Loading...
Note: File does not exist in v3.15.
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2019, Intel Corporation. */
3
4#include <linux/bpf_trace.h>
5#include <net/xdp_sock_drv.h>
6#include <net/xdp.h>
7#include "ice.h"
8#include "ice_base.h"
9#include "ice_type.h"
10#include "ice_xsk.h"
11#include "ice_txrx.h"
12#include "ice_txrx_lib.h"
13#include "ice_lib.h"
14
15/**
16 * ice_qp_reset_stats - Resets all stats for rings of given index
17 * @vsi: VSI that contains rings of interest
18 * @q_idx: ring index in array
19 */
20static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx)
21{
22 memset(&vsi->rx_rings[q_idx]->rx_stats, 0,
23 sizeof(vsi->rx_rings[q_idx]->rx_stats));
24 memset(&vsi->tx_rings[q_idx]->stats, 0,
25 sizeof(vsi->tx_rings[q_idx]->stats));
26 if (ice_is_xdp_ena_vsi(vsi))
27 memset(&vsi->xdp_rings[q_idx]->stats, 0,
28 sizeof(vsi->xdp_rings[q_idx]->stats));
29}
30
31/**
32 * ice_qp_clean_rings - Cleans all the rings of a given index
33 * @vsi: VSI that contains rings of interest
34 * @q_idx: ring index in array
35 */
36static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx)
37{
38 ice_clean_tx_ring(vsi->tx_rings[q_idx]);
39 if (ice_is_xdp_ena_vsi(vsi))
40 ice_clean_tx_ring(vsi->xdp_rings[q_idx]);
41 ice_clean_rx_ring(vsi->rx_rings[q_idx]);
42}
43
44/**
45 * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector
46 * @vsi: VSI that has netdev
47 * @q_vector: q_vector that has NAPI context
48 * @enable: true for enable, false for disable
49 */
50static void
51ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector,
52 bool enable)
53{
54 if (!vsi->netdev || !q_vector)
55 return;
56
57 if (enable)
58 napi_enable(&q_vector->napi);
59 else
60 napi_disable(&q_vector->napi);
61}
62
63/**
64 * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring
65 * @vsi: the VSI that contains queue vector being un-configured
66 * @rx_ring: Rx ring that will have its IRQ disabled
67 * @q_vector: queue vector
68 */
69static void
70ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_ring *rx_ring,
71 struct ice_q_vector *q_vector)
72{
73 struct ice_pf *pf = vsi->back;
74 struct ice_hw *hw = &pf->hw;
75 int base = vsi->base_vector;
76 u16 reg;
77 u32 val;
78
79 /* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle
80 * here only QINT_RQCTL
81 */
82 reg = rx_ring->reg_idx;
83 val = rd32(hw, QINT_RQCTL(reg));
84 val &= ~QINT_RQCTL_CAUSE_ENA_M;
85 wr32(hw, QINT_RQCTL(reg), val);
86
87 if (q_vector) {
88 u16 v_idx = q_vector->v_idx;
89
90 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0);
91 ice_flush(hw);
92 synchronize_irq(pf->msix_entries[v_idx + base].vector);
93 }
94}
95
96/**
97 * ice_qvec_cfg_msix - Enable IRQ for given queue vector
98 * @vsi: the VSI that contains queue vector
99 * @q_vector: queue vector
100 */
101static void
102ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
103{
104 u16 reg_idx = q_vector->reg_idx;
105 struct ice_pf *pf = vsi->back;
106 struct ice_hw *hw = &pf->hw;
107 struct ice_ring *ring;
108
109 ice_cfg_itr(hw, q_vector);
110
111 wr32(hw, GLINT_RATE(reg_idx),
112 ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran));
113
114 ice_for_each_ring(ring, q_vector->tx)
115 ice_cfg_txq_interrupt(vsi, ring->reg_idx, reg_idx,
116 q_vector->tx.itr_idx);
117
118 ice_for_each_ring(ring, q_vector->rx)
119 ice_cfg_rxq_interrupt(vsi, ring->reg_idx, reg_idx,
120 q_vector->rx.itr_idx);
121
122 ice_flush(hw);
123}
124
125/**
126 * ice_qvec_ena_irq - Enable IRQ for given queue vector
127 * @vsi: the VSI that contains queue vector
128 * @q_vector: queue vector
129 */
130static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
131{
132 struct ice_pf *pf = vsi->back;
133 struct ice_hw *hw = &pf->hw;
134
135 ice_irq_dynamic_ena(hw, vsi, q_vector);
136
137 ice_flush(hw);
138}
139
140/**
141 * ice_qp_dis - Disables a queue pair
142 * @vsi: VSI of interest
143 * @q_idx: ring index in array
144 *
145 * Returns 0 on success, negative on failure.
