Linux Audio

Check our new training course

Loading...
v3.15
   1/*******************************************************************************
   2
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2006 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29/* ethtool support for e1000 */
  30
  31#include "e1000.h"
  32#include <asm/uaccess.h>
 
  33
  34enum {NETDEV_STATS, E1000_STATS};
  35
  36struct e1000_stats {
  37	char stat_string[ETH_GSTRING_LEN];
  38	int type;
  39	int sizeof_stat;
  40	int stat_offset;
  41};
  42
  43#define E1000_STAT(m)		E1000_STATS, \
  44				sizeof(((struct e1000_adapter *)0)->m), \
  45		      		offsetof(struct e1000_adapter, m)
  46#define E1000_NETDEV_STAT(m)	NETDEV_STATS, \
  47				sizeof(((struct net_device *)0)->m), \
  48				offsetof(struct net_device, m)
  49
  50static const struct e1000_stats e1000_gstrings_stats[] = {
  51	{ "rx_packets", E1000_STAT(stats.gprc) },
  52	{ "tx_packets", E1000_STAT(stats.gptc) },
  53	{ "rx_bytes", E1000_STAT(stats.gorcl) },
  54	{ "tx_bytes", E1000_STAT(stats.gotcl) },
  55	{ "rx_broadcast", E1000_STAT(stats.bprc) },
  56	{ "tx_broadcast", E1000_STAT(stats.bptc) },
  57	{ "rx_multicast", E1000_STAT(stats.mprc) },
  58	{ "tx_multicast", E1000_STAT(stats.mptc) },
  59	{ "rx_errors", E1000_STAT(stats.rxerrc) },
  60	{ "tx_errors", E1000_STAT(stats.txerrc) },
  61	{ "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
  62	{ "multicast", E1000_STAT(stats.mprc) },
  63	{ "collisions", E1000_STAT(stats.colc) },
  64	{ "rx_length_errors", E1000_STAT(stats.rlerrc) },
  65	{ "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
  66	{ "rx_crc_errors", E1000_STAT(stats.crcerrs) },
  67	{ "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
  68	{ "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
  69	{ "rx_missed_errors", E1000_STAT(stats.mpc) },
  70	{ "tx_aborted_errors", E1000_STAT(stats.ecol) },
  71	{ "tx_carrier_errors", E1000_STAT(stats.tncrs) },
  72	{ "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
  73	{ "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
  74	{ "tx_window_errors", E1000_STAT(stats.latecol) },
  75	{ "tx_abort_late_coll", E1000_STAT(stats.latecol) },
  76	{ "tx_deferred_ok", E1000_STAT(stats.dc) },
  77	{ "tx_single_coll_ok", E1000_STAT(stats.scc) },
  78	{ "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
  79	{ "tx_timeout_count", E1000_STAT(tx_timeout_count) },
  80	{ "tx_restart_queue", E1000_STAT(restart_queue) },
  81	{ "rx_long_length_errors", E1000_STAT(stats.roc) },
  82	{ "rx_short_length_errors", E1000_STAT(stats.ruc) },
  83	{ "rx_align_errors", E1000_STAT(stats.algnerrc) },
  84	{ "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
  85	{ "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
  86	{ "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
  87	{ "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
  88	{ "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
  89	{ "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
  90	{ "rx_long_byte_count", E1000_STAT(stats.gorcl) },
  91	{ "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
  92	{ "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
  93	{ "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
  94	{ "tx_smbus", E1000_STAT(stats.mgptc) },
  95	{ "rx_smbus", E1000_STAT(stats.mgprc) },
  96	{ "dropped_smbus", E1000_STAT(stats.mgpdc) },
  97};
  98
  99#define E1000_QUEUE_STATS_LEN 0
 100#define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
 101#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
 102static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
 103	"Register test  (offline)", "Eeprom test    (offline)",
 104	"Interrupt test (offline)", "Loopback test  (offline)",
 105	"Link test   (on/offline)"
 106};
 
 107#define E1000_TEST_LEN	ARRAY_SIZE(e1000_gstrings_test)
 108
 109static int e1000_get_settings(struct net_device *netdev,
 110			      struct ethtool_cmd *ecmd)
 111{
 112	struct e1000_adapter *adapter = netdev_priv(netdev);
 113	struct e1000_hw *hw = &adapter->hw;
 
 114
 115	if (hw->media_type == e1000_media_type_copper) {
 116
 117		ecmd->supported = (SUPPORTED_10baseT_Half |
 118				   SUPPORTED_10baseT_Full |
 119				   SUPPORTED_100baseT_Half |
 120				   SUPPORTED_100baseT_Full |
 121				   SUPPORTED_1000baseT_Full|
 122				   SUPPORTED_Autoneg |
 123				   SUPPORTED_TP);
 124		ecmd->advertising = ADVERTISED_TP;
 125
 126		if (hw->autoneg == 1) {
 127			ecmd->advertising |= ADVERTISED_Autoneg;
 128			/* the e1000 autoneg seems to match ethtool nicely */
 129			ecmd->advertising |= hw->autoneg_advertised;
 130		}
 131
 132		ecmd->port = PORT_TP;
 133		ecmd->phy_address = hw->phy_addr;
 134
 135		if (hw->mac_type == e1000_82543)
 136			ecmd->transceiver = XCVR_EXTERNAL;
 137		else
 138			ecmd->transceiver = XCVR_INTERNAL;
 139
 140	} else {
 141		ecmd->supported   = (SUPPORTED_1000baseT_Full |
 142				     SUPPORTED_FIBRE |
 143				     SUPPORTED_Autoneg);
 144
 145		ecmd->advertising = (ADVERTISED_1000baseT_Full |
 146				     ADVERTISED_FIBRE |
 147				     ADVERTISED_Autoneg);
 148
 149		ecmd->port = PORT_FIBRE;
 150
 151		if (hw->mac_type >= e1000_82545)
 152			ecmd->transceiver = XCVR_INTERNAL;
 153		else
 154			ecmd->transceiver = XCVR_EXTERNAL;
 155	}
 156
 157	if (er32(STATUS) & E1000_STATUS_LU) {
 158
 159		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
 160		                                   &adapter->link_duplex);
 161		ethtool_cmd_speed_set(ecmd, adapter->link_speed);
 162
 163		/* unfortunately FULL_DUPLEX != DUPLEX_FULL
 164		 * and HALF_DUPLEX != DUPLEX_HALF
 165		 */
 166		if (adapter->link_duplex == FULL_DUPLEX)
 167			ecmd->duplex = DUPLEX_FULL;
 168		else
 169			ecmd->duplex = DUPLEX_HALF;
 170	} else {
 171		ethtool_cmd_speed_set(ecmd, -1);
 172		ecmd->duplex = -1;
 173	}
 174
 175	ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
 176			 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
 177
 178	/* MDI-X => 1; MDI => 0 */
 179	if ((hw->media_type == e1000_media_type_copper) &&
 180	    netif_carrier_ok(netdev))
 181		ecmd->eth_tp_mdix = (!!adapter->phy_info.mdix_mode ?
 182				     ETH_TP_MDI_X : ETH_TP_MDI);
 183	else
 184		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
 185
 186	if (hw->mdix == AUTO_ALL_MODES)
 187		ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
 188	else
 189		ecmd->eth_tp_mdix_ctrl = hw->mdix;
 
 
 
 
 
 
 190	return 0;
 191}
 192
 193static int e1000_set_settings(struct net_device *netdev,
 194			      struct ethtool_cmd *ecmd)
 195{
 196	struct e1000_adapter *adapter = netdev_priv(netdev);
 197	struct e1000_hw *hw = &adapter->hw;
 
 
 
 
 198
 199	/* MDI setting is only allowed when autoneg enabled because
 200	 * some hardware doesn't allow MDI setting when speed or
 201	 * duplex is forced.
 202	 */
 203	if (ecmd->eth_tp_mdix_ctrl) {
 204		if (hw->media_type != e1000_media_type_copper)
 205			return -EOPNOTSUPP;
 206
 207		if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
 208		    (ecmd->autoneg != AUTONEG_ENABLE)) {
 209			e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
 210			return -EINVAL;
 211		}
 212	}
 213
 214	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 215		msleep(1);
 216
 217	if (ecmd->autoneg == AUTONEG_ENABLE) {
 218		hw->autoneg = 1;
 219		if (hw->media_type == e1000_media_type_fiber)
 220			hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
 221				     ADVERTISED_FIBRE |
 222				     ADVERTISED_Autoneg;
 223		else
 224			hw->autoneg_advertised = ecmd->advertising |
 225						 ADVERTISED_TP |
 226						 ADVERTISED_Autoneg;
 227		ecmd->advertising = hw->autoneg_advertised;
 228	} else {
 229		u32 speed = ethtool_cmd_speed(ecmd);
 230		/* calling this overrides forced MDI setting */
 231		if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
 232			clear_bit(__E1000_RESETTING, &adapter->flags);
 233			return -EINVAL;
 234		}
 235	}
 236
 237	/* MDI-X => 2; MDI => 1; Auto => 3 */
 238	if (ecmd->eth_tp_mdix_ctrl) {
 239		if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
 240			hw->mdix = AUTO_ALL_MODES;
 241		else
 242			hw->mdix = ecmd->eth_tp_mdix_ctrl;
 243	}
 244
 245	/* reset the link */
 246
 247	if (netif_running(adapter->netdev)) {
 248		e1000_down(adapter);
 249		e1000_up(adapter);
 250	} else
 251		e1000_reset(adapter);
 252
 253	clear_bit(__E1000_RESETTING, &adapter->flags);
 254	return 0;
 255}
 256
 257static u32 e1000_get_link(struct net_device *netdev)
 258{
 259	struct e1000_adapter *adapter = netdev_priv(netdev);
 260
 261	/* If the link is not reported up to netdev, interrupts are disabled,
 262	 * and so the physical link state may have changed since we last
 263	 * looked. Set get_link_status to make sure that the true link
 264	 * state is interrogated, rather than pulling a cached and possibly
 265	 * stale link state from the driver.
 266	 */
 267	if (!netif_carrier_ok(netdev))
 268		adapter->hw.get_link_status = 1;
 269
 270	return e1000_has_link(adapter);
 271}
 272
 273static void e1000_get_pauseparam(struct net_device *netdev,
 274				 struct ethtool_pauseparam *pause)
 275{
 276	struct e1000_adapter *adapter = netdev_priv(netdev);
 277	struct e1000_hw *hw = &adapter->hw;
 278
 279	pause->autoneg =
 280		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
 281
 282	if (hw->fc == E1000_FC_RX_PAUSE)
 283		pause->rx_pause = 1;
 284	else if (hw->fc == E1000_FC_TX_PAUSE)
 285		pause->tx_pause = 1;
 286	else if (hw->fc == E1000_FC_FULL) {
 287		pause->rx_pause = 1;
 288		pause->tx_pause = 1;
 289	}
 290}
 291
 292static int e1000_set_pauseparam(struct net_device *netdev,
 293				struct ethtool_pauseparam *pause)
 294{
 295	struct e1000_adapter *adapter = netdev_priv(netdev);
 296	struct e1000_hw *hw = &adapter->hw;
 297	int retval = 0;
 298
 299	adapter->fc_autoneg = pause->autoneg;
 300
 301	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 302		msleep(1);
 303
 304	if (pause->rx_pause && pause->tx_pause)
 305		hw->fc = E1000_FC_FULL;
 306	else if (pause->rx_pause && !pause->tx_pause)
 307		hw->fc = E1000_FC_RX_PAUSE;
 308	else if (!pause->rx_pause && pause->tx_pause)
 309		hw->fc = E1000_FC_TX_PAUSE;
 310	else if (!pause->rx_pause && !pause->tx_pause)
 311		hw->fc = E1000_FC_NONE;
 312
 313	hw->original_fc = hw->fc;
 314
 315	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
 316		if (netif_running(adapter->netdev)) {
 317			e1000_down(adapter);
 318			e1000_up(adapter);
 319		} else
 320			e1000_reset(adapter);
 
 321	} else
 322		retval = ((hw->media_type == e1000_media_type_fiber) ?
 323			  e1000_setup_link(hw) : e1000_force_mac_fc(hw));
 324
 325	clear_bit(__E1000_RESETTING, &adapter->flags);
 326	return retval;
 327}
 328
 329static u32 e1000_get_msglevel(struct net_device *netdev)
 330{
 331	struct e1000_adapter *adapter = netdev_priv(netdev);
 
 332	return adapter->msg_enable;
 333}
 334
 335static void e1000_set_msglevel(struct net_device *netdev, u32 data)
 336{
 337	struct e1000_adapter *adapter = netdev_priv(netdev);
 
