Linux Audio

Check our new training course

Loading...
v3.15
 
   1/* audit.c -- Auditing support
   2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
   3 * System-call specific features have moved to auditsc.c
   4 *
   5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
   6 * All Rights Reserved.
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  21 *
  22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  23 *
  24 * Goals: 1) Integrate fully with Security Modules.
  25 *	  2) Minimal run-time overhead:
  26 *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
  27 *	     b) Small when syscall auditing is enabled and no audit record
  28 *		is generated (defer as much work as possible to record
  29 *		generation time):
  30 *		i) context is allocated,
  31 *		ii) names from getname are stored without a copy, and
  32 *		iii) inode information stored from path_lookup.
  33 *	  3) Ability to disable syscall auditing at boot time (audit=0).
  34 *	  4) Usable by other parts of the kernel (if audit_log* is called,
  35 *	     then a syscall record will be generated automatically for the
  36 *	     current syscall).
  37 *	  5) Netlink interface to user-space.
  38 *	  6) Support low-overhead kernel-based filtering to minimize the
  39 *	     information that must be passed to user-space.
  40 *
  41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
 
  42 */
  43
  44#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  45
 
  46#include <linux/init.h>
  47#include <asm/types.h>
  48#include <linux/atomic.h>
  49#include <linux/mm.h>
  50#include <linux/export.h>
  51#include <linux/slab.h>
  52#include <linux/err.h>
  53#include <linux/kthread.h>
  54#include <linux/kernel.h>
  55#include <linux/syscalls.h>
 
 
 
 
 
  56
  57#include <linux/audit.h>
  58
  59#include <net/sock.h>
  60#include <net/netlink.h>
  61#include <linux/skbuff.h>
  62#ifdef CONFIG_SECURITY
  63#include <linux/security.h>
  64#endif
  65#include <linux/freezer.h>
  66#include <linux/tty.h>
  67#include <linux/pid_namespace.h>
  68#include <net/netns/generic.h>
  69
  70#include "audit.h"
  71
  72/* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
  73 * (Initialization happens after skb_init is called.) */
  74#define AUDIT_DISABLED		-1
  75#define AUDIT_UNINITIALIZED	0
  76#define AUDIT_INITIALIZED	1
  77static int	audit_initialized;
  78
  79#define AUDIT_OFF	0
  80#define AUDIT_ON	1
  81#define AUDIT_LOCKED	2
  82u32		audit_enabled;
  83u32		audit_ever_enabled;
  84
  85EXPORT_SYMBOL_GPL(audit_enabled);
  86
  87/* Default state when kernel boots without any parameters. */
  88static u32	audit_default;
  89
  90/* If auditing cannot proceed, audit_failure selects what happens. */
  91static u32	audit_failure = AUDIT_FAIL_PRINTK;
  92
  93/*
  94 * If audit records are to be written to the netlink socket, audit_pid
  95 * contains the pid of the auditd process and audit_nlk_portid contains
  96 * the portid to use to send netlink messages to that process.
 
 
  97 */
  98int		audit_pid;
  99static __u32	audit_nlk_portid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 100
 101/* If audit_rate_limit is non-zero, limit the rate of sending audit records
 102 * to that number per second.  This prevents DoS attacks, but results in
 103 * audit records being dropped. */
 104static u32	audit_rate_limit;
 105
 106/* Number of outstanding audit_buffers allowed.
 107 * When set to zero, this means unlimited. */
 108static u32	audit_backlog_limit = 64;
 109#define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
 110static u32	audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
 111static u32	audit_backlog_wait_overflow = 0;
 112
 113/* The identity of the user shutting down the audit system. */
 114kuid_t		audit_sig_uid = INVALID_UID;
 115pid_t		audit_sig_pid = -1;
 116u32		audit_sig_sid = 0;
 117
 118/* Records can be lost in several ways:
 119   0) [suppressed in audit_alloc]
 120   1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
 121   2) out of memory in audit_log_move [alloc_skb]
 122   3) suppressed due to audit_rate_limit
 123   4) suppressed due to audit_backlog_limit
 124*/
 125static atomic_t    audit_lost = ATOMIC_INIT(0);
 126
 127/* The netlink socket. */
 128static struct sock *audit_sock;
 129int audit_net_id;
 
 130
 131/* Hash for inode-based rules */
 132struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
 133
 134/* The audit_freelist is a list of pre-allocated audit buffers (if more
 135 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
 136 * being placed on the freelist). */
 137static DEFINE_SPINLOCK(audit_freelist_lock);
 138static int	   audit_freelist_count;
 139static LIST_HEAD(audit_freelist);
 140
 141static struct sk_buff_head audit_skb_queue;
 142/* queue of skbs to send to auditd when/if it comes back */
 143static struct sk_buff_head audit_skb_hold_queue;
 144static struct task_struct *kauditd_task;
 145static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
 
 
 146static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
 147
 148static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
 149				   .mask = -1,
 150				   .features = 0,
 151				   .lock = 0,};
 152
 153static char *audit_feature_names[2] = {
 154	"only_unset_loginuid",
 155	"loginuid_immutable",
 156};
 157
 158
 159/* Serialize requests from userspace. */
 160DEFINE_MUTEX(audit_cmd_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 161
 162/* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
 163 * audit records.  Since printk uses a 1024 byte buffer, this buffer
 164 * should be at least that large. */
 165#define AUDIT_BUFSIZ 1024
 166
 167/* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
 168 * audit_freelist.  Doing so eliminates many kmalloc/kfree calls. */
 169#define AUDIT_MAXFREE  (2*NR_CPUS)
 170
 171/* The audit_buffer is used when formatting an audit record.  The caller
 172 * locks briefly to get the record off the freelist or to allocate the
 173 * buffer, and locks briefly to send the buffer to the netlink layer or
 174 * to place it on a transmit queue.  Multiple audit_buffers can be in
 175 * use simultaneously. */
 176struct audit_buffer {
 177	struct list_head     list;
 178	struct sk_buff       *skb;	/* formatted skb ready to send */
 179	struct audit_context *ctx;	/* NULL or associated context */
 180	gfp_t		     gfp_mask;
 181};
 182
 183struct audit_reply {
 184	__u32 portid;
 185	struct net *net;
 186	struct sk_buff *skb;
 187};
 188
 189static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
 
 
 
 
 
 
 
 190{
 191	if (ab) {
 192		struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
 193		nlh->nlmsg_pid = portid;
 194	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 195}
 196
 197void audit_panic(const char *message)
 198{
 199	switch (audit_failure) {
 200	case AUDIT_FAIL_SILENT:
 201		break;
 202	case AUDIT_FAIL_PRINTK:
 203		if (printk_ratelimit())
 204			pr_err("%s\n", message);
 205		break;
 206	case AUDIT_FAIL_PANIC:
 207		/* test audit_pid since printk is always losey, why bother? */
 208		if (audit_pid)
 209			panic("audit: %s\n", message);
 210		break;
 211	}
 212}
 213
 214static inline int audit_rate_check(void)
 215{
 216	static unsigned long	last_check = 0;
 217	static int		messages   = 0;
 218	static DEFINE_SPINLOCK(lock);
 219	unsigned long		flags;
 220	unsigned long		now;
 221	unsigned long		elapsed;
 222	int			retval	   = 0;
 223
 224	if (!audit_rate_limit) return 1;
 225
 226	spin_lock_irqsave(&lock, flags);
 227	if (++messages < audit_rate_limit) {
 228		retval = 1;
 229	} else {
 230		now     = jiffies;
 231		elapsed = now - last_check;
 232		if (elapsed > HZ) {
 233			last_check = now;
 234			messages   = 0;
 235			retval     = 1;
 236		}
 237	}
 238	spin_unlock_irqrestore(&lock, flags);
 239
 240	return retval;
 241}
 242
 243/**
 244 * audit_log_lost - conditionally log lost audit message event
 245 * @message: the message stating reason for lost audit message
 246 *
 247 * Emit at least 1 message per second, even if audit_rate_check is
 248 * throttling.
 249 * Always increment the lost messages counter.
 250*/
 251void audit_log_lost(const char *message)
 252{
 253	static unsigned long	last_msg = 0;
 254	static DEFINE_SPINLOCK(lock);
 255	unsigned long		flags;
 256	unsigned long		now;
 257	int			print;
 258
 259	atomic_inc(&audit_lost);
 260
 261	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
 262
 263	if (!print) {
 264		spin_lock_irqsave(&lock, flags);
 265		now = jiffies;
 266		if (now - last_msg > HZ) {
 267			print = 1;
 268			last_msg = now;
 269		}
 270		spin_unlock_irqrestore(&lock, flags);
 271	}
 272
 273	if (print) {
 274		if (printk_ratelimit())
 275			pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
 276				atomic_read(&audit_lost),
 277				audit_rate_limit,
 278				audit_backlog_limit);
 279		audit_panic(message);
 280	}
 281}
 282
 283static int audit_log_config_change(char *function_name, u32 new, u32 old,
 284				   int allow_changes)
 285{
 286	struct audit_buffer *ab;
 287	int rc = 0;
 288
 289	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
 290	if (unlikely(!ab))
 291		return rc;
 292	audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
 293	audit_log_session_info(ab);
 294	rc = audit_log_task_context(ab);
 295	if (rc)
 296		allow_changes = 0; /* Something weird, deny request */
 297	audit_log_format(ab, " res=%d", allow_changes);
 298	audit_log_end(ab);
 299	return rc;
 300}
 301
 302static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
 303{
 304	int allow_changes, rc = 0;
 305	u32 old = *to_change;
 306
 307	/* check if we are locked */
 308	if (audit_enabled == AUDIT_LOCKED)
 309		allow_changes = 0;
 310	else
 311		allow_changes = 1;
 312
 313	if (audit_enabled != AUDIT_OFF) {
 314		rc = audit_log_config_change(function_name, new, old, allow_changes);
 315		if (rc)
 316			allow_changes = 0;
 317	}
 318
 319	/* If we are allowed, make the change */
 320	if (allow_changes == 1)
 321		*to_change = new;
 322	/* Not allowed, update reason */
 323	else if (rc == 0)
 324		rc = -EPERM;
 325	return rc;
 326}
 327
 328static int audit_set_rate_limit(u32 limit)
 329{
 330	return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
 331}
 332
 333static int audit_set_backlog_limit(u32 limit)
 334{
 335	return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
 336}
 337
 338static int audit_set_backlog_wait_time(u32 timeout)
 339{
 340	return audit_do_config_change("audit_backlog_wait_time",
 341				      &audit_backlog_wait_time, timeout);
 342}
 343
 344static int audit_set_enabled(u32 state)
 345{
 346	int rc;
 347	if (state < AUDIT_OFF || state > AUDIT_LOCKED)
 348		return -EINVAL;
 349
 350	rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
 351	if (!rc)
 352		audit_ever_enabled |= !!state;
 353
 354	return rc;
 355}
 356
 357static int audit_set_failure(u32 state)
 358{
 359	if (state != AUDIT_FAIL_SILENT
 360	    && state != AUDIT_FAIL_PRINTK
 361	    && state != AUDIT_FAIL_PANIC)
 362		return -EINVAL;
 363
 364	return audit_do_config_change("audit_failure", &audit_failure, state);
 365}
 366
 367/*
 368 * Queue skbs to be sent to auditd when/if it comes back.  These skbs should
 369 * already have been sent via prink/syslog and so if these messages are dropped
 370 * it is not a huge concern since we already passed the audit_log_lost()
 371 * notification and stuff.  This is just nice to get audit messages during
 372 * boot before auditd is running or messages generated while auditd is stopped.
 373 * This only holds messages is audit_default is set, aka booting with audit=1
 374 * or building your kernel that way.
 375 */
 376static void audit_hold_skb(struct sk_buff *skb)
 377{
 378	if (audit_default &&
 379	    (!audit_backlog_limit ||
 380	     skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit))
 381		skb_queue_tail(&audit_skb_hold_queue, skb);
 382	else
 383		kfree_skb(skb);
 384}
 385
 386/*
 387 * For one reason or another this nlh isn't getting delivered to the userspace
 388 * audit daemon, just send it to printk.
 
 
 
 
 
 
 389 */
 390static void audit_printk_skb(struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 391{
 392	struct nlmsghdr *nlh = nlmsg_hdr(skb);
 393	char *data = nlmsg_data(nlh);
 394
 395	if (nlh->nlmsg_type != AUDIT_EOE) {
 396		if (printk_ratelimit())
 397			pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
 398		else
 399			audit_log_lost("printk limit exceeded");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 400	}
 401
 402	audit_hold_skb(skb);
 
 
 
 
 
 
 
 
 
 403}
 404
 405static void kauditd_send_skb(struct sk_buff *skb)
 406{
 407	int err;
 408	/* take a reference in case we can't send it and we want to hold it */
 409	skb_get(skb);
 410	err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
 411	if (err < 0) {
 412		BUG_ON(err != -ECONNREFUSED); /* Shouldn't happen */
 413		if (audit_pid) {
 414			pr_err("*NO* daemon at audit_pid=%d\n", audit_pid);
 415			audit_log_lost("auditd disappeared");
 416			audit_pid = 0;
 417			audit_sock = NULL;
 418		}
 419		/* we might get lucky and get this in the next auditd */
 420		audit_hold_skb(skb);
 421	} else
 422		/* drop the extra reference if sent ok */
 423		consume_skb(skb);
 424}
 425
 426/*
 427 * flush_hold_queue - empty the hold queue if auditd appears
 
 428 *
 429 * If auditd just started, drain the queue of messages already
 430 * sent to syslog/printk.  Remember loss here is ok.  We already
 431 * called audit_log_lost() if it didn't go out normally.  so the
 432 * race between the skb_dequeue and the next check for audit_pid
 433 * doesn't matter.
 434 *
 435 * If you ever find kauditd to be too slow we can get a perf win
 436 * by doing our own locking and keeping better track if there
 437 * are messages in this queue.  I don't see the need now, but
 438 * in 5 years when I want to play with this again I'll see this
 439 * note and still have no friggin idea what i'm thinking today.
 440 */
 441static void flush_hold_queue(void)
 442{
 
 443	struct sk_buff *skb;
 
 444
 445	if (!audit_default || !audit_pid)
 
 
 
 
 
 
 446		return;
 
 
 
 447
 448	skb = skb_dequeue(&audit_skb_hold_queue);
 449	if (likely(!skb))
 450		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 451
 452	while (skb && audit_pid) {
 453		kauditd_send_skb(skb);
 454		skb = skb_dequeue(&audit_skb_hold_queue);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 455	}
 456
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 457	/*
 458	 * if auditd just disappeared but we
 459	 * dequeued an skb we need to drop ref
 
 
 
 
 
 
 460	 */
 461	if (skb)
 462		consume_skb(skb);
 
 
 
 
 
 463}
 464
 
 
 
 
 465static int kauditd_thread(void *dummy)
 466{
 467	set_freezable();
 468	while (!kthread_should_stop()) {
 469		struct sk_buff *skb;
 470		DECLARE_WAITQUEUE(wait, current);
 471
 472		flush_hold_queue();
 473
 474		skb = skb_dequeue(&audit_skb_queue);
 475
 476		if (skb) {
 477			if (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit)
 478				wake_up(&audit_backlog_wait);
 479			if (audit_pid)
 480				kauditd_send_skb(skb);
 481			else
 482				audit_printk_skb(skb);
 483			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 484		}
 485		set_current_state(TASK_INTERRUPTIBLE);
 486		add_wait_queue(&kauditd_wait, &wait);
 487
 488		if (!skb_queue_len(&audit_skb_queue)) {
 489			try_to_freeze();
 490			schedule();
 491		}
 492
 493		__set_current_state(TASK_RUNNING);
 494		remove_wait_queue(&kauditd_wait, &wait);
 
 
 
 
 495	}
 
 496	return 0;
 497}
 498
 499int audit_send_list(void *_dest)
 500{
 501	struct audit_netlink_list *dest = _dest;
 502	struct sk_buff *skb;
 503	struct net *net = dest->net;
 504	struct audit_net *aunet = net_generic(net, audit_net_id);
 505
 506	/* wait for parent to finish and send an ACK */
 507	mutex_lock(&audit_cmd_mutex);
 508	mutex_unlock(&audit_cmd_mutex);
 509
 510	while ((skb = __skb_dequeue(&dest->q)) != NULL)
 511		netlink_unicast(aunet->nlsk, skb, dest->portid, 0);
 512
 513	put_net(net);
 514	kfree(dest);
 515
 516	return 0;
 517}
 518
 519struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
 520				 int multi, const void *payload, int size)
 521{
 522	struct sk_buff	*skb;
 523	struct nlmsghdr	*nlh;
 524	void		*data;
 525	int		flags = multi ? NLM_F_MULTI : 0;
 526	int		t     = done  ? NLMSG_DONE  : type;
 527
 528	skb = nlmsg_new(size, GFP_KERNEL);
 529	if (!skb)
 530		return NULL;
 531
 532	nlh	= nlmsg_put(skb, portid, seq, t, size, flags);
 533	if (!nlh)
 534		goto out_kfree_skb;
 535	data = nlmsg_data(nlh);
 536	memcpy(data, payload, size);
 537	return skb;
 538
 539out_kfree_skb:
 540	kfree_skb(skb);
 541	return NULL;
 542}
 543
 
 
 
 
 
 
 
 
 
 
 
 
 544static int audit_send_reply_thread(void *arg)
 545{
 546	struct audit_reply *reply = (struct audit_reply *)arg;
 547	struct net *net = reply->net;
 548	struct audit_net *aunet = net_generic(net, audit_net_id);
 549
 550	mutex_lock(&audit_cmd_mutex);
 551	mutex_unlock(&audit_cmd_mutex);
 552
 553	/* Ignore failure. It'll only happen if the sender goes away,
 554	   because our timeout is set to infinite. */
 555	netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0);
 556	put_net(net);
 557	kfree(reply);
 558	return 0;
 559}
 
