Loading...
1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34#include <linux/slab.h>
35#include <linux/delay.h>
36#include <linux/blkdev.h>
37#include <linux/module.h>
38#include <linux/seq_file.h>
39#include <linux/ratelimit.h>
40#include "md.h"
41#include "raid1.h"
42#include "bitmap.h"
43
44/*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47#define NR_RAID1_BIOS 256
48
49/* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53 */
54#define IO_BLOCKED ((struct bio *)1)
55/* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
58 */
59#define IO_MADE_GOOD ((struct bio *)2)
60
61#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
63/* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
66 */
67static int max_queued_requests = 1024;
68
69static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 sector_t bi_sector);
71static void lower_barrier(struct r1conf *conf);
72
73static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74{
75 struct pool_info *pi = data;
76 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77
78 /* allocate a r1bio with room for raid_disks entries in the bios array */
79 return kzalloc(size, gfp_flags);
80}
81
82static void r1bio_pool_free(void *r1_bio, void *data)
83{
84 kfree(r1_bio);
85}
86
87#define RESYNC_BLOCK_SIZE (64*1024)
88#define RESYNC_DEPTH 32
89#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93#define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
94
95static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
96{
97 struct pool_info *pi = data;
98 struct r1bio *r1_bio;
99 struct bio *bio;
100 int need_pages;
101 int i, j;
102
103 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
104 if (!r1_bio)
105 return NULL;
106
107 /*
108 * Allocate bios : 1 for reading, n-1 for writing
109 */
110 for (j = pi->raid_disks ; j-- ; ) {
111 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
112 if (!bio)
113 goto out_free_bio;
114 r1_bio->bios[j] = bio;
115 }
116 /*
117 * Allocate RESYNC_PAGES data pages and attach them to
118 * the first bio.
119 * If this is a user-requested check/repair, allocate
120 * RESYNC_PAGES for each bio.
121 */
122 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
123 need_pages = pi->raid_disks;
124 else
125 need_pages = 1;
126 for (j = 0; j < need_pages; j++) {
127 bio = r1_bio->bios[j];
128 bio->bi_vcnt = RESYNC_PAGES;
129
130 if (bio_alloc_pages(bio, gfp_flags))
131 goto out_free_pages;
132 }
133 /* If not user-requests, copy the page pointers to all bios */
134 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
135 for (i=0; i<RESYNC_PAGES ; i++)
136 for (j=1; j<pi->raid_disks; j++)
137 r1_bio->bios[j]->bi_io_vec[i].bv_page =
138 r1_bio->bios[0]->bi_io_vec[i].bv_page;
139 }
140
141 r1_bio->master_bio = NULL;
142
143 return r1_bio;
144
145out_free_pages:
146 while (--j >= 0) {
147 struct bio_vec *bv;
148
149 bio_for_each_segment_all(bv, r1_bio->bios[j], i)
150 __free_page(bv->bv_page);
151 }
152
153out_free_bio:
154 while (++j < pi->raid_disks)
155 bio_put(r1_bio->bios[j]);
156 r1bio_pool_free(r1_bio, data);
157 return NULL;
158}
159
160static void r1buf_pool_free(void *__r1_bio, void *data)
161{
162 struct pool_info *pi = data;
163 int i,j;
164 struct r1bio *r1bio = __r1_bio;
165
166 for (i = 0; i < RESYNC_PAGES; i++)
167 for (j = pi->raid_disks; j-- ;) {
168 if (j == 0 ||
169 r1bio->bios[j]->bi_io_vec[i].bv_page !=
170 r1bio->bios[0]->bi_io_vec[i].bv_page)
171 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
172 }
173 for (i=0 ; i < pi->raid_disks; i++)
174 bio_put(r1bio->bios[i]);
175
176 r1bio_pool_free(r1bio, data);
177}
178
179static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
180{
181 int i;
182
183 for (i = 0; i < conf->raid_disks * 2; i++) {
184 struct bio **bio = r1_bio->bios + i;
185 if (!BIO_SPECIAL(*bio))
186 bio_put(*bio);
187 *bio = NULL;
188 }
189}
190
191static void free_r1bio(struct r1bio *r1_bio)
192{
193 struct r1conf *conf = r1_bio->mddev->private;
194
195 put_all_bios(conf, r1_bio);
196 mempool_free(r1_bio, conf->r1bio_pool);
197}
198
199static void put_buf(struct r1bio *r1_bio)
200{
201 struct r1conf *conf = r1_bio->mddev->private;
202 int i;
203
204 for (i = 0; i < conf->raid_disks * 2; i++) {
205 struct bio *bio = r1_bio->bios[i];
206 if (bio->bi_end_io)
207 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
208 }
209
210 mempool_free(r1_bio, conf->r1buf_pool);
211
212 lower_barrier(conf);
213}
214
215static void reschedule_retry(struct r1bio *r1_bio)
216{
217 unsigned long flags;
218 struct mddev *mddev = r1_bio->mddev;
219 struct r1conf *conf = mddev->private;
220
221 spin_lock_irqsave(&conf->device_lock, flags);
222 list_add(&r1_bio->retry_list, &conf->retry_list);
223 conf->nr_queued ++;
224 spin_unlock_irqrestore(&conf->device_lock, flags);
225
226 wake_up(&conf->wait_barrier);
227 md_wakeup_thread(mddev->thread);
228}
229
230/*
231 * raid_end_bio_io() is called when we have finished servicing a mirrored
232 * operation and are ready to return a success/failure code to the buffer
233 * cache layer.
234 */
235static void call_bio_endio(struct r1bio *r1_bio)
236{
237 struct bio *bio = r1_bio->master_bio;
238 int done;
239 struct r1conf *conf = r1_bio->mddev->private;
240 sector_t start_next_window = r1_bio->start_next_window;
241 sector_t bi_sector = bio->bi_iter.bi_sector;
242
243 if (bio->bi_phys_segments) {
244 unsigned long flags;
245 spin_lock_irqsave(&conf->device_lock, flags);
246 bio->bi_phys_segments--;
247 done = (bio->bi_phys_segments == 0);
248 spin_unlock_irqrestore(&conf->device_lock, flags);
249 /*
250 * make_request() might be waiting for
251 * bi_phys_segments to decrease
252 */
253 wake_up(&conf->wait_barrier);
254 } else
255 done = 1;
256
257 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
258 clear_bit(BIO_UPTODATE, &bio->bi_flags);
259 if (done) {
260 bio_endio(bio, 0);
261 /*
262 * Wake up any possible resync thread that waits for the device
263 * to go idle.
264 */
265 allow_barrier(conf, start_next_window, bi_sector);
266 }
267}
268
269static void raid_end_bio_io(struct r1bio *r1_bio)
270{
271 struct bio *bio = r1_bio->master_bio;
272
273 /* if nobody has done the final endio yet, do it now */
274 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
275 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
276 (bio_data_dir(bio) == WRITE) ? "write" : "read",
277 (unsigned long long) bio->bi_iter.bi_sector,
278 (unsigned long long) bio_end_sector(bio) - 1);
279
280 call_bio_endio(r1_bio);
281 }
282 free_r1bio(r1_bio);
283}
284
285/*
286 * Update disk head position estimator based on IRQ completion info.
287 */
288static inline void update_head_pos(int disk, struct r1bio *r1_bio)
289{
290 struct r1conf *conf = r1_bio->mddev->private;
291
292 conf->mirrors[disk].head_position =
293 r1_bio->sector + (r1_bio->sectors);
294}
295
296/*
297 * Find the disk number which triggered given bio
298 */
299static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
300{
301 int mirror;
302 struct r1conf *conf = r1_bio->mddev->private;
303 int raid_disks = conf->raid_disks;
304
305 for (mirror = 0; mirror < raid_disks * 2; mirror++)
306 if (r1_bio->bios[mirror] == bio)
307 break;
308
309 BUG_ON(mirror == raid_disks * 2);
310 update_head_pos(mirror, r1_bio);
311
312 return mirror;
313}
314
315static void raid1_end_read_request(struct bio *bio, int error)
316{
317 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
318 struct r1bio *r1_bio = bio->bi_private;
319 int mirror;
320 struct r1conf *conf = r1_bio->mddev->private;
321
322 mirror = r1_bio->read_disk;
323 /*
324 * this branch is our 'one mirror IO has finished' event handler:
325 */
326 update_head_pos(mirror, r1_bio);
327
328 if (uptodate)
329 set_bit(R1BIO_Uptodate, &r1_bio->state);
330 else {
331 /* If all other devices have failed, we want to return
332 * the error upwards rather than fail the last device.
333 * Here we redefine "uptodate" to mean "Don't want to retry"
334 */
335 unsigned long flags;
336 spin_lock_irqsave(&conf->device_lock, flags);
337 if (r1_bio->mddev->degraded == conf->raid_disks ||
338 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
339 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
340 uptodate = 1;
341 spin_unlock_irqrestore(&conf->device_lock, flags);
342 }
343
344 if (uptodate) {
345 raid_end_bio_io(r1_bio);
346 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
347 } else {
348 /*
349 * oops, read error:
350 */
351 char b[BDEVNAME_SIZE];
352 printk_ratelimited(
353 KERN_ERR "md/raid1:%s: %s: "
354 "rescheduling sector %llu\n",
355 mdname(conf->mddev),
356 bdevname(conf->mirrors[mirror].rdev->bdev,
357 b),
358 (unsigned long long)r1_bio->sector);
359 set_bit(R1BIO_ReadError, &r1_bio->state);
360 reschedule_retry(r1_bio);
361 /* don't drop the reference on read_disk yet */
362 }
363}
364
365static void close_write(struct r1bio *r1_bio)
366{
367 /* it really is the end of this request */
368 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
369 /* free extra copy of the data pages */
370 int i = r1_bio->behind_page_count;
371 while (i--)
372 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
373 kfree(r1_bio->behind_bvecs);
374 r1_bio->behind_bvecs = NULL;
375 }
376 /* clear the bitmap if all writes complete successfully */
377 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
378 r1_bio->sectors,
379 !test_bit(R1BIO_Degraded, &r1_bio->state),
380 test_bit(R1BIO_BehindIO, &r1_bio->state));
381 md_write_end(r1_bio->mddev);
382}
383
384static void r1_bio_write_done(struct r1bio *r1_bio)
385{
386 if (!atomic_dec_and_test(&r1_bio->remaining))
387 return;
388
389 if (test_bit(R1BIO_WriteError, &r1_bio->state))
390 reschedule_retry(r1_bio);
391 else {
392 close_write(r1_bio);
393 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
394 reschedule_retry(r1_bio);
395 else
396 raid_end_bio_io(r1_bio);
397 }
398}
399
400static void raid1_end_write_request(struct bio *bio, int error)
401{
402 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
403 struct r1bio *r1_bio = bio->bi_private;
404 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
405 struct r1conf *conf = r1_bio->mddev->private;
406 struct bio *to_put = NULL;
407
408 mirror = find_bio_disk(r1_bio, bio);
409
410 /*
411 * 'one mirror IO has finished' event handler:
412 */
413 if (!uptodate) {
414 set_bit(WriteErrorSeen,
415 &conf->mirrors[mirror].rdev->flags);
416 if (!test_and_set_bit(WantReplacement,
417 &conf->mirrors[mirror].rdev->flags))
418 set_bit(MD_RECOVERY_NEEDED, &
419 conf->mddev->recovery);
420
421 set_bit(R1BIO_WriteError, &r1_bio->state);
422 } else {
423 /*
424 * Set R1BIO_Uptodate in our master bio, so that we
425 * will return a good error code for to the higher
426 * levels even if IO on some other mirrored buffer
427 * fails.
428 *
429 * The 'master' represents the composite IO operation
430 * to user-side. So if something waits for IO, then it
431 * will wait for the 'master' bio.
432 */
433 sector_t first_bad;
434 int bad_sectors;
435
436 r1_bio->bios[mirror] = NULL;
437 to_put = bio;
438 /*
439 * Do not set R1BIO_Uptodate if the current device is
440 * rebuilding or Faulty. This is because we cannot use
441 * such device for properly reading the data back (we could
442 * potentially use it, if the current write would have felt
443 * before rdev->recovery_offset, but for simplicity we don't
444 * check this here.
445 */
446 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
447 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
448 set_bit(R1BIO_Uptodate, &r1_bio->state);
449
450 /* Maybe we can clear some bad blocks. */
451 if (is_badblock(conf->mirrors[mirror].rdev,
452 r1_bio->sector, r1_bio->sectors,
453 &first_bad, &bad_sectors)) {
454 r1_bio->bios[mirror] = IO_MADE_GOOD;
455 set_bit(R1BIO_MadeGood, &r1_bio->state);
456 }
457 }
458
459 if (behind) {
460 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
461 atomic_dec(&r1_bio->behind_remaining);
462
463 /*
464 * In behind mode, we ACK the master bio once the I/O
465 * has safely reached all non-writemostly
466 * disks. Setting the Returned bit ensures that this
467 * gets done only once -- we don't ever want to return
468 * -EIO here, instead we'll wait
469 */
470 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
471 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
472 /* Maybe we can return now */
473 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
474 struct bio *mbio = r1_bio->master_bio;
475 pr_debug("raid1: behind end write sectors"
476 " %llu-%llu\n",
477 (unsigned long long) mbio->bi_iter.bi_sector,
478 (unsigned long long) bio_end_sector(mbio) - 1);
479 call_bio_endio(r1_bio);
480 }
481 }
482 }
483 if (r1_bio->bios[mirror] == NULL)
484 rdev_dec_pending(conf->mirrors[mirror].rdev,
485 conf->mddev);
486
487 /*
488 * Let's see if all mirrored write operations have finished
489 * already.
490 */
491 r1_bio_write_done(r1_bio);
492
493 if (to_put)
494 bio_put(to_put);
495}
496
497
498/*
499 * This routine returns the disk from which the requested read should
500 * be done. There is a per-array 'next expected sequential IO' sector
501 * number - if this matches on the next IO then we use the last disk.
502 * There is also a per-disk 'last know head position' sector that is
503 * maintained from IRQ contexts, both the normal and the resync IO
504 * completion handlers update this position correctly. If there is no
505 * perfect sequential match then we pick the disk whose head is closest.
506 *
507 * If there are 2 mirrors in the same 2 devices, performance degrades
508 * because position is mirror, not device based.
509 *
510 * The rdev for the device selected will have nr_pending incremented.
511 */
512static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
513{
514 const sector_t this_sector = r1_bio->sector;
515 int sectors;
516 int best_good_sectors;
517 int best_disk, best_dist_disk, best_pending_disk;
518 int has_nonrot_disk;
519 int disk;
520 sector_t best_dist;
521 unsigned int min_pending;
522 struct md_rdev *rdev;
523 int choose_first;
524 int choose_next_idle;
525
526 rcu_read_lock();
527 /*
528 * Check if we can balance. We can balance on the whole
529 * device if no resync is going on, or below the resync window.
530 * We take the first readable disk when above the resync window.
531 */
532 retry:
533 sectors = r1_bio->sectors;
534 best_disk = -1;
535 best_dist_disk = -1;
536 best_dist = MaxSector;
537 best_pending_disk = -1;
538 min_pending = UINT_MAX;
539 best_good_sectors = 0;
540 has_nonrot_disk = 0;
541 choose_next_idle = 0;
542
543 if (conf->mddev->recovery_cp < MaxSector &&
544 (this_sector + sectors >= conf->next_resync))
545 choose_first = 1;
546 else
547 choose_first = 0;
548
549 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
550 sector_t dist;
551 sector_t first_bad;
552 int bad_sectors;
553 unsigned int pending;
554 bool nonrot;
555
556 rdev = rcu_dereference(conf->mirrors[disk].rdev);
557 if (r1_bio->bios[disk] == IO_BLOCKED
558 || rdev == NULL
559 || test_bit(Unmerged, &rdev->flags)
560 || test_bit(Faulty, &rdev->flags))
561 continue;
562 if (!test_bit(In_sync, &rdev->flags) &&
563 rdev->recovery_offset < this_sector + sectors)
564 continue;
565 if (test_bit(WriteMostly, &rdev->flags)) {
566 /* Don't balance among write-mostly, just
567 * use the first as a last resort */
568 if (best_disk < 0) {
569 if (is_badblock(rdev, this_sector, sectors,
570 &first_bad, &bad_sectors)) {
571 if (first_bad < this_sector)
572 /* Cannot use this */
573 continue;
574 best_good_sectors = first_bad - this_sector;
575 } else
576 best_good_sectors = sectors;
577 best_disk = disk;
578 }
579 continue;
580 }
581 /* This is a reasonable device to use. It might
582 * even be best.
583 */
584 if (is_badblock(rdev, this_sector, sectors,
585 &first_bad, &bad_sectors)) {
586 if (best_dist < MaxSector)
587 /* already have a better device */
588 continue;
589 if (first_bad <= this_sector) {
590 /* cannot read here. If this is the 'primary'
591 * device, then we must not read beyond
592 * bad_sectors from another device..
593 */
594 bad_sectors -= (this_sector - first_bad);
595 if (choose_first && sectors > bad_sectors)
596 sectors = bad_sectors;
597 if (best_good_sectors > sectors)
598 best_good_sectors = sectors;
599
600 } else {
601 sector_t good_sectors = first_bad - this_sector;
602 if (good_sectors > best_good_sectors) {
603 best_good_sectors = good_sectors;
604 best_disk = disk;
605 }
606 if (choose_first)
607 break;
608 }
609 continue;
610 } else
611 best_good_sectors = sectors;
612
613 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
614 has_nonrot_disk |= nonrot;
615 pending = atomic_read(&rdev->nr_pending);
616 dist = abs(this_sector - conf->mirrors[disk].head_position);
617 if (choose_first) {
618 best_disk = disk;
619 break;
620 }
621 /* Don't change to another disk for sequential reads */
622 if (conf->mirrors[disk].next_seq_sect == this_sector
623 || dist == 0) {
624 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
625 struct raid1_info *mirror = &conf->mirrors[disk];
626
627 best_disk = disk;
628 /*
629 * If buffered sequential IO size exceeds optimal
630 * iosize, check if there is idle disk. If yes, choose
631 * the idle disk. read_balance could already choose an
632 * idle disk before noticing it's a sequential IO in
633 * this disk. This doesn't matter because this disk
634 * will idle, next time it will be utilized after the
635 * first disk has IO size exceeds optimal iosize. In
636 * this way, iosize of the first disk will be optimal
637 * iosize at least. iosize of the second disk might be
638 * small, but not a big deal since when the second disk
639 * starts IO, the first disk is likely still busy.
640 */
641 if (nonrot && opt_iosize > 0 &&
642 mirror->seq_start != MaxSector &&
643 mirror->next_seq_sect > opt_iosize &&
644 mirror->next_seq_sect - opt_iosize >=
645 mirror->seq_start) {
646 choose_next_idle = 1;
647 continue;
648 }
649 break;
650 }
651 /* If device is idle, use it */
652 if (pending == 0) {
653 best_disk = disk;
654 break;
655 }
656
657 if (choose_next_idle)
658 continue;
659
660 if (min_pending > pending) {
661 min_pending = pending;
662 best_pending_disk = disk;
663 }
664
665 if (dist < best_dist) {
666 best_dist = dist;
667 best_dist_disk = disk;
668 }
669 }
670
671 /*
672 * If all disks are rotational, choose the closest disk. If any disk is
673 * non-rotational, choose the disk with less pending request even the
674 * disk is rotational, which might/might not be optimal for raids with
675 * mixed ratation/non-rotational disks depending on workload.
676 */
677 if (best_disk == -1) {
678 if (has_nonrot_disk)
679 best_disk = best_pending_disk;
680 else
681 best_disk = best_dist_disk;
682 }
683
684 if (best_disk >= 0) {
685 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
686 if (!rdev)
687 goto retry;
688 atomic_inc(&rdev->nr_pending);
689 if (test_bit(Faulty, &rdev->flags)) {
690 /* cannot risk returning a device that failed
691 * before we inc'ed nr_pending
692 */
693 rdev_dec_pending(rdev, conf->mddev);
694 goto retry;
695 }
696 sectors = best_good_sectors;
697
698 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
699 conf->mirrors[best_disk].seq_start = this_sector;
700
701 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
702 }
703 rcu_read_unlock();
704 *max_sectors = sectors;
705
706 return best_disk;
707}
708
709static int raid1_mergeable_bvec(struct request_queue *q,
710 struct bvec_merge_data *bvm,
711 struct bio_vec *biovec)
712{
713 struct mddev *mddev = q->queuedata;
714 struct r1conf *conf = mddev->private;
715 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
716 int max = biovec->bv_len;
717
718 if (mddev->merge_check_needed) {
719 int disk;
720 rcu_read_lock();
721 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
722 struct md_rdev *rdev = rcu_dereference(
723 conf->mirrors[disk].rdev);
724 if (rdev && !test_bit(Faulty, &rdev->flags)) {
725 struct request_queue *q =
726 bdev_get_queue(rdev->bdev);
727 if (q->merge_bvec_fn) {
728 bvm->bi_sector = sector +
729 rdev->data_offset;
730 bvm->bi_bdev = rdev->bdev;
731 max = min(max, q->merge_bvec_fn(
732 q, bvm, biovec));
733 }
734 }
735 }
736 rcu_read_unlock();
737 }
738 return max;
739
740}
741
742int md_raid1_congested(struct mddev *mddev, int bits)
743{
744 struct r1conf *conf = mddev->private;
745 int i, ret = 0;
746
747 if ((bits & (1 << BDI_async_congested)) &&
748 conf->pending_count >= max_queued_requests)
749 return 1;
750
751 rcu_read_lock();
752 for (i = 0; i < conf->raid_disks * 2; i++) {
753 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
754 if (rdev && !test_bit(Faulty, &rdev->flags)) {
755 struct request_queue *q = bdev_get_queue(rdev->bdev);
756
757 BUG_ON(!q);
758
759 /* Note the '|| 1' - when read_balance prefers
760 * non-congested targets, it can be removed
761 */
762 if ((bits & (1<<BDI_async_congested)) || 1)
763 ret |= bdi_congested(&q->backing_dev_info, bits);
764 else
765 ret &= bdi_congested(&q->backing_dev_info, bits);
766 }
767 }
768 rcu_read_unlock();
769 return ret;
770}
771EXPORT_SYMBOL_GPL(md_raid1_congested);
772
773static int raid1_congested(void *data, int bits)
774{
775 struct mddev *mddev = data;
776
777 return mddev_congested(mddev, bits) ||
778 md_raid1_congested(mddev, bits);
779}
780
781static void flush_pending_writes(struct r1conf *conf)
782{
783 /* Any writes that have been queued but are awaiting
784 * bitmap updates get flushed here.
785 */
786 spin_lock_irq(&conf->device_lock);
787
788 if (conf->pending_bio_list.head) {
789 struct bio *bio;
790 bio = bio_list_get(&conf->pending_bio_list);
791 conf->pending_count = 0;
792 spin_unlock_irq(&conf->device_lock);
793 /* flush any pending bitmap writes to
794 * disk before proceeding w/ I/O */
795 bitmap_unplug(conf->mddev->bitmap);
796 wake_up(&conf->wait_barrier);
797
798 while (bio) { /* submit pending writes */
799 struct bio *next = bio->bi_next;
800 bio->bi_next = NULL;
801 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
802 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
803 /* Just ignore it */
804 bio_endio(bio, 0);
805 else
806 generic_make_request(bio);
807 bio = next;
808 }
809 } else
810 spin_unlock_irq(&conf->device_lock);
811}
812
813/* Barriers....
814 * Sometimes we need to suspend IO while we do something else,
815 * either some resync/recovery, or reconfigure the array.
816 * To do this we raise a 'barrier'.
817 * The 'barrier' is a counter that can be raised multiple times
818 * to count how many activities are happening which preclude
819 * normal IO.
820 * We can only raise the barrier if there is no pending IO.
821 * i.e. if nr_pending == 0.
822 * We choose only to raise the barrier if no-one is waiting for the
823 * barrier to go down. This means that as soon as an IO request
824 * is ready, no other operations which require a barrier will start
825 * until the IO request has had a chance.
826 *
827 * So: regular IO calls 'wait_barrier'. When that returns there
828 * is no backgroup IO happening, It must arrange to call
829 * allow_barrier when it has finished its IO.
830 * backgroup IO calls must call raise_barrier. Once that returns
831 * there is no normal IO happeing. It must arrange to call
832 * lower_barrier when the particular background IO completes.
833 */
834static void raise_barrier(struct r1conf *conf)
835{
836 spin_lock_irq(&conf->resync_lock);
837
838 /* Wait until no block IO is waiting */
839 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
840 conf->resync_lock);
841
842 /* block any new IO from starting */
843 conf->barrier++;
844
845 /* For these conditions we must wait:
846 * A: while the array is in frozen state
847 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
848 * the max count which allowed.
