Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Microchip KSZ9477 switch driver main logic
   4 *
   5 * Copyright (C) 2017-2019 Microchip Technology Inc.
   6 */
   7
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/iopoll.h>
  11#include <linux/platform_data/microchip-ksz.h>
  12#include <linux/phy.h>
  13#include <linux/if_bridge.h>
  14#include <net/dsa.h>
  15#include <net/switchdev.h>
  16
  17#include "ksz9477_reg.h"
  18#include "ksz_common.h"
  19
  20/* Used with variable features to indicate capabilities. */
  21#define GBIT_SUPPORT			BIT(0)
  22#define NEW_XMII			BIT(1)
  23#define IS_9893				BIT(2)
  24
  25static const struct {
  26	int index;
  27	char string[ETH_GSTRING_LEN];
  28} ksz9477_mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
  29	{ 0x00, "rx_hi" },
  30	{ 0x01, "rx_undersize" },
  31	{ 0x02, "rx_fragments" },
  32	{ 0x03, "rx_oversize" },
  33	{ 0x04, "rx_jabbers" },
  34	{ 0x05, "rx_symbol_err" },
  35	{ 0x06, "rx_crc_err" },
  36	{ 0x07, "rx_align_err" },
  37	{ 0x08, "rx_mac_ctrl" },
  38	{ 0x09, "rx_pause" },
  39	{ 0x0A, "rx_bcast" },
  40	{ 0x0B, "rx_mcast" },
  41	{ 0x0C, "rx_ucast" },
  42	{ 0x0D, "rx_64_or_less" },
  43	{ 0x0E, "rx_65_127" },
  44	{ 0x0F, "rx_128_255" },
  45	{ 0x10, "rx_256_511" },
  46	{ 0x11, "rx_512_1023" },
  47	{ 0x12, "rx_1024_1522" },
  48	{ 0x13, "rx_1523_2000" },
  49	{ 0x14, "rx_2001" },
  50	{ 0x15, "tx_hi" },
  51	{ 0x16, "tx_late_col" },
  52	{ 0x17, "tx_pause" },
  53	{ 0x18, "tx_bcast" },
  54	{ 0x19, "tx_mcast" },
  55	{ 0x1A, "tx_ucast" },
  56	{ 0x1B, "tx_deferred" },
  57	{ 0x1C, "tx_total_col" },
  58	{ 0x1D, "tx_exc_col" },
  59	{ 0x1E, "tx_single_col" },
  60	{ 0x1F, "tx_mult_col" },
  61	{ 0x80, "rx_total" },
  62	{ 0x81, "tx_total" },
  63	{ 0x82, "rx_discards" },
  64	{ 0x83, "tx_discards" },
  65};
  66
  67static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
  68{
  69	regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
  70}
  71
  72static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
  73			 bool set)
  74{
  75	regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
  76			   bits, set ? bits : 0);
  77}
  78
  79static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
  80{
  81	regmap_update_bits(dev->regmap[2], addr, bits, set ? bits : 0);
  82}
  83
  84static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
  85			       u32 bits, bool set)
  86{
  87	regmap_update_bits(dev->regmap[2], PORT_CTRL_ADDR(port, offset),
  88			   bits, set ? bits : 0);
  89}
  90
  91static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev)
  92{
  93	unsigned int val;
  94
  95	return regmap_read_poll_timeout(dev->regmap[0], REG_SW_VLAN_CTRL,
  96					val, !(val & VLAN_START), 10, 1000);
  97}
  98
  99static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
 100				  u32 *vlan_table)
 101{
 102	int ret;
 103
 104	mutex_lock(&dev->vlan_mutex);
 105
 106	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
 107	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
 108
 109	/* wait to be cleared */
 110	ret = ksz9477_wait_vlan_ctrl_ready(dev);
 111	if (ret) {
 112		dev_dbg(dev->dev, "Failed to read vlan table\n");
 113		goto exit;
 114	}
 115
 116	ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
 117	ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
 118	ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
 119
 120	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
 121
 122exit:
 123	mutex_unlock(&dev->vlan_mutex);
 124
 125	return ret;
 126}
 127
 128static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
 129				  u32 *vlan_table)
 130{
 131	int ret;
 132
 133	mutex_lock(&dev->vlan_mutex);
 134
 135	ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
 136	ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
 137	ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
 138
 139	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
 140	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
 141
 142	/* wait to be cleared */
 143	ret = ksz9477_wait_vlan_ctrl_ready(dev);
 144	if (ret) {
 145		dev_dbg(dev->dev, "Failed to write vlan table\n");
 146		goto exit;
 147	}
 148
 149	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
 150
 151	/* update vlan cache table */
 152	dev->vlan_cache[vid].table[0] = vlan_table[0];
 153	dev->vlan_cache[vid].table[1] = vlan_table[1];
 154	dev->vlan_cache[vid].table[2] = vlan_table[2];
 155
 156exit:
 157	mutex_unlock(&dev->vlan_mutex);
 158
 159	return ret;
 160}
 161
 162static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
 163{
 164	ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
 165	ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
 166	ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
 167	ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
 168}
 169
 170static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
 171{
 172	ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
 173	ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
 174	ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
 175	ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
 176}
 177
 178static int ksz9477_wait_alu_ready(struct ksz_device *dev)
 179{
 180	unsigned int val;
 181
 182	return regmap_read_poll_timeout(dev->regmap[2], REG_SW_ALU_CTRL__4,
 183					val, !(val & ALU_START), 10, 1000);
 184}
 185
 186static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev)
 187{
 188	unsigned int val;
 189
 190	return regmap_read_poll_timeout(dev->regmap[2],
 191					REG_SW_ALU_STAT_CTRL__4,
 192					val, !(val & ALU_STAT_START),
 193					10, 1000);
 194}
 195
 196static int ksz9477_reset_switch(struct ksz_device *dev)
 197{
 198	u8 data8;
 199	u32 data32;
 200
 201	/* reset switch */
 202	ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
 203
 204	/* turn off SPI DO Edge select */
 205	regmap_update_bits(dev->regmap[0], REG_SW_GLOBAL_SERIAL_CTRL_0,
 206			   SPI_AUTO_EDGE_DETECTION, 0);
 207
 208	/* default configuration */
 209	ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
 210	data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
 211	      SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
 212	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
 213
 214	/* disable interrupts */
 215	ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
 216	ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
 217	ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
 218
 219	/* set broadcast storm protection 10% rate */
 220	regmap_update_bits(dev->regmap[1], REG_SW_MAC_CTRL_2,
 221			   BROADCAST_STORM_RATE,
 222			   (BROADCAST_STORM_VALUE *
 223			   BROADCAST_STORM_PROT_RATE) / 100);
 224
 225	if (dev->synclko_125)
 226		ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1,
 227			   SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ);
 228
 229	return 0;
 230}
 231
 232static void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr,
