Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
Note: File does not exist in v3.15.
   1// SPDX-License-Identifier: GPL-2.0
   2
   3/*
   4 * Copyright 2019, 2020 Amazon.com, Inc. or its affiliates. All rights reserved.
   5 *
   6 * User extended attribute client side cache functions.
   7 *
   8 * Author: Frank van der Linden <fllinden@amazon.com>
   9 */
  10#include <linux/errno.h>
  11#include <linux/nfs_fs.h>
  12#include <linux/hashtable.h>
  13#include <linux/refcount.h>
  14#include <uapi/linux/xattr.h>
  15
  16#include "nfs4_fs.h"
  17#include "internal.h"
  18
  19/*
  20 * User extended attributes client side caching is implemented by having
  21 * a cache structure attached to NFS inodes. This structure is allocated
  22 * when needed, and freed when the cache is zapped.
  23 *
  24 * The cache structure contains as hash table of entries, and a pointer
  25 * to a special-cased entry for the listxattr cache.
  26 *
  27 * Accessing and allocating / freeing the caches is done via reference
  28 * counting. The cache entries use a similar refcounting scheme.
  29 *
  30 * This makes freeing a cache, both from the shrinker and from the
  31 * zap cache path, easy. It also means that, in current use cases,
  32 * the large majority of inodes will not waste any memory, as they
  33 * will never have any user extended attributes assigned to them.
  34 *
  35 * Attribute entries are hashed in to a simple hash table. They are
  36 * also part of an LRU.
  37 *
  38 * There are three shrinkers.
  39 *
  40 * Two shrinkers deal with the cache entries themselves: one for
  41 * large entries (> PAGE_SIZE), and one for smaller entries. The
  42 * shrinker for the larger entries works more aggressively than
  43 * those for the smaller entries.
  44 *
  45 * The other shrinker frees the cache structures themselves.
  46 */
  47
  48/*
  49 * 64 buckets is a good default. There is likely no reasonable
  50 * workload that uses more than even 64 user extended attributes.
  51 * You can certainly add a lot more - but you get what you ask for
  52 * in those circumstances.
  53 */
  54#define NFS4_XATTR_HASH_SIZE	64
  55
  56#define NFSDBG_FACILITY	NFSDBG_XATTRCACHE
  57
  58struct nfs4_xattr_cache;
  59struct nfs4_xattr_entry;
  60
  61struct nfs4_xattr_bucket {
  62	spinlock_t lock;
  63	struct hlist_head hlist;
  64	struct nfs4_xattr_cache *cache;
  65	bool draining;
  66};
  67
  68struct nfs4_xattr_cache {
  69	struct kref ref;
  70	spinlock_t hash_lock;	/* protects hashtable and lru */
  71	struct nfs4_xattr_bucket buckets[NFS4_XATTR_HASH_SIZE];
  72	struct list_head lru;
  73	struct list_head dispose;
  74	atomic_long_t nent;
  75	spinlock_t listxattr_lock;
  76	struct inode *inode;
  77	struct nfs4_xattr_entry *listxattr;
  78};
  79
  80struct nfs4_xattr_entry {
  81	struct kref ref;
  82	struct hlist_node hnode;
  83	struct list_head lru;
  84	struct list_head dispose;
  85	char *xattr_name;
  86	void *xattr_value;
  87	size_t xattr_size;
  88	struct nfs4_xattr_bucket *bucket;
  89	uint32_t flags;
  90};
  91
  92#define	NFS4_XATTR_ENTRY_EXTVAL	0x0001
  93
  94/*
  95 * LRU list of NFS inodes that have xattr caches.
  96 */
  97static struct list_lru nfs4_xattr_cache_lru;
  98static struct list_lru nfs4_xattr_entry_lru;
  99static struct list_lru nfs4_xattr_large_entry_lru;
 100
 101static struct kmem_cache *nfs4_xattr_cache_cachep;
 102
 103/*
 104 * Hashing helper functions.
 105 */
 106static void
 107nfs4_xattr_hash_init(struct nfs4_xattr_cache *cache)
 108{
 109	unsigned int i;
 110
 111	for (i = 0; i < NFS4_XATTR_HASH_SIZE; i++) {
 112		INIT_HLIST_HEAD(&cache->buckets[i].hlist);
 113		spin_lock_init(&cache->buckets[i].lock);
 114		cache->buckets[i].cache = cache;
 115		cache->buckets[i].draining = false;
 116	}
 117}
 118
 119/*
 120 * Locking order:
 121 * 1. inode i_lock or bucket lock
 122 * 2. list_lru lock (taken by list_lru_* functions)
 123 */
 124
 125/*
 126 * Wrapper functions to add a cache entry to the right LRU.