146 */
147static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx)
148{
149 struct ice_txq_meta txq_meta = { };
150 struct ice_ring *tx_ring, *rx_ring;
151 struct ice_q_vector *q_vector;
152 int timeout = 50;
153 int err;
154
155 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
156 return -EINVAL;
157
158 tx_ring = vsi->tx_rings[q_idx];
159 rx_ring = vsi->rx_rings[q_idx];
160 q_vector = rx_ring->q_vector;
161
162 while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state)) {
163 timeout--;
164 if (!timeout)
165 return -EBUSY;
166 usleep_range(1000, 2000);
167 }
168 netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
169
170 ice_qvec_dis_irq(vsi, rx_ring, q_vector);
171
172 ice_fill_txq_meta(vsi, tx_ring, &txq_meta);
173 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta);
174 if (err)
175 return err;
176 if (ice_is_xdp_ena_vsi(vsi)) {
177 struct ice_ring *xdp_ring = vsi->xdp_rings[q_idx];
178
179 memset(&txq_meta, 0, sizeof(txq_meta));
180 ice_fill_txq_meta(vsi, xdp_ring, &txq_meta);
181 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring,
182 &txq_meta);
183 if (err)
184 return err;
185 }
186 err = ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, true);
187 if (err)
188 return err;
189
190 ice_qvec_toggle_napi(vsi, q_vector, false);
191 ice_qp_clean_rings(vsi, q_idx);
192 ice_qp_reset_stats(vsi, q_idx);
193
194 return 0;
195}
196
197/**
198 * ice_qp_ena - Enables a queue pair
199 * @vsi: VSI of interest
200 * @q_idx: ring index in array
201 *
202 * Returns 0 on success, negative on failure.
203 */
204static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx)
205{
206 struct ice_aqc_add_tx_qgrp *qg_buf;
207 struct ice_ring *tx_ring, *rx_ring;
208 struct ice_q_vector *q_vector;
209 u16 size;
210 int err;
211
212 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
213 return -EINVAL;
214
215 size = struct_size(qg_buf, txqs, 1);
216 qg_buf = kzalloc(size, GFP_KERNEL);
217 if (!qg_buf)
218 return -ENOMEM;
219
220 qg_buf->num_txqs = 1;
221
222 tx_ring = vsi->tx_rings[q_idx];
223 rx_ring = vsi->rx_rings[q_idx];
224 q_vector = rx_ring->q_vector;
225
226 err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf);
227 if (err)
228 goto free_buf;
229
230 if (ice_is_xdp_ena_vsi(vsi)) {
231 struct ice_ring *xdp_ring = vsi->xdp_rings[q_idx];
232
233 memset(qg_buf, 0, size);
234 qg_buf->num_txqs = 1;
235 err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf);
236 if (err)
237 goto free_buf;
238 ice_set_ring_xdp(xdp_ring);
239 xdp_ring->xsk_umem = ice_xsk_umem(xdp_ring);
240 }
241
242 err = ice_setup_rx_ctx(rx_ring);
243 if (err)
244 goto free_buf;
245
246 ice_qvec_cfg_msix(vsi, q_vector);
247
248 err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true);
249 if (err)
250 goto free_buf;
251
252 clear_bit(__ICE_CFG_BUSY, vsi->state);
253 ice_qvec_toggle_napi(vsi, q_vector, true);
254 ice_qvec_ena_irq(vsi, q_vector);
255
256 netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
257free_buf:
258 kfree(qg_buf);
259 return err;
260}
261
262/**
263 * ice_xsk_alloc_umems - allocate a UMEM region for an XDP socket
264 * @vsi: VSI to allocate the UMEM on
265 *
266 * Returns 0 on success, negative on error
267 */
268static int ice_xsk_alloc_umems(struct ice_vsi *vsi)
269{
270 if (vsi->xsk_umems)
271 return 0;
272
273 vsi->xsk_umems = kcalloc(vsi->num_xsk_umems, sizeof(*vsi->xsk_umems),
274 GFP_KERNEL);
275
276 if (!vsi->xsk_umems) {