 233			      u64 *cnt)
 234{
 235	struct ksz_port *p = &dev->ports[port];
 236	unsigned int val;
 237	u32 data;
 238	int ret;
 239
 240	/* retain the flush/freeze bit */
 241	data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
 242	data |= MIB_COUNTER_READ;
 243	data |= (addr << MIB_COUNTER_INDEX_S);
 244	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
 245
 246	ret = regmap_read_poll_timeout(dev->regmap[2],
 247			PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4),
 248			val, !(val & MIB_COUNTER_READ), 10, 1000);
 249	/* failed to read MIB. get out of loop */
 250	if (ret) {
 251		dev_dbg(dev->dev, "Failed to get MIB\n");
 252		return;
 253	}
 254
 255	/* count resets upon read */
 256	ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
 257	*cnt += data;
 258}
 259
 260static void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
 261			      u64 *dropped, u64 *cnt)
 262{
 263	addr = ksz9477_mib_names[addr].index;
 264	ksz9477_r_mib_cnt(dev, port, addr, cnt);
 265}
 266
 267static void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
 268{
 269	u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
 270	struct ksz_port *p = &dev->ports[port];
 271
 272	/* enable/disable the port for flush/freeze function */
 273	mutex_lock(&p->mib.cnt_mutex);
 274	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);
 275
 276	/* used by MIB counter reading code to know freeze is enabled */
 277	p->freeze = freeze;
 278	mutex_unlock(&p->mib.cnt_mutex);
 279}
 280
 281static void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
 282{
 283	struct ksz_port_mib *mib = &dev->ports[port].mib;
 284
 285	/* flush all enabled port MIB counters */
 286	mutex_lock(&mib->cnt_mutex);
 287	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
 288		     MIB_COUNTER_FLUSH_FREEZE);
 289	ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
 290	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
 291	mutex_unlock(&mib->cnt_mutex);
 292
 293	mib->cnt_ptr = 0;
 294	memset(mib->counters, 0, dev->mib_cnt * sizeof(u64));
 295}
 296
 297static enum dsa_tag_protocol ksz9477_get_tag_protocol(struct dsa_switch *ds,
 298						      int port,
 299						      enum dsa_tag_protocol mp)
 300{
 301	enum dsa_tag_protocol proto = DSA_TAG_PROTO_KSZ9477;
 302	struct ksz_device *dev = ds->priv;
 303
 304	if (dev->features & IS_9893)
 305		proto = DSA_TAG_PROTO_KSZ9893;
 306	return proto;
 307}
 308
 309static int ksz9477_phy_read16(struct dsa_switch *ds, int addr, int reg)
 310{
 311	struct ksz_device *dev = ds->priv;
 312	u16 val = 0xffff;
 313
 314	/* No real PHY after this. Simulate the PHY.
 315	 * A fixed PHY can be setup in the device tree, but this function is
 316	 * still called for that port during initialization.
 317	 * For RGMII PHY there is no way to access it so the fixed PHY should
 318	 * be used.  For SGMII PHY the supporting code will be added later.
 319	 */
 320	if (addr >= dev->phy_port_cnt) {
 321		struct ksz_port *p = &dev->ports[addr];
 322
 323		switch (reg) {
 324		case MII_BMCR:
 325			val = 0x1140;
 326			break;
 327		case MII_BMSR:
 328			val = 0x796d;
 329			break;
 330		case MII_PHYSID1:
 331			val = 0x0022;
 332			break;
 333		case MII_PHYSID2:
 334			val = 0x1631;
 335			break;
 336		case MII_ADVERTISE:
 337			val = 0x05e1;
 338			break;
 339		case MII_LPA:
 340			val = 0xc5e1;
 341			break;
 342		case MII_CTRL1000:
 343			val = 0x0700;
 344			break;
 345		case MII_STAT1000:
 346			if (p->phydev.speed == SPEED_1000)
 347				val = 0x3800;
 348			else
 349				val = 0;
 350			break;
 351		}
 352	} else {
 353		ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
 354	}
 355
 356	return val;
 357}
 358
 359static int ksz9477_phy_write16(struct dsa_switch *ds, int addr, int reg,
 360			       u16 val)
 361{
 362	struct ksz_device *dev = ds->priv;
 363
 364	/* No real PHY after this. */
 365	if (addr >= dev->phy_port_cnt)
 366		return 0;
 367
 368	/* No gigabit support.  Do not write to this register. */
 369	if (!(dev->features & GBIT_SUPPORT) && reg == MII_CTRL1000)
 370		return 0;
 371	ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
 372
 373	return 0;
 374}
 375
 376static void ksz9477_get_strings(struct dsa_switch *ds, int port,
 377				u32 stringset, uint8_t *buf)
 378{
 379	int i;
 380
 381	if (stringset != ETH_SS_STATS)
 382		return;
 383
 384	for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
 385		memcpy(buf + i * ETH_GSTRING_LEN, ksz9477_mib_names[i].string,
 386		       ETH_GSTRING_LEN);
 387	}
 388}
 389
 390static void ksz9477_cfg_port_member(struct ksz_device *dev, int port,
 391				    u8 member)
 392{
 393	ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
 394	dev->ports[port].member = member;
 395}
 396
 397static void ksz9477_port_stp_state_set(struct dsa_switch *ds, int port,
 398				       u8 state)
 399{
 400	struct ksz_device *dev = ds->priv;
 401	struct ksz_port *p = &dev->ports[port];
 402	u8 data;
 403	int member = -1;
 404	int forward = dev->member;
 405
 406	ksz_pread8(dev, port, P_STP_CTRL, &data);
 407	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
 408
 409	switch (state) {
 410	case BR_STATE_DISABLED:
 411		data |= PORT_LEARN_DISABLE;
 412		if (port != dev->cpu_port)
 413			member = 0;
 414		break;
 415	case BR_STATE_LISTENING:
 416		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
 417		if (port != dev->cpu_port &&
 418		    p->stp_state == BR_STATE_DISABLED)
 419			member = dev->host_mask | p->vid_member;
 420		break;
 421	case BR_STATE_LEARNING:
 422		data |= PORT_RX_ENABLE;
 423		break;
 424	case BR_STATE_FORWARDING:
 425		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
 426
 427		/* This function is also used internally. */
 428		if (port == dev->cpu_port)
 429			break;
 430
 431		member = dev->host_mask | p->vid_member;
 432		mutex_lock(&dev->dev_mutex);
 433
 434		/* Port is a member of a bridge. */
 435		if (dev->br_member & (1 << port)) {
 436			dev->member |= (1 << port);
 437			member = dev->member;
 438		}
 439		mutex_unlock(&dev->dev_mutex);
 440		break;
 441	case BR_STATE_BLOCKING:
 442		data |= PORT_LEARN_DISABLE;
 443		if (port != dev->cpu_port &&
 444		    p->stp_state == BR_STATE_DISABLED)
 445			member = dev->host_mask | p->vid_member;
 446		break;
 447	default:
 448		dev_err(ds->dev, "invalid STP state: %d\n", state);
 449		return;
 450	}
 451
 452	ksz_pwrite8(dev, port, P_STP_CTRL, data);
 453	p->stp_state = state;
 454	mutex_lock(&dev->dev_mutex);
 455	/* Port membership may share register with STP state. */
 456	if (member >= 0 && member != p->member)
 457		ksz9477_cfg_port_member(dev, port, (u8)member);
 458
 459	/* Check if forwarding needs to be updated. */
 460	if (state != BR_STATE_FORWARDING) {
 461		if (dev->br_member & (1 << port))
 462			dev->member &= ~(1 << port);
 463	}
 464
 465	/* When topology has changed the function ksz_update_port_member
 466	 * should be called to modify port forwarding behavior.