 127 */
 128static bool
 129nfs4_xattr_entry_lru_add(struct nfs4_xattr_entry *entry)
 130{
 131	struct list_lru *lru;
 132
 133	lru = (entry->flags & NFS4_XATTR_ENTRY_EXTVAL) ?
 134	    &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru;
 135
 136	return list_lru_add(lru, &entry->lru);
 137}
 138
 139static bool
 140nfs4_xattr_entry_lru_del(struct nfs4_xattr_entry *entry)
 141{
 142	struct list_lru *lru;
 143
 144	lru = (entry->flags & NFS4_XATTR_ENTRY_EXTVAL) ?
 145	    &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru;
 146
 147	return list_lru_del(lru, &entry->lru);
 148}
 149
 150/*
 151 * This function allocates cache entries. They are the normal
 152 * extended attribute name/value pairs, but may also be a listxattr
 153 * cache. Those allocations use the same entry so that they can be
 154 * treated as one by the memory shrinker.
 155 *
 156 * xattr cache entries are allocated together with names. If the
 157 * value fits in to one page with the entry structure and the name,
 158 * it will also be part of the same allocation (kmalloc). This is
 159 * expected to be the vast majority of cases. Larger allocations
 160 * have a value pointer that is allocated separately by kvmalloc.
 161 *
 162 * Parameters:
 163 *
 164 * @name:  Name of the extended attribute. NULL for listxattr cache
 165 *         entry.
 166 * @value: Value of attribute, or listxattr cache. NULL if the
 167 *         value is to be copied from pages instead.
 168 * @pages: Pages to copy the value from, if not NULL. Passed in to
 169 *	   make it easier to copy the value after an RPC, even if
 170 *	   the value will not be passed up to application (e.g.
 171 *	   for a 'query' getxattr with NULL buffer).
 172 * @len:   Length of the value. Can be 0 for zero-length attribues.
 173 *         @value and @pages will be NULL if @len is 0.
 174 */
 175static struct nfs4_xattr_entry *
 176nfs4_xattr_alloc_entry(const char *name, const void *value,
 177		       struct page **pages, size_t len)
 178{
 179	struct nfs4_xattr_entry *entry;
 180	void *valp;
 181	char *namep;
 182	size_t alloclen, slen;
 183	char *buf;
 184	uint32_t flags;
 185
 186	BUILD_BUG_ON(sizeof(struct nfs4_xattr_entry) +
 187	    XATTR_NAME_MAX + 1 > PAGE_SIZE);
 188
 189	alloclen = sizeof(struct nfs4_xattr_entry);
 190	if (name != NULL) {
 191		slen = strlen(name) + 1;
 192		alloclen += slen;
 193	} else
 194		slen = 0;
 195
 196	if (alloclen + len <= PAGE_SIZE) {
 197		alloclen += len;
 198		flags = 0;
 199	} else {
 200		flags = NFS4_XATTR_ENTRY_EXTVAL;
 201	}
 202
 203	buf = kmalloc(alloclen, GFP_KERNEL_ACCOUNT | GFP_NOFS);
 204	if (buf == NULL)
 205		return NULL;
 206	entry = (struct nfs4_xattr_entry *)buf;
 207
 208	if (name != NULL) {
 209		namep = buf + sizeof(struct nfs4_xattr_entry);
 210		memcpy(namep, name, slen);
 211	} else {
 212		namep = NULL;
 213	}
 214
 215
 216	if (flags & NFS4_XATTR_ENTRY_EXTVAL) {
 217		valp = kvmalloc(len, GFP_KERNEL_ACCOUNT | GFP_NOFS);
 218		if (valp == NULL) {
 219			kfree(buf);
 220			return NULL;
 221		}
 222	} else if (len != 0) {
 223		valp = buf + sizeof(struct nfs4_xattr_entry) + slen;
 224	} else
 225		valp = NULL;
 226
 227	if (valp != NULL) {
 228		if (value != NULL)
 229			memcpy(valp, value, len);
 230		else
 231			_copy_from_pages(valp, pages, 0, len);
 232	}
 233
 234	entry->flags = flags;
 235	entry->xattr_value = valp;
 236	kref_init(&entry->ref);
 237	entry->xattr_name = namep;
 238	entry->xattr_size = len;
 239	entry->bucket = NULL;
 240	INIT_LIST_HEAD(&entry->lru);
 241	INIT_LIST_HEAD(&entry->dispose);
 242	INIT_HLIST_NODE(&entry->hnode);
 243
 244	return entry;
 245}
 246
 247static void
 248nfs4_xattr_free_entry(struct nfs4_xattr_entry *entry)
 249{
 250	if (entry->flags & NFS4_XATTR_ENTRY_EXTVAL)