277 vsi->num_xsk_umems = 0;
278 return -ENOMEM;
279 }
280
281 return 0;
282}
283
284/**
285 * ice_xsk_remove_umem - Remove an UMEM for a certain ring/qid
286 * @vsi: VSI from which the VSI will be removed
287 * @qid: Ring/qid associated with the UMEM
288 */
289static void ice_xsk_remove_umem(struct ice_vsi *vsi, u16 qid)
290{
291 vsi->xsk_umems[qid] = NULL;
292 vsi->num_xsk_umems_used--;
293
294 if (vsi->num_xsk_umems_used == 0) {
295 kfree(vsi->xsk_umems);
296 vsi->xsk_umems = NULL;
297 vsi->num_xsk_umems = 0;
298 }
299}
300
301/**
302 * ice_xsk_umem_disable - disable a UMEM region
303 * @vsi: Current VSI
304 * @qid: queue ID
305 *
306 * Returns 0 on success, negative on failure
307 */
308static int ice_xsk_umem_disable(struct ice_vsi *vsi, u16 qid)
309{
310 if (!vsi->xsk_umems || qid >= vsi->num_xsk_umems ||
311 !vsi->xsk_umems[qid])
312 return -EINVAL;
313
314 xsk_buff_dma_unmap(vsi->xsk_umems[qid], ICE_RX_DMA_ATTR);
315 ice_xsk_remove_umem(vsi, qid);
316
317 return 0;
318}
319
320/**
321 * ice_xsk_umem_enable - enable a UMEM region
322 * @vsi: Current VSI
323 * @umem: pointer to a requested UMEM region
324 * @qid: queue ID
325 *
326 * Returns 0 on success, negative on failure
327 */
328static int
329ice_xsk_umem_enable(struct ice_vsi *vsi, struct xdp_umem *umem, u16 qid)
330{
331 int err;
332
333 if (vsi->type != ICE_VSI_PF)
334 return -EINVAL;
335
336 if (!vsi->num_xsk_umems)
337 vsi->num_xsk_umems = min_t(u16, vsi->num_rxq, vsi->num_txq);
338 if (qid >= vsi->num_xsk_umems)
339 return -EINVAL;
340
341 err = ice_xsk_alloc_umems(vsi);
342 if (err)
343 return err;
344
345 if (vsi->xsk_umems && vsi->xsk_umems[qid])
346 return -EBUSY;
347
348 vsi->xsk_umems[qid] = umem;
349 vsi->num_xsk_umems_used++;
350
351 err = xsk_buff_dma_map(vsi->xsk_umems[qid], ice_pf_to_dev(vsi->back),
352 ICE_RX_DMA_ATTR);
353 if (err)
354 return err;
355
356 return 0;
357}
358
359/**
360 * ice_xsk_umem_setup - enable/disable a UMEM region depending on its state
361 * @vsi: Current VSI
362 * @umem: UMEM to enable/associate to a ring, NULL to disable
363 * @qid: queue ID
364 *
365 * Returns 0 on success, negative on failure
366 */
367int ice_xsk_umem_setup(struct ice_vsi *vsi, struct xdp_umem *umem, u16 qid)
368{
369 bool if_running, umem_present = !!umem;
370 int ret = 0, umem_failure = 0;
371
372 if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi);
373
374 if (if_running) {
375 ret = ice_qp_dis(vsi, qid);
376 if (ret) {
377 netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret);
378 goto xsk_umem_if_up;
379 }
380 }
381
382 umem_failure = umem_present ? ice_xsk_umem_enable(vsi, umem, qid) :
383 ice_xsk_umem_disable(vsi, qid);
384
385xsk_umem_if_up:
386 if (if_running) {
387 ret = ice_qp_ena(vsi, qid);
388 if (!ret && umem_present)
389 napi_schedule(&vsi->xdp_rings[qid]->q_vector->napi);
390 else if (ret)
391 netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret);
392 }
393
394 if (umem_failure) {
395 netdev_err(vsi->netdev, "Could not %sable UMEM, error = %d\n",
396 umem_present ? "en" : "dis", umem_failure);
397 return umem_failure;
398 }
399
400 return ret;
401}
402
403/**
404 * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
405 * @rx_ring: Rx ring
406 * @count: The number of buffers to allocate
407 *
408 * This function allocates a number of Rx buffers from the fill ring
409 * or the internal recycle mechanism and places them on the Rx ring.