 467	 */
 468	if (forward != dev->member)
 469		ksz_update_port_member(dev, port);
 470	mutex_unlock(&dev->dev_mutex);
 471}
 472
 473static void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
 474{
 475	u8 data;
 476
 477	regmap_update_bits(dev->regmap[0], REG_SW_LUE_CTRL_2,
 478			   SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S,
 479			   SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
 480
 481	if (port < dev->mib_port_cnt) {
 482		/* flush individual port */
 483		ksz_pread8(dev, port, P_STP_CTRL, &data);
 484		if (!(data & PORT_LEARN_DISABLE))
 485			ksz_pwrite8(dev, port, P_STP_CTRL,
 486				    data | PORT_LEARN_DISABLE);
 487		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
 488		ksz_pwrite8(dev, port, P_STP_CTRL, data);
 489	} else {
 490		/* flush all */
 491		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
 492	}
 493}
 494
 495static int ksz9477_port_vlan_filtering(struct dsa_switch *ds, int port,
 496				       bool flag)
 497{
 498	struct ksz_device *dev = ds->priv;
 499
 500	if (flag) {
 501		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
 502			     PORT_VLAN_LOOKUP_VID_0, true);
 503		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
 504	} else {
 505		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
 506		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
 507			     PORT_VLAN_LOOKUP_VID_0, false);
 508	}
 509
 510	return 0;
 511}
 512
 513static void ksz9477_port_vlan_add(struct dsa_switch *ds, int port,
 514				  const struct switchdev_obj_port_vlan *vlan)
 515{
 516	struct ksz_device *dev = ds->priv;
 517	u32 vlan_table[3];
 518	u16 vid;
 519	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
 520
 521	for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
 522		if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
 523			dev_dbg(dev->dev, "Failed to get vlan table\n");
 524			return;
 525		}
 526
 527		vlan_table[0] = VLAN_VALID | (vid & VLAN_FID_M);
 528		if (untagged)
 529			vlan_table[1] |= BIT(port);
 530		else
 531			vlan_table[1] &= ~BIT(port);
 532		vlan_table[1] &= ~(BIT(dev->cpu_port));
 533
 534		vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
 535
 536		if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
 537			dev_dbg(dev->dev, "Failed to set vlan table\n");
 538			return;
 539		}
 540
 541		/* change PVID */
 542		if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
 543			ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vid);
 544	}
 545}
 546
 547static int ksz9477_port_vlan_del(struct dsa_switch *ds, int port,
 548				 const struct switchdev_obj_port_vlan *vlan)
 549{
 550	struct ksz_device *dev = ds->priv;
 551	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
 552	u32 vlan_table[3];
 553	u16 vid;
 554	u16 pvid;
 555
 556	ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
 557	pvid = pvid & 0xFFF;
 558
 559	for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
 560		if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
 561			dev_dbg(dev->dev, "Failed to get vlan table\n");
 562			return -ETIMEDOUT;
 563		}
 564
 565		vlan_table[2] &= ~BIT(port);
 566
 567		if (pvid == vid)
 568			pvid = 1;
 569
 570		if (untagged)
 571			vlan_table[1] &= ~BIT(port);
 572
 573		if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
 574			dev_dbg(dev->dev, "Failed to set vlan table\n");
 575			return -ETIMEDOUT;
 576		}
 577	}
 578
 579	ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
 580
 581	return 0;
 582}
 583
 584static int ksz9477_port_fdb_add(struct dsa_switch *ds, int port,
 585				const unsigned char *addr, u16 vid)
 586{
 587	struct ksz_device *dev = ds->priv;
 588	u32 alu_table[4];
 589	u32 data;
 590	int ret = 0;
 591
 592	mutex_lock(&dev->alu_mutex);
 593
 594	/* find any entry with mac & vid */
 595	data = vid << ALU_FID_INDEX_S;
 596	data |= ((addr[0] << 8) | addr[1]);
 597	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
 598
 599	data = ((addr[2] << 24) | (addr[3] << 16));
 600	data |= ((addr[4] << 8) | addr[5]);
 601	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
 602
 603	/* start read operation */
 604	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
 605
 606	/* wait to be finished */
 607	ret = ksz9477_wait_alu_ready(dev);
 608	if (ret) {
 609		dev_dbg(dev->dev, "Failed to read ALU\n");
 610		goto exit;
 611	}
 612
 613	/* read ALU entry */
 614	ksz9477_read_table(dev, alu_table);
 615
 616	/* update ALU entry */
 617	alu_table[0] = ALU_V_STATIC_VALID;
 618	alu_table[1] |= BIT(port);
 619	if (vid)
 620		alu_table[1] |= ALU_V_USE_FID;
 621	alu_table[2] = (vid << ALU_V_FID_S);
 622	alu_table[2] |= ((addr[0] << 8) | addr[1]);
 623	alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
 624	alu_table[3] |= ((addr[4] << 8) | addr[5]);
 625
 626	ksz9477_write_table(dev, alu_table);
 627
 628	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
 629
 630	/* wait to be finished */
 631	ret = ksz9477_wait_alu_ready(dev);
 632	if (ret)
 633		dev_dbg(dev->dev, "Failed to write ALU\n");
 634
 635exit:
 636	mutex_unlock(&dev->alu_mutex);
 637
 638	return ret;
 639}
 640
 641static int ksz9477_port_fdb_del(struct dsa_switch *ds, int port,
 642				const unsigned char *addr, u16 vid)
 643{
 644	struct ksz_device *dev = ds->priv;
 645	u32 alu_table[4];
 646	u32 data;
 647	int ret = 0;
 648
 649	mutex_lock(&dev->alu_mutex);
 650
 651	/* read any entry with mac & vid */
 652	data = vid << ALU_FID_INDEX_S;
 653	data |= ((addr[0] << 8) | addr[1]);
 654	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
 655
 656	data = ((addr[2] << 24) | (addr[3] << 16));
 657	data |= ((addr[4] << 8) | addr[5]);
 658	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
 659
 660	/* start read operation */
 661	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
 662
 663	/* wait to be finished */
 664	ret = ksz9477_wait_alu_ready(dev);
 665	if (ret) {
 666		dev_dbg(dev->dev, "Failed to read ALU\n");
 667		goto exit;
 668	}
 669
 670	ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