849 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
850 * next resync will reach to the window which normal bios are
851 * handling.
852 */
853 wait_event_lock_irq(conf->wait_barrier,
854 !conf->array_frozen &&
855 conf->barrier < RESYNC_DEPTH &&
856 (conf->start_next_window >=
857 conf->next_resync + RESYNC_SECTORS),
858 conf->resync_lock);
859
860 spin_unlock_irq(&conf->resync_lock);
861}
862
863static void lower_barrier(struct r1conf *conf)
864{
865 unsigned long flags;
866 BUG_ON(conf->barrier <= 0);
867 spin_lock_irqsave(&conf->resync_lock, flags);
868 conf->barrier--;
869 spin_unlock_irqrestore(&conf->resync_lock, flags);
870 wake_up(&conf->wait_barrier);
871}
872
873static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
874{
875 bool wait = false;
876
877 if (conf->array_frozen || !bio)
878 wait = true;
879 else if (conf->barrier && bio_data_dir(bio) == WRITE) {
880 if (conf->next_resync < RESYNC_WINDOW_SECTORS)
881 wait = true;
882 else if ((conf->next_resync - RESYNC_WINDOW_SECTORS
883 >= bio_end_sector(bio)) ||
884 (conf->next_resync + NEXT_NORMALIO_DISTANCE
885 <= bio->bi_iter.bi_sector))
886 wait = false;
887 else
888 wait = true;
889 }
890
891 return wait;
892}
893
894static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
895{
896 sector_t sector = 0;
897
898 spin_lock_irq(&conf->resync_lock);
899 if (need_to_wait_for_sync(conf, bio)) {
900 conf->nr_waiting++;
901 /* Wait for the barrier to drop.
902 * However if there are already pending
903 * requests (preventing the barrier from
904 * rising completely), and the
905 * pre-process bio queue isn't empty,
906 * then don't wait, as we need to empty
907 * that queue to get the nr_pending
908 * count down.
909 */
910 wait_event_lock_irq(conf->wait_barrier,
911 !conf->array_frozen &&
912 (!conf->barrier ||
913 ((conf->start_next_window <
914 conf->next_resync + RESYNC_SECTORS) &&
915 current->bio_list &&
916 !bio_list_empty(current->bio_list))),
917 conf->resync_lock);
918 conf->nr_waiting--;
919 }
920
921 if (bio && bio_data_dir(bio) == WRITE) {
922 if (conf->next_resync + NEXT_NORMALIO_DISTANCE
923 <= bio->bi_iter.bi_sector) {
924 if (conf->start_next_window == MaxSector)
925 conf->start_next_window =
926 conf->next_resync +
927 NEXT_NORMALIO_DISTANCE;
928
929 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
930 <= bio->bi_iter.bi_sector)
931 conf->next_window_requests++;
932 else
933 conf->current_window_requests++;
934 sector = conf->start_next_window;
935 }
936 }
937
938 conf->nr_pending++;
939 spin_unlock_irq(&conf->resync_lock);
940 return sector;
941}
942
943static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
944 sector_t bi_sector)
945{
946 unsigned long flags;
947
948 spin_lock_irqsave(&conf->resync_lock, flags);
949 conf->nr_pending--;
950 if (start_next_window) {
951 if (start_next_window == conf->start_next_window) {
952 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
953 <= bi_sector)
954 conf->next_window_requests--;
955 else
956 conf->current_window_requests--;
957 } else
958 conf->current_window_requests--;
959
960 if (!conf->current_window_requests) {
961 if (conf->next_window_requests) {
962 conf->current_window_requests =
963 conf->next_window_requests;
964 conf->next_window_requests = 0;
965 conf->start_next_window +=
966 NEXT_NORMALIO_DISTANCE;
967 } else
968 conf->start_next_window = MaxSector;
969 }
970 }
971 spin_unlock_irqrestore(&conf->resync_lock, flags);
972 wake_up(&conf->wait_barrier);
973}
974
975static void freeze_array(struct r1conf *conf, int extra)
976{
977 /* stop syncio and normal IO and wait for everything to
978 * go quite.
979 * We wait until nr_pending match nr_queued+extra
980 * This is called in the context of one normal IO request
981 * that has failed. Thus any sync request that might be pending
982 * will be blocked by nr_pending, and we need to wait for
983 * pending IO requests to complete or be queued for re-try.
984 * Thus the number queued (nr_queued) plus this request (extra)
985 * must match the number of pending IOs (nr_pending) before
986 * we continue.
987 */
988 spin_lock_irq(&conf->resync_lock);
989 conf->array_frozen = 1;
990 wait_event_lock_irq_cmd(conf->wait_barrier,
991 conf->nr_pending == conf->nr_queued+extra,
992 conf->resync_lock,
993 flush_pending_writes(conf));
994 spin_unlock_irq(&conf->resync_lock);
995}
996static void unfreeze_array(struct r1conf *conf)
997{
998 /* reverse the effect of the freeze */
999 spin_lock_irq(&conf->resync_lock);
1000 conf->array_frozen = 0;
1001 wake_up(&conf->wait_barrier);
1002 spin_unlock_irq(&conf->resync_lock);
1003}
1004
1005
1006/* duplicate the data pages for behind I/O
1007 */
1008static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
1009{
1010 int i;
1011 struct bio_vec *bvec;
1012 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1013 GFP_NOIO);
1014 if (unlikely(!bvecs))
1015 return;
1016
1017 bio_for_each_segment_all(bvec, bio, i) {
1018 bvecs[i] = *bvec;
1019 bvecs[i].bv_page = alloc_page(GFP_NOIO);
1020 if (unlikely(!bvecs[i].bv_page))
1021 goto do_sync_io;
1022 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1023 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1024 kunmap(bvecs[i].bv_page);
1025 kunmap(bvec->bv_page);
1026 }
1027 r1_bio->behind_bvecs = bvecs;
1028 r1_bio->behind_page_count = bio->bi_vcnt;
1029 set_bit(R1BIO_BehindIO, &r1_bio->state);
1030 return;
1031
1032do_sync_io:
1033 for (i = 0; i < bio->bi_vcnt; i++)
1034 if (bvecs[i].bv_page)
1035 put_page(bvecs[i].bv_page);
1036 kfree(bvecs);
1037 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1038 bio->bi_iter.bi_size);
1039}
1040
1041struct raid1_plug_cb {
1042 struct blk_plug_cb cb;
1043 struct bio_list pending;
1044 int pending_cnt;
1045};
1046
1047static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1048{
1049 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1050 cb);
1051 struct mddev *mddev = plug->cb.data;
1052 struct r1conf *conf = mddev->private;
1053 struct bio *bio;
1054
1055 if (from_schedule || current->bio_list) {
1056 spin_lock_irq(&conf->device_lock);
1057 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1058 conf->pending_count += plug->pending_cnt;
1059 spin_unlock_irq(&conf->device_lock);
1060 wake_up(&conf->wait_barrier);
1061 md_wakeup_thread(mddev->thread);
1062 kfree(plug);
1063 return;
1064 }
1065
1066 /* we aren't scheduling, so we can do the write-out directly. */
1067 bio = bio_list_get(&plug->pending);
1068 bitmap_unplug(mddev->bitmap);
1069 wake_up(&conf->wait_barrier);
1070
1071 while (bio) { /* submit pending writes */
1072 struct bio *next = bio->bi_next;
1073 bio->bi_next = NULL;
1074 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1075 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1076 /* Just ignore it */
1077 bio_endio(bio, 0);
1078 else
1079 generic_make_request(bio);
1080 bio = next;
1081 }
1082 kfree(plug);
1083}
1084
1085static void make_request(struct mddev *mddev, struct bio * bio)
1086{
1087 struct r1conf *conf = mddev->private;
1088 struct raid1_info *mirror;
1089 struct r1bio *r1_bio;
1090 struct bio *read_bio;
1091 int i, disks;
1092 struct bitmap *bitmap;
1093 unsigned long flags;
1094 const int rw = bio_data_dir(bio);
1095 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1096 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1097 const unsigned long do_discard = (bio->bi_rw
1098 & (REQ_DISCARD | REQ_SECURE));
1099 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1100 struct md_rdev *blocked_rdev;
1101 struct blk_plug_cb *cb;
1102 struct raid1_plug_cb *plug = NULL;
1103 int first_clone;
1104 int sectors_handled;
1105 int max_sectors;
1106 sector_t start_next_window;
1107
1108 /*
1109 * Register the new request and wait if the reconstruction
1110 * thread has put up a bar for new requests.
1111 * Continue immediately if no resync is active currently.
1112 */
1113
1114 md_write_start(mddev, bio); /* wait on superblock update early */
1115
1116 if (bio_data_dir(bio) == WRITE &&
1117 bio_end_sector(bio) > mddev->suspend_lo &&
1118 bio->bi_iter.bi_sector < mddev->suspend_hi) {
1119 /* As the suspend_* range is controlled by
1120 * userspace, we want an interruptible
1121 * wait.
1122 */
1123 DEFINE_WAIT(w);
1124 for (;;) {
1125 flush_signals(current);
1126 prepare_to_wait(&conf->wait_barrier,
1127 &w, TASK_INTERRUPTIBLE);
1128 if (bio_end_sector(bio) <= mddev->suspend_lo ||
1129 bio->bi_iter.bi_sector >= mddev->suspend_hi)
1130 break;
1131 schedule();
1132 }
1133 finish_wait(&conf->wait_barrier, &w);
1134 }
1135
1136 start_next_window = wait_barrier(conf, bio);
1137
1138 bitmap = mddev->bitmap;
1139
1140 /*
1141 * make_request() can abort the operation when READA is being
1142 * used and no empty request is available.
1143 *
1144 */
1145 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1146
1147 r1_bio->master_bio = bio;
1148 r1_bio->sectors = bio_sectors(bio);
1149 r1_bio->state = 0;
1150 r1_bio->mddev = mddev;
1151 r1_bio->sector = bio->bi_iter.bi_sector;
1152
1153 /* We might need to issue multiple reads to different
1154 * devices if there are bad blocks around, so we keep
1155 * track of the number of reads in bio->bi_phys_segments.
1156 * If this is 0, there is only one r1_bio and no locking
1157 * will be needed when requests complete. If it is
1158 * non-zero, then it is the number of not-completed requests.
1159 */
1160 bio->bi_phys_segments = 0;
1161 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1162
1163 if (rw == READ) {
1164 /*
1165 * read balancing logic:
1166 */
1167 int rdisk;
1168
1169read_again:
1170 rdisk = read_balance(conf, r1_bio, &max_sectors);
1171
1172 if (rdisk < 0) {
1173 /* couldn't find anywhere to read from */
1174 raid_end_bio_io(r1_bio);
1175 return;
1176 }
1177 mirror = conf->mirrors + rdisk;
1178
1179 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1180 bitmap) {
1181 /* Reading from a write-mostly device must
1182 * take care not to over-take any writes
1183 * that are 'behind'
1184 */
1185 wait_event(bitmap->behind_wait,
1186 atomic_read(&bitmap->behind_writes) == 0);
1187 }
1188 r1_bio->read_disk = rdisk;
1189
1190 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1191 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1192 max_sectors);
1193
1194 r1_bio->bios[rdisk] = read_bio;
1195
1196 read_bio->bi_iter.bi_sector = r1_bio->sector +
1197 mirror->rdev->data_offset;
1198 read_bio->bi_bdev = mirror->rdev->bdev;
1199 read_bio->bi_end_io = raid1_end_read_request;
1200 read_bio->bi_rw = READ | do_sync;
1201 read_bio->bi_private = r1_bio;
1202
1203 if (max_sectors < r1_bio->sectors) {
1204 /* could not read all from this device, so we will
1205 * need another r1_bio.
1206 */
1207
1208 sectors_handled = (r1_bio->sector + max_sectors
1209 - bio->bi_iter.bi_sector);
1210 r1_bio->sectors = max_sectors;
1211 spin_lock_irq(&conf->device_lock);
1212 if (bio->bi_phys_segments == 0)
1213 bio->bi_phys_segments = 2;
1214 else
1215 bio->bi_phys_segments++;
1216 spin_unlock_irq(&conf->device_lock);
1217 /* Cannot call generic_make_request directly
1218 * as that will be queued in __make_request
1219 * and subsequent mempool_alloc might block waiting
1220 * for it. So hand bio over to raid1d.
1221 */
1222 reschedule_retry(r1_bio);
1223
1224 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1225
1226 r1_bio->master_bio = bio;
1227 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1228 r1_bio->state = 0;
1229 r1_bio->mddev = mddev;
1230 r1_bio->sector = bio->bi_iter.bi_sector +
1231 sectors_handled;
1232 goto read_again;
1233 } else
1234 generic_make_request(read_bio);
1235 return;
1236 }
1237
1238 /*
1239 * WRITE:
1240 */
1241 if (conf->pending_count >= max_queued_requests) {
1242 md_wakeup_thread(mddev->thread);
1243 wait_event(conf->wait_barrier,
1244 conf->pending_count < max_queued_requests);
1245 }
1246 /* first select target devices under rcu_lock and
1247 * inc refcount on their rdev. Record them by setting
1248 * bios[x] to bio
1249 * If there are known/acknowledged bad blocks on any device on
1250 * which we have seen a write error, we want to avoid writing those
1251 * blocks.
1252 * This potentially requires several writes to write around
1253 * the bad blocks. Each set of writes gets it's own r1bio
1254 * with a set of bios attached.
1255 */
1256
1257 disks = conf->raid_disks * 2;
1258 retry_write:
1259 r1_bio->start_next_window = start_next_window;
1260 blocked_rdev = NULL;
1261 rcu_read_lock();
1262 max_sectors = r1_bio->sectors;
1263 for (i = 0; i < disks; i++) {
1264 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1265 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1266 atomic_inc(&rdev->nr_pending);
1267 blocked_rdev = rdev;
1268 break;
1269 }
1270 r1_bio->bios[i] = NULL;
1271 if (!rdev || test_bit(Faulty, &rdev->flags)
1272 || test_bit(Unmerged, &rdev->flags)) {
1273 if (i < conf->raid_disks)
1274 set_bit(R1BIO_Degraded, &r1_bio->state);
1275 continue;
1276 }
1277
1278 atomic_inc(&rdev->nr_pending);
1279 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1280 sector_t first_bad;
1281 int bad_sectors;
1282 int is_bad;
1283
1284 is_bad = is_badblock(rdev, r1_bio->sector,
1285 max_sectors,
1286 &first_bad, &bad_sectors);
1287 if (is_bad < 0) {
1288 /* mustn't write here until the bad block is
1289 * acknowledged*/
1290 set_bit(BlockedBadBlocks, &rdev->flags);
1291 blocked_rdev = rdev;
1292 break;
1293 }
1294 if (is_bad && first_bad <= r1_bio->sector) {
1295 /* Cannot write here at all */
1296 bad_sectors -= (r1_bio->sector - first_bad);
1297 if (bad_sectors < max_sectors)
1298 /* mustn't write more than bad_sectors
1299 * to other devices yet
1300 */
1301 max_sectors = bad_sectors;
1302 rdev_dec_pending(rdev, mddev);
1303 /* We don't set R1BIO_Degraded as that
1304 * only applies if the disk is
1305 * missing, so it might be re-added,
1306 * and we want to know to recover this
1307 * chunk.
1308 * In this case the device is here,
1309 * and the fact that this chunk is not
1310 * in-sync is recorded in the bad
1311 * block log
1312 */
1313 continue;
1314 }
1315 if (is_bad) {
1316 int good_sectors = first_bad - r1_bio->sector;
1317 if (good_sectors < max_sectors)
1318 max_sectors = good_sectors;
1319 }
1320 }
1321 r1_bio->bios[i] = bio;
1322 }
1323 rcu_read_unlock();
1324
1325 if (unlikely(blocked_rdev)) {
1326 /* Wait for this device to become unblocked */
1327 int j;
1328 sector_t old = start_next_window;
1329
1330 for (j = 0; j < i; j++)
1331 if (r1_bio->bios[j])
1332 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1333 r1_bio->state = 0;
1334 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1335 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1336 start_next_window = wait_barrier(conf, bio);
1337 /*
1338 * We must make sure the multi r1bios of bio have
1339 * the same value of bi_phys_segments
1340 */
1341 if (bio->bi_phys_segments && old &&
1342 old != start_next_window)
1343 /* Wait for the former r1bio(s) to complete */
1344 wait_event(conf->wait_barrier,
1345 bio->bi_phys_segments == 1);
1346 goto retry_write;
1347 }
1348
1349 if (max_sectors < r1_bio->sectors) {
1350 /* We are splitting this write into multiple parts, so
1351 * we need to prepare for allocating another r1_bio.
1352 */
1353 r1_bio->sectors = max_sectors;
1354 spin_lock_irq(&conf->device_lock);
1355 if (bio->bi_phys_segments == 0)
1356 bio->bi_phys_segments = 2;
1357 else
1358 bio->bi_phys_segments++;
1359 spin_unlock_irq(&conf->device_lock);
1360 }
1361 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1362
1363 atomic_set(&r1_bio->remaining, 1);
1364 atomic_set(&r1_bio->behind_remaining, 0);
1365
1366 first_clone = 1;
1367 for (i = 0; i < disks; i++) {
1368 struct bio *mbio;
1369 if (!r1_bio->bios[i])
1370 continue;
1371
1372 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1373 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1374
1375 if (first_clone) {
1376 /* do behind I/O ?
1377 * Not if there are too many, or cannot
1378 * allocate memory, or a reader on WriteMostly
1379 * is waiting for behind writes to flush */
1380 if (bitmap &&
1381 (atomic_read(&bitmap->behind_writes)
1382 < mddev->bitmap_info.max_write_behind) &&
1383 !waitqueue_active(&bitmap->behind_wait))
1384 alloc_behind_pages(mbio, r1_bio);
1385
1386 bitmap_startwrite(bitmap, r1_bio->sector,
1387 r1_bio->sectors,
1388 test_bit(R1BIO_BehindIO,
1389 &r1_bio->state));
1390 first_clone = 0;
1391 }
1392 if (r1_bio->behind_bvecs) {
1393 struct bio_vec *bvec;
1394 int j;
1395
1396 /*
1397 * We trimmed the bio, so _all is legit
1398 */
1399 bio_for_each_segment_all(bvec, mbio, j)
1400 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1401 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1402 atomic_inc(&r1_bio->behind_remaining);
1403 }
1404
1405 r1_bio->bios[i] = mbio;
1406
1407 mbio->bi_iter.bi_sector = (r1_bio->sector +
1408 conf->mirrors[i].rdev->data_offset);
1409 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1410 mbio->bi_end_io = raid1_end_write_request;
1411 mbio->bi_rw =
1412 WRITE | do_flush_fua | do_sync | do_discard | do_same;
1413 mbio->bi_private = r1_bio;
1414
1415 atomic_inc(&r1_bio->remaining);
1416
1417 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1418 if (cb)
1419 plug = container_of(cb, struct raid1_plug_cb, cb);
1420 else
1421 plug = NULL;
1422 spin_lock_irqsave(&conf->device_lock, flags);
1423 if (plug) {
1424 bio_list_add(&plug->pending, mbio);
1425 plug->pending_cnt++;
1426 } else {
1427 bio_list_add(&conf->pending_bio_list, mbio);
1428 conf->pending_count++;
1429 }
1430 spin_unlock_irqrestore(&conf->device_lock, flags);
1431 if (!plug)
1432 md_wakeup_thread(mddev->thread);
1433 }
1434 /* Mustn't call r1_bio_write_done before this next test,
1435 * as it could result in the bio being freed.
1436 */
1437 if (sectors_handled < bio_sectors(bio)) {
1438 r1_bio_write_done(r1_bio);
1439 /* We need another r1_bio. It has already been counted
1440 * in bio->bi_phys_segments
1441 */
1442 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1443 r1_bio->master_bio = bio;
1444 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1445 r1_bio->state = 0;
1446 r1_bio->mddev = mddev;
1447 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1448 goto retry_write;
1449 }
1450
1451 r1_bio_write_done(r1_bio);
1452
1453 /* In case raid1d snuck in to freeze_array */
1454 wake_up(&conf->wait_barrier);
1455}
1456
1457static void status(struct seq_file *seq, struct mddev *mddev)
1458{
1459 struct r1conf *conf = mddev->private;
1460 int i;
1461
1462 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1463 conf->raid_disks - mddev->degraded);
1464 rcu_read_lock();
1465 for (i = 0; i < conf->raid_disks; i++) {
1466 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1467 seq_printf(seq, "%s",
1468 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1469 }
1470 rcu_read_unlock();
1471 seq_printf(seq, "]");
1472}
1473
1474
1475static void error(struct mddev *mddev, struct md_rdev *rdev)
1476{
1477 char b[BDEVNAME_SIZE];
1478 struct r1conf *conf = mddev->private;
1479
1480 /*
1481 * If it is not operational, then we have already marked it as dead
1482 * else if it is the last working disks, ignore the error, let the
1483 * next level up know.
1484 * else mark the drive as failed
1485 */
1486 if (test_bit(In_sync, &rdev->flags)
1487 && (conf->raid_disks - mddev->degraded) == 1) {
1488 /*
1489 * Don't fail the drive, act as though we were just a
1490 * normal single drive.
1491 * However don't try a recovery from this drive as
1492 * it is very likely to fail.
1493 */
1494 conf->recovery_disabled = mddev->recovery_disabled;
1495 return;
1496 }
1497 set_bit(Blocked, &rdev->flags);
1498 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1499 unsigned long flags;
1500 spin_lock_irqsave(&conf->device_lock, flags);
1501 mddev->degraded++;
1502 set_bit(Faulty, &rdev->flags);
1503 spin_unlock_irqrestore(&conf->device_lock, flags);
1504 /*
1505 * if recovery is running, make sure it aborts.
1506 */
1507 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1508 } else
1509 set_bit(Faulty, &rdev->flags);
1510 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1511 printk(KERN_ALERT
1512 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1513 "md/raid1:%s: Operation continuing on %d devices.\n",
1514 mdname(mddev), bdevname(rdev->bdev, b),
1515 mdname(mddev), conf->raid_disks - mddev->degraded);
1516}
1517
1518static void print_conf(struct r1conf *conf)
1519{
1520 int i;
1521
1522 printk(KERN_DEBUG "RAID1 conf printout:\n");
1523 if (!conf) {
1524 printk(KERN_DEBUG "(!conf)\n");
1525 return;
1526 }
1527 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1528 conf->raid_disks);
1529
1530 rcu_read_lock();
1531 for (i = 0; i < conf->raid_disks; i++) {
1532 char b[BDEVNAME_SIZE];
1533 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1534 if (rdev)
1535 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1536 i, !test_bit(In_sync, &rdev->flags),
1537 !test_bit(Faulty, &rdev->flags),
1538 bdevname(rdev->bdev,b));
1539 }
1540 rcu_read_unlock();
1541}
1542
1543static void close_sync(struct r1conf *conf)
1544{
1545 wait_barrier(conf, NULL);
1546 allow_barrier(conf, 0, 0);
1547
1548 mempool_destroy(conf->r1buf_pool);
1549 conf->r1buf_pool = NULL;
1550
1551 conf->next_resync = 0;
1552 conf->start_next_window = MaxSector;
1553}
1554
1555static int raid1_spare_active(struct mddev *mddev)
1556{
1557 int i;
1558 struct r1conf *conf = mddev->private;
1559 int count = 0;
1560 unsigned long flags;
1561
1562 /*
1563 * Find all failed disks within the RAID1 configuration
1564 * and mark them readable.
1565 * Called under mddev lock, so rcu protection not needed.
