Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
  1// SPDX-License-Identifier: GPL-2.0
  2/* Copyright (c) 2019, Intel Corporation. */
  3
  4#include <linux/bpf_trace.h>
  5#include <net/xdp_sock_drv.h>
  6#include <net/xdp.h>
  7#include "ice.h"
  8#include "ice_base.h"
  9#include "ice_type.h"
 10#include "ice_xsk.h"
 11#include "ice_txrx.h"
 12#include "ice_txrx_lib.h"
 13#include "ice_lib.h"
 14
 15/**
 16 * ice_qp_reset_stats - Resets all stats for rings of given index
 17 * @vsi: VSI that contains rings of interest
 18 * @q_idx: ring index in array
 19 */
 20static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx)
 21{
 22	memset(&vsi->rx_rings[q_idx]->rx_stats, 0,
 23	       sizeof(vsi->rx_rings[q_idx]->rx_stats));
 24	memset(&vsi->tx_rings[q_idx]->stats, 0,
 25	       sizeof(vsi->tx_rings[q_idx]->stats));
 26	if (ice_is_xdp_ena_vsi(vsi))
 27		memset(&vsi->xdp_rings[q_idx]->stats, 0,
 28		       sizeof(vsi->xdp_rings[q_idx]->stats));
 29}
 30
 31/**
 32 * ice_qp_clean_rings - Cleans all the rings of a given index
 33 * @vsi: VSI that contains rings of interest
 34 * @q_idx: ring index in array
 35 */
 36static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx)
 37{
 38	ice_clean_tx_ring(vsi->tx_rings[q_idx]);
 39	if (ice_is_xdp_ena_vsi(vsi))
 40		ice_clean_tx_ring(vsi->xdp_rings[q_idx]);
 41	ice_clean_rx_ring(vsi->rx_rings[q_idx]);
 42}
 43
 44/**
 45 * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector
 46 * @vsi: VSI that has netdev
 47 * @q_vector: q_vector that has NAPI context
 48 * @enable: true for enable, false for disable
 49 */
 50static void
 51ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector,
 52		     bool enable)
 53{
 54	if (!vsi->netdev || !q_vector)
 55		return;
 56
 57	if (enable)
 58		napi_enable(&q_vector->napi);
 59	else
 60		napi_disable(&q_vector->napi);
 61}
 62
 63/**
 64 * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring
 65 * @vsi: the VSI that contains queue vector being un-configured
 66 * @rx_ring: Rx ring that will have its IRQ disabled
 67 * @q_vector: queue vector
 68 */
 69static void
 70ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_ring *rx_ring,
 71		 struct ice_q_vector *q_vector)
 72{
 73	struct ice_pf *pf = vsi->back;
 74	struct ice_hw *hw = &pf->hw;
 75	int base = vsi->base_vector;
 76	u16 reg;
 77	u32 val;
 78
 79	/* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle
 80	 * here only QINT_RQCTL
 81	 */
 82	reg = rx_ring->reg_idx;
 83	val = rd32(hw, QINT_RQCTL(reg));
 84	val &= ~QINT_RQCTL_CAUSE_ENA_M;
 85	wr32(hw, QINT_RQCTL(reg), val);
 86
 87	if (q_vector) {
 88		u16 v_idx = q_vector->v_idx;
 89
 90		wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0);
 91		ice_flush(hw);
 92		synchronize_irq(pf->msix_entries[v_idx + base].vector);
 93	}
 94}
 95
 96/**
 97 * ice_qvec_cfg_msix - Enable IRQ for given queue vector
 98 * @vsi: the VSI that contains queue vector
 99 * @q_vector: queue vector
100 */
101static void
102ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
103{
104	u16 reg_idx = q_vector->reg_idx;
105	struct ice_pf *pf = vsi->back;
106	struct ice_hw *hw = &pf->hw;
107	struct ice_ring *ring;
108
109	ice_cfg_itr(hw, q_vector);
110
111	wr32(hw, GLINT_RATE(reg_idx),
112	     ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran));
113
114	ice_for_each_ring(ring, q_vector->tx)
115		ice_cfg_txq_interrupt(vsi, ring->reg_idx, reg_idx,
116				      q_vector->tx.itr_idx);
117
118	ice_for_each_ring(ring, q_vector->rx)
119		ice_cfg_rxq_interrupt(vsi, ring->reg_idx, reg_idx,
120				      q_vector->rx.itr_idx);
121
122	ice_flush(hw);
123}
124
125/**
126 * ice_qvec_ena_irq - Enable IRQ for given queue vector
127 * @vsi: the VSI that contains queue vector
128 * @q_vector: queue vector
129 */
130static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
131{
132	struct ice_pf *pf = vsi->back;
133	struct ice_hw *hw = &pf->hw;
134
135	ice_irq_dynamic_ena(hw, vsi, q_vector);
136
137	ice_flush(hw);
138}
139
140/**
141 * ice_qp_dis - Disables a queue pair
142 * @vsi: VSI of interest
143 * @q_idx: ring index in array
144 *
145 * Returns 0 on success, negative on failure.