 560/**
 561 * audit_send_reply - send an audit reply message via netlink
 562 * @request_skb: skb of request we are replying to (used to target the reply)
 563 * @seq: sequence number
 564 * @type: audit message type
 565 * @done: done (last) flag
 566 * @multi: multi-part message flag
 567 * @payload: payload data
 568 * @size: payload size
 569 *
 570 * Allocates an skb, builds the netlink message, and sends it to the port id.
 571 * No failure notifications.
 572 */
 573static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
 574			     int multi, const void *payload, int size)
 575{
 576	u32 portid = NETLINK_CB(request_skb).portid;
 577	struct net *net = sock_net(NETLINK_CB(request_skb).sk);
 578	struct sk_buff *skb;
 579	struct task_struct *tsk;
 580	struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
 581					    GFP_KERNEL);
 582
 
 583	if (!reply)
 584		return;
 585
 586	skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
 587	if (!skb)
 588		goto out;
 589
 590	reply->net = get_net(net);
 591	reply->portid = portid;
 592	reply->skb = skb;
 593
 594	tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
 595	if (!IS_ERR(tsk))
 596		return;
 597	kfree_skb(skb);
 598out:
 599	kfree(reply);
 
 
 600}
 601
 602/*
 603 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
 604 * control messages.
 605 */
 606static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
 607{
 608	int err = 0;
 609
 610	/* Only support initial user namespace for now. */
 611	/*
 612	 * We return ECONNREFUSED because it tricks userspace into thinking
 613	 * that audit was not configured into the kernel.  Lots of users
 614	 * configure their PAM stack (because that's what the distro does)
 615	 * to reject login if unable to send messages to audit.  If we return
 616	 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
 617	 * configured in and will let login proceed.  If we return EPERM
 618	 * userspace will reject all logins.  This should be removed when we
 619	 * support non init namespaces!!
 620	 */
 621	if (current_user_ns() != &init_user_ns)
 622		return -ECONNREFUSED;
 623
 624	switch (msg_type) {
 625	case AUDIT_LIST:
 626	case AUDIT_ADD:
 627	case AUDIT_DEL:
 628		return -EOPNOTSUPP;
 629	case AUDIT_GET:
 630	case AUDIT_SET:
 631	case AUDIT_GET_FEATURE:
 632	case AUDIT_SET_FEATURE:
 633	case AUDIT_LIST_RULES:
 634	case AUDIT_ADD_RULE:
 635	case AUDIT_DEL_RULE:
 636	case AUDIT_SIGNAL_INFO:
 637	case AUDIT_TTY_GET:
 638	case AUDIT_TTY_SET:
 639	case AUDIT_TRIM:
 640	case AUDIT_MAKE_EQUIV:
 641		/* Only support auditd and auditctl in initial pid namespace
 642		 * for now. */
 643		if ((task_active_pid_ns(current) != &init_pid_ns))
 644			return -EPERM;
 645
 646		if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
 647			err = -EPERM;
 648		break;
 649	case AUDIT_USER:
 650	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
 651	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
 652		if (!netlink_capable(skb, CAP_AUDIT_WRITE))
 653			err = -EPERM;
 654		break;
 655	default:  /* bad msg */
 656		err = -EINVAL;
 657	}
 658
 659	return err;
 660}
 661
 662static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
 
 663{
 664	int rc = 0;
 665	uid_t uid = from_kuid(&init_user_ns, current_uid());
 666	pid_t pid = task_tgid_nr(current);
 667
 668	if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
 669		*ab = NULL;
 670		return rc;
 671	}
 672
 673	*ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
 674	if (unlikely(!*ab))
 675		return rc;
 676	audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
 677	audit_log_session_info(*ab);
 678	audit_log_task_context(*ab);
 
 679
 680	return rc;
 
 
 
 681}
 682
 683int is_audit_feature_set(int i)
 684{
 685	return af.features & AUDIT_FEATURE_TO_MASK(i);
 686}
 687
 688
 689static int audit_get_feature(struct sk_buff *skb)
 690{
 691	u32 seq;
 692
 693	seq = nlmsg_hdr(skb)->nlmsg_seq;
 694
 695	audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &af, sizeof(af));
 696
 697	return 0;
 698}
 699
 700static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
 701				     u32 old_lock, u32 new_lock, int res)
 702{
 703	struct audit_buffer *ab;
 704
 705	if (audit_enabled == AUDIT_OFF)
 706		return;
 707
 708	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
 709	audit_log_task_info(ab, current);
 710	audit_log_format(ab, "feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
 
 
 711			 audit_feature_names[which], !!old_feature, !!new_feature,
 712			 !!old_lock, !!new_lock, res);
 713	audit_log_end(ab);
 714}
 715
 716static int audit_set_feature(struct sk_buff *skb)
 717{
 718	struct audit_features *uaf;
 719	int i;
 720
 721	BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > sizeof(audit_feature_names)/sizeof(audit_feature_names[0]));
 722	uaf = nlmsg_data(nlmsg_hdr(skb));
 723
 724	/* if there is ever a version 2 we should handle that here */
 725
 726	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
 727		u32 feature = AUDIT_FEATURE_TO_MASK(i);
 728		u32 old_feature, new_feature, old_lock, new_lock;
 729
 730		/* if we are not changing this feature, move along */
 731		if (!(feature & uaf->mask))
 732			continue;
 733
 734		old_feature = af.features & feature;
 735		new_feature = uaf->features & feature;
 736		new_lock = (uaf->lock | af.lock) & feature;
 737		old_lock = af.lock & feature;
 738
 739		/* are we changing a locked feature? */
 740		if (old_lock && (new_feature != old_feature)) {
 741			audit_log_feature_change(i, old_feature, new_feature,
 742						 old_lock, new_lock, 0);
 743			return -EPERM;
 744		}
 745	}
 746	/* nothing invalid, do the changes */
 747	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
 748		u32 feature = AUDIT_FEATURE_TO_MASK(i);
 749		u32 old_feature, new_feature, old_lock, new_lock;
 750
 751		/* if we are not changing this feature, move along */
 752		if (!(feature & uaf->mask))
 753			continue;
 754
 755		old_feature = af.features & feature;
 756		new_feature = uaf->features & feature;
 757		old_lock = af.lock & feature;
 758		new_lock = (uaf->lock | af.lock) & feature;
 759
 760		if (new_feature != old_feature)
 761			audit_log_feature_change(i, old_feature, new_feature,
 762						 old_lock, new_lock, 1);
 763
 764		if (new_feature)
 765			af.features |= feature;
 766		else
 767			af.features &= ~feature;
 768		af.lock |= new_lock;
 769	}
 770
 771	return 0;
 772}
 773
 
 
 
 
 
 
 
 
 
 
 
 
 774static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
 775{
 776	u32			seq;
 777	void			*data;
 
 778	int			err;
 779	struct audit_buffer	*ab;
 780	u16			msg_type = nlh->nlmsg_type;
 781	struct audit_sig_info   *sig_data;
 782	char			*ctx = NULL;
 783	u32			len;
 784
 785	err = audit_netlink_ok(skb, msg_type);
 786	if (err)
 787		return err;
 788
 789	/* As soon as there's any sign of userspace auditd,
 790	 * start kauditd to talk to it */
 791	if (!kauditd_task) {
 792		kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
 793		if (IS_ERR(kauditd_task)) {
 794			err = PTR_ERR(kauditd_task);
 795			kauditd_task = NULL;
 796			return err;
 797		}
 798	}
 799	seq  = nlh->nlmsg_seq;
 800	data = nlmsg_data(nlh);
 
 801
 802	switch (msg_type) {
 803	case AUDIT_GET: {
 804		struct audit_status	s;
 805		memset(&s, 0, sizeof(s));
 806		s.enabled		= audit_enabled;
 807		s.failure		= audit_failure;
 808		s.pid			= audit_pid;
 809		s.rate_limit		= audit_rate_limit;
 810		s.backlog_limit		= audit_backlog_limit;
 811		s.lost			= atomic_read(&audit_lost);
 812		s.backlog		= skb_queue_len(&audit_skb_queue);
 813		s.version		= AUDIT_VERSION_LATEST;
 814		s.backlog_wait_time	= audit_backlog_wait_time;
 
 
 
 815		audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
 816		break;
 817	}
 818	case AUDIT_SET: {
 819		struct audit_status	s;
 820		memset(&s, 0, sizeof(s));
 821		/* guard against past and future API changes */
 822		memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
 823		if (s.mask & AUDIT_STATUS_ENABLED) {
 824			err = audit_set_enabled(s.enabled);
 825			if (err < 0)
 826				return err;
 827		}
 828		if (s.mask & AUDIT_STATUS_FAILURE) {
 829			err = audit_set_failure(s.failure);
 830			if (err < 0)
 831				return err;
 832		}
 833		if (s.mask & AUDIT_STATUS_PID) {
 834			int new_pid = s.pid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 835
 836			if ((!new_pid) && (task_tgid_vnr(current) != audit_pid))
 837				return -EACCES;
 838			if (audit_enabled != AUDIT_OFF)
 839				audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
 840			audit_pid = new_pid;
 841			audit_nlk_portid = NETLINK_CB(skb).portid;
 842			audit_sock = skb->sk;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 843		}
 844		if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
 845			err = audit_set_rate_limit(s.rate_limit);
 846			if (err < 0)
 847				return err;
 848		}
 849		if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
 850			err = audit_set_backlog_limit(s.backlog_limit);
 851			if (err < 0)
 852				return err;
 853		}
 854		if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
 855			if (sizeof(s) > (size_t)nlh->nlmsg_len)
 856				return -EINVAL;
 857			if (s.backlog_wait_time < 0 ||
 858			    s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
 859				return -EINVAL;
 860			err = audit_set_backlog_wait_time(s.backlog_wait_time);
 861			if (err < 0)
 862				return err;
 863		}
 
 
 
 
 
 
 
 
 
 
 
 
 864		break;
 865	}
 866	case AUDIT_GET_FEATURE:
 867		err = audit_get_feature(skb);
 868		if (err)
 869			return err;
 870		break;
 871	case AUDIT_SET_FEATURE:
 872		err = audit_set_feature(skb);
 
 
 873		if (err)
 874			return err;
 875		break;
 876	case AUDIT_USER:
 877	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
 878	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
 879		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
 880			return 0;
 
 
 
 881
 882		err = audit_filter_user(msg_type);
 883		if (err == 1) { /* match or error */
 
 
 884			err = 0;
 885			if (msg_type == AUDIT_USER_TTY) {
 886				err = tty_audit_push_current();
 887				if (err)
 888					break;
 889			}
 890			mutex_unlock(&audit_cmd_mutex);
 891			audit_log_common_recv_msg(&ab, msg_type);
 892			if (msg_type != AUDIT_USER_TTY)
 
 893				audit_log_format(ab, " msg='%.*s'",
 894						 AUDIT_MESSAGE_TEXT_MAX,
 895						 (char *)data);
 896			else {
 897				int size;
 898
 899				audit_log_format(ab, " data=");
 900				size = nlmsg_len(nlh);
 901				if (size > 0 &&
 902				    ((unsigned char *)data)[size - 1] == '\0')
 903					size--;
 904				audit_log_n_untrustedstring(ab, data, size);
 905			}
 906			audit_set_portid(ab, NETLINK_CB(skb).portid);
 907			audit_log_end(ab);
 908			mutex_lock(&audit_cmd_mutex);
 909		}
 910		break;
 911	case AUDIT_ADD_RULE:
 912	case AUDIT_DEL_RULE:
 913		if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
 914			return -EINVAL;
 915		if (audit_enabled == AUDIT_LOCKED) {
 916			audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
 917			audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
 
 
 
 
 918			audit_log_end(ab);
 919			return -EPERM;
 920		}
 921		err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
 922					   seq, data, nlmsg_len(nlh));
 923		break;
 924	case AUDIT_LIST_RULES:
 925		err = audit_list_rules_send(skb, seq);
 926		break;
 927	case AUDIT_TRIM:
 928		audit_trim_trees();
 929		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
 
 930		audit_log_format(ab, " op=trim res=1");
 931		audit_log_end(ab);
 932		break;
 933	case AUDIT_MAKE_EQUIV: {
 934		void *bufp = data;
 935		u32 sizes[2];
 936		size_t msglen = nlmsg_len(nlh);
 937		char *old, *new;
 938
 939		err = -EINVAL;
 940		if (msglen < 2 * sizeof(u32))
 941			break;
 942		memcpy(sizes, bufp, 2 * sizeof(u32));
 943		bufp += 2 * sizeof(u32);
 944		msglen -= 2 * sizeof(u32);
 945		old = audit_unpack_string(&bufp, &msglen, sizes[0]);
 946		if (IS_ERR(old)) {
 947			err = PTR_ERR(old);
 948			break;
 949		}
 950		new = audit_unpack_string(&bufp, &msglen, sizes[1]);
 951		if (IS_ERR(new)) {
 952			err = PTR_ERR(new);
 953			kfree(old);
 954			break;
 955		}
 956		/* OK, here comes... */
 957		err = audit_tag_tree(old, new);
 958
 959		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
 960
 961		audit_log_format(ab, " op=make_equiv old=");
 962		audit_log_untrustedstring(ab, old);
 963		audit_log_format(ab, " new=");
 964		audit_log_untrustedstring(ab, new);
 965		audit_log_format(ab, " res=%d", !err);
 966		audit_log_end(ab);
 967		kfree(old);
 968		kfree(new);
 969		break;
 970	}
 971	case AUDIT_SIGNAL_INFO:
 972		len = 0;
 973		if (audit_sig_sid) {
 974			err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
 975			if (err)
 976				return err;
 977		}
 978		sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
 979		if (!sig_data) {
 980			if (audit_sig_sid)
 981				security_release_secctx(ctx, len);
 982			return -ENOMEM;
 983		}
 984		sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
 985		sig_data->pid = audit_sig_pid;
 986		if (audit_sig_sid) {
 987			memcpy(sig_data->ctx, ctx, len);
 988			security_release_secctx(ctx, len);
 989		}
 990		audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
 991				 sig_data, sizeof(*sig_data) + len);
 992		kfree(sig_data);
 993		break;
 994	case AUDIT_TTY_GET: {
 995		struct audit_tty_status s;
 996		struct task_struct *tsk = current;
 997
 998		spin_lock(&tsk->sighand->siglock);
 999		s.enabled = tsk->signal->audit_tty;
1000		s.log_passwd = tsk->signal->audit_tty_log_passwd;
1001		spin_unlock(&tsk->sighand->siglock);
1002
1003		audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1004		break;
1005	}
1006	case AUDIT_TTY_SET: {
1007		struct audit_tty_status s, old;
1008		struct task_struct *tsk = current;
1009		struct audit_buffer	*ab;
 
1010
1011		memset(&s, 0, sizeof(s));
1012		/* guard against past and future API changes */
1013		memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1014		/* check if new data is valid */
1015		if ((s.enabled != 0 && s.enabled != 1) ||
1016		    (s.log_passwd != 0 && s.log_passwd != 1))
1017			err = -EINVAL;
1018
1019		spin_lock(&tsk->sighand->siglock);
1020		old.enabled = tsk->signal->audit_tty;
1021		old.log_passwd = tsk->signal->audit_tty_log_passwd;
1022		if (!err) {
1023			tsk->signal->audit_tty = s.enabled;
1024			tsk->signal->audit_tty_log_passwd = s.log_passwd;
1025		}
1026		spin_unlock(&tsk->sighand->siglock);
 
1027
1028		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
 
1029		audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1030				 " old-log_passwd=%d new-log_passwd=%d res=%d",
1031				 old.enabled, s.enabled, old.log_passwd,
1032				 s.log_passwd, !err);
1033		audit_log_end(ab);
1034		break;
1035	}
1036	default:
1037		err = -EINVAL;
1038		break;
1039	}
1040
1041	return err < 0 ? err : 0;
1042}
1043
1044/*
1045 * Get message from skb.  Each message is processed by audit_receive_msg.
1046 * Malformed skbs with wrong length are discarded silently.
 