1566 */
1567 for (i = 0; i < conf->raid_disks; i++) {
1568 struct md_rdev *rdev = conf->mirrors[i].rdev;
1569 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1570 if (repl
1571 && repl->recovery_offset == MaxSector
1572 && !test_bit(Faulty, &repl->flags)
1573 && !test_and_set_bit(In_sync, &repl->flags)) {
1574 /* replacement has just become active */
1575 if (!rdev ||
1576 !test_and_clear_bit(In_sync, &rdev->flags))
1577 count++;
1578 if (rdev) {
1579 /* Replaced device not technically
1580 * faulty, but we need to be sure
1581 * it gets removed and never re-added
1582 */
1583 set_bit(Faulty, &rdev->flags);
1584 sysfs_notify_dirent_safe(
1585 rdev->sysfs_state);
1586 }
1587 }
1588 if (rdev
1589 && rdev->recovery_offset == MaxSector
1590 && !test_bit(Faulty, &rdev->flags)
1591 && !test_and_set_bit(In_sync, &rdev->flags)) {
1592 count++;
1593 sysfs_notify_dirent_safe(rdev->sysfs_state);
1594 }
1595 }
1596 spin_lock_irqsave(&conf->device_lock, flags);
1597 mddev->degraded -= count;
1598 spin_unlock_irqrestore(&conf->device_lock, flags);
1599
1600 print_conf(conf);
1601 return count;
1602}
1603
1604
1605static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1606{
1607 struct r1conf *conf = mddev->private;
1608 int err = -EEXIST;
1609 int mirror = 0;
1610 struct raid1_info *p;
1611 int first = 0;
1612 int last = conf->raid_disks - 1;
1613 struct request_queue *q = bdev_get_queue(rdev->bdev);
1614
1615 if (mddev->recovery_disabled == conf->recovery_disabled)
1616 return -EBUSY;
1617
1618 if (rdev->raid_disk >= 0)
1619 first = last = rdev->raid_disk;
1620
1621 if (q->merge_bvec_fn) {
1622 set_bit(Unmerged, &rdev->flags);
1623 mddev->merge_check_needed = 1;
1624 }
1625
1626 for (mirror = first; mirror <= last; mirror++) {
1627 p = conf->mirrors+mirror;
1628 if (!p->rdev) {
1629
1630 if (mddev->gendisk)
1631 disk_stack_limits(mddev->gendisk, rdev->bdev,
1632 rdev->data_offset << 9);
1633
1634 p->head_position = 0;
1635 rdev->raid_disk = mirror;
1636 err = 0;
1637 /* As all devices are equivalent, we don't need a full recovery
1638 * if this was recently any drive of the array
1639 */
1640 if (rdev->saved_raid_disk < 0)
1641 conf->fullsync = 1;
1642 rcu_assign_pointer(p->rdev, rdev);
1643 break;
1644 }
1645 if (test_bit(WantReplacement, &p->rdev->flags) &&
1646 p[conf->raid_disks].rdev == NULL) {
1647 /* Add this device as a replacement */
1648 clear_bit(In_sync, &rdev->flags);
1649 set_bit(Replacement, &rdev->flags);
1650 rdev->raid_disk = mirror;
1651 err = 0;
1652 conf->fullsync = 1;
1653 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1654 break;
1655 }
1656 }
1657 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1658 /* Some requests might not have seen this new
1659 * merge_bvec_fn. We must wait for them to complete
1660 * before merging the device fully.
1661 * First we make sure any code which has tested
1662 * our function has submitted the request, then
1663 * we wait for all outstanding requests to complete.
1664 */
1665 synchronize_sched();
1666 freeze_array(conf, 0);
1667 unfreeze_array(conf);
1668 clear_bit(Unmerged, &rdev->flags);
1669 }
1670 md_integrity_add_rdev(rdev, mddev);
1671 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1672 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1673 print_conf(conf);
1674 return err;
1675}
1676
1677static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1678{
1679 struct r1conf *conf = mddev->private;
1680 int err = 0;
1681 int number = rdev->raid_disk;
1682 struct raid1_info *p = conf->mirrors + number;
1683
1684 if (rdev != p->rdev)
1685 p = conf->mirrors + conf->raid_disks + number;
1686
1687 print_conf(conf);
1688 if (rdev == p->rdev) {
1689 if (test_bit(In_sync, &rdev->flags) ||
1690 atomic_read(&rdev->nr_pending)) {
1691 err = -EBUSY;
1692 goto abort;
1693 }
1694 /* Only remove non-faulty devices if recovery
1695 * is not possible.
1696 */
1697 if (!test_bit(Faulty, &rdev->flags) &&
1698 mddev->recovery_disabled != conf->recovery_disabled &&
1699 mddev->degraded < conf->raid_disks) {
1700 err = -EBUSY;
1701 goto abort;
1702 }
1703 p->rdev = NULL;
1704 synchronize_rcu();
1705 if (atomic_read(&rdev->nr_pending)) {
1706 /* lost the race, try later */
1707 err = -EBUSY;
1708 p->rdev = rdev;
1709 goto abort;
1710 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1711 /* We just removed a device that is being replaced.
1712 * Move down the replacement. We drain all IO before
1713 * doing this to avoid confusion.
1714 */
1715 struct md_rdev *repl =
1716 conf->mirrors[conf->raid_disks + number].rdev;
1717 freeze_array(conf, 0);
1718 clear_bit(Replacement, &repl->flags);
1719 p->rdev = repl;
1720 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1721 unfreeze_array(conf);
1722 clear_bit(WantReplacement, &rdev->flags);
1723 } else
1724 clear_bit(WantReplacement, &rdev->flags);
1725 err = md_integrity_register(mddev);
1726 }
1727abort:
1728
1729 print_conf(conf);
1730 return err;
1731}
1732
1733
1734static void end_sync_read(struct bio *bio, int error)
1735{
1736 struct r1bio *r1_bio = bio->bi_private;
1737
1738 update_head_pos(r1_bio->read_disk, r1_bio);
1739
1740 /*
1741 * we have read a block, now it needs to be re-written,
1742 * or re-read if the read failed.
1743 * We don't do much here, just schedule handling by raid1d
1744 */
1745 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1746 set_bit(R1BIO_Uptodate, &r1_bio->state);
1747
1748 if (atomic_dec_and_test(&r1_bio->remaining))
1749 reschedule_retry(r1_bio);
1750}
1751
1752static void end_sync_write(struct bio *bio, int error)
1753{
1754 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1755 struct r1bio *r1_bio = bio->bi_private;
1756 struct mddev *mddev = r1_bio->mddev;
1757 struct r1conf *conf = mddev->private;
1758 int mirror=0;
1759 sector_t first_bad;
1760 int bad_sectors;
1761
1762 mirror = find_bio_disk(r1_bio, bio);
1763
1764 if (!uptodate) {
1765 sector_t sync_blocks = 0;
1766 sector_t s = r1_bio->sector;
1767 long sectors_to_go = r1_bio->sectors;
1768 /* make sure these bits doesn't get cleared. */
1769 do {
1770 bitmap_end_sync(mddev->bitmap, s,
1771 &sync_blocks, 1);
1772 s += sync_blocks;
1773 sectors_to_go -= sync_blocks;
1774 } while (sectors_to_go > 0);
1775 set_bit(WriteErrorSeen,
1776 &conf->mirrors[mirror].rdev->flags);
1777 if (!test_and_set_bit(WantReplacement,
1778 &conf->mirrors[mirror].rdev->flags))
1779 set_bit(MD_RECOVERY_NEEDED, &
1780 mddev->recovery);
1781 set_bit(R1BIO_WriteError, &r1_bio->state);
1782 } else if (is_badblock(conf->mirrors[mirror].rdev,
1783 r1_bio->sector,
1784 r1_bio->sectors,
1785 &first_bad, &bad_sectors) &&
1786 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1787 r1_bio->sector,
1788 r1_bio->sectors,
1789 &first_bad, &bad_sectors)
1790 )
1791 set_bit(R1BIO_MadeGood, &r1_bio->state);
1792
1793 if (atomic_dec_and_test(&r1_bio->remaining)) {
1794 int s = r1_bio->sectors;
1795 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1796 test_bit(R1BIO_WriteError, &r1_bio->state))
1797 reschedule_retry(r1_bio);
1798 else {
1799 put_buf(r1_bio);
1800 md_done_sync(mddev, s, uptodate);
1801 }
1802 }
1803}
1804
1805static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1806 int sectors, struct page *page, int rw)
1807{
1808 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1809 /* success */
1810 return 1;
1811 if (rw == WRITE) {
1812 set_bit(WriteErrorSeen, &rdev->flags);
1813 if (!test_and_set_bit(WantReplacement,
1814 &rdev->flags))
1815 set_bit(MD_RECOVERY_NEEDED, &
1816 rdev->mddev->recovery);
1817 }
1818 /* need to record an error - either for the block or the device */
1819 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1820 md_error(rdev->mddev, rdev);
1821 return 0;
1822}
1823
1824static int fix_sync_read_error(struct r1bio *r1_bio)
1825{
1826 /* Try some synchronous reads of other devices to get
1827 * good data, much like with normal read errors. Only
1828 * read into the pages we already have so we don't
1829 * need to re-issue the read request.
1830 * We don't need to freeze the array, because being in an
1831 * active sync request, there is no normal IO, and
1832 * no overlapping syncs.
1833 * We don't need to check is_badblock() again as we
1834 * made sure that anything with a bad block in range
1835 * will have bi_end_io clear.
1836 */
1837 struct mddev *mddev = r1_bio->mddev;
1838 struct r1conf *conf = mddev->private;
1839 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1840 sector_t sect = r1_bio->sector;
1841 int sectors = r1_bio->sectors;
1842 int idx = 0;
1843
1844 while(sectors) {
1845 int s = sectors;
1846 int d = r1_bio->read_disk;
1847 int success = 0;
1848 struct md_rdev *rdev;
1849 int start;
1850
1851 if (s > (PAGE_SIZE>>9))
1852 s = PAGE_SIZE >> 9;
1853 do {
1854 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1855 /* No rcu protection needed here devices
1856 * can only be removed when no resync is
1857 * active, and resync is currently active
1858 */
1859 rdev = conf->mirrors[d].rdev;
1860 if (sync_page_io(rdev, sect, s<<9,
1861 bio->bi_io_vec[idx].bv_page,
1862 READ, false)) {
1863 success = 1;
1864 break;
1865 }
1866 }
1867 d++;
1868 if (d == conf->raid_disks * 2)
1869 d = 0;
1870 } while (!success && d != r1_bio->read_disk);
1871
1872 if (!success) {
1873 char b[BDEVNAME_SIZE];
1874 int abort = 0;
1875 /* Cannot read from anywhere, this block is lost.
1876 * Record a bad block on each device. If that doesn't
1877 * work just disable and interrupt the recovery.
1878 * Don't fail devices as that won't really help.
1879 */
1880 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1881 " for block %llu\n",
1882 mdname(mddev),
1883 bdevname(bio->bi_bdev, b),
1884 (unsigned long long)r1_bio->sector);
1885 for (d = 0; d < conf->raid_disks * 2; d++) {
1886 rdev = conf->mirrors[d].rdev;
1887 if (!rdev || test_bit(Faulty, &rdev->flags))
1888 continue;
1889 if (!rdev_set_badblocks(rdev, sect, s, 0))
1890 abort = 1;
1891 }
1892 if (abort) {
1893 conf->recovery_disabled =
1894 mddev->recovery_disabled;
1895 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1896 md_done_sync(mddev, r1_bio->sectors, 0);
1897 put_buf(r1_bio);
1898 return 0;
1899 }
1900 /* Try next page */
1901 sectors -= s;
1902 sect += s;
1903 idx++;
1904 continue;
1905 }
1906
1907 start = d;
1908 /* write it back and re-read */
1909 while (d != r1_bio->read_disk) {
1910 if (d == 0)
1911 d = conf->raid_disks * 2;
1912 d--;
1913 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1914 continue;
1915 rdev = conf->mirrors[d].rdev;
1916 if (r1_sync_page_io(rdev, sect, s,
1917 bio->bi_io_vec[idx].bv_page,
1918 WRITE) == 0) {
1919 r1_bio->bios[d]->bi_end_io = NULL;
1920 rdev_dec_pending(rdev, mddev);
1921 }
1922 }
1923 d = start;
1924 while (d != r1_bio->read_disk) {
1925 if (d == 0)
1926 d = conf->raid_disks * 2;
1927 d--;
1928 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1929 continue;
1930 rdev = conf->mirrors[d].rdev;
1931 if (r1_sync_page_io(rdev, sect, s,
1932 bio->bi_io_vec[idx].bv_page,
1933 READ) != 0)
1934 atomic_add(s, &rdev->corrected_errors);
1935 }
1936 sectors -= s;
1937 sect += s;
1938 idx ++;
1939 }
1940 set_bit(R1BIO_Uptodate, &r1_bio->state);
1941 set_bit(BIO_UPTODATE, &bio->bi_flags);
1942 return 1;
1943}
1944
1945static int process_checks(struct r1bio *r1_bio)
1946{
1947 /* We have read all readable devices. If we haven't
1948 * got the block, then there is no hope left.
1949 * If we have, then we want to do a comparison
1950 * and skip the write if everything is the same.
1951 * If any blocks failed to read, then we need to
1952 * attempt an over-write
1953 */
1954 struct mddev *mddev = r1_bio->mddev;
1955 struct r1conf *conf = mddev->private;
1956 int primary;
1957 int i;
1958 int vcnt;
1959
1960 /* Fix variable parts of all bios */
1961 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1962 for (i = 0; i < conf->raid_disks * 2; i++) {
1963 int j;
1964 int size;
1965 int uptodate;
1966 struct bio *b = r1_bio->bios[i];
1967 if (b->bi_end_io != end_sync_read)
1968 continue;
1969 /* fixup the bio for reuse, but preserve BIO_UPTODATE */
1970 uptodate = test_bit(BIO_UPTODATE, &b->bi_flags);
1971 bio_reset(b);
1972 if (!uptodate)
1973 clear_bit(BIO_UPTODATE, &b->bi_flags);
1974 b->bi_vcnt = vcnt;
1975 b->bi_iter.bi_size = r1_bio->sectors << 9;
1976 b->bi_iter.bi_sector = r1_bio->sector +
1977 conf->mirrors[i].rdev->data_offset;
1978 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1979 b->bi_end_io = end_sync_read;
1980 b->bi_private = r1_bio;
1981
1982 size = b->bi_iter.bi_size;
1983 for (j = 0; j < vcnt ; j++) {
1984 struct bio_vec *bi;
1985 bi = &b->bi_io_vec[j];
1986 bi->bv_offset = 0;
1987 if (size > PAGE_SIZE)
1988 bi->bv_len = PAGE_SIZE;
1989 else
1990 bi->bv_len = size;
1991 size -= PAGE_SIZE;
1992 }
1993 }
1994 for (primary = 0; primary < conf->raid_disks * 2; primary++)
1995 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1996 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1997 r1_bio->bios[primary]->bi_end_io = NULL;
1998 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1999 break;
2000 }
2001 r1_bio->read_disk = primary;
2002 for (i = 0; i < conf->raid_disks * 2; i++) {
2003 int j;
2004 struct bio *pbio = r1_bio->bios[primary];
2005 struct bio *sbio = r1_bio->bios[i];
2006 int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags);
2007
2008 if (sbio->bi_end_io != end_sync_read)
2009 continue;
2010 /* Now we can 'fixup' the BIO_UPTODATE flag */
2011 set_bit(BIO_UPTODATE, &sbio->bi_flags);
2012
2013 if (uptodate) {
2014 for (j = vcnt; j-- ; ) {
2015 struct page *p, *s;
2016 p = pbio->bi_io_vec[j].bv_page;
2017 s = sbio->bi_io_vec[j].bv_page;
2018 if (memcmp(page_address(p),
2019 page_address(s),
2020 sbio->bi_io_vec[j].bv_len))
2021 break;
2022 }
2023 } else
2024 j = 0;
2025 if (j >= 0)
2026 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2027 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2028 && uptodate)) {
2029 /* No need to write to this device. */
2030 sbio->bi_end_io = NULL;
2031 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2032 continue;
2033 }
2034
2035 bio_copy_data(sbio, pbio);
2036 }
2037 return 0;
2038}
2039
2040static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2041{
2042 struct r1conf *conf = mddev->private;
2043 int i;
2044 int disks = conf->raid_disks * 2;
2045 struct bio *bio, *wbio;
2046
2047 bio = r1_bio->bios[r1_bio->read_disk];
2048
2049 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2050 /* ouch - failed to read all of that. */
2051 if (!fix_sync_read_error(r1_bio))
2052 return;
2053
2054 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2055 if (process_checks(r1_bio) < 0)
2056 return;
2057 /*
2058 * schedule writes
2059 */
2060 atomic_set(&r1_bio->remaining, 1);
2061 for (i = 0; i < disks ; i++) {
2062 wbio = r1_bio->bios[i];
2063 if (wbio->bi_end_io == NULL ||
2064 (wbio->bi_end_io == end_sync_read &&
2065 (i == r1_bio->read_disk ||
2066 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2067 continue;
2068
2069 wbio->bi_rw = WRITE;
2070 wbio->bi_end_io = end_sync_write;
2071 atomic_inc(&r1_bio->remaining);
2072 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2073
2074 generic_make_request(wbio);
2075 }
2076
2077 if (atomic_dec_and_test(&r1_bio->remaining)) {
2078 /* if we're here, all write(s) have completed, so clean up */
2079 int s = r1_bio->sectors;
2080 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2081 test_bit(R1BIO_WriteError, &r1_bio->state))
2082 reschedule_retry(r1_bio);
2083 else {
2084 put_buf(r1_bio);
2085 md_done_sync(mddev, s, 1);
2086 }
2087 }
2088}
2089
2090/*
2091 * This is a kernel thread which:
2092 *
2093 * 1. Retries failed read operations on working mirrors.
2094 * 2. Updates the raid superblock when problems encounter.
2095 * 3. Performs writes following reads for array synchronising.
2096 */
2097
2098static void fix_read_error(struct r1conf *conf, int read_disk,
2099 sector_t sect, int sectors)
2100{
2101 struct mddev *mddev = conf->mddev;
2102 while(sectors) {
2103 int s = sectors;
2104 int d = read_disk;
2105 int success = 0;
2106 int start;
2107 struct md_rdev *rdev;
2108
2109 if (s > (PAGE_SIZE>>9))
2110 s = PAGE_SIZE >> 9;
2111
2112 do {
2113 /* Note: no rcu protection needed here
2114 * as this is synchronous in the raid1d thread
2115 * which is the thread that might remove
2116 * a device. If raid1d ever becomes multi-threaded....
2117 */
2118 sector_t first_bad;
2119 int bad_sectors;
2120
2121 rdev = conf->mirrors[d].rdev;
2122 if (rdev &&
2123 (test_bit(In_sync, &rdev->flags) ||
2124 (!test_bit(Faulty, &rdev->flags) &&
2125 rdev->recovery_offset >= sect + s)) &&
2126 is_badblock(rdev, sect, s,
2127 &first_bad, &bad_sectors) == 0 &&
2128 sync_page_io(rdev, sect, s<<9,
2129 conf->tmppage, READ, false))
2130 success = 1;
2131 else {
2132 d++;
2133 if (d == conf->raid_disks * 2)
2134 d = 0;
2135 }
2136 } while (!success && d != read_disk);
2137
2138 if (!success) {
2139 /* Cannot read from anywhere - mark it bad */
2140 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2141 if (!rdev_set_badblocks(rdev, sect, s, 0))
2142 md_error(mddev, rdev);
2143 break;
2144 }
2145 /* write it back and re-read */
2146 start = d;
2147 while (d != read_disk) {
2148 if (d==0)
2149 d = conf->raid_disks * 2;
2150 d--;
2151 rdev = conf->mirrors[d].rdev;
2152 if (rdev &&
2153 test_bit(In_sync, &rdev->flags))
2154 r1_sync_page_io(rdev, sect, s,
2155 conf->tmppage, WRITE);
2156 }
2157 d = start;
2158 while (d != read_disk) {
2159 char b[BDEVNAME_SIZE];
2160 if (d==0)
2161 d = conf->raid_disks * 2;
2162 d--;
2163 rdev = conf->mirrors[d].rdev;
2164 if (rdev &&
2165 test_bit(In_sync, &rdev->flags)) {
2166 if (r1_sync_page_io(rdev, sect, s,
2167 conf->tmppage, READ)) {
2168 atomic_add(s, &rdev->corrected_errors);
2169 printk(KERN_INFO
2170 "md/raid1:%s: read error corrected "
2171 "(%d sectors at %llu on %s)\n",
2172 mdname(mddev), s,
2173 (unsigned long long)(sect +
2174 rdev->data_offset),
2175 bdevname(rdev->bdev, b));
2176 }
2177 }
2178 }
2179 sectors -= s;
2180 sect += s;
2181 }
2182}
2183
2184static int narrow_write_error(struct r1bio *r1_bio, int i)
2185{
2186 struct mddev *mddev = r1_bio->mddev;
2187 struct r1conf *conf = mddev->private;
2188 struct md_rdev *rdev = conf->mirrors[i].rdev;
2189
2190 /* bio has the data to be written to device 'i' where
2191 * we just recently had a write error.
2192 * We repeatedly clone the bio and trim down to one block,
2193 * then try the write. Where the write fails we record
2194 * a bad block.
2195 * It is conceivable that the bio doesn't exactly align with
2196 * blocks. We must handle this somehow.
2197 *
2198 * We currently own a reference on the rdev.
2199 */
2200
2201 int block_sectors;
2202 sector_t sector;
2203 int sectors;
2204 int sect_to_write = r1_bio->sectors;
2205 int ok = 1;
2206
2207 if (rdev->badblocks.shift < 0)
2208 return 0;
2209
2210 block_sectors = 1 << rdev->badblocks.shift;
2211 sector = r1_bio->sector;
2212 sectors = ((sector + block_sectors)
2213 & ~(sector_t)(block_sectors - 1))
2214 - sector;
2215
2216 while (sect_to_write) {
2217 struct bio *wbio;
2218 if (sectors > sect_to_write)
2219 sectors = sect_to_write;
2220 /* Write at 'sector' for 'sectors'*/
2221
2222 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2223 unsigned vcnt = r1_bio->behind_page_count;
2224 struct bio_vec *vec = r1_bio->behind_bvecs;
2225
2226 while (!vec->bv_page) {
2227 vec++;
2228 vcnt--;
2229 }
2230
2231 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2232 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2233
2234 wbio->bi_vcnt = vcnt;
2235 } else {
2236 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2237 }
2238
2239 wbio->bi_rw = WRITE;
2240 wbio->bi_iter.bi_sector = r1_bio->sector;
2241 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2242
2243 bio_trim(wbio, sector - r1_bio->sector, sectors);
2244 wbio->bi_iter.bi_sector += rdev->data_offset;
2245 wbio->bi_bdev = rdev->bdev;
2246 if (submit_bio_wait(WRITE, wbio) == 0)
2247 /* failure! */
2248 ok = rdev_set_badblocks(rdev, sector,
2249 sectors, 0)
2250 && ok;
2251
2252 bio_put(wbio);
2253 sect_to_write -= sectors;
2254 sector += sectors;
2255 sectors = block_sectors;
2256 }
2257 return ok;
2258}
2259
2260static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2261{
2262 int m;
2263 int s = r1_bio->sectors;
2264 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2265 struct md_rdev *rdev = conf->mirrors[m].rdev;
2266 struct bio *bio = r1_bio->bios[m];
2267 if (bio->bi_end_io == NULL)
2268 continue;
2269 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2270 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2271 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2272 }
2273 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2274 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2275 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2276 md_error(conf->mddev, rdev);
2277 }
2278 }
2279 put_buf(r1_bio);
2280 md_done_sync(conf->mddev, s, 1);
2281}
2282
2283static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2284{
2285 int m;
2286 for (m = 0; m < conf->raid_disks * 2 ; m++)
2287 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2288 struct md_rdev *rdev = conf->mirrors[m].rdev;
2289 rdev_clear_badblocks(rdev,
2290 r1_bio->sector,
2291 r1_bio->sectors, 0);
2292 rdev_dec_pending(rdev, conf->mddev);
2293 } else if (r1_bio->bios[m] != NULL) {
2294 /* This drive got a write error. We need to
2295 * narrow down and record precise write
2296 * errors.
2297 */
2298 if (!narrow_write_error(r1_bio, m)) {
2299 md_error(conf->mddev,
2300 conf->mirrors[m].rdev);
2301 /* an I/O failed, we can't clear the bitmap */
2302 set_bit(R1BIO_Degraded, &r1_bio->state);
2303 }
2304 rdev_dec_pending(conf->mirrors[m].rdev,
2305 conf->mddev);
2306 }
2307 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2308 close_write(r1_bio);
2309 raid_end_bio_io(r1_bio);
2310}
2311
2312static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2313{
2314 int disk;
2315 int max_sectors;
2316 struct mddev *mddev = conf->mddev;
2317 struct bio *bio;
2318 char b[BDEVNAME_SIZE];
2319 struct md_rdev *rdev;
2320
2321 clear_bit(R1BIO_ReadError, &r1_bio->state);
2322 /* we got a read error. Maybe the drive is bad. Maybe just
2323 * the block and we can fix it.
2324 * We freeze all other IO, and try reading the block from
2325 * other devices. When we find one, we re-write
2326 * and check it that fixes the read error.