 671	if (alu_table[0] & ALU_V_STATIC_VALID) {
 672		ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
 673		ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
 674		ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
 675
 676		/* clear forwarding port */
 677		alu_table[2] &= ~BIT(port);
 678
 679		/* if there is no port to forward, clear table */
 680		if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
 681			alu_table[0] = 0;
 682			alu_table[1] = 0;
 683			alu_table[2] = 0;
 684			alu_table[3] = 0;
 685		}
 686	} else {
 687		alu_table[0] = 0;
 688		alu_table[1] = 0;
 689		alu_table[2] = 0;
 690		alu_table[3] = 0;
 691	}
 692
 693	ksz9477_write_table(dev, alu_table);
 694
 695	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
 696
 697	/* wait to be finished */
 698	ret = ksz9477_wait_alu_ready(dev);
 699	if (ret)
 700		dev_dbg(dev->dev, "Failed to write ALU\n");
 701
 702exit:
 703	mutex_unlock(&dev->alu_mutex);
 704
 705	return ret;
 706}
 707
 708static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
 709{
 710	alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
 711	alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
 712	alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
 713	alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
 714			ALU_V_PRIO_AGE_CNT_M;
 715	alu->mstp = alu_table[0] & ALU_V_MSTP_M;
 716
 717	alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
 718	alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
 719	alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
 720
 721	alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
 722
 723	alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
 724	alu->mac[1] = alu_table[2] & 0xFF;
 725	alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
 726	alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
 727	alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
 728	alu->mac[5] = alu_table[3] & 0xFF;
 729}
 730
 731static int ksz9477_port_fdb_dump(struct dsa_switch *ds, int port,
 732				 dsa_fdb_dump_cb_t *cb, void *data)
 733{
 734	struct ksz_device *dev = ds->priv;
 735	int ret = 0;
 736	u32 ksz_data;
 737	u32 alu_table[4];
 738	struct alu_struct alu;
 739	int timeout;
 740
 741	mutex_lock(&dev->alu_mutex);
 742
 743	/* start ALU search */
 744	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
 745
 746	do {
 747		timeout = 1000;
 748		do {
 749			ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
 750			if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
 751				break;
 752			usleep_range(1, 10);
 753		} while (timeout-- > 0);
 754
 755		if (!timeout) {
 756			dev_dbg(dev->dev, "Failed to search ALU\n");
 757			ret = -ETIMEDOUT;
 758			goto exit;
 759		}
 760
 761		/* read ALU table */
 762		ksz9477_read_table(dev, alu_table);
 763
 764		ksz9477_convert_alu(&alu, alu_table);
 765
 766		if (alu.port_forward & BIT(port)) {
 767			ret = cb(alu.mac, alu.fid, alu.is_static, data);
 768			if (ret)
 769				goto exit;
 770		}
 771	} while (ksz_data & ALU_START);
 772
 773exit:
 774
 775	/* stop ALU search */
 776	ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
 777
 778	mutex_unlock(&dev->alu_mutex);
 779
 780	return ret;
 781}
 782
 783static void ksz9477_port_mdb_add(struct dsa_switch *ds, int port,
 784				 const struct switchdev_obj_port_mdb *mdb)
 785{
 786	struct ksz_device *dev = ds->priv;
 787	u32 static_table[4];
 788	u32 data;
 789	int index;
 790	u32 mac_hi, mac_lo;
 791
 792	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
 793	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
 794	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
 795
 796	mutex_lock(&dev->alu_mutex);
 797
 798	for (index = 0; index < dev->num_statics; index++) {
 799		/* find empty slot first */
 800		data = (index << ALU_STAT_INDEX_S) |
 801			ALU_STAT_READ | ALU_STAT_START;
 802		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
 803
 804		/* wait to be finished */
 805		if (ksz9477_wait_alu_sta_ready(dev)) {
 806			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
 807			goto exit;
 808		}
 809
 810		/* read ALU static table */
 811		ksz9477_read_table(dev, static_table);
 812
 813		if (static_table[0] & ALU_V_STATIC_VALID) {
 814			/* check this has same vid & mac address */
 815			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
 816			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
 817			    static_table[3] == mac_lo) {
 818				/* found matching one */
 819				break;
 820			}
 821		} else {
 822			/* found empty one */
 823			break;
 824		}
 825	}
 826
 827	/* no available entry */
 828	if (index == dev->num_statics)
 829		goto exit;
 830
 831	/* add entry */
 832	static_table[0] = ALU_V_STATIC_VALID;
 833	static_table[1] |= BIT(port);
 834	if (mdb->vid)
 835		static_table[1] |= ALU_V_USE_FID;
 836	static_table[2] = (mdb->vid << ALU_V_FID_S);
 837	static_table[2] |= mac_hi;
 838	static_table[3] = mac_lo;
 839
 840	ksz9477_write_table(dev, static_table);
 841
 842	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
 843	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
 844
 845	/* wait to be finished */
 846	if (ksz9477_wait_alu_sta_ready(dev))
 847		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
 848
 849exit:
 850	mutex_unlock(&dev->alu_mutex);
 851}
 852
 853static int ksz9477_port_mdb_del(struct dsa_switch *ds, int port,
 854				const struct switchdev_obj_port_mdb *mdb)
 855{
 856	struct ksz_device *dev = ds->priv;
 857	u32 static_table[4];
 858	u32 data;
 859	int index;
 860	int ret = 0;
 861	u32 mac_hi, mac_lo;
 862
 863	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
 864	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
 865	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
 866
 867	mutex_lock(&dev->alu_mutex);
 868
 869	for (index = 0; index < dev->num_statics; index++) {
 870		/* find empty slot first */
 871		data = (index << ALU_STAT_INDEX_S) |
 872			ALU_STAT_READ | ALU_STAT_START;
 873		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
 874
 875		/* wait to be finished */