 338	adapter->msg_enable = data;
 339}
 340
 341static int e1000_get_regs_len(struct net_device *netdev)
 342{
 343#define E1000_REGS_LEN 32
 344	return E1000_REGS_LEN * sizeof(u32);
 345}
 346
 347static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
 348			   void *p)
 349{
 350	struct e1000_adapter *adapter = netdev_priv(netdev);
 351	struct e1000_hw *hw = &adapter->hw;
 352	u32 *regs_buff = p;
 353	u16 phy_data;
 354
 355	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
 356
 357	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
 358
 359	regs_buff[0]  = er32(CTRL);
 360	regs_buff[1]  = er32(STATUS);
 361
 362	regs_buff[2]  = er32(RCTL);
 363	regs_buff[3]  = er32(RDLEN);
 364	regs_buff[4]  = er32(RDH);
 365	regs_buff[5]  = er32(RDT);
 366	regs_buff[6]  = er32(RDTR);
 367
 368	regs_buff[7]  = er32(TCTL);
 369	regs_buff[8]  = er32(TDLEN);
 370	regs_buff[9]  = er32(TDH);
 371	regs_buff[10] = er32(TDT);
 372	regs_buff[11] = er32(TIDV);
 373
 374	regs_buff[12] = hw->phy_type;  /* PHY type (IGP=1, M88=0) */
 375	if (hw->phy_type == e1000_phy_igp) {
 376		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
 377				    IGP01E1000_PHY_AGC_A);
 378		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
 379				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 380		regs_buff[13] = (u32)phy_data; /* cable length */
 381		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
 382				    IGP01E1000_PHY_AGC_B);
 383		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
 384				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 385		regs_buff[14] = (u32)phy_data; /* cable length */
 386		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
 387				    IGP01E1000_PHY_AGC_C);
 388		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
 389				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 390		regs_buff[15] = (u32)phy_data; /* cable length */
 391		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
 392				    IGP01E1000_PHY_AGC_D);
 393		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
 394				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 395		regs_buff[16] = (u32)phy_data; /* cable length */
 396		regs_buff[17] = 0; /* extended 10bt distance (not needed) */
 397		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
 398		e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
 399				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 400		regs_buff[18] = (u32)phy_data; /* cable polarity */
 401		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
 402				    IGP01E1000_PHY_PCS_INIT_REG);
 403		e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
 404				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 405		regs_buff[19] = (u32)phy_data; /* cable polarity */
 406		regs_buff[20] = 0; /* polarity correction enabled (always) */
 407		regs_buff[22] = 0; /* phy receive errors (unavailable) */
 408		regs_buff[23] = regs_buff[18]; /* mdix mode */
 409		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
 410	} else {
 411		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
 412		regs_buff[13] = (u32)phy_data; /* cable length */
 413		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 414		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 415		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 416		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 417		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
 418		regs_buff[18] = regs_buff[13]; /* cable polarity */
 419		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 420		regs_buff[20] = regs_buff[17]; /* polarity correction */
 421		/* phy receive errors */
 422		regs_buff[22] = adapter->phy_stats.receive_errors;
 423		regs_buff[23] = regs_buff[13]; /* mdix mode */
 424	}
 425	regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
 426	e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
 427	regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
 428	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
 429	if (hw->mac_type >= e1000_82540 &&
 430	    hw->media_type == e1000_media_type_copper) {
 431		regs_buff[26] = er32(MANC);
 432	}
 433}
 434
 435static int e1000_get_eeprom_len(struct net_device *netdev)
 436{
 437	struct e1000_adapter *adapter = netdev_priv(netdev);
 438	struct e1000_hw *hw = &adapter->hw;
 439
 440	return hw->eeprom.word_size * 2;
 441}
 442
 443static int e1000_get_eeprom(struct net_device *netdev,
 444			    struct ethtool_eeprom *eeprom, u8 *bytes)
 445{
 446	struct e1000_adapter *adapter = netdev_priv(netdev);
 447	struct e1000_hw *hw = &adapter->hw;
 448	u16 *eeprom_buff;
 449	int first_word, last_word;
 450	int ret_val = 0;
 451	u16 i;
 452
 453	if (eeprom->len == 0)
 454		return -EINVAL;
 455
 456	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
 457
 458	first_word = eeprom->offset >> 1;
 459	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 460
 461	eeprom_buff = kmalloc(sizeof(u16) *
 462			(last_word - first_word + 1), GFP_KERNEL);
 463	if (!eeprom_buff)
 464		return -ENOMEM;
 465
 466	if (hw->eeprom.type == e1000_eeprom_spi)
 467		ret_val = e1000_read_eeprom(hw, first_word,
 468					    last_word - first_word + 1,
 469					    eeprom_buff);
 470	else {
 471		for (i = 0; i < last_word - first_word + 1; i++) {
 472			ret_val = e1000_read_eeprom(hw, first_word + i, 1,
 473						    &eeprom_buff[i]);
 474			if (ret_val)
 475				break;
 476		}
 477	}
 478
 479	/* Device's eeprom is always little-endian, word addressable */
 480	for (i = 0; i < last_word - first_word + 1; i++)
 481		le16_to_cpus(&eeprom_buff[i]);
 482
 483	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
 484	       eeprom->len);
 485	kfree(eeprom_buff);
 486
 487	return ret_val;
 488}
 489
 490static int e1000_set_eeprom(struct net_device *netdev,
 491			    struct ethtool_eeprom *eeprom, u8 *bytes)
 492{
 493	struct e1000_adapter *adapter = netdev_priv(netdev);
 494	struct e1000_hw *hw = &adapter->hw;
 495	u16 *eeprom_buff;
 496	void *ptr;
 497	int max_len, first_word, last_word, ret_val = 0;
 498	u16 i;
 499
 500	if (eeprom->len == 0)
 501		return -EOPNOTSUPP;
 502
 503	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
 504		return -EFAULT;
 505
 506	max_len = hw->eeprom.word_size * 2;
 507
 508	first_word = eeprom->offset >> 1;
 509	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 510	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
 511	if (!eeprom_buff)
 512		return -ENOMEM;
 513
 514	ptr = (void *)eeprom_buff;
 515
 516	if (eeprom->offset & 1) {
 517		/* need read/modify/write of first changed EEPROM word
 518		 * only the second byte of the word is being modified
 519		 */
 520		ret_val = e1000_read_eeprom(hw, first_word, 1,
 521					    &eeprom_buff[0]);
 522		ptr++;
 523	}
 524	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
 525		/* need read/modify/write of last changed EEPROM word
 526		 * only the first byte of the word is being modified
 527		 */
 528		ret_val = e1000_read_eeprom(hw, last_word, 1,
 529		                  &eeprom_buff[last_word - first_word]);
 530	}
 531
 532	/* Device's eeprom is always little-endian, word addressable */
 533	for (i = 0; i < last_word - first_word + 1; i++)
 534		le16_to_cpus(&eeprom_buff[i]);
 535
 536	memcpy(ptr, bytes, eeprom->len);
 537
 538	for (i = 0; i < last_word - first_word + 1; i++)
 539		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
 540
 541	ret_val = e1000_write_eeprom(hw, first_word,
 542				     last_word - first_word + 1, eeprom_buff);
 543
 544	/* Update the checksum over the first part of the EEPROM if needed */
 545	if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
 546		e1000_update_eeprom_checksum(hw);
 547
 548	kfree(eeprom_buff);
 549	return ret_val;
 550}
 551
 552static void e1000_get_drvinfo(struct net_device *netdev,
 553			      struct ethtool_drvinfo *drvinfo)
 554{
 555	struct e1000_adapter *adapter = netdev_priv(netdev);
 556
 557	strlcpy(drvinfo->driver,  e1000_driver_name,
 558		sizeof(drvinfo->driver));
 559	strlcpy(drvinfo->version, e1000_driver_version,
 560		sizeof(drvinfo->version));
 561
 562	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
 563		sizeof(drvinfo->bus_info));
 564	drvinfo->regdump_len = e1000_get_regs_len(netdev);
 565	drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
 566}
 567
 568static void e1000_get_ringparam(struct net_device *netdev,
 569				struct ethtool_ringparam *ring)
 570{
 571	struct e1000_adapter *adapter = netdev_priv(netdev);
 572	struct e1000_hw *hw = &adapter->hw;
 573	e1000_mac_type mac_type = hw->mac_type;
 574	struct e1000_tx_ring *txdr = adapter->tx_ring;
 575	struct e1000_rx_ring *rxdr = adapter->rx_ring;
 576
 577	ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
 578		E1000_MAX_82544_RXD;
 579	ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
 580		E1000_MAX_82544_TXD;
 581	ring->rx_pending = rxdr->count;
 582	ring->tx_pending = txdr->count;
 583}
 584
 585static int e1000_set_ringparam(struct net_device *netdev,
 586			       struct ethtool_ringparam *ring)
 587{
 588	struct e1000_adapter *adapter = netdev_priv(netdev);
 589	struct e1000_hw *hw = &adapter->hw;
 590	e1000_mac_type mac_type = hw->mac_type;
 591	struct e1000_tx_ring *txdr, *tx_old;
 592	struct e1000_rx_ring *rxdr, *rx_old;
 593	int i, err;
 594
 595	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
 596		return -EINVAL;
 597
 598	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 599		msleep(1);
 600
 601	if (netif_running(adapter->netdev))
 602		e1000_down(adapter);
 603
 604	tx_old = adapter->tx_ring;
 605	rx_old = adapter->rx_ring;
 606
 607	err = -ENOMEM;
 608	txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring),
 609		       GFP_KERNEL);
 610	if (!txdr)
 611		goto err_alloc_tx;
 612
 613	rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring),
 614		       GFP_KERNEL);
 615	if (!rxdr)
 616		goto err_alloc_rx;
 617
 618	adapter->tx_ring = txdr;
 619	adapter->rx_ring = rxdr;
 620
 621	rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD);
 622	rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ?
 623			  E1000_MAX_RXD : E1000_MAX_82544_RXD));
 624	rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
 625
 626	txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD);
 627	txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ?
 628			  E1000_MAX_TXD : E1000_MAX_82544_TXD));
 629	txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
 630
 631	for (i = 0; i < adapter->num_tx_queues; i++)
 632		txdr[i].count = txdr->count;
 633	for (i = 0; i < adapter->num_rx_queues; i++)
 634		rxdr[i].count = rxdr->count;
 635
 
 636	if (netif_running(adapter->netdev)) {
 637		/* Try to get new resources before deleting old */
 638		err = e1000_setup_all_rx_resources(adapter);
 639		if (err)
 640			goto err_setup_rx;
 641		err = e1000_setup_all_tx_resources(adapter);
 642		if (err)
 643			goto err_setup_tx;
 644
 645		/* save the new, restore the old in order to free it,
 646		 * then restore the new back again
 647		 */
 648
 649		adapter->rx_ring = rx_old;
 650		adapter->tx_ring = tx_old;
 651		e1000_free_all_rx_resources(adapter);
 652		e1000_free_all_tx_resources(adapter);
 653		kfree(tx_old);
 654		kfree(rx_old);
 655		adapter->rx_ring = rxdr;
 656		adapter->tx_ring = txdr;
 657		err = e1000_up(adapter);
 658		if (err)
 659			goto err_setup;
 660	}
 
 
 661
 662	clear_bit(__E1000_RESETTING, &adapter->flags);
 663	return 0;
 
 664err_setup_tx:
 665	e1000_free_all_rx_resources(adapter);
 666err_setup_rx:
 667	adapter->rx_ring = rx_old;
 668	adapter->tx_ring = tx_old;
 669	kfree(rxdr);
 670err_alloc_rx:
 671	kfree(txdr);
 672err_alloc_tx:
 673	e1000_up(adapter);
 674err_setup:
 675	clear_bit(__E1000_RESETTING, &adapter->flags);
 676	return err;
 677}
 678
 679static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
 680			     u32 mask, u32 write)
 681{
 682	struct e1000_hw *hw = &adapter->hw;
 683	static const u32 test[] =
 684		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
 
 685	u8 __iomem *address = hw->hw_addr + reg;
 686	u32 read;
 687	int i;
 688
 689	for (i = 0; i < ARRAY_SIZE(test); i++) {
 690		writel(write & test[i], address);
 691		read = readl(address);
 692		if (read != (write & test[i] & mask)) {
 693			e_err(drv, "pattern test reg %04X failed: "
 694			      "got 0x%08X expected 0x%08X\n",
 695			      reg, read, (write & test[i] & mask));
 696			*data = reg;
 697			return true;
 698		}
 699	}
 700	return false;
 701}
 702
 703static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
 704			      u32 mask, u32 write)
 705{
 706	struct e1000_hw *hw = &adapter->hw;
 707	u8 __iomem *address = hw->hw_addr + reg;
 708	u32 read;
 709
 710	writel(write & mask, address);
 711	read = readl(address);
 712	if ((read & mask) != (write & mask)) {
 713		e_err(drv, "set/check reg %04X test failed: "
 714		      "got 0x%08X expected 0x%08X\n",
 715		      reg, (read & mask), (write & mask));
 716		*data = reg;
 717		return true;
 718	}
 719	return false;
 720}
 721
 722#define REG_PATTERN_TEST(reg, mask, write)			     \
 723	do {							     \
 724		if (reg_pattern_test(adapter, data,		     \
 725			     (hw->mac_type >= e1000_82543)   \
 726			     ? E1000_##reg : E1000_82542_##reg,	     \
 727			     mask, write))			     \
 728			return 1;				     \
 729	} while (0)
 730
 731#define REG_SET_AND_CHECK(reg, mask, write)			     \
 732	do {							     \
 733		if (reg_set_and_check(adapter, data,		     \
 734			      (hw->mac_type >= e1000_82543)  \
 735			      ? E1000_##reg : E1000_82542_##reg,     \
 736			      mask, write))			     \
 737			return 1;				     \
 738	} while (0)
 739
 740static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
 741{
 742	u32 value, before, after;
 743	u32 i, toggle;
 744	struct e1000_hw *hw = &adapter->hw;
 745
 746	/* The status register is Read Only, so a write should fail.
 747	 * Some bits that get toggled are ignored.
 748	 */
 749
 750	/* there are several bits on newer hardware that are r/w */
 751	toggle = 0xFFFFF833;
 752
 753	before = er32(STATUS);
 754	value = (er32(STATUS) & toggle);
 755	ew32(STATUS, toggle);
 756	after = er32(STATUS) & toggle;
 757	if (value != after) {
 758		e_err(drv, "failed STATUS register test got: "
 759		      "0x%08X expected: 0x%08X\n", after, value);
 760		*data = 1;
 761		return 1;
 762	}
 763	/* restore previous status */
 764	ew32(STATUS, before);
 765
 766	REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
 767	REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
 768	REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
 769	REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
 770
 771	REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
 772	REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
 773	REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
 774	REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
 775	REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
 776	REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
 777	REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
 778	REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
 779	REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
 780	REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
 781
 782	REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
 783
 784	before = 0x06DFB3FE;
 785	REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
 786	REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
 787
 788	if (hw->mac_type >= e1000_82543) {
 789		REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
 790		REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
 791		REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
 792		REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
 793		REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
 794		value = E1000_RAR_ENTRIES;
 795		for (i = 0; i < value; i++) {
 796			REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
 797			                 0xFFFFFFFF);
 798		}
 799	} else {
 800		REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
 801		REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
 802		REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
 803		REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
 804	}
 805
 806	value = E1000_MC_TBL_SIZE;
 807	for (i = 0; i < value; i++)
 808		REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
 809
 810	*data = 0;
 811	return 0;
 812}
 813
 814static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
 815{
 816	struct e1000_hw *hw = &adapter->hw;
 817	u16 temp;
 818	u16 checksum = 0;
 819	u16 i;
 820
 821	*data = 0;
 822	/* Read and add up the contents of the EEPROM */
 823	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
 824		if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
 825			*data = 1;
 826			break;
 827		}
 828		checksum += temp;
 829	}
 830
 831	/* If Checksum is not Correct return error else test passed */
 832	if ((checksum != (u16)EEPROM_SUM) && !(*data))
 833		*data = 2;
 834
 835	return *data;
 836}
 837
 838static irqreturn_t e1000_test_intr(int irq, void *data)
 839{
 840	struct net_device *netdev = (struct net_device *)data;
 841	struct e1000_adapter *adapter = netdev_priv(netdev);
 842	struct e1000_hw *hw = &adapter->hw;
 843
 844	adapter->test_icr |= er32(ICR);
 845
 846	return IRQ_HANDLED;
 847}
 848
 849static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
 850{
 851	struct net_device *netdev = adapter->netdev;
 852	u32 mask, i = 0;
 853	bool shared_int = true;
 854	u32 irq = adapter->pdev->irq;
 855	struct e1000_hw *hw = &adapter->hw;
 856
 857	*data = 0;
 858
 859	/* NOTE: we don't test MSI interrupts here, yet
 860	 * Hook up test interrupt handler just for this test
 861	 */
 862	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
 863			 netdev))
 864		shared_int = false;
 865	else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
 866			     netdev->name, netdev)) {
 867		*data = 1;
 868		return -1;
 869	}
 870	e_info(hw, "testing %s interrupt\n", (shared_int ?
 871	       "shared" : "unshared"));
 872
 873	/* Disable all the interrupts */
 874	ew32(IMC, 0xFFFFFFFF);
 875	E1000_WRITE_FLUSH();
 876	msleep(10);
 877
 878	/* Test each interrupt */
 879	for (; i < 10; i++) {
 880
 881		/* Interrupt to test */
 882		mask = 1 << i;
 883
 884		if (!shared_int) {
 885			/* Disable the interrupt to be reported in
 886			 * the cause register and then force the same
 887			 * interrupt and see if one gets posted.  If
 888			 * an interrupt was posted to the bus, the
 889			 * test failed.
 890			 */
 891			adapter->test_icr = 0;
 892			ew32(IMC, mask);
 893			ew32(ICS, mask);
 894			E1000_WRITE_FLUSH();
 895			msleep(10);
 896
 897			if (adapter->test_icr & mask) {
 898				*data = 3;
 899				break;
 900			}
 901		}
 902
 903		/* Enable the interrupt to be reported in
 904		 * the cause register and then force the same
 905		 * interrupt and see if one gets posted.  If
 906		 * an interrupt was not posted to the bus, the
 907		 * test failed.
 908		 */
 909		adapter->test_icr = 0;
 910		ew32(IMS, mask);
 911		ew32(ICS, mask);
 912		E1000_WRITE_FLUSH();
 913		msleep(10);
 914
 915		if (!(adapter->test_icr & mask)) {
 916			*data = 4;
 917			break;
 918		}
 919
 920		if (!shared_int) {
 921			/* Disable the other interrupts to be reported in
 922			 * the cause register and then force the other
 923			 * interrupts and see if any get posted.  If
 924			 * an interrupt was posted to the bus, the
 925			 * test failed.
 926			 */
 927			adapter->test_icr = 0;
 928			ew32(IMC, ~mask & 0x00007FFF);
 929			ew32(ICS, ~mask & 0x00007FFF);
 930			E1000_WRITE_FLUSH();
 931			msleep(10);
 932
 933			if (adapter->test_icr) {
 934				*data = 5;
 935				break;
 936			}
 937		}
 938	}
 939
 940	/* Disable all the interrupts */
 941	ew32(IMC, 0xFFFFFFFF);
 942	E1000_WRITE_FLUSH();
 943	msleep(10);
 944
 945	/* Unhook test interrupt handler */
 946	free_irq(irq, netdev);
 947
 948	return *data;
 949}
 950
 951static void e1000_free_desc_rings(struct e1000_adapter *adapter)
 952{
 953	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
 954	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
 955	struct pci_dev *pdev = adapter->pdev;
 956	int i;
 957
 958	if (txdr->desc && txdr->buffer_info) {
 959		for (i = 0; i < txdr->count; i++) {
 960			if (txdr->buffer_info[i].dma)
 961				dma_unmap_single(&pdev->dev,
 962						 txdr->buffer_info[i].dma,
 963						 txdr->buffer_info[i].length,
 964						 DMA_TO_DEVICE);
 965			if (txdr->buffer_info[i].skb)
 966				dev_kfree_skb(txdr->buffer_info[i].skb);
 967		}
 968	}
 969
 970	if (rxdr->desc && rxdr->buffer_info) {
 971		for (i = 0; i < rxdr->count; i++) {
 972			if (rxdr->buffer_info[i].dma)
 973				dma_unmap_single(&pdev->dev,
 974						 rxdr->buffer_info[i].dma,
 975						 rxdr->buffer_info[i].length,
 976						 DMA_FROM_DEVICE);
 977			if (rxdr->buffer_info[i].skb)
 978				dev_kfree_skb(rxdr->buffer_info[i].skb);
 979		}
 980	}
 981
 982	if (txdr->desc) {
 983		dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
 984				  txdr->dma);
 985		txdr->desc = NULL;
 986	}
 987	if (rxdr->desc) {
 988		dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
 989				  rxdr->dma);
 990		rxdr->desc = NULL;
 991	}
 992
 993	kfree(txdr->buffer_info);
 994	txdr->buffer_info = NULL;
 995	kfree(rxdr->buffer_info);
 996	rxdr->buffer_info = NULL;
 997}
 998
 999static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1000{
1001	struct e1000_hw *hw = &adapter->hw;
1002	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1003	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1004	struct pci_dev *pdev = adapter->pdev;
1005	u32 rctl;
1006	int i, ret_val;
1007
1008	/* Setup Tx descriptor ring and Tx buffers */
1009
1010	if (!txdr->count)
1011		txdr->count = E1000_DEFAULT_TXD;
1012
1013	txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_buffer),
1014				    GFP_KERNEL);
1015	if (!txdr->buffer_info) {
1016		ret_val = 1;
1017		goto err_nomem;
1018	}
1019
1020	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1021	txdr->size = ALIGN(txdr->size, 4096);
1022	txdr->desc = dma_zalloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1023					 GFP_KERNEL);
1024	if (!txdr->desc) {
1025		ret_val = 2;
1026		goto err_nomem;
1027	}
1028	txdr->next_to_use = txdr->next_to_clean = 0;
1029
1030	ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1031	ew32(TDBAH, ((u64)txdr->dma >> 32));
1032	ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1033	ew32(TDH, 0);
1034	ew32(TDT, 0);
1035	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1036	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1037	     E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1038
1039	for (i = 0; i < txdr->count; i++) {
1040		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1041		struct sk_buff *skb;
1042		unsigned int size = 1024;
1043
1044		skb = alloc_skb(size, GFP_KERNEL);
1045		if (!skb) {
1046			ret_val = 3;
1047			goto err_nomem;
1048		}
1049		skb_put(skb, size);
1050		txdr->buffer_info[i].skb = skb;
1051		txdr->buffer_info[i].length = skb->len;
1052		txdr->buffer_info[i].dma =
1053			dma_map_single(&pdev->dev, skb->data, skb->len,
1054				       DMA_TO_DEVICE);
1055		if (dma_mapping_error(&pdev->dev, txdr->buffer_info[i].dma)) {
1056			ret_val = 4;
1057			goto err_nomem;
1058		}
1059		tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1060		tx_desc->lower.data = cpu_to_le32(skb->len);
1061		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1062						   E1000_TXD_CMD_IFCS |
1063						   E1000_TXD_CMD_RPS);
1064		tx_desc->upper.data = 0;
1065	}
1066
1067	/* Setup Rx descriptor ring and Rx buffers */
1068
1069	if (!rxdr->count)
1070		rxdr->count = E1000_DEFAULT_RXD;
1071
1072	rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_buffer),
1073				    GFP_KERNEL);
1074	if (!rxdr->buffer_info) {
1075		ret_val = 5;
1076		goto err_nomem;
1077	}
1078
1079	rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1080	rxdr->desc = dma_zalloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1081					 GFP_KERNEL);
1082	if (!rxdr->desc) {
1083		ret_val = 6;
1084		goto err_nomem;
1085	}
1086	rxdr->next_to_use = rxdr->next_to_clean = 0;
1087
1088	rctl = er32(RCTL);
1089	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1090	ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1091	ew32(RDBAH, ((u64)rxdr->dma >> 32));
1092	ew32(RDLEN, rxdr->size);
1093	ew32(RDH, 0);
1094	ew32(RDT, 0);
1095	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1096		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1097		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1098	ew32(RCTL, rctl);
1099
1100	for (i = 0; i < rxdr->count; i++) {
1101		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1102		struct sk_buff *skb;
1103
1104		skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, GFP_KERNEL);
1105		if (!skb) {
 