2327 * This is all done synchronously while the array is
2328 * frozen
2329 */
2330 if (mddev->ro == 0) {
2331 freeze_array(conf, 1);
2332 fix_read_error(conf, r1_bio->read_disk,
2333 r1_bio->sector, r1_bio->sectors);
2334 unfreeze_array(conf);
2335 } else
2336 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2337 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2338
2339 bio = r1_bio->bios[r1_bio->read_disk];
2340 bdevname(bio->bi_bdev, b);
2341read_more:
2342 disk = read_balance(conf, r1_bio, &max_sectors);
2343 if (disk == -1) {
2344 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2345 " read error for block %llu\n",
2346 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2347 raid_end_bio_io(r1_bio);
2348 } else {
2349 const unsigned long do_sync
2350 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2351 if (bio) {
2352 r1_bio->bios[r1_bio->read_disk] =
2353 mddev->ro ? IO_BLOCKED : NULL;
2354 bio_put(bio);
2355 }
2356 r1_bio->read_disk = disk;
2357 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2358 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2359 max_sectors);
2360 r1_bio->bios[r1_bio->read_disk] = bio;
2361 rdev = conf->mirrors[disk].rdev;
2362 printk_ratelimited(KERN_ERR
2363 "md/raid1:%s: redirecting sector %llu"
2364 " to other mirror: %s\n",
2365 mdname(mddev),
2366 (unsigned long long)r1_bio->sector,
2367 bdevname(rdev->bdev, b));
2368 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2369 bio->bi_bdev = rdev->bdev;
2370 bio->bi_end_io = raid1_end_read_request;
2371 bio->bi_rw = READ | do_sync;
2372 bio->bi_private = r1_bio;
2373 if (max_sectors < r1_bio->sectors) {
2374 /* Drat - have to split this up more */
2375 struct bio *mbio = r1_bio->master_bio;
2376 int sectors_handled = (r1_bio->sector + max_sectors
2377 - mbio->bi_iter.bi_sector);
2378 r1_bio->sectors = max_sectors;
2379 spin_lock_irq(&conf->device_lock);
2380 if (mbio->bi_phys_segments == 0)
2381 mbio->bi_phys_segments = 2;
2382 else
2383 mbio->bi_phys_segments++;
2384 spin_unlock_irq(&conf->device_lock);
2385 generic_make_request(bio);
2386 bio = NULL;
2387
2388 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2389
2390 r1_bio->master_bio = mbio;
2391 r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2392 r1_bio->state = 0;
2393 set_bit(R1BIO_ReadError, &r1_bio->state);
2394 r1_bio->mddev = mddev;
2395 r1_bio->sector = mbio->bi_iter.bi_sector +
2396 sectors_handled;
2397
2398 goto read_more;
2399 } else
2400 generic_make_request(bio);
2401 }
2402}
2403
2404static void raid1d(struct md_thread *thread)
2405{
2406 struct mddev *mddev = thread->mddev;
2407 struct r1bio *r1_bio;
2408 unsigned long flags;
2409 struct r1conf *conf = mddev->private;
2410 struct list_head *head = &conf->retry_list;
2411 struct blk_plug plug;
2412
2413 md_check_recovery(mddev);
2414
2415 blk_start_plug(&plug);
2416 for (;;) {
2417
2418 flush_pending_writes(conf);
2419
2420 spin_lock_irqsave(&conf->device_lock, flags);
2421 if (list_empty(head)) {
2422 spin_unlock_irqrestore(&conf->device_lock, flags);
2423 break;
2424 }
2425 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2426 list_del(head->prev);
2427 conf->nr_queued--;
2428 spin_unlock_irqrestore(&conf->device_lock, flags);
2429
2430 mddev = r1_bio->mddev;
2431 conf = mddev->private;
2432 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2433 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2434 test_bit(R1BIO_WriteError, &r1_bio->state))
2435 handle_sync_write_finished(conf, r1_bio);
2436 else
2437 sync_request_write(mddev, r1_bio);
2438 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2439 test_bit(R1BIO_WriteError, &r1_bio->state))
2440 handle_write_finished(conf, r1_bio);
2441 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2442 handle_read_error(conf, r1_bio);
2443 else
2444 /* just a partial read to be scheduled from separate
2445 * context
2446 */
2447 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2448
2449 cond_resched();
2450 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2451 md_check_recovery(mddev);
2452 }
2453 blk_finish_plug(&plug);
2454}
2455
2456
2457static int init_resync(struct r1conf *conf)
2458{
2459 int buffs;
2460
2461 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2462 BUG_ON(conf->r1buf_pool);
2463 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2464 conf->poolinfo);
2465 if (!conf->r1buf_pool)
2466 return -ENOMEM;
2467 conf->next_resync = 0;
2468 return 0;
2469}
2470
2471/*
2472 * perform a "sync" on one "block"
2473 *
2474 * We need to make sure that no normal I/O request - particularly write
2475 * requests - conflict with active sync requests.
2476 *
2477 * This is achieved by tracking pending requests and a 'barrier' concept
2478 * that can be installed to exclude normal IO requests.
2479 */
2480
2481static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2482{
2483 struct r1conf *conf = mddev->private;
2484 struct r1bio *r1_bio;
2485 struct bio *bio;
2486 sector_t max_sector, nr_sectors;
2487 int disk = -1;
2488 int i;
2489 int wonly = -1;
2490 int write_targets = 0, read_targets = 0;
2491 sector_t sync_blocks;
2492 int still_degraded = 0;
2493 int good_sectors = RESYNC_SECTORS;
2494 int min_bad = 0; /* number of sectors that are bad in all devices */
2495
2496 if (!conf->r1buf_pool)
2497 if (init_resync(conf))
2498 return 0;
2499
2500 max_sector = mddev->dev_sectors;
2501 if (sector_nr >= max_sector) {
2502 /* If we aborted, we need to abort the
2503 * sync on the 'current' bitmap chunk (there will
2504 * only be one in raid1 resync.
2505 * We can find the current addess in mddev->curr_resync
2506 */
2507 if (mddev->curr_resync < max_sector) /* aborted */
2508 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2509 &sync_blocks, 1);
2510 else /* completed sync */
2511 conf->fullsync = 0;
2512
2513 bitmap_close_sync(mddev->bitmap);
2514 close_sync(conf);
2515 return 0;
2516 }
2517
2518 if (mddev->bitmap == NULL &&
2519 mddev->recovery_cp == MaxSector &&
2520 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2521 conf->fullsync == 0) {
2522 *skipped = 1;
2523 return max_sector - sector_nr;
2524 }
2525 /* before building a request, check if we can skip these blocks..
2526 * This call the bitmap_start_sync doesn't actually record anything
2527 */
2528 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2529 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2530 /* We can skip this block, and probably several more */
2531 *skipped = 1;
2532 return sync_blocks;
2533 }
2534 /*
2535 * If there is non-resync activity waiting for a turn,
2536 * and resync is going fast enough,
2537 * then let it though before starting on this new sync request.
2538 */
2539 if (!go_faster && conf->nr_waiting)
2540 msleep_interruptible(1000);
2541
2542 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2543 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2544 raise_barrier(conf);
2545
2546 conf->next_resync = sector_nr;
2547
2548 rcu_read_lock();
2549 /*
2550 * If we get a correctably read error during resync or recovery,
2551 * we might want to read from a different device. So we
2552 * flag all drives that could conceivably be read from for READ,
2553 * and any others (which will be non-In_sync devices) for WRITE.
2554 * If a read fails, we try reading from something else for which READ
2555 * is OK.
2556 */
2557
2558 r1_bio->mddev = mddev;
2559 r1_bio->sector = sector_nr;
2560 r1_bio->state = 0;
2561 set_bit(R1BIO_IsSync, &r1_bio->state);
2562
2563 for (i = 0; i < conf->raid_disks * 2; i++) {
2564 struct md_rdev *rdev;
2565 bio = r1_bio->bios[i];
2566 bio_reset(bio);
2567
2568 rdev = rcu_dereference(conf->mirrors[i].rdev);
2569 if (rdev == NULL ||
2570 test_bit(Faulty, &rdev->flags)) {
2571 if (i < conf->raid_disks)
2572 still_degraded = 1;
2573 } else if (!test_bit(In_sync, &rdev->flags)) {
2574 bio->bi_rw = WRITE;
2575 bio->bi_end_io = end_sync_write;
2576 write_targets ++;
2577 } else {
2578 /* may need to read from here */
2579 sector_t first_bad = MaxSector;
2580 int bad_sectors;
2581
2582 if (is_badblock(rdev, sector_nr, good_sectors,
2583 &first_bad, &bad_sectors)) {
2584 if (first_bad > sector_nr)
2585 good_sectors = first_bad - sector_nr;
2586 else {
2587 bad_sectors -= (sector_nr - first_bad);
2588 if (min_bad == 0 ||
2589 min_bad > bad_sectors)
2590 min_bad = bad_sectors;
2591 }
2592 }
2593 if (sector_nr < first_bad) {
2594 if (test_bit(WriteMostly, &rdev->flags)) {
2595 if (wonly < 0)
2596 wonly = i;
2597 } else {
2598 if (disk < 0)
2599 disk = i;
2600 }
2601 bio->bi_rw = READ;
2602 bio->bi_end_io = end_sync_read;
2603 read_targets++;
2604 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2605 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2606 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2607 /*
2608 * The device is suitable for reading (InSync),
2609 * but has bad block(s) here. Let's try to correct them,
2610 * if we are doing resync or repair. Otherwise, leave
2611 * this device alone for this sync request.
2612 */
2613 bio->bi_rw = WRITE;
2614 bio->bi_end_io = end_sync_write;
2615 write_targets++;
2616 }
2617 }
2618 if (bio->bi_end_io) {
2619 atomic_inc(&rdev->nr_pending);
2620 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2621 bio->bi_bdev = rdev->bdev;
2622 bio->bi_private = r1_bio;
2623 }
2624 }
2625 rcu_read_unlock();
2626 if (disk < 0)
2627 disk = wonly;
2628 r1_bio->read_disk = disk;
2629
2630 if (read_targets == 0 && min_bad > 0) {
2631 /* These sectors are bad on all InSync devices, so we
2632 * need to mark them bad on all write targets
2633 */
2634 int ok = 1;
2635 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2636 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2637 struct md_rdev *rdev = conf->mirrors[i].rdev;
2638 ok = rdev_set_badblocks(rdev, sector_nr,
2639 min_bad, 0
2640 ) && ok;
2641 }
2642 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2643 *skipped = 1;
2644 put_buf(r1_bio);
2645
2646 if (!ok) {
2647 /* Cannot record the badblocks, so need to
2648 * abort the resync.
2649 * If there are multiple read targets, could just
2650 * fail the really bad ones ???
2651 */
2652 conf->recovery_disabled = mddev->recovery_disabled;
2653 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2654 return 0;
2655 } else
2656 return min_bad;
2657
2658 }
2659 if (min_bad > 0 && min_bad < good_sectors) {
2660 /* only resync enough to reach the next bad->good
2661 * transition */
2662 good_sectors = min_bad;
2663 }
2664
2665 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2666 /* extra read targets are also write targets */
2667 write_targets += read_targets-1;
2668
2669 if (write_targets == 0 || read_targets == 0) {
2670 /* There is nowhere to write, so all non-sync
2671 * drives must be failed - so we are finished
2672 */
2673 sector_t rv;
2674 if (min_bad > 0)
2675 max_sector = sector_nr + min_bad;
2676 rv = max_sector - sector_nr;
2677 *skipped = 1;
2678 put_buf(r1_bio);
2679 return rv;
2680 }
2681
2682 if (max_sector > mddev->resync_max)
2683 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2684 if (max_sector > sector_nr + good_sectors)
2685 max_sector = sector_nr + good_sectors;
2686 nr_sectors = 0;
2687 sync_blocks = 0;
2688 do {
2689 struct page *page;
2690 int len = PAGE_SIZE;
2691 if (sector_nr + (len>>9) > max_sector)
2692 len = (max_sector - sector_nr) << 9;
2693 if (len == 0)
2694 break;
2695 if (sync_blocks == 0) {
2696 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2697 &sync_blocks, still_degraded) &&
2698 !conf->fullsync &&
2699 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2700 break;
2701 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2702 if ((len >> 9) > sync_blocks)
2703 len = sync_blocks<<9;
2704 }
2705
2706 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2707 bio = r1_bio->bios[i];
2708 if (bio->bi_end_io) {
2709 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2710 if (bio_add_page(bio, page, len, 0) == 0) {
2711 /* stop here */
2712 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2713 while (i > 0) {
2714 i--;
2715 bio = r1_bio->bios[i];
2716 if (bio->bi_end_io==NULL)
2717 continue;
2718 /* remove last page from this bio */
2719 bio->bi_vcnt--;
2720 bio->bi_iter.bi_size -= len;
2721 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2722 }
2723 goto bio_full;
2724 }
2725 }
2726 }
2727 nr_sectors += len>>9;
2728 sector_nr += len>>9;
2729 sync_blocks -= (len>>9);
2730 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2731 bio_full:
2732 r1_bio->sectors = nr_sectors;
2733
2734 /* For a user-requested sync, we read all readable devices and do a
2735 * compare
2736 */
2737 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2738 atomic_set(&r1_bio->remaining, read_targets);
2739 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2740 bio = r1_bio->bios[i];
2741 if (bio->bi_end_io == end_sync_read) {
2742 read_targets--;
2743 md_sync_acct(bio->bi_bdev, nr_sectors);
2744 generic_make_request(bio);
2745 }
2746 }
2747 } else {
2748 atomic_set(&r1_bio->remaining, 1);
2749 bio = r1_bio->bios[r1_bio->read_disk];
2750 md_sync_acct(bio->bi_bdev, nr_sectors);
2751 generic_make_request(bio);
2752
2753 }
2754 return nr_sectors;
2755}
2756
2757static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2758{
2759 if (sectors)
2760 return sectors;
2761
2762 return mddev->dev_sectors;
2763}
2764
2765static struct r1conf *setup_conf(struct mddev *mddev)
2766{
2767 struct r1conf *conf;
2768 int i;
2769 struct raid1_info *disk;
2770 struct md_rdev *rdev;
2771 int err = -ENOMEM;
2772
2773 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2774 if (!conf)
2775 goto abort;
2776
2777 conf->mirrors = kzalloc(sizeof(struct raid1_info)
2778 * mddev->raid_disks * 2,
2779 GFP_KERNEL);
2780 if (!conf->mirrors)
2781 goto abort;
2782
2783 conf->tmppage = alloc_page(GFP_KERNEL);
2784 if (!conf->tmppage)
2785 goto abort;
2786
2787 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2788 if (!conf->poolinfo)
2789 goto abort;
2790 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2791 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2792 r1bio_pool_free,
2793 conf->poolinfo);
2794 if (!conf->r1bio_pool)
2795 goto abort;
2796
2797 conf->poolinfo->mddev = mddev;
2798
2799 err = -EINVAL;
2800 spin_lock_init(&conf->device_lock);
2801 rdev_for_each(rdev, mddev) {
2802 struct request_queue *q;
2803 int disk_idx = rdev->raid_disk;
2804 if (disk_idx >= mddev->raid_disks
2805 || disk_idx < 0)
2806 continue;
2807 if (test_bit(Replacement, &rdev->flags))
2808 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2809 else
2810 disk = conf->mirrors + disk_idx;
2811
2812 if (disk->rdev)
2813 goto abort;
2814 disk->rdev = rdev;
2815 q = bdev_get_queue(rdev->bdev);
2816 if (q->merge_bvec_fn)
2817 mddev->merge_check_needed = 1;
2818
2819 disk->head_position = 0;
2820 disk->seq_start = MaxSector;
2821 }
2822 conf->raid_disks = mddev->raid_disks;
2823 conf->mddev = mddev;
2824 INIT_LIST_HEAD(&conf->retry_list);
2825
2826 spin_lock_init(&conf->resync_lock);
2827 init_waitqueue_head(&conf->wait_barrier);
2828
2829 bio_list_init(&conf->pending_bio_list);
2830 conf->pending_count = 0;
2831 conf->recovery_disabled = mddev->recovery_disabled - 1;
2832
2833 conf->start_next_window = MaxSector;
2834 conf->current_window_requests = conf->next_window_requests = 0;
2835
2836 err = -EIO;
2837 for (i = 0; i < conf->raid_disks * 2; i++) {
2838
2839 disk = conf->mirrors + i;
2840
2841 if (i < conf->raid_disks &&
2842 disk[conf->raid_disks].rdev) {
2843 /* This slot has a replacement. */
2844 if (!disk->rdev) {
2845 /* No original, just make the replacement
2846 * a recovering spare
2847 */
2848 disk->rdev =
2849 disk[conf->raid_disks].rdev;
2850 disk[conf->raid_disks].rdev = NULL;
2851 } else if (!test_bit(In_sync, &disk->rdev->flags))
2852 /* Original is not in_sync - bad */
2853 goto abort;
2854 }
2855
2856 if (!disk->rdev ||
2857 !test_bit(In_sync, &disk->rdev->flags)) {
2858 disk->head_position = 0;
2859 if (disk->rdev &&
2860 (disk->rdev->saved_raid_disk < 0))
2861 conf->fullsync = 1;
2862 }
2863 }
2864
2865 err = -ENOMEM;
2866 conf->thread = md_register_thread(raid1d, mddev, "raid1");
2867 if (!conf->thread) {
2868 printk(KERN_ERR
2869 "md/raid1:%s: couldn't allocate thread\n",
2870 mdname(mddev));
2871 goto abort;
2872 }
2873
2874 return conf;
2875
2876 abort:
2877 if (conf) {
2878 if (conf->r1bio_pool)
2879 mempool_destroy(conf->r1bio_pool);
2880 kfree(conf->mirrors);
2881 safe_put_page(conf->tmppage);
2882 kfree(conf->poolinfo);
2883 kfree(conf);
2884 }
2885 return ERR_PTR(err);
2886}
2887
2888static int stop(struct mddev *mddev);
2889static int run(struct mddev *mddev)
2890{
2891 struct r1conf *conf;
2892 int i;
2893 struct md_rdev *rdev;
2894 int ret;
2895 bool discard_supported = false;
2896
2897 if (mddev->level != 1) {
2898 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2899 mdname(mddev), mddev->level);
2900 return -EIO;
2901 }
2902 if (mddev->reshape_position != MaxSector) {
2903 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2904 mdname(mddev));
2905 return -EIO;
2906 }
2907 /*
2908 * copy the already verified devices into our private RAID1
2909 * bookkeeping area. [whatever we allocate in run(),
2910 * should be freed in stop()]
2911 */
2912 if (mddev->private == NULL)
2913 conf = setup_conf(mddev);
2914 else
2915 conf = mddev->private;
2916
2917 if (IS_ERR(conf))
2918 return PTR_ERR(conf);
2919
2920 if (mddev->queue)
2921 blk_queue_max_write_same_sectors(mddev->queue, 0);
2922
2923 rdev_for_each(rdev, mddev) {
2924 if (!mddev->gendisk)
2925 continue;
2926 disk_stack_limits(mddev->gendisk, rdev->bdev,
2927 rdev->data_offset << 9);
2928 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2929 discard_supported = true;
2930 }
2931
2932 mddev->degraded = 0;
2933 for (i=0; i < conf->raid_disks; i++)
2934 if (conf->mirrors[i].rdev == NULL ||
2935 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2936 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2937 mddev->degraded++;
2938
2939 if (conf->raid_disks - mddev->degraded == 1)
2940 mddev->recovery_cp = MaxSector;
2941
2942 if (mddev->recovery_cp != MaxSector)
2943 printk(KERN_NOTICE "md/raid1:%s: not clean"
2944 " -- starting background reconstruction\n",
2945 mdname(mddev));
2946 printk(KERN_INFO
2947 "md/raid1:%s: active with %d out of %d mirrors\n",
2948 mdname(mddev), mddev->raid_disks - mddev->degraded,
2949 mddev->raid_disks);
2950
2951 /*
2952 * Ok, everything is just fine now
2953 */
2954 mddev->thread = conf->thread;
2955 conf->thread = NULL;
2956 mddev->private = conf;
2957
2958 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2959
2960 if (mddev->queue) {
2961 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2962 mddev->queue->backing_dev_info.congested_data = mddev;
2963 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2964
2965 if (discard_supported)
2966 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2967 mddev->queue);
2968 else
2969 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2970 mddev->queue);
2971 }
2972
2973 ret = md_integrity_register(mddev);
2974 if (ret)
2975 stop(mddev);
2976 return ret;
2977}
2978
2979static int stop(struct mddev *mddev)
2980{
2981 struct r1conf *conf = mddev->private;
2982 struct bitmap *bitmap = mddev->bitmap;
2983
2984 /* wait for behind writes to complete */
2985 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2986 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2987 mdname(mddev));
2988 /* need to kick something here to make sure I/O goes? */
2989 wait_event(bitmap->behind_wait,
2990 atomic_read(&bitmap->behind_writes) == 0);
2991 }
2992
2993 freeze_array(conf, 0);
2994 unfreeze_array(conf);
2995
2996 md_unregister_thread(&mddev->thread);
2997 if (conf->r1bio_pool)
2998 mempool_destroy(conf->r1bio_pool);
2999 kfree(conf->mirrors);
3000 safe_put_page(conf->tmppage);
3001 kfree(conf->poolinfo);
3002 kfree(conf);
3003 mddev->private = NULL;
3004 return 0;
3005}
3006
3007static int raid1_resize(struct mddev *mddev, sector_t sectors)
3008{
3009 /* no resync is happening, and there is enough space
3010 * on all devices, so we can resize.
3011 * We need to make sure resync covers any new space.
3012 * If the array is shrinking we should possibly wait until
3013 * any io in the removed space completes, but it hardly seems
3014 * worth it.
3015 */
3016 sector_t newsize = raid1_size(mddev, sectors, 0);
3017 if (mddev->external_size &&
3018 mddev->array_sectors > newsize)
3019 return -EINVAL;
3020 if (mddev->bitmap) {
3021 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3022 if (ret)
3023 return ret;
3024 }
3025 md_set_array_sectors(mddev, newsize);
3026 set_capacity(mddev->gendisk, mddev->array_sectors);
3027 revalidate_disk(mddev->gendisk);
3028 if (sectors > mddev->dev_sectors &&
3029 mddev->recovery_cp > mddev->dev_sectors) {
3030 mddev->recovery_cp = mddev->dev_sectors;
3031 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3032 }
3033 mddev->dev_sectors = sectors;
3034 mddev->resync_max_sectors = sectors;
3035 return 0;
3036}
3037
3038static int raid1_reshape(struct mddev *mddev)
3039{
3040 /* We need to:
3041 * 1/ resize the r1bio_pool
3042 * 2/ resize conf->mirrors
3043 *
3044 * We allocate a new r1bio_pool if we can.
3045 * Then raise a device barrier and wait until all IO stops.
3046 * Then resize conf->mirrors and swap in the new r1bio pool.
3047 *
3048 * At the same time, we "pack" the devices so that all the missing
3049 * devices have the higher raid_disk numbers.
