if (inst == NULL) {
2043			free_rp_inst(rp);
2044			return -ENOMEM;
2045		}
2046		INIT_HLIST_NODE(&inst->hlist);
2047		hlist_add_head(&inst->hlist, &rp->free_instances);
2048	}
2049
2050	rp->nmissed = 0;
2051	/* Establish function entry probe point */
2052	ret = register_kprobe(&rp->kp);
2053	if (ret != 0)
2054		free_rp_inst(rp);
2055	return ret;
2056}
2057EXPORT_SYMBOL_GPL(register_kretprobe);
2058
2059int register_kretprobes(struct kretprobe **rps, int num)
2060{
2061	int ret = 0, i;
2062
2063	if (num <= 0)
2064		return -EINVAL;
2065	for (i = 0; i < num; i++) {
2066		ret = register_kretprobe(rps[i]);
2067		if (ret < 0) {
2068			if (i > 0)
2069				unregister_kretprobes(rps, i);
2070			break;
2071		}
2072	}
2073	return ret;
2074}
2075EXPORT_SYMBOL_GPL(register_kretprobes);
2076
2077void unregister_kretprobe(struct kretprobe *rp)
2078{
2079	unregister_kretprobes(&rp, 1);
2080}
2081EXPORT_SYMBOL_GPL(unregister_kretprobe);
2082
2083void unregister_kretprobes(struct kretprobe **rps, int num)
2084{
2085	int i;
2086
2087	if (num <= 0)
2088		return;
2089	mutex_lock(&kprobe_mutex);
2090	for (i = 0; i < num; i++)
2091		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2092			rps[i]->kp.addr = NULL;
2093	mutex_unlock(&kprobe_mutex);
2094
2095	synchronize_rcu();
2096	for (i = 0; i < num; i++) {
2097		if (rps[i]->kp.addr) {
2098			__unregister_kprobe_bottom(&rps[i]->kp);
2099			cleanup_rp_inst(rps[i]);
2100		}
2101	}
2102}
2103EXPORT_SYMBOL_GPL(unregister_kretprobes);
2104
2105#else /* CONFIG_KRETPROBES */
2106int register_kretprobe(struct kretprobe *rp)
2107{
2108	return -ENOSYS;
2109}
2110EXPORT_SYMBOL_GPL(register_kretprobe);
2111
2112int register_kretprobes(struct kretprobe **rps, int num)
2113{
2114	return -ENOSYS;
2115}
2116EXPORT_SYMBOL_GPL(register_kretprobes);
2117
2118void unregister_kretprobe(struct kretprobe *rp)
2119{
2120}
2121EXPORT_SYMBOL_GPL(unregister_kretprobe);
2122
2123void unregister_kretprobes(struct kretprobe **rps, int num)
2124{
2125}
2126EXPORT_SYMBOL_GPL(unregister_kretprobes);
2127
2128static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
 
2129{
2130	return 0;
2131}
2132NOKPROBE_SYMBOL(pre_handler_kretprobe);
2133
2134#endif /* CONFIG_KRETPROBES */
2135
2136/* Set the kprobe gone and remove its instruction buffer. */
2137static void kill_kprobe(struct kprobe *p)
2138{
2139	struct kprobe *kp;
2140
2141	lockdep_assert_held(&kprobe_mutex);
2142
2143	if (WARN_ON_ONCE(kprobe_gone(p)))
2144		return;
2145
2146	p->flags |= KPROBE_FLAG_GONE;
2147	if (kprobe_aggrprobe(p)) {
2148		/*
2149		 * If this is an aggr_kprobe, we have to list all the
2150		 * chained probes and mark them GONE.
2151		 */
2152		list_for_each_entry(kp, &p->list, list)
2153			kp->flags |= KPROBE_FLAG_GONE;
2154		p->post_handler = NULL;
 