 251		kvfree(entry->xattr_value);
 252	kfree(entry);
 253}
 254
 255static void
 256nfs4_xattr_free_entry_cb(struct kref *kref)
 257{
 258	struct nfs4_xattr_entry *entry;
 259
 260	entry = container_of(kref, struct nfs4_xattr_entry, ref);
 261
 262	if (WARN_ON(!list_empty(&entry->lru)))
 263		return;
 264
 265	nfs4_xattr_free_entry(entry);
 266}
 267
 268static void
 269nfs4_xattr_free_cache_cb(struct kref *kref)
 270{
 271	struct nfs4_xattr_cache *cache;
 272	int i;
 273
 274	cache = container_of(kref, struct nfs4_xattr_cache, ref);
 275
 276	for (i = 0; i < NFS4_XATTR_HASH_SIZE; i++) {
 277		if (WARN_ON(!hlist_empty(&cache->buckets[i].hlist)))
 278			return;
 279		cache->buckets[i].draining = false;
 280	}
 281
 282	cache->listxattr = NULL;
 283
 284	kmem_cache_free(nfs4_xattr_cache_cachep, cache);
 285
 286}
 287
 288static struct nfs4_xattr_cache *
 289nfs4_xattr_alloc_cache(void)
 290{
 291	struct nfs4_xattr_cache *cache;
 292
 293	cache = kmem_cache_alloc(nfs4_xattr_cache_cachep,
 294	    GFP_KERNEL_ACCOUNT | GFP_NOFS);
 295	if (cache == NULL)
 296		return NULL;
 297
 298	kref_init(&cache->ref);
 299	atomic_long_set(&cache->nent, 0);
 300
 301	return cache;
 302}
 303
 304/*
 305 * Set the listxattr cache, which is a special-cased cache entry.
 306 * The special value ERR_PTR(-ESTALE) is used to indicate that
 307 * the cache is being drained - this prevents a new listxattr
 308 * cache from being added to what is now a stale cache.
 309 */
 310static int
 311nfs4_xattr_set_listcache(struct nfs4_xattr_cache *cache,
 312			 struct nfs4_xattr_entry *new)
 313{
 314	struct nfs4_xattr_entry *old;
 315	int ret = 1;
 316
 317	spin_lock(&cache->listxattr_lock);
 318
 319	old = cache->listxattr;
 320
 321	if (old == ERR_PTR(-ESTALE)) {
 322		ret = 0;
 323		goto out;
 324	}
 325
 326	cache->listxattr = new;
 327	if (new != NULL && new != ERR_PTR(-ESTALE))
 328		nfs4_xattr_entry_lru_add(new);
 329
 330	if (old != NULL) {
 331		nfs4_xattr_entry_lru_del(old);
 332		kref_put(&old->ref, nfs4_xattr_free_entry_cb);
 333	}
 334out:
 335	spin_unlock(&cache->listxattr_lock);
 336
 337	return ret;
 338}
 339
 340/*
 341 * Unlink a cache from its parent inode, clearing out an invalid
 342 * cache. Must be called with i_lock held.
 343 */
 344static struct nfs4_xattr_cache *
 345nfs4_xattr_cache_unlink(struct inode *inode)
 346{
 347	struct nfs_inode *nfsi;
 348	struct nfs4_xattr_cache *oldcache;
 349
 350	nfsi = NFS_I(inode);
 351
 352	oldcache = nfsi->xattr_cache;
 353	if (oldcache != NULL) {
 354		list_lru_del(&nfs4_xattr_cache_lru, &oldcache->lru);
 355		oldcache->inode = NULL;
 356	}
 357	nfsi->xattr_cache = NULL;
 358	nfsi->cache_validity &= ~NFS_INO_INVALID_XATTR;
 359
 360	return oldcache;
 361
 362}
 363
 364/*
 365 * Discard a cache. Called by get_cache() if there was an old,
 366 * invalid cache. Can also be called from a shrinker callback.
 367 *
 368 * The cache is dead, it has already been unlinked from its inode,
 369 * and no longer appears on the cache LRU list.
 370 *
 371 * Mark all buckets as draining, so that no new entries are added. This
 372 * could still happen in the unlikely, but possible case that another
 373 * thread had grabbed a reference before it was unlinked from the inode,
 374 * and is still holding it for an add operation.
 375 *
 376 * Remove all entries from the LRU lists, so that there is no longer
 377 * any way to 'find' this cache. Then, remove the entries from the hash
 378 * table.
 379 *
 380 * At that point, the cache will remain empty and can be freed when the final
 381 * reference drops, which is very likely the kref_put at the end of
 382 * this function, or the one called immediately afterwards in the
 383 * shrinker callback.