1106			ret_val = 7;
1107			goto err_nomem;
1108		}
1109		skb_reserve(skb, NET_IP_ALIGN);
1110		rxdr->buffer_info[i].skb = skb;
1111		rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1112		rxdr->buffer_info[i].dma =
1113			dma_map_single(&pdev->dev, skb->data,
 
1114				       E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1115		if (dma_mapping_error(&pdev->dev, rxdr->buffer_info[i].dma)) {
1116			ret_val = 8;
1117			goto err_nomem;
1118		}
1119		rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1120		memset(skb->data, 0x00, skb->len);
1121	}
1122
1123	return 0;
1124
1125err_nomem:
1126	e1000_free_desc_rings(adapter);
1127	return ret_val;
1128}
1129
1130static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1131{
1132	struct e1000_hw *hw = &adapter->hw;
1133
1134	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1135	e1000_write_phy_reg(hw, 29, 0x001F);
1136	e1000_write_phy_reg(hw, 30, 0x8FFC);
1137	e1000_write_phy_reg(hw, 29, 0x001A);
1138	e1000_write_phy_reg(hw, 30, 0x8FF0);
1139}
1140
1141static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1142{
1143	struct e1000_hw *hw = &adapter->hw;
1144	u16 phy_reg;
1145
1146	/* Because we reset the PHY above, we need to re-force TX_CLK in the
1147	 * Extended PHY Specific Control Register to 25MHz clock.  This
1148	 * value defaults back to a 2.5MHz clock when the PHY is reset.
1149	 */
1150	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1151	phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1152	e1000_write_phy_reg(hw,
1153		M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1154
1155	/* In addition, because of the s/w reset above, we need to enable
1156	 * CRS on TX.  This must be set for both full and half duplex
1157	 * operation.
1158	 */
1159	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1160	phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1161	e1000_write_phy_reg(hw,
1162		M88E1000_PHY_SPEC_CTRL, phy_reg);
1163}
1164
1165static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1166{
1167	struct e1000_hw *hw = &adapter->hw;
1168	u32 ctrl_reg;
1169	u16 phy_reg;
1170
1171	/* Setup the Device Control Register for PHY loopback test. */
1172
1173	ctrl_reg = er32(CTRL);
1174	ctrl_reg |= (E1000_CTRL_ILOS |		/* Invert Loss-Of-Signal */
1175		     E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
1176		     E1000_CTRL_FRCDPX |	/* Set the Force Duplex Bit */
1177		     E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
1178		     E1000_CTRL_FD);		/* Force Duplex to FULL */
1179
1180	ew32(CTRL, ctrl_reg);
1181
1182	/* Read the PHY Specific Control Register (0x10) */
1183	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1184
1185	/* Clear Auto-Crossover bits in PHY Specific Control Register
1186	 * (bits 6:5).
1187	 */
1188	phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1189	e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1190
1191	/* Perform software reset on the PHY */
1192	e1000_phy_reset(hw);
1193
1194	/* Have to setup TX_CLK and TX_CRS after software reset */
1195	e1000_phy_reset_clk_and_crs(adapter);
1196
1197	e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1198
1199	/* Wait for reset to complete. */
1200	udelay(500);
1201
1202	/* Have to setup TX_CLK and TX_CRS after software reset */
1203	e1000_phy_reset_clk_and_crs(adapter);
1204
1205	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1206	e1000_phy_disable_receiver(adapter);
1207
1208	/* Set the loopback bit in the PHY control register. */
1209	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1210	phy_reg |= MII_CR_LOOPBACK;
1211	e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1212
1213	/* Setup TX_CLK and TX_CRS one more time. */
1214	e1000_phy_reset_clk_and_crs(adapter);
1215
1216	/* Check Phy Configuration */
1217	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1218	if (phy_reg != 0x4100)
1219		 return 9;
1220
1221	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1222	if (phy_reg != 0x0070)
1223		return 10;
1224
1225	e1000_read_phy_reg(hw, 29, &phy_reg);
1226	if (phy_reg != 0x001A)
1227		return 11;
1228
1229	return 0;
1230}
1231
1232static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1233{
1234	struct e1000_hw *hw = &adapter->hw;
1235	u32 ctrl_reg = 0;
1236	u32 stat_reg = 0;
1237
1238	hw->autoneg = false;
1239
1240	if (hw->phy_type == e1000_phy_m88) {
1241		/* Auto-MDI/MDIX Off */
1242		e1000_write_phy_reg(hw,
1243				    M88E1000_PHY_SPEC_CTRL, 0x0808);
1244		/* reset to update Auto-MDI/MDIX */
1245		e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1246		/* autoneg off */
1247		e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1248	}
1249
1250	ctrl_reg = er32(CTRL);
1251
1252	/* force 1000, set loopback */
1253	e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1254
1255	/* Now set up the MAC to the same speed/duplex as the PHY. */
1256	ctrl_reg = er32(CTRL);
1257	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1258	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1259			E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1260			E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1261			E1000_CTRL_FD); /* Force Duplex to FULL */
1262
1263	if (hw->media_type == e1000_media_type_copper &&
1264	   hw->phy_type == e1000_phy_m88)
1265		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1266	else {
1267		/* Set the ILOS bit on the fiber Nic is half
1268		 * duplex link is detected.
1269		 */
1270		stat_reg = er32(STATUS);
1271		if ((stat_reg & E1000_STATUS_FD) == 0)
1272			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1273	}
1274
1275	ew32(CTRL, ctrl_reg);
1276
1277	/* Disable the receiver on the PHY so when a cable is plugged in, the
1278	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1279	 */
1280	if (hw->phy_type == e1000_phy_m88)
1281		e1000_phy_disable_receiver(adapter);
1282
1283	udelay(500);
1284
1285	return 0;
1286}
1287
1288static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1289{
1290	struct e1000_hw *hw = &adapter->hw;
1291	u16 phy_reg = 0;
1292	u16 count = 0;
1293
1294	switch (hw->mac_type) {
1295	case e1000_82543:
1296		if (hw->media_type == e1000_media_type_copper) {
1297			/* Attempt to setup Loopback mode on Non-integrated PHY.
1298			 * Some PHY registers get corrupted at random, so
1299			 * attempt this 10 times.
1300			 */
1301			while (e1000_nonintegrated_phy_loopback(adapter) &&
1302			      count++ < 10);
1303			if (count < 11)
1304				return 0;
1305		}
1306		break;
1307
1308	case e1000_82544:
1309	case e1000_82540:
1310	case e1000_82545:
1311	case e1000_82545_rev_3:
1312	case e1000_82546:
1313	case e1000_82546_rev_3:
1314	case e1000_82541:
1315	case e1000_82541_rev_2:
1316	case e1000_82547:
1317	case e1000_82547_rev_2:
1318		return e1000_integrated_phy_loopback(adapter);
1319		break;
1320	default:
1321		/* Default PHY loopback work is to read the MII
1322		 * control register and assert bit 14 (loopback mode).
1323		 */
1324		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1325		phy_reg |= MII_CR_LOOPBACK;
1326		e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1327		return 0;
1328		break;
1329	}
1330
1331	return 8;
1332}
1333
1334static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1335{
1336	struct e1000_hw *hw = &adapter->hw;
1337	u32 rctl;
1338
1339	if (hw->media_type == e1000_media_type_fiber ||
1340	    hw->media_type == e1000_media_type_internal_serdes) {
1341		switch (hw->mac_type) {
1342		case e1000_82545:
1343		case e1000_82546:
1344		case e1000_82545_rev_3:
1345		case e1000_82546_rev_3:
1346			return e1000_set_phy_loopback(adapter);
1347			break;
1348		default:
1349			rctl = er32(RCTL);
1350			rctl |= E1000_RCTL_LBM_TCVR;
1351			ew32(RCTL, rctl);
1352			return 0;
1353		}
1354	} else if (hw->media_type == e1000_media_type_copper)
1355		return e1000_set_phy_loopback(adapter);
 
1356
1357	return 7;
1358}
1359
1360static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1361{
1362	struct e1000_hw *hw = &adapter->hw;
1363	u32 rctl;
1364	u16 phy_reg;
1365
1366	rctl = er32(RCTL);
1367	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1368	ew32(RCTL, rctl);
1369
1370	switch (hw->mac_type) {
1371	case e1000_82545:
1372	case e1000_82546:
1373	case e1000_82545_rev_3:
1374	case e1000_82546_rev_3:
1375	default:
1376		hw->autoneg = true;
1377		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1378		if (phy_reg & MII_CR_LOOPBACK) {
1379			phy_reg &= ~MII_CR_LOOPBACK;
1380			e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1381			e1000_phy_reset(hw);
1382		}
1383		break;
1384	}
1385}
1386
1387static void e1000_create_lbtest_frame(struct sk_buff *skb,
1388				      unsigned int frame_size)
1389{
1390	memset(skb->data, 0xFF, frame_size);
1391	frame_size &= ~1;
1392	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1393	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1394	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1395}
1396
1397static int e1000_check_lbtest_frame(struct sk_buff *skb,
1398				    unsigned int frame_size)
1399{
1400	frame_size &= ~1;
1401	if (*(skb->data + 3) == 0xFF) {
1402		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1403		   (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1404			return 0;
1405		}
1406	}
1407	return 13;
1408}
1409
1410static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1411{
1412	struct e1000_hw *hw = &adapter->hw;
1413	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1414	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1415	struct pci_dev *pdev = adapter->pdev;
1416	int i, j, k, l, lc, good_cnt, ret_val=0;
1417	unsigned long time;
1418
1419	ew32(RDT, rxdr->count - 1);
1420
1421	/* Calculate the loop count based on the largest descriptor ring
1422	 * The idea is to wrap the largest ring a number of times using 64
1423	 * send/receive pairs during each loop
1424	 */
1425
1426	if (rxdr->count <= txdr->count)
1427		lc = ((txdr->count / 64) * 2) + 1;
1428	else
1429		lc = ((rxdr->count / 64) * 2) + 1;
1430
1431	k = l = 0;
1432	for (j = 0; j <= lc; j++) { /* loop count loop */
1433		for (i = 0; i < 64; i++) { /* send the packets */
1434			e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1435					1024);
1436			dma_sync_single_for_device(&pdev->dev,
1437						   txdr->buffer_info[k].dma,
1438						   txdr->buffer_info[k].length,
1439						   DMA_TO_DEVICE);
1440			if (unlikely(++k == txdr->count)) k = 0;
 
1441		}
1442		ew32(TDT, k);
1443		E1000_WRITE_FLUSH();
1444		msleep(200);
1445		time = jiffies; /* set the start time for the receive */
1446		good_cnt = 0;
1447		do { /* receive the sent packets */
1448			dma_sync_single_for_cpu(&pdev->dev,
1449						rxdr->buffer_info[l].dma,
1450						rxdr->buffer_info[l].length,
1451						DMA_FROM_DEVICE);
1452
1453			ret_val = e1000_check_lbtest_frame(
1454					rxdr->buffer_info[l].skb,
 