3050 */
3051 mempool_t *newpool, *oldpool;
3052 struct pool_info *newpoolinfo;
3053 struct raid1_info *newmirrors;
3054 struct r1conf *conf = mddev->private;
3055 int cnt, raid_disks;
3056 unsigned long flags;
3057 int d, d2, err;
3058
3059 /* Cannot change chunk_size, layout, or level */
3060 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3061 mddev->layout != mddev->new_layout ||
3062 mddev->level != mddev->new_level) {
3063 mddev->new_chunk_sectors = mddev->chunk_sectors;
3064 mddev->new_layout = mddev->layout;
3065 mddev->new_level = mddev->level;
3066 return -EINVAL;
3067 }
3068
3069 err = md_allow_write(mddev);
3070 if (err)
3071 return err;
3072
3073 raid_disks = mddev->raid_disks + mddev->delta_disks;
3074
3075 if (raid_disks < conf->raid_disks) {
3076 cnt=0;
3077 for (d= 0; d < conf->raid_disks; d++)
3078 if (conf->mirrors[d].rdev)
3079 cnt++;
3080 if (cnt > raid_disks)
3081 return -EBUSY;
3082 }
3083
3084 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3085 if (!newpoolinfo)
3086 return -ENOMEM;
3087 newpoolinfo->mddev = mddev;
3088 newpoolinfo->raid_disks = raid_disks * 2;
3089
3090 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3091 r1bio_pool_free, newpoolinfo);
3092 if (!newpool) {
3093 kfree(newpoolinfo);
3094 return -ENOMEM;
3095 }
3096 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3097 GFP_KERNEL);
3098 if (!newmirrors) {
3099 kfree(newpoolinfo);
3100 mempool_destroy(newpool);
3101 return -ENOMEM;
3102 }
3103
3104 freeze_array(conf, 0);
3105
3106 /* ok, everything is stopped */
3107 oldpool = conf->r1bio_pool;
3108 conf->r1bio_pool = newpool;
3109
3110 for (d = d2 = 0; d < conf->raid_disks; d++) {
3111 struct md_rdev *rdev = conf->mirrors[d].rdev;
3112 if (rdev && rdev->raid_disk != d2) {
3113 sysfs_unlink_rdev(mddev, rdev);
3114 rdev->raid_disk = d2;
3115 sysfs_unlink_rdev(mddev, rdev);
3116 if (sysfs_link_rdev(mddev, rdev))
3117 printk(KERN_WARNING
3118 "md/raid1:%s: cannot register rd%d\n",
3119 mdname(mddev), rdev->raid_disk);
3120 }
3121 if (rdev)
3122 newmirrors[d2++].rdev = rdev;
3123 }
3124 kfree(conf->mirrors);
3125 conf->mirrors = newmirrors;
3126 kfree(conf->poolinfo);
3127 conf->poolinfo = newpoolinfo;
3128
3129 spin_lock_irqsave(&conf->device_lock, flags);
3130 mddev->degraded += (raid_disks - conf->raid_disks);
3131 spin_unlock_irqrestore(&conf->device_lock, flags);
3132 conf->raid_disks = mddev->raid_disks = raid_disks;
3133 mddev->delta_disks = 0;
3134
3135 unfreeze_array(conf);
3136
3137 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3138 md_wakeup_thread(mddev->thread);
3139
3140 mempool_destroy(oldpool);
3141 return 0;
3142}
3143
3144static void raid1_quiesce(struct mddev *mddev, int state)
3145{
3146 struct r1conf *conf = mddev->private;
3147
3148 switch(state) {
3149 case 2: /* wake for suspend */
3150 wake_up(&conf->wait_barrier);
3151 break;
3152 case 1:
3153 freeze_array(conf, 0);
3154 break;
3155 case 0:
3156 unfreeze_array(conf);
3157 break;
3158 }
3159}
3160
3161static void *raid1_takeover(struct mddev *mddev)
3162{
3163 /* raid1 can take over:
3164 * raid5 with 2 devices, any layout or chunk size
3165 */
3166 if (mddev->level == 5 && mddev->raid_disks == 2) {
3167 struct r1conf *conf;
3168 mddev->new_level = 1;
3169 mddev->new_layout = 0;
3170 mddev->new_chunk_sectors = 0;
3171 conf = setup_conf(mddev);
3172 if (!IS_ERR(conf))
3173 /* Array must appear to be quiesced */
3174 conf->array_frozen = 1;
3175 return conf;
3176 }
3177 return ERR_PTR(-EINVAL);
3178}
3179
3180static struct md_personality raid1_personality =
3181{
3182 .name = "raid1",
3183 .level = 1,
3184 .owner = THIS_MODULE,
3185 .make_request = make_request,
3186 .run = run,
3187 .stop = stop,
3188 .status = status,
3189 .error_handler = error,
3190 .hot_add_disk = raid1_add_disk,
3191 .hot_remove_disk= raid1_remove_disk,
3192 .spare_active = raid1_spare_active,
3193 .sync_request = sync_request,
3194 .resize = raid1_resize,
3195 .size = raid1_size,
3196 .check_reshape = raid1_reshape,
3197 .quiesce = raid1_quiesce,
3198 .takeover = raid1_takeover,
3199};
3200
3201static int __init raid_init(void)
3202{
3203 return register_md_personality(&raid1_personality);
3204}
3205
3206static void raid_exit(void)
3207{
3208 unregister_md_personality(&raid1_personality);
3209}
3210
3211module_init(raid_init);
3212module_exit(raid_exit);
3213MODULE_LICENSE("GPL");
3214MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3215MODULE_ALIAS("md-personality-3"); /* RAID1 */
3216MODULE_ALIAS("md-raid1");
3217MODULE_ALIAS("md-level-1");
3218
3219module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * raid1.c : Multiple Devices driver for Linux
4 *
5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 *
7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 *
9 * RAID-1 management functions.
10 *
11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 *
13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 *
16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17 * bitmapped intelligence in resync:
18 *
19 * - bitmap marked during normal i/o
20 * - bitmap used to skip nondirty blocks during sync
21 *
22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23 * - persistent bitmap code
24 */
25
26#include <linux/slab.h>
27#include <linux/delay.h>
28#include <linux/blkdev.h>
29#include <linux/module.h>
30#include <linux/seq_file.h>
31#include <linux/ratelimit.h>
32#include <linux/interval_tree_generic.h>
33
34#include <trace/events/block.h>
35
36#include "md.h"
37#include "raid1.h"
38#include "md-bitmap.h"
39
40#define UNSUPPORTED_MDDEV_FLAGS \
41 ((1L << MD_HAS_JOURNAL) | \
42 (1L << MD_JOURNAL_CLEAN) | \
43 (1L << MD_HAS_PPL) | \
44 (1L << MD_HAS_MULTIPLE_PPLS))
45
46static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
48
49#define raid1_log(md, fmt, args...) \
50 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
51
52#include "raid1-10.c"
53
54#define START(node) ((node)->start)
55#define LAST(node) ((node)->last)
56INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
57 START, LAST, static inline, raid1_rb);
58
59static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
60 struct serial_info *si, int idx)
61{
62 unsigned long flags;
63 int ret = 0;
64 sector_t lo = r1_bio->sector;
65 sector_t hi = lo + r1_bio->sectors;
66 struct serial_in_rdev *serial = &rdev->serial[idx];
67
68 spin_lock_irqsave(&serial->serial_lock, flags);
69 /* collision happened */
70 if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
71 ret = -EBUSY;
72 else {
73 si->start = lo;
74 si->last = hi;
75 raid1_rb_insert(si, &serial->serial_rb);
76 }
77 spin_unlock_irqrestore(&serial->serial_lock, flags);
78
79 return ret;
80}
81
82static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
83{
84 struct mddev *mddev = rdev->mddev;
85 struct serial_info *si;
86 int idx = sector_to_idx(r1_bio->sector);
87 struct serial_in_rdev *serial = &rdev->serial[idx];
88
89 if (WARN_ON(!mddev->serial_info_pool))
90 return;
91 si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
92 wait_event(serial->serial_io_wait,
93 check_and_add_serial(rdev, r1_bio, si, idx) == 0);
94}
95
96static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
97{
98 struct serial_info *si;
99 unsigned long flags;
100 int found = 0;
101 struct mddev *mddev = rdev->mddev;
102 int idx = sector_to_idx(lo);
103 struct serial_in_rdev *serial = &rdev->serial[idx];
104
105 spin_lock_irqsave(&serial->serial_lock, flags);
106 for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
107 si; si = raid1_rb_iter_next(si, lo, hi)) {
108 if (si->start == lo && si->last == hi) {
109 raid1_rb_remove(si, &serial->serial_rb);
110 mempool_free(si, mddev->serial_info_pool);
111 found = 1;
112 break;
113 }
114 }
115 if (!found)
116 WARN(1, "The write IO is not recorded for serialization\n");
117 spin_unlock_irqrestore(&serial->serial_lock, flags);
118 wake_up(&serial->serial_io_wait);
119}
120
121/*
122 * for resync bio, r1bio pointer can be retrieved from the per-bio
123 * 'struct resync_pages'.
124 */
125static inline struct r1bio *get_resync_r1bio(struct bio *bio)
126{
127 return get_resync_pages(bio)->raid_bio;
128}
129
130static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
131{
132 struct pool_info *pi = data;
133 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
134
135 /* allocate a r1bio with room for raid_disks entries in the bios array */
136 return kzalloc(size, gfp_flags);
137}
138
139#define RESYNC_DEPTH 32
140#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
141#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
142#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
143#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
144#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
145
146static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
147{
148 struct pool_info *pi = data;
149 struct r1bio *r1_bio;
150 struct bio *bio;
151 int need_pages;
152 int j;
153 struct resync_pages *rps;
154
155 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
156 if (!r1_bio)
157 return NULL;
158
159 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
160 gfp_flags);
161 if (!rps)
162 goto out_free_r1bio;
163
164 /*
165 * Allocate bios : 1 for reading, n-1 for writing
166 */
167 for (j = pi->raid_disks ; j-- ; ) {
168 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
169 if (!bio)
170 goto out_free_bio;
171 r1_bio->bios[j] = bio;
172 }
173 /*
174 * Allocate RESYNC_PAGES data pages and attach them to
175 * the first bio.
176 * If this is a user-requested check/repair, allocate
177 * RESYNC_PAGES for each bio.
178 */
179 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
180 need_pages = pi->raid_disks;
181 else
182 need_pages = 1;
183 for (j = 0; j < pi->raid_disks; j++) {
184 struct resync_pages *rp = &rps[j];
185
186 bio = r1_bio->bios[j];
187
188 if (j < need_pages) {
189 if (resync_alloc_pages(rp, gfp_flags))
190 goto out_free_pages;
191 } else {
192 memcpy(rp, &rps[0], sizeof(*rp));
193 resync_get_all_pages(rp);
194 }
195
196 rp->raid_bio = r1_bio;
197 bio->bi_private = rp;
198 }
199
200 r1_bio->master_bio = NULL;
201
202 return r1_bio;
203
204out_free_pages:
205 while (--j >= 0)
206 resync_free_pages(&rps[j]);
207
208out_free_bio:
209 while (++j < pi->raid_disks)
210 bio_put(r1_bio->bios[j]);
211 kfree(rps);
212
213out_free_r1bio:
214 rbio_pool_free(r1_bio, data);
215 return NULL;
216}
217
218static void r1buf_pool_free(void *__r1_bio, void *data)
219{
220 struct pool_info *pi = data;
221 int i;
222 struct r1bio *r1bio = __r1_bio;
223 struct resync_pages *rp = NULL;
224
225 for (i = pi->raid_disks; i--; ) {
226 rp = get_resync_pages(r1bio->bios[i]);
227 resync_free_pages(rp);
228 bio_put(r1bio->bios[i]);
229 }
230
231 /* resync pages array stored in the 1st bio's .bi_private */
232 kfree(rp);
233
234 rbio_pool_free(r1bio, data);
235}
236
237static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
238{
239 int i;
240
241 for (i = 0; i < conf->raid_disks * 2; i++) {
242 struct bio **bio = r1_bio->bios + i;
243 if (!BIO_SPECIAL(*bio))
244 bio_put(*bio);
245 *bio = NULL;
246 }
247}
248
249static void free_r1bio(struct r1bio *r1_bio)
250{
251 struct r1conf *conf = r1_bio->mddev->private;
252
253 put_all_bios(conf, r1_bio);
254 mempool_free(r1_bio, &conf->r1bio_pool);
255}
256
257static void put_buf(struct r1bio *r1_bio)
258{
259 struct r1conf *conf = r1_bio->mddev->private;
260 sector_t sect = r1_bio->sector;
261 int i;
262
263 for (i = 0; i < conf->raid_disks * 2; i++) {
264 struct bio *bio = r1_bio->bios[i];
265 if (bio->bi_end_io)
266 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
267 }
268
269 mempool_free(r1_bio, &conf->r1buf_pool);
270
271 lower_barrier(conf, sect);
272}
273
274static void reschedule_retry(struct r1bio *r1_bio)
275{
276 unsigned long flags;
277 struct mddev *mddev = r1_bio->mddev;
278 struct r1conf *conf = mddev->private;
279 int idx;
280
281 idx = sector_to_idx(r1_bio->sector);
282 spin_lock_irqsave(&conf->device_lock, flags);
283 list_add(&r1_bio->retry_list, &conf->retry_list);
284 atomic_inc(&conf->nr_queued[idx]);
285 spin_unlock_irqrestore(&conf->device_lock, flags);
286
287 wake_up(&conf->wait_barrier);
288 md_wakeup_thread(mddev->thread);
289}
290
291/*
292 * raid_end_bio_io() is called when we have finished servicing a mirrored
293 * operation and are ready to return a success/failure code to the buffer
294 * cache layer.
295 */
296static void call_bio_endio(struct r1bio *r1_bio)
297{
298 struct bio *bio = r1_bio->master_bio;
299
300 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
301 bio->bi_status = BLK_STS_IOERR;
302
303 bio_endio(bio);
304}
305
306static void raid_end_bio_io(struct r1bio *r1_bio)
307{
308 struct bio *bio = r1_bio->master_bio;
309 struct r1conf *conf = r1_bio->mddev->private;
310
311 /* if nobody has done the final endio yet, do it now */
312 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
313 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
314 (bio_data_dir(bio) == WRITE) ? "write" : "read",
315 (unsigned long long) bio->bi_iter.bi_sector,
316 (unsigned long long) bio_end_sector(bio) - 1);
317
318 call_bio_endio(r1_bio);
319 }
320 /*
321 * Wake up any possible resync thread that waits for the device
322 * to go idle. All I/Os, even write-behind writes, are done.
323 */
324 allow_barrier(conf, r1_bio->sector);
325
326 free_r1bio(r1_bio);
327}
328
329/*
330 * Update disk head position estimator based on IRQ completion info.
331 */
332static inline void update_head_pos(int disk, struct r1bio *r1_bio)
333{
334 struct r1conf *conf = r1_bio->mddev->private;
335
336 conf->mirrors[disk].head_position =
337 r1_bio->sector + (r1_bio->sectors);
338}
339
340/*
341 * Find the disk number which triggered given bio
342 */
343static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
344{
345 int mirror;
346 struct r1conf *conf = r1_bio->mddev->private;
347 int raid_disks = conf->raid_disks;
348
349 for (mirror = 0; mirror < raid_disks * 2; mirror++)
350 if (r1_bio->bios[mirror] == bio)
351 break;
352
353 BUG_ON(mirror == raid_disks * 2);
354 update_head_pos(mirror, r1_bio);
355
356 return mirror;
357}
358
359static void raid1_end_read_request(struct bio *bio)
360{
361 int uptodate = !bio->bi_status;
362 struct r1bio *r1_bio = bio->bi_private;
363 struct r1conf *conf = r1_bio->mddev->private;
364 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
365
366 /*
367 * this branch is our 'one mirror IO has finished' event handler:
368 */
369 update_head_pos(r1_bio->read_disk, r1_bio);
370
371 if (uptodate)
372 set_bit(R1BIO_Uptodate, &r1_bio->state);
373 else if (test_bit(FailFast, &rdev->flags) &&
374 test_bit(R1BIO_FailFast, &r1_bio->state))
375 /* This was a fail-fast read so we definitely
376 * want to retry */
377 ;
378 else {
379 /* If all other devices have failed, we want to return
380 * the error upwards rather than fail the last device.
381 * Here we redefine "uptodate" to mean "Don't want to retry"
382 */
383 unsigned long flags;
384 spin_lock_irqsave(&conf->device_lock, flags);
385 if (r1_bio->mddev->degraded == conf->raid_disks ||
386 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
387 test_bit(In_sync, &rdev->flags)))
388 uptodate = 1;
389 spin_unlock_irqrestore(&conf->device_lock, flags);
390 }
391
392 if (uptodate) {
393 raid_end_bio_io(r1_bio);
394 rdev_dec_pending(rdev, conf->mddev);
395 } else {
396 /*
397 * oops, read error:
398 */
399 char b[BDEVNAME_SIZE];
400 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
401 mdname(conf->mddev),
402 bdevname(rdev->bdev, b),
403 (unsigned long long)r1_bio->sector);
404 set_bit(R1BIO_ReadError, &r1_bio->state);
405 reschedule_retry(r1_bio);
406 /* don't drop the reference on read_disk yet */
407 }
408}
409
410static void close_write(struct r1bio *r1_bio)
411{
412 /* it really is the end of this request */
413 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
414 bio_free_pages(r1_bio->behind_master_bio);
415 bio_put(r1_bio->behind_master_bio);
416 r1_bio->behind_master_bio = NULL;
417 }
418 /* clear the bitmap if all writes complete successfully */
419 md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
420 r1_bio->sectors,
421 !test_bit(R1BIO_Degraded, &r1_bio->state),
422 test_bit(R1BIO_BehindIO, &r1_bio->state));
423 md_write_end(r1_bio->mddev);
424}
425
426static void r1_bio_write_done(struct r1bio *r1_bio)
427{
428 if (!atomic_dec_and_test(&r1_bio->remaining))
429 return;
430
431 if (test_bit(R1BIO_WriteError, &r1_bio->state))
432 reschedule_retry(r1_bio);
433 else {
434 close_write(r1_bio);
435 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
436 reschedule_retry(r1_bio);
437 else
438 raid_end_bio_io(r1_bio);
439 }
440}
441
442static void raid1_end_write_request(struct bio *bio)
443{
444 struct r1bio *r1_bio = bio->bi_private;
445 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
446 struct r1conf *conf = r1_bio->mddev->private;
447 struct bio *to_put = NULL;
448 int mirror = find_bio_disk(r1_bio, bio);
449 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
450 bool discard_error;
451 sector_t lo = r1_bio->sector;
452 sector_t hi = r1_bio->sector + r1_bio->sectors;
453
454 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
455
456 /*
457 * 'one mirror IO has finished' event handler:
458 */
459 if (bio->bi_status && !discard_error) {
460 set_bit(WriteErrorSeen, &rdev->flags);
461 if (!test_and_set_bit(WantReplacement, &rdev->flags))
462 set_bit(MD_RECOVERY_NEEDED, &
463 conf->mddev->recovery);
464
465 if (test_bit(FailFast, &rdev->flags) &&
466 (bio->bi_opf & MD_FAILFAST) &&
467 /* We never try FailFast to WriteMostly devices */
468 !test_bit(WriteMostly, &rdev->flags)) {
469 md_error(r1_bio->mddev, rdev);
470 }
471
472 /*
473 * When the device is faulty, it is not necessary to
474 * handle write error.
475 * For failfast, this is the only remaining device,
476 * We need to retry the write without FailFast.
477 */
478 if (!test_bit(Faulty, &rdev->flags))
479 set_bit(R1BIO_WriteError, &r1_bio->state);
480 else {
481 /* Finished with this branch */
482 r1_bio->bios[mirror] = NULL;
483 to_put = bio;
484 }
485 } else {
486 /*
487 * Set R1BIO_Uptodate in our master bio, so that we
488 * will return a good error code for to the higher
489 * levels even if IO on some other mirrored buffer
490 * fails.
491 *
492 * The 'master' represents the composite IO operation
493 * to user-side. So if something waits for IO, then it
494 * will wait for the 'master' bio.
495 */
496 sector_t first_bad;
497 int bad_sectors;
498
499 r1_bio->bios[mirror] = NULL;
500 to_put = bio;
501 /*
502 * Do not set R1BIO_Uptodate if the current device is
503 * rebuilding or Faulty. This is because we cannot use
504 * such device for properly reading the data back (we could
505 * potentially use it, if the current write would have felt
506 * before rdev->recovery_offset, but for simplicity we don't
507 * check this here.
508 */
509 if (test_bit(In_sync, &rdev->flags) &&
510 !test_bit(Faulty, &rdev->flags))
511 set_bit(R1BIO_Uptodate, &r1_bio->state);
512
513 /* Maybe we can clear some bad blocks. */
514 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
515 &first_bad, &bad_sectors) && !discard_error) {
516 r1_bio->bios[mirror] = IO_MADE_GOOD;
517 set_bit(R1BIO_MadeGood, &r1_bio->state);
518 }
519 }
520
521 if (behind) {
522 if (test_bit(CollisionCheck, &rdev->flags))
523 remove_serial(rdev, lo, hi);
524 if (test_bit(WriteMostly, &rdev->flags))
525 atomic_dec(&r1_bio->behind_remaining);
526
527 /*
528 * In behind mode, we ACK the master bio once the I/O
529 * has safely reached all non-writemostly
530 * disks. Setting the Returned bit ensures that this
531 * gets done only once -- we don't ever want to return
532 * -EIO here, instead we'll wait
533 */
534 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
535 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
536 /* Maybe we can return now */
537 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
538 struct bio *mbio = r1_bio->master_bio;
539 pr_debug("raid1: behind end write sectors"
540 " %llu-%llu\n",
541 (unsigned long long) mbio->bi_iter.bi_sector,
542 (unsigned long long) bio_end_sector(mbio) - 1);
543 call_bio_endio(r1_bio);
544 }
545 }
546 } else if (rdev->mddev->serialize_policy)
547 remove_serial(rdev, lo, hi);
548 if (r1_bio->bios[mirror] == NULL)
549 rdev_dec_pending(rdev, conf->mddev);
550
551 /*
552 * Let's see if all mirrored write operations have finished
553 * already.
554 */
555 r1_bio_write_done(r1_bio);
556
557 if (to_put)
558 bio_put(to_put);
559}
560
561static sector_t align_to_barrier_unit_end(sector_t start_sector,
562 sector_t sectors)
563{
564 sector_t len;
565
566 WARN_ON(sectors == 0);
567 /*
568 * len is the number of sectors from start_sector to end of the
569 * barrier unit which start_sector belongs to.
570 */
571 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
572 start_sector;
573
574 if (len > sectors)
575 len = sectors;
576
577 return len;
578}
579
580/*
581 * This routine returns the disk from which the requested read should
582 * be done. There is a per-array 'next expected sequential IO' sector
583 * number - if this matches on the next IO then we use the last disk.
584 * There is also a per-disk 'last know head position' sector that is
585 * maintained from IRQ contexts, both the normal and the resync IO
586 * completion handlers update this position correctly. If there is no
587 * perfect sequential match then we pick the disk whose head is closest.
588 *
589 * If there are 2 mirrors in the same 2 devices, performance degrades
590 * because position is mirror, not device based.
591 *
592 * The rdev for the device selected will have nr_pending incremented.
593 */
594static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
595{
596 const sector_t this_sector = r1_bio->sector;
597 int sectors;
598 int best_good_sectors;
599 int best_disk, best_dist_disk, best_pending_disk;
600 int has_nonrot_disk;
601 int disk;
602 sector_t best_dist;
603 unsigned int min_pending;
604 struct md_rdev *rdev;
605 int choose_first;
606 int choose_next_idle;
607
608 rcu_read_lock();
609 /*
610 * Check if we can balance. We can balance on the whole
611 * device if no resync is going on, or below the resync window.
612 * We take the first readable disk when above the resync window.
613 */
614 retry:
615 sectors = r1_bio->sectors;
616 best_disk = -1;
617 best_dist_disk = -1;
618 best_dist = MaxSector;
619 best_pending_disk = -1;
620 min_pending = UINT_MAX;
621 best_good_sectors = 0;
622 has_nonrot_disk = 0;
623 choose_next_idle = 0;
624 clear_bit(R1BIO_FailFast, &r1_bio->state);
625
626 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
627 (mddev_is_clustered(conf->mddev) &&
628 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
629 this_sector + sectors)))
630 choose_first = 1;
631 else
632 choose_first = 0;
633
634 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
635 sector_t dist;
636 sector_t first_bad;
637 int bad_sectors;
638 unsigned int pending;
639 bool nonrot;
640
641 rdev = rcu_dereference(conf->mirrors[disk].rdev);
642 if (r1_bio->bios[disk] == IO_BLOCKED
643 || rdev == NULL
644 || test_bit(Faulty, &rdev->flags))
645 continue;
646 if (!test_bit(In_sync, &rdev->flags) &&
647 rdev->recovery_offset < this_sector + sectors)
648 continue;
649 if (test_bit(WriteMostly, &rdev->flags)) {
650 /* Don't balance among write-mostly, just
651 * use the first as a last resort */
652 if (best_dist_disk < 0) {
653 if (is_badblock(rdev, this_sector, sectors,
654 &first_bad, &bad_sectors)) {
655 if (first_bad <= this_sector)
656 /* Cannot use this */
657 continue;
658 best_good_sectors = first_bad - this_sector;
659 } else
660 best_good_sectors = sectors;
661 best_dist_disk = disk;
662 best_pending_disk = disk;
663 }
664 continue;
665 }
666 /* This is a reasonable device to use. It might
667 * even be best.
668 */
669 if (is_badblock(rdev, this_sector, sectors,
670 &first_bad, &bad_sectors)) {
671 if (best_dist < MaxSector)
672 /* already have a better device */
673 continue;
674 if (first_bad <= this_sector) {
675 /* cannot read here. If this is the 'primary'
676 * device, then we must not read beyond
677 * bad_sectors from another device..
678 */
679 bad_sectors -= (this_sector - first_bad);
680 if (choose_first && sectors > bad_sectors)
681 sectors = bad_sectors;
682 if (best_good_sectors > sectors)
683 best_good_sectors = sectors;
684
685 } else {
686 sector_t good_sectors = first_bad - this_sector;
687 if (good_sectors > best_good_sectors) {
688 best_good_sectors = good_sectors;
689 best_disk = disk;
690 }
691 if (choose_first)
692 break;
693 }
694 continue;
695 } else {
696 if ((sectors > best_good_sectors) && (best_disk >= 0))
697 best_disk = -1;
698 best_good_sectors = sectors;
699 }
700
701 if (best_disk >= 0)
702 /* At least two disks to choose from so failfast is OK */
703 set_bit(R1BIO_FailFast, &r1_bio->state);
704
705 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
706 has_nonrot_disk |= nonrot;
707 pending = atomic_read(&rdev->nr_pending);
708 dist = abs(this_sector - conf->mirrors[disk].head_position);
709 if (choose_first) {
710 best_disk = disk;
711 break;
712 }
713 /* Don't change to another disk for sequential reads */
714 if (conf->mirrors[disk].next_seq_sect == this_sector
715 || dist == 0) {
716 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
717 struct raid1_info *mirror = &conf->mirrors[disk];
718
719 best_disk = disk;
720 /*
721 * If buffered sequential IO size exceeds optimal
722 * iosize, check if there is idle disk. If yes, choose
723 * the idle disk. read_balance could already choose an
724 * idle disk before noticing it's a sequential IO in
725 * this disk. This doesn't matter because this disk
726 * will idle, next time it will be utilized after the
727 * first disk has IO size exceeds optimal iosize. In
728 * this way, iosize of the first disk will be optimal
729 * iosize at least. iosize of the second disk might be
730 * small, but not a big deal since when the second disk
731 * starts IO, the first disk is likely still busy.
