Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 *  linux/kernel/fork.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7/*
   8 *  'fork.c' contains the help-routines for the 'fork' system call
   9 * (see also entry.S and others).
  10 * Fork is rather simple, once you get the hang of it, but the memory
  11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  12 */
  13
 
  14#include <linux/slab.h>
 
 
 
 
 
 
 
 
 
 
 
  15#include <linux/init.h>
  16#include <linux/unistd.h>
  17#include <linux/module.h>
  18#include <linux/vmalloc.h>
  19#include <linux/completion.h>
  20#include <linux/personality.h>
  21#include <linux/mempolicy.h>
  22#include <linux/sem.h>
  23#include <linux/file.h>
  24#include <linux/fdtable.h>
  25#include <linux/iocontext.h>
  26#include <linux/key.h>
  27#include <linux/binfmts.h>
  28#include <linux/mman.h>
  29#include <linux/mmu_notifier.h>
  30#include <linux/fs.h>
  31#include <linux/mm.h>
  32#include <linux/vmacache.h>
  33#include <linux/nsproxy.h>
  34#include <linux/capability.h>
  35#include <linux/cpu.h>
  36#include <linux/cgroup.h>
  37#include <linux/security.h>
  38#include <linux/hugetlb.h>
  39#include <linux/seccomp.h>
  40#include <linux/swap.h>
  41#include <linux/syscalls.h>
  42#include <linux/jiffies.h>
  43#include <linux/futex.h>
  44#include <linux/compat.h>
  45#include <linux/kthread.h>
  46#include <linux/task_io_accounting_ops.h>
  47#include <linux/rcupdate.h>
  48#include <linux/ptrace.h>
  49#include <linux/mount.h>
  50#include <linux/audit.h>
  51#include <linux/memcontrol.h>
  52#include <linux/ftrace.h>
  53#include <linux/proc_fs.h>
  54#include <linux/profile.h>
  55#include <linux/rmap.h>
  56#include <linux/ksm.h>
  57#include <linux/acct.h>
 
  58#include <linux/tsacct_kern.h>
  59#include <linux/cn_proc.h>
  60#include <linux/freezer.h>
  61#include <linux/delayacct.h>
  62#include <linux/taskstats_kern.h>
  63#include <linux/random.h>
  64#include <linux/tty.h>
  65#include <linux/blkdev.h>
  66#include <linux/fs_struct.h>
  67#include <linux/magic.h>
  68#include <linux/perf_event.h>
  69#include <linux/posix-timers.h>
  70#include <linux/user-return-notifier.h>
  71#include <linux/oom.h>
  72#include <linux/khugepaged.h>
  73#include <linux/signalfd.h>
  74#include <linux/uprobes.h>
  75#include <linux/aio.h>
  76#include <linux/compiler.h>
 
 
 
 
 
 
 
  77
  78#include <asm/pgtable.h>
  79#include <asm/pgalloc.h>
  80#include <asm/uaccess.h>
  81#include <asm/mmu_context.h>
  82#include <asm/cacheflush.h>
  83#include <asm/tlbflush.h>
  84
  85#include <trace/events/sched.h>
  86
  87#define CREATE_TRACE_POINTS
  88#include <trace/events/task.h>
  89
  90/*
 
 
 
 
 
 
 
 
 
 
  91 * Protected counters by write_lock_irq(&tasklist_lock)
  92 */
  93unsigned long total_forks;	/* Handle normal Linux uptimes. */
  94int nr_threads;			/* The idle threads do not count.. */
  95
  96int max_threads;		/* tunable limit on nr_threads */
 
 
 
 
 
 
 
 
 
  97
  98DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  99
 100__cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
 101
 102#ifdef CONFIG_PROVE_RCU
 103int lockdep_tasklist_lock_is_held(void)
 104{
 105	return lockdep_is_held(&tasklist_lock);
 106}
 107EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
 108#endif /* #ifdef CONFIG_PROVE_RCU */
 109
 110int nr_processes(void)
 111{
 112	int cpu;
 113	int total = 0;
 114
 115	for_each_possible_cpu(cpu)
 116		total += per_cpu(process_counts, cpu);
 117
 118	return total;
 119}
 120
 121void __weak arch_release_task_struct(struct task_struct *tsk)
 122{
 123}
 124
 125#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 126static struct kmem_cache *task_struct_cachep;
 127
 128static inline struct task_struct *alloc_task_struct_node(int node)
 129{
 130	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
 131}
 132
 133static inline void free_task_struct(struct task_struct *tsk)
 134{
 135	kmem_cache_free(task_struct_cachep, tsk);
 136}
 137#endif
 138
 139void __weak arch_release_thread_info(struct thread_info *ti)
 140{
 141}
 142
 143#ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
 144
 145/*
 146 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
 147 * kmemcache based allocator.
 148 */
 149# if THREAD_SIZE >= PAGE_SIZE
 150static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
 151						  int node)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 152{
 153	struct page *page = alloc_pages_node(node, THREADINFO_GFP_ACCOUNTED,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 154					     THREAD_SIZE_ORDER);
 155
 156	return page ? page_address(page) : NULL;
 
 
 
 
 
 157}
 158
 159static inline void free_thread_info(struct thread_info *ti)
 160{
 161	free_memcg_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 162}
 163# else
 164static struct kmem_cache *thread_info_cache;
 165
 166static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
 167						  int node)
 168{
 169	return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
 
 
 
 
 170}
 171
 172static void free_thread_info(struct thread_info *ti)
 173{
 174	kmem_cache_free(thread_info_cache, ti);
 175}
 176
 177void thread_info_cache_init(void)
 178{
 179	thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
 180					      THREAD_SIZE, 0, NULL);
 181	BUG_ON(thread_info_cache == NULL);
 
 182}
 183# endif
 184#endif
 185
 186/* SLAB cache for signal_struct structures (tsk->signal) */
 187static struct kmem_cache *signal_cachep;
 188
 189/* SLAB cache for sighand_struct structures (tsk->sighand) */
 190struct kmem_cache *sighand_cachep;
 191
 192/* SLAB cache for files_struct structures (tsk->files) */
 193struct kmem_cache *files_cachep;
 194
 195/* SLAB cache for fs_struct structures (tsk->fs) */
 196struct kmem_cache *fs_cachep;
 197
 198/* SLAB cache for vm_area_struct structures */
 199struct kmem_cache *vm_area_cachep;
 200
 201/* SLAB cache for mm_struct structures (tsk->mm) */
 202static struct kmem_cache *mm_cachep;
 203
 204static void account_kernel_stack(struct thread_info *ti, int account)
 205{
 206	struct zone *zone = page_zone(virt_to_page(ti));
 207
 208	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
 
 
 
 209}
 210
 211void free_task(struct task_struct *tsk)
 212{
 213	account_kernel_stack(tsk->stack, -1);
 214	arch_release_thread_info(tsk->stack);
 215	free_thread_info(tsk->stack);
 216	rt_mutex_debug_task_free(tsk);
 217	ftrace_graph_exit_task(tsk);
 218	put_seccomp_filter(tsk);
 219	arch_release_task_struct(tsk);
 220	free_task_struct(tsk);
 221}
 222EXPORT_SYMBOL(free_task);
 223
 224static inline void free_signal_struct(struct signal_struct *sig)
 225{
 226	taskstats_tgid_free(sig);
 227	sched_autogroup_exit(sig);
 228	kmem_cache_free(signal_cachep, sig);
 
 
 
 
 
 
 
 229}
 230
 231static inline void put_signal_struct(struct signal_struct *sig)
 232{
 233	if (atomic_dec_and_test(&sig->sigcnt))
 234		free_signal_struct(sig);
 235}
 236
 237void __put_task_struct(struct task_struct *tsk)
 238{
 239	WARN_ON(!tsk->exit_state);
 240	WARN_ON(atomic_read(&tsk->usage));
 241	WARN_ON(tsk == current);
 242
 243	task_numa_free(tsk);
 244	security_task_free(tsk);
 245	exit_creds(tsk);
 246	delayacct_tsk_free(tsk);
 247	put_signal_struct(tsk->signal);
 248
 249	if (!profile_handoff_task(tsk))
 250		free_task(tsk);
 
 
 
 
 
 251}
 252EXPORT_SYMBOL_GPL(__put_task_struct);
 253
 254void __init __weak arch_task_cache_init(void) { }
 255
 256void __init fork_init(unsigned long mempages)
 257{
 258#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 259#ifndef ARCH_MIN_TASKALIGN
 260#define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
 261#endif
 262	/* create a slab on which task_structs can be allocated */
 263	task_struct_cachep =
 264		kmem_cache_create("task_struct", sizeof(struct task_struct),
 265			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
 266#endif
 267
 268	/* do the arch specific task caches init */
 269	arch_task_cache_init();
 270
 271	/*
 272	 * The default maximum number of threads is set to a safe
 273	 * value: the thread structures can take up at most half
 274	 * of memory.
 275	 */
 276	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
 277
 278	/*
 279	 * we need to allow at least 20 threads to boot a system
 280	 */
 281	if (max_threads < 20)
 282		max_threads = 20;
 283
 284	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
 285	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
 286	init_task.signal->rlim[RLIMIT_SIGPENDING] =
 287		init_task.signal->rlim[RLIMIT_NPROC];
 288}
 289
 290int __weak arch_dup_task_struct(struct task_struct *dst,
 291					       struct task_struct *src)
 292{
 293	*dst = *src;
 
 
 
 
 
 
 
 
 
 294	return 0;
 295}
 296
 297static struct task_struct *dup_task_struct(struct task_struct *orig)
 298{
 299	struct task_struct *tsk;
 300	struct thread_info *ti;
 301	unsigned long *stackend;
 302	int node = tsk_fork_get_node(orig);
 303	int err;
 304
 305	tsk = alloc_task_struct_node(node);
 306	if (!tsk)
 307		return NULL;
 308
 309	ti = alloc_thread_info_node(tsk, node);
 310	if (!ti)
 311		goto free_tsk;
 312
 313	err = arch_dup_task_struct(tsk, orig);
 314	if (err)
 315		goto free_ti;
 316
 317	tsk->stack = ti;
 318
 319	setup_thread_stack(tsk, orig);
 320	clear_user_return_notifier(tsk);
 321	clear_tsk_need_resched(tsk);
 322	stackend = end_of_stack(tsk);
 323	*stackend = STACK_END_MAGIC;	/* for overflow detection */
 
 
 324
 325#ifdef CONFIG_CC_STACKPROTECTOR
 326	tsk->stack_canary = get_random_int();
 
 
 
 
 327#endif
 328
 
 
 
 
 
 329	/*
 330	 * One for us, one for whoever does the "release_task()" (usually
 331	 * parent)
 332	 */
 333	atomic_set(&tsk->usage, 2);
 334#ifdef CONFIG_BLK_DEV_IO_TRACE
 335	tsk->btrace_seq = 0;
 
 
 
 
 336#endif
 337	tsk->splice_pipe = NULL;
 338	tsk->task_frag.page = NULL;
 339
 340	account_kernel_stack(ti, 1);
 341
 342	return tsk;
 343
 344free_ti:
 345	free_thread_info(ti);
 346free_tsk:
 347	free_task_struct(tsk);
 348	return NULL;
 349}
 
 350
 351#ifdef CONFIG_MMU
 352static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
 
 353{
 354	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
 355	struct rb_node **rb_link, *rb_parent;
 356	int retval;
 357	unsigned long charge;
 
 358
 359	uprobe_start_dup_mmap();
 360	down_write(&oldmm->mmap_sem);
 
 
 
 361	flush_cache_dup_mm(oldmm);
 362	uprobe_dup_mmap(oldmm, mm);
 363	/*
 364	 * Not linked in yet - no deadlock potential:
 365	 */
 366	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
 
 
 
 
 
 
 
 
 367
 368	mm->locked_vm = 0;
 369	mm->mmap = NULL;
 370	mm->vmacache_seqnum = 0;
 371	mm->map_count = 0;
 372	cpumask_clear(mm_cpumask(mm));
 373	mm->mm_rb = RB_ROOT;
 374	rb_link = &mm->mm_rb.rb_node;
 375	rb_parent = NULL;
 376	pprev = &mm->mmap;
 377	retval = ksm_fork(mm, oldmm);
 378	if (retval)
 379		goto out;
 380	retval = khugepaged_fork(mm, oldmm);
 381	if (retval)
 382		goto out;
 383
 384	prev = NULL;
 385	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
 386		struct file *file;
 387
 388		if (mpnt->vm_flags & VM_DONTCOPY) {
 389			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
 390							-vma_pages(mpnt));
 391			continue;
 392		}
 393		charge = 0;
 
 
 
 
 
 
 
 
 394		if (mpnt->vm_flags & VM_ACCOUNT) {
 395			unsigned long len = vma_pages(mpnt);
 396
 397			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
 398				goto fail_nomem;
 399			charge = len;
 400		}
 401		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 402		if (!tmp)
 403			goto fail_nomem;
 404		*tmp = *mpnt;
 405		INIT_LIST_HEAD(&tmp->anon_vma_chain);
 406		retval = vma_dup_policy(mpnt, tmp);
 407		if (retval)
 408			goto fail_nomem_policy;
 409		tmp->vm_mm = mm;
 410		if (anon_vma_fork(tmp, mpnt))
 
 411			goto fail_nomem_anon_vma_fork;
 412		tmp->vm_flags &= ~VM_LOCKED;
 413		tmp->vm_next = tmp->vm_prev = NULL;
 
 
 
 
 
 
 
 
 414		file = tmp->vm_file;
 415		if (file) {
 416			struct inode *inode = file_inode(file);
 417			struct address_space *mapping = file->f_mapping;
 418
 419			get_file(file);
 420			if (tmp->vm_flags & VM_DENYWRITE)
 421				atomic_dec(&inode->i_writecount);
 422			mutex_lock(&mapping->i_mmap_mutex);
 423			if (tmp->vm_flags & VM_SHARED)
 424				mapping->i_mmap_writable++;
 425			flush_dcache_mmap_lock(mapping);
 426			/* insert tmp into the share list, just after mpnt */
 427			if (unlikely(tmp->vm_flags & VM_NONLINEAR))
 428				vma_nonlinear_insert(tmp,
 429						&mapping->i_mmap_nonlinear);
 430			else
 431				vma_interval_tree_insert_after(tmp, mpnt,
 432							&mapping->i_mmap);
 433			flush_dcache_mmap_unlock(mapping);
 434			mutex_unlock(&mapping->i_mmap_mutex);
 435		}
 436
 437		/*
 438		 * Clear hugetlb-related page reserves for children. This only
 439		 * affects MAP_PRIVATE mappings. Faults generated by the child
 440		 * are not guaranteed to succeed, even if read-only
 441		 */
 442		if (is_vm_hugetlb_page(tmp))
 443			reset_vma_resv_huge_pages(tmp);
 444
 445		/*
 446		 * Link in the new vma and copy the page table entries.
 447		 */
 448		*pprev = tmp;
 449		pprev = &tmp->vm_next;
 450		tmp->vm_prev = prev;
 451		prev = tmp;
 452
 453		__vma_link_rb(mm, tmp, rb_link, rb_parent);
 454		rb_link = &tmp->vm_rb.rb_right;
 455		rb_parent = &tmp->vm_rb;
 456
 457		mm->map_count++;
 458		retval = copy_page_range(mm, oldmm, mpnt);
 
 459
 460		if (tmp->vm_ops && tmp->vm_ops->open)
 461			tmp->vm_ops->open(tmp);
 462
 463		if (retval)
 464			goto out;
 465	}
 466	/* a new mm has just been created */
 467	arch_dup_mmap(oldmm, mm);
 468	retval = 0;
 469out:
 470	up_write(&mm->mmap_sem);
 471	flush_tlb_mm(oldmm);
 472	up_write(&oldmm->mmap_sem);
 
 
 473	uprobe_end_dup_mmap();
 474	return retval;
 475fail_nomem_anon_vma_fork:
 476	mpol_put(vma_policy(tmp));
 477fail_nomem_policy:
 478	kmem_cache_free(vm_area_cachep, tmp);
 479fail_nomem:
 480	retval = -ENOMEM;
 481	vm_unacct_memory(charge);
 482	goto out;
 483}
 484
 485static inline int mm_alloc_pgd(struct mm_struct *mm)
 486{
 487	mm->pgd = pgd_alloc(mm);
 488	if (unlikely(!mm->pgd))
 489		return -ENOMEM;
 490	return 0;
 491}
 492
 493static inline void mm_free_pgd(struct mm_struct *mm)
 494{
 495	pgd_free(mm, mm->pgd);
 496}
 497#else
 498#define dup_mmap(mm, oldmm)	(0)
 
 
 
 
 
 
 499#define mm_alloc_pgd(mm)	(0)
 500#define mm_free_pgd(mm)
 501#endif /* CONFIG_MMU */
 502
 503__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 504
 505#define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
 506#define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
 507
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 508static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
 509
 510static int __init coredump_filter_setup(char *s)
 511{
 512	default_dump_filter =
 513		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
 514		MMF_DUMP_FILTER_MASK;
 515	return 1;
 516}
 517
 518__setup("coredump_filter=", coredump_filter_setup);
 519
 520#include <linux/init_task.h>
 521
 522static void mm_init_aio(struct mm_struct *mm)
 523{
 524#ifdef CONFIG_AIO
 525	spin_lock_init(&mm->ioctx_lock);
 526	mm->ioctx_table = NULL;
 527#endif
 528}
 529
 530static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
 
 
 
 
 
 
 
 
 
 531{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 532	atomic_set(&mm->mm_users, 1);
 533	atomic_set(&mm->mm_count, 1);
 534	init_rwsem(&mm->mmap_sem);
 535	INIT_LIST_HEAD(&mm->mmlist);
 536	mm->core_state = NULL;
 537	atomic_long_set(&mm->nr_ptes, 0);
 
 
 
 
 538	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
 539	spin_lock_init(&mm->page_table_lock);
 
 
 540	mm_init_aio(mm);
 541	mm_init_owner(mm, p);
 542	clear_tlb_flush_pending(mm);
 
 
 
 
 
 
 543
 544	if (current->mm) {
 545		mm->flags = current->mm->flags & MMF_INIT_MASK;
 546		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
 547	} else {
 548		mm->flags = default_dump_filter;
 549		mm->def_flags = 0;
 550	}
 551
 552	if (likely(!mm_alloc_pgd(mm))) {
 553		mmu_notifier_mm_init(mm);
 554		return mm;
 555	}
 556
 557	free_mm(mm);
 558	return NULL;
 559}
 560
 561static void check_mm(struct mm_struct *mm)
 562{
 563	int i;
 564
 565	for (i = 0; i < NR_MM_COUNTERS; i++) {
 566		long x = atomic_long_read(&mm->rss_stat.count[i]);
 567
 568		if (unlikely(x))
 569			printk(KERN_ALERT "BUG: Bad rss-counter state "
 570					  "mm:%p idx:%d val:%ld\n", mm, i, x);
 571	}
 572
 573#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 574	VM_BUG_ON(mm->pmd_huge_pte);
 575#endif
 
 
 576}
 577
 578/*
 579 * Allocate and initialize an mm_struct.
 580 */
 581struct mm_struct *mm_alloc(void)
 582{
 583	struct mm_struct *mm;
 584
 585	mm = allocate_mm();
 586	if (!mm)
 587		return NULL;
 588
 589	memset(mm, 0, sizeof(*mm));
 590	mm_init_cpumask(mm);
 591	return mm_init(mm, current);
 592}
 593
 594/*
 595 * Called when the last reference to the mm
 596 * is dropped: either by a lazy thread or by
 597 * mmput. Free the page directory and the mm.
 598 */
 599void __mmdrop(struct mm_struct *mm)
 600{
 601	BUG_ON(mm == &init_mm);
 602	mm_free_pgd(mm);
 603	destroy_context(mm);
 604	mmu_notifier_mm_destroy(mm);
 605	check_mm(mm);
 606	free_mm(mm);
 