 876		ret = ksz9477_wait_alu_sta_ready(dev);
 877		if (ret) {
 878			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
 879			goto exit;
 880		}
 881
 882		/* read ALU static table */
 883		ksz9477_read_table(dev, static_table);
 884
 885		if (static_table[0] & ALU_V_STATIC_VALID) {
 886			/* check this has same vid & mac address */
 887
 888			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
 889			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
 890			    static_table[3] == mac_lo) {
 891				/* found matching one */
 892				break;
 893			}
 894		}
 895	}
 896
 897	/* no available entry */
 898	if (index == dev->num_statics)
 899		goto exit;
 900
 901	/* clear port */
 902	static_table[1] &= ~BIT(port);
 903
 904	if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
 905		/* delete entry */
 906		static_table[0] = 0;
 907		static_table[1] = 0;
 908		static_table[2] = 0;
 909		static_table[3] = 0;
 910	}
 911
 912	ksz9477_write_table(dev, static_table);
 913
 914	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
 915	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
 916
 917	/* wait to be finished */
 918	ret = ksz9477_wait_alu_sta_ready(dev);
 919	if (ret)
 920		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
 921
 922exit:
 923	mutex_unlock(&dev->alu_mutex);
 924
 925	return ret;
 926}
 927
 928static int ksz9477_port_mirror_add(struct dsa_switch *ds, int port,
 929				   struct dsa_mall_mirror_tc_entry *mirror,
 930				   bool ingress)
 931{
 932	struct ksz_device *dev = ds->priv;
 933
 934	if (ingress)
 935		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
 936	else
 937		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
 938
 939	ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
 940
 941	/* configure mirror port */
 942	ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
 943		     PORT_MIRROR_SNIFFER, true);
 944
 945	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
 946
 947	return 0;
 948}
 949
 950static void ksz9477_port_mirror_del(struct dsa_switch *ds, int port,
 951				    struct dsa_mall_mirror_tc_entry *mirror)
 952{
 953	struct ksz_device *dev = ds->priv;
 954	u8 data;
 955
 956	if (mirror->ingress)
 957		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
 958	else
 959		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
 960
 961	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
 962
 963	if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX)))
 964		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
 965			     PORT_MIRROR_SNIFFER, false);
 966}
 967
 968static bool ksz9477_get_gbit(struct ksz_device *dev, u8 data)
 969{
 970	bool gbit;
 971
 972	if (dev->features & NEW_XMII)
 973		gbit = !(data & PORT_MII_NOT_1GBIT);
 974	else
 975		gbit = !!(data & PORT_MII_1000MBIT_S1);
 976	return gbit;
 977}
 978
 979static void ksz9477_set_gbit(struct ksz_device *dev, bool gbit, u8 *data)
 980{
 981	if (dev->features & NEW_XMII) {
 982		if (gbit)
 983			*data &= ~PORT_MII_NOT_1GBIT;
 984		else
 985			*data |= PORT_MII_NOT_1GBIT;
 986	} else {
 987		if (gbit)
 988			*data |= PORT_MII_1000MBIT_S1;
 989		else
 990			*data &= ~PORT_MII_1000MBIT_S1;
 991	}
 992}
 993
 994static int ksz9477_get_xmii(struct ksz_device *dev, u8 data)
 995{
 996	int mode;
 997
 998	if (dev->features & NEW_XMII) {
 999		switch (data & PORT_MII_SEL_M) {
1000		case PORT_MII_SEL:
1001			mode = 0;
1002			break;
1003		case PORT_RMII_SEL:
1004			mode = 1;
1005			break;
1006		case PORT_GMII_SEL:
1007			mode = 2;
1008			break;
1009		default:
1010			mode = 3;
1011		}
1012	} else {
1013		switch (data & PORT_MII_SEL_M) {
1014		case PORT_MII_SEL_S1:
1015			mode = 0;
1016			break;
1017		case PORT_RMII_SEL_S1:
1018			mode = 1;
1019			break;
1020		case PORT_GMII_SEL_S1:
1021			mode = 2;
1022			break;
1023		default:
1024			mode = 3;
1025		}
1026	}
1027	return mode;
1028}
1029
1030static void ksz9477_set_xmii(struct ksz_device *dev, int mode, u8 *data)
1031{
1032	u8 xmii;
1033
1034	if (dev->features & NEW_XMII) {
1035		switch (mode) {
1036		case 0:
1037			xmii = PORT_MII_SEL;
1038			break;
1039		case 1:
1040			xmii = PORT_RMII_SEL;
1041			break;
1042		case 2:
1043			xmii = PORT_GMII_SEL;
1044			break;
1045		default:
1046			xmii = PORT_RGMII_SEL;
1047			break;
1048		}
1049	} else {
1050		switch (mode) {
1051		case 0:
1052			xmii = PORT_MII_SEL_S1;
1053			break;
1054		case 1:
1055			xmii = PORT_RMII_SEL_S1;
1056			break;
1057		case 2:
1058			xmii = PORT_GMII_SEL_S1;
1059			break;
1060		default:
1061			xmii = PORT_RGMII_SEL_S1;
1062			break;
1063		}
1064	}
1065	*data &= ~PORT_MII_SEL_M;
1066	*data |= xmii;
1067}
1068
1069static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
1070{
1071	phy_interface_t interface;
1072	bool gbit;
1073	int mode;
1074	u8 data8;
1075
1076	if (port < dev->phy_port_cnt)
1077		return PHY_INTERFACE_MODE_NA;
1078	ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1079	gbit = ksz9477_get_gbit(dev, data8);
1080	mode = ksz9477_get_xmii(dev, data8);
1081	switch (mode) {
1082	case 2:
1083		interface = PHY_INTERFACE_MODE_GMII;
1084		if (gbit)
1085			break;
1086		fallthrough;
1087	case 0:
1088		interface = PHY_INTERFACE_MODE_MII;
1089		break;
1090	case 1:
1091		interface = PHY_INTERFACE_MODE_RMII;
1092		break;
1093	default:
1094		interface = PHY_INTERFACE_MODE_RGMII;
1095		if (data8 & PORT_RGMII_ID_EG_ENABLE)
1096			interface = PHY_INTERFACE_MODE_RGMII_TXID;
1097		if (data8 & PORT_RGMII_ID_IG_ENABLE) {
1098			interface = PHY_INTERFACE_MODE_RGMII_RXID;
1099			if (data8 & PORT_RGMII_ID_EG_ENABLE)
1100				interface = PHY_INTERFACE_MODE_RGMII_ID;
1101		}
1102		break;
1103	}
1104	return interface;
1105}
1106
1107static void ksz9477_port_mmd_write(struct ksz_device *dev, int port,
1108				   u8 dev_addr, u16 reg_addr, u16 val)
1109{
1110	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1111		     MMD_SETUP(PORT_MMD_OP_INDEX, dev_addr));
1112	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, reg_addr);
1113	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1114		     MMD_SETUP(PORT_MMD_OP_DATA_NO_INCR, dev_addr));