1455					1024);
1456			if (!ret_val)
1457				good_cnt++;
1458			if (unlikely(++l == rxdr->count)) l = 0;
 
1459			/* time + 20 msecs (200 msecs on 2.4) is more than
1460			 * enough time to complete the receives, if it's
1461			 * exceeded, break and error off
1462			 */
1463		} while (good_cnt < 64 && jiffies < (time + 20));
 
1464		if (good_cnt != 64) {
1465			ret_val = 13; /* ret_val is the same as mis-compare */
1466			break;
1467		}
1468		if (jiffies >= (time + 2)) {
1469			ret_val = 14; /* error code for time out error */
1470			break;
1471		}
1472	} /* end loop count loop */
1473	return ret_val;
1474}
1475
1476static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1477{
1478	*data = e1000_setup_desc_rings(adapter);
1479	if (*data)
1480		goto out;
1481	*data = e1000_setup_loopback_test(adapter);
1482	if (*data)
1483		goto err_loopback;
1484	*data = e1000_run_loopback_test(adapter);
1485	e1000_loopback_cleanup(adapter);
1486
1487err_loopback:
1488	e1000_free_desc_rings(adapter);
1489out:
1490	return *data;
1491}
1492
1493static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1494{
1495	struct e1000_hw *hw = &adapter->hw;
1496	*data = 0;
1497	if (hw->media_type == e1000_media_type_internal_serdes) {
1498		int i = 0;
 
1499		hw->serdes_has_link = false;
1500
1501		/* On some blade server designs, link establishment
1502		 * could take as long as 2-3 minutes
1503		 */
1504		do {
1505			e1000_check_for_link(hw);
1506			if (hw->serdes_has_link)
1507				return *data;
1508			msleep(20);
1509		} while (i++ < 3750);
1510
1511		*data = 1;
1512	} else {
1513		e1000_check_for_link(hw);
1514		if (hw->autoneg)  /* if auto_neg is set wait for it */
1515			msleep(4000);
1516
1517		if (!(er32(STATUS) & E1000_STATUS_LU)) {
1518			*data = 1;
1519		}
1520	}
1521	return *data;
1522}
1523
1524static int e1000_get_sset_count(struct net_device *netdev, int sset)
1525{
1526	switch (sset) {
1527	case ETH_SS_TEST:
1528		return E1000_TEST_LEN;
1529	case ETH_SS_STATS:
1530		return E1000_STATS_LEN;
1531	default:
1532		return -EOPNOTSUPP;
1533	}
1534}
1535
1536static void e1000_diag_test(struct net_device *netdev,
1537			    struct ethtool_test *eth_test, u64 *data)
1538{
1539	struct e1000_adapter *adapter = netdev_priv(netdev);
1540	struct e1000_hw *hw = &adapter->hw;
1541	bool if_running = netif_running(netdev);
1542
1543	set_bit(__E1000_TESTING, &adapter->flags);
1544	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1545		/* Offline tests */
1546
1547		/* save speed, duplex, autoneg settings */
1548		u16 autoneg_advertised = hw->autoneg_advertised;
1549		u8 forced_speed_duplex = hw->forced_speed_duplex;
1550		u8 autoneg = hw->autoneg;
1551
1552		e_info(hw, "offline testing starting\n");
1553
1554		/* Link test performed before hardware reset so autoneg doesn't
1555		 * interfere with test result
1556		 */
1557		if (e1000_link_test(adapter, &data[4]))
1558			eth_test->flags |= ETH_TEST_FL_FAILED;
1559
1560		if (if_running)
1561			/* indicate we're in test mode */
1562			dev_close(netdev);
1563		else
1564			e1000_reset(adapter);
1565
1566		if (e1000_reg_test(adapter, &data[0]))
1567			eth_test->flags |= ETH_TEST_FL_FAILED;
1568
1569		e1000_reset(adapter);
1570		if (e1000_eeprom_test(adapter, &data[1]))
1571			eth_test->flags |= ETH_TEST_FL_FAILED;
1572
1573		e1000_reset(adapter);
1574		if (e1000_intr_test(adapter, &data[2]))
1575			eth_test->flags |= ETH_TEST_FL_FAILED;
1576
1577		e1000_reset(adapter);
1578		/* make sure the phy is powered up */
1579		e1000_power_up_phy(adapter);
1580		if (e1000_loopback_test(adapter, &data[3]))
1581			eth_test->flags |= ETH_TEST_FL_FAILED;
1582
1583		/* restore speed, duplex, autoneg settings */
1584		hw->autoneg_advertised = autoneg_advertised;
1585		hw->forced_speed_duplex = forced_speed_duplex;
1586		hw->autoneg = autoneg;
1587
1588		e1000_reset(adapter);
1589		clear_bit(__E1000_TESTING, &adapter->flags);
1590		if (if_running)
1591			dev_open(netdev);
1592	} else {
1593		e_info(hw, "online testing starting\n");
1594		/* Online tests */
1595		if (e1000_link_test(adapter, &data[4]))
1596			eth_test->flags |= ETH_TEST_FL_FAILED;
1597
1598		/* Online tests aren't run; pass by default */
1599		data[0] = 0;
1600		data[1] = 0;
1601		data[2] = 0;
1602		data[3] = 0;
1603
1604		clear_bit(__E1000_TESTING, &adapter->flags);
1605	}
1606	msleep_interruptible(4 * 1000);
1607}
1608
1609static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1610			       struct ethtool_wolinfo *wol)
1611{
1612	struct e1000_hw *hw = &adapter->hw;
1613	int retval = 1; /* fail by default */
1614
1615	switch (hw->device_id) {
1616	case E1000_DEV_ID_82542:
1617	case E1000_DEV_ID_82543GC_FIBER:
1618	case E1000_DEV_ID_82543GC_COPPER:
1619	case E1000_DEV_ID_82544EI_FIBER:
1620	case E1000_DEV_ID_82546EB_QUAD_COPPER:
1621	case E1000_DEV_ID_82545EM_FIBER:
1622	case E1000_DEV_ID_82545EM_COPPER:
1623	case E1000_DEV_ID_82546GB_QUAD_COPPER:
1624	case E1000_DEV_ID_82546GB_PCIE:
1625		/* these don't support WoL at all */
1626		wol->supported = 0;
1627		break;
1628	case E1000_DEV_ID_82546EB_FIBER:
1629	case E1000_DEV_ID_82546GB_FIBER:
1630		/* Wake events not supported on port B */
1631		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1632			wol->supported = 0;
1633			break;
1634		}
1635		/* return success for non excluded adapter ports */
1636		retval = 0;
1637		break;
1638	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1639		/* quad port adapters only support WoL on port A */
1640		if (!adapter->quad_port_a) {
1641			wol->supported = 0;
1642			break;
1643		}
1644		/* return success for non excluded adapter ports */
1645		retval = 0;
1646		break;
1647	default:
1648		/* dual port cards only support WoL on port A from now on
1649		 * unless it was enabled in the eeprom for port B
1650		 * so exclude FUNC_1 ports from having WoL enabled
1651		 */
1652		if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1653		    !adapter->eeprom_wol) {
1654			wol->supported = 0;
1655			break;
1656		}
1657
1658		retval = 0;
1659	}
1660
1661	return retval;
1662}
1663
1664static void e1000_get_wol(struct net_device *netdev,
1665			  struct ethtool_wolinfo *wol)
1666{
1667	struct e1000_adapter *adapter = netdev_priv(netdev);
1668	struct e1000_hw *hw = &adapter->hw;
1669
1670	wol->supported = WAKE_UCAST | WAKE_MCAST |
1671	                 WAKE_BCAST | WAKE_MAGIC;
1672	wol->wolopts = 0;
1673
1674	/* this function will set ->supported = 0 and return 1 if wol is not
1675	 * supported by this hardware
1676	 */
1677	if (e1000_wol_exclusion(adapter, wol) ||
1678	    !device_can_wakeup(&adapter->pdev->dev))
1679		return;
1680
1681	/* apply any specific unsupported masks here */
1682	switch (hw->device_id) {
1683	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1684		/* KSP3 does not support UCAST wake-ups */
1685		wol->supported &= ~WAKE_UCAST;
1686
1687		if (adapter->wol & E1000_WUFC_EX)
1688			e_err(drv, "Interface does not support directed "
1689			      "(unicast) frame wake-up packets\n");
1690		break;
1691	default:
1692		break;
1693	}
1694
1695	if (adapter->wol & E1000_WUFC_EX)
1696		wol->wolopts |= WAKE_UCAST;
1697	if (adapter->wol & E1000_WUFC_MC)
1698		wol->wolopts |= WAKE_MCAST;
1699	if (adapter->wol & E1000_WUFC_BC)
1700		wol->wolopts |= WAKE_BCAST;
1701	if (adapter->wol & E1000_WUFC_MAG)
1702		wol->wolopts |= WAKE_MAGIC;
1703}
1704
1705static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1706{
1707	struct e1000_adapter *adapter = netdev_priv(netdev);
1708	struct e1000_hw *hw = &adapter->hw;
1709
1710	if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1711		return -EOPNOTSUPP;
1712
1713	if (e1000_wol_exclusion(adapter, wol) ||
1714	    !device_can_wakeup(&adapter->pdev->dev))
1715		return wol->wolopts ? -EOPNOTSUPP : 0;
1716
1717	switch (hw->device_id) {
1718	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1719		if (wol->wolopts & WAKE_UCAST) {
1720			e_err(drv, "Interface does not support directed "
1721			      "(unicast) frame wake-up packets\n");
1722			return -EOPNOTSUPP;
1723		}
1724		break;
1725	default:
1726		break;
1727	}
1728
1729	/* these settings will always override what we currently have */
1730	adapter->wol = 0;
1731
1732	if (wol->wolopts & WAKE_UCAST)
1733		adapter->wol |= E1000_WUFC_EX;
1734	if (wol->wolopts & WAKE_MCAST)
1735		adapter->wol |= E1000_WUFC_MC;
1736	if (wol->wolopts & WAKE_BCAST)
1737		adapter->wol |= E1000_WUFC_BC;
1738	if (wol->wolopts & WAKE_MAGIC)
1739		adapter->wol |= E1000_WUFC_MAG;
1740
1741	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1742
1743	return 0;
1744}
1745
1746static int e1000_set_phys_id(struct net_device *netdev,
1747			     enum ethtool_phys_id_state state)
1748{
1749	struct e1000_adapter *adapter = netdev_priv(netdev);
1750	struct e1000_hw *hw = &adapter->hw;
1751
1752	switch (state) {
1753	case ETHTOOL_ID_ACTIVE:
1754		e1000_setup_led(hw);
1755		return 2;
1756
1757	case ETHTOOL_ID_ON:
1758		e1000_led_on(hw);
1759		break;
1760
1761	case ETHTOOL_ID_OFF:
1762		e1000_led_off(hw);
1763		break;
1764
1765	case ETHTOOL_ID_INACTIVE:
1766		e1000_cleanup_led(hw);
1767	}
1768
1769	return 0;
1770}
1771
1772static int e1000_get_coalesce(struct net_device *netdev,
1773			      struct ethtool_coalesce *ec)
1774{
1775	struct e1000_adapter *adapter = netdev_priv(netdev);
1776
1777	if (adapter->hw.mac_type < e1000_82545)
1778		return -EOPNOTSUPP;
1779
1780	if (adapter->itr_setting <= 4)
1781		ec->rx_coalesce_usecs = adapter->itr_setting;
1782	else
1783		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1784
1785	return 0;
1786}
1787
1788static int e1000_set_coalesce(struct net_device *netdev,
1789			      struct ethtool_coalesce *ec)
1790{
1791	struct e1000_adapter *adapter = netdev_priv(netdev);
1792	struct e1000_hw *hw = &adapter->hw;
1793
1794	if (hw->mac_type < e1000_82545)
1795		return -EOPNOTSUPP;
1796
1797	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1798	    ((ec->rx_coalesce_usecs > 4) &&
1799	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1800	    (ec->rx_coalesce_usecs == 2))
1801		return -EINVAL;
1802
1803	if (ec->rx_coalesce_usecs == 4) {
1804		adapter->itr = adapter->itr_setting = 4;
1805	} else if (ec->rx_coalesce_usecs <= 3) {
1806		adapter->itr = 20000;
1807		adapter->itr_setting = ec->rx_coalesce_usecs;
1808	} else {
1809		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1810		adapter->itr_setting = adapter->itr & ~3;
1811	}
1812
1813	if (adapter->itr_setting != 0)
1814		ew32(ITR, 1000000000 / (adapter->itr * 256));
1815	else
1816		ew32(ITR, 0);
1817
1818	return 0;
1819}
1820
1821static int e1000_nway_reset(struct net_device *netdev)
1822{
1823	struct e1000_adapter *adapter = netdev_priv(netdev);
 
1824	if (netif_running(netdev))
1825		e1000_reinit_locked(adapter);
1826	return 0;
1827}
1828
1829static void e1000_get_ethtool_stats(struct net_device *netdev,
1830				    struct ethtool_stats *stats, u64 *data)
1831{
1832	struct e1000_adapter *adapter = netdev_priv(netdev);
1833	int i;
1834	char *p = NULL;
1835
1836	e1000_update_stats(adapter);
1837	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1838		switch (e1000_gstrings_stats[i].type) {
 
 
1839		case NETDEV_STATS:
1840			p = (char *) netdev +
1841					e1000_gstrings_stats[i].stat_offset;
1842			break;
1843		case E1000_STATS:
1844			p = (char *) adapter +
1845					e1000_gstrings_stats[i].stat_offset;
1846			break;
 
 
 
 
1847		}
1848
1849		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1850			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
 
 
1851	}
1852/* BUG_ON(i != E1000_STATS_LEN); */
1853}
1854
1855static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1856			      u8 *data)
1857{
1858	u8 *p = data;
1859	int i;
1860
1861	switch (stringset) {
1862	case ETH_SS_TEST:
1863		memcpy(data, *e1000_gstrings_test,
1864			sizeof(e1000_gstrings_test));
1865		break;
1866	case ETH_SS_STATS:
1867		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1868			memcpy(p, e1000_gstrings_stats[i].stat_string,
1869			       ETH_GSTRING_LEN);
1870			p += ETH_GSTRING_LEN;
1871		}
1872		/* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1873		break;
1874	}
1875}
1876
1877static const struct ethtool_ops e1000_ethtool_ops = {
1878	.get_settings		= e1000_get_settings,
1879	.set_settings		= e1000_set_settings,
1880	.get_drvinfo		= e1000_get_drvinfo,
1881	.get_regs_len		= e1000_get_regs_len,
1882	.get_regs		= e1000_get_regs,
1883	.get_wol		= e1000_get_wol,
1884	.set_wol		= e1000_set_wol,
1885	.get_msglevel		= e1000_get_msglevel,
1886	.set_msglevel		= e1000_set_msglevel,
1887	.nway_reset		= e1000_nway_reset,
1888	.get_link		= e1000_get_link,
1889	.get_eeprom_len		= e1000_get_eeprom_len,
1890	.get_eeprom		= e1000_get_eeprom,
1891	.set_eeprom		= e1000_set_eeprom,
1892	.get_ringparam		= e1000_get_ringparam,
1893	.set_ringparam		= e1000_set_ringparam,
1894	.get_pauseparam		= e1000_get_pauseparam,
1895	.set_pauseparam		= e1000_set_pauseparam,
1896	.self_test		= e1000_diag_test,
1897	.get_strings		= e1000_get_strings,
1898	.set_phys_id		= e1000_set_phys_id,
1899	.get_ethtool_stats	= e1000_get_ethtool_stats,
1900	.get_sset_count		= e1000_get_sset_count,
1901	.get_coalesce		= e1000_get_coalesce,
1902	.set_coalesce		= e1000_set_coalesce,
1903	.get_ts_info		= ethtool_op_get_ts_info,
 