 
 
 
 
 
 
 
 
 
 
 607}
 608EXPORT_SYMBOL_GPL(__mmdrop);
 609
 610/*
 611 * Decrement the use count and release all resources for an mm.
 612 */
 613void mmput(struct mm_struct *mm)
 614{
 615	might_sleep();
 616
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 617	if (atomic_dec_and_test(&mm->mm_users)) {
 618		uprobe_clear_state(mm);
 619		exit_aio(mm);
 620		ksm_exit(mm);
 621		khugepaged_exit(mm); /* must run before exit_mmap */
 622		exit_mmap(mm);
 623		set_mm_exe_file(mm, NULL);
 624		if (!list_empty(&mm->mmlist)) {
 625			spin_lock(&mmlist_lock);
 626			list_del(&mm->mmlist);
 627			spin_unlock(&mmlist_lock);
 628		}
 629		if (mm->binfmt)
 630			module_put(mm->binfmt->module);
 631		mmdrop(mm);
 632	}
 633}
 634EXPORT_SYMBOL_GPL(mmput);
 635
 
 
 
 
 
 
 
 
 
 
 
 636void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
 637{
 
 
 
 
 
 
 
 
 
 638	if (new_exe_file)
 639		get_file(new_exe_file);
 640	if (mm->exe_file)
 641		fput(mm->exe_file);
 642	mm->exe_file = new_exe_file;
 643}
 644
 
 
 
 
 
 
 645struct file *get_mm_exe_file(struct mm_struct *mm)
 646{
 647	struct file *exe_file;
 648
 649	/* We need mmap_sem to protect against races with removal of exe_file */
 650	down_read(&mm->mmap_sem);
 651	exe_file = mm->exe_file;
 652	if (exe_file)
 653		get_file(exe_file);
 654	up_read(&mm->mmap_sem);
 655	return exe_file;
 656}
 
 657
 658static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
 
 
 
 
 
 
 
 659{
 660	/* It's safe to write the exe_file pointer without exe_file_lock because
 661	 * this is called during fork when the task is not yet in /proc */
 662	newmm->exe_file = get_mm_exe_file(oldmm);
 
 
 
 
 
 
 
 
 663}
 
 664
 665/**
 666 * get_task_mm - acquire a reference to the task's mm
 667 *
 668 * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
 669 * this kernel workthread has transiently adopted a user mm with use_mm,
 670 * to do its AIO) is not set and if so returns a reference to it, after
 671 * bumping up the use count.  User must release the mm via mmput()
 672 * after use.  Typically used by /proc and ptrace.
 673 */
 674struct mm_struct *get_task_mm(struct task_struct *task)
 675{
 676	struct mm_struct *mm;
 677
 678	task_lock(task);
 679	mm = task->mm;
 680	if (mm) {
 681		if (task->flags & PF_KTHREAD)
 682			mm = NULL;
 683		else
 684			atomic_inc(&mm->mm_users);
 685	}
 686	task_unlock(task);
 687	return mm;
 688}
 689EXPORT_SYMBOL_GPL(get_task_mm);
 690
 691struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
 692{
 693	struct mm_struct *mm;
 694	int err;
 695
 696	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
 697	if (err)
 698		return ERR_PTR(err);
 699
 700	mm = get_task_mm(task);
 701	if (mm && mm != current->mm &&
 702			!ptrace_may_access(task, mode)) {
 703		mmput(mm);
 704		mm = ERR_PTR(-EACCES);
 705	}
 706	mutex_unlock(&task->signal->cred_guard_mutex);
 707
 708	return mm;
 709}
 710
 711static void complete_vfork_done(struct task_struct *tsk)
 712{
 713	struct completion *vfork;
 714
 715	task_lock(tsk);
 716	vfork = tsk->vfork_done;
 717	if (likely(vfork)) {
 718		tsk->vfork_done = NULL;
 719		complete(vfork);
 720	}
 721	task_unlock(tsk);
 722}
 723
 724static int wait_for_vfork_done(struct task_struct *child,
 725				struct completion *vfork)
 726{
 727	int killed;
 728
 729	freezer_do_not_count();
 
 730	killed = wait_for_completion_killable(vfork);
 
 731	freezer_count();
 732
 733	if (killed) {
 734		task_lock(child);
 735		child->vfork_done = NULL;
 736		task_unlock(child);
 737	}
 738
 739	put_task_struct(child);
 740	return killed;
 741}
 742
 743/* Please note the differences between mmput and mm_release.
 744 * mmput is called whenever we stop holding onto a mm_struct,
 745 * error success whatever.
 746 *
 747 * mm_release is called after a mm_struct has been removed
 748 * from the current process.
 749 *
 750 * This difference is important for error handling, when we
 751 * only half set up a mm_struct for a new process and need to restore
 752 * the old one.  Because we mmput the new mm_struct before
 753 * restoring the old one. . .
 754 * Eric Biederman 10 January 1998
 755 */
 756void mm_release(struct task_struct *tsk, struct mm_struct *mm)
 757{
 758	/* Get rid of any futexes when releasing the mm */
 759#ifdef CONFIG_FUTEX
 760	if (unlikely(tsk->robust_list)) {
 761		exit_robust_list(tsk);
 762		tsk->robust_list = NULL;
 763	}
 764#ifdef CONFIG_COMPAT
 765	if (unlikely(tsk->compat_robust_list)) {
 766		compat_exit_robust_list(tsk);
 767		tsk->compat_robust_list = NULL;
 768	}
 769#endif
 770	if (unlikely(!list_empty(&tsk->pi_state_list)))
 771		exit_pi_state_list(tsk);
 772#endif
 773
 774	uprobe_free_utask(tsk);
 775
 776	/* Get rid of any cached register state */
 777	deactivate_mm(tsk, mm);
 778
 779	/*
 780	 * If we're exiting normally, clear a user-space tid field if
 781	 * requested.  We leave this alone when dying by signal, to leave
 782	 * the value intact in a core dump, and to save the unnecessary
 783	 * trouble, say, a killed vfork parent shouldn't touch this mm.
 784	 * Userland only wants this done for a sys_exit.
 785	 */
 786	if (tsk->clear_child_tid) {
 787		if (!(tsk->flags & PF_SIGNALED) &&
 788		    atomic_read(&mm->mm_users) > 1) {
 789			/*
 790			 * We don't check the error code - if userspace has
 791			 * not set up a proper pointer then tough luck.
 792			 */
 793			put_user(0, tsk->clear_child_tid);
 794			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
 795					1, NULL, NULL, 0);
 796		}
 797		tsk->clear_child_tid = NULL;
 798	}
 799
 800	/*
 801	 * All done, finally we can wake up parent and return this mm to him.
 802	 * Also kthread_stop() uses this completion for synchronization.
 803	 */
 804	if (tsk->vfork_done)
 805		complete_vfork_done(tsk);
 806}
 807
 808/*
 809 * Allocate a new mm structure and copy contents from the
 810 * mm structure of the passed in task structure.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 811 */
 812static struct mm_struct *dup_mm(struct task_struct *tsk)
 
 813{
 814	struct mm_struct *mm, *oldmm = current->mm;
 815	int err;
 816
 817	mm = allocate_mm();
 818	if (!mm)
 819		goto fail_nomem;
 820
 821	memcpy(mm, oldmm, sizeof(*mm));
 822	mm_init_cpumask(mm);
 823
 824#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 825	mm->pmd_huge_pte = NULL;
 826#endif
 827	if (!mm_init(mm, tsk))
 828		goto fail_nomem;
 829
 830	if (init_new_context(tsk, mm))
 831		goto fail_nocontext;
 832
 833	dup_mm_exe_file(oldmm, mm);
 834
 835	err = dup_mmap(mm, oldmm);
 836	if (err)
 837		goto free_pt;
 838
 839	mm->hiwater_rss = get_mm_rss(mm);
 840	mm->hiwater_vm = mm->total_vm;
 841
 842	if (mm->binfmt && !try_module_get(mm->binfmt->module))
 843		goto free_pt;
 844
 845	return mm;
 846
 847free_pt:
 848	/* don't put binfmt in mmput, we haven't got module yet */
 849	mm->binfmt = NULL;
 
 850	mmput(mm);
 851
 852fail_nomem:
 853	return NULL;
 854
 855fail_nocontext:
 856	/*
 857	 * If init_new_context() failed, we cannot use mmput() to free the mm
 858	 * because it calls destroy_context()
 859	 */
 860	mm_free_pgd(mm);
 861	free_mm(mm);
 862	return NULL;
 863}
 864
 865static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
 866{
 867	struct mm_struct *mm, *oldmm;
 868	int retval;
 869
 870	tsk->min_flt = tsk->maj_flt = 0;
 871	tsk->nvcsw = tsk->nivcsw = 0;
 872#ifdef CONFIG_DETECT_HUNG_TASK
 873	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
 
 874#endif
 875
 876	tsk->mm = NULL;
 877	tsk->active_mm = NULL;
 878
 879	/*
 880	 * Are we cloning a kernel thread?
 881	 *
 882	 * We need to steal a active VM for that..
 883	 */
 884	oldmm = current->mm;
 885	if (!oldmm)
 886		return 0;
 887
 888	/* initialize the new vmacache entries */
 889	vmacache_flush(tsk);
 890
 891	if (clone_flags & CLONE_VM) {
 892		atomic_inc(&oldmm->mm_users);
 893		mm = oldmm;
 894		goto good_mm;
 895	}
 896
 897	retval = -ENOMEM;
 898	mm = dup_mm(tsk);
 899	if (!mm)
 900		goto fail_nomem;
 901
 902good_mm:
 903	tsk->mm = mm;
 904	tsk->active_mm = mm;
 905	return 0;
 906
 907fail_nomem:
 908	return retval;
 909}
 910
 911static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
 912{
 913	struct fs_struct *fs = current->fs;
 914	if (clone_flags & CLONE_FS) {
 915		/* tsk->fs is already what we want */
 916		spin_lock(&fs->lock);
 917		if (fs->in_exec) {
 918			spin_unlock(&fs->lock);
 919			return -EAGAIN;
 920		}
 921		fs->users++;
 922		spin_unlock(&fs->lock);
 923		return 0;
 924	}
 925	tsk->fs = copy_fs_struct(fs);
 926	if (!tsk->fs)
 927		return -ENOMEM;
 928	return 0;
 929}
 930
 931static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
 932{
 933	struct files_struct *oldf, *newf;
 934	int error = 0;
 935
 936	/*
 937	 * A background process may not have any files ...
 938	 */
 939	oldf = current->files;
 940	if (!oldf)
 941		goto out;
 942
 943	if (clone_flags & CLONE_FILES) {
 944		atomic_inc(&oldf->count);
 945		goto out;
 946	}
 947
 948	newf = dup_fd(oldf, &error);
 949	if (!newf)
 950		goto out;
 951
 952	tsk->files = newf;
 953	error = 0;
 954out:
 955	return error;
 956}
 957
 958static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
 959{
 960#ifdef CONFIG_BLOCK
 961	struct io_context *ioc = current->io_context;
 962	struct io_context *new_ioc;
 963
 964	if (!ioc)
 965		return 0;
 966	/*
 967	 * Share io context with parent, if CLONE_IO is set
 968	 */
 969	if (clone_flags & CLONE_IO) {
 970		ioc_task_link(ioc);
 971		tsk->io_context = ioc;
 972	} else if (ioprio_valid(ioc->ioprio)) {
 973		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
 974		if (unlikely(!new_ioc))
 975			return -ENOMEM;
 976
 977		new_ioc->ioprio = ioc->ioprio;
 978		put_io_context(new_ioc);
 979	}
 980#endif
 981	return 0;
 982}
 983
 984static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
 985{
 986	struct sighand_struct *sig;
 987
 988	if (clone_flags & CLONE_SIGHAND) {
 989		atomic_inc(&current->sighand->count);
 990		return 0;
 991	}
 992	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
 993	rcu_assign_pointer(tsk->sighand, sig);
 994	if (!sig)
 995		return -ENOMEM;
 996	atomic_set(&sig->count, 1);
 
 
 997	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
 
 
 
 
 
 
 998	return 0;
 999}
1000
1001void __cleanup_sighand(struct sighand_struct *sighand)
1002{
1003	if (atomic_dec_and_test(&sighand->count)) {
1004		signalfd_cleanup(sighand);
 
 
 
 
1005		kmem_cache_free(sighand_cachep, sighand);
1006	}
1007}
1008
1009
1010/*
1011 * Initialize POSIX timer handling for a thread group.
1012 */
1013static void posix_cpu_timers_init_group(struct signal_struct *sig)
1014{
 
1015	unsigned long cpu_limit;
1016
1017	/* Thread group counters. */
1018	thread_group_cputime_init(sig);
1019
1020	cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1021	if (cpu_limit != RLIM_INFINITY) {
1022		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1023		sig->cputimer.running = 1;
1024	}
1025
1026	/* The timer lists. */
1027	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1028	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1029	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1030}
1031
1032static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1033{
1034	struct signal_struct *sig;
1035
1036	if (clone_flags & CLONE_THREAD)
1037		return 0;
1038
1039	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1040	tsk->signal = sig;
1041	if (!sig)
1042		return -ENOMEM;
1043
1044	sig->nr_threads = 1;
1045	atomic_set(&sig->live, 1);
1046	atomic_set(&sig->sigcnt, 1);
1047
1048	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1049	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1050	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1051
1052	init_waitqueue_head(&sig->wait_chldexit);
1053	sig->curr_target = tsk;
1054	init_sigpending(&sig->shared_pending);
1055	INIT_LIST_HEAD(&sig->posix_timers);
 
 
1056
 
 
1057	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1058	sig->real_timer.function = it_real_fn;
 
1059
1060	task_lock(current->group_leader);
1061	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1062	task_unlock(current->group_leader);
1063
1064	posix_cpu_timers_init_group(sig);
1065
1066	tty_audit_fork(sig);
1067	sched_autogroup_fork(sig);
1068
1069#ifdef CONFIG_CGROUPS
1070	init_rwsem(&sig->group_rwsem);
1071#endif
1072
1073	sig->oom_score_adj = current->signal->oom_score_adj;
1074	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1075
1076	sig->has_child_subreaper = current->signal->has_child_subreaper ||
1077				   current->signal->is_child_subreaper;
1078
1079	mutex_init(&sig->cred_guard_mutex);
 
1080
1081	return 0;
1082}
1083
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1084SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1085{
1086	current->clear_child_tid = tidptr;
1087
1088	return task_pid_vnr(current);
1089}
1090
1091static void rt_mutex_init_task(struct task_struct *p)
1092{
1093	raw_spin_lock_init(&p->pi_lock);
1094#ifdef CONFIG_RT_MUTEXES
1095	p->pi_waiters = RB_ROOT;
1096	p->pi_waiters_leftmost = NULL;
1097	p->pi_blocked_on = NULL;
1098	p->pi_top_task = NULL;
 
1099#endif
1100}
1101
1102#ifdef CONFIG_MM_OWNER
1103void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1104{
1105	mm->owner = p;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1106}
1107#endif /* CONFIG_MM_OWNER */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1108
1109/*
1110 * Initialize POSIX timer handling for a single task.
1111 */
1112static void posix_cpu_timers_init(struct task_struct *tsk)
1113{
1114	tsk->cputime_expires.prof_exp = 0;
1115	tsk->cputime_expires.virt_exp = 0;
1116	tsk->cputime_expires.sched_exp = 0;
1117	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1118	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1119	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
 
 
 
 
 
 
 
 
1120}
1121
1122static inline void
1123init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
 
 
 
 
 
 
 
1124{
1125	 task->pids[type].pid = pid;
 
 
 
 
 
 
 
 
 
 
1126}
1127
1128/*
1129 * This creates a new process as a copy of the old one,
1130 * but does not actually start it yet.
1131 *
1132 * It copies the registers, and all the appropriate
1133 * parts of the process environment (as per the clone
1134 * flags). The actual kick-off is left to the caller.
1135 */
1136static struct task_struct *copy_process(unsigned long clone_flags,
1137					unsigned long stack_start,
1138					unsigned long stack_size,
1139					int __user *child_tidptr,
1140					struct pid *pid,
1141					int trace)
 
 
1142{
1143	int retval;
1144	struct task_struct *p;
 
 
 
 
1145
 
 
 
 
1146	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1147		return ERR_PTR(-EINVAL);
1148
1149	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1150		return ERR_PTR(-EINVAL);
1151
1152	/*
1153	 * Thread groups must share signals as well, and detached threads
1154	 * can only be started up within the thread group.
1155	 */
1156	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1157		return ERR_PTR(-EINVAL);
1158
1159	/*
1160	 * Shared signal handlers imply shared VM. By way of the above,
1161	 * thread groups also imply shared VM. Blocking this case allows
1162	 * for various simplifications in other code.
1163	 */
1164	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1165		return ERR_PTR(-EINVAL);
1166
1167	/*
1168	 * Siblings of global init remain as zombies on exit since they are
1169	 * not reaped by their parent (swapper). To solve this and to avoid
1170	 * multi-rooted process trees, prevent global and container-inits
1171	 * from creating siblings.
1172	 */
1173	if ((clone_flags & CLONE_PARENT) &&
1174				current->signal->flags & SIGNAL_UNKILLABLE)
1175		return ERR_PTR(-EINVAL);
1176
1177	/*
1178	 * If the new process will be in a different pid or user namespace
1179	 * do not allow it to share a thread group or signal handlers or
1180	 * parent with the forking task.
1181	 */
1182	if (clone_flags & CLONE_SIGHAND) {
1183		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1184		    (task_active_pid_ns(current) !=
1185				current->nsproxy->pid_ns_for_children))
1186			return ERR_PTR(-EINVAL);
1187	}
1188
1189	retval = security_task_create(clone_flags);
1190	if (retval)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1191		goto fork_out;
1192
1193	retval = -ENOMEM;
1194	p = dup_task_struct(current);
1195	if (!p)
1196		goto fork_out;
1197
 
 
 
 
 
 
 
 
 
 
 
 
1198	ftrace_graph_init_task(p);
1199	get_seccomp_filter(p);
1200
1201	rt_mutex_init_task(p);
1202
 
1203#ifdef CONFIG_PROVE_LOCKING
1204	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1205	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1206#endif
1207	retval = -EAGAIN;
1208	if (atomic_read(&p->real_cred->user->processes) >=
1209			task_rlimit(p, RLIMIT_NPROC)) {
1210		if (p->real_cred->user != INIT_USER &&
1211		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1212			goto bad_fork_free;
1213	}
1214	current->flags &= ~PF_NPROC_EXCEEDED;
1215
1216	retval = copy_creds(p, clone_flags);
1217	if (retval < 0)
1218		goto bad_fork_free;
1219
1220	/*
1221	 * If multiple threads are within copy_process(), then this check
1222	 * triggers too late. This doesn't hurt, the check is only there
1223	 * to stop root fork bombs.
1224	 */
1225	retval = -EAGAIN;
1226	if (nr_threads >= max_threads)
1227		goto bad_fork_cleanup_count;
1228
1229	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1230		goto bad_fork_cleanup_count;
1231
1232	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1233	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1234	p->flags |= PF_FORKNOEXEC;
1235	INIT_LIST_HEAD(&p->children);
1236	INIT_LIST_HEAD(&p->sibling);
1237	rcu_copy_process(p);
1238	p->vfork_done = NULL;
1239	spin_lock_init(&p->alloc_lock);
1240
1241	init_sigpending(&p->pending);
1242
1243	p->utime = p->stime = p->gtime = 0;
 