732 */
733 if (nonrot && opt_iosize > 0 &&
734 mirror->seq_start != MaxSector &&
735 mirror->next_seq_sect > opt_iosize &&
736 mirror->next_seq_sect - opt_iosize >=
737 mirror->seq_start) {
738 choose_next_idle = 1;
739 continue;
740 }
741 break;
742 }
743
744 if (choose_next_idle)
745 continue;
746
747 if (min_pending > pending) {
748 min_pending = pending;
749 best_pending_disk = disk;
750 }
751
752 if (dist < best_dist) {
753 best_dist = dist;
754 best_dist_disk = disk;
755 }
756 }
757
758 /*
759 * If all disks are rotational, choose the closest disk. If any disk is
760 * non-rotational, choose the disk with less pending request even the
761 * disk is rotational, which might/might not be optimal for raids with
762 * mixed ratation/non-rotational disks depending on workload.
763 */
764 if (best_disk == -1) {
765 if (has_nonrot_disk || min_pending == 0)
766 best_disk = best_pending_disk;
767 else
768 best_disk = best_dist_disk;
769 }
770
771 if (best_disk >= 0) {
772 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
773 if (!rdev)
774 goto retry;
775 atomic_inc(&rdev->nr_pending);
776 sectors = best_good_sectors;
777
778 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
779 conf->mirrors[best_disk].seq_start = this_sector;
780
781 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
782 }
783 rcu_read_unlock();
784 *max_sectors = sectors;
785
786 return best_disk;
787}
788
789static void flush_bio_list(struct r1conf *conf, struct bio *bio)
790{
791 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
792 md_bitmap_unplug(conf->mddev->bitmap);
793 wake_up(&conf->wait_barrier);
794
795 while (bio) { /* submit pending writes */
796 struct bio *next = bio->bi_next;
797 struct md_rdev *rdev = (void *)bio->bi_disk;
798 bio->bi_next = NULL;
799 bio_set_dev(bio, rdev->bdev);
800 if (test_bit(Faulty, &rdev->flags)) {
801 bio_io_error(bio);
802 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
803 !blk_queue_discard(bio->bi_disk->queue)))
804 /* Just ignore it */
805 bio_endio(bio);
806 else
807 submit_bio_noacct(bio);
808 bio = next;
809 cond_resched();
810 }
811}
812
813static void flush_pending_writes(struct r1conf *conf)
814{
815 /* Any writes that have been queued but are awaiting
816 * bitmap updates get flushed here.
817 */
818 spin_lock_irq(&conf->device_lock);
819
820 if (conf->pending_bio_list.head) {
821 struct blk_plug plug;
822 struct bio *bio;
823
824 bio = bio_list_get(&conf->pending_bio_list);
825 conf->pending_count = 0;
826 spin_unlock_irq(&conf->device_lock);
827
828 /*
829 * As this is called in a wait_event() loop (see freeze_array),
830 * current->state might be TASK_UNINTERRUPTIBLE which will
831 * cause a warning when we prepare to wait again. As it is
832 * rare that this path is taken, it is perfectly safe to force
833 * us to go around the wait_event() loop again, so the warning
834 * is a false-positive. Silence the warning by resetting
835 * thread state
836 */
837 __set_current_state(TASK_RUNNING);
838 blk_start_plug(&plug);
839 flush_bio_list(conf, bio);
840 blk_finish_plug(&plug);
841 } else
842 spin_unlock_irq(&conf->device_lock);
843}
844
845/* Barriers....
846 * Sometimes we need to suspend IO while we do something else,
847 * either some resync/recovery, or reconfigure the array.
848 * To do this we raise a 'barrier'.
849 * The 'barrier' is a counter that can be raised multiple times
850 * to count how many activities are happening which preclude
851 * normal IO.
852 * We can only raise the barrier if there is no pending IO.
853 * i.e. if nr_pending == 0.
854 * We choose only to raise the barrier if no-one is waiting for the
855 * barrier to go down. This means that as soon as an IO request
856 * is ready, no other operations which require a barrier will start
857 * until the IO request has had a chance.
858 *
859 * So: regular IO calls 'wait_barrier'. When that returns there
860 * is no backgroup IO happening, It must arrange to call
861 * allow_barrier when it has finished its IO.
862 * backgroup IO calls must call raise_barrier. Once that returns
863 * there is no normal IO happeing. It must arrange to call
864 * lower_barrier when the particular background IO completes.
865 *
866 * If resync/recovery is interrupted, returns -EINTR;
867 * Otherwise, returns 0.
868 */
869static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
870{
871 int idx = sector_to_idx(sector_nr);
872
873 spin_lock_irq(&conf->resync_lock);
874
875 /* Wait until no block IO is waiting */
876 wait_event_lock_irq(conf->wait_barrier,
877 !atomic_read(&conf->nr_waiting[idx]),
878 conf->resync_lock);
879
880 /* block any new IO from starting */
881 atomic_inc(&conf->barrier[idx]);
882 /*
883 * In raise_barrier() we firstly increase conf->barrier[idx] then
884 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
885 * increase conf->nr_pending[idx] then check conf->barrier[idx].
886 * A memory barrier here to make sure conf->nr_pending[idx] won't
887 * be fetched before conf->barrier[idx] is increased. Otherwise
888 * there will be a race between raise_barrier() and _wait_barrier().
889 */
890 smp_mb__after_atomic();
891
892 /* For these conditions we must wait:
893 * A: while the array is in frozen state
894 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
895 * existing in corresponding I/O barrier bucket.
896 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
897 * max resync count which allowed on current I/O barrier bucket.
898 */
899 wait_event_lock_irq(conf->wait_barrier,
900 (!conf->array_frozen &&
901 !atomic_read(&conf->nr_pending[idx]) &&
902 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
903 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
904 conf->resync_lock);
905
906 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
907 atomic_dec(&conf->barrier[idx]);
908 spin_unlock_irq(&conf->resync_lock);
909 wake_up(&conf->wait_barrier);
910 return -EINTR;
911 }
912
913 atomic_inc(&conf->nr_sync_pending);
914 spin_unlock_irq(&conf->resync_lock);
915
916 return 0;
917}
918
919static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
920{
921 int idx = sector_to_idx(sector_nr);
922
923 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
924
925 atomic_dec(&conf->barrier[idx]);
926 atomic_dec(&conf->nr_sync_pending);
927 wake_up(&conf->wait_barrier);
928}
929
930static void _wait_barrier(struct r1conf *conf, int idx)
931{
932 /*
933 * We need to increase conf->nr_pending[idx] very early here,
934 * then raise_barrier() can be blocked when it waits for
935 * conf->nr_pending[idx] to be 0. Then we can avoid holding
936 * conf->resync_lock when there is no barrier raised in same
937 * barrier unit bucket. Also if the array is frozen, I/O
938 * should be blocked until array is unfrozen.
939 */
940 atomic_inc(&conf->nr_pending[idx]);
941 /*
942 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
943 * check conf->barrier[idx]. In raise_barrier() we firstly increase
944 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
945 * barrier is necessary here to make sure conf->barrier[idx] won't be
946 * fetched before conf->nr_pending[idx] is increased. Otherwise there
947 * will be a race between _wait_barrier() and raise_barrier().
948 */
949 smp_mb__after_atomic();
950
951 /*
952 * Don't worry about checking two atomic_t variables at same time
953 * here. If during we check conf->barrier[idx], the array is
954 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
955 * 0, it is safe to return and make the I/O continue. Because the
956 * array is frozen, all I/O returned here will eventually complete
957 * or be queued, no race will happen. See code comment in
958 * frozen_array().
959 */
960 if (!READ_ONCE(conf->array_frozen) &&
961 !atomic_read(&conf->barrier[idx]))
962 return;
963
964 /*
965 * After holding conf->resync_lock, conf->nr_pending[idx]
966 * should be decreased before waiting for barrier to drop.
967 * Otherwise, we may encounter a race condition because
968 * raise_barrer() might be waiting for conf->nr_pending[idx]
969 * to be 0 at same time.
970 */
971 spin_lock_irq(&conf->resync_lock);
972 atomic_inc(&conf->nr_waiting[idx]);
973 atomic_dec(&conf->nr_pending[idx]);
974 /*
975 * In case freeze_array() is waiting for
976 * get_unqueued_pending() == extra
977 */
978 wake_up(&conf->wait_barrier);
979 /* Wait for the barrier in same barrier unit bucket to drop. */
980 wait_event_lock_irq(conf->wait_barrier,
981 !conf->array_frozen &&
982 !atomic_read(&conf->barrier[idx]),
983 conf->resync_lock);
984 atomic_inc(&conf->nr_pending[idx]);
985 atomic_dec(&conf->nr_waiting[idx]);
986 spin_unlock_irq(&conf->resync_lock);
987}
988
989static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
990{
991 int idx = sector_to_idx(sector_nr);
992
993 /*
994 * Very similar to _wait_barrier(). The difference is, for read
995 * I/O we don't need wait for sync I/O, but if the whole array
996 * is frozen, the read I/O still has to wait until the array is
997 * unfrozen. Since there is no ordering requirement with
998 * conf->barrier[idx] here, memory barrier is unnecessary as well.
999 */
1000 atomic_inc(&conf->nr_pending[idx]);
1001
1002 if (!READ_ONCE(conf->array_frozen))
1003 return;
1004
1005 spin_lock_irq(&conf->resync_lock);
1006 atomic_inc(&conf->nr_waiting[idx]);
1007 atomic_dec(&conf->nr_pending[idx]);
1008 /*
1009 * In case freeze_array() is waiting for
1010 * get_unqueued_pending() == extra
1011 */
1012 wake_up(&conf->wait_barrier);
1013 /* Wait for array to be unfrozen */
1014 wait_event_lock_irq(conf->wait_barrier,
1015 !conf->array_frozen,
1016 conf->resync_lock);
1017 atomic_inc(&conf->nr_pending[idx]);
1018 atomic_dec(&conf->nr_waiting[idx]);
1019 spin_unlock_irq(&conf->resync_lock);
1020}
1021
1022static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
1023{
1024 int idx = sector_to_idx(sector_nr);
1025
1026 _wait_barrier(conf, idx);
1027}
1028
1029static void _allow_barrier(struct r1conf *conf, int idx)
1030{
1031 atomic_dec(&conf->nr_pending[idx]);
1032 wake_up(&conf->wait_barrier);
1033}
1034
1035static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1036{
1037 int idx = sector_to_idx(sector_nr);
1038
1039 _allow_barrier(conf, idx);
1040}
1041
1042/* conf->resync_lock should be held */
1043static int get_unqueued_pending(struct r1conf *conf)
1044{
1045 int idx, ret;
1046
1047 ret = atomic_read(&conf->nr_sync_pending);
1048 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1049 ret += atomic_read(&conf->nr_pending[idx]) -
1050 atomic_read(&conf->nr_queued[idx]);
1051
1052 return ret;
1053}
1054
1055static void freeze_array(struct r1conf *conf, int extra)
1056{
1057 /* Stop sync I/O and normal I/O and wait for everything to
1058 * go quiet.
1059 * This is called in two situations:
1060 * 1) management command handlers (reshape, remove disk, quiesce).
1061 * 2) one normal I/O request failed.
1062
1063 * After array_frozen is set to 1, new sync IO will be blocked at
1064 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1065 * or wait_read_barrier(). The flying I/Os will either complete or be
1066 * queued. When everything goes quite, there are only queued I/Os left.
1067
1068 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1069 * barrier bucket index which this I/O request hits. When all sync and
1070 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1071 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1072 * in handle_read_error(), we may call freeze_array() before trying to
1073 * fix the read error. In this case, the error read I/O is not queued,
1074 * so get_unqueued_pending() == 1.
1075 *
1076 * Therefore before this function returns, we need to wait until
1077 * get_unqueued_pendings(conf) gets equal to extra. For
1078 * normal I/O context, extra is 1, in rested situations extra is 0.
1079 */
1080 spin_lock_irq(&conf->resync_lock);
1081 conf->array_frozen = 1;
1082 raid1_log(conf->mddev, "wait freeze");
1083 wait_event_lock_irq_cmd(
1084 conf->wait_barrier,
1085 get_unqueued_pending(conf) == extra,
1086 conf->resync_lock,
1087 flush_pending_writes(conf));
1088 spin_unlock_irq(&conf->resync_lock);
1089}
1090static void unfreeze_array(struct r1conf *conf)
1091{
1092 /* reverse the effect of the freeze */
1093 spin_lock_irq(&conf->resync_lock);
1094 conf->array_frozen = 0;
1095 spin_unlock_irq(&conf->resync_lock);
1096 wake_up(&conf->wait_barrier);
1097}
1098
1099static void alloc_behind_master_bio(struct r1bio *r1_bio,
1100 struct bio *bio)
1101{
1102 int size = bio->bi_iter.bi_size;
1103 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1104 int i = 0;
1105 struct bio *behind_bio = NULL;
1106
1107 behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1108 if (!behind_bio)
1109 return;
1110
1111 /* discard op, we don't support writezero/writesame yet */
1112 if (!bio_has_data(bio)) {
1113 behind_bio->bi_iter.bi_size = size;
1114 goto skip_copy;
1115 }
1116
1117 behind_bio->bi_write_hint = bio->bi_write_hint;
1118
1119 while (i < vcnt && size) {
1120 struct page *page;
1121 int len = min_t(int, PAGE_SIZE, size);
1122
1123 page = alloc_page(GFP_NOIO);
1124 if (unlikely(!page))
1125 goto free_pages;
1126
1127 bio_add_page(behind_bio, page, len, 0);
1128
1129 size -= len;
1130 i++;
1131 }
1132
1133 bio_copy_data(behind_bio, bio);
1134skip_copy:
1135 r1_bio->behind_master_bio = behind_bio;
1136 set_bit(R1BIO_BehindIO, &r1_bio->state);
1137
1138 return;
1139
1140free_pages:
1141 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1142 bio->bi_iter.bi_size);
1143 bio_free_pages(behind_bio);
1144 bio_put(behind_bio);
1145}
1146
1147struct raid1_plug_cb {
1148 struct blk_plug_cb cb;
1149 struct bio_list pending;
1150 int pending_cnt;
1151};
1152
1153static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1154{
1155 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1156 cb);
1157 struct mddev *mddev = plug->cb.data;
1158 struct r1conf *conf = mddev->private;
1159 struct bio *bio;
1160
1161 if (from_schedule || current->bio_list) {
1162 spin_lock_irq(&conf->device_lock);
1163 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1164 conf->pending_count += plug->pending_cnt;
1165 spin_unlock_irq(&conf->device_lock);
1166 wake_up(&conf->wait_barrier);
1167 md_wakeup_thread(mddev->thread);
1168 kfree(plug);
1169 return;
1170 }
1171
1172 /* we aren't scheduling, so we can do the write-out directly. */
1173 bio = bio_list_get(&plug->pending);
1174 flush_bio_list(conf, bio);
1175 kfree(plug);
1176}
1177
1178static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1179{
1180 r1_bio->master_bio = bio;
1181 r1_bio->sectors = bio_sectors(bio);
1182 r1_bio->state = 0;
1183 r1_bio->mddev = mddev;
1184 r1_bio->sector = bio->bi_iter.bi_sector;
1185}
1186
1187static inline struct r1bio *
1188alloc_r1bio(struct mddev *mddev, struct bio *bio)
1189{
1190 struct r1conf *conf = mddev->private;
1191 struct r1bio *r1_bio;
1192
1193 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1194 /* Ensure no bio records IO_BLOCKED */
1195 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1196 init_r1bio(r1_bio, mddev, bio);
1197 return r1_bio;
1198}
1199
1200static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1201 int max_read_sectors, struct r1bio *r1_bio)
1202{
1203 struct r1conf *conf = mddev->private;
1204 struct raid1_info *mirror;
1205 struct bio *read_bio;
1206 struct bitmap *bitmap = mddev->bitmap;
1207 const int op = bio_op(bio);
1208 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1209 int max_sectors;
1210 int rdisk;
1211 bool print_msg = !!r1_bio;
1212 char b[BDEVNAME_SIZE];
1213
1214 /*
1215 * If r1_bio is set, we are blocking the raid1d thread
1216 * so there is a tiny risk of deadlock. So ask for
1217 * emergency memory if needed.
1218 */
1219 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1220
1221 if (print_msg) {
1222 /* Need to get the block device name carefully */
1223 struct md_rdev *rdev;
1224 rcu_read_lock();
1225 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1226 if (rdev)
1227 bdevname(rdev->bdev, b);
1228 else
1229 strcpy(b, "???");
1230 rcu_read_unlock();
1231 }
1232
1233 /*
1234 * Still need barrier for READ in case that whole
1235 * array is frozen.
1236 */
1237 wait_read_barrier(conf, bio->bi_iter.bi_sector);
1238
1239 if (!r1_bio)
1240 r1_bio = alloc_r1bio(mddev, bio);
1241 else
1242 init_r1bio(r1_bio, mddev, bio);
1243 r1_bio->sectors = max_read_sectors;
1244
1245 /*
1246 * make_request() can abort the operation when read-ahead is being
1247 * used and no empty request is available.
1248 */
1249 rdisk = read_balance(conf, r1_bio, &max_sectors);
1250
1251 if (rdisk < 0) {
1252 /* couldn't find anywhere to read from */
1253 if (print_msg) {
1254 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1255 mdname(mddev),
1256 b,
1257 (unsigned long long)r1_bio->sector);
1258 }
1259 raid_end_bio_io(r1_bio);
1260 return;
1261 }
1262 mirror = conf->mirrors + rdisk;
1263
1264 if (print_msg)
1265 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1266 mdname(mddev),
1267 (unsigned long long)r1_bio->sector,
1268 bdevname(mirror->rdev->bdev, b));
1269
1270 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1271 bitmap) {
1272 /*
1273 * Reading from a write-mostly device must take care not to
1274 * over-take any writes that are 'behind'
1275 */
1276 raid1_log(mddev, "wait behind writes");
1277 wait_event(bitmap->behind_wait,
1278 atomic_read(&bitmap->behind_writes) == 0);
1279 }
1280
1281 if (max_sectors < bio_sectors(bio)) {
1282 struct bio *split = bio_split(bio, max_sectors,
1283 gfp, &conf->bio_split);
1284 bio_chain(split, bio);
1285 submit_bio_noacct(bio);
1286 bio = split;
1287 r1_bio->master_bio = bio;
1288 r1_bio->sectors = max_sectors;
1289 }
1290
1291 r1_bio->read_disk = rdisk;
1292
1293 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1294
1295 r1_bio->bios[rdisk] = read_bio;
1296
1297 read_bio->bi_iter.bi_sector = r1_bio->sector +
1298 mirror->rdev->data_offset;
1299 bio_set_dev(read_bio, mirror->rdev->bdev);
1300 read_bio->bi_end_io = raid1_end_read_request;
1301 bio_set_op_attrs(read_bio, op, do_sync);
1302 if (test_bit(FailFast, &mirror->rdev->flags) &&
1303 test_bit(R1BIO_FailFast, &r1_bio->state))
1304 read_bio->bi_opf |= MD_FAILFAST;
1305 read_bio->bi_private = r1_bio;
1306
1307 if (mddev->gendisk)
1308 trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
1309 disk_devt(mddev->gendisk), r1_bio->sector);
1310
1311 submit_bio_noacct(read_bio);
1312}
1313
1314static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1315 int max_write_sectors)
1316{
1317 struct r1conf *conf = mddev->private;
1318 struct r1bio *r1_bio;
1319 int i, disks;
1320 struct bitmap *bitmap = mddev->bitmap;
1321 unsigned long flags;
1322 struct md_rdev *blocked_rdev;
1323 struct blk_plug_cb *cb;
1324 struct raid1_plug_cb *plug = NULL;
1325 int first_clone;
1326 int max_sectors;
1327
1328 if (mddev_is_clustered(mddev) &&
1329 md_cluster_ops->area_resyncing(mddev, WRITE,
1330 bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1331
1332 DEFINE_WAIT(w);
1333 for (;;) {
1334 prepare_to_wait(&conf->wait_barrier,
1335 &w, TASK_IDLE);
1336 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1337 bio->bi_iter.bi_sector,
1338 bio_end_sector(bio)))
1339 break;
1340 schedule();
1341 }
1342 finish_wait(&conf->wait_barrier, &w);
1343 }
1344
1345 /*
1346 * Register the new request and wait if the reconstruction
1347 * thread has put up a bar for new requests.
1348 * Continue immediately if no resync is active currently.
1349 */
1350 wait_barrier(conf, bio->bi_iter.bi_sector);
1351
1352 r1_bio = alloc_r1bio(mddev, bio);
1353 r1_bio->sectors = max_write_sectors;
1354
1355 if (conf->pending_count >= max_queued_requests) {
1356 md_wakeup_thread(mddev->thread);
1357 raid1_log(mddev, "wait queued");
1358 wait_event(conf->wait_barrier,
1359 conf->pending_count < max_queued_requests);
1360 }
1361 /* first select target devices under rcu_lock and
1362 * inc refcount on their rdev. Record them by setting
1363 * bios[x] to bio
1364 * If there are known/acknowledged bad blocks on any device on
1365 * which we have seen a write error, we want to avoid writing those
1366 * blocks.
1367 * This potentially requires several writes to write around
1368 * the bad blocks. Each set of writes gets it's own r1bio
1369 * with a set of bios attached.
1370 */
1371
1372 disks = conf->raid_disks * 2;
1373 retry_write:
1374 blocked_rdev = NULL;
1375 rcu_read_lock();
1376 max_sectors = r1_bio->sectors;
1377 for (i = 0; i < disks; i++) {
1378 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1379 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1380 atomic_inc(&rdev->nr_pending);
1381 blocked_rdev = rdev;
1382 break;
1383 }
1384 r1_bio->bios[i] = NULL;
1385 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1386 if (i < conf->raid_disks)
1387 set_bit(R1BIO_Degraded, &r1_bio->state);
1388 continue;
1389 }
1390
1391 atomic_inc(&rdev->nr_pending);
1392 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1393 sector_t first_bad;
1394 int bad_sectors;
1395 int is_bad;
1396
1397 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1398 &first_bad, &bad_sectors);
1399 if (is_bad < 0) {
1400 /* mustn't write here until the bad block is
1401 * acknowledged*/
1402 set_bit(BlockedBadBlocks, &rdev->flags);
1403 blocked_rdev = rdev;
1404 break;
1405 }
1406 if (is_bad && first_bad <= r1_bio->sector) {
1407 /* Cannot write here at all */
1408 bad_sectors -= (r1_bio->sector - first_bad);
1409 if (bad_sectors < max_sectors)
1410 /* mustn't write more than bad_sectors
1411 * to other devices yet
1412 */
1413 max_sectors = bad_sectors;
1414 rdev_dec_pending(rdev, mddev);
1415 /* We don't set R1BIO_Degraded as that
1416 * only applies if the disk is
1417 * missing, so it might be re-added,
1418 * and we want to know to recover this
1419 * chunk.
1420 * In this case the device is here,
1421 * and the fact that this chunk is not
1422 * in-sync is recorded in the bad
1423 * block log
1424 */
1425 continue;
1426 }
1427 if (is_bad) {
1428 int good_sectors = first_bad - r1_bio->sector;
1429 if (good_sectors < max_sectors)
1430 max_sectors = good_sectors;
1431 }
1432 }
1433 r1_bio->bios[i] = bio;
1434 }
1435 rcu_read_unlock();
1436
1437 if (unlikely(blocked_rdev)) {
1438 /* Wait for this device to become unblocked */
1439 int j;
1440
1441 for (j = 0; j < i; j++)
1442 if (r1_bio->bios[j])
1443 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1444 r1_bio->state = 0;
1445 allow_barrier(conf, bio->bi_iter.bi_sector);
1446 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1447 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1448 wait_barrier(conf, bio->bi_iter.bi_sector);
1449 goto retry_write;
1450 }
1451
1452 if (max_sectors < bio_sectors(bio)) {
1453 struct bio *split = bio_split(bio, max_sectors,
1454 GFP_NOIO, &conf->bio_split);
1455 bio_chain(split, bio);
1456 submit_bio_noacct(bio);
1457 bio = split;
1458 r1_bio->master_bio = bio;
1459 r1_bio->sectors = max_sectors;
1460 }
1461
1462 atomic_set(&r1_bio->remaining, 1);
1463 atomic_set(&r1_bio->behind_remaining, 0);
1464
1465 first_clone = 1;
1466
1467 for (i = 0; i < disks; i++) {
1468 struct bio *mbio = NULL;
1469 struct md_rdev *rdev = conf->mirrors[i].rdev;
1470 if (!r1_bio->bios[i])
1471 continue;
1472
1473 if (first_clone) {
1474 /* do behind I/O ?