2155		kill_optimized_kprobe(p);
2156	}
2157	/*
2158	 * Here, we can remove insn_slot safely, because no thread calls
2159	 * the original probed function (which will be freed soon) any more.
2160	 */
2161	arch_remove_kprobe(p);
2162
2163	/*
2164	 * The module is going away. We should disarm the kprobe which
2165	 * is using ftrace, because ftrace framework is still available at
2166	 * MODULE_STATE_GOING notification.
2167	 */
2168	if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2169		disarm_kprobe_ftrace(p);
2170}
2171
2172/* Disable one kprobe */
2173int disable_kprobe(struct kprobe *kp)
2174{
2175	int ret = 0;
2176	struct kprobe *p;
2177
2178	mutex_lock(&kprobe_mutex);
2179
2180	/* Disable this kprobe */
2181	p = __disable_kprobe(kp);
2182	if (IS_ERR(p))
2183		ret = PTR_ERR(p);
2184
2185	mutex_unlock(&kprobe_mutex);
2186	return ret;
2187}
2188EXPORT_SYMBOL_GPL(disable_kprobe);
2189
2190/* Enable one kprobe */
2191int enable_kprobe(struct kprobe *kp)
2192{
2193	int ret = 0;
2194	struct kprobe *p;
2195
2196	mutex_lock(&kprobe_mutex);
2197
2198	/* Check whether specified probe is valid. */
2199	p = __get_valid_kprobe(kp);
2200	if (unlikely(p == NULL)) {
2201		ret = -EINVAL;
2202		goto out;
2203	}
2204
2205	if (kprobe_gone(kp)) {
2206		/* This kprobe has gone, we couldn't enable it. */
2207		ret = -EINVAL;
2208		goto out;
2209	}
2210
2211	if (p != kp)
2212		kp->flags &= ~KPROBE_FLAG_DISABLED;
2213
2214	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2215		p->flags &= ~KPROBE_FLAG_DISABLED;
2216		ret = arm_kprobe(p);
2217		if (ret)
2218			p->flags |= KPROBE_FLAG_DISABLED;
2219	}
2220out:
2221	mutex_unlock(&kprobe_mutex);
2222	return ret;
2223}
2224EXPORT_SYMBOL_GPL(enable_kprobe);
2225
2226/* Caller must NOT call this in usual path. This is only for critical case */
2227void dump_kprobe(struct kprobe *kp)
2228{
2229	pr_err("Dumping kprobe:\n");
2230	pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2231	       kp->symbol_name, kp->offset, kp->addr);
2232}
2233NOKPROBE_SYMBOL(dump_kprobe);
2234
2235int kprobe_add_ksym_blacklist(unsigned long entry)
2236{
2237	struct kprobe_blacklist_entry *ent;
2238	unsigned long offset = 0, size = 0;
2239
2240	if (!kernel_text_address(entry) ||
2241	    !kallsyms_lookup_size_offset(entry, &size, &offset))
2242		return -EINVAL;
2243
2244	ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2245	if (!ent)
2246		return -ENOMEM;
2247	ent->start_addr = entry;
2248	ent->end_addr = entry + size;
2249	INIT_LIST_HEAD(&ent->list);
2250	list_add_tail(&ent->list, &kprobe_blacklist);
2251
2252	return (int)size;
2253}
2254
2255/* Add all symbols in given area into kprobe blacklist */
2256int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2257{
2258	unsigned long entry;
2259	int ret = 0;
2260
2261	for (entry = start; entry < end; entry += ret) {
2262		ret = kprobe_add_ksym_blacklist(entry);
2263		if (ret < 0)
2264			return ret;
2265		if (ret == 0)	/* In case of alias symbol */
2266			ret = 1;
2267	}
2268	return 0;
2269}
2270
2271/* Remove all symbols in given area from kprobe blacklist */
2272static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2273{
2274	struct kprobe_blacklist_entry *ent, *n;
2275
2276	list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2277		if (ent->start_addr < start || ent->start_addr >= end)
2278			continue;
2279		list_del(&ent->list);
2280		kfree(ent);
2281	}
2282}
2283
2284static void kprobe_remove_ksym_blacklist(unsigned long entry)
2285{
2286	kprobe_remove_area_blacklist(entry, entry + 1);
2287}
2288
2289int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2290				   char *type, char *sym)
2291{
2292	return -ERANGE;
2293}
2294
2295int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2296		       char *sym)
2297{
2298#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2299	if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2300		return 0;
2301#ifdef CONFIG_OPTPROBES
2302	if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2303		return 0;
2304#endif
2305#endif
2306	if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2307		return 0;
2308	return -ERANGE;
2309}
2310
2311int __init __weak arch_populate_kprobe_blacklist(void)
2312{
2313	return 0;
2314}
2315
2316/*
2317 * Lookup and populate the kprobe_blacklist.
2318 *
2319 * Unlike the kretprobe blacklist, we'll need to determine
2320 * the range of addresses that belong to the said functions,
2321 * since a kprobe need not necessarily be at the beginning
2322 * of a function.
2323 */
2324static int __init populate_kprobe_blacklist(unsigned long *start,
2325					     unsigned long *end)
2326{
2327	unsigned long entry;
2328	unsigned long *iter;
2329	int ret;
2330