 
 
1047 */
1048static void audit_receive_skb(struct sk_buff *skb)
1049{
1050	struct nlmsghdr *nlh;
1051	/*
1052	 * len MUST be signed for nlmsg_next to be able to dec it below 0
1053	 * if the nlmsg_len was not aligned
1054	 */
1055	int len;
1056	int err;
1057
1058	nlh = nlmsg_hdr(skb);
1059	len = skb->len;
1060
 
1061	while (nlmsg_ok(nlh, len)) {
1062		err = audit_receive_msg(skb, nlh);
1063		/* if err or if this message says it wants a response */
1064		if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1065			netlink_ack(skb, nlh, err);
1066
1067		nlh = nlmsg_next(nlh, &len);
1068	}
 
1069}
1070
1071/* Receive messages from netlink socket. */
1072static void audit_receive(struct sk_buff  *skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1073{
1074	mutex_lock(&audit_cmd_mutex);
1075	audit_receive_skb(skb);
1076	mutex_unlock(&audit_cmd_mutex);
 
 
 
 
 
 
 
 
1077}
1078
1079static int __net_init audit_net_init(struct net *net)
1080{
1081	struct netlink_kernel_cfg cfg = {
1082		.input	= audit_receive,
 
 
 
 
1083	};
1084
1085	struct audit_net *aunet = net_generic(net, audit_net_id);
1086
1087	aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1088	if (aunet->nlsk == NULL) {
1089		audit_panic("cannot initialize netlink socket in namespace");
1090		return -ENOMEM;
1091	}
1092	aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
 
1093	return 0;
1094}
1095
1096static void __net_exit audit_net_exit(struct net *net)
1097{
1098	struct audit_net *aunet = net_generic(net, audit_net_id);
1099	struct sock *sock = aunet->nlsk;
1100	if (sock == audit_sock) {
1101		audit_pid = 0;
1102		audit_sock = NULL;
1103	}
1104
1105	RCU_INIT_POINTER(aunet->nlsk, NULL);
1106	synchronize_net();
1107	netlink_kernel_release(sock);
 
 
 
 
1108}
1109
1110static struct pernet_operations audit_net_ops __net_initdata = {
1111	.init = audit_net_init,
1112	.exit = audit_net_exit,
1113	.id = &audit_net_id,
1114	.size = sizeof(struct audit_net),
1115};
1116
1117/* Initialize audit support at boot time. */
1118static int __init audit_init(void)
1119{
1120	int i;
1121
1122	if (audit_initialized == AUDIT_DISABLED)
1123		return 0;
1124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1125	pr_info("initializing netlink subsys (%s)\n",
1126		audit_default ? "enabled" : "disabled");
1127	register_pernet_subsys(&audit_net_ops);
1128
1129	skb_queue_head_init(&audit_skb_queue);
1130	skb_queue_head_init(&audit_skb_hold_queue);
1131	audit_initialized = AUDIT_INITIALIZED;
1132	audit_enabled = audit_default;
1133	audit_ever_enabled |= !!audit_default;
1134
1135	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
 
 
 
 
1136
1137	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1138		INIT_LIST_HEAD(&audit_inode_hash[i]);
 
1139
1140	return 0;
1141}
1142__initcall(audit_init);
1143
1144/* Process kernel command-line parameter at boot time.  audit=0 or audit=1. */
 
 
 
1145static int __init audit_enable(char *str)
1146{
1147	audit_default = !!simple_strtol(str, NULL, 0);
1148	if (!audit_default)
 
 
 
 
 
 
 
 
1149		audit_initialized = AUDIT_DISABLED;
 
 
 
1150
1151	pr_info("%s\n", audit_default ?
1152		"enabled (after initialization)" : "disabled (until reboot)");
1153
1154	return 1;
1155}
1156__setup("audit=", audit_enable);
1157
1158/* Process kernel command-line parameter at boot time.
1159 * audit_backlog_limit=<n> */
1160static int __init audit_backlog_limit_set(char *str)
1161{
1162	u32 audit_backlog_limit_arg;
1163
1164	pr_info("audit_backlog_limit: ");
1165	if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1166		pr_cont("using default of %u, unable to parse %s\n",
1167			audit_backlog_limit, str);
1168		return 1;
1169	}
1170
1171	audit_backlog_limit = audit_backlog_limit_arg;
1172	pr_cont("%d\n", audit_backlog_limit);
1173
1174	return 1;
1175}
1176__setup("audit_backlog_limit=", audit_backlog_limit_set);
1177
1178static void audit_buffer_free(struct audit_buffer *ab)
1179{
1180	unsigned long flags;
1181
1182	if (!ab)
1183		return;
1184
1185	if (ab->skb)
1186		kfree_skb(ab->skb);
1187
1188	spin_lock_irqsave(&audit_freelist_lock, flags);
1189	if (audit_freelist_count > AUDIT_MAXFREE)
1190		kfree(ab);
1191	else {
1192		audit_freelist_count++;
1193		list_add(&ab->list, &audit_freelist);
1194	}
1195	spin_unlock_irqrestore(&audit_freelist_lock, flags);
1196}
1197
1198static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1199						gfp_t gfp_mask, int type)
1200{
1201	unsigned long flags;
1202	struct audit_buffer *ab = NULL;
1203	struct nlmsghdr *nlh;
1204
1205	spin_lock_irqsave(&audit_freelist_lock, flags);
1206	if (!list_empty(&audit_freelist)) {
1207		ab = list_entry(audit_freelist.next,
1208				struct audit_buffer, list);
1209		list_del(&ab->list);
1210		--audit_freelist_count;
1211	}
1212	spin_unlock_irqrestore(&audit_freelist_lock, flags);
1213
1214	if (!ab) {
1215		ab = kmalloc(sizeof(*ab), gfp_mask);
1216		if (!ab)
1217			goto err;
1218	}
1219
1220	ab->ctx = ctx;
1221	ab->gfp_mask = gfp_mask;
 
1222
1223	ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1224	if (!ab->skb)
1225		goto err;
 
 
1226
1227	nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1228	if (!nlh)
1229		goto out_kfree_skb;
1230
1231	return ab;
1232
1233out_kfree_skb:
1234	kfree_skb(ab->skb);
1235	ab->skb = NULL;
1236err:
1237	audit_buffer_free(ab);
1238	return NULL;
1239}
1240
1241/**
1242 * audit_serial - compute a serial number for the audit record
1243 *
1244 * Compute a serial number for the audit record.  Audit records are
1245 * written to user-space as soon as they are generated, so a complete
1246 * audit record may be written in several pieces.  The timestamp of the
1247 * record and this serial number are used by the user-space tools to
1248 * determine which pieces belong to the same audit record.  The
1249 * (timestamp,serial) tuple is unique for each syscall and is live from
1250 * syscall entry to syscall exit.
1251 *
1252 * NOTE: Another possibility is to store the formatted records off the
1253 * audit context (for those records that have a context), and emit them
1254 * all at syscall exit.  However, this could delay the reporting of
1255 * significant errors until syscall exit (or never, if the system
1256 * halts).
1257 */
1258unsigned int audit_serial(void)
1259{
1260	static DEFINE_SPINLOCK(serial_lock);
1261	static unsigned int serial = 0;
1262
1263	unsigned long flags;
1264	unsigned int ret;
1265
1266	spin_lock_irqsave(&serial_lock, flags);
1267	do {
1268		ret = ++serial;
1269	} while (unlikely(!ret));
1270	spin_unlock_irqrestore(&serial_lock, flags);
1271
1272	return ret;
1273}
1274
1275static inline void audit_get_stamp(struct audit_context *ctx,
1276				   struct timespec *t, unsigned int *serial)
1277{
1278	if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1279		*t = CURRENT_TIME;
1280		*serial = audit_serial();
1281	}
1282}
1283
1284/*
1285 * Wait for auditd to drain the queue a little
1286 */
1287static long wait_for_auditd(long sleep_time)
1288{
1289	DECLARE_WAITQUEUE(wait, current);
1290	set_current_state(TASK_UNINTERRUPTIBLE);
1291	add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1292
1293	if (audit_backlog_limit &&
1294	    skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1295		sleep_time = schedule_timeout(sleep_time);
1296
1297	__set_current_state(TASK_RUNNING);
1298	remove_wait_queue(&audit_backlog_wait, &wait);
1299
1300	return sleep_time;
1301}
1302
1303/**
1304 * audit_log_start - obtain an audit buffer
1305 * @ctx: audit_context (may be NULL)
1306 * @gfp_mask: type of allocation
1307 * @type: audit message type
1308 *
1309 * Returns audit_buffer pointer on success or NULL on error.
1310 *
1311 * Obtain an audit buffer.  This routine does locking to obtain the
1312 * audit buffer, but then no locking is required for calls to
1313 * audit_log_*format.  If the task (ctx) is a task that is currently in a
1314 * syscall, then the syscall is marked as auditable and an audit record
1315 * will be written at syscall exit.  If there is no associated task, then
1316 * task context (ctx) should be NULL.
1317 */
1318struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1319				     int type)
1320{
1321	struct audit_buffer	*ab	= NULL;
1322	struct timespec		t;
1323	unsigned int		uninitialized_var(serial);
1324	int reserve = 5; /* Allow atomic callers to go up to five
1325			    entries over the normal backlog limit */
1326	unsigned long timeout_start = jiffies;
1327
1328	if (audit_initialized != AUDIT_INITIALIZED)
1329		return NULL;
1330
1331	if (unlikely(audit_filter_type(type)))
1332		return NULL;
1333
1334	if (gfp_mask & __GFP_WAIT) {
1335		if (audit_pid && audit_pid == current->pid)
1336			gfp_mask &= ~__GFP_WAIT;
1337		else
1338			reserve = 0;
1339	}
 
 
 
 
 
 
 
 
1340
1341	while (audit_backlog_limit
1342	       && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1343		if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time) {
1344			long sleep_time;
1345
1346			sleep_time = timeout_start + audit_backlog_wait_time - jiffies;
1347			if (sleep_time > 0) {
1348				sleep_time = wait_for_auditd(sleep_time);
1349				if (sleep_time > 0)
1350					continue;
 
 
 
 
 
 
 
 
 
 
1351			}
1352		}
1353		if (audit_rate_check() && printk_ratelimit())
1354			pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1355				skb_queue_len(&audit_skb_queue),
1356				audit_backlog_limit);
1357		audit_log_lost("backlog limit exceeded");
1358		audit_backlog_wait_time = audit_backlog_wait_overflow;
1359		wake_up(&audit_backlog_wait);
1360		return NULL;
1361	}
1362
1363	audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
1364
1365	ab = audit_buffer_alloc(ctx, gfp_mask, type);
1366	if (!ab) {
1367		audit_log_lost("out of memory in audit_log_start");
1368		return NULL;
1369	}
1370
1371	audit_get_stamp(ab->ctx, &t, &serial);
 
 
1372
1373	audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1374			 t.tv_sec, t.tv_nsec/1000000, serial);
1375	return ab;
1376}
1377
1378/**
1379 * audit_expand - expand skb in the audit buffer
1380 * @ab: audit_buffer
1381 * @extra: space to add at tail of the skb
1382 *
1383 * Returns 0 (no space) on failed expansion, or available space if
1384 * successful.
1385 */
1386static inline int audit_expand(struct audit_buffer *ab, int extra)
1387{
1388	struct sk_buff *skb = ab->skb;
1389	int oldtail = skb_tailroom(skb);
1390	int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1391	int newtail = skb_tailroom(skb);
1392
1393	if (ret < 0) {
1394		audit_log_lost("out of memory in audit_expand");
1395		return 0;
1396	}
1397
1398	skb->truesize += newtail - oldtail;
1399	return newtail;
1400}
1401
1402/*
1403 * Format an audit message into the audit buffer.  If there isn't enough
1404 * room in the audit buffer, more room will be allocated and vsnprint
1405 * will be called a second time.  Currently, we assume that a printk
1406 * can't format message larger than 1024 bytes, so we don't either.
1407 */
1408static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1409			      va_list args)
1410{
1411	int len, avail;
1412	struct sk_buff *skb;
1413	va_list args2;
1414
1415	if (!ab)
1416		return;
1417
1418	BUG_ON(!ab->skb);
1419	skb = ab->skb;
1420	avail = skb_tailroom(skb);
1421	if (avail == 0) {
1422		avail = audit_expand(ab, AUDIT_BUFSIZ);
1423		if (!avail)
1424			goto out;
1425	}
1426	va_copy(args2, args);
1427	len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1428	if (len >= avail) {
1429		/* The printk buffer is 1024 bytes long, so if we get
1430		 * here and AUDIT_BUFSIZ is at least 1024, then we can
1431		 * log everything that printk could have logged. */
1432		avail = audit_expand(ab,
1433			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1434		if (!avail)
1435			goto out_va_end;
1436		len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1437	}
1438	if (len > 0)
1439		skb_put(skb, len);
1440out_va_end:
1441	va_end(args2);
1442out:
1443	return;
1444}
1445
1446/**
1447 * audit_log_format - format a message into the audit buffer.
1448 * @ab: audit_buffer
1449 * @fmt: format string
1450 * @...: optional parameters matching @fmt string
1451 *
1452 * All the work is done in audit_log_vformat.
1453 */
1454void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1455{
1456	va_list args;
1457
1458	if (!ab)
1459		return;
1460	va_start(args, fmt);
1461	audit_log_vformat(ab, fmt, args);
1462	va_end(args);
1463}
1464
1465/**
1466 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1467 * @ab: the audit_buffer
1468 * @buf: buffer to convert to hex
1469 * @len: length of @buf to be converted
1470 *
1471 * No return value; failure to expand is silently ignored.
1472 *
1473 * This function will take the passed buf and convert it into a string of
1474 * ascii hex digits. The new string is placed onto the skb.
1475 */
1476void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1477		size_t len)
1478{
1479	int i, avail, new_len;
1480	unsigned char *ptr;
1481	struct sk_buff *skb;
1482
1483	if (!ab)
1484		return;
1485
1486	BUG_ON(!ab->skb);
1487	skb = ab->skb;
1488	avail = skb_tailroom(skb);
1489	new_len = len<<1;
1490	if (new_len >= avail) {
1491		/* Round the buffer request up to the next multiple */
1492		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1493		avail = audit_expand(ab, new_len);
1494		if (!avail)
1495			return;
1496	}
1497
1498	ptr = skb_tail_pointer(skb);
1499	for (i = 0; i < len; i++)
1500		ptr = hex_byte_pack_upper(ptr, buf[i]);
1501	*ptr = 0;
1502	skb_put(skb, len << 1); /* new string is twice the old string */
1503}
1504
1505/*
1506 * Format a string of no more than slen characters into the audit buffer,
1507 * enclosed in quote marks.
1508 */
1509void audit_log_n_string(struct audit_buffer *ab, const char *string,
1510			size_t slen)
1511{
1512	int avail, new_len;
1513	unsigned char *ptr;
1514	struct sk_buff *skb;
1515
1516	if (!ab)
1517		return;
1518
1519	BUG_ON(!ab->skb);
1520	skb = ab->skb;
1521	avail = skb_tailroom(skb);
1522	new_len = slen + 3;	/* enclosing quotes + null terminator */
1523	if (new_len > avail) {
1524		avail = audit_expand(ab, new_len);
1525		if (!avail)
1526			return;
1527	}
1528	ptr = skb_tail_pointer(skb);
1529	*ptr++ = '"';
1530	memcpy(ptr, string, slen);
1531	ptr += slen;
1532	*ptr++ = '"';
1533	*ptr = 0;
1534	skb_put(skb, slen + 2);	/* don't include null terminator */
1535}
1536
1537/**
1538 * audit_string_contains_control - does a string need to be logged in hex
1539 * @string: string to be checked
1540 * @len: max length of the string to check
1541 */
1542int audit_string_contains_control(const char *string, size_t len)
1543{
1544	const unsigned char *p;
1545	for (p = string; p < (const unsigned char *)string + len; p++) {
1546		if (*p == '"' || *p < 0x21 || *p > 0x7e)
1547			return 1;
1548	}
1549	return 0;
1550}
1551
1552/**
1553 * audit_log_n_untrustedstring - log a string that may contain random characters
1554 * @ab: audit_buffer
1555 * @len: length of string (not including trailing null)
1556 * @string: string to be logged
1557 *
1558 * This code will escape a string that is passed to it if the string
1559 * contains a control character, unprintable character, double quote mark,
1560 * or a space. Unescaped strings will start and end with a double quote mark.
1561 * Strings that are escaped are printed in hex (2 digits per char).
1562 *
1563 * The caller specifies the number of characters in the string to log, which may
1564 * or may not be the entire string.
1565 */
1566void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1567				 size_t len)
1568{
1569	if (audit_string_contains_control(string, len))
1570		audit_log_n_hex(ab, string, len);
1571	else
1572		audit_log_n_string(ab, string, len);
1573}
1574
1575/**
1576 * audit_log_untrustedstring - log a string that may contain random characters
1577 * @ab: audit_buffer
1578 * @string: string to be logged
1579 *
1580 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1581 * determine string length.
1582 */
1583void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1584{
1585	audit_log_n_untrustedstring(ab, string, strlen(string));
1586}
1587
1588/* This is a helper-function to print the escaped d_path */
1589void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1590		      const struct path *path)
1591{
1592	char *p, *pathname;
1593
1594	if (prefix)
1595		audit_log_format(ab, "%s", prefix);
1596
1597	/* We will allow 11 spaces for ' (deleted)' to be appended */
1598	pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1599	if (!pathname) {
1600		audit_log_string(ab, "<no_memory>");
1601		return;
1602	}
1603	p = d_path(path, pathname, PATH_MAX+11);
1604	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1605		/* FIXME: can we save some information here? */
1606		audit_log_string(ab, "<too_long>");
1607	} else
1608		audit_log_untrustedstring(ab, p);
1609	kfree(pathname);
1610}
1611
1612void audit_log_session_info(struct audit_buffer *ab)
1613{
1614	unsigned int sessionid = audit_get_sessionid(current);
1615	uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1616
1617	audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1618}
1619
1620void audit_log_key(struct audit_buffer *ab, char *key)
1621{
1622	audit_log_format(ab, " key=");
1623	if (key)
1624		audit_log_untrustedstring(ab, key);
1625	else
1626		audit_log_format(ab, "(null)");
1627}
1628
1629void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1630{
1631	int i;
1632
1633	audit_log_format(ab, " %s=", prefix);
1634	CAP_FOR_EACH_U32(i) {
1635		audit_log_format(ab, "%08x",
1636				 cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1637	}
1638}
1639
1640void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1641{
1642	kernel_cap_t *perm = &name->fcap.permitted;
1643	kernel_cap_t *inh = &name->fcap.inheritable;
1644	int log = 0;
1645
1646	if (!cap_isclear(*perm)) {
1647		audit_log_cap(ab, "cap_fp", perm);
1648		log = 1;
1649	}
1650	if (!cap_isclear(*inh)) {
1651		audit_log_cap(ab, "cap_fi", inh);
1652		log = 1;
1653	}
1654
1655	if (log)
1656		audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1657				 name->fcap.fE, name->fcap_ver);
1658}
1659
1660static inline int audit_copy_fcaps(struct audit_names *name,
1661				   const struct dentry *dentry)
1662{
1663	struct cpu_vfs_cap_data caps;
1664	int rc;
1665
1666	if (!dentry)
1667		return 0;
1668
1669	rc = get_vfs_caps_from_disk(dentry, &caps);
1670	if (rc)
1671		return rc;
1672
1673	name->fcap.permitted = caps.permitted;
1674	name->fcap.inheritable = caps.inheritable;
1675	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1676	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1677				VFS_CAP_REVISION_SHIFT;
1678
1679	return 0;
1680}
1681
1682/* Copy inode data into an audit_names. */
1683void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1684		      const struct inode *inode)
1685{
1686	name->ino   = inode->i_ino;
1687	name->dev   = inode->i_sb->s_dev;
1688	name->mode  = inode->i_mode;
1689	name->uid   = inode->i_uid;
1690	name->gid   = inode->i_gid;
1691	name->rdev  = inode->i_rdev;
1692	security_inode_getsecid(inode, &name->osid);
1693	audit_copy_fcaps(name, dentry);
1694}
1695
1696/**
1697 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1698 * @context: audit_context for the task
1699 * @n: audit_names structure with reportable details
1700 * @path: optional path to report instead of audit_names->name
1701 * @record_num: record number to report when handling a list of names
1702 * @call_panic: optional pointer to int that will be updated if secid fails
1703 */
1704void audit_log_name(struct audit_context *context, struct audit_names *n,
1705		    struct path *path, int record_num, int *call_panic)
1706{
1707	struct audit_buffer *ab;
1708	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1709	if (!ab)
1710		return;
1711
1712	audit_log_format(ab, "item=%d", record_num);
1713
1714	if (path)
1715		audit_log_d_path(ab, " name=", path);
1716	else if (n->name) {
1717		switch (n->name_len) {
1718		case AUDIT_NAME_FULL:
1719			/* log the full path */
1720			audit_log_format(ab, " name=");
1721			audit_log_untrustedstring(ab, n->name->name);
1722			break;
1723		case 0:
1724			/* name was specified as a relative path and the
1725			 * directory component is the cwd */
1726			audit_log_d_path(ab, " name=", &context->pwd);
1727			break;
1728		default:
1729			/* log the name's directory component */
1730			audit_log_format(ab, " name=");
1731			audit_log_n_untrustedstring(ab, n->name->name,
1732						    n->name_len);
1733		}
1734	} else
1735		audit_log_format(ab, " name=(null)");
1736
1737	if (n->ino != (unsigned long)-1) {
1738		audit_log_format(ab, " inode=%lu"
1739				 " dev=%02x:%02x mode=%#ho"
1740				 " ouid=%u ogid=%u rdev=%02x:%02x",
1741				 n->ino,
1742				 MAJOR(n->dev),
1743				 MINOR(n->dev),
1744				 n->mode,
1745				 from_kuid(&init_user_ns, n->uid),
1746				 from_kgid(&init_user_ns, n->gid),
1747				 MAJOR(n->rdev),
1748				 MINOR(n->rdev));
1749	}
1750	if (n->osid != 0) {
1751		char *ctx = NULL;
1752		u32 len;
1753		if (security_secid_to_secctx(
1754			n->osid, &ctx, &len)) {
1755			audit_log_format(ab, " osid=%u", n->osid);
1756			if (call_panic)
1757				*call_panic = 2;
1758		} else {
1759			audit_log_format(ab, " obj=%s", ctx);
1760			security_release_secctx(ctx, len);
1761		}
1762	}
1763
1764	/* log the audit_names record type */
1765	audit_log_format(ab, " nametype=");
1766	switch(n->type) {
1767	case AUDIT_TYPE_NORMAL:
1768		audit_log_format(ab, "NORMAL");
1769		break;
1770	case AUDIT_TYPE_PARENT:
1771		audit_log_format(ab, "PARENT");
1772		break;
1773	case AUDIT_TYPE_CHILD_DELETE:
1774		audit_log_format(ab, "DELETE");
1775		break;
1776	case AUDIT_TYPE_CHILD_CREATE:
1777		audit_log_format(ab, "CREATE");
1778		break;
1779	default:
1780		audit_log_format(ab, "UNKNOWN");
1781		break;
1782	}
1783
1784	audit_log_fcaps(ab, n);
1785	audit_log_end(ab);
1786}
1787
1788int audit_log_task_context(struct audit_buffer *ab)
1789{
1790	char *ctx = NULL;
1791	unsigned len;
1792	int error;
1793	u32 sid;
1794
1795	security_task_getsecid(current, &sid);
1796	if (!sid)
1797		return 0;
1798
1799	error = security_secid_to_secctx(sid, &ctx, &len);
1800	if (error) {
1801		if (error != -EINVAL)
1802			goto error_path;
1803		return 0;
1804	}
1805
1806	audit_log_format(ab, " subj=%s", ctx);
1807	security_release_secctx(ctx, len);
1808	return 0;
1809
1810error_path:
1811	audit_panic("error in audit_log_task_context");
1812	return error;
1813}
1814EXPORT_SYMBOL(audit_log_task_context);
1815
1816void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1817{
1818	const struct cred *cred;
1819	char name[sizeof(tsk->comm)];
1820	struct mm_struct *mm = tsk->mm;
1821	char *tty;
1822
1823	if (!ab)
1824		return;
1825
1826	/* tsk == current */
1827	cred = current_cred();
1828
1829	spin_lock_irq(&tsk->sighand->siglock);
1830	if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1831		tty = tsk->signal->tty->name;
1832	else
1833		tty = "(none)";
1834	spin_unlock_irq(&tsk->sighand->siglock);
1835
1836	audit_log_format(ab,
1837			 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1838			 " euid=%u suid=%u fsuid=%u"
1839			 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1840			 task_ppid_nr(tsk),
1841			 task_pid_nr(tsk),
1842			 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
1843			 from_kuid(&init_user_ns, cred->uid),
1844			 from_kgid(&init_user_ns, cred->gid),
1845			 from_kuid(&init_user_ns, cred->euid),
1846			 from_kuid(&init_user_ns, cred->suid),
1847			 from_kuid(&init_user_ns, cred->fsuid),
1848			 from_kgid(&init_user_ns, cred->egid),
1849			 from_kgid(&init_user_ns, cred->sgid),
1850			 from_kgid(&init_user_ns, cred->fsgid),
1851			 tty, audit_get_sessionid(tsk));
1852
1853	get_task_comm(name, tsk);
1854	audit_log_format(ab, " comm=");
1855	audit_log_untrustedstring(ab, name);
1856
1857	if (mm) {
1858		down_read(&mm->mmap_sem);
1859		if (mm->exe_file)
1860			audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
1861		up_read(&mm->mmap_sem);
1862	} else
1863		audit_log_format(ab, " exe=(null)");
1864	audit_log_task_context(ab);
1865}
1866EXPORT_SYMBOL(audit_log_task_info);
1867
1868/**
1869 * audit_log_link_denied - report a link restriction denial
1870 * @operation: specific link opreation
1871 * @link: the path that triggered the restriction
1872 */
1873void audit_log_link_denied(const char *operation, struct path *link)
1874{
1875	struct audit_buffer *ab;
1876	struct audit_names *name;
1877
1878	name = kzalloc(sizeof(*name), GFP_NOFS);
1879	if (!name)
1880		return;
1881
1882	/* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
1883	ab = audit_log_start(current->audit_context, GFP_KERNEL,
1884			     AUDIT_ANOM_LINK);
1885	if (!ab)
1886		goto out;
1887	audit_log_format(ab, "op=%s", operation);
1888	audit_log_task_info(ab, current);
1889	audit_log_format(ab, " res=0");
1890	audit_log_end(ab);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1891
1892	/* Generate AUDIT_PATH record with object. */
1893	name->type = AUDIT_TYPE_NORMAL;
1894	audit_copy_inode(name, link->dentry, link->dentry->d_inode);
1895	audit_log_name(current->audit_context, name, link, 0, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1896out:
1897	kfree(name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1898}
1899
1900/**
1901 * audit_log_end - end one audit record
1902 * @ab: the audit_buffer
1903 *
1904 * The netlink_* functions cannot be called inside an irq context, so
1905 * the audit buffer is placed on a queue and a tasklet is scheduled to
1906 * remove them from the queue outside the irq context.  May be called in
1907 * any context.
1908 */
1909void audit_log_end(struct audit_buffer *ab)
1910{
 