1475 * Not if there are too many, or cannot
1476 * allocate memory, or a reader on WriteMostly
1477 * is waiting for behind writes to flush */
1478 if (bitmap &&
1479 (atomic_read(&bitmap->behind_writes)
1480 < mddev->bitmap_info.max_write_behind) &&
1481 !waitqueue_active(&bitmap->behind_wait)) {
1482 alloc_behind_master_bio(r1_bio, bio);
1483 }
1484
1485 md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1486 test_bit(R1BIO_BehindIO, &r1_bio->state));
1487 first_clone = 0;
1488 }
1489
1490 if (r1_bio->behind_master_bio)
1491 mbio = bio_clone_fast(r1_bio->behind_master_bio,
1492 GFP_NOIO, &mddev->bio_set);
1493 else
1494 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1495
1496 if (r1_bio->behind_master_bio) {
1497 if (test_bit(CollisionCheck, &rdev->flags))
1498 wait_for_serialization(rdev, r1_bio);
1499 if (test_bit(WriteMostly, &rdev->flags))
1500 atomic_inc(&r1_bio->behind_remaining);
1501 } else if (mddev->serialize_policy)
1502 wait_for_serialization(rdev, r1_bio);
1503
1504 r1_bio->bios[i] = mbio;
1505
1506 mbio->bi_iter.bi_sector = (r1_bio->sector +
1507 conf->mirrors[i].rdev->data_offset);
1508 bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1509 mbio->bi_end_io = raid1_end_write_request;
1510 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1511 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1512 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1513 conf->raid_disks - mddev->degraded > 1)
1514 mbio->bi_opf |= MD_FAILFAST;
1515 mbio->bi_private = r1_bio;
1516
1517 atomic_inc(&r1_bio->remaining);
1518
1519 if (mddev->gendisk)
1520 trace_block_bio_remap(mbio->bi_disk->queue,
1521 mbio, disk_devt(mddev->gendisk),
1522 r1_bio->sector);
1523 /* flush_pending_writes() needs access to the rdev so...*/
1524 mbio->bi_disk = (void *)conf->mirrors[i].rdev;
1525
1526 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1527 if (cb)
1528 plug = container_of(cb, struct raid1_plug_cb, cb);
1529 else
1530 plug = NULL;
1531 if (plug) {
1532 bio_list_add(&plug->pending, mbio);
1533 plug->pending_cnt++;
1534 } else {
1535 spin_lock_irqsave(&conf->device_lock, flags);
1536 bio_list_add(&conf->pending_bio_list, mbio);
1537 conf->pending_count++;
1538 spin_unlock_irqrestore(&conf->device_lock, flags);
1539 md_wakeup_thread(mddev->thread);
1540 }
1541 }
1542
1543 r1_bio_write_done(r1_bio);
1544
1545 /* In case raid1d snuck in to freeze_array */
1546 wake_up(&conf->wait_barrier);
1547}
1548
1549static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1550{
1551 sector_t sectors;
1552
1553 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1554 && md_flush_request(mddev, bio))
1555 return true;
1556
1557 /*
1558 * There is a limit to the maximum size, but
1559 * the read/write handler might find a lower limit
1560 * due to bad blocks. To avoid multiple splits,
1561 * we pass the maximum number of sectors down
1562 * and let the lower level perform the split.
1563 */
1564 sectors = align_to_barrier_unit_end(
1565 bio->bi_iter.bi_sector, bio_sectors(bio));
1566
1567 if (bio_data_dir(bio) == READ)
1568 raid1_read_request(mddev, bio, sectors, NULL);
1569 else {
1570 if (!md_write_start(mddev,bio))
1571 return false;
1572 raid1_write_request(mddev, bio, sectors);
1573 }
1574 return true;
1575}
1576
1577static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1578{
1579 struct r1conf *conf = mddev->private;
1580 int i;
1581
1582 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1583 conf->raid_disks - mddev->degraded);
1584 rcu_read_lock();
1585 for (i = 0; i < conf->raid_disks; i++) {
1586 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1587 seq_printf(seq, "%s",
1588 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1589 }
1590 rcu_read_unlock();
1591 seq_printf(seq, "]");
1592}
1593
1594static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1595{
1596 char b[BDEVNAME_SIZE];
1597 struct r1conf *conf = mddev->private;
1598 unsigned long flags;
1599
1600 /*
1601 * If it is not operational, then we have already marked it as dead
1602 * else if it is the last working disks with "fail_last_dev == false",
1603 * ignore the error, let the next level up know.
1604 * else mark the drive as failed
1605 */
1606 spin_lock_irqsave(&conf->device_lock, flags);
1607 if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1608 && (conf->raid_disks - mddev->degraded) == 1) {
1609 /*
1610 * Don't fail the drive, act as though we were just a
1611 * normal single drive.
1612 * However don't try a recovery from this drive as
1613 * it is very likely to fail.
1614 */
1615 conf->recovery_disabled = mddev->recovery_disabled;
1616 spin_unlock_irqrestore(&conf->device_lock, flags);
1617 return;
1618 }
1619 set_bit(Blocked, &rdev->flags);
1620 if (test_and_clear_bit(In_sync, &rdev->flags))
1621 mddev->degraded++;
1622 set_bit(Faulty, &rdev->flags);
1623 spin_unlock_irqrestore(&conf->device_lock, flags);
1624 /*
1625 * if recovery is running, make sure it aborts.
1626 */
1627 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1628 set_mask_bits(&mddev->sb_flags, 0,
1629 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1630 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1631 "md/raid1:%s: Operation continuing on %d devices.\n",
1632 mdname(mddev), bdevname(rdev->bdev, b),
1633 mdname(mddev), conf->raid_disks - mddev->degraded);
1634}
1635
1636static void print_conf(struct r1conf *conf)
1637{
1638 int i;
1639
1640 pr_debug("RAID1 conf printout:\n");
1641 if (!conf) {
1642 pr_debug("(!conf)\n");
1643 return;
1644 }
1645 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1646 conf->raid_disks);
1647
1648 rcu_read_lock();
1649 for (i = 0; i < conf->raid_disks; i++) {
1650 char b[BDEVNAME_SIZE];
1651 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1652 if (rdev)
1653 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1654 i, !test_bit(In_sync, &rdev->flags),
1655 !test_bit(Faulty, &rdev->flags),
1656 bdevname(rdev->bdev,b));
1657 }
1658 rcu_read_unlock();
1659}
1660
1661static void close_sync(struct r1conf *conf)
1662{
1663 int idx;
1664
1665 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1666 _wait_barrier(conf, idx);
1667 _allow_barrier(conf, idx);
1668 }
1669
1670 mempool_exit(&conf->r1buf_pool);
1671}
1672
1673static int raid1_spare_active(struct mddev *mddev)
1674{
1675 int i;
1676 struct r1conf *conf = mddev->private;
1677 int count = 0;
1678 unsigned long flags;
1679
1680 /*
1681 * Find all failed disks within the RAID1 configuration
1682 * and mark them readable.
1683 * Called under mddev lock, so rcu protection not needed.
1684 * device_lock used to avoid races with raid1_end_read_request
1685 * which expects 'In_sync' flags and ->degraded to be consistent.
1686 */
1687 spin_lock_irqsave(&conf->device_lock, flags);
1688 for (i = 0; i < conf->raid_disks; i++) {
1689 struct md_rdev *rdev = conf->mirrors[i].rdev;
1690 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1691 if (repl
1692 && !test_bit(Candidate, &repl->flags)
1693 && repl->recovery_offset == MaxSector
1694 && !test_bit(Faulty, &repl->flags)
1695 && !test_and_set_bit(In_sync, &repl->flags)) {
1696 /* replacement has just become active */
1697 if (!rdev ||
1698 !test_and_clear_bit(In_sync, &rdev->flags))
1699 count++;
1700 if (rdev) {
1701 /* Replaced device not technically
1702 * faulty, but we need to be sure
1703 * it gets removed and never re-added
1704 */
1705 set_bit(Faulty, &rdev->flags);
1706 sysfs_notify_dirent_safe(
1707 rdev->sysfs_state);
1708 }
1709 }
1710 if (rdev
1711 && rdev->recovery_offset == MaxSector
1712 && !test_bit(Faulty, &rdev->flags)
1713 && !test_and_set_bit(In_sync, &rdev->flags)) {
1714 count++;
1715 sysfs_notify_dirent_safe(rdev->sysfs_state);
1716 }
1717 }
1718 mddev->degraded -= count;
1719 spin_unlock_irqrestore(&conf->device_lock, flags);
1720
1721 print_conf(conf);
1722 return count;
1723}
1724
1725static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1726{
1727 struct r1conf *conf = mddev->private;
1728 int err = -EEXIST;
1729 int mirror = 0;
1730 struct raid1_info *p;
1731 int first = 0;
1732 int last = conf->raid_disks - 1;
1733
1734 if (mddev->recovery_disabled == conf->recovery_disabled)
1735 return -EBUSY;
1736
1737 if (md_integrity_add_rdev(rdev, mddev))
1738 return -ENXIO;
1739
1740 if (rdev->raid_disk >= 0)
1741 first = last = rdev->raid_disk;
1742
1743 /*
1744 * find the disk ... but prefer rdev->saved_raid_disk
1745 * if possible.
1746 */
1747 if (rdev->saved_raid_disk >= 0 &&
1748 rdev->saved_raid_disk >= first &&
1749 rdev->saved_raid_disk < conf->raid_disks &&
1750 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1751 first = last = rdev->saved_raid_disk;
1752
1753 for (mirror = first; mirror <= last; mirror++) {
1754 p = conf->mirrors + mirror;
1755 if (!p->rdev) {
1756 if (mddev->gendisk)
1757 disk_stack_limits(mddev->gendisk, rdev->bdev,
1758 rdev->data_offset << 9);
1759
1760 p->head_position = 0;
1761 rdev->raid_disk = mirror;
1762 err = 0;
1763 /* As all devices are equivalent, we don't need a full recovery
1764 * if this was recently any drive of the array
1765 */
1766 if (rdev->saved_raid_disk < 0)
1767 conf->fullsync = 1;
1768 rcu_assign_pointer(p->rdev, rdev);
1769 break;
1770 }
1771 if (test_bit(WantReplacement, &p->rdev->flags) &&
1772 p[conf->raid_disks].rdev == NULL) {
1773 /* Add this device as a replacement */
1774 clear_bit(In_sync, &rdev->flags);
1775 set_bit(Replacement, &rdev->flags);
1776 rdev->raid_disk = mirror;
1777 err = 0;
1778 conf->fullsync = 1;
1779 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1780 break;
1781 }
1782 }
1783 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1784 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1785 print_conf(conf);
1786 return err;
1787}
1788
1789static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1790{
1791 struct r1conf *conf = mddev->private;
1792 int err = 0;
1793 int number = rdev->raid_disk;
1794 struct raid1_info *p = conf->mirrors + number;
1795
1796 if (rdev != p->rdev)
1797 p = conf->mirrors + conf->raid_disks + number;
1798
1799 print_conf(conf);
1800 if (rdev == p->rdev) {
1801 if (test_bit(In_sync, &rdev->flags) ||
1802 atomic_read(&rdev->nr_pending)) {
1803 err = -EBUSY;
1804 goto abort;
1805 }
1806 /* Only remove non-faulty devices if recovery
1807 * is not possible.
1808 */
1809 if (!test_bit(Faulty, &rdev->flags) &&
1810 mddev->recovery_disabled != conf->recovery_disabled &&
1811 mddev->degraded < conf->raid_disks) {
1812 err = -EBUSY;
1813 goto abort;
1814 }
1815 p->rdev = NULL;
1816 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1817 synchronize_rcu();
1818 if (atomic_read(&rdev->nr_pending)) {
1819 /* lost the race, try later */
1820 err = -EBUSY;
1821 p->rdev = rdev;
1822 goto abort;
1823 }
1824 }
1825 if (conf->mirrors[conf->raid_disks + number].rdev) {
1826 /* We just removed a device that is being replaced.
1827 * Move down the replacement. We drain all IO before
1828 * doing this to avoid confusion.
1829 */
1830 struct md_rdev *repl =
1831 conf->mirrors[conf->raid_disks + number].rdev;
1832 freeze_array(conf, 0);
1833 if (atomic_read(&repl->nr_pending)) {
1834 /* It means that some queued IO of retry_list
1835 * hold repl. Thus, we cannot set replacement
1836 * as NULL, avoiding rdev NULL pointer
1837 * dereference in sync_request_write and
1838 * handle_write_finished.
1839 */
1840 err = -EBUSY;
1841 unfreeze_array(conf);
1842 goto abort;
1843 }
1844 clear_bit(Replacement, &repl->flags);
1845 p->rdev = repl;
1846 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1847 unfreeze_array(conf);
1848 }
1849
1850 clear_bit(WantReplacement, &rdev->flags);
1851 err = md_integrity_register(mddev);
1852 }
1853abort:
1854
1855 print_conf(conf);
1856 return err;
1857}
1858
1859static void end_sync_read(struct bio *bio)
1860{
1861 struct r1bio *r1_bio = get_resync_r1bio(bio);
1862
1863 update_head_pos(r1_bio->read_disk, r1_bio);
1864
1865 /*
1866 * we have read a block, now it needs to be re-written,
1867 * or re-read if the read failed.
1868 * We don't do much here, just schedule handling by raid1d
1869 */
1870 if (!bio->bi_status)
1871 set_bit(R1BIO_Uptodate, &r1_bio->state);
1872
1873 if (atomic_dec_and_test(&r1_bio->remaining))
1874 reschedule_retry(r1_bio);
1875}
1876
1877static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1878{
1879 sector_t sync_blocks = 0;
1880 sector_t s = r1_bio->sector;
1881 long sectors_to_go = r1_bio->sectors;
1882
1883 /* make sure these bits don't get cleared. */
1884 do {
1885 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1886 s += sync_blocks;
1887 sectors_to_go -= sync_blocks;
1888 } while (sectors_to_go > 0);
1889}
1890
1891static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1892{
1893 if (atomic_dec_and_test(&r1_bio->remaining)) {
1894 struct mddev *mddev = r1_bio->mddev;
1895 int s = r1_bio->sectors;
1896
1897 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1898 test_bit(R1BIO_WriteError, &r1_bio->state))
1899 reschedule_retry(r1_bio);
1900 else {
1901 put_buf(r1_bio);
1902 md_done_sync(mddev, s, uptodate);
1903 }
1904 }
1905}
1906
1907static void end_sync_write(struct bio *bio)
1908{
1909 int uptodate = !bio->bi_status;
1910 struct r1bio *r1_bio = get_resync_r1bio(bio);
1911 struct mddev *mddev = r1_bio->mddev;
1912 struct r1conf *conf = mddev->private;
1913 sector_t first_bad;
1914 int bad_sectors;
1915 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1916
1917 if (!uptodate) {
1918 abort_sync_write(mddev, r1_bio);
1919 set_bit(WriteErrorSeen, &rdev->flags);
1920 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1921 set_bit(MD_RECOVERY_NEEDED, &
1922 mddev->recovery);
1923 set_bit(R1BIO_WriteError, &r1_bio->state);
1924 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1925 &first_bad, &bad_sectors) &&
1926 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1927 r1_bio->sector,
1928 r1_bio->sectors,
1929 &first_bad, &bad_sectors)
1930 )
1931 set_bit(R1BIO_MadeGood, &r1_bio->state);
1932
1933 put_sync_write_buf(r1_bio, uptodate);
1934}
1935
1936static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1937 int sectors, struct page *page, int rw)
1938{
1939 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1940 /* success */
1941 return 1;
1942 if (rw == WRITE) {
1943 set_bit(WriteErrorSeen, &rdev->flags);
1944 if (!test_and_set_bit(WantReplacement,
1945 &rdev->flags))
1946 set_bit(MD_RECOVERY_NEEDED, &
1947 rdev->mddev->recovery);
1948 }
1949 /* need to record an error - either for the block or the device */
1950 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1951 md_error(rdev->mddev, rdev);
1952 return 0;
1953}
1954
1955static int fix_sync_read_error(struct r1bio *r1_bio)
1956{
1957 /* Try some synchronous reads of other devices to get
1958 * good data, much like with normal read errors. Only
1959 * read into the pages we already have so we don't
1960 * need to re-issue the read request.
1961 * We don't need to freeze the array, because being in an
1962 * active sync request, there is no normal IO, and
1963 * no overlapping syncs.
1964 * We don't need to check is_badblock() again as we
1965 * made sure that anything with a bad block in range
1966 * will have bi_end_io clear.
1967 */
1968 struct mddev *mddev = r1_bio->mddev;
1969 struct r1conf *conf = mddev->private;
1970 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1971 struct page **pages = get_resync_pages(bio)->pages;
1972 sector_t sect = r1_bio->sector;
1973 int sectors = r1_bio->sectors;
1974 int idx = 0;
1975 struct md_rdev *rdev;
1976
1977 rdev = conf->mirrors[r1_bio->read_disk].rdev;
1978 if (test_bit(FailFast, &rdev->flags)) {
1979 /* Don't try recovering from here - just fail it
1980 * ... unless it is the last working device of course */
1981 md_error(mddev, rdev);
1982 if (test_bit(Faulty, &rdev->flags))
1983 /* Don't try to read from here, but make sure
1984 * put_buf does it's thing
1985 */
1986 bio->bi_end_io = end_sync_write;
1987 }
1988
1989 while(sectors) {
1990 int s = sectors;
1991 int d = r1_bio->read_disk;
1992 int success = 0;
1993 int start;
1994
1995 if (s > (PAGE_SIZE>>9))
1996 s = PAGE_SIZE >> 9;
1997 do {
1998 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1999 /* No rcu protection needed here devices
2000 * can only be removed when no resync is
2001 * active, and resync is currently active
2002 */
2003 rdev = conf->mirrors[d].rdev;
2004 if (sync_page_io(rdev, sect, s<<9,
2005 pages[idx],
2006 REQ_OP_READ, 0, false)) {
2007 success = 1;
2008 break;
2009 }
2010 }
2011 d++;
2012 if (d == conf->raid_disks * 2)
2013 d = 0;
2014 } while (!success && d != r1_bio->read_disk);
2015
2016 if (!success) {
2017 char b[BDEVNAME_SIZE];
2018 int abort = 0;
2019 /* Cannot read from anywhere, this block is lost.
2020 * Record a bad block on each device. If that doesn't
2021 * work just disable and interrupt the recovery.
2022 * Don't fail devices as that won't really help.
2023 */
2024 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2025 mdname(mddev), bio_devname(bio, b),
2026 (unsigned long long)r1_bio->sector);
2027 for (d = 0; d < conf->raid_disks * 2; d++) {
2028 rdev = conf->mirrors[d].rdev;
2029 if (!rdev || test_bit(Faulty, &rdev->flags))
2030 continue;
2031 if (!rdev_set_badblocks(rdev, sect, s, 0))
2032 abort = 1;
2033 }
2034 if (abort) {
2035 conf->recovery_disabled =
2036 mddev->recovery_disabled;
2037 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2038 md_done_sync(mddev, r1_bio->sectors, 0);
2039 put_buf(r1_bio);
2040 return 0;
2041 }
2042 /* Try next page */
2043 sectors -= s;
2044 sect += s;
2045 idx++;
2046 continue;
2047 }
2048
2049 start = d;
2050 /* write it back and re-read */
2051 while (d != r1_bio->read_disk) {
2052 if (d == 0)
2053 d = conf->raid_disks * 2;
2054 d--;
2055 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2056 continue;
2057 rdev = conf->mirrors[d].rdev;
2058 if (r1_sync_page_io(rdev, sect, s,
2059 pages[idx],
2060 WRITE) == 0) {
2061 r1_bio->bios[d]->bi_end_io = NULL;
2062 rdev_dec_pending(rdev, mddev);
2063 }
2064 }
2065 d = start;
2066 while (d != r1_bio->read_disk) {
2067 if (d == 0)
2068 d = conf->raid_disks * 2;
2069 d--;
2070 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2071 continue;
2072 rdev = conf->mirrors[d].rdev;
2073 if (r1_sync_page_io(rdev, sect, s,
2074 pages[idx],
2075 READ) != 0)
2076 atomic_add(s, &rdev->corrected_errors);
2077 }
2078 sectors -= s;
2079 sect += s;
2080 idx ++;
2081 }
2082 set_bit(R1BIO_Uptodate, &r1_bio->state);
2083 bio->bi_status = 0;
2084 return 1;
2085}
2086
2087static void process_checks(struct r1bio *r1_bio)
2088{
2089 /* We have read all readable devices. If we haven't
2090 * got the block, then there is no hope left.
2091 * If we have, then we want to do a comparison
2092 * and skip the write if everything is the same.
2093 * If any blocks failed to read, then we need to
2094 * attempt an over-write
2095 */
2096 struct mddev *mddev = r1_bio->mddev;
2097 struct r1conf *conf = mddev->private;
2098 int primary;
2099 int i;
2100 int vcnt;
2101
2102 /* Fix variable parts of all bios */
2103 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2104 for (i = 0; i < conf->raid_disks * 2; i++) {
2105 blk_status_t status;
2106 struct bio *b = r1_bio->bios[i];
2107 struct resync_pages *rp = get_resync_pages(b);
2108 if (b->bi_end_io != end_sync_read)
2109 continue;
2110 /* fixup the bio for reuse, but preserve errno */
2111 status = b->bi_status;
2112 bio_reset(b);
2113 b->bi_status = status;
2114 b->bi_iter.bi_sector = r1_bio->sector +
2115 conf->mirrors[i].rdev->data_offset;
2116 bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2117 b->bi_end_io = end_sync_read;
2118 rp->raid_bio = r1_bio;
2119 b->bi_private = rp;
2120
2121 /* initialize bvec table again */
2122 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2123 }
2124 for (primary = 0; primary < conf->raid_disks * 2; primary++)
2125 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2126 !r1_bio->bios[primary]->bi_status) {
2127 r1_bio->bios[primary]->bi_end_io = NULL;
2128 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2129 break;
2130 }
2131 r1_bio->read_disk = primary;
2132 for (i = 0; i < conf->raid_disks * 2; i++) {
2133 int j = 0;
2134 struct bio *pbio = r1_bio->bios[primary];
2135 struct bio *sbio = r1_bio->bios[i];
2136 blk_status_t status = sbio->bi_status;
2137 struct page **ppages = get_resync_pages(pbio)->pages;
2138 struct page **spages = get_resync_pages(sbio)->pages;
2139 struct bio_vec *bi;
2140 int page_len[RESYNC_PAGES] = { 0 };
2141 struct bvec_iter_all iter_all;
2142
2143 if (sbio->bi_end_io != end_sync_read)
2144 continue;
2145 /* Now we can 'fixup' the error value */
2146 sbio->bi_status = 0;
2147
2148 bio_for_each_segment_all(bi, sbio, iter_all)
2149 page_len[j++] = bi->bv_len;
2150
2151 if (!status) {
2152 for (j = vcnt; j-- ; ) {
2153 if (memcmp(page_address(ppages[j]),
2154 page_address(spages[j]),
2155 page_len[j]))
2156 break;
2157 }
2158 } else
2159 j = 0;
2160 if (j >= 0)
2161 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2162 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2163 && !status)) {
2164 /* No need to write to this device. */
2165 sbio->bi_end_io = NULL;
2166 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2167 continue;
2168 }
2169
2170 bio_copy_data(sbio, pbio);
2171 }
2172}
2173
2174static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2175{
2176 struct r1conf *conf = mddev->private;
2177 int i;
2178 int disks = conf->raid_disks * 2;
2179 struct bio *wbio;
2180
2181 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2182 /* ouch - failed to read all of that. */
2183 if (!fix_sync_read_error(r1_bio))
2184 return;
2185
2186 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2187 process_checks(r1_bio);
2188
2189 /*
2190 * schedule writes
2191 */
2192 atomic_set(&r1_bio->remaining, 1);
2193 for (i = 0; i < disks ; i++) {
2194 wbio = r1_bio->bios[i];
2195 if (wbio->bi_end_io == NULL ||
2196 (wbio->bi_end_io == end_sync_read &&
2197 (i == r1_bio->read_disk ||
2198 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2199 continue;
2200 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2201 abort_sync_write(mddev, r1_bio);
2202 continue;
2203 }
2204
2205 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2206 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2207 wbio->bi_opf |= MD_FAILFAST;
2208
2209 wbio->bi_end_io = end_sync_write;
2210 atomic_inc(&r1_bio->remaining);
2211 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2212
2213 submit_bio_noacct(wbio);
2214 }
2215
2216 put_sync_write_buf(r1_bio, 1);
2217}
2218
2219/*
2220 * This is a kernel thread which:
2221 *
2222 * 1. Retries failed read operations on working mirrors.