1115	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, val);
1116}
1117
1118static void ksz9477_phy_errata_setup(struct ksz_device *dev, int port)
1119{
1120	/* Apply PHY settings to address errata listed in
1121	 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
1122	 * Silicon Errata and Data Sheet Clarification documents:
1123	 *
1124	 * Register settings are needed to improve PHY receive performance
1125	 */
1126	ksz9477_port_mmd_write(dev, port, 0x01, 0x6f, 0xdd0b);
1127	ksz9477_port_mmd_write(dev, port, 0x01, 0x8f, 0x6032);
1128	ksz9477_port_mmd_write(dev, port, 0x01, 0x9d, 0x248c);
1129	ksz9477_port_mmd_write(dev, port, 0x01, 0x75, 0x0060);
1130	ksz9477_port_mmd_write(dev, port, 0x01, 0xd3, 0x7777);
1131	ksz9477_port_mmd_write(dev, port, 0x1c, 0x06, 0x3008);
1132	ksz9477_port_mmd_write(dev, port, 0x1c, 0x08, 0x2001);
1133
1134	/* Transmit waveform amplitude can be improved
1135	 * (1000BASE-T, 100BASE-TX, 10BASE-Te)
1136	 */
1137	ksz9477_port_mmd_write(dev, port, 0x1c, 0x04, 0x00d0);
1138
1139	/* Energy Efficient Ethernet (EEE) feature select must
1140	 * be manually disabled (except on KSZ8565 which is 100Mbit)
1141	 */
1142	if (dev->features & GBIT_SUPPORT)
1143		ksz9477_port_mmd_write(dev, port, 0x07, 0x3c, 0x0000);
1144
1145	/* Register settings are required to meet data sheet
1146	 * supply current specifications
1147	 */
1148	ksz9477_port_mmd_write(dev, port, 0x1c, 0x13, 0x6eff);
1149	ksz9477_port_mmd_write(dev, port, 0x1c, 0x14, 0xe6ff);
1150	ksz9477_port_mmd_write(dev, port, 0x1c, 0x15, 0x6eff);
1151	ksz9477_port_mmd_write(dev, port, 0x1c, 0x16, 0xe6ff);
1152	ksz9477_port_mmd_write(dev, port, 0x1c, 0x17, 0x00ff);
1153	ksz9477_port_mmd_write(dev, port, 0x1c, 0x18, 0x43ff);
1154	ksz9477_port_mmd_write(dev, port, 0x1c, 0x19, 0xc3ff);
1155	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1a, 0x6fff);
1156	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1b, 0x07ff);
1157	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1c, 0x0fff);
1158	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1d, 0xe7ff);
1159	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1e, 0xefff);
1160	ksz9477_port_mmd_write(dev, port, 0x1c, 0x20, 0xeeee);
1161}
1162
1163static void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1164{
1165	u8 data8;
1166	u8 member;
1167	u16 data16;
1168	struct ksz_port *p = &dev->ports[port];
1169
1170	/* enable tag tail for host port */
1171	if (cpu_port)
1172		ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
1173			     true);
1174
1175	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
1176
1177	/* set back pressure */
1178	ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
1179
1180	/* enable broadcast storm limit */
1181	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1182
1183	/* disable DiffServ priority */
1184	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
1185
1186	/* replace priority */
1187	ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
1188		     false);
1189	ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
1190			   MTI_PVID_REPLACE, false);
1191
1192	/* enable 802.1p priority */
1193	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
1194
1195	if (port < dev->phy_port_cnt) {
1196		/* do not force flow control */
1197		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1198			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1199			     false);
1200
1201		if (dev->phy_errata_9477)
1202			ksz9477_phy_errata_setup(dev, port);
1203	} else {
1204		/* force flow control */
1205		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1206			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1207			     true);
1208
1209		/* configure MAC to 1G & RGMII mode */
1210		ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1211		switch (p->interface) {
1212		case PHY_INTERFACE_MODE_MII:
1213			ksz9477_set_xmii(dev, 0, &data8);
1214			ksz9477_set_gbit(dev, false, &data8);
1215			p->phydev.speed = SPEED_100;
1216			break;
1217		case PHY_INTERFACE_MODE_RMII:
1218			ksz9477_set_xmii(dev, 1, &data8);
1219			ksz9477_set_gbit(dev, false, &data8);
1220			p->phydev.speed = SPEED_100;
1221			break;
1222		case PHY_INTERFACE_MODE_GMII:
1223			ksz9477_set_xmii(dev, 2, &data8);
1224			ksz9477_set_gbit(dev, true, &data8);
1225			p->phydev.speed = SPEED_1000;
1226			break;
1227		default:
1228			ksz9477_set_xmii(dev, 3, &data8);
1229			ksz9477_set_gbit(dev, true, &data8);
1230			data8 &= ~PORT_RGMII_ID_IG_ENABLE;
1231			data8 &= ~PORT_RGMII_ID_EG_ENABLE;
1232			if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1233			    p->interface == PHY_INTERFACE_MODE_RGMII_RXID)
1234				data8 |= PORT_RGMII_ID_IG_ENABLE;
1235			if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1236			    p->interface == PHY_INTERFACE_MODE_RGMII_TXID)
1237				data8 |= PORT_RGMII_ID_EG_ENABLE;
1238			p->phydev.speed = SPEED_1000;
1239			break;
1240		}
1241		ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
1242		p->phydev.duplex = 1;
1243	}
1244	mutex_lock(&dev->dev_mutex);
1245	if (cpu_port)
1246		member = dev->port_mask;
1247	else
1248		member = dev->host_mask | p->vid_member;
1249	mutex_unlock(&dev->dev_mutex);
1250	ksz9477_cfg_port_member(dev, port, member);
1251
1252	/* clear pending interrupts */
1253	if (port < dev->phy_port_cnt)
1254		ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
1255}
1256
1257static void ksz9477_config_cpu_port(struct dsa_switch *ds)
1258{
1259	struct ksz_device *dev = ds->priv;
1260	struct ksz_port *p;
1261	int i;
1262
1263	ds->num_ports = dev->port_cnt;
1264
1265	for (i = 0; i < dev->port_cnt; i++) {
1266		if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) {
1267			phy_interface_t interface;
1268
1269			dev->cpu_port = i;
1270			dev->host_mask = (1 << dev->cpu_port);
1271			dev->port_mask |= dev->host_mask;
1272			p = &dev->ports[i];
1273
1274			/* Read from XMII register to determine host port
1275			 * interface.  If set specifically in device tree
1276			 * note the difference to help debugging.