1244	p->utimescaled = p->stimescaled = 0;
1245#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1246	p->prev_cputime.utime = p->prev_cputime.stime = 0;
1247#endif
 
 
1248#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1249	seqlock_init(&p->vtime_seqlock);
1250	p->vtime_snap = 0;
1251	p->vtime_snap_whence = VTIME_SLEEPING;
1252#endif
1253
1254#if defined(SPLIT_RSS_COUNTING)
1255	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1256#endif
1257
1258	p->default_timer_slack_ns = current->timer_slack_ns;
1259
 
 
 
 
1260	task_io_accounting_init(&p->ioac);
1261	acct_clear_integrals(p);
1262
1263	posix_cpu_timers_init(p);
1264
1265	do_posix_clock_monotonic_gettime(&p->start_time);
1266	p->real_start_time = p->start_time;
1267	monotonic_to_bootbased(&p->real_start_time);
1268	p->io_context = NULL;
1269	p->audit_context = NULL;
1270	if (clone_flags & CLONE_THREAD)
1271		threadgroup_change_begin(current);
1272	cgroup_fork(p);
1273#ifdef CONFIG_NUMA
1274	p->mempolicy = mpol_dup(p->mempolicy);
1275	if (IS_ERR(p->mempolicy)) {
1276		retval = PTR_ERR(p->mempolicy);
1277		p->mempolicy = NULL;
1278		goto bad_fork_cleanup_threadgroup_lock;
1279	}
1280#endif
1281#ifdef CONFIG_CPUSETS
1282	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1283	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1284	seqcount_init(&p->mems_allowed_seq);
1285#endif
1286#ifdef CONFIG_TRACE_IRQFLAGS
1287	p->irq_events = 0;
1288	p->hardirqs_enabled = 0;
1289	p->hardirq_enable_ip = 0;
1290	p->hardirq_enable_event = 0;
1291	p->hardirq_disable_ip = _THIS_IP_;
1292	p->hardirq_disable_event = 0;
1293	p->softirqs_enabled = 1;
1294	p->softirq_enable_ip = _THIS_IP_;
1295	p->softirq_enable_event = 0;
1296	p->softirq_disable_ip = 0;
1297	p->softirq_disable_event = 0;
1298	p->hardirq_context = 0;
1299	p->softirq_context = 0;
1300#endif
 
 
 
1301#ifdef CONFIG_LOCKDEP
1302	p->lockdep_depth = 0; /* no locks held yet */
1303	p->curr_chain_key = 0;
1304	p->lockdep_recursion = 0;
1305#endif
1306
1307#ifdef CONFIG_DEBUG_MUTEXES
1308	p->blocked_on = NULL; /* not blocked yet */
1309#endif
1310#ifdef CONFIG_MEMCG
1311	p->memcg_batch.do_batch = 0;
1312	p->memcg_batch.memcg = NULL;
1313#endif
1314#ifdef CONFIG_BCACHE
1315	p->sequential_io	= 0;
1316	p->sequential_io_avg	= 0;
1317#endif
1318
1319	/* Perform scheduler related setup. Assign this task to a CPU. */
1320	retval = sched_fork(clone_flags, p);
1321	if (retval)
1322		goto bad_fork_cleanup_policy;
1323
1324	retval = perf_event_init_task(p);
1325	if (retval)
1326		goto bad_fork_cleanup_policy;
1327	retval = audit_alloc(p);
1328	if (retval)
1329		goto bad_fork_cleanup_policy;
1330	/* copy all the process information */
1331	retval = copy_semundo(clone_flags, p);
 
1332	if (retval)
1333		goto bad_fork_cleanup_audit;
 
 
 
1334	retval = copy_files(clone_flags, p);
1335	if (retval)
1336		goto bad_fork_cleanup_semundo;
1337	retval = copy_fs(clone_flags, p);
1338	if (retval)
1339		goto bad_fork_cleanup_files;
1340	retval = copy_sighand(clone_flags, p);
1341	if (retval)
1342		goto bad_fork_cleanup_fs;
1343	retval = copy_signal(clone_flags, p);
1344	if (retval)
1345		goto bad_fork_cleanup_sighand;
1346	retval = copy_mm(clone_flags, p);
1347	if (retval)
1348		goto bad_fork_cleanup_signal;
1349	retval = copy_namespaces(clone_flags, p);
1350	if (retval)
1351		goto bad_fork_cleanup_mm;
1352	retval = copy_io(clone_flags, p);
1353	if (retval)
1354		goto bad_fork_cleanup_namespaces;
1355	retval = copy_thread(clone_flags, stack_start, stack_size, p);
1356	if (retval)
1357		goto bad_fork_cleanup_io;
1358
 
 
1359	if (pid != &init_struct_pid) {
1360		retval = -ENOMEM;
1361		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1362		if (!pid)
1363			goto bad_fork_cleanup_io;
 
 
1364	}
1365
1366	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1367	/*
1368	 * Clear TID on mm_release()?
1369	 */
1370	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1371#ifdef CONFIG_BLOCK
1372	p->plug = NULL;
1373#endif
1374#ifdef CONFIG_FUTEX
1375	p->robust_list = NULL;
1376#ifdef CONFIG_COMPAT
1377	p->compat_robust_list = NULL;
1378#endif
1379	INIT_LIST_HEAD(&p->pi_state_list);
1380	p->pi_state_cache = NULL;
1381#endif
1382	/*
1383	 * sigaltstack should be cleared when sharing the same VM
1384	 */
1385	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1386		p->sas_ss_sp = p->sas_ss_size = 0;
1387
1388	/*
1389	 * Syscall tracing and stepping should be turned off in the
1390	 * child regardless of CLONE_PTRACE.
1391	 */
1392	user_disable_single_step(p);
1393	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1394#ifdef TIF_SYSCALL_EMU
1395	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1396#endif
1397	clear_all_latency_tracing(p);
1398
1399	/* ok, now we should be set up.. */
1400	p->pid = pid_nr(pid);
1401	if (clone_flags & CLONE_THREAD) {
1402		p->exit_signal = -1;
1403		p->group_leader = current->group_leader;
1404		p->tgid = current->tgid;
1405	} else {
1406		if (clone_flags & CLONE_PARENT)
1407			p->exit_signal = current->group_leader->exit_signal;
1408		else
1409			p->exit_signal = (clone_flags & CSIGNAL);
1410		p->group_leader = p;
1411		p->tgid = p->pid;
1412	}
1413
1414	p->nr_dirtied = 0;
1415	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1416	p->dirty_paused_when = 0;
1417
1418	p->pdeath_signal = 0;
1419	INIT_LIST_HEAD(&p->thread_group);
1420	p->task_works = NULL;
1421
1422	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1423	 * Make it visible to the rest of the system, but dont wake it up yet.
1424	 * Need tasklist lock for parent etc handling!
1425	 */
1426	write_lock_irq(&tasklist_lock);
1427
1428	/* CLONE_PARENT re-uses the old parent */
1429	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1430		p->real_parent = current->real_parent;
1431		p->parent_exec_id = current->parent_exec_id;
1432	} else {
1433		p->real_parent = current;
1434		p->parent_exec_id = current->self_exec_id;
1435	}
1436
 
 
1437	spin_lock(&current->sighand->siglock);
1438
1439	/*
1440	 * Process group and session signals need to be delivered to just the
1441	 * parent before the fork or both the parent and the child after the
1442	 * fork. Restart if a signal comes in before we add the new process to
1443	 * it's process group.
1444	 * A fatal signal pending means that current will exit, so the new
1445	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1446	*/
1447	recalc_sigpending();
1448	if (signal_pending(current)) {
1449		spin_unlock(&current->sighand->siglock);
1450		write_unlock_irq(&tasklist_lock);
1451		retval = -ERESTARTNOINTR;
1452		goto bad_fork_free_pid;
1453	}
1454
 
 
 
 
 
 
 
 
 
 
 
1455	if (likely(p->pid)) {
1456		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1457
1458		init_task_pid(p, PIDTYPE_PID, pid);
1459		if (thread_group_leader(p)) {
 
1460			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1461			init_task_pid(p, PIDTYPE_SID, task_session(current));
1462
1463			if (is_child_reaper(pid)) {
1464				ns_of_pid(pid)->child_reaper = p;
1465				p->signal->flags |= SIGNAL_UNKILLABLE;
1466			}
1467
1468			p->signal->leader_pid = pid;
1469			p->signal->tty = tty_kref_get(current->signal->tty);
 
 
 
 
 
 
 
1470			list_add_tail(&p->sibling, &p->real_parent->children);
1471			list_add_tail_rcu(&p->tasks, &init_task.tasks);
 
1472			attach_pid(p, PIDTYPE_PGID);
1473			attach_pid(p, PIDTYPE_SID);
1474			__this_cpu_inc(process_counts);
1475		} else {
1476			current->signal->nr_threads++;
1477			atomic_inc(&current->signal->live);
1478			atomic_inc(&current->signal->sigcnt);
 
1479			list_add_tail_rcu(&p->thread_group,
1480					  &p->group_leader->thread_group);
1481			list_add_tail_rcu(&p->thread_node,
1482					  &p->signal->thread_head);
1483		}
1484		attach_pid(p, PIDTYPE_PID);
1485		nr_threads++;
1486	}
1487
1488	total_forks++;
 
1489	spin_unlock(&current->sighand->siglock);
 
1490	write_unlock_irq(&tasklist_lock);
 
1491	proc_fork_connector(p);
1492	cgroup_post_fork(p);
1493	if (clone_flags & CLONE_THREAD)
1494		threadgroup_change_end(current);
1495	perf_event_fork(p);
1496
1497	trace_task_newtask(p, clone_flags);
1498	uprobe_copy_process(p, clone_flags);
1499
1500	return p;
1501
 
 
 
 
 
 
 
 
 
1502bad_fork_free_pid:
1503	if (pid != &init_struct_pid)
1504		free_pid(pid);
 
 
1505bad_fork_cleanup_io:
1506	if (p->io_context)
1507		exit_io_context(p);
1508bad_fork_cleanup_namespaces:
1509	exit_task_namespaces(p);
1510bad_fork_cleanup_mm:
1511	if (p->mm)
 
1512		mmput(p->mm);
 
1513bad_fork_cleanup_signal:
1514	if (!(clone_flags & CLONE_THREAD))
1515		free_signal_struct(p->signal);
1516bad_fork_cleanup_sighand:
1517	__cleanup_sighand(p->sighand);
1518bad_fork_cleanup_fs:
1519	exit_fs(p); /* blocking */
1520bad_fork_cleanup_files:
1521	exit_files(p); /* blocking */
1522bad_fork_cleanup_semundo:
1523	exit_sem(p);
 
 
1524bad_fork_cleanup_audit:
1525	audit_free(p);
1526bad_fork_cleanup_policy:
1527	perf_event_free_task(p);
 
 
1528#ifdef CONFIG_NUMA
1529	mpol_put(p->mempolicy);
1530bad_fork_cleanup_threadgroup_lock:
1531#endif
1532	if (clone_flags & CLONE_THREAD)
1533		threadgroup_change_end(current);
1534	delayacct_tsk_free(p);
1535	module_put(task_thread_info(p)->exec_domain->module);
1536bad_fork_cleanup_count:
1537	atomic_dec(&p->cred->user->processes);
1538	exit_creds(p);
1539bad_fork_free:
1540	free_task(p);
 
 
1541fork_out:
 
 
 
1542	return ERR_PTR(retval);
1543}
1544
1545static inline void init_idle_pids(struct pid_link *links)
1546{
1547	enum pid_type type;
1548
1549	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1550		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1551		links[type].pid = &init_struct_pid;
1552	}
1553}
1554
1555struct task_struct *fork_idle(int cpu)
1556{
1557	struct task_struct *task;
1558	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
 
 
 
 
1559	if (!IS_ERR(task)) {
1560		init_idle_pids(task->pids);
1561		init_idle(task, cpu);
1562	}
1563
1564	return task;
1565}
1566
 
 
 
 
 
1567/*
1568 *  Ok, this is the main fork-routine.
1569 *
1570 * It copies the process, and if successful kick-starts
1571 * it and waits for it to finish using the VM if required.
 
 
1572 */
1573long do_fork(unsigned long clone_flags,
1574	      unsigned long stack_start,
1575	      unsigned long stack_size,
1576	      int __user *parent_tidptr,
1577	      int __user *child_tidptr)
1578{
 
 
 
1579	struct task_struct *p;
1580	int trace = 0;
1581	long nr;
1582
1583	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1584	 * Determine whether and which event to report to ptracer.  When
1585	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1586	 * requested, no event is reported; otherwise, report if the event
1587	 * for the type of forking is enabled.
1588	 */
1589	if (!(clone_flags & CLONE_UNTRACED)) {
1590		if (clone_flags & CLONE_VFORK)
1591			trace = PTRACE_EVENT_VFORK;
1592		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1593			trace = PTRACE_EVENT_CLONE;
1594		else
1595			trace = PTRACE_EVENT_FORK;
1596
1597		if (likely(!ptrace_event_enabled(current, trace)))
1598			trace = 0;
1599	}
1600
1601	p = copy_process(clone_flags, stack_start, stack_size,
1602			 child_tidptr, NULL, trace);
 
 
 
 
1603	/*
1604	 * Do this prior waking up the new thread - the thread pointer
1605	 * might get invalid after that point, if the thread exits quickly.
1606	 */
1607	if (!IS_ERR(p)) {
1608		struct completion vfork;
1609
1610		trace_sched_process_fork(current, p);
 
1611
1612		nr = task_pid_vnr(p);
 
1613
1614		if (clone_flags & CLONE_PARENT_SETTID)
1615			put_user(nr, parent_tidptr);
 
 
 
1616
1617		if (clone_flags & CLONE_VFORK) {
1618			p->vfork_done = &vfork;
1619			init_completion(&vfork);
1620			get_task_struct(p);
1621		}
1622
1623		wake_up_new_task(p);
 
 
1624
1625		/* forking complete and child started to run, tell ptracer */
1626		if (unlikely(trace))
1627			ptrace_event(trace, nr);
1628
1629		if (clone_flags & CLONE_VFORK) {
1630			if (!wait_for_vfork_done(p, &vfork))
1631				ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1632		}
1633	} else {
1634		nr = PTR_ERR(p);
1635	}
 
 
1636	return nr;
1637}
1638
1639/*
1640 * Create a kernel thread.
1641 */
1642pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1643{
1644	return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1645		(unsigned long)arg, NULL, NULL);
 
 
 
 
 
 
 
1646}
1647
1648#ifdef __ARCH_WANT_SYS_FORK
1649SYSCALL_DEFINE0(fork)
1650{
1651#ifdef CONFIG_MMU
1652	return do_fork(SIGCHLD, 0, 0, NULL, NULL);
 
 
 
 
1653#else
1654	/* can not support in nommu mode */
1655	return -EINVAL;
1656#endif
1657}
1658#endif
1659
1660#ifdef __ARCH_WANT_SYS_VFORK
1661SYSCALL_DEFINE0(vfork)
1662{
1663	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1664			0, NULL, NULL);
 
 
 
 
1665}
1666#endif
1667
1668#ifdef __ARCH_WANT_SYS_CLONE
1669#ifdef CONFIG_CLONE_BACKWARDS
1670SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1671		 int __user *, parent_tidptr,
1672		 int, tls_val,
1673		 int __user *, child_tidptr)
1674#elif defined(CONFIG_CLONE_BACKWARDS2)
1675SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1676		 int __user *, parent_tidptr,
1677		 int __user *, child_tidptr,
1678		 int, tls_val)
1679#elif defined(CONFIG_CLONE_BACKWARDS3)
1680SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1681		int, stack_size,
1682		int __user *, parent_tidptr,
1683		int __user *, child_tidptr,
1684		int, tls_val)
1685#else
1686SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1687		 int __user *, parent_tidptr,
1688		 int __user *, child_tidptr,
1689		 int, tls_val)
1690#endif
1691{
1692	return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
 
 
 
 
 
 
 
 
 
 
1693}
1694#endif
1695
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1696#ifndef ARCH_MIN_MMSTRUCT_ALIGN
1697#define ARCH_MIN_MMSTRUCT_ALIGN 0
1698#endif
1699
1700static void sighand_ctor(void *data)
1701{
1702	struct sighand_struct *sighand = data;
1703
1704	spin_lock_init(&sighand->siglock);
1705	init_waitqueue_head(&sighand->signalfd_wqh);
1706}
1707
1708void __init proc_caches_init(void)
1709{
 
 
1710	sighand_cachep = kmem_cache_create("sighand_cache",
1711			sizeof(struct sighand_struct), 0,
1712			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1713			SLAB_NOTRACK, sighand_ctor);
1714	signal_cachep = kmem_cache_create("signal_cache",
1715			sizeof(struct signal_struct), 0,
1716			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
 
1717	files_cachep = kmem_cache_create("files_cache",
1718			sizeof(struct files_struct), 0,
1719			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
 
1720	fs_cachep = kmem_cache_create("fs_cache",
1721			sizeof(struct fs_struct), 0,
1722			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
 
 
1723	/*
1724	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1725	 * whole struct cpumask for the OFFSTACK case. We could change
1726	 * this to *only* allocate as much of it as required by the
1727	 * maximum number of CPU's we can ever have.  The cpumask_allocation
1728	 * is at the end of the structure, exactly for that reason.
1729	 */
1730	mm_cachep = kmem_cache_create("mm_struct",
1731			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1732			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1733	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
 
 
 
1734	mmap_init();
1735	nsproxy_cache_init();
1736}
1737
1738/*
1739 * Check constraints on flags passed to the unshare system call.
1740 */
1741static int check_unshare_flags(unsigned long unshare_flags)
1742{
1743	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1744				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1745				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1746				CLONE_NEWUSER|CLONE_NEWPID))
 
1747		return -EINVAL;
1748	/*
1749	 * Not implemented, but pretend it works if there is nothing to
1750	 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1751	 * needs to unshare vm.
 
1752	 */
1753	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1754		/* FIXME: get_task_mm() increments ->mm_users */
1755		if (atomic_read(&current->mm->mm_users) > 1)
 
 
 
 
 
 
 
1756			return -EINVAL;
1757	}
1758
1759	return 0;
1760}
1761
1762/*
1763 * Unshare the filesystem structure if it is being shared
1764 */
1765static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1766{
1767	struct fs_struct *fs = current->fs;
1768
1769	if (!(unshare_flags & CLONE_FS) || !fs)
1770		return 0;
1771
1772	/* don't need lock here; in the worst case we'll do useless copy */
1773	if (fs->users == 1)
1774		return 0;
1775
1776	*new_fsp = copy_fs_struct(fs);
1777	if (!*new_fsp)
1778		return -ENOMEM;
1779
1780	return 0;
1781}
1782
1783/*
1784 * Unshare file descriptor table if it is being shared
1785 */
1786static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
 
1787{
1788	struct files_struct *fd = current->files;
1789	int error = 0;
1790
1791	if ((unshare_flags & CLONE_FILES) &&
1792	    (fd && atomic_read(&fd->count) > 1)) {
1793		*new_fdp = dup_fd(fd, &error);
1794		if (!*new_fdp)
1795			return error;
1796	}
1797
1798	return 0;
1799}
1800
1801/*
1802 * unshare allows a process to 'unshare' part of the process
1803 * context which was originally shared using clone.  copy_*
1804 * functions used by do_fork() cannot be used here directly
1805 * because they modify an inactive task_struct that is being
1806 * constructed. Here we are modifying the current, active,
1807 * task_struct.
1808 */
1809SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1810{
1811	struct fs_struct *fs, *new_fs = NULL;
1812	struct files_struct *fd, *new_fd = NULL;
1813	struct cred *new_cred = NULL;
1814	struct nsproxy *new_nsproxy = NULL;
1815	int do_sysvsem = 0;
1816	int err;
1817
1818	/*
1819	 * If unsharing a user namespace must also unshare the thread.
 