2331	for (iter = start; iter < end; iter++) {
2332		entry = arch_deref_entry_point((void *)*iter);
2333		ret = kprobe_add_ksym_blacklist(entry);
2334		if (ret == -EINVAL)
2335			continue;
2336		if (ret < 0)
2337			return ret;
2338	}
2339
2340	/* Symbols in __kprobes_text are blacklisted */
2341	ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2342					(unsigned long)__kprobes_text_end);
2343	if (ret)
2344		return ret;
2345
2346	/* Symbols in noinstr section are blacklisted */
2347	ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2348					(unsigned long)__noinstr_text_end);
2349
2350	return ret ? : arch_populate_kprobe_blacklist();
2351}
2352
2353static void add_module_kprobe_blacklist(struct module *mod)
2354{
2355	unsigned long start, end;
2356	int i;
2357
2358	if (mod->kprobe_blacklist) {
2359		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2360			kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2361	}
2362
2363	start = (unsigned long)mod->kprobes_text_start;
2364	if (start) {
2365		end = start + mod->kprobes_text_size;
2366		kprobe_add_area_blacklist(start, end);
2367	}
2368
2369	start = (unsigned long)mod->noinstr_text_start;
2370	if (start) {
2371		end = start + mod->noinstr_text_size;
2372		kprobe_add_area_blacklist(start, end);
2373	}
2374}
2375
2376static void remove_module_kprobe_blacklist(struct module *mod)
2377{
2378	unsigned long start, end;
2379	int i;
2380
2381	if (mod->kprobe_blacklist) {
2382		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2383			kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2384	}
2385
2386	start = (unsigned long)mod->kprobes_text_start;
2387	if (start) {
2388		end = start + mod->kprobes_text_size;
2389		kprobe_remove_area_blacklist(start, end);
2390	}
2391
2392	start = (unsigned long)mod->noinstr_text_start;
2393	if (start) {
2394		end = start + mod->noinstr_text_size;
2395		kprobe_remove_area_blacklist(start, end);
2396	}
2397}
2398
2399/* Module notifier call back, checking kprobes on the module */
2400static int kprobes_module_callback(struct notifier_block *nb,
2401				   unsigned long val, void *data)
2402{
2403	struct module *mod = data;
2404	struct hlist_head *head;
2405	struct kprobe *p;
2406	unsigned int i;
2407	int checkcore = (val == MODULE_STATE_GOING);
2408
2409	if (val == MODULE_STATE_COMING) {
2410		mutex_lock(&kprobe_mutex);
2411		add_module_kprobe_blacklist(mod);
2412		mutex_unlock(&kprobe_mutex);
2413	}
2414	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2415		return NOTIFY_DONE;
2416
2417	/*
2418	 * When MODULE_STATE_GOING was notified, both of module .text and
2419	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2420	 * notified, only .init.text section would be freed. We need to
2421	 * disable kprobes which have been inserted in the sections.
2422	 */
2423	mutex_lock(&kprobe_mutex);
2424	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2425		head = &kprobe_table[i];
2426		hlist_for_each_entry(p, head, hlist) {
2427			if (kprobe_gone(p))
2428				continue;
2429
2430			if (within_module_init((unsigned long)p->addr, mod) ||
2431			    (checkcore &&
2432			     within_module_core((unsigned long)p->addr, mod))) {
2433				/*
2434				 * The vaddr this probe is installed will soon
2435				 * be vfreed buy not synced to disk. Hence,
2436				 * disarming the breakpoint isn't needed.
2437				 *
2438				 * Note, this will also move any optimized probes
2439				 * that are pending to be removed from their
2440				 * corresponding lists to the freeing_list and
2441				 * will not be touched by the delayed
2442				 * kprobe_optimizer work handler.
2443				 */
2444				kill_kprobe(p);
2445			}
2446		}
2447	}
2448	if (val == MODULE_STATE_GOING)
2449		remove_module_kprobe_blacklist(mod);
2450	mutex_unlock(&kprobe_mutex);
2451	return NOTIFY_DONE;
2452}
2453
2454static struct notifier_block kprobe_module_nb = {
2455	.notifier_call = kprobes_module_callback,
2456	.priority = 0
2457};
2458
2459/* Markers of _kprobe_blacklist section */
2460extern unsigned long __start_kprobe_blacklist[];
2461extern unsigned long __stop_kprobe_blacklist[];
2462
2463void kprobe_free_init_mem(void)
2464{
2465	void *start = (void *)(&__init_begin);
2466	void *end = (void *)(&__init_end);
2467	struct hlist_head *head;
2468	struct kprobe *p;
2469	int i;
2470
2471	mutex_lock(&kprobe_mutex);
2472
2473	/* Kill all kprobes on initmem */
2474	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2475		head = &kprobe_table[i];
2476		hlist_for_each_entry(p, head, hlist) {
2477			if (start <= (void *)p->addr && (void *)p->addr < end)
2478				kill_kprobe(p);
2479		}
2480	}
2481
2482	mutex_unlock(&kprobe_mutex);
2483}
2484
2485static int __init init_kprobes(void)
2486{
2487	int i, err = 0;
 