146 */
147static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx)
148{
149	struct ice_txq_meta txq_meta = { };
150	struct ice_ring *tx_ring, *rx_ring;
151	struct ice_q_vector *q_vector;
152	int timeout = 50;
153	int err;
154
155	if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
156		return -EINVAL;
157
158	tx_ring = vsi->tx_rings[q_idx];
159	rx_ring = vsi->rx_rings[q_idx];
160	q_vector = rx_ring->q_vector;
161
162	while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state)) {
163		timeout--;
164		if (!timeout)
165			return -EBUSY;
166		usleep_range(1000, 2000);
167	}
168	netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
169
170	ice_qvec_dis_irq(vsi, rx_ring, q_vector);
171
172	ice_fill_txq_meta(vsi, tx_ring, &txq_meta);
173	err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta);
174	if (err)
175		return err;
176	if (ice_is_xdp_ena_vsi(vsi)) {
177		struct ice_ring *xdp_ring = vsi->xdp_rings[q_idx];
178
179		memset(&txq_meta, 0, sizeof(txq_meta));
180		ice_fill_txq_meta(vsi, xdp_ring, &txq_meta);
181		err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring,
182					   &txq_meta);
183		if (err)
184			return err;
185	}
186	err = ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, true);
187	if (err)
188		return err;
189
190	ice_qvec_toggle_napi(vsi, q_vector, false);
191	ice_qp_clean_rings(vsi, q_idx);
192	ice_qp_reset_stats(vsi, q_idx);
193
194	return 0;
195}
196
197/**
198 * ice_qp_ena - Enables a queue pair
199 * @vsi: VSI of interest
200 * @q_idx: ring index in array
201 *
202 * Returns 0 on success, negative on failure.
203 */
204static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx)
205{
206	struct ice_aqc_add_tx_qgrp *qg_buf;
207	struct ice_ring *tx_ring, *rx_ring;
208	struct ice_q_vector *q_vector;
209	u16 size;
210	int err;
211
212	if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
213		return -EINVAL;
214
215	size = struct_size(qg_buf, txqs, 1);
216	qg_buf = kzalloc(size, GFP_KERNEL);
217	if (!qg_buf)
218		return -ENOMEM;
219
220	qg_buf->num_txqs = 1;
221
222	tx_ring = vsi->tx_rings[q_idx];
223	rx_ring = vsi->rx_rings[q_idx];
224	q_vector = rx_ring->q_vector;
225
226	err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf);
227	if (err)
228		goto free_buf;
229
230	if (ice_is_xdp_ena_vsi(vsi)) {
231		struct ice_ring *xdp_ring = vsi->xdp_rings[q_idx];
232
233		memset(qg_buf, 0, size);
234		qg_buf->num_txqs = 1;
235		err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf);
236		if (err)
237			goto free_buf;
238		ice_set_ring_xdp(xdp_ring);
239		xdp_ring->xsk_umem = ice_xsk_umem(xdp_ring);
240	}
241
242	err = ice_setup_rx_ctx(rx_ring);
243	if (err)
244		goto free_buf;
245
246	ice_qvec_cfg_msix(vsi, q_vector);
247
248	err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true);
249	if (err)
250		goto free_buf;
251
252	clear_bit(__ICE_CFG_BUSY, vsi->state);
253	ice_qvec_toggle_napi(vsi, q_vector, true);
254	ice_qvec_ena_irq(vsi, q_vector);
255
256	netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
257free_buf:
258	kfree(qg_buf);
259	return err;
260}
261
262/**
263 * ice_xsk_alloc_umems - allocate a UMEM region for an XDP socket
264 * @vsi: VSI to allocate the UMEM on
265 *
266 * Returns 0 on success, negative on error
267 */
268static int ice_xsk_alloc_umems(struct ice_vsi *vsi)
269{
270	if (vsi->xsk_umems)
271		return 0;
272
273	vsi->xsk_umems = kcalloc(vsi->num_xsk_umems, sizeof(*vsi->xsk_umems),
274				 GFP_KERNEL);
275
276	if (!vsi->xsk_umems) {