 384 */
 385static void
 386nfs4_xattr_discard_cache(struct nfs4_xattr_cache *cache)
 387{
 388	unsigned int i;
 389	struct nfs4_xattr_entry *entry;
 390	struct nfs4_xattr_bucket *bucket;
 391	struct hlist_node *n;
 392
 393	nfs4_xattr_set_listcache(cache, ERR_PTR(-ESTALE));
 394
 395	for (i = 0; i < NFS4_XATTR_HASH_SIZE; i++) {
 396		bucket = &cache->buckets[i];
 397
 398		spin_lock(&bucket->lock);
 399		bucket->draining = true;
 400		hlist_for_each_entry_safe(entry, n, &bucket->hlist, hnode) {
 401			nfs4_xattr_entry_lru_del(entry);
 402			hlist_del_init(&entry->hnode);
 403			kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
 404		}
 405		spin_unlock(&bucket->lock);
 406	}
 407
 408	atomic_long_set(&cache->nent, 0);
 409
 410	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
 411}
 412
 413/*
 414 * Get a referenced copy of the cache structure. Avoid doing allocs
 415 * while holding i_lock. Which means that we do some optimistic allocation,
 416 * and might have to free the result in rare cases.
 417 *
 418 * This function only checks the NFS_INO_INVALID_XATTR cache validity bit
 419 * and acts accordingly, replacing the cache when needed. For the read case
 420 * (!add), this means that the caller must make sure that the cache
 421 * is valid before caling this function. getxattr and listxattr call
 422 * revalidate_inode to do this. The attribute cache timeout (for the
 423 * non-delegated case) is expected to be dealt with in the revalidate
 424 * call.
 425 */
 426
 427static struct nfs4_xattr_cache *
 428nfs4_xattr_get_cache(struct inode *inode, int add)
 429{
 430	struct nfs_inode *nfsi;
 431	struct nfs4_xattr_cache *cache, *oldcache, *newcache;
 432
 433	nfsi = NFS_I(inode);
 434
 435	cache = oldcache = NULL;
 436
 437	spin_lock(&inode->i_lock);
 438
 439	if (nfsi->cache_validity & NFS_INO_INVALID_XATTR)
 440		oldcache = nfs4_xattr_cache_unlink(inode);
 441	else
 442		cache = nfsi->xattr_cache;
 443
 444	if (cache != NULL)
 445		kref_get(&cache->ref);
 446
 447	spin_unlock(&inode->i_lock);
 448
 449	if (add && cache == NULL) {
 450		newcache = NULL;
 451
 452		cache = nfs4_xattr_alloc_cache();
 453		if (cache == NULL)
 454			goto out;
 455
 456		spin_lock(&inode->i_lock);
 457		if (nfsi->cache_validity & NFS_INO_INVALID_XATTR) {
 458			/*
 459			 * The cache was invalidated again. Give up,
 460			 * since what we want to enter is now likely
 461			 * outdated anyway.
 462			 */
 463			spin_unlock(&inode->i_lock);
 464			kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
 465			cache = NULL;
 466			goto out;
 467		}
 468
 469		/*
 470		 * Check if someone beat us to it.
 471		 */
 472		if (nfsi->xattr_cache != NULL) {
 473			newcache = nfsi->xattr_cache;
 474			kref_get(&newcache->ref);
 475		} else {
 476			kref_get(&cache->ref);
 477			nfsi->xattr_cache = cache;
 478			cache->inode = inode;
 479			list_lru_add(&nfs4_xattr_cache_lru, &cache->lru);
 480		}
 481
 482		spin_unlock(&inode->i_lock);
 483
 484		/*
 485		 * If there was a race, throw away the cache we just
 486		 * allocated, and use the new one allocated by someone
 487		 * else.
 488		 */
 489		if (newcache != NULL) {
 490			kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
 491			cache = newcache;
 492		}
 493	}
 494
 495out:
 496	/*
 497	 * Discard the now orphaned old cache.