 
 
 
 
2488
2489	/* FIXME allocate the probe table, currently defined statically */
2490	/* initialize all list heads */
2491	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2492		INIT_HLIST_HEAD(&kprobe_table[i]);
2493		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2494		raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2495	}
2496
2497	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2498					__stop_kprobe_blacklist);
2499	if (err) {
2500		pr_err("kprobes: failed to populate blacklist: %d\n", err);
2501		pr_err("Please take care of using kprobes.\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2502	}
2503
2504	if (kretprobe_blacklist_size) {
2505		/* lookup the function address from its name */
2506		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2507			kretprobe_blacklist[i].addr =
2508				kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2509			if (!kretprobe_blacklist[i].addr)
2510				printk("kretprobe: lookup failed: %s\n",
2511				       kretprobe_blacklist[i].name);
2512		}
2513	}
2514
2515#if defined(CONFIG_OPTPROBES)
2516#if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2517	/* Init kprobe_optinsn_slots */
2518	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2519#endif
2520	/* By default, kprobes can be optimized */
2521	kprobes_allow_optimization = true;
2522#endif
2523
2524	/* By default, kprobes are armed */
2525	kprobes_all_disarmed = false;
2526
2527	err = arch_init_kprobes();
2528	if (!err)
2529		err = register_die_notifier(&kprobe_exceptions_nb);
2530	if (!err)
2531		err = register_module_notifier(&kprobe_module_nb);
2532
2533	kprobes_initialized = (err == 0);
2534
2535	if (!err)
2536		init_test_probes();
2537	return err;
2538}
2539subsys_initcall(init_kprobes);
2540
2541#ifdef CONFIG_DEBUG_FS
2542static void report_probe(struct seq_file *pi, struct kprobe *p,
2543		const char *sym, int offset, char *modname, struct kprobe *pp)
2544{
2545	char *kprobe_type;
2546	void *addr = p->addr;
2547
2548	if (p->pre_handler == pre_handler_kretprobe)
2549		kprobe_type = "r";
 