277		vsi->num_xsk_umems = 0;
278		return -ENOMEM;
279	}
280
281	return 0;
282}
283
284/**
285 * ice_xsk_remove_umem - Remove an UMEM for a certain ring/qid
286 * @vsi: VSI from which the VSI will be removed
287 * @qid: Ring/qid associated with the UMEM
288 */
289static void ice_xsk_remove_umem(struct ice_vsi *vsi, u16 qid)
290{
291	vsi->xsk_umems[qid] = NULL;
292	vsi->num_xsk_umems_used--;
293
294	if (vsi->num_xsk_umems_used == 0) {
295		kfree(vsi->xsk_umems);
296		vsi->xsk_umems = NULL;
297		vsi->num_xsk_umems = 0;
298	}
299}
300
301/**
302 * ice_xsk_umem_disable - disable a UMEM region
303 * @vsi: Current VSI
304 * @qid: queue ID
305 *
306 * Returns 0 on success, negative on failure
307 */
308static int ice_xsk_umem_disable(struct ice_vsi *vsi, u16 qid)
309{
310	if (!vsi->xsk_umems || qid >= vsi->num_xsk_umems ||
311	    !vsi->xsk_umems[qid])
312		return -EINVAL;
313
314	xsk_buff_dma_unmap(vsi->xsk_umems[qid], ICE_RX_DMA_ATTR);
315	ice_xsk_remove_umem(vsi, qid);
316
317	return 0;
318}
319
320/**
321 * ice_xsk_umem_enable - enable a UMEM region
322 * @vsi: Current VSI
323 * @umem: pointer to a requested UMEM region
324 * @qid: queue ID
325 *
326 * Returns 0 on success, negative on failure
327 */
328static int
329ice_xsk_umem_enable(struct ice_vsi *vsi, struct xdp_umem *umem, u16 qid)
330{
331	int err;
332
333	if (vsi->type != ICE_VSI_PF)
334		return -EINVAL;
335
336	if (!vsi->num_xsk_umems)
337		vsi->num_xsk_umems = min_t(u16, vsi->num_rxq, vsi->num_txq);
338	if (qid >= vsi->num_xsk_umems)
339		return -EINVAL;
340
341	err = ice_xsk_alloc_umems(vsi);
342	if (err)
343		return err;
344
345	if (vsi->xsk_umems && vsi->xsk_umems[qid])
346		return -EBUSY;
347
348	vsi->xsk_umems[qid] = umem;
349	vsi->num_xsk_umems_used++;
350
351	err = xsk_buff_dma_map(vsi->xsk_umems[qid], ice_pf_to_dev(vsi->back),
352			       ICE_RX_DMA_ATTR);
353	if (err)
354		return err;
355
356	return 0;
357}
358
359/**
360 * ice_xsk_umem_setup - enable/disable a UMEM region depending on its state
361 * @vsi: Current VSI
362 * @umem: UMEM to enable/associate to a ring, NULL to disable
363 * @qid: queue ID
364 *
365 * Returns 0 on success, negative on failure
366 */
367int ice_xsk_umem_setup(struct ice_vsi *vsi, struct xdp_umem *umem, u16 qid)
368{
369	bool if_running, umem_present = !!umem;
370	int ret = 0, umem_failure = 0;
371
372	if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi);
373
374	if (if_running) {
375		ret = ice_qp_dis(vsi, qid);
376		if (ret) {
377			netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret);
378			goto xsk_umem_if_up;
379		}
380	}
381
382	umem_failure = umem_present ? ice_xsk_umem_enable(vsi, umem, qid) :
383				      ice_xsk_umem_disable(vsi, qid);
384
385xsk_umem_if_up:
386	if (if_running) {
387		ret = ice_qp_ena(vsi, qid);
388		if (!ret && umem_present)
389			napi_schedule(&vsi->xdp_rings[qid]->q_vector->napi);
390		else if (ret)
391			netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret);
392	}
393
394	if (umem_failure) {
395		netdev_err(vsi->netdev, "Could not %sable UMEM, error = %d\n",
396			   umem_present ? "en" : "dis", umem_failure);
397		return umem_failure;
398	}
399
400	return ret;
401}
402
403/**
404 * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
405 * @rx_ring: Rx ring
406 * @count: The number of buffers to allocate
407 *
408 * This function allocates a number of Rx buffers from the fill ring
409 * or the internal recycle mechanism and places them on the Rx ring.