 498	 */
 499	if (oldcache != NULL)
 500		nfs4_xattr_discard_cache(oldcache);
 501
 502	return cache;
 503}
 504
 505static inline struct nfs4_xattr_bucket *
 506nfs4_xattr_hash_bucket(struct nfs4_xattr_cache *cache, const char *name)
 507{
 508	return &cache->buckets[jhash(name, strlen(name), 0) &
 509	    (ARRAY_SIZE(cache->buckets) - 1)];
 510}
 511
 512static struct nfs4_xattr_entry *
 513nfs4_xattr_get_entry(struct nfs4_xattr_bucket *bucket, const char *name)
 514{
 515	struct nfs4_xattr_entry *entry;
 516
 517	entry = NULL;
 518
 519	hlist_for_each_entry(entry, &bucket->hlist, hnode) {
 520		if (!strcmp(entry->xattr_name, name))
 521			break;
 522	}
 523
 524	return entry;
 525}
 526
 527static int
 528nfs4_xattr_hash_add(struct nfs4_xattr_cache *cache,
 529		    struct nfs4_xattr_entry *entry)
 530{
 531	struct nfs4_xattr_bucket *bucket;
 532	struct nfs4_xattr_entry *oldentry = NULL;
 533	int ret = 1;
 534
 535	bucket = nfs4_xattr_hash_bucket(cache, entry->xattr_name);
 536	entry->bucket = bucket;
 537
 538	spin_lock(&bucket->lock);
 539
 540	if (bucket->draining) {
 541		ret = 0;
 542		goto out;
 543	}
 544
 545	oldentry = nfs4_xattr_get_entry(bucket, entry->xattr_name);
 546	if (oldentry != NULL) {
 547		hlist_del_init(&oldentry->hnode);
 548		nfs4_xattr_entry_lru_del(oldentry);
 549	} else {
 550		atomic_long_inc(&cache->nent);
 551	}
 552
 553	hlist_add_head(&entry->hnode, &bucket->hlist);
 554	nfs4_xattr_entry_lru_add(entry);
 555
 556out:
 557	spin_unlock(&bucket->lock);
 558
 559	if (oldentry != NULL)
 560		kref_put(&oldentry->ref, nfs4_xattr_free_entry_cb);
 561
 562	return ret;
 563}
 564
 565static void
 566nfs4_xattr_hash_remove(struct nfs4_xattr_cache *cache, const char *name)
 567{
 568	struct nfs4_xattr_bucket *bucket;
 569	struct nfs4_xattr_entry *entry;
 570
 571	bucket = nfs4_xattr_hash_bucket(cache, name);
 572
 573	spin_lock(&bucket->lock);
 574
 575	entry = nfs4_xattr_get_entry(bucket, name);
 576	if (entry != NULL) {
 577		hlist_del_init(&entry->hnode);
 578		nfs4_xattr_entry_lru_del(entry);
 579		atomic_long_dec(&cache->nent);
 580	}
 581
 582	spin_unlock(&bucket->lock);
 583
 584	if (entry != NULL)
 585		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
 586}
 587
 588static struct nfs4_xattr_entry *
 589nfs4_xattr_hash_find(struct nfs4_xattr_cache *cache, const char *name)
 590{
 591	struct nfs4_xattr_bucket *bucket;
 592	struct nfs4_xattr_entry *entry;
 593
 594	bucket = nfs4_xattr_hash_bucket(cache, name);
 595
 596	spin_lock(&bucket->lock);
 597
 598	entry = nfs4_xattr_get_entry(bucket, name);
 599	if (entry != NULL)
 600		kref_get(&entry->ref);
 601
 602	spin_unlock(&bucket->lock);
 603
 604	return entry;
 605}
 606
 607/*
 608 * Entry point to retrieve an entry from the cache.
 609 */
 610ssize_t nfs4_xattr_cache_get(struct inode *inode, const char *name, char *buf,
 611			 ssize_t buflen)
 612{
 613	struct nfs4_xattr_cache *cache;
 614	struct nfs4_xattr_entry *entry;
 615	ssize_t ret;
 616
 617	cache = nfs4_xattr_get_cache(inode, 0);
 618	if (cache == NULL)
 619		return -ENOENT;
 620
 621	ret = 0;
 622	entry = nfs4_xattr_hash_find(cache, name);
 623
 624	if (entry != NULL) {
 625		dprintk("%s: cache hit '%s', len %lu\n", __func__,
 626		    entry->xattr_name, (unsigned long)entry->xattr_size);
 627		if (buflen == 0) {
 628			/* Length probe only */
 629			ret = entry->xattr_size;
 630		} else if (buflen < entry->xattr_size)
 631			ret = -ERANGE;
 632		else {
 633			memcpy(buf, entry->xattr_value, entry->xattr_size);
 634			ret = entry->xattr_size;
 635		}
 636		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
 637	} else {
 638		dprintk("%s: cache miss '%s'\n", __func__, name);
 639		ret = -ENOENT;
 640	}
 641
 642	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
 643
 644	return ret;
 645}
 646
 647/*
 648 * Retrieve a cached list of xattrs from the cache.