 
1904};
1905
1906void e1000_set_ethtool_ops(struct net_device *netdev)
1907{
1908	SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1909}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2006 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4/* ethtool support for e1000 */
   5
   6#include "e1000.h"
   7#include <linux/jiffies.h>
   8#include <linux/uaccess.h>
   9
  10enum {NETDEV_STATS, E1000_STATS};
  11
  12struct e1000_stats {
  13	char stat_string[ETH_GSTRING_LEN];
  14	int type;
  15	int sizeof_stat;
  16	int stat_offset;
  17};
  18
  19#define E1000_STAT(m)		E1000_STATS, \
  20				sizeof(((struct e1000_adapter *)0)->m), \
  21				offsetof(struct e1000_adapter, m)
  22#define E1000_NETDEV_STAT(m)	NETDEV_STATS, \
  23				sizeof(((struct net_device *)0)->m), \
  24				offsetof(struct net_device, m)
  25
  26static const struct e1000_stats e1000_gstrings_stats[] = {
  27	{ "rx_packets", E1000_STAT(stats.gprc) },
  28	{ "tx_packets", E1000_STAT(stats.gptc) },
  29	{ "rx_bytes", E1000_STAT(stats.gorcl) },
  30	{ "tx_bytes", E1000_STAT(stats.gotcl) },
  31	{ "rx_broadcast", E1000_STAT(stats.bprc) },
  32	{ "tx_broadcast", E1000_STAT(stats.bptc) },
  33	{ "rx_multicast", E1000_STAT(stats.mprc) },
  34	{ "tx_multicast", E1000_STAT(stats.mptc) },
  35	{ "rx_errors", E1000_STAT(stats.rxerrc) },
  36	{ "tx_errors", E1000_STAT(stats.txerrc) },
  37	{ "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
  38	{ "multicast", E1000_STAT(stats.mprc) },
  39	{ "collisions", E1000_STAT(stats.colc) },
  40	{ "rx_length_errors", E1000_STAT(stats.rlerrc) },
  41	{ "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
  42	{ "rx_crc_errors", E1000_STAT(stats.crcerrs) },
  43	{ "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
  44	{ "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
  45	{ "rx_missed_errors", E1000_STAT(stats.mpc) },
  46	{ "tx_aborted_errors", E1000_STAT(stats.ecol) },
  47	{ "tx_carrier_errors", E1000_STAT(stats.tncrs) },
  48	{ "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
  49	{ "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
  50	{ "tx_window_errors", E1000_STAT(stats.latecol) },
  51	{ "tx_abort_late_coll", E1000_STAT(stats.latecol) },
  52	{ "tx_deferred_ok", E1000_STAT(stats.dc) },
  53	{ "tx_single_coll_ok", E1000_STAT(stats.scc) },
  54	{ "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
  55	{ "tx_timeout_count", E1000_STAT(tx_timeout_count) },
  56	{ "tx_restart_queue", E1000_STAT(restart_queue) },
  57	{ "rx_long_length_errors", E1000_STAT(stats.roc) },
  58	{ "rx_short_length_errors", E1000_STAT(stats.ruc) },
  59	{ "rx_align_errors", E1000_STAT(stats.algnerrc) },
  60	{ "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
  61	{ "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
  62	{ "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
  63	{ "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
  64	{ "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
  65	{ "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
  66	{ "rx_long_byte_count", E1000_STAT(stats.gorcl) },
  67	{ "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
  68	{ "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
  69	{ "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
  70	{ "tx_smbus", E1000_STAT(stats.mgptc) },
  71	{ "rx_smbus", E1000_STAT(stats.mgprc) },
  72	{ "dropped_smbus", E1000_STAT(stats.mgpdc) },
  73};
  74
  75#define E1000_QUEUE_STATS_LEN 0
  76#define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
  77#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
  78static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
  79	"Register test  (offline)", "Eeprom test    (offline)",
  80	"Interrupt test (offline)", "Loopback test  (offline)",
  81	"Link test   (on/offline)"
  82};
  83
  84#define E1000_TEST_LEN	ARRAY_SIZE(e1000_gstrings_test)
  85
  86static int e1000_get_link_ksettings(struct net_device *netdev,
  87				    struct ethtool_link_ksettings *cmd)
  88{
  89	struct e1000_adapter *adapter = netdev_priv(netdev);
  90	struct e1000_hw *hw = &adapter->hw;
  91	u32 supported, advertising;
  92
  93	if (hw->media_type == e1000_media_type_copper) {
  94		supported = (SUPPORTED_10baseT_Half |
  95			     SUPPORTED_10baseT_Full |
  96			     SUPPORTED_100baseT_Half |
  97			     SUPPORTED_100baseT_Full |
  98			     SUPPORTED_1000baseT_Full|
  99			     SUPPORTED_Autoneg |
 100			     SUPPORTED_TP);
 101		advertising = ADVERTISED_TP;
 
 102
 103		if (hw->autoneg == 1) {
 104			advertising |= ADVERTISED_Autoneg;
 105			/* the e1000 autoneg seems to match ethtool nicely */
 106			advertising |= hw->autoneg_advertised;
 107		}
 108
 109		cmd->base.port = PORT_TP;
 110		cmd->base.phy_address = hw->phy_addr;
 
 
 
 
 
 
 111	} else {
 112		supported   = (SUPPORTED_1000baseT_Full |
 113			       SUPPORTED_FIBRE |
 114			       SUPPORTED_Autoneg);
 115
 116		advertising = (ADVERTISED_1000baseT_Full |
 117			       ADVERTISED_FIBRE |
 118			       ADVERTISED_Autoneg);
 
 
 119
 120		cmd->base.port = PORT_FIBRE;
 
 
 
 121	}
 122
 123	if (er32(STATUS) & E1000_STATUS_LU) {
 
 124		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
 125					   &adapter->link_duplex);
 126		cmd->base.speed = adapter->link_speed;
 127
 128		/* unfortunately FULL_DUPLEX != DUPLEX_FULL
 129		 * and HALF_DUPLEX != DUPLEX_HALF
 130		 */
 131		if (adapter->link_duplex == FULL_DUPLEX)
 132			cmd->base.duplex = DUPLEX_FULL;
 133		else
 134			cmd->base.duplex = DUPLEX_HALF;
 135	} else {
 136		cmd->base.speed = SPEED_UNKNOWN;
 137		cmd->base.duplex = DUPLEX_UNKNOWN;
 138	}
 139
 140	cmd->base.autoneg = ((hw->media_type == e1000_media_type_fiber) ||
 141			 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
 142
 143	/* MDI-X => 1; MDI => 0 */
 144	if ((hw->media_type == e1000_media_type_copper) &&
 145	    netif_carrier_ok(netdev))
 146		cmd->base.eth_tp_mdix = (!!adapter->phy_info.mdix_mode ?
 147				     ETH_TP_MDI_X : ETH_TP_MDI);
 148	else
 149		cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
 150
 151	if (hw->mdix == AUTO_ALL_MODES)
 152		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
 153	else
 154		cmd->base.eth_tp_mdix_ctrl = hw->mdix;
 155
 156	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
 157						supported);
 158	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
 159						advertising);
 160
 161	return 0;
 162}
 163
 164static int e1000_set_link_ksettings(struct net_device *netdev,
 165				    const struct ethtool_link_ksettings *cmd)
 166{
 167	struct e1000_adapter *adapter = netdev_priv(netdev);
 168	struct e1000_hw *hw = &adapter->hw;
 169	u32 advertising;
 170
 171	ethtool_convert_link_mode_to_legacy_u32(&advertising,
 172						cmd->link_modes.advertising);
 173
 174	/* MDI setting is only allowed when autoneg enabled because
 175	 * some hardware doesn't allow MDI setting when speed or
 176	 * duplex is forced.
 177	 */
 178	if (cmd->base.eth_tp_mdix_ctrl) {
 179		if (hw->media_type != e1000_media_type_copper)
 180			return -EOPNOTSUPP;
 181
 182		if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
 183		    (cmd->base.autoneg != AUTONEG_ENABLE)) {
 184			e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
 185			return -EINVAL;
 186		}
 187	}
 188
 189	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 190		msleep(1);
 191
 192	if (cmd->base.autoneg == AUTONEG_ENABLE) {
 193		hw->autoneg = 1;
 194		if (hw->media_type == e1000_media_type_fiber)
 195			hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
 196						 ADVERTISED_FIBRE |
 197						 ADVERTISED_Autoneg;
 198		else
 199			hw->autoneg_advertised = advertising |
 200						 ADVERTISED_TP |
 201						 ADVERTISED_Autoneg;
 
 202	} else {
 203		u32 speed = cmd->base.speed;
 204		/* calling this overrides forced MDI setting */
 205		if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
 206			clear_bit(__E1000_RESETTING, &adapter->flags);
 207			return -EINVAL;
 208		}
 209	}
 210
 211	/* MDI-X => 2; MDI => 1; Auto => 3 */
 212	if (cmd->base.eth_tp_mdix_ctrl) {
 213		if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
 214			hw->mdix = AUTO_ALL_MODES;
 215		else
 216			hw->mdix = cmd->base.eth_tp_mdix_ctrl;
 217	}
 218
 219	/* reset the link */
 220
 221	if (netif_running(adapter->netdev)) {
 222		e1000_down(adapter);
 223		e1000_up(adapter);
 224	} else {
 225		e1000_reset(adapter);
 226	}
 227	clear_bit(__E1000_RESETTING, &adapter->flags);
 228	return 0;
 229}
 230
 231static u32 e1000_get_link(struct net_device *netdev)
 232{
 233	struct e1000_adapter *adapter = netdev_priv(netdev);
 234
 235	/* If the link is not reported up to netdev, interrupts are disabled,
 236	 * and so the physical link state may have changed since we last
 237	 * looked. Set get_link_status to make sure that the true link
 238	 * state is interrogated, rather than pulling a cached and possibly
 239	 * stale link state from the driver.
 240	 */
 241	if (!netif_carrier_ok(netdev))
 242		adapter->hw.get_link_status = 1;
 243
 244	return e1000_has_link(adapter);
 245}
 246
 247static void e1000_get_pauseparam(struct net_device *netdev,
 248				 struct ethtool_pauseparam *pause)
 249{
 250	struct e1000_adapter *adapter = netdev_priv(netdev);
 251	struct e1000_hw *hw = &adapter->hw;
 252
 253	pause->autoneg =
 254		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
 255
 256	if (hw->fc == E1000_FC_RX_PAUSE) {
 257		pause->rx_pause = 1;
 258	} else if (hw->fc == E1000_FC_TX_PAUSE) {
 259		pause->tx_pause = 1;
 260	} else if (hw->fc == E1000_FC_FULL) {
 261		pause->rx_pause = 1;
 262		pause->tx_pause = 1;
 263	}
 264}
 265
 266static int e1000_set_pauseparam(struct net_device *netdev,
 267				struct ethtool_pauseparam *pause)
 268{
 269	struct e1000_adapter *adapter = netdev_priv(netdev);
 270	struct e1000_hw *hw = &adapter->hw;
 271	int retval = 0;
 272
 273	adapter->fc_autoneg = pause->autoneg;
 274
 275	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 276		msleep(1);
 277
 278	if (pause->rx_pause && pause->tx_pause)
 279		hw->fc = E1000_FC_FULL;
 280	else if (pause->rx_pause && !pause->tx_pause)
 281		hw->fc = E1000_FC_RX_PAUSE;
 282	else if (!pause->rx_pause && pause->tx_pause)
 283		hw->fc = E1000_FC_TX_PAUSE;
 284	else if (!pause->rx_pause && !pause->tx_pause)
 285		hw->fc = E1000_FC_NONE;
 286
 287	hw->original_fc = hw->fc;
 288
 289	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
 290		if (netif_running(adapter->netdev)) {
 291			e1000_down(adapter);
 292			e1000_up(adapter);
 293		} else {
 294			e1000_reset(adapter);
 295		}
 296	} else
 297		retval = ((hw->media_type == e1000_media_type_fiber) ?
 298			  e1000_setup_link(hw) : e1000_force_mac_fc(hw));
 299
 300	clear_bit(__E1000_RESETTING, &adapter->flags);
 301	return retval;
 302}
 303
 304static u32 e1000_get_msglevel(struct net_device *netdev)
 305{
 306	struct e1000_adapter *adapter = netdev_priv(netdev);
 307
 308	return adapter->msg_enable;
 309}
 310
 311static void e1000_set_msglevel(struct net_device *netdev, u32 data)
 312{
 313	struct e1000_adapter *adapter = netdev_priv(netdev);
 314
 315	adapter->msg_enable = data;
 316}
 317
 318static int e1000_get_regs_len(struct net_device *netdev)
 319{
 320#define E1000_REGS_LEN 32
 321	return E1000_REGS_LEN * sizeof(u32);
 322}
 323
 324static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
 325			   void *p)
 326{
 327	struct e1000_adapter *adapter = netdev_priv(netdev);
 328	struct e1000_hw *hw = &adapter->hw;
 329	u32 *regs_buff = p;
 330	u16 phy_data;
 331
 332	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
 333
 334	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
 335
 336	regs_buff[0]  = er32(CTRL);
 337	regs_buff[1]  = er32(STATUS);
 338
 339	regs_buff[2]  = er32(RCTL);
 340	regs_buff[3]  = er32(RDLEN);
 341	regs_buff[4]  = er32(RDH);
 342	regs_buff[5]  = er32(RDT);
 343	regs_buff[6]  = er32(RDTR);
 344
 345	regs_buff[7]  = er32(TCTL);
 346	regs_buff[8]  = er32(TDLEN);
 347	regs_buff[9]  = er32(TDH);
 348	regs_buff[10] = er32(TDT);
 349	regs_buff[11] = er32(TIDV);
 350
 351	regs_buff[12] = hw->phy_type;  /* PHY type (IGP=1, M88=0) */
 352	if (hw->phy_type == e1000_phy_igp) {
 353		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
 354				    IGP01E1000_PHY_AGC_A);
 355		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
 356				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 357		regs_buff[13] = (u32)phy_data; /* cable length */
 358		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
 359				    IGP01E1000_PHY_AGC_B);
 360		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
 361				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 362		regs_buff[14] = (u32)phy_data; /* cable length */
 363		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
 364				    IGP01E1000_PHY_AGC_C);
 365		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
 366				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 367		regs_buff[15] = (u32)phy_data; /* cable length */
 368		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
 369				    IGP01E1000_PHY_AGC_D);
 370		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
 371				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 372		regs_buff[16] = (u32)phy_data; /* cable length */
 373		regs_buff[17] = 0; /* extended 10bt distance (not needed) */
 374		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
 375		e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
 376				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 377		regs_buff[18] = (u32)phy_data; /* cable polarity */
 378		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
 379				    IGP01E1000_PHY_PCS_INIT_REG);
 380		e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
 381				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 382		regs_buff[19] = (u32)phy_data; /* cable polarity */
 383		regs_buff[20] = 0; /* polarity correction enabled (always) */
 384		regs_buff[22] = 0; /* phy receive errors (unavailable) */
 385		regs_buff[23] = regs_buff[18]; /* mdix mode */
 386		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
 387	} else {
 388		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
 389		regs_buff[13] = (u32)phy_data; /* cable length */
 390		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 391		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 392		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 393		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 394		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
 395		regs_buff[18] = regs_buff[13]; /* cable polarity */
 396		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 397		regs_buff[20] = regs_buff[17]; /* polarity correction */
 398		/* phy receive errors */
 399		regs_buff[22] = adapter->phy_stats.receive_errors;
 400		regs_buff[23] = regs_buff[13]; /* mdix mode */
 401	}
 402	regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
 403	e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
 404	regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
 405	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
 406	if (hw->mac_type >= e1000_82540 &&
 407	    hw->media_type == e1000_media_type_copper) {
 408		regs_buff[26] = er32(MANC);
 409	}
 410}
 411
 412static int e1000_get_eeprom_len(struct net_device *netdev)
 413{
 414	struct e1000_adapter *adapter = netdev_priv(netdev);
 415	struct e1000_hw *hw = &adapter->hw;
 416
 417	return hw->eeprom.word_size * 2;
 418}
 419
 420static int e1000_get_eeprom(struct net_device *netdev,
 421			    struct ethtool_eeprom *eeprom, u8 *bytes)
 422{
 423	struct e1000_adapter *adapter = netdev_priv(netdev);
 424	struct e1000_hw *hw = &adapter->hw;
 425	u16 *eeprom_buff;
 426	int first_word, last_word;
 427	int ret_val = 0;
 428	u16 i;
 429
 430	if (eeprom->len == 0)
 431		return -EINVAL;
 432
 433	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
 434
 435	first_word = eeprom->offset >> 1;
 436	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 437
 438	eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
 439				    GFP_KERNEL);
 440	if (!eeprom_buff)
 441		return -ENOMEM;
 442
 443	if (hw->eeprom.type == e1000_eeprom_spi)
 444		ret_val = e1000_read_eeprom(hw, first_word,
 445					    last_word - first_word + 1,
 446					    eeprom_buff);
 447	else {
 448		for (i = 0; i < last_word - first_word + 1; i++) {
 449			ret_val = e1000_read_eeprom(hw, first_word + i, 1,
 450						    &eeprom_buff[i]);
 451			if (ret_val)
 452				break;
 453		}
 454	}
 455
 456	/* Device's eeprom is always little-endian, word addressable */
 457	for (i = 0; i < last_word - first_word + 1; i++)
 458		le16_to_cpus(&eeprom_buff[i]);
 459
 460	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
 461	       eeprom->len);
 462	kfree(eeprom_buff);
 463
 464	return ret_val;
 465}
 466
 467static int e1000_set_eeprom(struct net_device *netdev,
 468			    struct ethtool_eeprom *eeprom, u8 *bytes)
 469{
 470	struct e1000_adapter *adapter = netdev_priv(netdev);
 471	struct e1000_hw *hw = &adapter->hw;
 472	u16 *eeprom_buff;
 473	void *ptr;
 474	int max_len, first_word, last_word, ret_val = 0;
 475	u16 i;
 476
 477	if (eeprom->len == 0)
 478		return -EOPNOTSUPP;
 479
 480	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
 481		return -EFAULT;
 482
 483	max_len = hw->eeprom.word_size * 2;
 484
 485	first_word = eeprom->offset >> 1;
 486	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 487	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
 488	if (!eeprom_buff)
 489		return -ENOMEM;
 490
 491	ptr = (void *)eeprom_buff;
 492
 493	if (eeprom->offset & 1) {
 494		/* need read/modify/write of first changed EEPROM word
 495		 * only the second byte of the word is being modified
 496		 */
 497		ret_val = e1000_read_eeprom(hw, first_word, 1,
 498					    &eeprom_buff[0]);
 499		ptr++;
 500	}
 501	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
 502		/* need read/modify/write of last changed EEPROM word
 503		 * only the first byte of the word is being modified
 504		 */
 505		ret_val = e1000_read_eeprom(hw, last_word, 1,
 506					    &eeprom_buff[last_word - first_word]);
 507	}
 508
 509	/* Device's eeprom is always little-endian, word addressable */
 510	for (i = 0; i < last_word - first_word + 1; i++)
 511		le16_to_cpus(&eeprom_buff[i]);
 512
 513	memcpy(ptr, bytes, eeprom->len);
 514
 515	for (i = 0; i < last_word - first_word + 1; i++)
 516		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
 517
 518	ret_val = e1000_write_eeprom(hw, first_word,
 519				     last_word - first_word + 1, eeprom_buff);
 520
 521	/* Update the checksum over the first part of the EEPROM if needed */
 522	if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
 523		e1000_update_eeprom_checksum(hw);
 524
 525	kfree(eeprom_buff);
 526	return ret_val;
 527}
 528
 529static void e1000_get_drvinfo(struct net_device *netdev,
 530			      struct ethtool_drvinfo *drvinfo)
 531{
 532	struct e1000_adapter *adapter = netdev_priv(netdev);
 533
 534	strlcpy(drvinfo->driver,  e1000_driver_name,
 535		sizeof(drvinfo->driver));
 