410 *
411 * Returns false if all allocations were successful, true if any fail.
412 */
413bool ice_alloc_rx_bufs_zc(struct ice_ring *rx_ring, u16 count)
414{
415	union ice_32b_rx_flex_desc *rx_desc;
416	u16 ntu = rx_ring->next_to_use;
417	struct ice_rx_buf *rx_buf;
418	bool ret = false;
419	dma_addr_t dma;
420
421	if (!count)
422		return false;
423
424	rx_desc = ICE_RX_DESC(rx_ring, ntu);
425	rx_buf = &rx_ring->rx_buf[ntu];
426
427	do {
428		rx_buf->xdp = xsk_buff_alloc(rx_ring->xsk_umem);
429		if (!rx_buf->xdp) {
430			ret = true;
431			break;
432		}
433
434		dma = xsk_buff_xdp_get_dma(rx_buf->xdp);
435		rx_desc->read.pkt_addr = cpu_to_le64(dma);
436		rx_desc->wb.status_error0 = 0;
437
438		rx_desc++;
439		rx_buf++;
440		ntu++;
441
442		if (unlikely(ntu == rx_ring->count)) {
443			rx_desc = ICE_RX_DESC(rx_ring, 0);
444			rx_buf = rx_ring->rx_buf;
445			ntu = 0;
446		}
447	} while (--count);
448
449	if (rx_ring->next_to_use != ntu)
450		ice_release_rx_desc(rx_ring, ntu);
451
452	return ret;
453}
454
455/**
456 * ice_bump_ntc - Bump the next_to_clean counter of an Rx ring
457 * @rx_ring: Rx ring
458 */
459static void ice_bump_ntc(struct ice_ring *rx_ring)
460{
461	int ntc = rx_ring->next_to_clean + 1;
462
463	ntc = (ntc < rx_ring->count) ? ntc : 0;
464	rx_ring->next_to_clean = ntc;
465	prefetch(ICE_RX_DESC(rx_ring, ntc));
466}
467
468/**
469 * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer
470 * @rx_ring: Rx ring
471 * @rx_buf: zero-copy Rx buffer
472 *
473 * This function allocates a new skb from a zero-copy Rx buffer.
474 *
475 * Returns the skb on success, NULL on failure.
476 */
477static struct sk_buff *
478ice_construct_skb_zc(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf)
479{
480	unsigned int metasize = rx_buf->xdp->data - rx_buf->xdp->data_meta;
481	unsigned int datasize = rx_buf->xdp->data_end - rx_buf->xdp->data;
482	unsigned int datasize_hard = rx_buf->xdp->data_end -
483				     rx_buf->xdp->data_hard_start;
484	struct sk_buff *skb;
485
486	skb = __napi_alloc_skb(&rx_ring->q_vector->napi, datasize_hard,
487			       GFP_ATOMIC | __GFP_NOWARN);
488	if (unlikely(!skb))
489		return NULL;
490
491	skb_reserve(skb, rx_buf->xdp->data - rx_buf->xdp->data_hard_start);
492	memcpy(__skb_put(skb, datasize), rx_buf->xdp->data, datasize);
493	if (metasize)
494		skb_metadata_set(skb, metasize);
495
496	xsk_buff_free(rx_buf->xdp);
497	rx_buf->xdp = NULL;
498	return skb;
499}
500
501/**
502 * ice_run_xdp_zc - Executes an XDP program in zero-copy path
503 * @rx_ring: Rx ring
504 * @xdp: xdp_buff used as input to the XDP program
505 *
506 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
507 */
508static int
509ice_run_xdp_zc(struct ice_ring *rx_ring, struct xdp_buff *xdp)
510{
511	int err, result = ICE_XDP_PASS;
512	struct bpf_prog *xdp_prog;
513	struct ice_ring *xdp_ring;
514	u32 act;
515
516	rcu_read_lock();
517	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
518	if (!xdp_prog) {
519		rcu_read_unlock();
520		return ICE_XDP_PASS;
521	}
522
523	act = bpf_prog_run_xdp(xdp_prog, xdp);
524	switch (act) {
525	case XDP_PASS:
526		break;
527	case XDP_TX:
528		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->q_index];
529		result = ice_xmit_xdp_buff(xdp, xdp_ring);
530		break;
531	case XDP_REDIRECT:
532		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
533		result = !err ? ICE_XDP_REDIR : ICE_XDP_CONSUMED;
534		break;
535	default:
536		bpf_warn_invalid_xdp_action(act);
537		fallthrough;
538	case XDP_ABORTED:
539		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