1820	 */
1821	if (unshare_flags & CLONE_NEWUSER)
1822		unshare_flags |= CLONE_THREAD | CLONE_FS;
1823	/*
1824	 * If unsharing a thread from a thread group, must also unshare vm.
1825	 */
1826	if (unshare_flags & CLONE_THREAD)
1827		unshare_flags |= CLONE_VM;
1828	/*
1829	 * If unsharing vm, must also unshare signal handlers.
1830	 */
1831	if (unshare_flags & CLONE_VM)
1832		unshare_flags |= CLONE_SIGHAND;
1833	/*
 
 
 
 
 
1834	 * If unsharing namespace, must also unshare filesystem information.
1835	 */
1836	if (unshare_flags & CLONE_NEWNS)
1837		unshare_flags |= CLONE_FS;
1838
1839	err = check_unshare_flags(unshare_flags);
1840	if (err)
1841		goto bad_unshare_out;
1842	/*
1843	 * CLONE_NEWIPC must also detach from the undolist: after switching
1844	 * to a new ipc namespace, the semaphore arrays from the old
1845	 * namespace are unreachable.
1846	 */
1847	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1848		do_sysvsem = 1;
1849	err = unshare_fs(unshare_flags, &new_fs);
1850	if (err)
1851		goto bad_unshare_out;
1852	err = unshare_fd(unshare_flags, &new_fd);
1853	if (err)
1854		goto bad_unshare_cleanup_fs;
1855	err = unshare_userns(unshare_flags, &new_cred);
1856	if (err)
1857		goto bad_unshare_cleanup_fd;
1858	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1859					 new_cred, new_fs);
1860	if (err)
1861		goto bad_unshare_cleanup_cred;
1862
1863	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1864		if (do_sysvsem) {
1865			/*
1866			 * CLONE_SYSVSEM is equivalent to sys_exit().
1867			 */
1868			exit_sem(current);
1869		}
 
 
 
 
 
1870
1871		if (new_nsproxy)
1872			switch_task_namespaces(current, new_nsproxy);
1873
1874		task_lock(current);
1875
1876		if (new_fs) {
1877			fs = current->fs;
1878			spin_lock(&fs->lock);
1879			current->fs = new_fs;
1880			if (--fs->users)
1881				new_fs = NULL;
1882			else
1883				new_fs = fs;
1884			spin_unlock(&fs->lock);
1885		}
1886
1887		if (new_fd) {
1888			fd = current->files;
1889			current->files = new_fd;
1890			new_fd = fd;
1891		}
1892
1893		task_unlock(current);
1894
1895		if (new_cred) {
1896			/* Install the new user namespace */
1897			commit_creds(new_cred);
1898			new_cred = NULL;
1899		}
1900	}
1901
 
 
1902bad_unshare_cleanup_cred:
1903	if (new_cred)
1904		put_cred(new_cred);
1905bad_unshare_cleanup_fd:
1906	if (new_fd)
1907		put_files_struct(new_fd);
1908
1909bad_unshare_cleanup_fs:
1910	if (new_fs)
1911		free_fs_struct(new_fs);
1912
1913bad_unshare_out:
1914	return err;
1915}
1916
 
 
 
 
 
1917/*
1918 *	Helper to unshare the files of the current task.
1919 *	We don't want to expose copy_files internals to
1920 *	the exec layer of the kernel.
1921 */
1922
1923int unshare_files(struct files_struct **displaced)
1924{
1925	struct task_struct *task = current;
1926	struct files_struct *copy = NULL;
1927	int error;
1928
1929	error = unshare_fd(CLONE_FILES, &copy);
1930	if (error || !copy) {
1931		*displaced = NULL;
1932		return error;
1933	}
1934	*displaced = task->files;
1935	task_lock(task);
1936	task->files = copy;
1937	task_unlock(task);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1938	return 0;
1939}
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/fork.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8/*
   9 *  'fork.c' contains the help-routines for the 'fork' system call
  10 * (see also entry.S and others).
  11 * Fork is rather simple, once you get the hang of it, but the memory
  12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  13 */
  14
  15#include <linux/anon_inodes.h>
  16#include <linux/slab.h>
  17#include <linux/sched/autogroup.h>
  18#include <linux/sched/mm.h>
  19#include <linux/sched/coredump.h>
  20#include <linux/sched/user.h>
  21#include <linux/sched/numa_balancing.h>
  22#include <linux/sched/stat.h>
  23#include <linux/sched/task.h>
  24#include <linux/sched/task_stack.h>
  25#include <linux/sched/cputime.h>
  26#include <linux/seq_file.h>
  27#include <linux/rtmutex.h>
  28#include <linux/init.h>
  29#include <linux/unistd.h>
  30#include <linux/module.h>
  31#include <linux/vmalloc.h>
  32#include <linux/completion.h>
  33#include <linux/personality.h>
  34#include <linux/mempolicy.h>
  35#include <linux/sem.h>
  36#include <linux/file.h>
  37#include <linux/fdtable.h>
  38#include <linux/iocontext.h>
  39#include <linux/key.h>
  40#include <linux/binfmts.h>
  41#include <linux/mman.h>
  42#include <linux/mmu_notifier.h>
  43#include <linux/fs.h>
  44#include <linux/mm.h>
  45#include <linux/vmacache.h>
  46#include <linux/nsproxy.h>
  47#include <linux/capability.h>
  48#include <linux/cpu.h>
  49#include <linux/cgroup.h>
  50#include <linux/security.h>
  51#include <linux/hugetlb.h>
  52#include <linux/seccomp.h>
  53#include <linux/swap.h>
  54#include <linux/syscalls.h>
  55#include <linux/jiffies.h>
  56#include <linux/futex.h>
  57#include <linux/compat.h>
  58#include <linux/kthread.h>
  59#include <linux/task_io_accounting_ops.h>
  60#include <linux/rcupdate.h>
  61#include <linux/ptrace.h>
  62#include <linux/mount.h>
  63#include <linux/audit.h>
  64#include <linux/memcontrol.h>
  65#include <linux/ftrace.h>
  66#include <linux/proc_fs.h>
  67#include <linux/profile.h>
  68#include <linux/rmap.h>
  69#include <linux/ksm.h>
  70#include <linux/acct.h>
  71#include <linux/userfaultfd_k.h>
  72#include <linux/tsacct_kern.h>
  73#include <linux/cn_proc.h>
  74#include <linux/freezer.h>
  75#include <linux/delayacct.h>
  76#include <linux/taskstats_kern.h>
  77#include <linux/random.h>
  78#include <linux/tty.h>
  79#include <linux/blkdev.h>
  80#include <linux/fs_struct.h>
  81#include <linux/magic.h>
  82#include <linux/perf_event.h>
  83#include <linux/posix-timers.h>
  84#include <linux/user-return-notifier.h>
  85#include <linux/oom.h>
  86#include <linux/khugepaged.h>
  87#include <linux/signalfd.h>
  88#include <linux/uprobes.h>
  89#include <linux/aio.h>
  90#include <linux/compiler.h>
  91#include <linux/sysctl.h>
  92#include <linux/kcov.h>
  93#include <linux/livepatch.h>
  94#include <linux/thread_info.h>
  95#include <linux/stackleak.h>
  96#include <linux/kasan.h>
  97#include <linux/scs.h>
  98
 
  99#include <asm/pgalloc.h>
 100#include <linux/uaccess.h>
 101#include <asm/mmu_context.h>
 102#include <asm/cacheflush.h>
 103#include <asm/tlbflush.h>
 104
 105#include <trace/events/sched.h>
 106
 107#define CREATE_TRACE_POINTS
 108#include <trace/events/task.h>
 109
 110/*
 111 * Minimum number of threads to boot the kernel
 112 */
 113#define MIN_THREADS 20
 114
 115/*
 116 * Maximum number of threads
 117 */
 118#define MAX_THREADS FUTEX_TID_MASK
 119
 120/*
 121 * Protected counters by write_lock_irq(&tasklist_lock)
 122 */
 123unsigned long total_forks;	/* Handle normal Linux uptimes. */
 124int nr_threads;			/* The idle threads do not count.. */
 125
 126static int max_threads;		/* tunable limit on nr_threads */
 127
 128#define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
 129
 130static const char * const resident_page_types[] = {
 131	NAMED_ARRAY_INDEX(MM_FILEPAGES),
 132	NAMED_ARRAY_INDEX(MM_ANONPAGES),
 133	NAMED_ARRAY_INDEX(MM_SWAPENTS),
 134	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
 135};
 136
 137DEFINE_PER_CPU(unsigned long, process_counts) = 0;
 138
 139__cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
 140
 141#ifdef CONFIG_PROVE_RCU
 142int lockdep_tasklist_lock_is_held(void)
 143{
 144	return lockdep_is_held(&tasklist_lock);
 145}
 146EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
 147#endif /* #ifdef CONFIG_PROVE_RCU */
 148
 149int nr_processes(void)
 150{
 151	int cpu;
 152	int total = 0;
 153
 154	for_each_possible_cpu(cpu)
 155		total += per_cpu(process_counts, cpu);
 156
 157	return total;
 158}
 159
 160void __weak arch_release_task_struct(struct task_struct *tsk)
 161{
 162}
 163
 164#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 165static struct kmem_cache *task_struct_cachep;
 166
 167static inline struct task_struct *alloc_task_struct_node(int node)
 168{
 169	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
 170}
 171
 172static inline void free_task_struct(struct task_struct *tsk)
 173{
 174	kmem_cache_free(task_struct_cachep, tsk);
 175}
 176#endif
 177
 178#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
 
 
 
 
 179
 180/*
 181 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
 182 * kmemcache based allocator.
 183 */
 184# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
 185
 186#ifdef CONFIG_VMAP_STACK
 187/*
 188 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
 189 * flush.  Try to minimize the number of calls by caching stacks.
 190 */
 191#define NR_CACHED_STACKS 2
 192static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
 193
 194static int free_vm_stack_cache(unsigned int cpu)
 195{
 196	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
 197	int i;
 198
 199	for (i = 0; i < NR_CACHED_STACKS; i++) {
 200		struct vm_struct *vm_stack = cached_vm_stacks[i];
 201
 202		if (!vm_stack)
 203			continue;
 204
 205		vfree(vm_stack->addr);
 206		cached_vm_stacks[i] = NULL;
 207	}
 208
 209	return 0;
 210}
 211#endif
 212
 213static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
 214{
 215#ifdef CONFIG_VMAP_STACK
 216	void *stack;
 217	int i;
 218
 219	for (i = 0; i < NR_CACHED_STACKS; i++) {
 220		struct vm_struct *s;
 221
 222		s = this_cpu_xchg(cached_stacks[i], NULL);
 223
 224		if (!s)
 225			continue;
 226
 227		/* Clear the KASAN shadow of the stack. */
 228		kasan_unpoison_shadow(s->addr, THREAD_SIZE);
 229
 230		/* Clear stale pointers from reused stack. */
 231		memset(s->addr, 0, THREAD_SIZE);
 232
 233		tsk->stack_vm_area = s;
 234		tsk->stack = s->addr;
 235		return s->addr;
 236	}
 237
 238	/*
 239	 * Allocated stacks are cached and later reused by new threads,
 240	 * so memcg accounting is performed manually on assigning/releasing
 241	 * stacks to tasks. Drop __GFP_ACCOUNT.
 242	 */
 243	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
 244				     VMALLOC_START, VMALLOC_END,
 245				     THREADINFO_GFP & ~__GFP_ACCOUNT,
 246				     PAGE_KERNEL,
 247				     0, node, __builtin_return_address(0));
 248
 249	/*
 250	 * We can't call find_vm_area() in interrupt context, and
 251	 * free_thread_stack() can be called in interrupt context,
 252	 * so cache the vm_struct.
 253	 */
 254	if (stack) {
 255		tsk->stack_vm_area = find_vm_area(stack);
 256		tsk->stack = stack;
 257	}
 258	return stack;
 259#else
 260	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
 261					     THREAD_SIZE_ORDER);
 262
 263	if (likely(page)) {
 264		tsk->stack = kasan_reset_tag(page_address(page));
 265		return tsk->stack;
 266	}
 267	return NULL;
 268#endif
 269}
 270
 271static inline void free_thread_stack(struct task_struct *tsk)
 272{
 273#ifdef CONFIG_VMAP_STACK
 274	struct vm_struct *vm = task_stack_vm_area(tsk);
 275
 276	if (vm) {
 277		int i;
 278
 279		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
 280			memcg_kmem_uncharge_page(vm->pages[i], 0);
 281
 282		for (i = 0; i < NR_CACHED_STACKS; i++) {
 283			if (this_cpu_cmpxchg(cached_stacks[i],
 284					NULL, tsk->stack_vm_area) != NULL)
 285				continue;
 286
 287			return;
 288		}
 289
 290		vfree_atomic(tsk->stack);
 291		return;
 292	}
 293#endif
 294
 295	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
 296}
 297# else
 298static struct kmem_cache *thread_stack_cache;
 299
 300static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
 301						  int node)
 302{
 303	unsigned long *stack;
 304	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
 305	stack = kasan_reset_tag(stack);
 306	tsk->stack = stack;
 307	return stack;
 308}
 309
 310static void free_thread_stack(struct task_struct *tsk)
 311{
 312	kmem_cache_free(thread_stack_cache, tsk->stack);
 313}
 314
 315void thread_stack_cache_init(void)
 316{
 317	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
 318					THREAD_SIZE, THREAD_SIZE, 0, 0,
 319					THREAD_SIZE, NULL);
 320	BUG_ON(thread_stack_cache == NULL);
 321}
 322# endif
 323#endif
 324
 325/* SLAB cache for signal_struct structures (tsk->signal) */
 326static struct kmem_cache *signal_cachep;
 327
 328/* SLAB cache for sighand_struct structures (tsk->sighand) */
 329struct kmem_cache *sighand_cachep;
 330
 331/* SLAB cache for files_struct structures (tsk->files) */
 332struct kmem_cache *files_cachep;
 333
 334/* SLAB cache for fs_struct structures (tsk->fs) */
 335struct kmem_cache *fs_cachep;
 336
 337/* SLAB cache for vm_area_struct structures */
 338static struct kmem_cache *vm_area_cachep;
 339
 340/* SLAB cache for mm_struct structures (tsk->mm) */
 341static struct kmem_cache *mm_cachep;
 342
 343struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
 344{
 345	struct vm_area_struct *vma;
 346
 347	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 348	if (vma)
 349		vma_init(vma, mm);
 350	return vma;
 351}
 352
 353struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
 354{
 355	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 356
 357	if (new) {
 358		ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
 359		ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
 360		/*
 361		 * orig->shared.rb may be modified concurrently, but the clone
 362		 * will be reinitialized.
 363		 */
 364		*new = data_race(*orig);
 365		INIT_LIST_HEAD(&new->anon_vma_chain);
 366		new->vm_next = new->vm_prev = NULL;
 367	}
 368	return new;
 369}
 370
 371void vm_area_free(struct vm_area_struct *vma)
 372{
 373	kmem_cache_free(vm_area_cachep, vma);
 
 374}
 375
 376static void account_kernel_stack(struct task_struct *tsk, int account)
 377{
 378	void *stack = task_stack_page(tsk);
 379	struct vm_struct *vm = task_stack_vm_area(tsk);
 
 380
 
 
 
 
 
 381
 382	/* All stack pages are in the same node. */
 383	if (vm)
 384		mod_lruvec_page_state(vm->pages[0], NR_KERNEL_STACK_KB,
 385				      account * (THREAD_SIZE / 1024));
 386	else
 387		mod_lruvec_slab_state(stack, NR_KERNEL_STACK_KB,
 388				      account * (THREAD_SIZE / 1024));
 389}
 
 390
 391static int memcg_charge_kernel_stack(struct task_struct *tsk)
 
 
 392{
 393#ifdef CONFIG_VMAP_STACK
 394	struct vm_struct *vm = task_stack_vm_area(tsk);
 395	int ret;
 
 
 
 
 
 
 
 
 
 396
 397	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
 
 
 
 
 
 398
 399	if (vm) {
 400		int i;
 
 
 
 401
 402		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
 
 
 
 
 403
 404		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
 405			/*
 406			 * If memcg_kmem_charge_page() fails, page->mem_cgroup
 407			 * pointer is NULL, and memcg_kmem_uncharge_page() in
 408			 * free_thread_stack() will ignore this page.
 409			 */
 410			ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
 411						     0);
 412			if (ret)
 413				return ret;
 414		}
 415	}
 416#endif
 417	return 0;
 418}
 419
 420static void release_task_stack(struct task_struct *tsk)
 421{
 422	if (WARN_ON(tsk->state != TASK_DEAD))
 423		return;  /* Better to leak the stack than to free prematurely */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 424
 425	account_kernel_stack(tsk, -1);
 426	free_thread_stack(tsk);
 427	tsk->stack = NULL;
 428#ifdef CONFIG_VMAP_STACK
 429	tsk->stack_vm_area = NULL;
 430#endif
 431}
 432
 433#ifdef CONFIG_THREAD_INFO_IN_TASK
 434void put_task_stack(struct task_struct *tsk)
 435{
 436	if (refcount_dec_and_test(&tsk->stack_refcount))
 437		release_task_stack(tsk);
 438}
 439#endif
 440
 441void free_task(struct task_struct *tsk)
 442{
 443	scs_release(tsk);
 444
 445#ifndef CONFIG_THREAD_INFO_IN_TASK
 446	/*
 447	 * The task is finally done with both the stack and thread_info,
 448	 * so free both.
 449	 */
 450	release_task_stack(tsk);
 451#else
 452	/*
 453	 * If the task had a separate stack allocation, it should be gone
 454	 * by now.
 455	 */
 456	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
 457#endif
 458	rt_mutex_debug_task_free(tsk);
 459	ftrace_graph_exit_task(tsk);
 460	arch_release_task_struct(tsk);
 461	if (tsk->flags & PF_KTHREAD)
 462		free_kthread_struct(tsk);
 
 
 
 
 
 463	free_task_struct(tsk);
 
 464}
 465EXPORT_SYMBOL(free_task);
 466
 467#ifdef CONFIG_MMU
 468static __latent_entropy int dup_mmap(struct mm_struct *mm,
 469					struct mm_struct *oldmm)
 470{
 471	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
 472	struct rb_node **rb_link, *rb_parent;
 473	int retval;
 474	unsigned long charge;
 475	LIST_HEAD(uf);
 476
 477	uprobe_start_dup_mmap();
 478	if (mmap_write_lock_killable(oldmm)) {
 479		retval = -EINTR;
 480		goto fail_uprobe_end;
 481	}
 482	flush_cache_dup_mm(oldmm);
 483	uprobe_dup_mmap(oldmm, mm);
 484	/*
 485	 * Not linked in yet - no deadlock potential:
 486	 */
 487	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
 488
 489	/* No ordering required: file already has been exposed. */
 490	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 491
 492	mm->total_vm = oldmm->total_vm;
 493	mm->data_vm = oldmm->data_vm;
 494	mm->exec_vm = oldmm->exec_vm;
 495	mm->stack_vm = oldmm->stack_vm;
 496
 
 
 
 
 
 
 497	rb_link = &mm->mm_rb.rb_node;
 498	rb_parent = NULL;
 499	pprev = &mm->mmap;
 500	retval = ksm_fork(mm, oldmm);
 501	if (retval)
 502		goto out;
 503	retval = khugepaged_fork(mm, oldmm);
 504	if (retval)
 505		goto out;
 506
 507	prev = NULL;
 508	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
 509		struct file *file;
 510
 511		if (mpnt->vm_flags & VM_DONTCOPY) {
 512			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
 