 
 536
 537	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
 538		sizeof(drvinfo->bus_info));
 
 
 539}
 540
 541static void e1000_get_ringparam(struct net_device *netdev,
 542				struct ethtool_ringparam *ring)
 543{
 544	struct e1000_adapter *adapter = netdev_priv(netdev);
 545	struct e1000_hw *hw = &adapter->hw;
 546	e1000_mac_type mac_type = hw->mac_type;
 547	struct e1000_tx_ring *txdr = adapter->tx_ring;
 548	struct e1000_rx_ring *rxdr = adapter->rx_ring;
 549
 550	ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
 551		E1000_MAX_82544_RXD;
 552	ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
 553		E1000_MAX_82544_TXD;
 554	ring->rx_pending = rxdr->count;
 555	ring->tx_pending = txdr->count;
 556}
 557
 558static int e1000_set_ringparam(struct net_device *netdev,
 559			       struct ethtool_ringparam *ring)
 560{
 561	struct e1000_adapter *adapter = netdev_priv(netdev);
 562	struct e1000_hw *hw = &adapter->hw;
 563	e1000_mac_type mac_type = hw->mac_type;
 564	struct e1000_tx_ring *txdr, *tx_old;
 565	struct e1000_rx_ring *rxdr, *rx_old;
 566	int i, err;
 567
 568	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
 569		return -EINVAL;
 570
 571	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 572		msleep(1);
 573
 574	if (netif_running(adapter->netdev))
 575		e1000_down(adapter);
 576
 577	tx_old = adapter->tx_ring;
 578	rx_old = adapter->rx_ring;
 579
 580	err = -ENOMEM;
 581	txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring),
 582		       GFP_KERNEL);
 583	if (!txdr)
 584		goto err_alloc_tx;
 585
 586	rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring),
 587		       GFP_KERNEL);
 588	if (!rxdr)
 589		goto err_alloc_rx;
 590
 591	adapter->tx_ring = txdr;
 592	adapter->rx_ring = rxdr;
 593
 594	rxdr->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
 595	rxdr->count = min(rxdr->count, (u32)(mac_type < e1000_82544 ?
 596			  E1000_MAX_RXD : E1000_MAX_82544_RXD));
 597	rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
 598	txdr->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
 599	txdr->count = min(txdr->count, (u32)(mac_type < e1000_82544 ?
 
 600			  E1000_MAX_TXD : E1000_MAX_82544_TXD));
 601	txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
 602
 603	for (i = 0; i < adapter->num_tx_queues; i++)
 604		txdr[i].count = txdr->count;
 605	for (i = 0; i < adapter->num_rx_queues; i++)
 606		rxdr[i].count = rxdr->count;
 607
 608	err = 0;
 609	if (netif_running(adapter->netdev)) {
 610		/* Try to get new resources before deleting old */
 611		err = e1000_setup_all_rx_resources(adapter);
 612		if (err)
 613			goto err_setup_rx;
 614		err = e1000_setup_all_tx_resources(adapter);
 615		if (err)
 616			goto err_setup_tx;
 617
 618		/* save the new, restore the old in order to free it,
 619		 * then restore the new back again
 620		 */
 621
 622		adapter->rx_ring = rx_old;
 623		adapter->tx_ring = tx_old;
 624		e1000_free_all_rx_resources(adapter);
 625		e1000_free_all_tx_resources(adapter);
 
 
 626		adapter->rx_ring = rxdr;
 627		adapter->tx_ring = txdr;
 628		err = e1000_up(adapter);
 
 
 629	}
 630	kfree(tx_old);
 631	kfree(rx_old);
 632
 633	clear_bit(__E1000_RESETTING, &adapter->flags);
 634	return err;
 635
 636err_setup_tx:
 637	e1000_free_all_rx_resources(adapter);
 638err_setup_rx:
 639	adapter->rx_ring = rx_old;
 640	adapter->tx_ring = tx_old;
 641	kfree(rxdr);
 642err_alloc_rx:
 643	kfree(txdr);
 644err_alloc_tx:
 645	if (netif_running(adapter->netdev))
 646		e1000_up(adapter);
 647	clear_bit(__E1000_RESETTING, &adapter->flags);
 648	return err;
 649}
 650
 651static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
 652			     u32 mask, u32 write)
 653{
 654	struct e1000_hw *hw = &adapter->hw;
 655	static const u32 test[] = {
 656		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
 657	};
 658	u8 __iomem *address = hw->hw_addr + reg;
 659	u32 read;
 660	int i;
 661
 662	for (i = 0; i < ARRAY_SIZE(test); i++) {
 663		writel(write & test[i], address);
 664		read = readl(address);
 665		if (read != (write & test[i] & mask)) {
 666			e_err(drv, "pattern test reg %04X failed: "
 667			      "got 0x%08X expected 0x%08X\n",
 668			      reg, read, (write & test[i] & mask));
 669			*data = reg;
 670			return true;
 671		}
 672	}
 673	return false;
 674}
 675
 676static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
 677			      u32 mask, u32 write)
 678{
 679	struct e1000_hw *hw = &adapter->hw;
 680	u8 __iomem *address = hw->hw_addr + reg;
 681	u32 read;
 682
 683	writel(write & mask, address);
 684	read = readl(address);
 685	if ((read & mask) != (write & mask)) {
 686		e_err(drv, "set/check reg %04X test failed: "
 687		      "got 0x%08X expected 0x%08X\n",
 688		      reg, (read & mask), (write & mask));
 689		*data = reg;
 690		return true;
 691	}
 692	return false;
 693}
 694
 695#define REG_PATTERN_TEST(reg, mask, write)			     \
 696	do {							     \
 697		if (reg_pattern_test(adapter, data,		     \
 698			     (hw->mac_type >= e1000_82543)   \
 699			     ? E1000_##reg : E1000_82542_##reg,	     \
 700			     mask, write))			     \
 701			return 1;				     \
 702	} while (0)
 703
 704#define REG_SET_AND_CHECK(reg, mask, write)			     \
 705	do {							     \
 706		if (reg_set_and_check(adapter, data,		     \
 707			      (hw->mac_type >= e1000_82543)  \
 708			      ? E1000_##reg : E1000_82542_##reg,     \
 709			      mask, write))			     \
 710			return 1;				     \
 711	} while (0)
 712
 713static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
 714{
 715	u32 value, before, after;
 716	u32 i, toggle;
 717	struct e1000_hw *hw = &adapter->hw;
 718
 719	/* The status register is Read Only, so a write should fail.
 720	 * Some bits that get toggled are ignored.
 721	 */
 722
 723	/* there are several bits on newer hardware that are r/w */
 724	toggle = 0xFFFFF833;
 725
 726	before = er32(STATUS);
 727	value = (er32(STATUS) & toggle);
 728	ew32(STATUS, toggle);
 729	after = er32(STATUS) & toggle;
 730	if (value != after) {
 731		e_err(drv, "failed STATUS register test got: "
 732		      "0x%08X expected: 0x%08X\n", after, value);
 733		*data = 1;
 734		return 1;
 735	}
 736	/* restore previous status */
 737	ew32(STATUS, before);
 738
 739	REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
 740	REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
 741	REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
 742	REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
 743
 744	REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
 745	REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
 746	REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
 747	REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
 748	REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
 749	REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
 750	REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
 751	REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
 752	REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
 753	REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
 754
 755	REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
 756
 757	before = 0x06DFB3FE;
 758	REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
 759	REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
 760
 761	if (hw->mac_type >= e1000_82543) {
 762		REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
 763		REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
 764		REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
 765		REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
 766		REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
 767		value = E1000_RAR_ENTRIES;
 768		for (i = 0; i < value; i++) {
 769			REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2),
 770					 0x8003FFFF, 0xFFFFFFFF);
 771		}
 772	} else {
 773		REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
 774		REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
 775		REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
 776		REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
 777	}
 778
 779	value = E1000_MC_TBL_SIZE;
 780	for (i = 0; i < value; i++)
 781		REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
 782
 783	*data = 0;
 784	return 0;
 785}
 786
 787static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
 788{
 789	struct e1000_hw *hw = &adapter->hw;
 790	u16 temp;
 791	u16 checksum = 0;
 792	u16 i;
 793
 794	*data = 0;
 795	/* Read and add up the contents of the EEPROM */
 796	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
 797		if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
 798			*data = 1;
 799			break;
 800		}
 801		checksum += temp;
 802	}
 803
 804	/* If Checksum is not Correct return error else test passed */
 805	if ((checksum != (u16)EEPROM_SUM) && !(*data))
 806		*data = 2;
 807
 808	return *data;
 809}
 810
 811static irqreturn_t e1000_test_intr(int irq, void *data)
 812{
 813	struct net_device *netdev = (struct net_device *)data;
 814	struct e1000_adapter *adapter = netdev_priv(netdev);
 815	struct e1000_hw *hw = &adapter->hw;
 816
 817	adapter->test_icr |= er32(ICR);
 818
 819	return IRQ_HANDLED;
 820}
 821
 822static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
 823{
 824	struct net_device *netdev = adapter->netdev;
 825	u32 mask, i = 0;
 826	bool shared_int = true;
 827	u32 irq = adapter->pdev->irq;
 828	struct e1000_hw *hw = &adapter->hw;
 829
 830	*data = 0;
 831
 832	/* NOTE: we don't test MSI interrupts here, yet
 833	 * Hook up test interrupt handler just for this test
 834	 */
 835	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
 836			 netdev))
 837		shared_int = false;
 838	else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
 839			     netdev->name, netdev)) {
 840		*data = 1;
 841		return -1;
 842	}
 843	e_info(hw, "testing %s interrupt\n", (shared_int ?
 844	       "shared" : "unshared"));
 845
 846	/* Disable all the interrupts */
 847	ew32(IMC, 0xFFFFFFFF);
 848	E1000_WRITE_FLUSH();
 849	msleep(10);
 850
 851	/* Test each interrupt */
 852	for (; i < 10; i++) {
 
 853		/* Interrupt to test */
 854		mask = 1 << i;
 855
 856		if (!shared_int) {
 857			/* Disable the interrupt to be reported in
 858			 * the cause register and then force the same
 859			 * interrupt and see if one gets posted.  If
 860			 * an interrupt was posted to the bus, the
 861			 * test failed.
 862			 */
 863			adapter->test_icr = 0;
 864			ew32(IMC, mask);
 865			ew32(ICS, mask);
 866			E1000_WRITE_FLUSH();
 867			msleep(10);
 868
 869			if (adapter->test_icr & mask) {
 870				*data = 3;
 871				break;
 872			}
 873		}
 874
 875		/* Enable the interrupt to be reported in
 876		 * the cause register and then force the same
 877		 * interrupt and see if one gets posted.  If
 878		 * an interrupt was not posted to the bus, the
 879		 * test failed.
 880		 */
 881		adapter->test_icr = 0;
 882		ew32(IMS, mask);
 883		ew32(ICS, mask);
 884		E1000_WRITE_FLUSH();
 885		msleep(10);
 886
 887		if (!(adapter->test_icr & mask)) {
 888			*data = 4;
 889			break;
 890		}
 891
 892		if (!shared_int) {
 893			/* Disable the other interrupts to be reported in
 894			 * the cause register and then force the other
 895			 * interrupts and see if any get posted.  If
 896			 * an interrupt was posted to the bus, the
 897			 * test failed.
 898			 */
 899			adapter->test_icr = 0;
 900			ew32(IMC, ~mask & 0x00007FFF);
 901			ew32(ICS, ~mask & 0x00007FFF);
 902			E1000_WRITE_FLUSH();
 903			msleep(10);
 904
 905			if (adapter->test_icr) {
 906				*data = 5;
 907				break;
 908			}
 909		}
 910	}
 911
 912	/* Disable all the interrupts */
 913	ew32(IMC, 0xFFFFFFFF);
 914	E1000_WRITE_FLUSH();
 915	msleep(10);
 916
 917	/* Unhook test interrupt handler */
 918	free_irq(irq, netdev);
 919
 920	return *data;
 921}
 922
 923static void e1000_free_desc_rings(struct e1000_adapter *adapter)
 924{
 925	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
 926	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
 927	struct pci_dev *pdev = adapter->pdev;
 928	int i;
 929
 930	if (txdr->desc && txdr->buffer_info) {
 931		for (i = 0; i < txdr->count; i++) {
 932			if (txdr->buffer_info[i].dma)
 933				dma_unmap_single(&pdev->dev,
 934						 txdr->buffer_info[i].dma,
 935						 txdr->buffer_info[i].length,
 936						 DMA_TO_DEVICE);
 937			dev_kfree_skb(txdr->buffer_info[i].skb);
 