 
2550	else
2551		kprobe_type = "k";
2552
2553	if (!kallsyms_show_value(pi->file->f_cred))
2554		addr = NULL;
2555
2556	if (sym)
2557		seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2558			addr, kprobe_type, sym, offset,
2559			(modname ? modname : " "));
2560	else	/* try to use %pS */
2561		seq_printf(pi, "%px  %s  %pS ",
2562			addr, kprobe_type, p->addr);
2563
2564	if (!pp)
2565		pp = p;
2566	seq_printf(pi, "%s%s%s%s\n",
2567		(kprobe_gone(p) ? "[GONE]" : ""),
2568		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2569		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2570		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2571}
2572
2573static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2574{
2575	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2576}
2577
2578static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2579{
2580	(*pos)++;
2581	if (*pos >= KPROBE_TABLE_SIZE)
2582		return NULL;
2583	return pos;
2584}
2585
2586static void kprobe_seq_stop(struct seq_file *f, void *v)
2587{
2588	/* Nothing to do */
2589}
2590
2591static int show_kprobe_addr(struct seq_file *pi, void *v)
2592{
2593	struct hlist_head *head;
2594	struct kprobe *p, *kp;
2595	const char *sym = NULL;
2596	unsigned int i = *(loff_t *) v;
2597	unsigned long offset = 0;
2598	char *modname, namebuf[KSYM_NAME_LEN];
2599
2600	head = &kprobe_table[i];
2601	preempt_disable();
2602	hlist_for_each_entry_rcu(p, head, hlist) {
2603		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2604					&offset, &modname, namebuf);
2605		if (kprobe_aggrprobe(p)) {
2606			list_for_each_entry_rcu(kp, &p->list, list)
2607				report_probe(pi, kp, sym, offset, modname, p);
2608		} else
2609			report_probe(pi, p, sym, offset, modname, NULL);
2610	}
2611	preempt_enable();
2612	return 0;
2613}
2614
2615static const struct seq_operations kprobes_sops = {
2616	.start = kprobe_seq_start,
2617	.next  = kprobe_seq_next,
2618	.stop  = kprobe_seq_stop,
2619	.show  = show_kprobe_addr
2620};
2621
2622DEFINE_SEQ_ATTRIBUTE(kprobes);
2623
2624/* kprobes/blacklist -- shows which functions can not be probed */
2625static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2626{
2627	mutex_lock(&kprobe_mutex);
2628	return seq_list_start(&kprobe_blacklist, *pos);
2629}
2630
2631static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2632{
2633	return seq_list_next(v, &kprobe_blacklist, pos);
2634}
2635
2636static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2637{
2638	struct kprobe_blacklist_entry *ent =
2639		list_entry(v, struct kprobe_blacklist_entry, list);
2640
2641	/*
2642	 * If /proc/kallsyms is not showing kernel address, we won't
2643	 * show them here either.
2644	 */
2645	if (!kallsyms_show_value(m->file->f_cred))
2646		seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2647			   (void *)ent->start_addr);
2648	else
2649		seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2650			   (void *)ent->end_addr, (void *)ent->start_addr);
2651	return 0;
2652}
2653
2654static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2655{
2656	mutex_unlock(&kprobe_mutex);
2657}
2658
2659static const struct seq_operations kprobe_blacklist_sops = {
2660	.start = kprobe_blacklist_seq_start,
2661	.next  = kprobe_blacklist_seq_next,
2662	.stop  = kprobe_blacklist_seq_stop,
2663	.show  = kprobe_blacklist_seq_show,
2664};
2665DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2666
2667static int arm_all_kprobes(void)
2668{
2669	struct hlist_head *head;
2670	struct kprobe *p;
2671	unsigned int i, total = 0, errors = 0;
2672	int err, ret = 0;
2673
2674	mutex_lock(&kprobe_mutex);
2675
2676	/* If kprobes are armed, just return */
2677	if (!kprobes_all_disarmed)
2678		goto already_enabled;
2679
2680	/*
2681	 * optimize_kprobe() called by arm_kprobe() checks
2682	 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2683	 * arm_kprobe.
2684	 */
2685	kprobes_all_disarmed = false;
2686	/* Arming kprobes doesn't optimize kprobe itself */
2687	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2688		head = &kprobe_table[i];
2689		/* Arm all kprobes on a best-effort basis */
2690		hlist_for_each_entry(p, head, hlist) {
2691			if (!kprobe_disabled(p)) {
2692				err = arm_kprobe(p);
2693				if (err)  {
2694					errors++;
2695					ret = err;
2696				}
2697				total++;
2698			}
2699		}
2700	}
2701
2702	if (errors)
2703		pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2704			errors, total);
2705	else
2706		pr_info("Kprobes globally enabled\n");
2707
2708already_enabled:
2709	mutex_unlock(&kprobe_mutex);
2710	return ret;
2711}
2712
2713static int disarm_all_kprobes(void)
2714{
2715	struct hlist_head *head;
2716	struct kprobe *p;
2717	unsigned int i, total = 0, errors = 0;
2718	int err, ret = 0;
2719
2720	mutex_lock(&kprobe_mutex);
2721
2722	/* If kprobes are already disarmed, just return */
2723	if (kprobes_all_disarmed) {
2724		mutex_unlock(&kprobe_mutex);
2725		return 0;
2726	}
2727
2728	kprobes_all_disarmed = true;
 