 
 
1911	if (!ab)
1912		return;
1913	if (!audit_rate_check()) {
1914		audit_log_lost("rate limit exceeded");
1915	} else {
1916		struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1917		nlh->nlmsg_len = ab->skb->len - NLMSG_HDRLEN;
1918
1919		if (audit_pid) {
1920			skb_queue_tail(&audit_skb_queue, ab->skb);
1921			wake_up_interruptible(&kauditd_wait);
1922		} else {
1923			audit_printk_skb(ab->skb);
1924		}
1925		ab->skb = NULL;
1926	}
 
 
 
 
 
 
 
 
 
 
 
1927	audit_buffer_free(ab);
1928}
1929
1930/**
1931 * audit_log - Log an audit record
1932 * @ctx: audit context
1933 * @gfp_mask: type of allocation
1934 * @type: audit message type
1935 * @fmt: format string to use
1936 * @...: variable parameters matching the format string
1937 *
1938 * This is a convenience function that calls audit_log_start,
1939 * audit_log_vformat, and audit_log_end.  It may be called
1940 * in any context.
1941 */
1942void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
1943	       const char *fmt, ...)
1944{
1945	struct audit_buffer *ab;
1946	va_list args;
1947
1948	ab = audit_log_start(ctx, gfp_mask, type);
1949	if (ab) {
1950		va_start(args, fmt);
1951		audit_log_vformat(ab, fmt, args);
1952		va_end(args);
1953		audit_log_end(ab);
1954	}
1955}
1956
1957#ifdef CONFIG_SECURITY
1958/**
1959 * audit_log_secctx - Converts and logs SELinux context
1960 * @ab: audit_buffer
1961 * @secid: security number
1962 *
1963 * This is a helper function that calls security_secid_to_secctx to convert
1964 * secid to secctx and then adds the (converted) SELinux context to the audit
1965 * log by calling audit_log_format, thus also preventing leak of internal secid
1966 * to userspace. If secid cannot be converted audit_panic is called.
1967 */
1968void audit_log_secctx(struct audit_buffer *ab, u32 secid)
1969{
1970	u32 len;
1971	char *secctx;
1972
1973	if (security_secid_to_secctx(secid, &secctx, &len)) {
1974		audit_panic("Cannot convert secid to context");
1975	} else {
1976		audit_log_format(ab, " obj=%s", secctx);
1977		security_release_secctx(secctx, len);
1978	}
1979}
1980EXPORT_SYMBOL(audit_log_secctx);
1981#endif
1982
1983EXPORT_SYMBOL(audit_log_start);
1984EXPORT_SYMBOL(audit_log_end);
1985EXPORT_SYMBOL(audit_log_format);
1986EXPORT_SYMBOL(audit_log);
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* audit.c -- Auditing support
   3 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
   4 * System-call specific features have moved to auditsc.c
   5 *
   6 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
   7 * All Rights Reserved.
   8 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   9 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  10 *
  11 * Goals: 1) Integrate fully with Security Modules.
  12 *	  2) Minimal run-time overhead:
  13 *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
  14 *	     b) Small when syscall auditing is enabled and no audit record
  15 *		is generated (defer as much work as possible to record
  16 *		generation time):
  17 *		i) context is allocated,
  18 *		ii) names from getname are stored without a copy, and
  19 *		iii) inode information stored from path_lookup.
  20 *	  3) Ability to disable syscall auditing at boot time (audit=0).
  21 *	  4) Usable by other parts of the kernel (if audit_log* is called,
  22 *	     then a syscall record will be generated automatically for the
  23 *	     current syscall).
  24 *	  5) Netlink interface to user-space.
  25 *	  6) Support low-overhead kernel-based filtering to minimize the
  26 *	     information that must be passed to user-space.
  27 *
  28 * Audit userspace, documentation, tests, and bug/issue trackers:
  29 * 	https://github.com/linux-audit
  30 */
  31
  32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  33
  34#include <linux/file.h>
  35#include <linux/init.h>
  36#include <linux/types.h>
  37#include <linux/atomic.h>
  38#include <linux/mm.h>
  39#include <linux/export.h>
  40#include <linux/slab.h>
  41#include <linux/err.h>
  42#include <linux/kthread.h>
  43#include <linux/kernel.h>
  44#include <linux/syscalls.h>
  45#include <linux/spinlock.h>
  46#include <linux/rcupdate.h>
  47#include <linux/mutex.h>
  48#include <linux/gfp.h>
  49#include <linux/pid.h>
  50
  51#include <linux/audit.h>
  52
  53#include <net/sock.h>
  54#include <net/netlink.h>
  55#include <linux/skbuff.h>
  56#ifdef CONFIG_SECURITY
  57#include <linux/security.h>
  58#endif
  59#include <linux/freezer.h>
 
  60#include <linux/pid_namespace.h>
  61#include <net/netns/generic.h>
  62
  63#include "audit.h"
  64
  65/* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
  66 * (Initialization happens after skb_init is called.) */
  67#define AUDIT_DISABLED		-1
  68#define AUDIT_UNINITIALIZED	0
  69#define AUDIT_INITIALIZED	1
  70static int	audit_initialized;
  71
  72u32		audit_enabled = AUDIT_OFF;
  73bool		audit_ever_enabled = !!AUDIT_OFF;
 
 
 
  74
  75EXPORT_SYMBOL_GPL(audit_enabled);
  76
  77/* Default state when kernel boots without any parameters. */
  78static u32	audit_default = AUDIT_OFF;
  79
  80/* If auditing cannot proceed, audit_failure selects what happens. */
  81static u32	audit_failure = AUDIT_FAIL_PRINTK;
  82
  83/* private audit network namespace index */
  84static unsigned int audit_net_id;
  85
  86/**
  87 * struct audit_net - audit private network namespace data
  88 * @sk: communication socket
  89 */
  90struct audit_net {
  91	struct sock *sk;
  92};
  93
  94/**
  95 * struct auditd_connection - kernel/auditd connection state
  96 * @pid: auditd PID
  97 * @portid: netlink portid
  98 * @net: the associated network namespace
  99 * @rcu: RCU head
 100 *
 101 * Description:
 102 * This struct is RCU protected; you must either hold the RCU lock for reading
 103 * or the associated spinlock for writing.
 104 */
 105struct auditd_connection {
 106	struct pid *pid;
 107	u32 portid;
 108	struct net *net;
 109	struct rcu_head rcu;
 110};
 111static struct auditd_connection __rcu *auditd_conn;
 112static DEFINE_SPINLOCK(auditd_conn_lock);
 113
 114/* If audit_rate_limit is non-zero, limit the rate of sending audit records
 115 * to that number per second.  This prevents DoS attacks, but results in
 116 * audit records being dropped. */
 117static u32	audit_rate_limit;
 118
 119/* Number of outstanding audit_buffers allowed.
 120 * When set to zero, this means unlimited. */
 121static u32	audit_backlog_limit = 64;
 122#define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
 123static u32	audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
 
 124
 125/* The identity of the user shutting down the audit system. */
 126kuid_t		audit_sig_uid = INVALID_UID;
 127pid_t		audit_sig_pid = -1;
 128u32		audit_sig_sid = 0;
 129
 130/* Records can be lost in several ways:
 131   0) [suppressed in audit_alloc]
 132   1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
 133   2) out of memory in audit_log_move [alloc_skb]
 134   3) suppressed due to audit_rate_limit
 135   4) suppressed due to audit_backlog_limit
 136*/
 137static atomic_t	audit_lost = ATOMIC_INIT(0);
 138
 139/* Monotonically increasing sum of time the kernel has spent
 140 * waiting while the backlog limit is exceeded.
 141 */
 142static atomic_t audit_backlog_wait_time_actual = ATOMIC_INIT(0);
 143
 144/* Hash for inode-based rules */
 145struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
 146
 147static struct kmem_cache *audit_buffer_cache;
 148
 149/* queue msgs to send via kauditd_task */
 150static struct sk_buff_head audit_queue;
 151/* queue msgs due to temporary unicast send problems */
 152static struct sk_buff_head audit_retry_queue;
 153/* queue msgs waiting for new auditd connection */
 154static struct sk_buff_head audit_hold_queue;
 155
 156/* queue servicing thread */
 157static struct task_struct *kauditd_task;
 158static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
 159
 160/* waitqueue for callers who are blocked on the audit backlog */
 161static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
 162
 163static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
 164				   .mask = -1,
 165				   .features = 0,
 166				   .lock = 0,};
 167
 168static char *audit_feature_names[2] = {
 169	"only_unset_loginuid",
 170	"loginuid_immutable",
 171};
 172
 173/**
 174 * struct audit_ctl_mutex - serialize requests from userspace
 175 * @lock: the mutex used for locking
 176 * @owner: the task which owns the lock
 177 *
 178 * Description:
 179 * This is the lock struct used to ensure we only process userspace requests
 180 * in an orderly fashion.  We can't simply use a mutex/lock here because we
 181 * need to track lock ownership so we don't end up blocking the lock owner in
 182 * audit_log_start() or similar.
 183 */
 184static struct audit_ctl_mutex {
 185	struct mutex lock;
 186	void *owner;
 187} audit_cmd_mutex;
 188
 189/* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
 190 * audit records.  Since printk uses a 1024 byte buffer, this buffer
 191 * should be at least that large. */
 192#define AUDIT_BUFSIZ 1024
 193
 
 
 
 
 194/* The audit_buffer is used when formatting an audit record.  The caller
 195 * locks briefly to get the record off the freelist or to allocate the
 196 * buffer, and locks briefly to send the buffer to the netlink layer or
 197 * to place it on a transmit queue.  Multiple audit_buffers can be in
 198 * use simultaneously. */
 199struct audit_buffer {
 