 513			continue;
 514		}
 515		charge = 0;
 516		/*
 517		 * Don't duplicate many vmas if we've been oom-killed (for
 518		 * example)
 519		 */
 520		if (fatal_signal_pending(current)) {
 521			retval = -EINTR;
 522			goto out;
 523		}
 524		if (mpnt->vm_flags & VM_ACCOUNT) {
 525			unsigned long len = vma_pages(mpnt);
 526
 527			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
 528				goto fail_nomem;
 529			charge = len;
 530		}
 531		tmp = vm_area_dup(mpnt);
 532		if (!tmp)
 533			goto fail_nomem;
 
 
 534		retval = vma_dup_policy(mpnt, tmp);
 535		if (retval)
 536			goto fail_nomem_policy;
 537		tmp->vm_mm = mm;
 538		retval = dup_userfaultfd(tmp, &uf);
 539		if (retval)
 540			goto fail_nomem_anon_vma_fork;
 541		if (tmp->vm_flags & VM_WIPEONFORK) {
 542			/*
 543			 * VM_WIPEONFORK gets a clean slate in the child.
 544			 * Don't prepare anon_vma until fault since we don't
 545			 * copy page for current vma.
 546			 */
 547			tmp->anon_vma = NULL;
 548		} else if (anon_vma_fork(tmp, mpnt))
 549			goto fail_nomem_anon_vma_fork;
 550		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
 551		file = tmp->vm_file;
 552		if (file) {
 553			struct inode *inode = file_inode(file);
 554			struct address_space *mapping = file->f_mapping;
 555
 556			get_file(file);
 557			if (tmp->vm_flags & VM_DENYWRITE)
 558				atomic_dec(&inode->i_writecount);
 559			i_mmap_lock_write(mapping);
 560			if (tmp->vm_flags & VM_SHARED)
 561				atomic_inc(&mapping->i_mmap_writable);
 562			flush_dcache_mmap_lock(mapping);
 563			/* insert tmp into the share list, just after mpnt */
 564			vma_interval_tree_insert_after(tmp, mpnt,
 565					&mapping->i_mmap);
 
 
 
 
 566			flush_dcache_mmap_unlock(mapping);
 567			i_mmap_unlock_write(mapping);
 568		}
 569
 570		/*
 571		 * Clear hugetlb-related page reserves for children. This only
 572		 * affects MAP_PRIVATE mappings. Faults generated by the child
 573		 * are not guaranteed to succeed, even if read-only
 574		 */
 575		if (is_vm_hugetlb_page(tmp))
 576			reset_vma_resv_huge_pages(tmp);
 577
 578		/*
 579		 * Link in the new vma and copy the page table entries.
 580		 */
 581		*pprev = tmp;
 582		pprev = &tmp->vm_next;
 583		tmp->vm_prev = prev;
 584		prev = tmp;
 585
 586		__vma_link_rb(mm, tmp, rb_link, rb_parent);
 587		rb_link = &tmp->vm_rb.rb_right;
 588		rb_parent = &tmp->vm_rb;
 589
 590		mm->map_count++;
 591		if (!(tmp->vm_flags & VM_WIPEONFORK))
 592			retval = copy_page_range(mm, oldmm, mpnt, tmp);
 593
 594		if (tmp->vm_ops && tmp->vm_ops->open)
 595			tmp->vm_ops->open(tmp);
 596
 597		if (retval)
 598			goto out;
 599	}
 600	/* a new mm has just been created */
 601	retval = arch_dup_mmap(oldmm, mm);
 
 602out:
 603	mmap_write_unlock(mm);
 604	flush_tlb_mm(oldmm);
 605	mmap_write_unlock(oldmm);
 606	dup_userfaultfd_complete(&uf);
 607fail_uprobe_end:
 608	uprobe_end_dup_mmap();
 609	return retval;
 610fail_nomem_anon_vma_fork:
 611	mpol_put(vma_policy(tmp));
 612fail_nomem_policy:
 613	vm_area_free(tmp);
 614fail_nomem:
 615	retval = -ENOMEM;
 616	vm_unacct_memory(charge);
 617	goto out;
 618}
 619
 620static inline int mm_alloc_pgd(struct mm_struct *mm)
 621{
 622	mm->pgd = pgd_alloc(mm);
 623	if (unlikely(!mm->pgd))
 624		return -ENOMEM;
 625	return 0;
 626}
 627
 628static inline void mm_free_pgd(struct mm_struct *mm)
 629{
 630	pgd_free(mm, mm->pgd);
 631}
 632#else
 633static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
 634{
 635	mmap_write_lock(oldmm);
 636	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 637	mmap_write_unlock(oldmm);
 638	return 0;
 639}
 640#define mm_alloc_pgd(mm)	(0)
 641#define mm_free_pgd(mm)
 642#endif /* CONFIG_MMU */
 643
 644static void check_mm(struct mm_struct *mm)
 645{
 646	int i;
 647
 648	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
 649			 "Please make sure 'struct resident_page_types[]' is updated as well");
 650
 651	for (i = 0; i < NR_MM_COUNTERS; i++) {
 652		long x = atomic_long_read(&mm->rss_stat.count[i]);
 653
 654		if (unlikely(x))
 655			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
 656				 mm, resident_page_types[i], x);
 657	}
 658
 659	if (mm_pgtables_bytes(mm))
 660		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
 661				mm_pgtables_bytes(mm));
 662
 663#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 664	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
 665#endif
 666}
 667
 668#define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
 669#define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
 670
 671/*
 672 * Called when the last reference to the mm
 673 * is dropped: either by a lazy thread or by
 674 * mmput. Free the page directory and the mm.
 675 */
 676void __mmdrop(struct mm_struct *mm)
 677{
 678	BUG_ON(mm == &init_mm);
 679	WARN_ON_ONCE(mm == current->mm);
 680	WARN_ON_ONCE(mm == current->active_mm);
 681	mm_free_pgd(mm);
 682	destroy_context(mm);
 683	mmu_notifier_subscriptions_destroy(mm);
 684	check_mm(mm);
 685	put_user_ns(mm->user_ns);
 686	free_mm(mm);
 687}
 688EXPORT_SYMBOL_GPL(__mmdrop);
 689
 690static void mmdrop_async_fn(struct work_struct *work)
 691{
 692	struct mm_struct *mm;
 693
 694	mm = container_of(work, struct mm_struct, async_put_work);
 695	__mmdrop(mm);
 696}
 697
 698static void mmdrop_async(struct mm_struct *mm)
 699{
 700	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
 701		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
 702		schedule_work(&mm->async_put_work);
 703	}
 704}
 705
 706static inline void free_signal_struct(struct signal_struct *sig)
 707{
 708	taskstats_tgid_free(sig);
 709	sched_autogroup_exit(sig);
 710	/*
 711	 * __mmdrop is not safe to call from softirq context on x86 due to
 712	 * pgd_dtor so postpone it to the async context
 713	 */
 714	if (sig->oom_mm)
 715		mmdrop_async(sig->oom_mm);
 716	kmem_cache_free(signal_cachep, sig);
 717}
 718
 719static inline void put_signal_struct(struct signal_struct *sig)
 720{
 721	if (refcount_dec_and_test(&sig->sigcnt))
 722		free_signal_struct(sig);
 723}
 724
 725void __put_task_struct(struct task_struct *tsk)
 726{
 727	WARN_ON(!tsk->exit_state);
 728	WARN_ON(refcount_read(&tsk->usage));
 729	WARN_ON(tsk == current);
 730
 731	cgroup_free(tsk);
 732	task_numa_free(tsk, true);
 733	security_task_free(tsk);
 734	exit_creds(tsk);
 735	delayacct_tsk_free(tsk);
 736	put_signal_struct(tsk->signal);
 737
 738	if (!profile_handoff_task(tsk))
 739		free_task(tsk);
 740}
 741EXPORT_SYMBOL_GPL(__put_task_struct);
 742
 743void __init __weak arch_task_cache_init(void) { }
 744
 745/*
 746 * set_max_threads
 747 */
 748static void set_max_threads(unsigned int max_threads_suggested)
 749{
 750	u64 threads;
 751	unsigned long nr_pages = totalram_pages();
 752
 753	/*
 754	 * The number of threads shall be limited such that the thread
 755	 * structures may only consume a small part of the available memory.
 756	 */
 757	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
 758		threads = MAX_THREADS;
 759	else
 760		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
 761				    (u64) THREAD_SIZE * 8UL);
 762
 763	if (threads > max_threads_suggested)
 764		threads = max_threads_suggested;
 765
 766	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
 767}
 768
 769#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
 770/* Initialized by the architecture: */
 771int arch_task_struct_size __read_mostly;
 772#endif
 773
 774#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 775static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
 776{
 777	/* Fetch thread_struct whitelist for the architecture. */
 778	arch_thread_struct_whitelist(offset, size);
 779
 780	/*
 781	 * Handle zero-sized whitelist or empty thread_struct, otherwise
 782	 * adjust offset to position of thread_struct in task_struct.
 783	 */
 784	if (unlikely(*size == 0))
 785		*offset = 0;
 786	else
 787		*offset += offsetof(struct task_struct, thread);
 788}
 789#endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
 790
 791void __init fork_init(void)
 792{
 793	int i;
 794#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 795#ifndef ARCH_MIN_TASKALIGN
 796#define ARCH_MIN_TASKALIGN	0
 797#endif
 798	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
 799	unsigned long useroffset, usersize;
 800
 801	/* create a slab on which task_structs can be allocated */
 802	task_struct_whitelist(&useroffset, &usersize);
 803	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
 804			arch_task_struct_size, align,
 805			SLAB_PANIC|SLAB_ACCOUNT,
 806			useroffset, usersize, NULL);
 807#endif
 808
 809	/* do the arch specific task caches init */
 810	arch_task_cache_init();
 811
 812	set_max_threads(MAX_THREADS);
 813
 814	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
 815	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
 816	init_task.signal->rlim[RLIMIT_SIGPENDING] =
 817		init_task.signal->rlim[RLIMIT_NPROC];
 818
 819	for (i = 0; i < UCOUNT_COUNTS; i++) {
 820		init_user_ns.ucount_max[i] = max_threads/2;
 821	}
 822
 823#ifdef CONFIG_VMAP_STACK
 824	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
 825			  NULL, free_vm_stack_cache);
 826#endif
 827
 828	scs_init();
 829
 830	lockdep_init_task(&init_task);
 831	uprobes_init();
 832}
 833
 834int __weak arch_dup_task_struct(struct task_struct *dst,
 835					       struct task_struct *src)
 836{
 837	*dst = *src;
 838	return 0;
 839}
 840
 841void set_task_stack_end_magic(struct task_struct *tsk)
 842{
 843	unsigned long *stackend;
 844
 845	stackend = end_of_stack(tsk);
 846	*stackend = STACK_END_MAGIC;	/* for overflow detection */
 847}
 848
 849static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
 850{
 851	struct task_struct *tsk;
 852	unsigned long *stack;
 853	struct vm_struct *stack_vm_area __maybe_unused;
 854	int err;
 855
 856	if (node == NUMA_NO_NODE)
 857		node = tsk_fork_get_node(orig);
 858	tsk = alloc_task_struct_node(node);
 859	if (!tsk)
 860		return NULL;
 861
 862	stack = alloc_thread_stack_node(tsk, node);
 863	if (!stack)
 864		goto free_tsk;
 865
 866	if (memcg_charge_kernel_stack(tsk))
 867		goto free_stack;
 868
 869	stack_vm_area = task_stack_vm_area(tsk);
 870
 871	err = arch_dup_task_struct(tsk, orig);
 872
 873	/*
 874	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
 875	 * sure they're properly initialized before using any stack-related
 876	 * functions again.
 877	 */
 878	tsk->stack = stack;
 879#ifdef CONFIG_VMAP_STACK
 880	tsk->stack_vm_area = stack_vm_area;
 881#endif
 882#ifdef CONFIG_THREAD_INFO_IN_TASK
 883	refcount_set(&tsk->stack_refcount, 1);
 884#endif
 885
 886	if (err)
 887		goto free_stack;
 888
 889	err = scs_prepare(tsk, node);
 890	if (err)
 891		goto free_stack;
 892
 893#ifdef CONFIG_SECCOMP
 894	/*
 895	 * We must handle setting up seccomp filters once we're under
 896	 * the sighand lock in case orig has changed between now and
 897	 * then. Until then, filter must be NULL to avoid messing up
 898	 * the usage counts on the error path calling free_task.
 899	 */
 900	tsk->seccomp.filter = NULL;
 901#endif
 902
 903	setup_thread_stack(tsk, orig);
 904	clear_user_return_notifier(tsk);
 905	clear_tsk_need_resched(tsk);
 906	set_task_stack_end_magic(tsk);
 907
 908#ifdef CONFIG_STACKPROTECTOR
 909	tsk->stack_canary = get_random_canary();
 910#endif
 911	if (orig->cpus_ptr == &orig->cpus_mask)
 912		tsk->cpus_ptr = &tsk->cpus_mask;
 913
 914	/*
 915	 * One for the user space visible state that goes away when reaped.
 916	 * One for the scheduler.
 917	 */
 918	refcount_set(&tsk->rcu_users, 2);
 919	/* One for the rcu users */
 920	refcount_set(&tsk->usage, 1);
 921#ifdef CONFIG_BLK_DEV_IO_TRACE
 922	tsk->btrace_seq = 0;
 923#endif
 924	tsk->splice_pipe = NULL;
 925	tsk->task_frag.page = NULL;
 926	tsk->wake_q.next = NULL;
 927
 928	account_kernel_stack(tsk, 1);
 929
 930	kcov_task_init(tsk);
 931
 932#ifdef CONFIG_FAULT_INJECTION
 933	tsk->fail_nth = 0;
 934#endif
 935
 936#ifdef CONFIG_BLK_CGROUP
 937	tsk->throttle_queue = NULL;
 938	tsk->use_memdelay = 0;
 939#endif
 940
 941#ifdef CONFIG_MEMCG
 942	tsk->active_memcg = NULL;
 943#endif
 944	return tsk;
 945
 946free_stack:
 947	free_thread_stack(tsk);
 948free_tsk:
 949	free_task_struct(tsk);
 950	return NULL;
 951}
 952
 953__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
 954
 955static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
 956
 957static int __init coredump_filter_setup(char *s)
 958{
 959	default_dump_filter =
 960		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
 961		MMF_DUMP_FILTER_MASK;
 962	return 1;
 963}
 964
 965__setup("coredump_filter=", coredump_filter_setup);
 966
 967#include <linux/init_task.h>
 968
 969static void mm_init_aio(struct mm_struct *mm)
 970{
 971#ifdef CONFIG_AIO
 972	spin_lock_init(&mm->ioctx_lock);
 973	mm->ioctx_table = NULL;
 974#endif
 975}
 976
 977static __always_inline void mm_clear_owner(struct mm_struct *mm,
 978					   struct task_struct *p)
 979{
 980#ifdef CONFIG_MEMCG
 981	if (mm->owner == p)
 982		WRITE_ONCE(mm->owner, NULL);
 983#endif
 984}
 985
 986static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
 987{
 988#ifdef CONFIG_MEMCG
 989	mm->owner = p;
 990#endif
 991}
 992
 993static void mm_init_uprobes_state(struct mm_struct *mm)
 994{
 995#ifdef CONFIG_UPROBES
 996	mm->uprobes_state.xol_area = NULL;
 997#endif
 998}
 999
1000static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1001	struct user_namespace *user_ns)
1002{
1003	mm->mmap = NULL;
1004	mm->mm_rb = RB_ROOT;
1005	mm->vmacache_seqnum = 0;
1006	atomic_set(&mm->mm_users, 1);
1007	atomic_set(&mm->mm_count, 1);
1008	mmap_init_lock(mm);
1009	INIT_LIST_HEAD(&mm->mmlist);
1010	mm->core_state = NULL;
1011	mm_pgtables_bytes_init(mm);
1012	mm->map_count = 0;
1013	mm->locked_vm = 0;
1014	atomic_set(&mm->has_pinned, 0);
1015	atomic64_set(&mm->pinned_vm, 0);
1016	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1017	spin_lock_init(&mm->page_table_lock);
1018	spin_lock_init(&mm->arg_lock);
1019	mm_init_cpumask(mm);
1020	mm_init_aio(mm);
1021	mm_init_owner(mm, p);
1022	RCU_INIT_POINTER(mm->exe_file, NULL);
1023	mmu_notifier_subscriptions_init(mm);
1024	init_tlb_flush_pending(mm);
1025#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1026	mm->pmd_huge_pte = NULL;
1027#endif
1028	mm_init_uprobes_state(mm);
1029
1030	if (current->mm) {
1031		mm->flags = current->mm->flags & MMF_INIT_MASK;
1032		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1033	} else {
1034		mm->flags = default_dump_filter;
1035		mm->def_flags = 0;
1036	}
1037
1038	if (mm_alloc_pgd(mm))
1039		goto fail_nopgd;
 
 
 
 
 
 
 
 
 
 
1040
1041	if (init_new_context(p, mm))
1042		goto fail_nocontext;
1043
1044	mm->user_ns = get_user_ns(user_ns);
1045	return mm;
 
 
1046
1047fail_nocontext:
1048	mm_free_pgd(mm);
1049fail_nopgd:
1050	free_mm(mm);
1051	return NULL;
1052}
1053
1054/*
1055 * Allocate and initialize an mm_struct.
1056 */
1057struct mm_struct *mm_alloc(void)
1058{
1059	struct mm_struct *mm;
1060
1061	mm = allocate_mm();
1062	if (!mm)
1063		return NULL;
1064
1065	memset(mm, 0, sizeof(*mm));
1066	return mm_init(mm, current, current_user_ns());
 
1067}
1068
1069static inline void __mmput(struct mm_struct *mm)
 
 
 
 
 
1070{
1071	VM_BUG_ON(atomic_read(&mm->mm_users));
1072
1073	uprobe_clear_state(mm);
1074	exit_aio(mm);
1075	ksm_exit(mm);
1076	khugepaged_exit(mm); /* must run before exit_mmap */
1077	exit_mmap(mm);
1078	mm_put_huge_zero_page(mm);
1079	set_mm_exe_file(mm, NULL);
1080	if (!list_empty(&mm->mmlist)) {
1081		spin_lock(&mmlist_lock);
1082		list_del(&mm->mmlist);
1083		spin_unlock(&mmlist_lock);
1084	}
1085	if (mm->binfmt)
1086		module_put(mm->binfmt->module);
1087	mmdrop(mm);
1088}
 
1089
1090/*
1091 * Decrement the use count and release all resources for an mm.
1092 */
1093void mmput(struct mm_struct *mm)
1094{
1095	might_sleep();
1096
1097	if (atomic_dec_and_test(&mm->mm_users))
1098		__mmput(mm);
1099}
1100EXPORT_SYMBOL_GPL(mmput);
1101
1102#ifdef CONFIG_MMU
1103static void mmput_async_fn(struct work_struct *work)
1104{
1105	struct mm_struct *mm = container_of(work, struct mm_struct,
1106					    async_put_work);
1107
1108	__mmput(mm);
1109}
1110
1111void mmput_async(struct mm_struct *mm)
1112{
1113	if (atomic_dec_and_test(&mm->mm_users)) {
1114		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1115		schedule_work(&mm->async_put_work);
 
 
 
 
 
 
 
 
 
 
 