410 *
411 * Returns false if all allocations were successful, true if any fail.
412 */
413bool ice_alloc_rx_bufs_zc(struct ice_ring *rx_ring, u16 count)
414{
415 union ice_32b_rx_flex_desc *rx_desc;
416 u16 ntu = rx_ring->next_to_use;
417 struct ice_rx_buf *rx_buf;
418 bool ret = false;
419 dma_addr_t dma;
420
421 if (!count)
422 return false;
423
424 rx_desc = ICE_RX_DESC(rx_ring, ntu);
425 rx_buf = &rx_ring->rx_buf[ntu];
426
427 do {
428 rx_buf->xdp = xsk_buff_alloc(rx_ring->xsk_umem);
429 if (!rx_buf->xdp) {
430 ret = true;
431 break;
432 }
433
434 dma = xsk_buff_xdp_get_dma(rx_buf->xdp);
435 rx_desc->read.pkt_addr = cpu_to_le64(dma);
436 rx_desc->wb.status_error0 = 0;
437
438 rx_desc++;
439 rx_buf++;
440 ntu++;
441
442 if (unlikely(ntu == rx_ring->count)) {
443 rx_desc = ICE_RX_DESC(rx_ring, 0);
444 rx_buf = rx_ring->rx_buf;
445 ntu = 0;
446 }
447 } while (--count);
448
449 if (rx_ring->next_to_use != ntu)
450 ice_release_rx_desc(rx_ring, ntu);
451
452 return ret;
453}
454
455/**
456 * ice_bump_ntc - Bump the next_to_clean counter of an Rx ring
457 * @rx_ring: Rx ring
458 */
459static void ice_bump_ntc(struct ice_ring *rx_ring)
460{
461 int ntc = rx_ring->next_to_clean + 1;
462
463 ntc = (ntc < rx_ring->count) ? ntc : 0;
464 rx_ring->next_to_clean = ntc;
465 prefetch(ICE_RX_DESC(rx_ring, ntc));
466}
467
468/**
469 * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer
470 * @rx_ring: Rx ring
471 * @rx_buf: zero-copy Rx buffer
472 *
473 * This function allocates a new skb from a zero-copy Rx buffer.
474 *
475 * Returns the skb on success, NULL on failure.
476 */
477static struct sk_buff *
478ice_construct_skb_zc(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf)
479{
480 unsigned int metasize = rx_buf->xdp->data - rx_buf->xdp->data_meta;
481 unsigned int datasize = rx_buf->xdp->data_end - rx_buf->xdp->data;
482 unsigned int datasize_hard = rx_buf->xdp->data_end -
483 rx_buf->xdp->data_hard_start;
484 struct sk_buff *skb;
485
486 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, datasize_hard,
487 GFP_ATOMIC | __GFP_NOWARN);
488 if (unlikely(!skb))
489 return NULL;
490
491 skb_reserve(skb, rx_buf->xdp->data - rx_buf->xdp->data_hard_start);
492 memcpy(__skb_put(skb, datasize), rx_buf->xdp->data, datasize);
493 if (metasize)
494 skb_metadata_set(skb, metasize);
495
496 xsk_buff_free(rx_buf->xdp);
497 rx_buf->xdp = NULL;
498 return skb;
499}
500
501/**
502 * ice_run_xdp_zc - Executes an XDP program in zero-copy path
503 * @rx_ring: Rx ring
504 * @xdp: xdp_buff used as input to the XDP program
505 *
506 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
507 */
508static int
509ice_run_xdp_zc(struct ice_ring *rx_ring, struct xdp_buff *xdp)
510{
511 int err, result = ICE_XDP_PASS;
512 struct bpf_prog *xdp_prog;
513 struct ice_ring *xdp_ring;
514 u32 act;
515
516 rcu_read_lock();
517 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
518 if (!xdp_prog) {
519 rcu_read_unlock();
520 return ICE_XDP_PASS;
521 }
522
523 act = bpf_prog_run_xdp(xdp_prog, xdp);
524 switch (act) {
525 case XDP_PASS:
526 break;
527 case XDP_TX:
528 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->q_index];
529 result = ice_xmit_xdp_buff(xdp, xdp_ring);
530 break;
531 case XDP_REDIRECT:
532 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
533 result = !err ? ICE_XDP_REDIR : ICE_XDP_CONSUMED;
534 break;
535 default:
536 bpf_warn_invalid_xdp_action(act);
537 fallthrough;
538 case XDP_ABORTED:
539 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
540 fallthrough;
541 case XDP_DROP:
542 result = ICE_XDP_CONSUMED;
543 break;
544 }
545
546 rcu_read_unlock();
547 return result;
548}
549
550/**
551 * ice_clean_rx_irq_zc - consumes packets from the hardware ring
552 * @rx_ring: AF_XDP Rx ring
553 * @budget: NAPI budget
554 *
555 * Returns number of processed packets on success, remaining budget on failure.