 200	struct sk_buff       *skb;	/* formatted skb ready to send */
 201	struct audit_context *ctx;	/* NULL or associated context */
 202	gfp_t		     gfp_mask;
 203};
 204
 205struct audit_reply {
 206	__u32 portid;
 207	struct net *net;
 208	struct sk_buff *skb;
 209};
 210
 211/**
 212 * auditd_test_task - Check to see if a given task is an audit daemon
 213 * @task: the task to check
 214 *
 215 * Description:
 216 * Return 1 if the task is a registered audit daemon, 0 otherwise.
 217 */
 218int auditd_test_task(struct task_struct *task)
 219{
 220	int rc;
 221	struct auditd_connection *ac;
 222
 223	rcu_read_lock();
 224	ac = rcu_dereference(auditd_conn);
 225	rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
 226	rcu_read_unlock();
 227
 228	return rc;
 229}
 230
 231/**
 232 * audit_ctl_lock - Take the audit control lock
 233 */
 234void audit_ctl_lock(void)
 235{
 236	mutex_lock(&audit_cmd_mutex.lock);
 237	audit_cmd_mutex.owner = current;
 238}
 239
 240/**
 241 * audit_ctl_unlock - Drop the audit control lock
 242 */
 243void audit_ctl_unlock(void)
 244{
 245	audit_cmd_mutex.owner = NULL;
 246	mutex_unlock(&audit_cmd_mutex.lock);
 247}
 248
 249/**
 250 * audit_ctl_owner_current - Test to see if the current task owns the lock
 251 *
 252 * Description:
 253 * Return true if the current task owns the audit control lock, false if it
 254 * doesn't own the lock.
 255 */
 256static bool audit_ctl_owner_current(void)
 257{
 258	return (current == audit_cmd_mutex.owner);
 259}
 260
 261/**
 262 * auditd_pid_vnr - Return the auditd PID relative to the namespace
 263 *
 264 * Description:
 265 * Returns the PID in relation to the namespace, 0 on failure.
 266 */
 267static pid_t auditd_pid_vnr(void)
 268{
 269	pid_t pid;
 270	const struct auditd_connection *ac;
 271
 272	rcu_read_lock();
 273	ac = rcu_dereference(auditd_conn);
 274	if (!ac || !ac->pid)
 275		pid = 0;
 276	else
 277		pid = pid_vnr(ac->pid);
 278	rcu_read_unlock();
 279
 280	return pid;
 281}
 282
 283/**
 284 * audit_get_sk - Return the audit socket for the given network namespace
 285 * @net: the destination network namespace
 286 *
 287 * Description:
 288 * Returns the sock pointer if valid, NULL otherwise.  The caller must ensure
 289 * that a reference is held for the network namespace while the sock is in use.
 290 */
 291static struct sock *audit_get_sk(const struct net *net)
 292{
 293	struct audit_net *aunet;
 294
 295	if (!net)
 296		return NULL;
 297
 298	aunet = net_generic(net, audit_net_id);
 299	return aunet->sk;
 300}
 301
 302void audit_panic(const char *message)
 303{
 304	switch (audit_failure) {
 305	case AUDIT_FAIL_SILENT:
 306		break;
 307	case AUDIT_FAIL_PRINTK:
 308		if (printk_ratelimit())
 309			pr_err("%s\n", message);
 310		break;
 311	case AUDIT_FAIL_PANIC:
 312		panic("audit: %s\n", message);
 
 
 313		break;
 314	}
 315}
 316
 317static inline int audit_rate_check(void)
 318{
 319	static unsigned long	last_check = 0;
 320	static int		messages   = 0;
 321	static DEFINE_SPINLOCK(lock);
 322	unsigned long		flags;
 323	unsigned long		now;
 324	unsigned long		elapsed;
 325	int			retval	   = 0;
 326
 327	if (!audit_rate_limit) return 1;
 328
 329	spin_lock_irqsave(&lock, flags);
 330	if (++messages < audit_rate_limit) {
 331		retval = 1;
 332	} else {
 333		now     = jiffies;
 334		elapsed = now - last_check;
 335		if (elapsed > HZ) {
 336			last_check = now;
 337			messages   = 0;
 338			retval     = 1;
 339		}
 340	}
 341	spin_unlock_irqrestore(&lock, flags);
 342
 343	return retval;
 344}
 345
 346/**
 347 * audit_log_lost - conditionally log lost audit message event
 348 * @message: the message stating reason for lost audit message
 349 *
 350 * Emit at least 1 message per second, even if audit_rate_check is
 351 * throttling.
 352 * Always increment the lost messages counter.
 353*/
 354void audit_log_lost(const char *message)
 355{
 356	static unsigned long	last_msg = 0;
 357	static DEFINE_SPINLOCK(lock);
 358	unsigned long		flags;
 359	unsigned long		now;
 360	int			print;
 361
 362	atomic_inc(&audit_lost);
 363
 364	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
 365
 366	if (!print) {
 367		spin_lock_irqsave(&lock, flags);
 368		now = jiffies;
 369		if (now - last_msg > HZ) {
 370			print = 1;
 371			last_msg = now;
 372		}
 373		spin_unlock_irqrestore(&lock, flags);
 374	}
 375
 376	if (print) {
 377		if (printk_ratelimit())
 378			pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
 379				atomic_read(&audit_lost),
 380				audit_rate_limit,
 381				audit_backlog_limit);
 382		audit_panic(message);
 383	}
 384}
 385
 386static int audit_log_config_change(char *function_name, u32 new, u32 old,
 387				   int allow_changes)
 388{
 389	struct audit_buffer *ab;
 390	int rc = 0;
 391
 392	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE);
 393	if (unlikely(!ab))
 394		return rc;
 395	audit_log_format(ab, "op=set %s=%u old=%u ", function_name, new, old);
 396	audit_log_session_info(ab);
 397	rc = audit_log_task_context(ab);
 398	if (rc)
 399		allow_changes = 0; /* Something weird, deny request */
 400	audit_log_format(ab, " res=%d", allow_changes);
 401	audit_log_end(ab);
 402	return rc;
 403}
 404
 405static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
 406{
 407	int allow_changes, rc = 0;
 408	u32 old = *to_change;
 409
 410	/* check if we are locked */
 411	if (audit_enabled == AUDIT_LOCKED)
 412		allow_changes = 0;
 413	else
 414		allow_changes = 1;
 415
 416	if (audit_enabled != AUDIT_OFF) {
 417		rc = audit_log_config_change(function_name, new, old, allow_changes);
 418		if (rc)
 419			allow_changes = 0;
 420	}
 421
 422	/* If we are allowed, make the change */
 423	if (allow_changes == 1)
 424		*to_change = new;
 425	/* Not allowed, update reason */
 426	else if (rc == 0)
 427		rc = -EPERM;
 428	return rc;
 429}
 430
 431static int audit_set_rate_limit(u32 limit)
 432{
 433	return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
 434}
 435
 436static int audit_set_backlog_limit(u32 limit)
 437{
 438	return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
 439}
 440
 441static int audit_set_backlog_wait_time(u32 timeout)
 442{
 443	return audit_do_config_change("audit_backlog_wait_time",
 444				      &audit_backlog_wait_time, timeout);
 445}
 446
 447static int audit_set_enabled(u32 state)
 448{
 449	int rc;
 450	if (state > AUDIT_LOCKED)
 451		return -EINVAL;
 452
 453	rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
 454	if (!rc)
 455		audit_ever_enabled |= !!state;
 456
 457	return rc;
 458}
 459
 460static int audit_set_failure(u32 state)
 461{
 462	if (state != AUDIT_FAIL_SILENT
 463	    && state != AUDIT_FAIL_PRINTK
 464	    && state != AUDIT_FAIL_PANIC)
 465		return -EINVAL;
 466
 467	return audit_do_config_change("audit_failure", &audit_failure, state);
 468}
 469
 470/**
 471 * auditd_conn_free - RCU helper to release an auditd connection struct
 472 * @rcu: RCU head
 473 *
 474 * Description:
 475 * Drop any references inside the auditd connection tracking struct and free
 476 * the memory.
 477 */
 478static void auditd_conn_free(struct rcu_head *rcu)
 479{
 480	struct auditd_connection *ac;
 481
 482	ac = container_of(rcu, struct auditd_connection, rcu);
 483	put_pid(ac->pid);
 484	put_net(ac->net);
 485	kfree(ac);
 
 486}
 487
 488/**
 489 * auditd_set - Set/Reset the auditd connection state
 490 * @pid: auditd PID
 491 * @portid: auditd netlink portid
 492 * @net: auditd network namespace pointer
 493 *
 494 * Description:
 495 * This function will obtain and drop network namespace references as
 496 * necessary.  Returns zero on success, negative values on failure.
 497 */
 498static int auditd_set(struct pid *pid, u32 portid, struct net *net)
 499{
 500	unsigned long flags;
 501	struct auditd_connection *ac_old, *ac_new;
 502
 503	if (!pid || !net)
 504		return -EINVAL;
 505
 506	ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
 507	if (!ac_new)
 508		return -ENOMEM;
 509	ac_new->pid = get_pid(pid);
 510	ac_new->portid = portid;
 511	ac_new->net = get_net(net);
 512
 513	spin_lock_irqsave(&auditd_conn_lock, flags);
 514	ac_old = rcu_dereference_protected(auditd_conn,
 515					   lockdep_is_held(&auditd_conn_lock));
 516	rcu_assign_pointer(auditd_conn, ac_new);
 517	spin_unlock_irqrestore(&auditd_conn_lock, flags);
 518
 519	if (ac_old)
 520		call_rcu(&ac_old->rcu, auditd_conn_free);
 521
 522	return 0;
 523}
 524
 525/**
 526 * kauditd_print_skb - Print the audit record to the ring buffer
 527 * @skb: audit record
 528 *
 529 * Whatever the reason, this packet may not make it to the auditd connection
 530 * so write it via printk so the information isn't completely lost.
 531 */
 532static void kauditd_printk_skb(struct sk_buff *skb)
 533{
 534	struct nlmsghdr *nlh = nlmsg_hdr(skb);
 535	char *data = nlmsg_data(nlh);
 536
 537	if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
 538		pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
 539}
 540
 541/**
 542 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
 543 * @skb: audit record
 544 *
 545 * Description:
 546 * This should only be used by the kauditd_thread when it fails to flush the
 547 * hold queue.
 548 */
 549static void kauditd_rehold_skb(struct sk_buff *skb)
 550{
 551	/* put the record back in the queue at the same place */
 552	skb_queue_head(&audit_hold_queue, skb);
 553}
 554
 555/**
 556 * kauditd_hold_skb - Queue an audit record, waiting for auditd
 557 * @skb: audit record
 558 *
 559 * Description:
 560 * Queue the audit record, waiting for an instance of auditd.  When this
 561 * function is called we haven't given up yet on sending the record, but things
 562 * are not looking good.  The first thing we want to do is try to write the
 563 * record via printk and then see if we want to try and hold on to the record
 564 * and queue it, if we have room.  If we want to hold on to the record, but we
 565 * don't have room, record a record lost message.
 566 */
 567static void kauditd_hold_skb(struct sk_buff *skb)
 568{
 569	/* at this point it is uncertain if we will ever send this to auditd so
 570	 * try to send the message via printk before we go any further */
 571	kauditd_printk_skb(skb);
 572
 573	/* can we just silently drop the message? */
 574	if (!audit_default) {
 575		kfree_skb(skb);
 576		return;
 577	}
 578
 579	/* if we have room, queue the message */
 580	if (!audit_backlog_limit ||
 581	    skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
 582		skb_queue_tail(&audit_hold_queue, skb);
 583		return;
 584	}
 585
 586	/* we have no other options - drop the message */
 587	audit_log_lost("kauditd hold queue overflow");
 588	kfree_skb(skb);
 589}
 590
 591/**
 592 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
 593 * @skb: audit record
 594 *
 595 * Description:
 596 * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
 597 * but for some reason we are having problems sending it audit records so
 598 * queue the given record and attempt to resend.
 599 */
 600static void kauditd_retry_skb(struct sk_buff *skb)
 601{
 602	/* NOTE: because records should only live in the retry queue for a
 603	 * short period of time, before either being sent or moved to the hold
 604	 * queue, we don't currently enforce a limit on this queue */
 605	skb_queue_tail(&audit_retry_queue, skb);
 
 
 
 
 606}
 607
 608/**
 609 * auditd_reset - Disconnect the auditd connection
 610 * @ac: auditd connection state
 611 *
 612 * Description:
 613 * Break the auditd/kauditd connection and move all the queued records into the
 614 * hold queue in case auditd reconnects.  It is important to note that the @ac
 615 * pointer should never be dereferenced inside this function as it may be NULL
 616 * or invalid, you can only compare the memory address!  If @ac is NULL then
 617 * the connection will always be reset.
 
 
 
 
 
 618 */
 619static void auditd_reset(const struct auditd_connection *ac)
 620{
 621	unsigned long flags;
 622	struct sk_buff *skb;
 623	struct auditd_connection *ac_old;
 624
 625	/* if it isn't already broken, break the connection */
 626	spin_lock_irqsave(&auditd_conn_lock, flags);
 627	ac_old = rcu_dereference_protected(auditd_conn,
 628					   lockdep_is_held(&auditd_conn_lock));
 629	if (ac && ac != ac_old) {
 630		/* someone already registered a new auditd connection */
 631		spin_unlock_irqrestore(&auditd_conn_lock, flags);
 632		return;
 633	}
 634	rcu_assign_pointer(auditd_conn, NULL);
 635	spin_unlock_irqrestore(&auditd_conn_lock, flags);
 636
 637	if (ac_old)
 638		call_rcu(&ac_old->rcu, auditd_conn_free);
 639
 640	/* flush the retry queue to the hold queue, but don't touch the main
 641	 * queue since we need to process that normally for multicast */
 642	while ((skb = skb_dequeue(&audit_retry_queue)))
 643		kauditd_hold_skb(skb);
 644}
 645
 646/**
 647 * auditd_send_unicast_skb - Send a record via unicast to auditd
 648 * @skb: audit record
 649 *
 650 * Description:
 651 * Send a skb to the audit daemon, returns positive/zero values on success and
 652 * negative values on failure; in all cases the skb will be consumed by this
 653 * function.  If the send results in -ECONNREFUSED the connection with auditd
 654 * will be reset.  This function may sleep so callers should not hold any locks
 655 * where this would cause a problem.
 656 */
 657static int auditd_send_unicast_skb(struct sk_buff *skb)
 658{
 659	int rc;
 660	u32 portid;
 661	struct net *net;
 662	struct sock *sk;
 663	struct auditd_connection *ac;
 664
 665	/* NOTE: we can't call netlink_unicast while in the RCU section so
 666	 *       take a reference to the network namespace and grab local
 667	 *       copies of the namespace, the sock, and the portid; the
 668	 *       namespace and sock aren't going to go away while we hold a
 669	 *       reference and if the portid does become invalid after the RCU
 670	 *       section netlink_unicast() should safely return an error */
 671
 672	rcu_read_lock();
 673	ac = rcu_dereference(auditd_conn);
 674	if (!ac) {
 675		rcu_read_unlock();
 676		kfree_skb(skb);
 677		rc = -ECONNREFUSED;
 678		goto err;
 679	}
 680	net = get_net(ac->net);
 681	sk = audit_get_sk(net);
 682	portid = ac->portid;
 683	rcu_read_unlock();
 684
 685	rc = netlink_unicast(sk, skb, portid, 0);
 686	put_net(net);
 687	if (rc < 0)
 688		goto err;
 689
 690	return rc;
 691
 692err:
 693	if (ac && rc == -ECONNREFUSED)
 694		auditd_reset(ac);
 695	return rc;
 696}
 697
 698/**
 699 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
 700 * @sk: the sending sock
 701 * @portid: the netlink destination
 702 * @queue: the skb queue to process
 703 * @retry_limit: limit on number of netlink unicast failures
 704 * @skb_hook: per-skb hook for additional processing
 705 * @err_hook: hook called if the skb fails the netlink unicast send
 706 *
 707 * Description:
 708 * Run through the given queue and attempt to send the audit records to auditd,
 709 * returns zero on success, negative values on failure.  It is up to the caller
 710 * to ensure that the @sk is valid for the duration of this function.
 711 *
 712 */
 713static int kauditd_send_queue(struct sock *sk, u32 portid,
 714			      struct sk_buff_head *queue,
 715			      unsigned int retry_limit,
 716			      void (*skb_hook)(struct sk_buff *skb),
 717			      void (*err_hook)(struct sk_buff *skb))
 718{
 719	int rc = 0;
 720	struct sk_buff *skb;
 721	static unsigned int failed = 0;
 722
 723	/* NOTE: kauditd_thread takes care of all our locking, we just use
 724	 *       the netlink info passed to us (e.g. sk and portid) */
 725
 726	while ((skb = skb_dequeue(queue))) {
 727		/* call the skb_hook for each skb we touch */
 728		if (skb_hook)
 729			(*skb_hook)(skb);
 730
 731		/* can we send to anyone via unicast? */
 732		if (!sk) {
 733			if (err_hook)
 734				(*err_hook)(skb);
 735			continue;
 736		}
 737
 738		/* grab an extra skb reference in case of error */
 739		skb_get(skb);
 740		rc = netlink_unicast(sk, skb, portid, 0);
 741		if (rc < 0) {
 742			/* fatal failure for our queue flush attempt? */
 743			if (++failed >= retry_limit ||
 744			    rc == -ECONNREFUSED || rc == -EPERM) {
 745				/* yes - error processing for the queue */
 746				sk = NULL;
 747				if (err_hook)
 748					(*err_hook)(skb);
 749				if (!skb_hook)
 750					goto out;
 751				/* keep processing with the skb_hook */
 752				continue;
 753			} else
 754				/* no - requeue to preserve ordering */
 755				skb_queue_head(queue, skb);
 756		} else {
 757			/* it worked - drop the extra reference and continue */
 758			consume_skb(skb);
 759			failed = 0;
 760		}
 761	}
 762
 763out:
 764	return (rc >= 0 ? 0 : rc);
 765}
 766
 767/*
 768 * kauditd_send_multicast_skb - Send a record to any multicast listeners
 769 * @skb: audit record
 770 *
 771 * Description:
 772 * Write a multicast message to anyone listening in the initial network
 773 * namespace.  This function doesn't consume an skb as might be expected since
 774 * it has to copy it anyways.
 775 */
 776static void kauditd_send_multicast_skb(struct sk_buff *skb)
 777{
 778	struct sk_buff *copy;
 779	struct sock *sock = audit_get_sk(&init_net);
 780	struct nlmsghdr *nlh;
 781
 782	/* NOTE: we are not taking an additional reference for init_net since
 783	 *       we don't have to worry about it going away */
 784
 785	if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
 786		return;
 787
 788	/*
 789	 * The seemingly wasteful skb_copy() rather than bumping the refcount
 790	 * using skb_get() is necessary because non-standard mods are made to
 791	 * the skb by the original kaudit unicast socket send routine.  The
 792	 * existing auditd daemon assumes this breakage.  Fixing this would
 793	 * require co-ordinating a change in the established protocol between
 794	 * the kaudit kernel subsystem and the auditd userspace code.  There is
 795	 * no reason for new multicast clients to continue with this
 796	 * non-compliance.
 797	 */
 798	copy = skb_copy(skb, GFP_KERNEL);
 799	if (!copy)
 800		return;
 801	nlh = nlmsg_hdr(copy);
 802	nlh->nlmsg_len = skb->len;
 803
 804	nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
 805}
 806
 807/**
 808 * kauditd_thread - Worker thread to send audit records to userspace
 809 * @dummy: unused
 810 */
 811static int kauditd_thread(void *dummy)
 812{
 813	int rc;
 814	u32 portid = 0;
 815	struct net *net = NULL;
 816	struct sock *sk = NULL;
 817	struct auditd_connection *ac;
 