 
1116	}
1117}
1118#endif
1119
1120/**
1121 * set_mm_exe_file - change a reference to the mm's executable file
1122 *
1123 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1124 *
1125 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1126 * invocations: in mmput() nobody alive left, in execve task is single
1127 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1128 * mm->exe_file, but does so without using set_mm_exe_file() in order
1129 * to do avoid the need for any locks.
1130 */
1131void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1132{
1133	struct file *old_exe_file;
1134
1135	/*
1136	 * It is safe to dereference the exe_file without RCU as
1137	 * this function is only called if nobody else can access
1138	 * this mm -- see comment above for justification.
1139	 */
1140	old_exe_file = rcu_dereference_raw(mm->exe_file);
1141
1142	if (new_exe_file)
1143		get_file(new_exe_file);
1144	rcu_assign_pointer(mm->exe_file, new_exe_file);
1145	if (old_exe_file)
1146		fput(old_exe_file);
1147}
1148
1149/**
1150 * get_mm_exe_file - acquire a reference to the mm's executable file
1151 *
1152 * Returns %NULL if mm has no associated executable file.
1153 * User must release file via fput().
1154 */
1155struct file *get_mm_exe_file(struct mm_struct *mm)
1156{
1157	struct file *exe_file;
1158
1159	rcu_read_lock();
1160	exe_file = rcu_dereference(mm->exe_file);
1161	if (exe_file && !get_file_rcu(exe_file))
1162		exe_file = NULL;
1163	rcu_read_unlock();
 
1164	return exe_file;
1165}
1166EXPORT_SYMBOL(get_mm_exe_file);
1167
1168/**
1169 * get_task_exe_file - acquire a reference to the task's executable file
1170 *
1171 * Returns %NULL if task's mm (if any) has no associated executable file or
1172 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1173 * User must release file via fput().
1174 */
1175struct file *get_task_exe_file(struct task_struct *task)
1176{
1177	struct file *exe_file = NULL;
1178	struct mm_struct *mm;
1179
1180	task_lock(task);
1181	mm = task->mm;
1182	if (mm) {
1183		if (!(task->flags & PF_KTHREAD))
1184			exe_file = get_mm_exe_file(mm);
1185	}
1186	task_unlock(task);
1187	return exe_file;
1188}
1189EXPORT_SYMBOL(get_task_exe_file);
1190
1191/**
1192 * get_task_mm - acquire a reference to the task's mm
1193 *
1194 * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1195 * this kernel workthread has transiently adopted a user mm with use_mm,
1196 * to do its AIO) is not set and if so returns a reference to it, after
1197 * bumping up the use count.  User must release the mm via mmput()
1198 * after use.  Typically used by /proc and ptrace.
1199 */
1200struct mm_struct *get_task_mm(struct task_struct *task)
1201{
1202	struct mm_struct *mm;
1203
1204	task_lock(task);
1205	mm = task->mm;
1206	if (mm) {
1207		if (task->flags & PF_KTHREAD)
1208			mm = NULL;
1209		else
1210			mmget(mm);
1211	}
1212	task_unlock(task);
1213	return mm;
1214}
1215EXPORT_SYMBOL_GPL(get_task_mm);
1216
1217struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1218{
1219	struct mm_struct *mm;
1220	int err;
1221
1222	err =  mutex_lock_killable(&task->signal->exec_update_mutex);
1223	if (err)
1224		return ERR_PTR(err);
1225
1226	mm = get_task_mm(task);
1227	if (mm && mm != current->mm &&
1228			!ptrace_may_access(task, mode)) {
1229		mmput(mm);
1230		mm = ERR_PTR(-EACCES);
1231	}
1232	mutex_unlock(&task->signal->exec_update_mutex);
1233
1234	return mm;
1235}
1236
1237static void complete_vfork_done(struct task_struct *tsk)
1238{
1239	struct completion *vfork;
1240
1241	task_lock(tsk);
1242	vfork = tsk->vfork_done;
1243	if (likely(vfork)) {
1244		tsk->vfork_done = NULL;
1245		complete(vfork);
1246	}
1247	task_unlock(tsk);
1248}
1249
1250static int wait_for_vfork_done(struct task_struct *child,
1251				struct completion *vfork)
1252{
1253	int killed;
1254
1255	freezer_do_not_count();
1256	cgroup_enter_frozen();
1257	killed = wait_for_completion_killable(vfork);
1258	cgroup_leave_frozen(false);
1259	freezer_count();
1260
1261	if (killed) {
1262		task_lock(child);
1263		child->vfork_done = NULL;
1264		task_unlock(child);
1265	}
1266
1267	put_task_struct(child);
1268	return killed;
1269}
1270
1271/* Please note the differences between mmput and mm_release.
1272 * mmput is called whenever we stop holding onto a mm_struct,
1273 * error success whatever.
1274 *
1275 * mm_release is called after a mm_struct has been removed
1276 * from the current process.
1277 *
1278 * This difference is important for error handling, when we
1279 * only half set up a mm_struct for a new process and need to restore
1280 * the old one.  Because we mmput the new mm_struct before
1281 * restoring the old one. . .
1282 * Eric Biederman 10 January 1998
1283 */
1284static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1285{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1286	uprobe_free_utask(tsk);
1287
1288	/* Get rid of any cached register state */
1289	deactivate_mm(tsk, mm);
1290
1291	/*
1292	 * Signal userspace if we're not exiting with a core dump
1293	 * because we want to leave the value intact for debugging
1294	 * purposes.
 
 
1295	 */
1296	if (tsk->clear_child_tid) {
1297		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1298		    atomic_read(&mm->mm_users) > 1) {
1299			/*
1300			 * We don't check the error code - if userspace has
1301			 * not set up a proper pointer then tough luck.
1302			 */
1303			put_user(0, tsk->clear_child_tid);
1304			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1305					1, NULL, NULL, 0, 0);
1306		}
1307		tsk->clear_child_tid = NULL;
1308	}
1309
1310	/*
1311	 * All done, finally we can wake up parent and return this mm to him.
1312	 * Also kthread_stop() uses this completion for synchronization.
1313	 */
1314	if (tsk->vfork_done)
1315		complete_vfork_done(tsk);
1316}
1317
1318void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1319{
1320	futex_exit_release(tsk);
1321	mm_release(tsk, mm);
1322}
1323
1324void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1325{
1326	futex_exec_release(tsk);
1327	mm_release(tsk, mm);
1328}
1329
1330/**
1331 * dup_mm() - duplicates an existing mm structure
1332 * @tsk: the task_struct with which the new mm will be associated.
1333 * @oldmm: the mm to duplicate.
1334 *
1335 * Allocates a new mm structure and duplicates the provided @oldmm structure
1336 * content into it.
1337 *
1338 * Return: the duplicated mm or NULL on failure.
1339 */
1340static struct mm_struct *dup_mm(struct task_struct *tsk,
1341				struct mm_struct *oldmm)
1342{
1343	struct mm_struct *mm;
1344	int err;
1345
1346	mm = allocate_mm();
1347	if (!mm)
1348		goto fail_nomem;
1349
1350	memcpy(mm, oldmm, sizeof(*mm));
 
1351
1352	if (!mm_init(mm, tsk, mm->user_ns))
 
 
 
1353		goto fail_nomem;
1354
 
 
 
 
 
1355	err = dup_mmap(mm, oldmm);
1356	if (err)
1357		goto free_pt;
1358
1359	mm->hiwater_rss = get_mm_rss(mm);
1360	mm->hiwater_vm = mm->total_vm;
1361
1362	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1363		goto free_pt;
1364
1365	return mm;
1366
1367free_pt:
1368	/* don't put binfmt in mmput, we haven't got module yet */
1369	mm->binfmt = NULL;
1370	mm_init_owner(mm, NULL);
1371	mmput(mm);
1372
1373fail_nomem:
1374	return NULL;
 
 
 
 
 
 
 
 
 
1375}
1376
1377static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1378{
1379	struct mm_struct *mm, *oldmm;
1380	int retval;
1381
1382	tsk->min_flt = tsk->maj_flt = 0;
1383	tsk->nvcsw = tsk->nivcsw = 0;
1384#ifdef CONFIG_DETECT_HUNG_TASK
1385	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1386	tsk->last_switch_time = 0;
1387#endif
1388
1389	tsk->mm = NULL;
1390	tsk->active_mm = NULL;
1391
1392	/*
1393	 * Are we cloning a kernel thread?
1394	 *
1395	 * We need to steal a active VM for that..
1396	 */
1397	oldmm = current->mm;
1398	if (!oldmm)
1399		return 0;
1400
1401	/* initialize the new vmacache entries */
1402	vmacache_flush(tsk);
1403
1404	if (clone_flags & CLONE_VM) {
1405		mmget(oldmm);
1406		mm = oldmm;
1407		goto good_mm;
1408	}
1409
1410	retval = -ENOMEM;
1411	mm = dup_mm(tsk, current->mm);
1412	if (!mm)
1413		goto fail_nomem;
1414
1415good_mm:
1416	tsk->mm = mm;
1417	tsk->active_mm = mm;
1418	return 0;
1419
1420fail_nomem:
1421	return retval;
1422}
1423
1424static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1425{
1426	struct fs_struct *fs = current->fs;
1427	if (clone_flags & CLONE_FS) {
1428		/* tsk->fs is already what we want */
1429		spin_lock(&fs->lock);
1430		if (fs->in_exec) {
1431			spin_unlock(&fs->lock);
1432			return -EAGAIN;
1433		}
1434		fs->users++;
1435		spin_unlock(&fs->lock);
1436		return 0;
1437	}
1438	tsk->fs = copy_fs_struct(fs);
1439	if (!tsk->fs)
1440		return -ENOMEM;
1441	return 0;
1442}
1443
1444static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1445{
1446	struct files_struct *oldf, *newf;
1447	int error = 0;
1448
1449	/*
1450	 * A background process may not have any files ...
1451	 */
1452	oldf = current->files;
1453	if (!oldf)
1454		goto out;
1455
1456	if (clone_flags & CLONE_FILES) {
1457		atomic_inc(&oldf->count);
1458		goto out;
1459	}
1460
1461	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1462	if (!newf)
1463		goto out;
1464
1465	tsk->files = newf;
1466	error = 0;
1467out:
1468	return error;
1469}
1470
1471static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1472{
1473#ifdef CONFIG_BLOCK
1474	struct io_context *ioc = current->io_context;
1475	struct io_context *new_ioc;
1476
1477	if (!ioc)
1478		return 0;
1479	/*
1480	 * Share io context with parent, if CLONE_IO is set
1481	 */
1482	if (clone_flags & CLONE_IO) {
1483		ioc_task_link(ioc);
1484		tsk->io_context = ioc;
1485	} else if (ioprio_valid(ioc->ioprio)) {
1486		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1487		if (unlikely(!new_ioc))
1488			return -ENOMEM;
1489
1490		new_ioc->ioprio = ioc->ioprio;
1491		put_io_context(new_ioc);
1492	}
1493#endif
1494	return 0;
1495}
1496
1497static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1498{
1499	struct sighand_struct *sig;
1500
1501	if (clone_flags & CLONE_SIGHAND) {
1502		refcount_inc(&current->sighand->count);
1503		return 0;
1504	}
1505	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1506	RCU_INIT_POINTER(tsk->sighand, sig);
1507	if (!sig)
1508		return -ENOMEM;
1509
1510	refcount_set(&sig->count, 1);
1511	spin_lock_irq(&current->sighand->siglock);
1512	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1513	spin_unlock_irq(&current->sighand->siglock);
1514
1515	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1516	if (clone_flags & CLONE_CLEAR_SIGHAND)
1517		flush_signal_handlers(tsk, 0);
1518
1519	return 0;
1520}
1521
1522void __cleanup_sighand(struct sighand_struct *sighand)
1523{
1524	if (refcount_dec_and_test(&sighand->count)) {
1525		signalfd_cleanup(sighand);
1526		/*
1527		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1528		 * without an RCU grace period, see __lock_task_sighand().
1529		 */
1530		kmem_cache_free(sighand_cachep, sighand);
1531	}
1532}
1533
 
1534/*
1535 * Initialize POSIX timer handling for a thread group.
1536 */
1537static void posix_cpu_timers_init_group(struct signal_struct *sig)
1538{
1539	struct posix_cputimers *pct = &sig->posix_cputimers;
1540	unsigned long cpu_limit;
1541
1542	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1543	posix_cputimers_group_init(pct, cpu_limit);
 
 
 
 
 
 
 
 
 
 
 
1544}
1545
1546static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1547{
1548	struct signal_struct *sig;
1549
1550	if (clone_flags & CLONE_THREAD)
1551		return 0;
1552
1553	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1554	tsk->signal = sig;
1555	if (!sig)
1556		return -ENOMEM;
1557
1558	sig->nr_threads = 1;
1559	atomic_set(&sig->live, 1);
1560	refcount_set(&sig->sigcnt, 1);
1561
1562	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1563	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1564	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1565
1566	init_waitqueue_head(&sig->wait_chldexit);
1567	sig->curr_target = tsk;
1568	init_sigpending(&sig->shared_pending);
1569	INIT_HLIST_HEAD(&sig->multiprocess);
1570	seqlock_init(&sig->stats_lock);
1571	prev_cputime_init(&sig->prev_cputime);
1572
1573#ifdef CONFIG_POSIX_TIMERS
1574	INIT_LIST_HEAD(&sig->posix_timers);
1575	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1576	sig->real_timer.function = it_real_fn;
1577#endif
1578
1579	task_lock(current->group_leader);
1580	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1581	task_unlock(current->group_leader);
1582
1583	posix_cpu_timers_init_group(sig);
1584
1585	tty_audit_fork(sig);
1586	sched_autogroup_fork(sig);
1587
 
 
 
 
1588	sig->oom_score_adj = current->signal->oom_score_adj;
1589	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1590
 
 
 
1591	mutex_init(&sig->cred_guard_mutex);
1592	mutex_init(&sig->exec_update_mutex);
1593
1594	return 0;
1595}
1596
1597static void copy_seccomp(struct task_struct *p)
1598{
1599#ifdef CONFIG_SECCOMP
1600	/*
1601	 * Must be called with sighand->lock held, which is common to
1602	 * all threads in the group. Holding cred_guard_mutex is not
1603	 * needed because this new task is not yet running and cannot
1604	 * be racing exec.
1605	 */
1606	assert_spin_locked(&current->sighand->siglock);
1607
1608	/* Ref-count the new filter user, and assign it. */
1609	get_seccomp_filter(current);
1610	p->seccomp = current->seccomp;
1611
1612	/*
1613	 * Explicitly enable no_new_privs here in case it got set
1614	 * between the task_struct being duplicated and holding the
1615	 * sighand lock. The seccomp state and nnp must be in sync.
1616	 */
1617	if (task_no_new_privs(current))
1618		task_set_no_new_privs(p);
1619
1620	/*
1621	 * If the parent gained a seccomp mode after copying thread
1622	 * flags and between before we held the sighand lock, we have
1623	 * to manually enable the seccomp thread flag here.
1624	 */
1625	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1626		set_tsk_thread_flag(p, TIF_SECCOMP);
1627#endif
1628}
1629
1630SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1631{
1632	current->clear_child_tid = tidptr;
1633
1634	return task_pid_vnr(current);
1635}
1636
1637static void rt_mutex_init_task(struct task_struct *p)
1638{
1639	raw_spin_lock_init(&p->pi_lock);
1640#ifdef CONFIG_RT_MUTEXES
1641	p->pi_waiters = RB_ROOT_CACHED;
 
 
1642	p->pi_top_task = NULL;
1643	p->pi_blocked_on = NULL;
1644#endif
1645}
1646
1647static inline void init_task_pid_links(struct task_struct *task)
 
1648{
1649	enum pid_type type;
1650
1651	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1652		INIT_HLIST_NODE(&task->pid_links[type]);
1653	}
1654}
1655
1656static inline void
1657init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1658{
1659	if (type == PIDTYPE_PID)
1660		task->thread_pid = pid;
1661	else
1662		task->signal->pids[type] = pid;
1663}
1664
1665static inline void rcu_copy_process(struct task_struct *p)
1666{
1667#ifdef CONFIG_PREEMPT_RCU
1668	p->rcu_read_lock_nesting = 0;
1669	p->rcu_read_unlock_special.s = 0;
1670	p->rcu_blocked_node = NULL;
1671	INIT_LIST_HEAD(&p->rcu_node_entry);
1672#endif /* #ifdef CONFIG_PREEMPT_RCU */
1673#ifdef CONFIG_TASKS_RCU
1674	p->rcu_tasks_holdout = false;
1675	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1676	p->rcu_tasks_idle_cpu = -1;
1677#endif /* #ifdef CONFIG_TASKS_RCU */
1678#ifdef CONFIG_TASKS_TRACE_RCU
1679	p->trc_reader_nesting = 0;
1680	p->trc_reader_special.s = 0;
1681	INIT_LIST_HEAD(&p->trc_holdout_list);
1682#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1683}
1684
1685struct pid *pidfd_pid(const struct file *file)
1686{
1687	if (file->f_op == &pidfd_fops)
1688		return file->private_data;
1689
1690	return ERR_PTR(-EBADF);
1691}
1692
1693static int pidfd_release(struct inode *inode, struct file *file)
1694{
1695	struct pid *pid = file->private_data;
1696
1697	file->private_data = NULL;
1698	put_pid(pid);
1699	return 0;
1700}
1701
1702#ifdef CONFIG_PROC_FS
1703/**
1704 * pidfd_show_fdinfo - print information about a pidfd
1705 * @m: proc fdinfo file
1706 * @f: file referencing a pidfd
1707 *
1708 * Pid:
1709 * This function will print the pid that a given pidfd refers to in the
1710 * pid namespace of the procfs instance.
1711 * If the pid namespace of the process is not a descendant of the pid
1712 * namespace of the procfs instance 0 will be shown as its pid. This is
1713 * similar to calling getppid() on a process whose parent is outside of
1714 * its pid namespace.
1715 *
1716 * NSpid:
1717 * If pid namespaces are supported then this function will also print
1718 * the pid of a given pidfd refers to for all descendant pid namespaces
1719 * starting from the current pid namespace of the instance, i.e. the
1720 * Pid field and the first entry in the NSpid field will be identical.
1721 * If the pid namespace of the process is not a descendant of the pid
1722 * namespace of the procfs instance 0 will be shown as its first NSpid
1723 * entry and no others will be shown.
1724 * Note that this differs from the Pid and NSpid fields in
1725 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1726 * the  pid namespace of the procfs instance. The difference becomes
1727 * obvious when sending around a pidfd between pid namespaces from a
1728 * different branch of the tree, i.e. where no ancestoral relation is
1729 * present between the pid namespaces:
1730 * - create two new pid namespaces ns1 and ns2 in the initial pid
1731 *   namespace (also take care to create new mount namespaces in the
1732 *   new pid namespace and mount procfs)
1733 * - create a process with a pidfd in ns1
1734 * - send pidfd from ns1 to ns2
1735 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1736 *   have exactly one entry, which is 0
1737 */
1738static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1739{
1740	struct pid *pid = f->private_data;
1741	struct pid_namespace *ns;
1742	pid_t nr = -1;
1743
1744	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1745		ns = proc_pid_ns(file_inode(m->file)->i_sb);
1746		nr = pid_nr_ns(pid, ns);
1747	}
1748
1749	seq_put_decimal_ll(m, "Pid:\t", nr);
1750
1751#ifdef CONFIG_PID_NS
1752	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1753	if (nr > 0) {
1754		int i;
1755
1756		/* If nr is non-zero it means that 'pid' is valid and that
1757		 * ns, i.e. the pid namespace associated with the procfs
1758		 * instance, is in the pid namespace hierarchy of pid.
1759		 * Start at one below the already printed level.
1760		 */
1761		for (i = ns->level + 1; i <= pid->level; i++)
1762			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1763	}
1764#endif
1765	seq_putc(m, '\n');
1766}
1767#endif
1768
1769/*
1770 * Poll support for process exit notification.
1771 */
1772static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1773{
1774	struct pid *pid = file->private_data;
1775	__poll_t poll_flags = 0;
1776
1777	poll_wait(file, &pid->wait_pidfd, pts);
1778
1779	/*
1780	 * Inform pollers only when the whole thread group exits.
1781	 * If the thread group leader exits before all other threads in the
1782	 * group, then poll(2) should block, similar to the wait(2) family.
1783	 */
1784	if (thread_group_exited(pid))
1785		poll_flags = EPOLLIN | EPOLLRDNORM;
1786
1787	return poll_flags;
1788}
1789
1790const struct file_operations pidfd_fops = {
1791	.release = pidfd_release,
1792	.poll = pidfd_poll,
1793#ifdef CONFIG_PROC_FS
1794	.show_fdinfo = pidfd_show_fdinfo,
1795#endif
1796};
1797
1798static void __delayed_free_task(struct rcu_head *rhp)
1799{
1800	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1801
1802	free_task(tsk);
1803}
1804
1805static __always_inline void delayed_free_task(struct task_struct *tsk)
1806{
1807	if (IS_ENABLED(CONFIG_MEMCG))
1808		call_rcu(&tsk->rcu, __delayed_free_task);
1809	else
1810		free_task(tsk);
1811}
1812
1813/*
1814 * This creates a new process as a copy of the old one,
1815 * but does not actually start it yet.
1816 *
1817 * It copies the registers, and all the appropriate
1818 * parts of the process environment (as per the clone
1819 * flags). The actual kick-off is left to the caller.
1820 */
1821static __latent_entropy struct task_struct *copy_process(
 