1277			 */
1278			interface = ksz9477_get_interface(dev, i);
1279			if (!p->interface) {
1280				if (dev->compat_interface) {
1281					dev_warn(dev->dev,
1282						 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1283						 "Please update your device tree.\n",
1284						 i);
1285					p->interface = dev->compat_interface;
1286				} else {
1287					p->interface = interface;
1288				}
1289			}
1290			if (interface && interface != p->interface)
1291				dev_info(dev->dev,
1292					 "use %s instead of %s\n",
1293					  phy_modes(p->interface),
1294					  phy_modes(interface));
1295
1296			/* enable cpu port */
1297			ksz9477_port_setup(dev, i, true);
1298			p->vid_member = dev->port_mask;
1299			p->on = 1;
1300		}
1301	}
1302
1303	dev->member = dev->host_mask;
1304
1305	for (i = 0; i < dev->mib_port_cnt; i++) {
1306		if (i == dev->cpu_port)
1307			continue;
1308		p = &dev->ports[i];
1309
1310		/* Initialize to non-zero so that ksz_cfg_port_member() will
1311		 * be called.
1312		 */
1313		p->vid_member = (1 << i);
1314		p->member = dev->port_mask;
1315		ksz9477_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1316		p->on = 1;
1317		if (i < dev->phy_port_cnt)
1318			p->phy = 1;
1319		if (dev->chip_id == 0x00947700 && i == 6) {
1320			p->sgmii = 1;
1321
1322			/* SGMII PHY detection code is not implemented yet. */
1323			p->phy = 0;
1324		}
1325	}
1326}
1327
1328static int ksz9477_setup(struct dsa_switch *ds)
1329{
1330	struct ksz_device *dev = ds->priv;
1331	int ret = 0;
1332
1333	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
1334				       dev->num_vlans, GFP_KERNEL);
1335	if (!dev->vlan_cache)
1336		return -ENOMEM;
1337
1338	ret = ksz9477_reset_switch(dev);
1339	if (ret) {
1340		dev_err(ds->dev, "failed to reset switch\n");
1341		return ret;
1342	}
1343
1344	/* Required for port partitioning. */
1345	ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
1346		      true);
1347
1348	/* Do not work correctly with tail tagging. */
1349	ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);
1350
1351	/* accept packet up to 2000bytes */
1352	ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true);
1353
1354	ksz9477_config_cpu_port(ds);
1355
1356	ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);
1357
1358	/* queue based egress rate limit */
1359	ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
1360
1361	/* enable global MIB counter freeze function */
1362	ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);
1363
1364	/* start switch */
1365	ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);
1366
1367	ksz_init_mib_timer(dev);
1368
1369	return 0;
1370}
1371
1372static const struct dsa_switch_ops ksz9477_switch_ops = {
1373	.get_tag_protocol	= ksz9477_get_tag_protocol,
1374	.setup			= ksz9477_setup,
1375	.phy_read		= ksz9477_phy_read16,
1376	.phy_write		= ksz9477_phy_write16,
1377	.phylink_mac_link_down	= ksz_mac_link_down,
1378	.port_enable		= ksz_enable_port,
1379	.get_strings		= ksz9477_get_strings,
1380	.get_ethtool_stats	= ksz_get_ethtool_stats,
1381	.get_sset_count		= ksz_sset_count,
1382	.port_bridge_join	= ksz_port_bridge_join,
1383	.port_bridge_leave	= ksz_port_bridge_leave,
1384	.port_stp_state_set	= ksz9477_port_stp_state_set,
1385	.port_fast_age		= ksz_port_fast_age,
1386	.port_vlan_filtering	= ksz9477_port_vlan_filtering,
1387	.port_vlan_prepare	= ksz_port_vlan_prepare,
1388	.port_vlan_add		= ksz9477_port_vlan_add,
1389	.port_vlan_del		= ksz9477_port_vlan_del,
1390	.port_fdb_dump		= ksz9477_port_fdb_dump,
1391	.port_fdb_add		= ksz9477_port_fdb_add,
1392	.port_fdb_del		= ksz9477_port_fdb_del,
1393	.port_mdb_prepare       = ksz_port_mdb_prepare,
1394	.port_mdb_add           = ksz9477_port_mdb_add,
1395	.port_mdb_del           = ksz9477_port_mdb_del,
1396	.port_mirror_add	= ksz9477_port_mirror_add,
1397	.port_mirror_del	= ksz9477_port_mirror_del,
1398};
1399
1400static u32 ksz9477_get_port_addr(int port, int offset)
1401{
1402	return PORT_CTRL_ADDR(port, offset);
1403}
1404
1405static int ksz9477_switch_detect(struct ksz_device *dev)
1406{
1407	u8 data8;
1408	u8 id_hi;
1409	u8 id_lo;
1410	u32 id32;
1411	int ret;
1412
1413	/* turn off SPI DO Edge select */
1414	ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1415	if (ret)
1416		return ret;
1417
1418	data8 &= ~SPI_AUTO_EDGE_DETECTION;
1419	ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1420	if (ret)
1421		return ret;
1422
1423	/* read chip id */
1424	ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
1425	if (ret)
1426		return ret;
1427	ret = ksz_read8(dev, REG_GLOBAL_OPTIONS, &data8);
1428	if (ret)
1429		return ret;
1430
1431	/* Number of ports can be reduced depending on chip. */
1432	dev->mib_port_cnt = TOTAL_PORT_NUM;
1433	dev->phy_port_cnt = 5;
1434
1435	/* Default capability is gigabit capable. */
1436	dev->features = GBIT_SUPPORT;
1437
1438	id_hi = (u8)(id32 >> 16);
1439	id_lo = (u8)(id32 >> 8);
1440	if ((id_lo & 0xf) == 3) {
1441		/* Chip is from KSZ9893 design. */
1442		dev->features |= IS_9893;
1443
1444		/* Chip does not support gigabit. */