 818
 819#define UNICAST_RETRIES 5
 820
 821	set_freezable();
 822	while (!kthread_should_stop()) {
 823		/* NOTE: see the lock comments in auditd_send_unicast_skb() */
 824		rcu_read_lock();
 825		ac = rcu_dereference(auditd_conn);
 826		if (!ac) {
 827			rcu_read_unlock();
 828			goto main_queue;
 829		}
 830		net = get_net(ac->net);
 831		sk = audit_get_sk(net);
 832		portid = ac->portid;
 833		rcu_read_unlock();
 834
 835		/* attempt to flush the hold queue */
 836		rc = kauditd_send_queue(sk, portid,
 837					&audit_hold_queue, UNICAST_RETRIES,
 838					NULL, kauditd_rehold_skb);
 839		if (rc < 0) {
 840			sk = NULL;
 841			auditd_reset(ac);
 842			goto main_queue;
 843		}
 844
 845		/* attempt to flush the retry queue */
 846		rc = kauditd_send_queue(sk, portid,
 847					&audit_retry_queue, UNICAST_RETRIES,
 848					NULL, kauditd_hold_skb);
 849		if (rc < 0) {
 850			sk = NULL;
 851			auditd_reset(ac);
 852			goto main_queue;
 853		}
 854
 855main_queue:
 856		/* process the main queue - do the multicast send and attempt
 857		 * unicast, dump failed record sends to the retry queue; if
 858		 * sk == NULL due to previous failures we will just do the
 859		 * multicast send and move the record to the hold queue */
 860		rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
 861					kauditd_send_multicast_skb,
 862					(sk ?
 863					 kauditd_retry_skb : kauditd_hold_skb));
 864		if (ac && rc < 0)
 865			auditd_reset(ac);
 866		sk = NULL;
 867
 868		/* drop our netns reference, no auditd sends past this line */
 869		if (net) {
 870			put_net(net);
 871			net = NULL;
 872		}
 
 
 873
 874		/* we have processed all the queues so wake everyone */
 875		wake_up(&audit_backlog_wait);
 
 
 876
 877		/* NOTE: we want to wake up if there is anything on the queue,
 878		 *       regardless of if an auditd is connected, as we need to
 879		 *       do the multicast send and rotate records from the
 880		 *       main queue to the retry/hold queues */
 881		wait_event_freezable(kauditd_wait,
 882				     (skb_queue_len(&audit_queue) ? 1 : 0));
 883	}
 884
 885	return 0;
 886}
 887
 888int audit_send_list_thread(void *_dest)
 889{
 890	struct audit_netlink_list *dest = _dest;
 891	struct sk_buff *skb;
 892	struct sock *sk = audit_get_sk(dest->net);
 
 893
 894	/* wait for parent to finish and send an ACK */
 895	audit_ctl_lock();
 896	audit_ctl_unlock();
 897
 898	while ((skb = __skb_dequeue(&dest->q)) != NULL)
 899		netlink_unicast(sk, skb, dest->portid, 0);
 900
 901	put_net(dest->net);
 902	kfree(dest);
 903
 904	return 0;
 905}
 906
 907struct sk_buff *audit_make_reply(int seq, int type, int done,
 908				 int multi, const void *payload, int size)
 909{
 910	struct sk_buff	*skb;
 911	struct nlmsghdr	*nlh;
 912	void		*data;
 913	int		flags = multi ? NLM_F_MULTI : 0;
 914	int		t     = done  ? NLMSG_DONE  : type;
 915
 916	skb = nlmsg_new(size, GFP_KERNEL);
 917	if (!skb)
 918		return NULL;
 919
 920	nlh	= nlmsg_put(skb, 0, seq, t, size, flags);
 921	if (!nlh)
 922		goto out_kfree_skb;
 923	data = nlmsg_data(nlh);
 924	memcpy(data, payload, size);
 925	return skb;
 926
 927out_kfree_skb:
 928	kfree_skb(skb);
 929	return NULL;
 930}
 931
 932static void audit_free_reply(struct audit_reply *reply)
 933{
 934	if (!reply)
 935		return;
 936
 937	if (reply->skb)
 938		kfree_skb(reply->skb);
 939	if (reply->net)
 940		put_net(reply->net);
 941	kfree(reply);
 942}
 943
 944static int audit_send_reply_thread(void *arg)
 945{
 946	struct audit_reply *reply = (struct audit_reply *)arg;
 
 
 947
 948	audit_ctl_lock();
 949	audit_ctl_unlock();
 950
 951	/* Ignore failure. It'll only happen if the sender goes away,
 952	   because our timeout is set to infinite. */
 953	netlink_unicast(audit_get_sk(reply->net), reply->skb, reply->portid, 0);
 954	reply->skb = NULL;
 955	audit_free_reply(reply);
 956	return 0;
 957}
 958
 959/**
 960 * audit_send_reply - send an audit reply message via netlink
 961 * @request_skb: skb of request we are replying to (used to target the reply)
 962 * @seq: sequence number
 963 * @type: audit message type
 964 * @done: done (last) flag
 965 * @multi: multi-part message flag
 966 * @payload: payload data
 967 * @size: payload size
 968 *
 969 * Allocates a skb, builds the netlink message, and sends it to the port id.
 
 970 */
 971static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
 972			     int multi, const void *payload, int size)
 973{
 
 
 
 974	struct task_struct *tsk;
 975	struct audit_reply *reply;
 
 976
 977	reply = kzalloc(sizeof(*reply), GFP_KERNEL);
 978	if (!reply)
 979		return;
 980
 981	reply->skb = audit_make_reply(seq, type, done, multi, payload, size);
 982	if (!reply->skb)
 983		goto err;
 984	reply->net = get_net(sock_net(NETLINK_CB(request_skb).sk));
 985	reply->portid = NETLINK_CB(request_skb).portid;
 
 
 986
 987	tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
 988	if (IS_ERR(tsk))
 989		goto err;
 990
 991	return;
 992
 993err:
 994	audit_free_reply(reply);
 995}
 996
 997/*
 998 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
 999 * control messages.
1000 */
1001static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
1002{
1003	int err = 0;
1004
1005	/* Only support initial user namespace for now. */
1006	/*
1007	 * We return ECONNREFUSED because it tricks userspace into thinking
1008	 * that audit was not configured into the kernel.  Lots of users
1009	 * configure their PAM stack (because that's what the distro does)
1010	 * to reject login if unable to send messages to audit.  If we return
1011	 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
1012	 * configured in and will let login proceed.  If we return EPERM
1013	 * userspace will reject all logins.  This should be removed when we
1014	 * support non init namespaces!!
1015	 */
1016	if (current_user_ns() != &init_user_ns)
1017		return -ECONNREFUSED;
1018
1019	switch (msg_type) {
1020	case AUDIT_LIST:
1021	case AUDIT_ADD:
1022	case AUDIT_DEL:
1023		return -EOPNOTSUPP;
1024	case AUDIT_GET:
1025	case AUDIT_SET:
1026	case AUDIT_GET_FEATURE:
1027	case AUDIT_SET_FEATURE:
1028	case AUDIT_LIST_RULES:
1029	case AUDIT_ADD_RULE:
1030	case AUDIT_DEL_RULE:
1031	case AUDIT_SIGNAL_INFO:
1032	case AUDIT_TTY_GET:
1033	case AUDIT_TTY_SET:
1034	case AUDIT_TRIM:
1035	case AUDIT_MAKE_EQUIV:
1036		/* Only support auditd and auditctl in initial pid namespace
1037		 * for now. */
1038		if (task_active_pid_ns(current) != &init_pid_ns)
1039			return -EPERM;
1040
1041		if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1042			err = -EPERM;
1043		break;
1044	case AUDIT_USER:
1045	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1046	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1047		if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1048			err = -EPERM;
1049		break;
1050	default:  /* bad msg */
1051		err = -EINVAL;
1052	}
1053
1054	return err;
1055}
1056
1057static void audit_log_common_recv_msg(struct audit_context *context,
1058					struct audit_buffer **ab, u16 msg_type)
1059{
 
1060	uid_t uid = from_kuid(&init_user_ns, current_uid());
1061	pid_t pid = task_tgid_nr(current);
1062
1063	if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1064		*ab = NULL;
1065		return;
1066	}
1067
1068	*ab = audit_log_start(context, GFP_KERNEL, msg_type);
1069	if (unlikely(!*ab))
1070		return;
1071	audit_log_format(*ab, "pid=%d uid=%u ", pid, uid);
1072	audit_log_session_info(*ab);
1073	audit_log_task_context(*ab);
1074}
1075
1076static inline void audit_log_user_recv_msg(struct audit_buffer **ab,
1077					   u16 msg_type)
1078{
1079	audit_log_common_recv_msg(NULL, ab, msg_type);
1080}
1081
1082int is_audit_feature_set(int i)
1083{
1084	return af.features & AUDIT_FEATURE_TO_MASK(i);
1085}
1086
1087
1088static int audit_get_feature(struct sk_buff *skb)
1089{
1090	u32 seq;
1091
1092	seq = nlmsg_hdr(skb)->nlmsg_seq;
1093
1094	audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1095
1096	return 0;
1097}
1098
1099static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1100				     u32 old_lock, u32 new_lock, int res)
1101{
1102	struct audit_buffer *ab;
1103
1104	if (audit_enabled == AUDIT_OFF)
1105		return;
1106
1107	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1108	if (!ab)
1109		return;
1110	audit_log_task_info(ab);
1111	audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1112			 audit_feature_names[which], !!old_feature, !!new_feature,
1113			 !!old_lock, !!new_lock, res);
1114	audit_log_end(ab);
1115}
1116
1117static int audit_set_feature(struct audit_features *uaf)
1118{
 
1119	int i;
1120
1121	BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
 
1122
1123	/* if there is ever a version 2 we should handle that here */
1124
1125	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1126		u32 feature = AUDIT_FEATURE_TO_MASK(i);
1127		u32 old_feature, new_feature, old_lock, new_lock;
1128
1129		/* if we are not changing this feature, move along */
1130		if (!(feature & uaf->mask))
1131			continue;
1132
1133		old_feature = af.features & feature;
1134		new_feature = uaf->features & feature;
1135		new_lock = (uaf->lock | af.lock) & feature;
1136		old_lock = af.lock & feature;
1137
1138		/* are we changing a locked feature? */
1139		if (old_lock && (new_feature != old_feature)) {
1140			audit_log_feature_change(i, old_feature, new_feature,
1141						 old_lock, new_lock, 0);
1142			return -EPERM;
1143		}
1144	}
1145	/* nothing invalid, do the changes */
1146	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1147		u32 feature = AUDIT_FEATURE_TO_MASK(i);
1148		u32 old_feature, new_feature, old_lock, new_lock;
1149
1150		/* if we are not changing this feature, move along */
1151		if (!(feature & uaf->mask))
1152			continue;
1153
1154		old_feature = af.features & feature;
1155		new_feature = uaf->features & feature;
1156		old_lock = af.lock & feature;
1157		new_lock = (uaf->lock | af.lock) & feature;
1158
1159		if (new_feature != old_feature)
1160			audit_log_feature_change(i, old_feature, new_feature,
1161						 old_lock, new_lock, 1);
1162
1163		if (new_feature)
1164			af.features |= feature;
1165		else
1166			af.features &= ~feature;
1167		af.lock |= new_lock;
1168	}
1169
1170	return 0;
1171}
1172
1173static int audit_replace(struct pid *pid)
1174{
1175	pid_t pvnr;
1176	struct sk_buff *skb;
1177
1178	pvnr = pid_vnr(pid);
1179	skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1180	if (!skb)
1181		return -ENOMEM;
1182	return auditd_send_unicast_skb(skb);
1183}
1184
1185static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
1186{
1187	u32			seq;
1188	void			*data;
1189	int			data_len;
1190	int			err;
1191	struct audit_buffer	*ab;
1192	u16			msg_type = nlh->nlmsg_type;
1193	struct audit_sig_info   *sig_data;
1194	char			*ctx = NULL;
1195	u32			len;
1196
1197	err = audit_netlink_ok(skb, msg_type);
1198	if (err)
1199		return err;
1200
 
 
 
 
 
 
 
 
 
 
1201	seq  = nlh->nlmsg_seq;
1202	data = nlmsg_data(nlh);
1203	data_len = nlmsg_len(nlh);
1204
1205	switch (msg_type) {
1206	case AUDIT_GET: {
1207		struct audit_status	s;
1208		memset(&s, 0, sizeof(s));
1209		s.enabled		   = audit_enabled;
1210		s.failure		   = audit_failure;
1211		/* NOTE: use pid_vnr() so the PID is relative to the current
1212		 *       namespace */
1213		s.pid			   = auditd_pid_vnr();
1214		s.rate_limit		   = audit_rate_limit;
1215		s.backlog_limit		   = audit_backlog_limit;
1216		s.lost			   = atomic_read(&audit_lost);
1217		s.backlog		   = skb_queue_len(&audit_queue);
1218		s.feature_bitmap	   = AUDIT_FEATURE_BITMAP_ALL;
1219		s.backlog_wait_time	   = audit_backlog_wait_time;
1220		s.backlog_wait_time_actual = atomic_read(&audit_backlog_wait_time_actual);
1221		audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1222		break;
1223	}
1224	case AUDIT_SET: {
1225		struct audit_status	s;
1226		memset(&s, 0, sizeof(s));
1227		/* guard against past and future API changes */
1228		memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1229		if (s.mask & AUDIT_STATUS_ENABLED) {
1230			err = audit_set_enabled(s.enabled);
1231			if (err < 0)
1232				return err;
1233		}
1234		if (s.mask & AUDIT_STATUS_FAILURE) {
1235			err = audit_set_failure(s.failure);
1236			if (err < 0)
1237				return err;
1238		}
1239		if (s.mask & AUDIT_STATUS_PID) {
1240			/* NOTE: we are using the vnr PID functions below
1241			 *       because the s.pid value is relative to the
1242			 *       namespace of the caller; at present this
1243			 *       doesn't matter much since you can really only
1244			 *       run auditd from the initial pid namespace, but
1245			 *       something to keep in mind if this changes */
1246			pid_t new_pid = s.pid;
1247			pid_t auditd_pid;
1248			struct pid *req_pid = task_tgid(current);
1249
1250			/* Sanity check - PID values must match. Setting
1251			 * pid to 0 is how auditd ends auditing. */
1252			if (new_pid && (new_pid != pid_vnr(req_pid)))
1253				return -EINVAL;
1254
1255			/* test the auditd connection */
1256			audit_replace(req_pid);
1257
1258			auditd_pid = auditd_pid_vnr();
1259			if (auditd_pid) {
1260				/* replacing a healthy auditd is not allowed */
1261				if (new_pid) {
1262					audit_log_config_change("audit_pid",
1263							new_pid, auditd_pid, 0);
1264					return -EEXIST;
1265				}
1266				/* only current auditd can unregister itself */
1267				if (pid_vnr(req_pid) != auditd_pid) {
1268					audit_log_config_change("audit_pid",
1269							new_pid, auditd_pid, 0);
1270					return -EACCES;
1271				}
1272			}
1273
1274			if (new_pid) {
1275				/* register a new auditd connection */
1276				err = auditd_set(req_pid,
1277						 NETLINK_CB(skb).portid,
1278						 sock_net(NETLINK_CB(skb).sk));
1279				if (audit_enabled != AUDIT_OFF)
1280					audit_log_config_change("audit_pid",
1281								new_pid,
1282								auditd_pid,
1283								err ? 0 : 1);
1284				if (err)
1285					return err;
1286
1287				/* try to process any backlog */
1288				wake_up_interruptible(&kauditd_wait);
1289			} else {
1290				if (audit_enabled != AUDIT_OFF)
1291					audit_log_config_change("audit_pid",
1292								new_pid,
1293								auditd_pid, 1);
1294
1295				/* unregister the auditd connection */
1296				auditd_reset(NULL);
1297			}
1298		}
1299		if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1300			err = audit_set_rate_limit(s.rate_limit);
1301			if (err < 0)
1302				return err;
1303		}
1304		if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1305			err = audit_set_backlog_limit(s.backlog_limit);
1306			if (err < 0)
1307				return err;
1308		}
1309		if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1310			if (sizeof(s) > (size_t)nlh->nlmsg_len)
1311				return -EINVAL;
1312			if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
 