556 */
557int ice_clean_rx_irq_zc(struct ice_ring *rx_ring, int budget)
558{
559 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
560 u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
561 unsigned int xdp_xmit = 0;
562 bool failure = false;
563
564 while (likely(total_rx_packets < (unsigned int)budget)) {
565 union ice_32b_rx_flex_desc *rx_desc;
566 unsigned int size, xdp_res = 0;
567 struct ice_rx_buf *rx_buf;
568 struct sk_buff *skb;
569 u16 stat_err_bits;
570 u16 vlan_tag = 0;
571 u8 rx_ptype;
572
573 if (cleaned_count >= ICE_RX_BUF_WRITE) {
574 failure |= ice_alloc_rx_bufs_zc(rx_ring,
575 cleaned_count);
576 cleaned_count = 0;
577 }
578
579 rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
580
581 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
582 if (!ice_test_staterr(rx_desc, stat_err_bits))
583 break;
584
585 /* This memory barrier is needed to keep us from reading
586 * any other fields out of the rx_desc until we have
587 * verified the descriptor has been written back.
588 */
589 dma_rmb();
590
591 size = le16_to_cpu(rx_desc->wb.pkt_len) &
592 ICE_RX_FLX_DESC_PKT_LEN_M;
593 if (!size)
594 break;
595
596 rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
597 rx_buf->xdp->data_end = rx_buf->xdp->data + size;
598 xsk_buff_dma_sync_for_cpu(rx_buf->xdp);
599
600 xdp_res = ice_run_xdp_zc(rx_ring, rx_buf->xdp);
601 if (xdp_res) {
602 if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR))
603 xdp_xmit |= xdp_res;
604 else
605 xsk_buff_free(rx_buf->xdp);
606
607 rx_buf->xdp = NULL;
608 total_rx_bytes += size;
609 total_rx_packets++;
610 cleaned_count++;
611
612 ice_bump_ntc(rx_ring);
613 continue;
614 }
615
616 /* XDP_PASS path */
617 skb = ice_construct_skb_zc(rx_ring, rx_buf);
618 if (!skb) {
619 rx_ring->rx_stats.alloc_buf_failed++;
620 break;
621 }
622
623 cleaned_count++;
624 ice_bump_ntc(rx_ring);
625
626 if (eth_skb_pad(skb)) {
627 skb = NULL;
628 continue;
629 }
630
631 total_rx_bytes += skb->len;
632 total_rx_packets++;
633
634 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
635 if (ice_test_staterr(rx_desc, stat_err_bits))
636 vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);
637
638 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
639 ICE_RX_FLEX_DESC_PTYPE_M;
640
641 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
642 ice_receive_skb(rx_ring, skb, vlan_tag);
643 }
644
645 ice_finalize_xdp_rx(rx_ring, xdp_xmit);
646 ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes);
647
648 if (xsk_umem_uses_need_wakeup(rx_ring->xsk_umem)) {
649 if (failure || rx_ring->next_to_clean == rx_ring->next_to_use)
650 xsk_set_rx_need_wakeup(rx_ring->xsk_umem);
651 else
652 xsk_clear_rx_need_wakeup(rx_ring->xsk_umem);
653
654 return (int)total_rx_packets;
655 }
656
657 return failure ? budget : (int)total_rx_packets;
658}
659
660/**
661 * ice_xmit_zc - Completes AF_XDP entries, and cleans XDP entries
662 * @xdp_ring: XDP Tx ring
663 * @budget: max number of frames to xmit
664 *
665 * Returns true if cleanup/transmission is done.