1445		if (data8 & SW_QW_ABLE)
1446			dev->features &= ~GBIT_SUPPORT;
1447		dev->mib_port_cnt = 3;
1448		dev->phy_port_cnt = 2;
1449	} else {
1450		/* Chip uses new XMII register definitions. */
1451		dev->features |= NEW_XMII;
1452
1453		/* Chip does not support gigabit. */
1454		if (!(data8 & SW_GIGABIT_ABLE))
1455			dev->features &= ~GBIT_SUPPORT;
1456	}
1457
1458	/* Change chip id to known ones so it can be matched against them. */
1459	id32 = (id_hi << 16) | (id_lo << 8);
1460
1461	dev->chip_id = id32;
1462
1463	return 0;
1464}
1465
1466struct ksz_chip_data {
1467	u32 chip_id;
1468	const char *dev_name;
1469	int num_vlans;
1470	int num_alus;
1471	int num_statics;
1472	int cpu_ports;
1473	int port_cnt;
1474	bool phy_errata_9477;
1475};
1476
1477static const struct ksz_chip_data ksz9477_switch_chips[] = {
1478	{
1479		.chip_id = 0x00947700,
1480		.dev_name = "KSZ9477",
1481		.num_vlans = 4096,
1482		.num_alus = 4096,
1483		.num_statics = 16,
1484		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1485		.port_cnt = 7,		/* total physical port count */
1486		.phy_errata_9477 = true,
1487	},
1488	{
1489		.chip_id = 0x00989700,
1490		.dev_name = "KSZ9897",
1491		.num_vlans = 4096,
1492		.num_alus = 4096,
1493		.num_statics = 16,
1494		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1495		.port_cnt = 7,		/* total physical port count */
1496		.phy_errata_9477 = true,
1497	},
1498	{
1499		.chip_id = 0x00989300,
1500		.dev_name = "KSZ9893",
1501		.num_vlans = 4096,
1502		.num_alus = 4096,
1503		.num_statics = 16,
1504		.cpu_ports = 0x07,	/* can be configured as cpu port */
1505		.port_cnt = 3,		/* total port count */
1506	},
1507	{
1508		.chip_id = 0x00956700,
1509		.dev_name = "KSZ9567",
1510		.num_vlans = 4096,
1511		.num_alus = 4096,
1512		.num_statics = 16,
1513		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1514		.port_cnt = 7,		/* total physical port count */
1515	},
1516};
1517
1518static int ksz9477_switch_init(struct ksz_device *dev)
1519{
1520	int i;
1521
1522	dev->ds->ops = &ksz9477_switch_ops;
1523
1524	for (i = 0; i < ARRAY_SIZE(ksz9477_switch_chips); i++) {
1525		const struct ksz_chip_data *chip = &ksz9477_switch_chips[i];
1526
1527		if (dev->chip_id == chip->chip_id) {
1528			dev->name = chip->dev_name;
1529			dev->num_vlans = chip->num_vlans;
1530			dev->num_alus = chip->num_alus;
1531			dev->num_statics = chip->num_statics;
1532			dev->port_cnt = chip->port_cnt;
1533			dev->cpu_ports = chip->cpu_ports;
1534			dev->phy_errata_9477 = chip->phy_errata_9477;
1535
1536			break;
1537		}
1538	}
1539
1540	/* no switch found */
1541	if (!dev->port_cnt)
1542		return -ENODEV;
1543
1544	dev->port_mask = (1 << dev->port_cnt) - 1;
1545
1546	dev->reg_mib_cnt = SWITCH_COUNTER_NUM;
1547	dev->mib_cnt = TOTAL_SWITCH_COUNTER_NUM;
1548
1549	i = dev->mib_port_cnt;
1550	dev->ports = devm_kzalloc(dev->dev, sizeof(struct ksz_port) * i,
1551				  GFP_KERNEL);
1552	if (!dev->ports)
1553		return -ENOMEM;
1554	for (i = 0; i < dev->mib_port_cnt; i++) {
1555		mutex_init(&dev->ports[i].mib.cnt_mutex);
1556		dev->ports[i].mib.counters =
1557			devm_kzalloc(dev->dev,
1558				     sizeof(u64) *
1559				     (TOTAL_SWITCH_COUNTER_NUM + 1),
1560				     GFP_KERNEL);
1561		if (!dev->ports[i].mib.counters)
1562			return -ENOMEM;
1563	}
1564
1565	/* set the real number of ports */
1566	dev->ds->num_ports = dev->port_cnt;
1567
1568	return 0;
1569}
1570
1571static void ksz9477_switch_exit(struct ksz_device *dev)
1572{
1573	ksz9477_reset_switch(dev);
1574}
1575
1576static const struct ksz_dev_ops ksz9477_dev_ops = {
1577	.get_port_addr = ksz9477_get_port_addr,
1578	.cfg_port_member = ksz9477_cfg_port_member,
1579	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
1580	.port_setup = ksz9477_port_setup,
1581	.r_mib_cnt = ksz9477_r_mib_cnt,
1582	.r_mib_pkt = ksz9477_r_mib_pkt,
1583	.freeze_mib = ksz9477_freeze_mib,
1584	.port_init_cnt = ksz9477_port_init_cnt,
1585	.shutdown = ksz9477_reset_switch,
1586	.detect = ksz9477_switch_detect,
1587	.init = ksz9477_switch_init,
1588	.exit = ksz9477_switch_exit,
1589};
1590
1591int ksz9477_switch_register(struct ksz_device *dev)
1592{
1593	int ret, i;
1594	struct phy_device *phydev;
1595
1596	ret = ksz_switch_register(dev, &ksz9477_dev_ops);
1597	if (ret)
1598		return ret;
1599
1600	for (i = 0; i < dev->phy_port_cnt; ++i) {
1601		if (!dsa_is_user_port(dev->ds, i))
1602			continue;
1603
1604		phydev = dsa_to_port(dev->ds, i)->slave->phydev;
1605
1606		/* The MAC actually cannot run in 1000 half-duplex mode. */
1607		phy_remove_link_mode(phydev,
1608				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1609
1610		/* PHY does not support gigabit. */
1611		if (!(dev->features & GBIT_SUPPORT))
1612			phy_remove_link_mode(phydev,
1613					     ETHTOOL_LINK_MODE_1000baseT_Full_BIT);
1614	}
1615	return ret;
1616}
1617EXPORT_SYMBOL(ksz9477_switch_register);
1618
1619MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1620MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
1621MODULE_LICENSE("GPL");