1313				return -EINVAL;
1314			err = audit_set_backlog_wait_time(s.backlog_wait_time);
1315			if (err < 0)
1316				return err;
1317		}
1318		if (s.mask == AUDIT_STATUS_LOST) {
1319			u32 lost = atomic_xchg(&audit_lost, 0);
1320
1321			audit_log_config_change("lost", 0, lost, 1);
1322			return lost;
1323		}
1324		if (s.mask == AUDIT_STATUS_BACKLOG_WAIT_TIME_ACTUAL) {
1325			u32 actual = atomic_xchg(&audit_backlog_wait_time_actual, 0);
1326
1327			audit_log_config_change("backlog_wait_time_actual", 0, actual, 1);
1328			return actual;
1329		}
1330		break;
1331	}
1332	case AUDIT_GET_FEATURE:
1333		err = audit_get_feature(skb);
1334		if (err)
1335			return err;
1336		break;
1337	case AUDIT_SET_FEATURE:
1338		if (data_len < sizeof(struct audit_features))
1339			return -EINVAL;
1340		err = audit_set_feature(data);
1341		if (err)
1342			return err;
1343		break;
1344	case AUDIT_USER:
1345	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1346	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1347		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1348			return 0;
1349		/* exit early if there isn't at least one character to print */
1350		if (data_len < 2)
1351			return -EINVAL;
1352
1353		err = audit_filter(msg_type, AUDIT_FILTER_USER);
1354		if (err == 1) { /* match or error */
1355			char *str = data;
1356
1357			err = 0;
1358			if (msg_type == AUDIT_USER_TTY) {
1359				err = tty_audit_push();
1360				if (err)
1361					break;
1362			}
1363			audit_log_user_recv_msg(&ab, msg_type);
1364			if (msg_type != AUDIT_USER_TTY) {
1365				/* ensure NULL termination */
1366				str[data_len - 1] = '\0';
1367				audit_log_format(ab, " msg='%.*s'",
1368						 AUDIT_MESSAGE_TEXT_MAX,
1369						 str);
1370			} else {
 
 
1371				audit_log_format(ab, " data=");
1372				if (data_len > 0 && str[data_len - 1] == '\0')
1373					data_len--;
1374				audit_log_n_untrustedstring(ab, str, data_len);
 
 
1375			}
 
1376			audit_log_end(ab);
 
1377		}
1378		break;
1379	case AUDIT_ADD_RULE:
1380	case AUDIT_DEL_RULE:
1381		if (data_len < sizeof(struct audit_rule_data))
1382			return -EINVAL;
1383		if (audit_enabled == AUDIT_LOCKED) {
1384			audit_log_common_recv_msg(audit_context(), &ab,
1385						  AUDIT_CONFIG_CHANGE);
1386			audit_log_format(ab, " op=%s audit_enabled=%d res=0",
1387					 msg_type == AUDIT_ADD_RULE ?
1388						"add_rule" : "remove_rule",
1389					 audit_enabled);
1390			audit_log_end(ab);
1391			return -EPERM;
1392		}
1393		err = audit_rule_change(msg_type, seq, data, data_len);
 
1394		break;
1395	case AUDIT_LIST_RULES:
1396		err = audit_list_rules_send(skb, seq);
1397		break;
1398	case AUDIT_TRIM:
1399		audit_trim_trees();
1400		audit_log_common_recv_msg(audit_context(), &ab,
1401					  AUDIT_CONFIG_CHANGE);
1402		audit_log_format(ab, " op=trim res=1");
1403		audit_log_end(ab);
1404		break;
1405	case AUDIT_MAKE_EQUIV: {
1406		void *bufp = data;
1407		u32 sizes[2];
1408		size_t msglen = data_len;
1409		char *old, *new;
1410
1411		err = -EINVAL;
1412		if (msglen < 2 * sizeof(u32))
1413			break;
1414		memcpy(sizes, bufp, 2 * sizeof(u32));
1415		bufp += 2 * sizeof(u32);
1416		msglen -= 2 * sizeof(u32);
1417		old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1418		if (IS_ERR(old)) {
1419			err = PTR_ERR(old);
1420			break;
1421		}
1422		new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1423		if (IS_ERR(new)) {
1424			err = PTR_ERR(new);
1425			kfree(old);
1426			break;
1427		}
1428		/* OK, here comes... */
1429		err = audit_tag_tree(old, new);
1430
1431		audit_log_common_recv_msg(audit_context(), &ab,
1432					  AUDIT_CONFIG_CHANGE);
1433		audit_log_format(ab, " op=make_equiv old=");
1434		audit_log_untrustedstring(ab, old);
1435		audit_log_format(ab, " new=");
1436		audit_log_untrustedstring(ab, new);
1437		audit_log_format(ab, " res=%d", !err);
1438		audit_log_end(ab);
1439		kfree(old);
1440		kfree(new);
1441		break;
1442	}
1443	case AUDIT_SIGNAL_INFO:
1444		len = 0;
1445		if (audit_sig_sid) {
1446			err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1447			if (err)
1448				return err;
1449		}
1450		sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1451		if (!sig_data) {
1452			if (audit_sig_sid)
1453				security_release_secctx(ctx, len);
1454			return -ENOMEM;
1455		}
1456		sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1457		sig_data->pid = audit_sig_pid;
1458		if (audit_sig_sid) {
1459			memcpy(sig_data->ctx, ctx, len);
1460			security_release_secctx(ctx, len);
1461		}
1462		audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1463				 sig_data, sizeof(*sig_data) + len);
1464		kfree(sig_data);
1465		break;
1466	case AUDIT_TTY_GET: {
1467		struct audit_tty_status s;
1468		unsigned int t;
1469
1470		t = READ_ONCE(current->signal->audit_tty);
1471		s.enabled = t & AUDIT_TTY_ENABLE;
1472		s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
 
1473
1474		audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1475		break;
1476	}
1477	case AUDIT_TTY_SET: {
1478		struct audit_tty_status s, old;
 
1479		struct audit_buffer	*ab;
1480		unsigned int t;
1481
1482		memset(&s, 0, sizeof(s));
1483		/* guard against past and future API changes */
1484		memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1485		/* check if new data is valid */
1486		if ((s.enabled != 0 && s.enabled != 1) ||
1487		    (s.log_passwd != 0 && s.log_passwd != 1))
1488			err = -EINVAL;
1489
1490		if (err)
1491			t = READ_ONCE(current->signal->audit_tty);
1492		else {
1493			t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1494			t = xchg(&current->signal->audit_tty, t);
 
1495		}
1496		old.enabled = t & AUDIT_TTY_ENABLE;
1497		old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1498
1499		audit_log_common_recv_msg(audit_context(), &ab,
1500					  AUDIT_CONFIG_CHANGE);
1501		audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1502				 " old-log_passwd=%d new-log_passwd=%d res=%d",
1503				 old.enabled, s.enabled, old.log_passwd,
1504				 s.log_passwd, !err);
1505		audit_log_end(ab);
1506		break;
1507	}
1508	default:
1509		err = -EINVAL;
1510		break;
1511	}
1512
1513	return err < 0 ? err : 0;
1514}
1515
1516/**
1517 * audit_receive - receive messages from a netlink control socket
1518 * @skb: the message buffer
1519 *
1520 * Parse the provided skb and deal with any messages that may be present,
1521 * malformed skbs are discarded.
1522 */
1523static void audit_receive(struct sk_buff  *skb)
1524{
1525	struct nlmsghdr *nlh;
1526	/*
1527	 * len MUST be signed for nlmsg_next to be able to dec it below 0
1528	 * if the nlmsg_len was not aligned
1529	 */
1530	int len;
1531	int err;
1532
1533	nlh = nlmsg_hdr(skb);
1534	len = skb->len;
1535
1536	audit_ctl_lock();
1537	while (nlmsg_ok(nlh, len)) {
1538		err = audit_receive_msg(skb, nlh);
1539		/* if err or if this message says it wants a response */
1540		if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1541			netlink_ack(skb, nlh, err, NULL);
1542
1543		nlh = nlmsg_next(nlh, &len);
1544	}
1545	audit_ctl_unlock();
1546}
1547
1548/* Log information about who is connecting to the audit multicast socket */
1549static void audit_log_multicast(int group, const char *op, int err)
1550{
1551	const struct cred *cred;
1552	struct tty_struct *tty;
1553	char comm[sizeof(current->comm)];
1554	struct audit_buffer *ab;
1555
1556	if (!audit_enabled)
1557		return;
1558
1559	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_EVENT_LISTENER);
1560	if (!ab)
1561		return;
1562
1563	cred = current_cred();
1564	tty = audit_get_tty();
1565	audit_log_format(ab, "pid=%u uid=%u auid=%u tty=%s ses=%u",
1566			 task_pid_nr(current),
1567			 from_kuid(&init_user_ns, cred->uid),
1568			 from_kuid(&init_user_ns, audit_get_loginuid(current)),
1569			 tty ? tty_name(tty) : "(none)",
1570			 audit_get_sessionid(current));
1571	audit_put_tty(tty);
1572	audit_log_task_context(ab); /* subj= */
1573	audit_log_format(ab, " comm=");
1574	audit_log_untrustedstring(ab, get_task_comm(comm, current));
1575	audit_log_d_path_exe(ab, current->mm); /* exe= */
1576	audit_log_format(ab, " nl-mcgrp=%d op=%s res=%d", group, op, !err);
1577	audit_log_end(ab);
1578}
1579
1580/* Run custom bind function on netlink socket group connect or bind requests. */
1581static int audit_multicast_bind(struct net *net, int group)
1582{
1583	int err = 0;
1584
1585	if (!capable(CAP_AUDIT_READ))
1586		err = -EPERM;
1587	audit_log_multicast(group, "connect", err);
1588	return err;
1589}
1590
1591static void audit_multicast_unbind(struct net *net, int group)
1592{
1593	audit_log_multicast(group, "disconnect", 0);
1594}
1595
1596static int __net_init audit_net_init(struct net *net)
1597{
1598	struct netlink_kernel_cfg cfg = {
1599		.input	= audit_receive,
1600		.bind	= audit_multicast_bind,
1601		.unbind	= audit_multicast_unbind,
1602		.flags	= NL_CFG_F_NONROOT_RECV,
1603		.groups	= AUDIT_NLGRP_MAX,
1604	};
1605
1606	struct audit_net *aunet = net_generic(net, audit_net_id);
1607
1608	aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1609	if (aunet->sk == NULL) {
1610		audit_panic("cannot initialize netlink socket in namespace");
1611		return -ENOMEM;
1612	}
1613	aunet->sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1614
1615	return 0;
1616}
1617
1618static void __net_exit audit_net_exit(struct net *net)
1619{
1620	struct audit_net *aunet = net_generic(net, audit_net_id);
 
 
 
 
 
1621
1622	/* NOTE: you would think that we would want to check the auditd
1623	 * connection and potentially reset it here if it lives in this
1624	 * namespace, but since the auditd connection tracking struct holds a
1625	 * reference to this namespace (see auditd_set()) we are only ever
1626	 * going to get here after that connection has been released */
1627
1628	netlink_kernel_release(aunet->sk);
1629}
1630
1631static struct pernet_operations audit_net_ops __net_initdata = {
1632	.init = audit_net_init,
1633	.exit = audit_net_exit,
1634	.id = &audit_net_id,
1635	.size = sizeof(struct audit_net),
1636};
1637
1638/* Initialize audit support at boot time. */
1639static int __init audit_init(void)
1640{
1641	int i;
1642
1643	if (audit_initialized == AUDIT_DISABLED)
1644		return 0;
1645
1646	audit_buffer_cache = kmem_cache_create("audit_buffer",
1647					       sizeof(struct audit_buffer),
1648					       0, SLAB_PANIC, NULL);
1649
1650	skb_queue_head_init(&audit_queue);
1651	skb_queue_head_init(&audit_retry_queue);
1652	skb_queue_head_init(&audit_hold_queue);
1653
1654	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1655		INIT_LIST_HEAD(&audit_inode_hash[i]);
1656
1657	mutex_init(&audit_cmd_mutex.lock);
1658	audit_cmd_mutex.owner = NULL;
1659
1660	pr_info("initializing netlink subsys (%s)\n",
1661		audit_default ? "enabled" : "disabled");
1662	register_pernet_subsys(&audit_net_ops);
1663
 
 
1664	audit_initialized = AUDIT_INITIALIZED;
 
 
1665
1666	kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1667	if (IS_ERR(kauditd_task)) {
1668		int err = PTR_ERR(kauditd_task);
1669		panic("audit: failed to start the kauditd thread (%d)\n", err);
1670	}
1671
1672	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1673		"state=initialized audit_enabled=%u res=1",
1674		 audit_enabled);
1675
1676	return 0;
1677}
1678postcore_initcall(audit_init);
1679
1680/*
1681 * Process kernel command-line parameter at boot time.
1682 * audit={0|off} or audit={1|on}.
1683 */
1684static int __init audit_enable(char *str)
1685{
1686	if (!strcasecmp(str, "off") || !strcmp(str, "0"))
1687		audit_default = AUDIT_OFF;
1688	else if (!strcasecmp(str, "on") || !strcmp(str, "1"))
1689		audit_default = AUDIT_ON;
1690	else {
1691		pr_err("audit: invalid 'audit' parameter value (%s)\n", str);
1692		audit_default = AUDIT_ON;
1693	}
1694
1695	if (audit_default == AUDIT_OFF)
1696		audit_initialized = AUDIT_DISABLED;
1697	if (audit_set_enabled(audit_default))
1698		pr_err("audit: error setting audit state (%d)\n",
1699		       audit_default);
1700
1701	pr_info("%s\n", audit_default ?
1702		"enabled (after initialization)" : "disabled (until reboot)");
1703
1704	return 1;
1705}
1706__setup("audit=", audit_enable);
1707
1708/* Process kernel command-line parameter at boot time.
1709 * audit_backlog_limit=<n> */
1710static int __init audit_backlog_limit_set(char *str)
1711{
1712	u32 audit_backlog_limit_arg;
1713
1714	pr_info("audit_backlog_limit: ");
1715	if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1716		pr_cont("using default of %u, unable to parse %s\n",
1717			audit_backlog_limit, str);
1718		return 1;
1719	}
1720
1721	audit_backlog_limit = audit_backlog_limit_arg;
1722	pr_cont("%d\n", audit_backlog_limit);
1723
1724	return 1;
1725}
1726__setup("audit_backlog_limit=", audit_backlog_limit_set);
1727
1728static void audit_buffer_free(struct audit_buffer *ab)
1729{
 
 
1730	if (!ab)
1731		return;
1732
1733	kfree_skb(ab->skb);
1734	kmem_cache_free(audit_buffer_cache, ab);
 
 
 
 
 
 
 
 
 
1735}
1736
1737static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1738					       gfp_t gfp_mask, int type)
1739{
1740	struct audit_buffer *ab;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1741
1742	ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1743	if (!ab)
1744		return NULL;
1745
1746	ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1747	if (!ab->skb)
1748		goto err;
1749	if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1750		goto err;
1751
1752	ab->ctx = ctx;
1753	ab->gfp_mask = gfp_mask;
 
1754
1755	return ab;
1756
 
 
 
1757err:
1758	audit_buffer_free(ab);
1759	return NULL;
1760}
1761
1762/**
1763 * audit_serial - compute a serial number for the audit record
1764 *
1765 * Compute a serial number for the audit record.  Audit records are
1766 * written to user-space as soon as they are generated, so a complete
1767 * audit record may be written in several pieces.  The timestamp of the
1768 * record and this serial number are used by the user-space tools to
1769 * determine which pieces belong to the same audit record.  The
1770 * (timestamp,serial) tuple is unique for each syscall and is live from
1771 * syscall entry to syscall exit.
1772 *
1773 * NOTE: Another possibility is to store the formatted records off the
1774 * audit context (for those records that have a context), and emit them
1775 * all at syscall exit.  However, this could delay the reporting of
1776 * significant errors until syscall exit (or never, if the system
1777 * halts).
1778 */
1779unsigned int audit_serial(void)
1780{
1781	static atomic_t serial = ATOMIC_INIT(0);
 
1782
1783	return atomic_add_return(1, &serial);
 
 
 
 
 
 
 
 
 
1784}
1785
1786static inline void audit_get_stamp(struct audit_context *ctx,
1787				   struct timespec64 *t, unsigned int *serial)
1788{
1789	if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1790		ktime_get_coarse_real_ts64(t);
1791		*serial = audit_serial();
1792	}
1793}
1794
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1795/**
1796 * audit_log_start - obtain an audit buffer
1797 * @ctx: audit_context (may be NULL)
1798 * @gfp_mask: type of allocation
1799 * @type: audit message type
1800 *
1801 * Returns audit_buffer pointer on success or NULL on error.
1802 *
1803 * Obtain an audit buffer.  This routine does locking to obtain the
1804 * audit buffer, but then no locking is required for calls to
1805 * audit_log_*format.  If the task (ctx) is a task that is currently in a
1806 * syscall, then the syscall is marked as auditable and an audit record
1807 * will be written at syscall exit.  If there is no associated task, then
1808 * task context (ctx) should be NULL.
1809 */
1810struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1811				     int type)
1812{
1813	struct audit_buffer *ab;
1814	struct timespec64 t;
1815	unsigned int serial;
 
 
 
1816
1817	if (audit_initialized != AUDIT_INITIALIZED)
1818		return NULL;
1819
1820	if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE)))
1821		return NULL;
1822
1823	/* NOTE: don't ever fail/sleep on these two conditions:
1824	 * 1. auditd generated record - since we need auditd to drain the
1825	 *    queue; also, when we are checking for auditd, compare PIDs using
1826	 *    task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1827	 *    using a PID anchored in the caller's namespace
1828	 * 2. generator holding the audit_cmd_mutex - we don't want to block
1829	 *    while holding the mutex */
1830	if (!(auditd_test_task(current) || audit_ctl_owner_current())) {
1831		long stime = audit_backlog_wait_time;
1832
1833		while (audit_backlog_limit &&
1834		       (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1835			/* wake kauditd to try and flush the queue */
1836			wake_up_interruptible(&kauditd_wait);
1837
1838			/* sleep if we are allowed and we haven't exhausted our
1839			 * backlog wait limit */
1840			if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1841				long rtime = stime;
1842
1843				DECLARE_WAITQUEUE(wait, current);
1844
1845				add_wait_queue_exclusive(&audit_backlog_wait,
1846							 &wait);
1847				set_current_state(TASK_UNINTERRUPTIBLE);
1848				stime = schedule_timeout(rtime);
1849				atomic_add(rtime - stime, &audit_backlog_wait_time_actual);
1850				remove_wait_queue(&audit_backlog_wait, &wait);
1851			} else {
1852				if (audit_rate_check() && printk_ratelimit())
1853					pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1854						skb_queue_len(&audit_queue),
1855						audit_backlog_limit);
1856				audit_log_lost("backlog limit exceeded");
1857				return NULL;
1858			}
1859		}
 