540		fallthrough;
541	case XDP_DROP:
542		result = ICE_XDP_CONSUMED;
543		break;
544	}
545
546	rcu_read_unlock();
547	return result;
548}
549
550/**
551 * ice_clean_rx_irq_zc - consumes packets from the hardware ring
552 * @rx_ring: AF_XDP Rx ring
553 * @budget: NAPI budget
554 *
555 * Returns number of processed packets on success, remaining budget on failure.
556 */
557int ice_clean_rx_irq_zc(struct ice_ring *rx_ring, int budget)
558{
559	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
560	u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
561	unsigned int xdp_xmit = 0;
562	bool failure = false;
563
564	while (likely(total_rx_packets < (unsigned int)budget)) {
565		union ice_32b_rx_flex_desc *rx_desc;
566		unsigned int size, xdp_res = 0;
567		struct ice_rx_buf *rx_buf;
568		struct sk_buff *skb;
569		u16 stat_err_bits;
570		u16 vlan_tag = 0;
571		u8 rx_ptype;
572
573		if (cleaned_count >= ICE_RX_BUF_WRITE) {
574			failure |= ice_alloc_rx_bufs_zc(rx_ring,
575							cleaned_count);
576			cleaned_count = 0;
577		}
578
579		rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
580
581		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
582		if (!ice_test_staterr(rx_desc, stat_err_bits))
583			break;
584
585		/* This memory barrier is needed to keep us from reading
586		 * any other fields out of the rx_desc until we have
587		 * verified the descriptor has been written back.
588		 */
589		dma_rmb();
590
591		size = le16_to_cpu(rx_desc->wb.pkt_len) &
592				   ICE_RX_FLX_DESC_PKT_LEN_M;
593		if (!size)
594			break;
595
596		rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
597		rx_buf->xdp->data_end = rx_buf->xdp->data + size;
598		xsk_buff_dma_sync_for_cpu(rx_buf->xdp);
599
600		xdp_res = ice_run_xdp_zc(rx_ring, rx_buf->xdp);
601		if (xdp_res) {
602			if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR))
603				xdp_xmit |= xdp_res;
604			else
605				xsk_buff_free(rx_buf->xdp);
606
607			rx_buf->xdp = NULL;
608			total_rx_bytes += size;
609			total_rx_packets++;
610			cleaned_count++;
611
612			ice_bump_ntc(rx_ring);
613			continue;
614		}
615
616		/* XDP_PASS path */
617		skb = ice_construct_skb_zc(rx_ring, rx_buf);
618		if (!skb) {
619			rx_ring->rx_stats.alloc_buf_failed++;
620			break;
621		}
622
623		cleaned_count++;
624		ice_bump_ntc(rx_ring);
625
626		if (eth_skb_pad(skb)) {
627			skb = NULL;
628			continue;
629		}
630
631		total_rx_bytes += skb->len;
632		total_rx_packets++;
633
634		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
635		if (ice_test_staterr(rx_desc, stat_err_bits))
636			vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);
637
638		rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
639				       ICE_RX_FLEX_DESC_PTYPE_M;
640
641		ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
642		ice_receive_skb(rx_ring, skb, vlan_tag);
643	}
644
645	ice_finalize_xdp_rx(rx_ring, xdp_xmit);
646	ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes);
647
648	if (xsk_umem_uses_need_wakeup(rx_ring->xsk_umem)) {
649		if (failure || rx_ring->next_to_clean == rx_ring->next_to_use)
650			xsk_set_rx_need_wakeup(rx_ring->xsk_umem);
651		else
652			xsk_clear_rx_need_wakeup(rx_ring->xsk_umem);
653
654		return (int)total_rx_packets;
655	}
656
657	return failure ? budget : (int)total_rx_packets;
658}
659
660/**
661 * ice_xmit_zc - Completes AF_XDP entries, and cleans XDP entries
662 * @xdp_ring: XDP Tx ring
663 * @budget: max number of frames to xmit
664 *
665 * Returns true if cleanup/transmission is done.