 649 */
 650ssize_t nfs4_xattr_cache_list(struct inode *inode, char *buf, ssize_t buflen)
 651{
 652	struct nfs4_xattr_cache *cache;
 653	struct nfs4_xattr_entry *entry;
 654	ssize_t ret;
 655
 656	cache = nfs4_xattr_get_cache(inode, 0);
 657	if (cache == NULL)
 658		return -ENOENT;
 659
 660	spin_lock(&cache->listxattr_lock);
 661
 662	entry = cache->listxattr;
 663
 664	if (entry != NULL && entry != ERR_PTR(-ESTALE)) {
 665		if (buflen == 0) {
 666			/* Length probe only */
 667			ret = entry->xattr_size;
 668		} else if (entry->xattr_size > buflen)
 669			ret = -ERANGE;
 670		else {
 671			memcpy(buf, entry->xattr_value, entry->xattr_size);
 672			ret = entry->xattr_size;
 673		}
 674	} else {
 675		ret = -ENOENT;
 676	}
 677
 678	spin_unlock(&cache->listxattr_lock);
 679
 680	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
 681
 682	return ret;
 683}
 684
 685/*
 686 * Add an xattr to the cache.
 687 *
 688 * This also invalidates the xattr list cache.
 689 */
 690void nfs4_xattr_cache_add(struct inode *inode, const char *name,
 691			  const char *buf, struct page **pages, ssize_t buflen)
 692{
 693	struct nfs4_xattr_cache *cache;
 694	struct nfs4_xattr_entry *entry;
 695
 696	dprintk("%s: add '%s' len %lu\n", __func__,
 697	    name, (unsigned long)buflen);
 698
 699	cache = nfs4_xattr_get_cache(inode, 1);
 700	if (cache == NULL)
 701		return;
 702
 703	entry = nfs4_xattr_alloc_entry(name, buf, pages, buflen);
 704	if (entry == NULL)
 705		goto out;
 706
 707	(void)nfs4_xattr_set_listcache(cache, NULL);
 708
 709	if (!nfs4_xattr_hash_add(cache, entry))
 710		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
 711
 712out:
 713	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
 714}
 715
 716
 717/*
 718 * Remove an xattr from the cache.
 719 *
 720 * This also invalidates the xattr list cache.
 721 */
 722void nfs4_xattr_cache_remove(struct inode *inode, const char *name)
 723{
 724	struct nfs4_xattr_cache *cache;
 725
 726	dprintk("%s: remove '%s'\n", __func__, name);
 727
 728	cache = nfs4_xattr_get_cache(inode, 0);
 729	if (cache == NULL)
 730		return;
 731
 732	(void)nfs4_xattr_set_listcache(cache, NULL);
 733	nfs4_xattr_hash_remove(cache, name);
 734
 735	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
 736}
 737
 738/*
 739 * Cache listxattr output, replacing any possible old one.
 740 */
 741void nfs4_xattr_cache_set_list(struct inode *inode, const char *buf,
 742			       ssize_t buflen)
 743{
 744	struct nfs4_xattr_cache *cache;
 745	struct nfs4_xattr_entry *entry;
 746
 747	cache = nfs4_xattr_get_cache(inode, 1);
 748	if (cache == NULL)
 749		return;
 750
 751	entry = nfs4_xattr_alloc_entry(NULL, buf, NULL, buflen);
 752	if (entry == NULL)
 753		goto out;
 754
 755	/*
 756	 * This is just there to be able to get to bucket->cache,
 757	 * which is obviously the same for all buckets, so just
 758	 * use bucket 0.
 759	 */
 760	entry->bucket = &cache->buckets[0];
 761
 762	if (!nfs4_xattr_set_listcache(cache, entry))
 763		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
 764
 765out:
 766	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
 767}
 768
 769/*
 770 * Zap the entire cache. Called when an inode is evicted.
 771 */
 772void nfs4_xattr_cache_zap(struct inode *inode)
 773{
 774	struct nfs4_xattr_cache *oldcache;
 775
 776	spin_lock(&inode->i_lock);
 777	oldcache = nfs4_xattr_cache_unlink(inode);
 778	spin_unlock(&inode->i_lock);
 779
 780	if (oldcache)
 781		nfs4_xattr_discard_cache(oldcache);
 782}
 783
 784/*
 785 * The entry LRU is shrunk more aggressively than the cache LRU,
 786 * by settings @seeks to 1.
 787 *
 788 * Cache structures are freed only when they've become empty, after
 789 * pruning all but one entry.