 
 
 
 
 
 
 
1860	}
1861
 
 
1862	ab = audit_buffer_alloc(ctx, gfp_mask, type);
1863	if (!ab) {
1864		audit_log_lost("out of memory in audit_log_start");
1865		return NULL;
1866	}
1867
1868	audit_get_stamp(ab->ctx, &t, &serial);
1869	audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1870			 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
1871
 
 
1872	return ab;
1873}
1874
1875/**
1876 * audit_expand - expand skb in the audit buffer
1877 * @ab: audit_buffer
1878 * @extra: space to add at tail of the skb
1879 *
1880 * Returns 0 (no space) on failed expansion, or available space if
1881 * successful.
1882 */
1883static inline int audit_expand(struct audit_buffer *ab, int extra)
1884{
1885	struct sk_buff *skb = ab->skb;
1886	int oldtail = skb_tailroom(skb);
1887	int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1888	int newtail = skb_tailroom(skb);
1889
1890	if (ret < 0) {
1891		audit_log_lost("out of memory in audit_expand");
1892		return 0;
1893	}
1894
1895	skb->truesize += newtail - oldtail;
1896	return newtail;
1897}
1898
1899/*
1900 * Format an audit message into the audit buffer.  If there isn't enough
1901 * room in the audit buffer, more room will be allocated and vsnprint
1902 * will be called a second time.  Currently, we assume that a printk
1903 * can't format message larger than 1024 bytes, so we don't either.
1904 */
1905static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1906			      va_list args)
1907{
1908	int len, avail;
1909	struct sk_buff *skb;
1910	va_list args2;
1911
1912	if (!ab)
1913		return;
1914
1915	BUG_ON(!ab->skb);
1916	skb = ab->skb;
1917	avail = skb_tailroom(skb);
1918	if (avail == 0) {
1919		avail = audit_expand(ab, AUDIT_BUFSIZ);
1920		if (!avail)
1921			goto out;
1922	}
1923	va_copy(args2, args);
1924	len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1925	if (len >= avail) {
1926		/* The printk buffer is 1024 bytes long, so if we get
1927		 * here and AUDIT_BUFSIZ is at least 1024, then we can
1928		 * log everything that printk could have logged. */
1929		avail = audit_expand(ab,
1930			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1931		if (!avail)
1932			goto out_va_end;
1933		len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1934	}
1935	if (len > 0)
1936		skb_put(skb, len);
1937out_va_end:
1938	va_end(args2);
1939out:
1940	return;
1941}
1942
1943/**
1944 * audit_log_format - format a message into the audit buffer.
1945 * @ab: audit_buffer
1946 * @fmt: format string
1947 * @...: optional parameters matching @fmt string
1948 *
1949 * All the work is done in audit_log_vformat.
1950 */
1951void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1952{
1953	va_list args;
1954
1955	if (!ab)
1956		return;
1957	va_start(args, fmt);
1958	audit_log_vformat(ab, fmt, args);
1959	va_end(args);
1960}
1961
1962/**
1963 * audit_log_n_hex - convert a buffer to hex and append it to the audit skb
1964 * @ab: the audit_buffer
1965 * @buf: buffer to convert to hex
1966 * @len: length of @buf to be converted
1967 *
1968 * No return value; failure to expand is silently ignored.
1969 *
1970 * This function will take the passed buf and convert it into a string of
1971 * ascii hex digits. The new string is placed onto the skb.
1972 */
1973void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1974		size_t len)
1975{
1976	int i, avail, new_len;
1977	unsigned char *ptr;
1978	struct sk_buff *skb;
1979
1980	if (!ab)
1981		return;
1982
1983	BUG_ON(!ab->skb);
1984	skb = ab->skb;
1985	avail = skb_tailroom(skb);
1986	new_len = len<<1;
1987	if (new_len >= avail) {
1988		/* Round the buffer request up to the next multiple */
1989		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1990		avail = audit_expand(ab, new_len);
1991		if (!avail)
1992			return;
1993	}
1994
1995	ptr = skb_tail_pointer(skb);
1996	for (i = 0; i < len; i++)
1997		ptr = hex_byte_pack_upper(ptr, buf[i]);
1998	*ptr = 0;
1999	skb_put(skb, len << 1); /* new string is twice the old string */
2000}
2001
2002/*
2003 * Format a string of no more than slen characters into the audit buffer,
2004 * enclosed in quote marks.
2005 */
2006void audit_log_n_string(struct audit_buffer *ab, const char *string,
2007			size_t slen)
2008{
2009	int avail, new_len;
2010	unsigned char *ptr;
2011	struct sk_buff *skb;
2012
2013	if (!ab)
2014		return;
2015
2016	BUG_ON(!ab->skb);
2017	skb = ab->skb;
2018	avail = skb_tailroom(skb);
2019	new_len = slen + 3;	/* enclosing quotes + null terminator */
2020	if (new_len > avail) {
2021		avail = audit_expand(ab, new_len);
2022		if (!avail)
2023			return;
2024	}
2025	ptr = skb_tail_pointer(skb);
2026	*ptr++ = '"';
2027	memcpy(ptr, string, slen);
2028	ptr += slen;
2029	*ptr++ = '"';
2030	*ptr = 0;
2031	skb_put(skb, slen + 2);	/* don't include null terminator */
2032}
2033
2034/**
2035 * audit_string_contains_control - does a string need to be logged in hex
2036 * @string: string to be checked
2037 * @len: max length of the string to check
2038 */
2039bool audit_string_contains_control(const char *string, size_t len)
2040{
2041	const unsigned char *p;
2042	for (p = string; p < (const unsigned char *)string + len; p++) {
2043		if (*p == '"' || *p < 0x21 || *p > 0x7e)
2044			return true;
2045	}
2046	return false;
2047}
2048
2049/**
2050 * audit_log_n_untrustedstring - log a string that may contain random characters
2051 * @ab: audit_buffer
2052 * @len: length of string (not including trailing null)
2053 * @string: string to be logged
2054 *
2055 * This code will escape a string that is passed to it if the string
2056 * contains a control character, unprintable character, double quote mark,
2057 * or a space. Unescaped strings will start and end with a double quote mark.
2058 * Strings that are escaped are printed in hex (2 digits per char).
2059 *
2060 * The caller specifies the number of characters in the string to log, which may
2061 * or may not be the entire string.
2062 */
2063void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
2064				 size_t len)
2065{
2066	if (audit_string_contains_control(string, len))
2067		audit_log_n_hex(ab, string, len);
2068	else
2069		audit_log_n_string(ab, string, len);
2070}
2071
2072/**
2073 * audit_log_untrustedstring - log a string that may contain random characters
2074 * @ab: audit_buffer
2075 * @string: string to be logged
2076 *
2077 * Same as audit_log_n_untrustedstring(), except that strlen is used to
2078 * determine string length.
2079 */
2080void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
2081{
2082	audit_log_n_untrustedstring(ab, string, strlen(string));
2083}
2084
2085/* This is a helper-function to print the escaped d_path */
2086void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
2087		      const struct path *path)
2088{
2089	char *p, *pathname;
2090
2091	if (prefix)
2092		audit_log_format(ab, "%s", prefix);
2093
2094	/* We will allow 11 spaces for ' (deleted)' to be appended */
2095	pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
2096	if (!pathname) {
2097		audit_log_format(ab, "\"<no_memory>\"");
2098		return;
2099	}
2100	p = d_path(path, pathname, PATH_MAX+11);
2101	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
2102		/* FIXME: can we save some information here? */
2103		audit_log_format(ab, "\"<too_long>\"");
2104	} else
2105		audit_log_untrustedstring(ab, p);
2106	kfree(pathname);
2107}
2108
2109void audit_log_session_info(struct audit_buffer *ab)
2110{
2111	unsigned int sessionid = audit_get_sessionid(current);
2112	uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
2113
2114	audit_log_format(ab, "auid=%u ses=%u", auid, sessionid);
2115}
2116
2117void audit_log_key(struct audit_buffer *ab, char *key)
2118{
2119	audit_log_format(ab, " key=");
2120	if (key)
2121		audit_log_untrustedstring(ab, key);
2122	else
2123		audit_log_format(ab, "(null)");
2124}
2125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2126int audit_log_task_context(struct audit_buffer *ab)
2127{
2128	char *ctx = NULL;
2129	unsigned len;
2130	int error;
2131	u32 sid;
2132
2133	security_task_getsecid(current, &sid);
2134	if (!sid)
2135		return 0;
2136
2137	error = security_secid_to_secctx(sid, &ctx, &len);
2138	if (error) {
2139		if (error != -EINVAL)
2140			goto error_path;
2141		return 0;
2142	}
2143
2144	audit_log_format(ab, " subj=%s", ctx);
2145	security_release_secctx(ctx, len);
2146	return 0;
2147
2148error_path:
2149	audit_panic("error in audit_log_task_context");
2150	return error;
2151}
2152EXPORT_SYMBOL(audit_log_task_context);
2153
2154void audit_log_d_path_exe(struct audit_buffer *ab,
2155			  struct mm_struct *mm)
2156{
2157	struct file *exe_file;
2158
2159	if (!mm)
2160		goto out_null;
2161
2162	exe_file = get_mm_exe_file(mm);
2163	if (!exe_file)
2164		goto out_null;
2165
2166	audit_log_d_path(ab, " exe=", &exe_file->f_path);
2167	fput(exe_file);
2168	return;
2169out_null:
2170	audit_log_format(ab, " exe=(null)");
2171}
2172
2173struct tty_struct *audit_get_tty(void)
2174{
2175	struct tty_struct *tty = NULL;
2176	unsigned long flags;
2177
2178	spin_lock_irqsave(&current->sighand->siglock, flags);
2179	if (current->signal)
2180		tty = tty_kref_get(current->signal->tty);
2181	spin_unlock_irqrestore(&current->sighand->siglock, flags);
2182	return tty;
2183}
2184
2185void audit_put_tty(struct tty_struct *tty)
2186{
2187	tty_kref_put(tty);
2188}
2189
2190void audit_log_task_info(struct audit_buffer *ab)
2191{
2192	const struct cred *cred;
2193	char comm[sizeof(current->comm)];
2194	struct tty_struct *tty;
 
2195
2196	if (!ab)
2197		return;
2198
 
2199	cred = current_cred();
2200	tty = audit_get_tty();
 
 
 
 
 
 
 
2201	audit_log_format(ab,
2202			 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2203			 " euid=%u suid=%u fsuid=%u"
2204			 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2205			 task_ppid_nr(current),
2206			 task_tgid_nr(current),
2207			 from_kuid(&init_user_ns, audit_get_loginuid(current)),
2208			 from_kuid(&init_user_ns, cred->uid),
2209			 from_kgid(&init_user_ns, cred->gid),
2210			 from_kuid(&init_user_ns, cred->euid),
2211			 from_kuid(&init_user_ns, cred->suid),
2212			 from_kuid(&init_user_ns, cred->fsuid),
2213			 from_kgid(&init_user_ns, cred->egid),
2214			 from_kgid(&init_user_ns, cred->sgid),
2215			 from_kgid(&init_user_ns, cred->fsgid),
2216			 tty ? tty_name(tty) : "(none)",
2217			 audit_get_sessionid(current));
2218	audit_put_tty(tty);
2219	audit_log_format(ab, " comm=");
2220	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2221	audit_log_d_path_exe(ab, current->mm);
 
 
 
 
 
 
 
2222	audit_log_task_context(ab);
2223}
2224EXPORT_SYMBOL(audit_log_task_info);
2225
2226/**
2227 * audit_log_path_denied - report a path restriction denial
2228 * @type: audit message type (AUDIT_ANOM_LINK, AUDIT_ANOM_CREAT, etc)
2229 * @operation: specific operation name
2230 */
2231void audit_log_path_denied(int type, const char *operation)
2232{
2233	struct audit_buffer *ab;
 
2234
2235	if (!audit_enabled || audit_dummy_context())
 
2236		return;
2237
2238	/* Generate log with subject, operation, outcome. */
2239	ab = audit_log_start(audit_context(), GFP_KERNEL, type);
 
2240	if (!ab)
2241		return;
2242	audit_log_format(ab, "op=%s", operation);
2243	audit_log_task_info(ab);
2244	audit_log_format(ab, " res=0");
2245	audit_log_end(ab);
2246}
2247
2248/* global counter which is incremented every time something logs in */
2249static atomic_t session_id = ATOMIC_INIT(0);
2250
2251static int audit_set_loginuid_perm(kuid_t loginuid)
2252{
2253	/* if we are unset, we don't need privs */
2254	if (!audit_loginuid_set(current))
2255		return 0;
2256	/* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2257	if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2258		return -EPERM;
2259	/* it is set, you need permission */
2260	if (!capable(CAP_AUDIT_CONTROL))
2261		return -EPERM;
2262	/* reject if this is not an unset and we don't allow that */
2263	if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID)
2264				 && uid_valid(loginuid))
2265		return -EPERM;
2266	return 0;
2267}
2268
2269static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2270				   unsigned int oldsessionid,
2271				   unsigned int sessionid, int rc)
2272{
2273	struct audit_buffer *ab;
2274	uid_t uid, oldloginuid, loginuid;
2275	struct tty_struct *tty;
2276
2277	if (!audit_enabled)
2278		return;
2279
2280	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_LOGIN);
2281	if (!ab)
2282		return;
2283
2284	uid = from_kuid(&init_user_ns, task_uid(current));
2285	oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2286	loginuid = from_kuid(&init_user_ns, kloginuid),
2287	tty = audit_get_tty();
2288
2289	audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2290	audit_log_task_context(ab);
2291	audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2292			 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2293			 oldsessionid, sessionid, !rc);
2294	audit_put_tty(tty);
2295	audit_log_end(ab);
2296}
2297
2298/**
2299 * audit_set_loginuid - set current task's loginuid
2300 * @loginuid: loginuid value
2301 *
2302 * Returns 0.
2303 *
2304 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2305 */
2306int audit_set_loginuid(kuid_t loginuid)
2307{
2308	unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET;
2309	kuid_t oldloginuid;
2310	int rc;
2311
2312	oldloginuid = audit_get_loginuid(current);
2313	oldsessionid = audit_get_sessionid(current);
2314
2315	rc = audit_set_loginuid_perm(loginuid);
2316	if (rc)
2317		goto out;
2318
2319	/* are we setting or clearing? */
2320	if (uid_valid(loginuid)) {
2321		sessionid = (unsigned int)atomic_inc_return(&session_id);
2322		if (unlikely(sessionid == AUDIT_SID_UNSET))
2323			sessionid = (unsigned int)atomic_inc_return(&session_id);
2324	}
2325
2326	current->sessionid = sessionid;
2327	current->loginuid = loginuid;
2328out:
2329	audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2330	return rc;
2331}
2332
2333/**
2334 * audit_signal_info - record signal info for shutting down audit subsystem
2335 * @sig: signal value
2336 * @t: task being signaled
2337 *
2338 * If the audit subsystem is being terminated, record the task (pid)
2339 * and uid that is doing that.
2340 */
2341int audit_signal_info(int sig, struct task_struct *t)
2342{
2343	kuid_t uid = current_uid(), auid;
2344
2345	if (auditd_test_task(t) &&
2346	    (sig == SIGTERM || sig == SIGHUP ||
2347	     sig == SIGUSR1 || sig == SIGUSR2)) {
2348		audit_sig_pid = task_tgid_nr(current);
2349		auid = audit_get_loginuid(current);
2350		if (uid_valid(auid))
2351			audit_sig_uid = auid;
2352		else
2353			audit_sig_uid = uid;
2354		security_task_getsecid(current, &audit_sig_sid);
2355	}
2356
2357	return audit_signal_info_syscall(t);
2358}
2359
2360/**
2361 * audit_log_end - end one audit record
2362 * @ab: the audit_buffer
2363 *
2364 * We can not do a netlink send inside an irq context because it blocks (last
2365 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2366 * queue and a tasklet is scheduled to remove them from the queue outside the
2367 * irq context.  May be called in any context.
2368 */
2369void audit_log_end(struct audit_buffer *ab)
2370{
2371	struct sk_buff *skb;
2372	struct nlmsghdr *nlh;
2373
2374	if (!ab)
2375		return;
 
 
 
 
 
2376
2377	if (audit_rate_check()) {
2378		skb = ab->skb;
 
 
 
 
2379		ab->skb = NULL;
2380
2381		/* setup the netlink header, see the comments in
2382		 * kauditd_send_multicast_skb() for length quirks */
2383		nlh = nlmsg_hdr(skb);
2384		nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2385
2386		/* queue the netlink packet and poke the kauditd thread */
2387		skb_queue_tail(&audit_queue, skb);
2388		wake_up_interruptible(&kauditd_wait);
2389	} else
2390		audit_log_lost("rate limit exceeded");
2391
2392	audit_buffer_free(ab);
2393}
2394
2395/**
2396 * audit_log - Log an audit record
2397 * @ctx: audit context
2398 * @gfp_mask: type of allocation
2399 * @type: audit message type
2400 * @fmt: format string to use
2401 * @...: variable parameters matching the format string
2402 *
2403 * This is a convenience function that calls audit_log_start,
2404 * audit_log_vformat, and audit_log_end.  It may be called
2405 * in any context.
2406 */
2407void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2408	       const char *fmt, ...)
2409{
2410	struct audit_buffer *ab;
2411	va_list args;
2412
2413	ab = audit_log_start(ctx, gfp_mask, type);
2414	if (ab) {
2415		va_start(args, fmt);
2416		audit_log_vformat(ab, fmt, args);
2417		va_end(args);
2418		audit_log_end(ab);
2419	}
2420}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2421
2422EXPORT_SYMBOL(audit_log_start);
2423EXPORT_SYMBOL(audit_log_end);
2424EXPORT_SYMBOL(audit_log_format);
2425EXPORT_SYMBOL(audit_log);