666 */
667static bool ice_xmit_zc(struct ice_ring *xdp_ring, int budget)
668{
669	struct ice_tx_desc *tx_desc = NULL;
670	bool work_done = true;
671	struct xdp_desc desc;
672	dma_addr_t dma;
673
674	while (likely(budget-- > 0)) {
675		struct ice_tx_buf *tx_buf;
676
677		if (unlikely(!ICE_DESC_UNUSED(xdp_ring))) {
678			xdp_ring->tx_stats.tx_busy++;
679			work_done = false;
680			break;
681		}
682
683		tx_buf = &xdp_ring->tx_buf[xdp_ring->next_to_use];
684
685		if (!xsk_umem_consume_tx(xdp_ring->xsk_umem, &desc))
686			break;
687
688		dma = xsk_buff_raw_get_dma(xdp_ring->xsk_umem, desc.addr);
689		xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_umem, dma,
690						 desc.len);
691
692		tx_buf->bytecount = desc.len;
693
694		tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use);
695		tx_desc->buf_addr = cpu_to_le64(dma);
696		tx_desc->cmd_type_offset_bsz =
697			ice_build_ctob(ICE_TXD_LAST_DESC_CMD, 0, desc.len, 0);
698
699		xdp_ring->next_to_use++;
700		if (xdp_ring->next_to_use == xdp_ring->count)
701			xdp_ring->next_to_use = 0;
702	}
703
704	if (tx_desc) {
705		ice_xdp_ring_update_tail(xdp_ring);
706		xsk_umem_consume_tx_done(xdp_ring->xsk_umem);
707	}
708
709	return budget > 0 && work_done;
710}
711
712/**
713 * ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer
714 * @xdp_ring: XDP Tx ring
715 * @tx_buf: Tx buffer to clean
716 */
717static void
718ice_clean_xdp_tx_buf(struct ice_ring *xdp_ring, struct ice_tx_buf *tx_buf)
719{
720	xdp_return_frame((struct xdp_frame *)tx_buf->raw_buf);
721	dma_unmap_single(xdp_ring->dev, dma_unmap_addr(tx_buf, dma),
722			 dma_unmap_len(tx_buf, len), DMA_TO_DEVICE);
723	dma_unmap_len_set(tx_buf, len, 0);
724}
725
726/**
727 * ice_clean_tx_irq_zc - Completes AF_XDP entries, and cleans XDP entries
728 * @xdp_ring: XDP Tx ring
729 * @budget: NAPI budget
730 *
731 * Returns true if cleanup/tranmission is done.