2729
2730	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2731		head = &kprobe_table[i];
2732		/* Disarm all kprobes on a best-effort basis */
2733		hlist_for_each_entry(p, head, hlist) {
2734			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2735				err = disarm_kprobe(p, false);
2736				if (err) {
2737					errors++;
2738					ret = err;
2739				}
2740				total++;
2741			}
2742		}
2743	}
2744
2745	if (errors)
2746		pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2747			errors, total);
2748	else
2749		pr_info("Kprobes globally disabled\n");
2750
2751	mutex_unlock(&kprobe_mutex);
2752
2753	/* Wait for disarming all kprobes by optimizer */
2754	wait_for_kprobe_optimizer();
2755
2756	return ret;
2757}
2758
2759/*
2760 * XXX: The debugfs bool file interface doesn't allow for callbacks
2761 * when the bool state is switched. We can reuse that facility when
2762 * available
2763 */
2764static ssize_t read_enabled_file_bool(struct file *file,
2765	       char __user *user_buf, size_t count, loff_t *ppos)
2766{
2767	char buf[3];
2768
2769	if (!kprobes_all_disarmed)
2770		buf[0] = '1';
2771	else
2772		buf[0] = '0';
2773	buf[1] = '\n';
2774	buf[2] = 0x00;
2775	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2776}
2777
2778static ssize_t write_enabled_file_bool(struct file *file,
2779	       const char __user *user_buf, size_t count, loff_t *ppos)
2780{
2781	char buf[32];
2782	size_t buf_size;
2783	int ret = 0;
2784
2785	buf_size = min(count, (sizeof(buf)-1));
2786	if (copy_from_user(buf, user_buf, buf_size))
2787		return -EFAULT;
2788
2789	buf[buf_size] = '\0';
2790	switch (buf[0]) {
2791	case 'y':
2792	case 'Y':
2793	case '1':
2794		ret = arm_all_kprobes();
2795		break;
2796	case 'n':
2797	case 'N':
2798	case '0':
2799		ret = disarm_all_kprobes();
2800		break;
2801	default:
2802		return -EINVAL;
2803	}
2804
2805	if (ret)
2806		return ret;
2807
2808	return count;
2809}
2810
2811static const struct file_operations fops_kp = {
2812	.read =         read_enabled_file_bool,
2813	.write =        write_enabled_file_bool,
2814	.llseek =	default_llseek,
2815};
2816
2817static int __init debugfs_kprobe_init(void)
2818{
2819	struct dentry *dir;
2820	unsigned int value = 1;
2821
2822	dir = debugfs_create_dir("kprobes", NULL);
 
 
2823
2824	debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
 
 
 
 
 
2825
2826	debugfs_create_file("enabled", 0600, dir, &value, &fops_kp);
2827
2828	debugfs_create_file("blacklist", 0400, dir, NULL,
2829			    &kprobe_blacklist_fops);
 
 
2830
2831	return 0;
2832}
2833
2834late_initcall(debugfs_kprobe_init);
2835#endif /* CONFIG_DEBUG_FS */