 938		}
 939	}
 940
 941	if (rxdr->desc && rxdr->buffer_info) {
 942		for (i = 0; i < rxdr->count; i++) {
 943			if (rxdr->buffer_info[i].dma)
 944				dma_unmap_single(&pdev->dev,
 945						 rxdr->buffer_info[i].dma,
 946						 E1000_RXBUFFER_2048,
 947						 DMA_FROM_DEVICE);
 948			kfree(rxdr->buffer_info[i].rxbuf.data);
 
 949		}
 950	}
 951
 952	if (txdr->desc) {
 953		dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
 954				  txdr->dma);
 955		txdr->desc = NULL;
 956	}
 957	if (rxdr->desc) {
 958		dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
 959				  rxdr->dma);
 960		rxdr->desc = NULL;
 961	}
 962
 963	kfree(txdr->buffer_info);
 964	txdr->buffer_info = NULL;
 965	kfree(rxdr->buffer_info);
 966	rxdr->buffer_info = NULL;
 967}
 968
 969static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
 970{
 971	struct e1000_hw *hw = &adapter->hw;
 972	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
 973	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
 974	struct pci_dev *pdev = adapter->pdev;
 975	u32 rctl;
 976	int i, ret_val;
 977
 978	/* Setup Tx descriptor ring and Tx buffers */
 979
 980	if (!txdr->count)
 981		txdr->count = E1000_DEFAULT_TXD;
 982
 983	txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_tx_buffer),
 984				    GFP_KERNEL);
 985	if (!txdr->buffer_info) {
 986		ret_val = 1;
 987		goto err_nomem;
 988	}
 989
 990	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
 991	txdr->size = ALIGN(txdr->size, 4096);
 992	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
 993					GFP_KERNEL);
 994	if (!txdr->desc) {
 995		ret_val = 2;
 996		goto err_nomem;
 997	}
 998	txdr->next_to_use = txdr->next_to_clean = 0;
 999
1000	ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1001	ew32(TDBAH, ((u64)txdr->dma >> 32));
1002	ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1003	ew32(TDH, 0);
1004	ew32(TDT, 0);
1005	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1006	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1007	     E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1008
1009	for (i = 0; i < txdr->count; i++) {
1010		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1011		struct sk_buff *skb;
1012		unsigned int size = 1024;
1013
1014		skb = alloc_skb(size, GFP_KERNEL);
1015		if (!skb) {
1016			ret_val = 3;
1017			goto err_nomem;
1018		}
1019		skb_put(skb, size);
1020		txdr->buffer_info[i].skb = skb;
1021		txdr->buffer_info[i].length = skb->len;
1022		txdr->buffer_info[i].dma =
1023			dma_map_single(&pdev->dev, skb->data, skb->len,
1024				       DMA_TO_DEVICE);
1025		if (dma_mapping_error(&pdev->dev, txdr->buffer_info[i].dma)) {
1026			ret_val = 4;
1027			goto err_nomem;
1028		}
1029		tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1030		tx_desc->lower.data = cpu_to_le32(skb->len);
1031		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1032						   E1000_TXD_CMD_IFCS |
1033						   E1000_TXD_CMD_RPS);
1034		tx_desc->upper.data = 0;
1035	}
1036
1037	/* Setup Rx descriptor ring and Rx buffers */
1038
1039	if (!rxdr->count)
1040		rxdr->count = E1000_DEFAULT_RXD;
1041
1042	rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_rx_buffer),
1043				    GFP_KERNEL);
1044	if (!rxdr->buffer_info) {
1045		ret_val = 5;
1046		goto err_nomem;
1047	}
1048
1049	rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1050	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1051					GFP_KERNEL);
1052	if (!rxdr->desc) {
1053		ret_val = 6;
1054		goto err_nomem;
1055	}
1056	rxdr->next_to_use = rxdr->next_to_clean = 0;
1057
1058	rctl = er32(RCTL);
1059	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1060	ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1061	ew32(RDBAH, ((u64)rxdr->dma >> 32));
1062	ew32(RDLEN, rxdr->size);
1063	ew32(RDH, 0);
1064	ew32(RDT, 0);
1065	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1066		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1067		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1068	ew32(RCTL, rctl);
1069
1070	for (i = 0; i < rxdr->count; i++) {
1071		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1072		u8 *buf;
1073
1074		buf = kzalloc(E1000_RXBUFFER_2048 + NET_SKB_PAD + NET_IP_ALIGN,
1075			      GFP_KERNEL);
1076		if (!buf) {
1077			ret_val = 7;
1078			goto err_nomem;
1079		}
1080		rxdr->buffer_info[i].rxbuf.data = buf;
1081
 
1082		rxdr->buffer_info[i].dma =
1083			dma_map_single(&pdev->dev,
1084				       buf + NET_SKB_PAD + NET_IP_ALIGN,
1085				       E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1086		if (dma_mapping_error(&pdev->dev, rxdr->buffer_info[i].dma)) {
1087			ret_val = 8;
1088			goto err_nomem;
1089		}
1090		rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
 
1091	}
1092
1093	return 0;
1094
1095err_nomem:
1096	e1000_free_desc_rings(adapter);
1097	return ret_val;
1098}
1099
1100static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1101{
1102	struct e1000_hw *hw = &adapter->hw;
1103
1104	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1105	e1000_write_phy_reg(hw, 29, 0x001F);
1106	e1000_write_phy_reg(hw, 30, 0x8FFC);
1107	e1000_write_phy_reg(hw, 29, 0x001A);
1108	e1000_write_phy_reg(hw, 30, 0x8FF0);
1109}
1110
1111static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1112{
1113	struct e1000_hw *hw = &adapter->hw;
1114	u16 phy_reg;
1115
1116	/* Because we reset the PHY above, we need to re-force TX_CLK in the
1117	 * Extended PHY Specific Control Register to 25MHz clock.  This
1118	 * value defaults back to a 2.5MHz clock when the PHY is reset.
1119	 */
1120	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1121	phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1122	e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
 
1123
1124	/* In addition, because of the s/w reset above, we need to enable
1125	 * CRS on TX.  This must be set for both full and half duplex
1126	 * operation.
1127	 */
1128	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1129	phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1130	e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
 
1131}
1132
1133static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1134{
1135	struct e1000_hw *hw = &adapter->hw;
1136	u32 ctrl_reg;
1137	u16 phy_reg;
1138
1139	/* Setup the Device Control Register for PHY loopback test. */
1140
1141	ctrl_reg = er32(CTRL);
1142	ctrl_reg |= (E1000_CTRL_ILOS |		/* Invert Loss-Of-Signal */
1143		     E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
1144		     E1000_CTRL_FRCDPX |	/* Set the Force Duplex Bit */
1145		     E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
1146		     E1000_CTRL_FD);		/* Force Duplex to FULL */
1147
1148	ew32(CTRL, ctrl_reg);
1149
1150	/* Read the PHY Specific Control Register (0x10) */
1151	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1152
1153	/* Clear Auto-Crossover bits in PHY Specific Control Register
1154	 * (bits 6:5).
1155	 */
1156	phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1157	e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1158
1159	/* Perform software reset on the PHY */
1160	e1000_phy_reset(hw);
1161
1162	/* Have to setup TX_CLK and TX_CRS after software reset */
1163	e1000_phy_reset_clk_and_crs(adapter);
1164
1165	e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1166
1167	/* Wait for reset to complete. */
1168	udelay(500);
1169
1170	/* Have to setup TX_CLK and TX_CRS after software reset */
1171	e1000_phy_reset_clk_and_crs(adapter);
1172
1173	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1174	e1000_phy_disable_receiver(adapter);
1175
1176	/* Set the loopback bit in the PHY control register. */
1177	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1178	phy_reg |= MII_CR_LOOPBACK;
1179	e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1180
1181	/* Setup TX_CLK and TX_CRS one more time. */
1182	e1000_phy_reset_clk_and_crs(adapter);
1183
1184	/* Check Phy Configuration */
1185	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1186	if (phy_reg != 0x4100)
1187		return 9;
1188
1189	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1190	if (phy_reg != 0x0070)
1191		return 10;
1192
1193	e1000_read_phy_reg(hw, 29, &phy_reg);
1194	if (phy_reg != 0x001A)
1195		return 11;
1196
1197	return 0;
1198}
1199
1200static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1201{
1202	struct e1000_hw *hw = &adapter->hw;
1203	u32 ctrl_reg = 0;
1204	u32 stat_reg = 0;
1205
1206	hw->autoneg = false;
1207
1208	if (hw->phy_type == e1000_phy_m88) {
1209		/* Auto-MDI/MDIX Off */
1210		e1000_write_phy_reg(hw,
1211				    M88E1000_PHY_SPEC_CTRL, 0x0808);
1212		/* reset to update Auto-MDI/MDIX */
1213		e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1214		/* autoneg off */
1215		e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1216	}
1217
1218	ctrl_reg = er32(CTRL);
1219
1220	/* force 1000, set loopback */
1221	e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1222
1223	/* Now set up the MAC to the same speed/duplex as the PHY. */
1224	ctrl_reg = er32(CTRL);
1225	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1226	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1227			E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1228			E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1229			E1000_CTRL_FD); /* Force Duplex to FULL */
1230
1231	if (hw->media_type == e1000_media_type_copper &&
1232	    hw->phy_type == e1000_phy_m88)
1233		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1234	else {
1235		/* Set the ILOS bit on the fiber Nic is half
1236		 * duplex link is detected.
1237		 */
1238		stat_reg = er32(STATUS);
1239		if ((stat_reg & E1000_STATUS_FD) == 0)
1240			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1241	}
1242
1243	ew32(CTRL, ctrl_reg);
1244
1245	/* Disable the receiver on the PHY so when a cable is plugged in, the
1246	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1247	 */
1248	if (hw->phy_type == e1000_phy_m88)
1249		e1000_phy_disable_receiver(adapter);
1250
1251	udelay(500);
1252
1253	return 0;
1254}
1255
1256static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1257{
1258	struct e1000_hw *hw = &adapter->hw;
1259	u16 phy_reg = 0;
1260	u16 count = 0;
1261
1262	switch (hw->mac_type) {
1263	case e1000_82543:
1264		if (hw->media_type == e1000_media_type_copper) {
1265			/* Attempt to setup Loopback mode on Non-integrated PHY.
1266			 * Some PHY registers get corrupted at random, so
1267			 * attempt this 10 times.
1268			 */
1269			while (e1000_nonintegrated_phy_loopback(adapter) &&
1270			       count++ < 10);
1271			if (count < 11)
1272				return 0;
1273		}
1274		break;
1275
1276	case e1000_82544:
1277	case e1000_82540:
1278	case e1000_82545:
1279	case e1000_82545_rev_3:
1280	case e1000_82546:
1281	case e1000_82546_rev_3:
1282	case e1000_82541:
1283	case e1000_82541_rev_2:
1284	case e1000_82547:
1285	case e1000_82547_rev_2:
1286		return e1000_integrated_phy_loopback(adapter);
 
1287	default:
1288		/* Default PHY loopback work is to read the MII
1289		 * control register and assert bit 14 (loopback mode).
1290		 */
1291		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1292		phy_reg |= MII_CR_LOOPBACK;
1293		e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1294		return 0;
 
1295	}
1296
1297	return 8;
1298}
1299
1300static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1301{
1302	struct e1000_hw *hw = &adapter->hw;
1303	u32 rctl;
1304
1305	if (hw->media_type == e1000_media_type_fiber ||
1306	    hw->media_type == e1000_media_type_internal_serdes) {
1307		switch (hw->mac_type) {
1308		case e1000_82545:
1309		case e1000_82546:
1310		case e1000_82545_rev_3:
1311		case e1000_82546_rev_3:
1312			return e1000_set_phy_loopback(adapter);
 
1313		default:
1314			rctl = er32(RCTL);
1315			rctl |= E1000_RCTL_LBM_TCVR;
1316			ew32(RCTL, rctl);
1317			return 0;
1318		}
1319	} else if (hw->media_type == e1000_media_type_copper) {
1320		return e1000_set_phy_loopback(adapter);
1321	}
1322
1323	return 7;
1324}
1325
1326static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1327{
1328	struct e1000_hw *hw = &adapter->hw;
1329	u32 rctl;
1330	u16 phy_reg;
1331
1332	rctl = er32(RCTL);
1333	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1334	ew32(RCTL, rctl);
1335
1336	switch (hw->mac_type) {
1337	case e1000_82545:
1338	case e1000_82546:
1339	case e1000_82545_rev_3:
1340	case e1000_82546_rev_3:
1341	default:
1342		hw->autoneg = true;
1343		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1344		if (phy_reg & MII_CR_LOOPBACK) {
1345			phy_reg &= ~MII_CR_LOOPBACK;
1346			e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1347			e1000_phy_reset(hw);
1348		}
1349		break;
1350	}
1351}
1352
1353static void e1000_create_lbtest_frame(struct sk_buff *skb,
1354				      unsigned int frame_size)
1355{
1356	memset(skb->data, 0xFF, frame_size);
1357	frame_size &= ~1;
1358	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1359	skb->data[frame_size / 2 + 10] = 0xBE;
1360	skb->data[frame_size / 2 + 12] = 0xAF;
1361}
1362
1363static int e1000_check_lbtest_frame(const unsigned char *data,
1364				    unsigned int frame_size)
1365{
1366	frame_size &= ~1;
1367	if (*(data + 3) == 0xFF) {
1368		if ((*(data + frame_size / 2 + 10) == 0xBE) &&
1369		    (*(data + frame_size / 2 + 12) == 0xAF)) {
1370			return 0;
1371		}
1372	}
1373	return 13;
1374}
1375
1376static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1377{
1378	struct e1000_hw *hw = &adapter->hw;
1379	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1380	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1381	struct pci_dev *pdev = adapter->pdev;
1382	int i, j, k, l, lc, good_cnt, ret_val = 0;
1383	unsigned long time;
1384
1385	ew32(RDT, rxdr->count - 1);
1386
1387	/* Calculate the loop count based on the largest descriptor ring
1388	 * The idea is to wrap the largest ring a number of times using 64
1389	 * send/receive pairs during each loop
1390	 */
1391
1392	if (rxdr->count <= txdr->count)
1393		lc = ((txdr->count / 64) * 2) + 1;
1394	else
1395		lc = ((rxdr->count / 64) * 2) + 1;
1396
1397	k = l = 0;
1398	for (j = 0; j <= lc; j++) { /* loop count loop */
1399		for (i = 0; i < 64; i++) { /* send the packets */
1400			e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1401						  1024);
1402			dma_sync_single_for_device(&pdev->dev,
1403						   txdr->buffer_info[k].dma,
1404						   txdr->buffer_info[k].length,
1405						   DMA_TO_DEVICE);
1406			if (unlikely(++k == txdr->count))
1407				k = 0;
1408		}
1409		ew32(TDT, k);
1410		E1000_WRITE_FLUSH();
1411		msleep(200);
1412		time = jiffies; /* set the start time for the receive */
1413		good_cnt = 0;
1414		do { /* receive the sent packets */
1415			dma_sync_single_for_cpu(&pdev->dev,
1416						rxdr->buffer_info[l].dma,
1417						E1000_RXBUFFER_2048,
1418						DMA_FROM_DEVICE);
1419
1420			ret_val = e1000_check_lbtest_frame(
1421					rxdr->buffer_info[l].rxbuf.data +
1422					NET_SKB_PAD + NET_IP_ALIGN,
1423					1024);
1424			if (!ret_val)
1425				good_cnt++;
1426			if (unlikely(++l == rxdr->count))
1427				l = 0;
1428			/* time + 20 msecs (200 msecs on 2.4) is more than
1429			 * enough time to complete the receives, if it's
1430			 * exceeded, break and error off
1431			 */
1432		} while (good_cnt < 64 && time_after(time + 20, jiffies));
1433
1434		if (good_cnt != 64) {
1435			ret_val = 13; /* ret_val is the same as mis-compare */
1436			break;
1437		}
1438		if (time_after_eq(jiffies, time + 2)) {
1439			ret_val = 14; /* error code for time out error */
1440			break;
1441		}
1442	} /* end loop count loop */
1443	return ret_val;
1444}
1445
1446static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1447{
1448	*data = e1000_setup_desc_rings(adapter);
1449	if (*data)
1450		goto out;
1451	*data = e1000_setup_loopback_test(adapter);
1452	if (*data)
1453		goto err_loopback;
1454	*data = e1000_run_loopback_test(adapter);
1455	e1000_loopback_cleanup(adapter);
1456
1457err_loopback:
1458	e1000_free_desc_rings(adapter);
1459out:
1460	return *data;
1461}
1462
1463static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1464{
1465	struct e1000_hw *hw = &adapter->hw;
1466	*data = 0;
1467	if (hw->media_type == e1000_media_type_internal_serdes) {
1468		int i = 0;
1469
1470		hw->serdes_has_link = false;
1471
1472		/* On some blade server designs, link establishment
1473		 * could take as long as 2-3 minutes
1474		 */
1475		do {
1476			e1000_check_for_link(hw);
1477			if (hw->serdes_has_link)
1478				return *data;
1479			msleep(20);
1480		} while (i++ < 3750);
1481
1482		*data = 1;
1483	} else {
1484		e1000_check_for_link(hw);
1485		if (hw->autoneg)  /* if auto_neg is set wait for it */
1486			msleep(4000);
1487
1488		if (!(er32(STATUS) & E1000_STATUS_LU))
1489			*data = 1;
 