 790 */
 791
 792static unsigned long nfs4_xattr_cache_count(struct shrinker *shrink,
 793					    struct shrink_control *sc);
 794static unsigned long nfs4_xattr_entry_count(struct shrinker *shrink,
 795					    struct shrink_control *sc);
 796static unsigned long nfs4_xattr_cache_scan(struct shrinker *shrink,
 797					   struct shrink_control *sc);
 798static unsigned long nfs4_xattr_entry_scan(struct shrinker *shrink,
 799					   struct shrink_control *sc);
 800
 801static struct shrinker nfs4_xattr_cache_shrinker = {
 802	.count_objects	= nfs4_xattr_cache_count,
 803	.scan_objects	= nfs4_xattr_cache_scan,
 804	.seeks		= DEFAULT_SEEKS,
 805	.flags		= SHRINKER_MEMCG_AWARE,
 806};
 807
 808static struct shrinker nfs4_xattr_entry_shrinker = {
 809	.count_objects	= nfs4_xattr_entry_count,
 810	.scan_objects	= nfs4_xattr_entry_scan,
 811	.seeks		= DEFAULT_SEEKS,
 812	.batch		= 512,
 813	.flags		= SHRINKER_MEMCG_AWARE,
 814};
 815
 816static struct shrinker nfs4_xattr_large_entry_shrinker = {
 817	.count_objects	= nfs4_xattr_entry_count,
 818	.scan_objects	= nfs4_xattr_entry_scan,
 819	.seeks		= 1,
 820	.batch		= 512,
 821	.flags		= SHRINKER_MEMCG_AWARE,
 822};
 823
 824static enum lru_status
 825cache_lru_isolate(struct list_head *item,
 826	struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
 827{
 828	struct list_head *dispose = arg;
 829	struct inode *inode;
 830	struct nfs4_xattr_cache *cache = container_of(item,
 831	    struct nfs4_xattr_cache, lru);
 832
 833	if (atomic_long_read(&cache->nent) > 1)
 834		return LRU_SKIP;
 835
 836	/*
 837	 * If a cache structure is on the LRU list, we know that
 838	 * its inode is valid. Try to lock it to break the link.
 839	 * Since we're inverting the lock order here, only try.
 840	 */
 841	inode = cache->inode;
 842
 843	if (!spin_trylock(&inode->i_lock))
 844		return LRU_SKIP;
 845
 846	kref_get(&cache->ref);
 847
 848	cache->inode = NULL;
 849	NFS_I(inode)->xattr_cache = NULL;
 850	NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_XATTR;
 851	list_lru_isolate(lru, &cache->lru);
 852
 853	spin_unlock(&inode->i_lock);
 854
 855	list_add_tail(&cache->dispose, dispose);
 856	return LRU_REMOVED;
 857}
 858
 859static unsigned long
 860nfs4_xattr_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
 861{
 862	LIST_HEAD(dispose);
 863	unsigned long freed;
 864	struct nfs4_xattr_cache *cache;
 865
 866	freed = list_lru_shrink_walk(&nfs4_xattr_cache_lru, sc,
 867	    cache_lru_isolate, &dispose);
 868	while (!list_empty(&dispose)) {
 869		cache = list_first_entry(&dispose, struct nfs4_xattr_cache,
 870		    dispose);
 871		list_del_init(&cache->dispose);
 872		nfs4_xattr_discard_cache(cache);
 873		kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
 874	}
 875
 876	return freed;
 877}
 878
 879
 880static unsigned long
 881nfs4_xattr_cache_count(struct shrinker *shrink, struct shrink_control *sc)
 882{
 883	unsigned long count;
 884
 885	count = list_lru_count(&nfs4_xattr_cache_lru);
 886	return vfs_pressure_ratio(count);
 887}
 888
 889static enum lru_status
 890entry_lru_isolate(struct list_head *item,
 891	struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
 892{
 893	struct list_head *dispose = arg;
 894	struct nfs4_xattr_bucket *bucket;
 895	struct nfs4_xattr_cache *cache;
 896	struct nfs4_xattr_entry *entry = container_of(item,
 897	    struct nfs4_xattr_entry, lru);
 898
 899	bucket = entry->bucket;
 900	cache = bucket->cache;
 901
 902	/*
 903	 * Unhook the entry from its parent (either a cache bucket
 904	 * or a cache structure if it's a listxattr buf), so that
 905	 * it's no longer found. Then add it to the isolate list,
 906	 * to be freed later.
 907	 *
 908	 * In both cases, we're reverting lock order, so use
 909	 * trylock and skip the entry if we can't get the lock.
 910	 */
 911	if (entry->xattr_name != NULL) {
 912		/* Regular cache entry */
 913		if (!spin_trylock(&bucket->lock))
 914			return LRU_SKIP;
 915
 916		kref_get(&entry->ref);
 917
 918		hlist_del_init(&entry->hnode);
 919		atomic_long_dec(&cache->nent);
 920		list_lru_isolate(lru, &entry->lru);
 921
 922		spin_unlock(&bucket->lock);
 923	} else {
 924		/* Listxattr cache entry */
 925		if (!spin_trylock(&cache->listxattr_lock))
 926			return LRU_SKIP;
 927
 928		kref_get(&entry->ref);
 929
 930		cache->listxattr = NULL;
 931		list_lru_isolate(lru, &entry->lru);
 932
 933		spin_unlock(&cache->listxattr_lock);
 934	}
 935
 936	list_add_tail(&entry->dispose, dispose);
 937	return LRU_REMOVED;
 938}
 939
 940static unsigned long
 941nfs4_xattr_entry_scan(struct shrinker *shrink, struct shrink_control *sc)
 942{
 943	LIST_HEAD(dispose);
 944	unsigned long freed;
 945	struct nfs4_xattr_entry *entry;
 946	struct list_lru *lru;
 947
 948	lru = (shrink == &nfs4_xattr_large_entry_shrinker) ?