666 */
667static bool ice_xmit_zc(struct ice_ring *xdp_ring, int budget)
668{
669 struct ice_tx_desc *tx_desc = NULL;
670 bool work_done = true;
671 struct xdp_desc desc;
672 dma_addr_t dma;
673
674 while (likely(budget-- > 0)) {
675 struct ice_tx_buf *tx_buf;
676
677 if (unlikely(!ICE_DESC_UNUSED(xdp_ring))) {
678 xdp_ring->tx_stats.tx_busy++;
679 work_done = false;
680 break;
681 }
682
683 tx_buf = &xdp_ring->tx_buf[xdp_ring->next_to_use];
684
685 if (!xsk_umem_consume_tx(xdp_ring->xsk_umem, &desc))
686 break;
687
688 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_umem, desc.addr);
689 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_umem, dma,
690 desc.len);
691
692 tx_buf->bytecount = desc.len;
693
694 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use);
695 tx_desc->buf_addr = cpu_to_le64(dma);
696 tx_desc->cmd_type_offset_bsz =
697 ice_build_ctob(ICE_TXD_LAST_DESC_CMD, 0, desc.len, 0);
698
699 xdp_ring->next_to_use++;
700 if (xdp_ring->next_to_use == xdp_ring->count)
701 xdp_ring->next_to_use = 0;
702 }
703
704 if (tx_desc) {
705 ice_xdp_ring_update_tail(xdp_ring);
706 xsk_umem_consume_tx_done(xdp_ring->xsk_umem);
707 }
708
709 return budget > 0 && work_done;
710}
711
712/**
713 * ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer
714 * @xdp_ring: XDP Tx ring
715 * @tx_buf: Tx buffer to clean
716 */
717static void
718ice_clean_xdp_tx_buf(struct ice_ring *xdp_ring, struct ice_tx_buf *tx_buf)
719{
720 xdp_return_frame((struct xdp_frame *)tx_buf->raw_buf);
721 dma_unmap_single(xdp_ring->dev, dma_unmap_addr(tx_buf, dma),
722 dma_unmap_len(tx_buf, len), DMA_TO_DEVICE);
723 dma_unmap_len_set(tx_buf, len, 0);
724}
725
726/**
727 * ice_clean_tx_irq_zc - Completes AF_XDP entries, and cleans XDP entries
728 * @xdp_ring: XDP Tx ring
729 * @budget: NAPI budget
730 *
731 * Returns true if cleanup/tranmission is done.
732 */
733bool ice_clean_tx_irq_zc(struct ice_ring *xdp_ring, int budget)
734{
735 int total_packets = 0, total_bytes = 0;
736 s16 ntc = xdp_ring->next_to_clean;
737 struct ice_tx_desc *tx_desc;
738 struct ice_tx_buf *tx_buf;
739 u32 xsk_frames = 0;
740 bool xmit_done;
741
742 tx_desc = ICE_TX_DESC(xdp_ring, ntc);
743 tx_buf = &xdp_ring->tx_buf[ntc];
744 ntc -= xdp_ring->count;
745
746 do {
747 if (!(tx_desc->cmd_type_offset_bsz &
748 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
749 break;
750
751 total_bytes += tx_buf->bytecount;
752 total_packets++;
753
754 if (tx_buf->raw_buf) {
755 ice_clean_xdp_tx_buf(xdp_ring, tx_buf);
756 tx_buf->raw_buf = NULL;
757 } else {
758 xsk_frames++;
759 }
760
761 tx_desc->cmd_type_offset_bsz = 0;
762 tx_buf++;
763 tx_desc++;
764 ntc++;
765
766 if (unlikely(!ntc)) {
767 ntc -= xdp_ring->count;
768 tx_buf = xdp_ring->tx_buf;
769 tx_desc = ICE_TX_DESC(xdp_ring, 0);
770 }
771
772 prefetch(tx_desc);
773
774 } while (likely(--budget));
775
776 ntc += xdp_ring->count;
777 xdp_ring->next_to_clean = ntc;
778
779 if (xsk_frames)
780 xsk_umem_complete_tx(xdp_ring->xsk_umem, xsk_frames);
781
782 if (xsk_umem_uses_need_wakeup(xdp_ring->xsk_umem))
783 xsk_set_tx_need_wakeup(xdp_ring->xsk_umem);
784
785 ice_update_tx_ring_stats(xdp_ring, total_packets, total_bytes);
786 xmit_done = ice_xmit_zc(xdp_ring, ICE_DFLT_IRQ_WORK);
787
788 return budget > 0 && xmit_done;
789}
790
791/**
792 * ice_xsk_wakeup - Implements ndo_xsk_wakeup
793 * @netdev: net_device
794 * @queue_id: queue to wake up
795 * @flags: ignored in our case, since we have Rx and Tx in the same NAPI
796 *
797 * Returns negative on error, zero otherwise.