 
 
1822					struct pid *pid,
1823					int trace,
1824					int node,
1825					struct kernel_clone_args *args)
1826{
1827	int pidfd = -1, retval;
1828	struct task_struct *p;
1829	struct multiprocess_signals delayed;
1830	struct file *pidfile = NULL;
1831	u64 clone_flags = args->flags;
1832	struct nsproxy *nsp = current->nsproxy;
1833
1834	/*
1835	 * Don't allow sharing the root directory with processes in a different
1836	 * namespace
1837	 */
1838	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1839		return ERR_PTR(-EINVAL);
1840
1841	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1842		return ERR_PTR(-EINVAL);
1843
1844	/*
1845	 * Thread groups must share signals as well, and detached threads
1846	 * can only be started up within the thread group.
1847	 */
1848	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1849		return ERR_PTR(-EINVAL);
1850
1851	/*
1852	 * Shared signal handlers imply shared VM. By way of the above,
1853	 * thread groups also imply shared VM. Blocking this case allows
1854	 * for various simplifications in other code.
1855	 */
1856	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1857		return ERR_PTR(-EINVAL);
1858
1859	/*
1860	 * Siblings of global init remain as zombies on exit since they are
1861	 * not reaped by their parent (swapper). To solve this and to avoid
1862	 * multi-rooted process trees, prevent global and container-inits
1863	 * from creating siblings.
1864	 */
1865	if ((clone_flags & CLONE_PARENT) &&
1866				current->signal->flags & SIGNAL_UNKILLABLE)
1867		return ERR_PTR(-EINVAL);
1868
1869	/*
1870	 * If the new process will be in a different pid or user namespace
1871	 * do not allow it to share a thread group with the forking task.
 
1872	 */
1873	if (clone_flags & CLONE_THREAD) {
1874		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1875		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
 
1876			return ERR_PTR(-EINVAL);
1877	}
1878
1879	/*
1880	 * If the new process will be in a different time namespace
1881	 * do not allow it to share VM or a thread group with the forking task.
1882	 */
1883	if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1884		if (nsp->time_ns != nsp->time_ns_for_children)
1885			return ERR_PTR(-EINVAL);
1886	}
1887
1888	if (clone_flags & CLONE_PIDFD) {
1889		/*
1890		 * - CLONE_DETACHED is blocked so that we can potentially
1891		 *   reuse it later for CLONE_PIDFD.
1892		 * - CLONE_THREAD is blocked until someone really needs it.
1893		 */
1894		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1895			return ERR_PTR(-EINVAL);
1896	}
1897
1898	/*
1899	 * Force any signals received before this point to be delivered
1900	 * before the fork happens.  Collect up signals sent to multiple
1901	 * processes that happen during the fork and delay them so that
1902	 * they appear to happen after the fork.
1903	 */
1904	sigemptyset(&delayed.signal);
1905	INIT_HLIST_NODE(&delayed.node);
1906
1907	spin_lock_irq(&current->sighand->siglock);
1908	if (!(clone_flags & CLONE_THREAD))
1909		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1910	recalc_sigpending();
1911	spin_unlock_irq(&current->sighand->siglock);
1912	retval = -ERESTARTNOINTR;
1913	if (signal_pending(current))
1914		goto fork_out;
1915
1916	retval = -ENOMEM;
1917	p = dup_task_struct(current, node);
1918	if (!p)
1919		goto fork_out;
1920
1921	/*
1922	 * This _must_ happen before we call free_task(), i.e. before we jump
1923	 * to any of the bad_fork_* labels. This is to avoid freeing
1924	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1925	 * kernel threads (PF_KTHREAD).
1926	 */
1927	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1928	/*
1929	 * Clear TID on mm_release()?
1930	 */
1931	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1932
1933	ftrace_graph_init_task(p);
 
1934
1935	rt_mutex_init_task(p);
1936
1937	lockdep_assert_irqs_enabled();
1938#ifdef CONFIG_PROVE_LOCKING
 
1939	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1940#endif
1941	retval = -EAGAIN;
1942	if (atomic_read(&p->real_cred->user->processes) >=
1943			task_rlimit(p, RLIMIT_NPROC)) {
1944		if (p->real_cred->user != INIT_USER &&
1945		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1946			goto bad_fork_free;
1947	}
1948	current->flags &= ~PF_NPROC_EXCEEDED;
1949
1950	retval = copy_creds(p, clone_flags);
1951	if (retval < 0)
1952		goto bad_fork_free;
1953
1954	/*
1955	 * If multiple threads are within copy_process(), then this check
1956	 * triggers too late. This doesn't hurt, the check is only there
1957	 * to stop root fork bombs.
1958	 */
1959	retval = -EAGAIN;
1960	if (data_race(nr_threads >= max_threads))
 
 
 
1961		goto bad_fork_cleanup_count;
1962
1963	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1964	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1965	p->flags |= PF_FORKNOEXEC;
1966	INIT_LIST_HEAD(&p->children);
1967	INIT_LIST_HEAD(&p->sibling);
1968	rcu_copy_process(p);
1969	p->vfork_done = NULL;
1970	spin_lock_init(&p->alloc_lock);
1971
1972	init_sigpending(&p->pending);
1973
1974	p->utime = p->stime = p->gtime = 0;
1975#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1976	p->utimescaled = p->stimescaled = 0;
 
 
1977#endif
1978	prev_cputime_init(&p->prev_cputime);
1979
1980#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1981	seqcount_init(&p->vtime.seqcount);
1982	p->vtime.starttime = 0;
1983	p->vtime.state = VTIME_INACTIVE;
1984#endif
1985
1986#if defined(SPLIT_RSS_COUNTING)
1987	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1988#endif
1989
1990	p->default_timer_slack_ns = current->timer_slack_ns;
1991
1992#ifdef CONFIG_PSI
1993	p->psi_flags = 0;
1994#endif
1995
1996	task_io_accounting_init(&p->ioac);
1997	acct_clear_integrals(p);
1998
1999	posix_cputimers_init(&p->posix_cputimers);
2000
 
 
 
2001	p->io_context = NULL;
2002	audit_set_context(p, NULL);
 
 
2003	cgroup_fork(p);
2004#ifdef CONFIG_NUMA
2005	p->mempolicy = mpol_dup(p->mempolicy);
2006	if (IS_ERR(p->mempolicy)) {
2007		retval = PTR_ERR(p->mempolicy);
2008		p->mempolicy = NULL;
2009		goto bad_fork_cleanup_threadgroup_lock;
2010	}
2011#endif
2012#ifdef CONFIG_CPUSETS
2013	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2014	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2015	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2016#endif
2017#ifdef CONFIG_TRACE_IRQFLAGS
2018	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2019	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2020	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2021	p->softirqs_enabled		= 1;
2022	p->softirq_context		= 0;
 
 
 
 
 
 
 
 
2023#endif
2024
2025	p->pagefault_disabled = 0;
2026
2027#ifdef CONFIG_LOCKDEP
2028	lockdep_init_task(p);
 
 
2029#endif
2030
2031#ifdef CONFIG_DEBUG_MUTEXES
2032	p->blocked_on = NULL; /* not blocked yet */
2033#endif
 
 
 
 
2034#ifdef CONFIG_BCACHE
2035	p->sequential_io	= 0;
2036	p->sequential_io_avg	= 0;
2037#endif
2038
2039	/* Perform scheduler related setup. Assign this task to a CPU. */
2040	retval = sched_fork(clone_flags, p);
2041	if (retval)
2042		goto bad_fork_cleanup_policy;
2043
2044	retval = perf_event_init_task(p);
2045	if (retval)
2046		goto bad_fork_cleanup_policy;
2047	retval = audit_alloc(p);
2048	if (retval)
2049		goto bad_fork_cleanup_perf;
2050	/* copy all the process information */
2051	shm_init_task(p);
2052	retval = security_task_alloc(p, clone_flags);
2053	if (retval)
2054		goto bad_fork_cleanup_audit;
2055	retval = copy_semundo(clone_flags, p);
2056	if (retval)
2057		goto bad_fork_cleanup_security;
2058	retval = copy_files(clone_flags, p);
2059	if (retval)
2060		goto bad_fork_cleanup_semundo;
2061	retval = copy_fs(clone_flags, p);
2062	if (retval)
2063		goto bad_fork_cleanup_files;
2064	retval = copy_sighand(clone_flags, p);
2065	if (retval)
2066		goto bad_fork_cleanup_fs;
2067	retval = copy_signal(clone_flags, p);
2068	if (retval)
2069		goto bad_fork_cleanup_sighand;
2070	retval = copy_mm(clone_flags, p);
2071	if (retval)
2072		goto bad_fork_cleanup_signal;
2073	retval = copy_namespaces(clone_flags, p);
2074	if (retval)
2075		goto bad_fork_cleanup_mm;
2076	retval = copy_io(clone_flags, p);
2077	if (retval)
2078		goto bad_fork_cleanup_namespaces;
2079	retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2080	if (retval)
2081		goto bad_fork_cleanup_io;
2082
2083	stackleak_task_init(p);
2084
2085	if (pid != &init_struct_pid) {
2086		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2087				args->set_tid_size);
2088		if (IS_ERR(pid)) {
2089			retval = PTR_ERR(pid);
2090			goto bad_fork_cleanup_thread;
2091		}
2092	}
2093
 
2094	/*
2095	 * This has to happen after we've potentially unshared the file
2096	 * descriptor table (so that the pidfd doesn't leak into the child
2097	 * if the fd table isn't shared).
2098	 */
2099	if (clone_flags & CLONE_PIDFD) {
2100		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2101		if (retval < 0)
2102			goto bad_fork_free_pid;
2103
2104		pidfd = retval;
2105
2106		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2107					      O_RDWR | O_CLOEXEC);
2108		if (IS_ERR(pidfile)) {
2109			put_unused_fd(pidfd);
2110			retval = PTR_ERR(pidfile);
2111			goto bad_fork_free_pid;
2112		}
2113		get_pid(pid);	/* held by pidfile now */
2114
2115		retval = put_user(pidfd, args->pidfd);
2116		if (retval)
2117			goto bad_fork_put_pidfd;
2118	}
2119
2120#ifdef CONFIG_BLOCK
2121	p->plug = NULL;
2122#endif
2123	futex_init_task(p);
2124
 
 
 
 
 
 
2125	/*
2126	 * sigaltstack should be cleared when sharing the same VM
2127	 */
2128	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2129		sas_ss_reset(p);
2130
2131	/*
2132	 * Syscall tracing and stepping should be turned off in the
2133	 * child regardless of CLONE_PTRACE.
2134	 */
2135	user_disable_single_step(p);
2136	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2137#ifdef TIF_SYSCALL_EMU
2138	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2139#endif
2140	clear_tsk_latency_tracing(p);
2141
2142	/* ok, now we should be set up.. */
2143	p->pid = pid_nr(pid);
2144	if (clone_flags & CLONE_THREAD) {
2145		p->exit_signal = -1;
2146		p->group_leader = current->group_leader;
2147		p->tgid = current->tgid;
2148	} else {
2149		if (clone_flags & CLONE_PARENT)
2150			p->exit_signal = current->group_leader->exit_signal;
2151		else
2152			p->exit_signal = args->exit_signal;
2153		p->group_leader = p;
2154		p->tgid = p->pid;
2155	}
2156
2157	p->nr_dirtied = 0;
2158	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2159	p->dirty_paused_when = 0;
2160
2161	p->pdeath_signal = 0;
2162	INIT_LIST_HEAD(&p->thread_group);
2163	p->task_works = NULL;
2164
2165	/*
2166	 * Ensure that the cgroup subsystem policies allow the new process to be
2167	 * forked. It should be noted the the new process's css_set can be changed
2168	 * between here and cgroup_post_fork() if an organisation operation is in
2169	 * progress.
2170	 */
2171	retval = cgroup_can_fork(p, args);
2172	if (retval)
2173		goto bad_fork_put_pidfd;
2174
2175	/*
2176	 * From this point on we must avoid any synchronous user-space
2177	 * communication until we take the tasklist-lock. In particular, we do
2178	 * not want user-space to be able to predict the process start-time by
2179	 * stalling fork(2) after we recorded the start_time but before it is
2180	 * visible to the system.
2181	 */
2182
2183	p->start_time = ktime_get_ns();
2184	p->start_boottime = ktime_get_boottime_ns();
2185
2186	/*
2187	 * Make it visible to the rest of the system, but dont wake it up yet.
2188	 * Need tasklist lock for parent etc handling!
2189	 */
2190	write_lock_irq(&tasklist_lock);
2191
2192	/* CLONE_PARENT re-uses the old parent */
2193	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2194		p->real_parent = current->real_parent;
2195		p->parent_exec_id = current->parent_exec_id;
2196	} else {
2197		p->real_parent = current;
2198		p->parent_exec_id = current->self_exec_id;
2199	}
2200
2201	klp_copy_process(p);
2202
2203	spin_lock(&current->sighand->siglock);
2204
2205	/*
2206	 * Copy seccomp details explicitly here, in case they were changed
2207	 * before holding sighand lock.
2208	 */
2209	copy_seccomp(p);
2210
2211	rseq_fork(p, clone_flags);
2212
2213	/* Don't start children in a dying pid namespace */
2214	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2215		retval = -ENOMEM;
2216		goto bad_fork_cancel_cgroup;
 
 
2217	}
2218
2219	/* Let kill terminate clone/fork in the middle */
2220	if (fatal_signal_pending(current)) {
2221		retval = -EINTR;
2222		goto bad_fork_cancel_cgroup;
2223	}
2224
2225	/* past the last point of failure */
2226	if (pidfile)
2227		fd_install(pidfd, pidfile);
2228
2229	init_task_pid_links(p);
2230	if (likely(p->pid)) {
2231		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2232
2233		init_task_pid(p, PIDTYPE_PID, pid);
2234		if (thread_group_leader(p)) {
2235			init_task_pid(p, PIDTYPE_TGID, pid);
2236			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2237			init_task_pid(p, PIDTYPE_SID, task_session(current));
2238
2239			if (is_child_reaper(pid)) {
2240				ns_of_pid(pid)->child_reaper = p;
2241				p->signal->flags |= SIGNAL_UNKILLABLE;
2242			}
2243			p->signal->shared_pending.signal = delayed.signal;
 
2244			p->signal->tty = tty_kref_get(current->signal->tty);
2245			/*
2246			 * Inherit has_child_subreaper flag under the same
2247			 * tasklist_lock with adding child to the process tree
2248			 * for propagate_has_child_subreaper optimization.
2249			 */
2250			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2251							 p->real_parent->signal->is_child_subreaper;
2252			list_add_tail(&p->sibling, &p->real_parent->children);
2253			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2254			attach_pid(p, PIDTYPE_TGID);
2255			attach_pid(p, PIDTYPE_PGID);
2256			attach_pid(p, PIDTYPE_SID);
2257			__this_cpu_inc(process_counts);
2258		} else {
2259			current->signal->nr_threads++;
2260			atomic_inc(&current->signal->live);
2261			refcount_inc(&current->signal->sigcnt);
2262			task_join_group_stop(p);
2263			list_add_tail_rcu(&p->thread_group,
2264					  &p->group_leader->thread_group);
2265			list_add_tail_rcu(&p->thread_node,
2266					  &p->signal->thread_head);
2267		}
2268		attach_pid(p, PIDTYPE_PID);
2269		nr_threads++;
2270	}
 
2271	total_forks++;
2272	hlist_del_init(&delayed.node);
2273	spin_unlock(&current->sighand->siglock);
2274	syscall_tracepoint_update(p);
2275	write_unlock_irq(&tasklist_lock);
2276
2277	proc_fork_connector(p);
2278	sched_post_fork(p);
2279	cgroup_post_fork(p, args);
 
2280	perf_event_fork(p);
2281
2282	trace_task_newtask(p, clone_flags);
2283	uprobe_copy_process(p, clone_flags);
2284
2285	return p;
2286
2287bad_fork_cancel_cgroup:
2288	spin_unlock(&current->sighand->siglock);
2289	write_unlock_irq(&tasklist_lock);
2290	cgroup_cancel_fork(p, args);
2291bad_fork_put_pidfd:
2292	if (clone_flags & CLONE_PIDFD) {
2293		fput(pidfile);
2294		put_unused_fd(pidfd);
2295	}
2296bad_fork_free_pid:
2297	if (pid != &init_struct_pid)
2298		free_pid(pid);
2299bad_fork_cleanup_thread:
2300	exit_thread(p);
2301bad_fork_cleanup_io:
2302	if (p->io_context)
2303		exit_io_context(p);
2304bad_fork_cleanup_namespaces:
2305	exit_task_namespaces(p);
2306bad_fork_cleanup_mm:
2307	if (p->mm) {
2308		mm_clear_owner(p->mm, p);
2309		mmput(p->mm);
2310	}
2311bad_fork_cleanup_signal:
2312	if (!(clone_flags & CLONE_THREAD))
2313		free_signal_struct(p->signal);
2314bad_fork_cleanup_sighand:
2315	__cleanup_sighand(p->sighand);
2316bad_fork_cleanup_fs:
2317	exit_fs(p); /* blocking */
2318bad_fork_cleanup_files:
2319	exit_files(p); /* blocking */
2320bad_fork_cleanup_semundo:
2321	exit_sem(p);
2322bad_fork_cleanup_security:
2323	security_task_free(p);
2324bad_fork_cleanup_audit:
2325	audit_free(p);
2326bad_fork_cleanup_perf:
2327	perf_event_free_task(p);
2328bad_fork_cleanup_policy:
2329	lockdep_free_task(p);
2330#ifdef CONFIG_NUMA
2331	mpol_put(p->mempolicy);
2332bad_fork_cleanup_threadgroup_lock:
2333#endif
 
 
2334	delayacct_tsk_free(p);
 