 949	    &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru;
 950
 951	freed = list_lru_shrink_walk(lru, sc, entry_lru_isolate, &dispose);
 952
 953	while (!list_empty(&dispose)) {
 954		entry = list_first_entry(&dispose, struct nfs4_xattr_entry,
 955		    dispose);
 956		list_del_init(&entry->dispose);
 957
 958		/*
 959		 * Drop two references: the one that we just grabbed
 960		 * in entry_lru_isolate, and the one that was set
 961		 * when the entry was first allocated.
 962		 */
 963		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
 964		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
 965	}
 966
 967	return freed;
 968}
 969
 970static unsigned long
 971nfs4_xattr_entry_count(struct shrinker *shrink, struct shrink_control *sc)
 972{
 973	unsigned long count;
 974	struct list_lru *lru;
 975
 976	lru = (shrink == &nfs4_xattr_large_entry_shrinker) ?
 977	    &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru;
 978
 979	count = list_lru_count(lru);
 980	return vfs_pressure_ratio(count);
 981}
 982
 983
 984static void nfs4_xattr_cache_init_once(void *p)
 985{
 986	struct nfs4_xattr_cache *cache = (struct nfs4_xattr_cache *)p;
 987
 988	spin_lock_init(&cache->listxattr_lock);
 989	atomic_long_set(&cache->nent, 0);
 990	nfs4_xattr_hash_init(cache);
 991	cache->listxattr = NULL;
 992	INIT_LIST_HEAD(&cache->lru);
 993	INIT_LIST_HEAD(&cache->dispose);
 994}
 995
 996int __init nfs4_xattr_cache_init(void)
 997{
 998	int ret = 0;
 999
1000	nfs4_xattr_cache_cachep = kmem_cache_create("nfs4_xattr_cache_cache",
1001	    sizeof(struct nfs4_xattr_cache), 0,
1002	    (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1003	    nfs4_xattr_cache_init_once);
1004	if (nfs4_xattr_cache_cachep == NULL)
1005		return -ENOMEM;
1006
1007	ret = list_lru_init_memcg(&nfs4_xattr_large_entry_lru,
1008	    &nfs4_xattr_large_entry_shrinker);
1009	if (ret)
1010		goto out4;
1011
1012	ret = list_lru_init_memcg(&nfs4_xattr_entry_lru,
1013	    &nfs4_xattr_entry_shrinker);
1014	if (ret)
1015		goto out3;
1016
1017	ret = list_lru_init_memcg(&nfs4_xattr_cache_lru,
1018	    &nfs4_xattr_cache_shrinker);
1019	if (ret)
1020		goto out2;
1021
1022	ret = register_shrinker(&nfs4_xattr_cache_shrinker);
1023	if (ret)
1024		goto out1;
1025
1026	ret = register_shrinker(&nfs4_xattr_entry_shrinker);
1027	if (ret)
1028		goto out;
1029
1030	ret = register_shrinker(&nfs4_xattr_large_entry_shrinker);
1031	if (!ret)
1032		return 0;
1033
1034	unregister_shrinker(&nfs4_xattr_entry_shrinker);
1035out:
1036	unregister_shrinker(&nfs4_xattr_cache_shrinker);
1037out1:
1038	list_lru_destroy(&nfs4_xattr_cache_lru);
1039out2:
1040	list_lru_destroy(&nfs4_xattr_entry_lru);
1041out3:
1042	list_lru_destroy(&nfs4_xattr_large_entry_lru);
1043out4:
1044	kmem_cache_destroy(nfs4_xattr_cache_cachep);
1045
1046	return ret;
1047}
1048
1049void nfs4_xattr_cache_exit(void)
1050{
1051	unregister_shrinker(&nfs4_xattr_entry_shrinker);
1052	unregister_shrinker(&nfs4_xattr_cache_shrinker);
1053	list_lru_destroy(&nfs4_xattr_entry_lru);
1054	list_lru_destroy(&nfs4_xattr_cache_lru);
1055	kmem_cache_destroy(nfs4_xattr_cache_cachep);
1056}