798 */
799int
800ice_xsk_wakeup(struct net_device *netdev, u32 queue_id,
801 u32 __always_unused flags)
802{
803 struct ice_netdev_priv *np = netdev_priv(netdev);
804 struct ice_q_vector *q_vector;
805 struct ice_vsi *vsi = np->vsi;
806 struct ice_ring *ring;
807
808 if (test_bit(__ICE_DOWN, vsi->state))
809 return -ENETDOWN;
810
811 if (!ice_is_xdp_ena_vsi(vsi))
812 return -ENXIO;
813
814 if (queue_id >= vsi->num_txq)
815 return -ENXIO;
816
817 if (!vsi->xdp_rings[queue_id]->xsk_umem)
818 return -ENXIO;
819
820 ring = vsi->xdp_rings[queue_id];
821
822 /* The idea here is that if NAPI is running, mark a miss, so
823 * it will run again. If not, trigger an interrupt and
824 * schedule the NAPI from interrupt context. If NAPI would be
825 * scheduled here, the interrupt affinity would not be
826 * honored.
827 */
828 q_vector = ring->q_vector;
829 if (!napi_if_scheduled_mark_missed(&q_vector->napi))
830 ice_trigger_sw_intr(&vsi->back->hw, q_vector);
831
832 return 0;
833}
834
835/**
836 * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP UMEM attached
837 * @vsi: VSI to be checked
838 *
839 * Returns true if any of the Rx rings has an AF_XDP UMEM attached
840 */
841bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi)
842{
843 int i;
844
845 if (!vsi->xsk_umems)
846 return false;
847
848 for (i = 0; i < vsi->num_xsk_umems; i++) {
849 if (vsi->xsk_umems[i])
850 return true;
851 }
852
853 return false;
854}
855
856/**
857 * ice_xsk_clean_rx_ring - clean UMEM queues connected to a given Rx ring
858 * @rx_ring: ring to be cleaned
859 */
860void ice_xsk_clean_rx_ring(struct ice_ring *rx_ring)
861{
862 u16 i;
863
864 for (i = 0; i < rx_ring->count; i++) {
865 struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
866
867 if (!rx_buf->xdp)
868 continue;
869
870 rx_buf->xdp = NULL;
871 }
872}
873
874/**
875 * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its UMEM queues
876 * @xdp_ring: XDP_Tx ring
877 */
878void ice_xsk_clean_xdp_ring(struct ice_ring *xdp_ring)
879{
880 u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use;
881 u32 xsk_frames = 0;
882
883 while (ntc != ntu) {
884 struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc];
885
886 if (tx_buf->raw_buf)
887 ice_clean_xdp_tx_buf(xdp_ring, tx_buf);
888 else
889 xsk_frames++;
890
891 tx_buf->raw_buf = NULL;
892
893 ntc++;
894 if (ntc >= xdp_ring->count)
895 ntc = 0;
896 }
897
898 if (xsk_frames)
899 xsk_umem_complete_tx(xdp_ring->xsk_umem, xsk_frames);
900}