2335bad_fork_cleanup_count:
2336	atomic_dec(&p->cred->user->processes);
2337	exit_creds(p);
2338bad_fork_free:
2339	p->state = TASK_DEAD;
2340	put_task_stack(p);
2341	delayed_free_task(p);
2342fork_out:
2343	spin_lock_irq(&current->sighand->siglock);
2344	hlist_del_init(&delayed.node);
2345	spin_unlock_irq(&current->sighand->siglock);
2346	return ERR_PTR(retval);
2347}
2348
2349static inline void init_idle_pids(struct task_struct *idle)
2350{
2351	enum pid_type type;
2352
2353	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2354		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2355		init_task_pid(idle, type, &init_struct_pid);
2356	}
2357}
2358
2359struct task_struct *fork_idle(int cpu)
2360{
2361	struct task_struct *task;
2362	struct kernel_clone_args args = {
2363		.flags = CLONE_VM,
2364	};
2365
2366	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2367	if (!IS_ERR(task)) {
2368		init_idle_pids(task);
2369		init_idle(task, cpu);
2370	}
2371
2372	return task;
2373}
2374
2375struct mm_struct *copy_init_mm(void)
2376{
2377	return dup_mm(NULL, &init_mm);
2378}
2379
2380/*
2381 *  Ok, this is the main fork-routine.
2382 *
2383 * It copies the process, and if successful kick-starts
2384 * it and waits for it to finish using the VM if required.
2385 *
2386 * args->exit_signal is expected to be checked for sanity by the caller.
2387 */
2388long _do_fork(struct kernel_clone_args *args)
 
 
 
 
2389{
2390	u64 clone_flags = args->flags;
2391	struct completion vfork;
2392	struct pid *pid;
2393	struct task_struct *p;
2394	int trace = 0;
2395	long nr;
2396
2397	/*
2398	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2399	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2400	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2401	 * field in struct clone_args and it still doesn't make sense to have
2402	 * them both point at the same memory location. Performing this check
2403	 * here has the advantage that we don't need to have a separate helper
2404	 * to check for legacy clone().
2405	 */
2406	if ((args->flags & CLONE_PIDFD) &&
2407	    (args->flags & CLONE_PARENT_SETTID) &&
2408	    (args->pidfd == args->parent_tid))
2409		return -EINVAL;
2410
2411	/*
2412	 * Determine whether and which event to report to ptracer.  When
2413	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2414	 * requested, no event is reported; otherwise, report if the event
2415	 * for the type of forking is enabled.
2416	 */
2417	if (!(clone_flags & CLONE_UNTRACED)) {
2418		if (clone_flags & CLONE_VFORK)
2419			trace = PTRACE_EVENT_VFORK;
2420		else if (args->exit_signal != SIGCHLD)
2421			trace = PTRACE_EVENT_CLONE;
2422		else
2423			trace = PTRACE_EVENT_FORK;
2424
2425		if (likely(!ptrace_event_enabled(current, trace)))
2426			trace = 0;
2427	}
2428
2429	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2430	add_latent_entropy();
2431
2432	if (IS_ERR(p))
2433		return PTR_ERR(p);
2434
2435	/*
2436	 * Do this prior waking up the new thread - the thread pointer
2437	 * might get invalid after that point, if the thread exits quickly.
2438	 */
2439	trace_sched_process_fork(current, p);
 
2440
2441	pid = get_task_pid(p, PIDTYPE_PID);
2442	nr = pid_vnr(pid);
2443
2444	if (clone_flags & CLONE_PARENT_SETTID)
2445		put_user(nr, args->parent_tid);
2446
2447	if (clone_flags & CLONE_VFORK) {
2448		p->vfork_done = &vfork;
2449		init_completion(&vfork);
2450		get_task_struct(p);
2451	}
2452
2453	wake_up_new_task(p);
 
 
 
 
2454
2455	/* forking complete and child started to run, tell ptracer */
2456	if (unlikely(trace))
2457		ptrace_event_pid(trace, pid);
2458
2459	if (clone_flags & CLONE_VFORK) {
2460		if (!wait_for_vfork_done(p, &vfork))
2461			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
 
 
 
 
 
 
 
2462	}
2463
2464	put_pid(pid);
2465	return nr;
2466}
2467
2468/*
2469 * Create a kernel thread.
2470 */
2471pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2472{
2473	struct kernel_clone_args args = {
2474		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2475				    CLONE_UNTRACED) & ~CSIGNAL),
2476		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2477		.stack		= (unsigned long)fn,
2478		.stack_size	= (unsigned long)arg,
2479	};
2480
2481	return _do_fork(&args);
2482}
2483
2484#ifdef __ARCH_WANT_SYS_FORK
2485SYSCALL_DEFINE0(fork)
2486{
2487#ifdef CONFIG_MMU
2488	struct kernel_clone_args args = {
2489		.exit_signal = SIGCHLD,
2490	};
2491
2492	return _do_fork(&args);
2493#else
2494	/* can not support in nommu mode */
2495	return -EINVAL;
2496#endif
2497}
2498#endif
2499
2500#ifdef __ARCH_WANT_SYS_VFORK
2501SYSCALL_DEFINE0(vfork)
2502{
2503	struct kernel_clone_args args = {
2504		.flags		= CLONE_VFORK | CLONE_VM,
2505		.exit_signal	= SIGCHLD,
2506	};
2507
2508	return _do_fork(&args);
2509}
2510#endif
2511
2512#ifdef __ARCH_WANT_SYS_CLONE
2513#ifdef CONFIG_CLONE_BACKWARDS
2514SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2515		 int __user *, parent_tidptr,
2516		 unsigned long, tls,
2517		 int __user *, child_tidptr)
2518#elif defined(CONFIG_CLONE_BACKWARDS2)
2519SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2520		 int __user *, parent_tidptr,
2521		 int __user *, child_tidptr,
2522		 unsigned long, tls)
2523#elif defined(CONFIG_CLONE_BACKWARDS3)
2524SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2525		int, stack_size,
2526		int __user *, parent_tidptr,
2527		int __user *, child_tidptr,
2528		unsigned long, tls)
2529#else
2530SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2531		 int __user *, parent_tidptr,
2532		 int __user *, child_tidptr,
2533		 unsigned long, tls)
2534#endif
2535{
2536	struct kernel_clone_args args = {
2537		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2538		.pidfd		= parent_tidptr,
2539		.child_tid	= child_tidptr,
2540		.parent_tid	= parent_tidptr,
2541		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2542		.stack		= newsp,
2543		.tls		= tls,
2544	};
2545
2546	return _do_fork(&args);
2547}
2548#endif
2549
2550#ifdef __ARCH_WANT_SYS_CLONE3
2551
2552noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2553					      struct clone_args __user *uargs,
2554					      size_t usize)
2555{
2556	int err;
2557	struct clone_args args;
2558	pid_t *kset_tid = kargs->set_tid;
2559
2560	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2561		     CLONE_ARGS_SIZE_VER0);
2562	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2563		     CLONE_ARGS_SIZE_VER1);
2564	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2565		     CLONE_ARGS_SIZE_VER2);
2566	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2567
2568	if (unlikely(usize > PAGE_SIZE))
2569		return -E2BIG;
2570	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2571		return -EINVAL;
2572
2573	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2574	if (err)
2575		return err;
2576
2577	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2578		return -EINVAL;
2579
2580	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2581		return -EINVAL;
2582
2583	if (unlikely(args.set_tid && args.set_tid_size == 0))
2584		return -EINVAL;
2585
2586	/*
2587	 * Verify that higher 32bits of exit_signal are unset and that
2588	 * it is a valid signal
2589	 */
2590	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2591		     !valid_signal(args.exit_signal)))
2592		return -EINVAL;
2593
2594	if ((args.flags & CLONE_INTO_CGROUP) &&
2595	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2596		return -EINVAL;
2597
2598	*kargs = (struct kernel_clone_args){
2599		.flags		= args.flags,
2600		.pidfd		= u64_to_user_ptr(args.pidfd),
2601		.child_tid	= u64_to_user_ptr(args.child_tid),
2602		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2603		.exit_signal	= args.exit_signal,
2604		.stack		= args.stack,
2605		.stack_size	= args.stack_size,
2606		.tls		= args.tls,
2607		.set_tid_size	= args.set_tid_size,
2608		.cgroup		= args.cgroup,
2609	};
2610
2611	if (args.set_tid &&
2612		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2613			(kargs->set_tid_size * sizeof(pid_t))))
2614		return -EFAULT;
2615
2616	kargs->set_tid = kset_tid;
2617
2618	return 0;
2619}
2620
2621/**
2622 * clone3_stack_valid - check and prepare stack
2623 * @kargs: kernel clone args
2624 *
2625 * Verify that the stack arguments userspace gave us are sane.
2626 * In addition, set the stack direction for userspace since it's easy for us to
2627 * determine.
2628 */
2629static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2630{
2631	if (kargs->stack == 0) {
2632		if (kargs->stack_size > 0)
2633			return false;
2634	} else {
2635		if (kargs->stack_size == 0)
2636			return false;
2637
2638		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2639			return false;
2640
2641#if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2642		kargs->stack += kargs->stack_size;
2643#endif
2644	}
2645
2646	return true;
2647}
2648
2649static bool clone3_args_valid(struct kernel_clone_args *kargs)
2650{
2651	/* Verify that no unknown flags are passed along. */
2652	if (kargs->flags &
2653	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2654		return false;
2655
2656	/*
2657	 * - make the CLONE_DETACHED bit reuseable for clone3
2658	 * - make the CSIGNAL bits reuseable for clone3
2659	 */
2660	if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2661		return false;
2662
2663	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2664	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2665		return false;
2666
2667	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2668	    kargs->exit_signal)
2669		return false;
2670
2671	if (!clone3_stack_valid(kargs))
2672		return false;
2673
2674	return true;
2675}
2676
2677/**
2678 * clone3 - create a new process with specific properties
2679 * @uargs: argument structure
2680 * @size:  size of @uargs
2681 *
2682 * clone3() is the extensible successor to clone()/clone2().
2683 * It takes a struct as argument that is versioned by its size.
2684 *
2685 * Return: On success, a positive PID for the child process.
2686 *         On error, a negative errno number.
2687 */
2688SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2689{
2690	int err;
2691
2692	struct kernel_clone_args kargs;
2693	pid_t set_tid[MAX_PID_NS_LEVEL];
2694
2695	kargs.set_tid = set_tid;
2696
2697	err = copy_clone_args_from_user(&kargs, uargs, size);
2698	if (err)
2699		return err;
2700
2701	if (!clone3_args_valid(&kargs))
2702		return -EINVAL;
2703
2704	return _do_fork(&kargs);
2705}
2706#endif
2707
2708void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2709{
2710	struct task_struct *leader, *parent, *child;
2711	int res;
2712
2713	read_lock(&tasklist_lock);
2714	leader = top = top->group_leader;
2715down:
2716	for_each_thread(leader, parent) {
2717		list_for_each_entry(child, &parent->children, sibling) {
2718			res = visitor(child, data);
2719			if (res) {
2720				if (res < 0)
2721					goto out;
2722				leader = child;
2723				goto down;
2724			}
2725up:
2726			;
2727		}
2728	}
2729
2730	if (leader != top) {
2731		child = leader;
2732		parent = child->real_parent;
2733		leader = parent->group_leader;
2734		goto up;
2735	}
2736out:
2737	read_unlock(&tasklist_lock);
2738}
2739
2740#ifndef ARCH_MIN_MMSTRUCT_ALIGN
2741#define ARCH_MIN_MMSTRUCT_ALIGN 0
2742#endif
2743
2744static void sighand_ctor(void *data)
2745{
2746	struct sighand_struct *sighand = data;
2747
2748	spin_lock_init(&sighand->siglock);
2749	init_waitqueue_head(&sighand->signalfd_wqh);
2750}
2751
2752void __init proc_caches_init(void)
2753{
2754	unsigned int mm_size;
2755
2756	sighand_cachep = kmem_cache_create("sighand_cache",
2757			sizeof(struct sighand_struct), 0,
2758			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2759			SLAB_ACCOUNT, sighand_ctor);
2760	signal_cachep = kmem_cache_create("signal_cache",
2761			sizeof(struct signal_struct), 0,
2762			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2763			NULL);
2764	files_cachep = kmem_cache_create("files_cache",
2765			sizeof(struct files_struct), 0,
2766			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2767			NULL);
2768	fs_cachep = kmem_cache_create("fs_cache",
2769			sizeof(struct fs_struct), 0,
2770			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2771			NULL);
2772
2773	/*
2774	 * The mm_cpumask is located at the end of mm_struct, and is
2775	 * dynamically sized based on the maximum CPU number this system
2776	 * can have, taking hotplug into account (nr_cpu_ids).
2777	 */
2778	mm_size = sizeof(struct mm_struct) + cpumask_size();
2779
2780	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2781			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2782			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2783			offsetof(struct mm_struct, saved_auxv),
2784			sizeof_field(struct mm_struct, saved_auxv),
2785			NULL);
2786	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2787	mmap_init();
2788	nsproxy_cache_init();
2789}
2790
2791/*
2792 * Check constraints on flags passed to the unshare system call.
2793 */
2794static int check_unshare_flags(unsigned long unshare_flags)
2795{
2796	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2797				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2798				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2799				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2800				CLONE_NEWTIME))
2801		return -EINVAL;
2802	/*
2803	 * Not implemented, but pretend it works if there is nothing
2804	 * to unshare.  Note that unsharing the address space or the
2805	 * signal handlers also need to unshare the signal queues (aka
2806	 * CLONE_THREAD).
2807	 */
2808	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2809		if (!thread_group_empty(current))
2810			return -EINVAL;
2811	}
2812	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2813		if (refcount_read(&current->sighand->count) > 1)
2814			return -EINVAL;
2815	}
2816	if (unshare_flags & CLONE_VM) {
2817		if (!current_is_single_threaded())
2818			return -EINVAL;
2819	}
2820
2821	return 0;
2822}
2823
2824/*
2825 * Unshare the filesystem structure if it is being shared
2826 */
2827static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2828{
2829	struct fs_struct *fs = current->fs;
2830
2831	if (!(unshare_flags & CLONE_FS) || !fs)
2832		return 0;
2833
2834	/* don't need lock here; in the worst case we'll do useless copy */
2835	if (fs->users == 1)
2836		return 0;
2837
2838	*new_fsp = copy_fs_struct(fs);
2839	if (!*new_fsp)
2840		return -ENOMEM;
2841
2842	return 0;
2843}
2844
2845/*
2846 * Unshare file descriptor table if it is being shared
2847 */
2848int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
2849	       struct files_struct **new_fdp)
2850{
2851	struct files_struct *fd = current->files;
2852	int error = 0;
2853
2854	if ((unshare_flags & CLONE_FILES) &&
2855	    (fd && atomic_read(&fd->count) > 1)) {
2856		*new_fdp = dup_fd(fd, max_fds, &error);
2857		if (!*new_fdp)
2858			return error;
2859	}
2860
2861	return 0;
2862}
2863
2864/*
2865 * unshare allows a process to 'unshare' part of the process
2866 * context which was originally shared using clone.  copy_*
2867 * functions used by _do_fork() cannot be used here directly
2868 * because they modify an inactive task_struct that is being
2869 * constructed. Here we are modifying the current, active,
2870 * task_struct.
2871 */
2872int ksys_unshare(unsigned long unshare_flags)
2873{
2874	struct fs_struct *fs, *new_fs = NULL;
2875	struct files_struct *fd, *new_fd = NULL;
2876	struct cred *new_cred = NULL;
2877	struct nsproxy *new_nsproxy = NULL;
2878	int do_sysvsem = 0;
2879	int err;
2880
2881	/*
2882	 * If unsharing a user namespace must also unshare the thread group
2883	 * and unshare the filesystem root and working directories.
2884	 */
2885	if (unshare_flags & CLONE_NEWUSER)
2886		unshare_flags |= CLONE_THREAD | CLONE_FS;
2887	/*
 
 
 
 
 
2888	 * If unsharing vm, must also unshare signal handlers.
2889	 */
2890	if (unshare_flags & CLONE_VM)
2891		unshare_flags |= CLONE_SIGHAND;
2892	/*
2893	 * If unsharing a signal handlers, must also unshare the signal queues.
2894	 */
2895	if (unshare_flags & CLONE_SIGHAND)
2896		unshare_flags |= CLONE_THREAD;
2897	/*
2898	 * If unsharing namespace, must also unshare filesystem information.
2899	 */
2900	if (unshare_flags & CLONE_NEWNS)
2901		unshare_flags |= CLONE_FS;
2902
2903	err = check_unshare_flags(unshare_flags);
2904	if (err)
2905		goto bad_unshare_out;
2906	/*
2907	 * CLONE_NEWIPC must also detach from the undolist: after switching
2908	 * to a new ipc namespace, the semaphore arrays from the old
2909	 * namespace are unreachable.
2910	 */
2911	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2912		do_sysvsem = 1;
2913	err = unshare_fs(unshare_flags, &new_fs);
2914	if (err)
2915		goto bad_unshare_out;
2916	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
2917	if (err)
2918		goto bad_unshare_cleanup_fs;
2919	err = unshare_userns(unshare_flags, &new_cred);
2920	if (err)
2921		goto bad_unshare_cleanup_fd;
2922	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2923					 new_cred, new_fs);
2924	if (err)
2925		goto bad_unshare_cleanup_cred;
2926
2927	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2928		if (do_sysvsem) {
2929			/*
2930			 * CLONE_SYSVSEM is equivalent to sys_exit().
2931			 */
2932			exit_sem(current);
2933		}
2934		if (unshare_flags & CLONE_NEWIPC) {
2935			/* Orphan segments in old ns (see sem above). */
2936			exit_shm(current);
2937			shm_init_task(current);
2938		}
2939
2940		if (new_nsproxy)
2941			switch_task_namespaces(current, new_nsproxy);
2942
2943		task_lock(current);
2944
2945		if (new_fs) {
2946			fs = current->fs;
2947			spin_lock(&fs->lock);
2948			current->fs = new_fs;
2949			if (--fs->users)
2950				new_fs = NULL;
2951			else
2952				new_fs = fs;
2953			spin_unlock(&fs->lock);
2954		}
2955
2956		if (new_fd) {
2957			fd = current->files;
2958			current->files = new_fd;
2959			new_fd = fd;
2960		}
2961
2962		task_unlock(current);
2963
2964		if (new_cred) {
2965			/* Install the new user namespace */
2966			commit_creds(new_cred);
2967			new_cred = NULL;
2968		}
2969	}
2970
2971	perf_event_namespaces(current);
2972
2973bad_unshare_cleanup_cred:
2974	if (new_cred)
2975		put_cred(new_cred);
2976bad_unshare_cleanup_fd:
2977	if (new_fd)
2978		put_files_struct(new_fd);
2979
2980bad_unshare_cleanup_fs:
2981	if (new_fs)
2982		free_fs_struct(new_fs);
2983
2984bad_unshare_out:
2985	return err;
2986}
2987
2988SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2989{
2990	return ksys_unshare(unshare_flags);
2991}
2992
2993/*
2994 *	Helper to unshare the files of the current task.
2995 *	We don't want to expose copy_files internals to
2996 *	the exec layer of the kernel.
2997 */
2998
2999int unshare_files(struct files_struct **displaced)
3000{
3001	struct task_struct *task = current;
3002	struct files_struct *copy = NULL;
3003	int error;
3004
3005	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3006	if (error || !copy) {
3007		*displaced = NULL;
3008		return error;
3009	}
3010	*displaced = task->files;
3011	task_lock(task);
3012	task->files = copy;
3013	task_unlock(task);
3014	return 0;
3015}
3016
3017int sysctl_max_threads(struct ctl_table *table, int write,
3018		       void *buffer, size_t *lenp, loff_t *ppos)
3019{
3020	struct ctl_table t;
3021	int ret;
3022	int threads = max_threads;
3023	int min = 1;
3024	int max = MAX_THREADS;
3025
3026	t = *table;
3027	t.data = &threads;
3028	t.extra1 = &min;
3029	t.extra2 = &max;
3030
3031	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3032	if (ret || !write)
3033		return ret;
3034
3035	max_threads = threads;
3036
3037	return 0;
3038}