732 */
733bool ice_clean_tx_irq_zc(struct ice_ring *xdp_ring, int budget)
734{
735	int total_packets = 0, total_bytes = 0;
736	s16 ntc = xdp_ring->next_to_clean;
737	struct ice_tx_desc *tx_desc;
738	struct ice_tx_buf *tx_buf;
739	u32 xsk_frames = 0;
740	bool xmit_done;
741
742	tx_desc = ICE_TX_DESC(xdp_ring, ntc);
743	tx_buf = &xdp_ring->tx_buf[ntc];
744	ntc -= xdp_ring->count;
745
746	do {
747		if (!(tx_desc->cmd_type_offset_bsz &
748		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
749			break;
750
751		total_bytes += tx_buf->bytecount;
752		total_packets++;
753
754		if (tx_buf->raw_buf) {
755			ice_clean_xdp_tx_buf(xdp_ring, tx_buf);
756			tx_buf->raw_buf = NULL;
757		} else {
758			xsk_frames++;
759		}
760
761		tx_desc->cmd_type_offset_bsz = 0;
762		tx_buf++;
763		tx_desc++;
764		ntc++;
765
766		if (unlikely(!ntc)) {
767			ntc -= xdp_ring->count;
768			tx_buf = xdp_ring->tx_buf;
769			tx_desc = ICE_TX_DESC(xdp_ring, 0);
770		}
771
772		prefetch(tx_desc);
773
774	} while (likely(--budget));
775
776	ntc += xdp_ring->count;
777	xdp_ring->next_to_clean = ntc;
778
779	if (xsk_frames)
780		xsk_umem_complete_tx(xdp_ring->xsk_umem, xsk_frames);
781
782	if (xsk_umem_uses_need_wakeup(xdp_ring->xsk_umem))
783		xsk_set_tx_need_wakeup(xdp_ring->xsk_umem);
784
785	ice_update_tx_ring_stats(xdp_ring, total_packets, total_bytes);
786	xmit_done = ice_xmit_zc(xdp_ring, ICE_DFLT_IRQ_WORK);
787
788	return budget > 0 && xmit_done;
789}
790
791/**
792 * ice_xsk_wakeup - Implements ndo_xsk_wakeup
793 * @netdev: net_device
794 * @queue_id: queue to wake up
795 * @flags: ignored in our case, since we have Rx and Tx in the same NAPI
796 *
797 * Returns negative on error, zero otherwise.
798 */
799int
800ice_xsk_wakeup(struct net_device *netdev, u32 queue_id,
801	       u32 __always_unused flags)
802{
803	struct ice_netdev_priv *np = netdev_priv(netdev);
804	struct ice_q_vector *q_vector;
805	struct ice_vsi *vsi = np->vsi;
806	struct ice_ring *ring;
807
808	if (test_bit(__ICE_DOWN, vsi->state))
809		return -ENETDOWN;
810
811	if (!ice_is_xdp_ena_vsi(vsi))
812		return -ENXIO;
813
814	if (queue_id >= vsi->num_txq)
815		return -ENXIO;
816
817	if (!vsi->xdp_rings[queue_id]->xsk_umem)
818		return -ENXIO;
819
820	ring = vsi->xdp_rings[queue_id];
821
822	/* The idea here is that if NAPI is running, mark a miss, so
823	 * it will run again. If not, trigger an interrupt and
824	 * schedule the NAPI from interrupt context. If NAPI would be
825	 * scheduled here, the interrupt affinity would not be
826	 * honored.
827	 */
828	q_vector = ring->q_vector;
829	if (!napi_if_scheduled_mark_missed(&q_vector->napi))
830		ice_trigger_sw_intr(&vsi->back->hw, q_vector);
831
832	return 0;
833}
834
835/**
836 * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP UMEM attached
837 * @vsi: VSI to be checked
838 *
839 * Returns true if any of the Rx rings has an AF_XDP UMEM attached
840 */
841bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi)
842{
843	int i;
844
845	if (!vsi->xsk_umems)
846		return false;
847
848	for (i = 0; i < vsi->num_xsk_umems; i++) {
849		if (vsi->xsk_umems[i])
850			return true;
851	}
852
853	return false;
854}
855
856/**
857 * ice_xsk_clean_rx_ring - clean UMEM queues connected to a given Rx ring
858 * @rx_ring: ring to be cleaned
859 */
860void ice_xsk_clean_rx_ring(struct ice_ring *rx_ring)
861{
862	u16 i;
863
864	for (i = 0; i < rx_ring->count; i++) {
865		struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
866
867		if (!rx_buf->xdp)
868			continue;
869
870		rx_buf->xdp = NULL;
871	}
872}
873
874/**
875 * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its UMEM queues
876 * @xdp_ring: XDP_Tx ring
877 */
878void ice_xsk_clean_xdp_ring(struct ice_ring *xdp_ring)
879{
880	u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use;
881	u32 xsk_frames = 0;
882
883	while (ntc != ntu) {
884		struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc];
885
886		if (tx_buf->raw_buf)
887			ice_clean_xdp_tx_buf(xdp_ring, tx_buf);
888		else
889			xsk_frames++;
890
891		tx_buf->raw_buf = NULL;
892
893		ntc++;
894		if (ntc >= xdp_ring->count)
895			ntc = 0;
896	}
897
898	if (xsk_frames)
899		xsk_umem_complete_tx(xdp_ring->xsk_umem, xsk_frames);
900}