1490	}
1491	return *data;
1492}
1493
1494static int e1000_get_sset_count(struct net_device *netdev, int sset)
1495{
1496	switch (sset) {
1497	case ETH_SS_TEST:
1498		return E1000_TEST_LEN;
1499	case ETH_SS_STATS:
1500		return E1000_STATS_LEN;
1501	default:
1502		return -EOPNOTSUPP;
1503	}
1504}
1505
1506static void e1000_diag_test(struct net_device *netdev,
1507			    struct ethtool_test *eth_test, u64 *data)
1508{
1509	struct e1000_adapter *adapter = netdev_priv(netdev);
1510	struct e1000_hw *hw = &adapter->hw;
1511	bool if_running = netif_running(netdev);
1512
1513	set_bit(__E1000_TESTING, &adapter->flags);
1514	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1515		/* Offline tests */
1516
1517		/* save speed, duplex, autoneg settings */
1518		u16 autoneg_advertised = hw->autoneg_advertised;
1519		u8 forced_speed_duplex = hw->forced_speed_duplex;
1520		u8 autoneg = hw->autoneg;
1521
1522		e_info(hw, "offline testing starting\n");
1523
1524		/* Link test performed before hardware reset so autoneg doesn't
1525		 * interfere with test result
1526		 */
1527		if (e1000_link_test(adapter, &data[4]))
1528			eth_test->flags |= ETH_TEST_FL_FAILED;
1529
1530		if (if_running)
1531			/* indicate we're in test mode */
1532			e1000_close(netdev);
1533		else
1534			e1000_reset(adapter);
1535
1536		if (e1000_reg_test(adapter, &data[0]))
1537			eth_test->flags |= ETH_TEST_FL_FAILED;
1538
1539		e1000_reset(adapter);
1540		if (e1000_eeprom_test(adapter, &data[1]))
1541			eth_test->flags |= ETH_TEST_FL_FAILED;
1542
1543		e1000_reset(adapter);
1544		if (e1000_intr_test(adapter, &data[2]))
1545			eth_test->flags |= ETH_TEST_FL_FAILED;
1546
1547		e1000_reset(adapter);
1548		/* make sure the phy is powered up */
1549		e1000_power_up_phy(adapter);
1550		if (e1000_loopback_test(adapter, &data[3]))
1551			eth_test->flags |= ETH_TEST_FL_FAILED;
1552
1553		/* restore speed, duplex, autoneg settings */
1554		hw->autoneg_advertised = autoneg_advertised;
1555		hw->forced_speed_duplex = forced_speed_duplex;
1556		hw->autoneg = autoneg;
1557
1558		e1000_reset(adapter);
1559		clear_bit(__E1000_TESTING, &adapter->flags);
1560		if (if_running)
1561			e1000_open(netdev);
1562	} else {
1563		e_info(hw, "online testing starting\n");
1564		/* Online tests */
1565		if (e1000_link_test(adapter, &data[4]))
1566			eth_test->flags |= ETH_TEST_FL_FAILED;
1567
1568		/* Online tests aren't run; pass by default */
1569		data[0] = 0;
1570		data[1] = 0;
1571		data[2] = 0;
1572		data[3] = 0;
1573
1574		clear_bit(__E1000_TESTING, &adapter->flags);
1575	}
1576	msleep_interruptible(4 * 1000);
1577}
1578
1579static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1580			       struct ethtool_wolinfo *wol)
1581{
1582	struct e1000_hw *hw = &adapter->hw;
1583	int retval = 1; /* fail by default */
1584
1585	switch (hw->device_id) {
1586	case E1000_DEV_ID_82542:
1587	case E1000_DEV_ID_82543GC_FIBER:
1588	case E1000_DEV_ID_82543GC_COPPER:
1589	case E1000_DEV_ID_82544EI_FIBER:
1590	case E1000_DEV_ID_82546EB_QUAD_COPPER:
1591	case E1000_DEV_ID_82545EM_FIBER:
1592	case E1000_DEV_ID_82545EM_COPPER:
1593	case E1000_DEV_ID_82546GB_QUAD_COPPER:
1594	case E1000_DEV_ID_82546GB_PCIE:
1595		/* these don't support WoL at all */
1596		wol->supported = 0;
1597		break;
1598	case E1000_DEV_ID_82546EB_FIBER:
1599	case E1000_DEV_ID_82546GB_FIBER:
1600		/* Wake events not supported on port B */
1601		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1602			wol->supported = 0;
1603			break;
1604		}
1605		/* return success for non excluded adapter ports */
1606		retval = 0;
1607		break;
1608	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1609		/* quad port adapters only support WoL on port A */
1610		if (!adapter->quad_port_a) {
1611			wol->supported = 0;
1612			break;
1613		}
1614		/* return success for non excluded adapter ports */
1615		retval = 0;
1616		break;
1617	default:
1618		/* dual port cards only support WoL on port A from now on
1619		 * unless it was enabled in the eeprom for port B
1620		 * so exclude FUNC_1 ports from having WoL enabled
1621		 */
1622		if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1623		    !adapter->eeprom_wol) {
1624			wol->supported = 0;
1625			break;
1626		}
1627
1628		retval = 0;
1629	}
1630
1631	return retval;
1632}
1633
1634static void e1000_get_wol(struct net_device *netdev,
1635			  struct ethtool_wolinfo *wol)
1636{
1637	struct e1000_adapter *adapter = netdev_priv(netdev);
1638	struct e1000_hw *hw = &adapter->hw;
1639
1640	wol->supported = WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
 
1641	wol->wolopts = 0;
1642
1643	/* this function will set ->supported = 0 and return 1 if wol is not
1644	 * supported by this hardware
1645	 */
1646	if (e1000_wol_exclusion(adapter, wol) ||
1647	    !device_can_wakeup(&adapter->pdev->dev))
1648		return;
1649
1650	/* apply any specific unsupported masks here */
1651	switch (hw->device_id) {
1652	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1653		/* KSP3 does not support UCAST wake-ups */
1654		wol->supported &= ~WAKE_UCAST;
1655
1656		if (adapter->wol & E1000_WUFC_EX)
1657			e_err(drv, "Interface does not support directed "
1658			      "(unicast) frame wake-up packets\n");
1659		break;
1660	default:
1661		break;
1662	}
1663
1664	if (adapter->wol & E1000_WUFC_EX)
1665		wol->wolopts |= WAKE_UCAST;
1666	if (adapter->wol & E1000_WUFC_MC)
1667		wol->wolopts |= WAKE_MCAST;
1668	if (adapter->wol & E1000_WUFC_BC)
1669		wol->wolopts |= WAKE_BCAST;
1670	if (adapter->wol & E1000_WUFC_MAG)
1671		wol->wolopts |= WAKE_MAGIC;
1672}
1673
1674static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1675{
1676	struct e1000_adapter *adapter = netdev_priv(netdev);
1677	struct e1000_hw *hw = &adapter->hw;
1678
1679	if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1680		return -EOPNOTSUPP;
1681
1682	if (e1000_wol_exclusion(adapter, wol) ||
1683	    !device_can_wakeup(&adapter->pdev->dev))
1684		return wol->wolopts ? -EOPNOTSUPP : 0;
1685
1686	switch (hw->device_id) {
1687	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1688		if (wol->wolopts & WAKE_UCAST) {
1689			e_err(drv, "Interface does not support directed "
1690			      "(unicast) frame wake-up packets\n");
1691			return -EOPNOTSUPP;
1692		}
1693		break;
1694	default:
1695		break;
1696	}
1697
1698	/* these settings will always override what we currently have */
1699	adapter->wol = 0;
1700
1701	if (wol->wolopts & WAKE_UCAST)
1702		adapter->wol |= E1000_WUFC_EX;
1703	if (wol->wolopts & WAKE_MCAST)
1704		adapter->wol |= E1000_WUFC_MC;
1705	if (wol->wolopts & WAKE_BCAST)
1706		adapter->wol |= E1000_WUFC_BC;
1707	if (wol->wolopts & WAKE_MAGIC)
1708		adapter->wol |= E1000_WUFC_MAG;
1709
1710	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1711
1712	return 0;
1713}
1714
1715static int e1000_set_phys_id(struct net_device *netdev,
1716			     enum ethtool_phys_id_state state)
1717{
1718	struct e1000_adapter *adapter = netdev_priv(netdev);
1719	struct e1000_hw *hw = &adapter->hw;
1720
1721	switch (state) {
1722	case ETHTOOL_ID_ACTIVE:
1723		e1000_setup_led(hw);
1724		return 2;
1725
1726	case ETHTOOL_ID_ON:
1727		e1000_led_on(hw);
1728		break;
1729
1730	case ETHTOOL_ID_OFF:
1731		e1000_led_off(hw);
1732		break;
1733
1734	case ETHTOOL_ID_INACTIVE:
1735		e1000_cleanup_led(hw);
1736	}
1737
1738	return 0;
1739}
1740
1741static int e1000_get_coalesce(struct net_device *netdev,
1742			      struct ethtool_coalesce *ec)
1743{
1744	struct e1000_adapter *adapter = netdev_priv(netdev);
1745
1746	if (adapter->hw.mac_type < e1000_82545)
1747		return -EOPNOTSUPP;
1748
1749	if (adapter->itr_setting <= 4)
1750		ec->rx_coalesce_usecs = adapter->itr_setting;
1751	else
1752		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1753
1754	return 0;
1755}
1756
1757static int e1000_set_coalesce(struct net_device *netdev,
1758			      struct ethtool_coalesce *ec)
1759{
1760	struct e1000_adapter *adapter = netdev_priv(netdev);
1761	struct e1000_hw *hw = &adapter->hw;
1762
1763	if (hw->mac_type < e1000_82545)
1764		return -EOPNOTSUPP;
1765
1766	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1767	    ((ec->rx_coalesce_usecs > 4) &&
1768	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1769	    (ec->rx_coalesce_usecs == 2))
1770		return -EINVAL;
1771
1772	if (ec->rx_coalesce_usecs == 4) {
1773		adapter->itr = adapter->itr_setting = 4;
1774	} else if (ec->rx_coalesce_usecs <= 3) {
1775		adapter->itr = 20000;
1776		adapter->itr_setting = ec->rx_coalesce_usecs;
1777	} else {
1778		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1779		adapter->itr_setting = adapter->itr & ~3;
1780	}
1781
1782	if (adapter->itr_setting != 0)
1783		ew32(ITR, 1000000000 / (adapter->itr * 256));
1784	else
1785		ew32(ITR, 0);
1786
1787	return 0;
1788}
1789
1790static int e1000_nway_reset(struct net_device *netdev)
1791{
1792	struct e1000_adapter *adapter = netdev_priv(netdev);
1793
1794	if (netif_running(netdev))
1795		e1000_reinit_locked(adapter);
1796	return 0;
1797}
1798
1799static void e1000_get_ethtool_stats(struct net_device *netdev,
1800				    struct ethtool_stats *stats, u64 *data)
1801{
1802	struct e1000_adapter *adapter = netdev_priv(netdev);
1803	int i;
1804	const struct e1000_stats *stat = e1000_gstrings_stats;
1805
1806	e1000_update_stats(adapter);
1807	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++, stat++) {
1808		char *p;
1809
1810		switch (stat->type) {
1811		case NETDEV_STATS:
1812			p = (char *)netdev + stat->stat_offset;
 
1813			break;
1814		case E1000_STATS:
1815			p = (char *)adapter + stat->stat_offset;
 
1816			break;
1817		default:
1818			netdev_WARN_ONCE(netdev, "Invalid E1000 stat type: %u index %d\n",
1819					 stat->type, i);
1820			continue;
1821		}
1822
1823		if (stat->sizeof_stat == sizeof(u64))
1824			data[i] = *(u64 *)p;
1825		else
1826			data[i] = *(u32 *)p;
1827	}
1828/* BUG_ON(i != E1000_STATS_LEN); */
1829}
1830
1831static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1832			      u8 *data)
1833{
1834	u8 *p = data;
1835	int i;
1836
1837	switch (stringset) {
1838	case ETH_SS_TEST:
1839		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
 
1840		break;
1841	case ETH_SS_STATS:
1842		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1843			memcpy(p, e1000_gstrings_stats[i].stat_string,
1844			       ETH_GSTRING_LEN);
1845			p += ETH_GSTRING_LEN;
1846		}
1847		/* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1848		break;
1849	}
1850}
1851
1852static const struct ethtool_ops e1000_ethtool_ops = {
1853	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS,
 
1854	.get_drvinfo		= e1000_get_drvinfo,
1855	.get_regs_len		= e1000_get_regs_len,
1856	.get_regs		= e1000_get_regs,
1857	.get_wol		= e1000_get_wol,
1858	.set_wol		= e1000_set_wol,
1859	.get_msglevel		= e1000_get_msglevel,
1860	.set_msglevel		= e1000_set_msglevel,
1861	.nway_reset		= e1000_nway_reset,
1862	.get_link		= e1000_get_link,
1863	.get_eeprom_len		= e1000_get_eeprom_len,
1864	.get_eeprom		= e1000_get_eeprom,
1865	.set_eeprom		= e1000_set_eeprom,
1866	.get_ringparam		= e1000_get_ringparam,
1867	.set_ringparam		= e1000_set_ringparam,
1868	.get_pauseparam		= e1000_get_pauseparam,
1869	.set_pauseparam		= e1000_set_pauseparam,
1870	.self_test		= e1000_diag_test,
1871	.get_strings		= e1000_get_strings,
1872	.set_phys_id		= e1000_set_phys_id,
1873	.get_ethtool_stats	= e1000_get_ethtool_stats,
1874	.get_sset_count		= e1000_get_sset_count,
1875	.get_coalesce		= e1000_get_coalesce,
1876	.set_coalesce		= e1000_set_coalesce,
1877	.get_ts_info		= ethtool_op_get_ts_info,
1878	.get_link_ksettings	= e1000_get_link_ksettings,
1879	.set_link_ksettings	= e1000_set_link_ksettings,
1880};
1881
1882void e1000_set_ethtool_ops(struct net_device *netdev)
1883{
1884	netdev->ethtool_ops = &e1000_ethtool_ops;
1885}