2223 * 2. Updates the raid superblock when problems encounter.
2224 * 3. Performs writes following reads for array synchronising.
2225 */
2226
2227static void fix_read_error(struct r1conf *conf, int read_disk,
2228 sector_t sect, int sectors)
2229{
2230 struct mddev *mddev = conf->mddev;
2231 while(sectors) {
2232 int s = sectors;
2233 int d = read_disk;
2234 int success = 0;
2235 int start;
2236 struct md_rdev *rdev;
2237
2238 if (s > (PAGE_SIZE>>9))
2239 s = PAGE_SIZE >> 9;
2240
2241 do {
2242 sector_t first_bad;
2243 int bad_sectors;
2244
2245 rcu_read_lock();
2246 rdev = rcu_dereference(conf->mirrors[d].rdev);
2247 if (rdev &&
2248 (test_bit(In_sync, &rdev->flags) ||
2249 (!test_bit(Faulty, &rdev->flags) &&
2250 rdev->recovery_offset >= sect + s)) &&
2251 is_badblock(rdev, sect, s,
2252 &first_bad, &bad_sectors) == 0) {
2253 atomic_inc(&rdev->nr_pending);
2254 rcu_read_unlock();
2255 if (sync_page_io(rdev, sect, s<<9,
2256 conf->tmppage, REQ_OP_READ, 0, false))
2257 success = 1;
2258 rdev_dec_pending(rdev, mddev);
2259 if (success)
2260 break;
2261 } else
2262 rcu_read_unlock();
2263 d++;
2264 if (d == conf->raid_disks * 2)
2265 d = 0;
2266 } while (!success && d != read_disk);
2267
2268 if (!success) {
2269 /* Cannot read from anywhere - mark it bad */
2270 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2271 if (!rdev_set_badblocks(rdev, sect, s, 0))
2272 md_error(mddev, rdev);
2273 break;
2274 }
2275 /* write it back and re-read */
2276 start = d;
2277 while (d != read_disk) {
2278 if (d==0)
2279 d = conf->raid_disks * 2;
2280 d--;
2281 rcu_read_lock();
2282 rdev = rcu_dereference(conf->mirrors[d].rdev);
2283 if (rdev &&
2284 !test_bit(Faulty, &rdev->flags)) {
2285 atomic_inc(&rdev->nr_pending);
2286 rcu_read_unlock();
2287 r1_sync_page_io(rdev, sect, s,
2288 conf->tmppage, WRITE);
2289 rdev_dec_pending(rdev, mddev);
2290 } else
2291 rcu_read_unlock();
2292 }
2293 d = start;
2294 while (d != read_disk) {
2295 char b[BDEVNAME_SIZE];
2296 if (d==0)
2297 d = conf->raid_disks * 2;
2298 d--;
2299 rcu_read_lock();
2300 rdev = rcu_dereference(conf->mirrors[d].rdev);
2301 if (rdev &&
2302 !test_bit(Faulty, &rdev->flags)) {
2303 atomic_inc(&rdev->nr_pending);
2304 rcu_read_unlock();
2305 if (r1_sync_page_io(rdev, sect, s,
2306 conf->tmppage, READ)) {
2307 atomic_add(s, &rdev->corrected_errors);
2308 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2309 mdname(mddev), s,
2310 (unsigned long long)(sect +
2311 rdev->data_offset),
2312 bdevname(rdev->bdev, b));
2313 }
2314 rdev_dec_pending(rdev, mddev);
2315 } else
2316 rcu_read_unlock();
2317 }
2318 sectors -= s;
2319 sect += s;
2320 }
2321}
2322
2323static int narrow_write_error(struct r1bio *r1_bio, int i)
2324{
2325 struct mddev *mddev = r1_bio->mddev;
2326 struct r1conf *conf = mddev->private;
2327 struct md_rdev *rdev = conf->mirrors[i].rdev;
2328
2329 /* bio has the data to be written to device 'i' where
2330 * we just recently had a write error.
2331 * We repeatedly clone the bio and trim down to one block,
2332 * then try the write. Where the write fails we record
2333 * a bad block.
2334 * It is conceivable that the bio doesn't exactly align with
2335 * blocks. We must handle this somehow.
2336 *
2337 * We currently own a reference on the rdev.
2338 */
2339
2340 int block_sectors;
2341 sector_t sector;
2342 int sectors;
2343 int sect_to_write = r1_bio->sectors;
2344 int ok = 1;
2345
2346 if (rdev->badblocks.shift < 0)
2347 return 0;
2348
2349 block_sectors = roundup(1 << rdev->badblocks.shift,
2350 bdev_logical_block_size(rdev->bdev) >> 9);
2351 sector = r1_bio->sector;
2352 sectors = ((sector + block_sectors)
2353 & ~(sector_t)(block_sectors - 1))
2354 - sector;
2355
2356 while (sect_to_write) {
2357 struct bio *wbio;
2358 if (sectors > sect_to_write)
2359 sectors = sect_to_write;
2360 /* Write at 'sector' for 'sectors'*/
2361
2362 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2363 wbio = bio_clone_fast(r1_bio->behind_master_bio,
2364 GFP_NOIO,
2365 &mddev->bio_set);
2366 } else {
2367 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2368 &mddev->bio_set);
2369 }
2370
2371 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2372 wbio->bi_iter.bi_sector = r1_bio->sector;
2373 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2374
2375 bio_trim(wbio, sector - r1_bio->sector, sectors);
2376 wbio->bi_iter.bi_sector += rdev->data_offset;
2377 bio_set_dev(wbio, rdev->bdev);
2378
2379 if (submit_bio_wait(wbio) < 0)
2380 /* failure! */
2381 ok = rdev_set_badblocks(rdev, sector,
2382 sectors, 0)
2383 && ok;
2384
2385 bio_put(wbio);
2386 sect_to_write -= sectors;
2387 sector += sectors;
2388 sectors = block_sectors;
2389 }
2390 return ok;
2391}
2392
2393static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2394{
2395 int m;
2396 int s = r1_bio->sectors;
2397 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2398 struct md_rdev *rdev = conf->mirrors[m].rdev;
2399 struct bio *bio = r1_bio->bios[m];
2400 if (bio->bi_end_io == NULL)
2401 continue;
2402 if (!bio->bi_status &&
2403 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2404 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2405 }
2406 if (bio->bi_status &&
2407 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2408 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2409 md_error(conf->mddev, rdev);
2410 }
2411 }
2412 put_buf(r1_bio);
2413 md_done_sync(conf->mddev, s, 1);
2414}
2415
2416static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2417{
2418 int m, idx;
2419 bool fail = false;
2420
2421 for (m = 0; m < conf->raid_disks * 2 ; m++)
2422 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2423 struct md_rdev *rdev = conf->mirrors[m].rdev;
2424 rdev_clear_badblocks(rdev,
2425 r1_bio->sector,
2426 r1_bio->sectors, 0);
2427 rdev_dec_pending(rdev, conf->mddev);
2428 } else if (r1_bio->bios[m] != NULL) {
2429 /* This drive got a write error. We need to
2430 * narrow down and record precise write
2431 * errors.
2432 */
2433 fail = true;
2434 if (!narrow_write_error(r1_bio, m)) {
2435 md_error(conf->mddev,
2436 conf->mirrors[m].rdev);
2437 /* an I/O failed, we can't clear the bitmap */
2438 set_bit(R1BIO_Degraded, &r1_bio->state);
2439 }
2440 rdev_dec_pending(conf->mirrors[m].rdev,
2441 conf->mddev);
2442 }
2443 if (fail) {
2444 spin_lock_irq(&conf->device_lock);
2445 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2446 idx = sector_to_idx(r1_bio->sector);
2447 atomic_inc(&conf->nr_queued[idx]);
2448 spin_unlock_irq(&conf->device_lock);
2449 /*
2450 * In case freeze_array() is waiting for condition
2451 * get_unqueued_pending() == extra to be true.
2452 */
2453 wake_up(&conf->wait_barrier);
2454 md_wakeup_thread(conf->mddev->thread);
2455 } else {
2456 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2457 close_write(r1_bio);
2458 raid_end_bio_io(r1_bio);
2459 }
2460}
2461
2462static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2463{
2464 struct mddev *mddev = conf->mddev;
2465 struct bio *bio;
2466 struct md_rdev *rdev;
2467
2468 clear_bit(R1BIO_ReadError, &r1_bio->state);
2469 /* we got a read error. Maybe the drive is bad. Maybe just
2470 * the block and we can fix it.
2471 * We freeze all other IO, and try reading the block from
2472 * other devices. When we find one, we re-write
2473 * and check it that fixes the read error.
2474 * This is all done synchronously while the array is
2475 * frozen
2476 */
2477
2478 bio = r1_bio->bios[r1_bio->read_disk];
2479 bio_put(bio);
2480 r1_bio->bios[r1_bio->read_disk] = NULL;
2481
2482 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2483 if (mddev->ro == 0
2484 && !test_bit(FailFast, &rdev->flags)) {
2485 freeze_array(conf, 1);
2486 fix_read_error(conf, r1_bio->read_disk,
2487 r1_bio->sector, r1_bio->sectors);
2488 unfreeze_array(conf);
2489 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2490 md_error(mddev, rdev);
2491 } else {
2492 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2493 }
2494
2495 rdev_dec_pending(rdev, conf->mddev);
2496 allow_barrier(conf, r1_bio->sector);
2497 bio = r1_bio->master_bio;
2498
2499 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2500 r1_bio->state = 0;
2501 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2502}
2503
2504static void raid1d(struct md_thread *thread)
2505{
2506 struct mddev *mddev = thread->mddev;
2507 struct r1bio *r1_bio;
2508 unsigned long flags;
2509 struct r1conf *conf = mddev->private;
2510 struct list_head *head = &conf->retry_list;
2511 struct blk_plug plug;
2512 int idx;
2513
2514 md_check_recovery(mddev);
2515
2516 if (!list_empty_careful(&conf->bio_end_io_list) &&
2517 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2518 LIST_HEAD(tmp);
2519 spin_lock_irqsave(&conf->device_lock, flags);
2520 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2521 list_splice_init(&conf->bio_end_io_list, &tmp);
2522 spin_unlock_irqrestore(&conf->device_lock, flags);
2523 while (!list_empty(&tmp)) {
2524 r1_bio = list_first_entry(&tmp, struct r1bio,
2525 retry_list);
2526 list_del(&r1_bio->retry_list);
2527 idx = sector_to_idx(r1_bio->sector);
2528 atomic_dec(&conf->nr_queued[idx]);
2529 if (mddev->degraded)
2530 set_bit(R1BIO_Degraded, &r1_bio->state);
2531 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2532 close_write(r1_bio);
2533 raid_end_bio_io(r1_bio);
2534 }
2535 }
2536
2537 blk_start_plug(&plug);
2538 for (;;) {
2539
2540 flush_pending_writes(conf);
2541
2542 spin_lock_irqsave(&conf->device_lock, flags);
2543 if (list_empty(head)) {
2544 spin_unlock_irqrestore(&conf->device_lock, flags);
2545 break;
2546 }
2547 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2548 list_del(head->prev);
2549 idx = sector_to_idx(r1_bio->sector);
2550 atomic_dec(&conf->nr_queued[idx]);
2551 spin_unlock_irqrestore(&conf->device_lock, flags);
2552
2553 mddev = r1_bio->mddev;
2554 conf = mddev->private;
2555 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2556 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2557 test_bit(R1BIO_WriteError, &r1_bio->state))
2558 handle_sync_write_finished(conf, r1_bio);
2559 else
2560 sync_request_write(mddev, r1_bio);
2561 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2562 test_bit(R1BIO_WriteError, &r1_bio->state))
2563 handle_write_finished(conf, r1_bio);
2564 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2565 handle_read_error(conf, r1_bio);
2566 else
2567 WARN_ON_ONCE(1);
2568
2569 cond_resched();
2570 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2571 md_check_recovery(mddev);
2572 }
2573 blk_finish_plug(&plug);
2574}
2575
2576static int init_resync(struct r1conf *conf)
2577{
2578 int buffs;
2579
2580 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2581 BUG_ON(mempool_initialized(&conf->r1buf_pool));
2582
2583 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2584 r1buf_pool_free, conf->poolinfo);
2585}
2586
2587static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2588{
2589 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2590 struct resync_pages *rps;
2591 struct bio *bio;
2592 int i;
2593
2594 for (i = conf->poolinfo->raid_disks; i--; ) {
2595 bio = r1bio->bios[i];
2596 rps = bio->bi_private;
2597 bio_reset(bio);
2598 bio->bi_private = rps;
2599 }
2600 r1bio->master_bio = NULL;
2601 return r1bio;
2602}
2603
2604/*
2605 * perform a "sync" on one "block"
2606 *
2607 * We need to make sure that no normal I/O request - particularly write
2608 * requests - conflict with active sync requests.
2609 *
2610 * This is achieved by tracking pending requests and a 'barrier' concept
2611 * that can be installed to exclude normal IO requests.
2612 */
2613
2614static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2615 int *skipped)
2616{
2617 struct r1conf *conf = mddev->private;
2618 struct r1bio *r1_bio;
2619 struct bio *bio;
2620 sector_t max_sector, nr_sectors;
2621 int disk = -1;
2622 int i;
2623 int wonly = -1;
2624 int write_targets = 0, read_targets = 0;
2625 sector_t sync_blocks;
2626 int still_degraded = 0;
2627 int good_sectors = RESYNC_SECTORS;
2628 int min_bad = 0; /* number of sectors that are bad in all devices */
2629 int idx = sector_to_idx(sector_nr);
2630 int page_idx = 0;
2631
2632 if (!mempool_initialized(&conf->r1buf_pool))
2633 if (init_resync(conf))
2634 return 0;
2635
2636 max_sector = mddev->dev_sectors;
2637 if (sector_nr >= max_sector) {
2638 /* If we aborted, we need to abort the
2639 * sync on the 'current' bitmap chunk (there will
2640 * only be one in raid1 resync.
2641 * We can find the current addess in mddev->curr_resync
2642 */
2643 if (mddev->curr_resync < max_sector) /* aborted */
2644 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2645 &sync_blocks, 1);
2646 else /* completed sync */
2647 conf->fullsync = 0;
2648
2649 md_bitmap_close_sync(mddev->bitmap);
2650 close_sync(conf);
2651
2652 if (mddev_is_clustered(mddev)) {
2653 conf->cluster_sync_low = 0;
2654 conf->cluster_sync_high = 0;
2655 }
2656 return 0;
2657 }
2658
2659 if (mddev->bitmap == NULL &&
2660 mddev->recovery_cp == MaxSector &&
2661 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2662 conf->fullsync == 0) {
2663 *skipped = 1;
2664 return max_sector - sector_nr;
2665 }
2666 /* before building a request, check if we can skip these blocks..
2667 * This call the bitmap_start_sync doesn't actually record anything
2668 */
2669 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2670 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2671 /* We can skip this block, and probably several more */
2672 *skipped = 1;
2673 return sync_blocks;
2674 }
2675
2676 /*
2677 * If there is non-resync activity waiting for a turn, then let it
2678 * though before starting on this new sync request.
2679 */
2680 if (atomic_read(&conf->nr_waiting[idx]))
2681 schedule_timeout_uninterruptible(1);
2682
2683 /* we are incrementing sector_nr below. To be safe, we check against
2684 * sector_nr + two times RESYNC_SECTORS
2685 */
2686
2687 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2688 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2689
2690
2691 if (raise_barrier(conf, sector_nr))
2692 return 0;
2693
2694 r1_bio = raid1_alloc_init_r1buf(conf);
2695
2696 rcu_read_lock();
2697 /*
2698 * If we get a correctably read error during resync or recovery,
2699 * we might want to read from a different device. So we
2700 * flag all drives that could conceivably be read from for READ,
2701 * and any others (which will be non-In_sync devices) for WRITE.
2702 * If a read fails, we try reading from something else for which READ
2703 * is OK.
2704 */
2705
2706 r1_bio->mddev = mddev;
2707 r1_bio->sector = sector_nr;
2708 r1_bio->state = 0;
2709 set_bit(R1BIO_IsSync, &r1_bio->state);
2710 /* make sure good_sectors won't go across barrier unit boundary */
2711 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2712
2713 for (i = 0; i < conf->raid_disks * 2; i++) {
2714 struct md_rdev *rdev;
2715 bio = r1_bio->bios[i];
2716
2717 rdev = rcu_dereference(conf->mirrors[i].rdev);
2718 if (rdev == NULL ||
2719 test_bit(Faulty, &rdev->flags)) {
2720 if (i < conf->raid_disks)
2721 still_degraded = 1;
2722 } else if (!test_bit(In_sync, &rdev->flags)) {
2723 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2724 bio->bi_end_io = end_sync_write;
2725 write_targets ++;
2726 } else {
2727 /* may need to read from here */
2728 sector_t first_bad = MaxSector;
2729 int bad_sectors;
2730
2731 if (is_badblock(rdev, sector_nr, good_sectors,
2732 &first_bad, &bad_sectors)) {
2733 if (first_bad > sector_nr)
2734 good_sectors = first_bad - sector_nr;
2735 else {
2736 bad_sectors -= (sector_nr - first_bad);
2737 if (min_bad == 0 ||
2738 min_bad > bad_sectors)
2739 min_bad = bad_sectors;
2740 }
2741 }
2742 if (sector_nr < first_bad) {
2743 if (test_bit(WriteMostly, &rdev->flags)) {
2744 if (wonly < 0)
2745 wonly = i;
2746 } else {
2747 if (disk < 0)
2748 disk = i;
2749 }
2750 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2751 bio->bi_end_io = end_sync_read;
2752 read_targets++;
2753 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2754 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2755 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2756 /*
2757 * The device is suitable for reading (InSync),
2758 * but has bad block(s) here. Let's try to correct them,
2759 * if we are doing resync or repair. Otherwise, leave
2760 * this device alone for this sync request.
2761 */
2762 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2763 bio->bi_end_io = end_sync_write;
2764 write_targets++;
2765 }
2766 }
2767 if (rdev && bio->bi_end_io) {
2768 atomic_inc(&rdev->nr_pending);
2769 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2770 bio_set_dev(bio, rdev->bdev);
2771 if (test_bit(FailFast, &rdev->flags))
2772 bio->bi_opf |= MD_FAILFAST;
2773 }
2774 }
2775 rcu_read_unlock();
2776 if (disk < 0)
2777 disk = wonly;
2778 r1_bio->read_disk = disk;
2779
2780 if (read_targets == 0 && min_bad > 0) {
2781 /* These sectors are bad on all InSync devices, so we
2782 * need to mark them bad on all write targets
2783 */
2784 int ok = 1;
2785 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2786 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2787 struct md_rdev *rdev = conf->mirrors[i].rdev;
2788 ok = rdev_set_badblocks(rdev, sector_nr,
2789 min_bad, 0
2790 ) && ok;
2791 }
2792 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2793 *skipped = 1;
2794 put_buf(r1_bio);
2795
2796 if (!ok) {
2797 /* Cannot record the badblocks, so need to
2798 * abort the resync.
2799 * If there are multiple read targets, could just
2800 * fail the really bad ones ???
2801 */
2802 conf->recovery_disabled = mddev->recovery_disabled;
2803 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2804 return 0;
2805 } else
2806 return min_bad;
2807
2808 }
2809 if (min_bad > 0 && min_bad < good_sectors) {
2810 /* only resync enough to reach the next bad->good
2811 * transition */
2812 good_sectors = min_bad;
2813 }
2814
2815 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2816 /* extra read targets are also write targets */
2817 write_targets += read_targets-1;
2818
2819 if (write_targets == 0 || read_targets == 0) {
2820 /* There is nowhere to write, so all non-sync
2821 * drives must be failed - so we are finished
2822 */
2823 sector_t rv;
2824 if (min_bad > 0)
2825 max_sector = sector_nr + min_bad;
2826 rv = max_sector - sector_nr;
2827 *skipped = 1;
2828 put_buf(r1_bio);
2829 return rv;
2830 }
2831
2832 if (max_sector > mddev->resync_max)
2833 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2834 if (max_sector > sector_nr + good_sectors)
2835 max_sector = sector_nr + good_sectors;
2836 nr_sectors = 0;
2837 sync_blocks = 0;
2838 do {
2839 struct page *page;
2840 int len = PAGE_SIZE;
2841 if (sector_nr + (len>>9) > max_sector)
2842 len = (max_sector - sector_nr) << 9;
2843 if (len == 0)
2844 break;
2845 if (sync_blocks == 0) {
2846 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2847 &sync_blocks, still_degraded) &&
2848 !conf->fullsync &&
2849 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2850 break;
2851 if ((len >> 9) > sync_blocks)
2852 len = sync_blocks<<9;
2853 }
2854
2855 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2856 struct resync_pages *rp;
2857
2858 bio = r1_bio->bios[i];
2859 rp = get_resync_pages(bio);
2860 if (bio->bi_end_io) {
2861 page = resync_fetch_page(rp, page_idx);
2862
2863 /*
2864 * won't fail because the vec table is big
2865 * enough to hold all these pages
2866 */
2867 bio_add_page(bio, page, len, 0);
2868 }
2869 }
2870 nr_sectors += len>>9;
2871 sector_nr += len>>9;
2872 sync_blocks -= (len>>9);
2873 } while (++page_idx < RESYNC_PAGES);
2874
2875 r1_bio->sectors = nr_sectors;
2876
2877 if (mddev_is_clustered(mddev) &&
2878 conf->cluster_sync_high < sector_nr + nr_sectors) {
2879 conf->cluster_sync_low = mddev->curr_resync_completed;
2880 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2881 /* Send resync message */
2882 md_cluster_ops->resync_info_update(mddev,
2883 conf->cluster_sync_low,
2884 conf->cluster_sync_high);
2885 }
2886
2887 /* For a user-requested sync, we read all readable devices and do a
2888 * compare
2889 */
2890 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2891 atomic_set(&r1_bio->remaining, read_targets);
2892 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2893 bio = r1_bio->bios[i];
2894 if (bio->bi_end_io == end_sync_read) {
2895 read_targets--;
2896 md_sync_acct_bio(bio, nr_sectors);
2897 if (read_targets == 1)
2898 bio->bi_opf &= ~MD_FAILFAST;
2899 submit_bio_noacct(bio);
2900 }
2901 }
2902 } else {
2903 atomic_set(&r1_bio->remaining, 1);
2904 bio = r1_bio->bios[r1_bio->read_disk];
2905 md_sync_acct_bio(bio, nr_sectors);
2906 if (read_targets == 1)
2907 bio->bi_opf &= ~MD_FAILFAST;
2908 submit_bio_noacct(bio);
2909 }
2910 return nr_sectors;
2911}
2912
2913static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2914{
2915 if (sectors)
2916 return sectors;
2917
2918 return mddev->dev_sectors;
2919}
2920
2921static struct r1conf *setup_conf(struct mddev *mddev)
2922{
2923 struct r1conf *conf;
2924 int i;
2925 struct raid1_info *disk;
2926 struct md_rdev *rdev;
2927 int err = -ENOMEM;
2928
2929 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2930 if (!conf)
2931 goto abort;
2932
2933 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2934 sizeof(atomic_t), GFP_KERNEL);
2935 if (!conf->nr_pending)
2936 goto abort;
2937
2938 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2939 sizeof(atomic_t), GFP_KERNEL);
2940 if (!conf->nr_waiting)
2941 goto abort;
2942
2943 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2944 sizeof(atomic_t), GFP_KERNEL);
2945 if (!conf->nr_queued)
2946 goto abort;
2947
2948 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2949 sizeof(atomic_t), GFP_KERNEL);
2950 if (!conf->barrier)
2951 goto abort;
2952
2953 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2954 mddev->raid_disks, 2),
2955 GFP_KERNEL);
2956 if (!conf->mirrors)
2957 goto abort;
2958
2959 conf->tmppage = alloc_page(GFP_KERNEL);
2960 if (!conf->tmppage)
2961 goto abort;
2962
2963 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2964 if (!conf->poolinfo)
2965 goto abort;
2966 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2967 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
2968 rbio_pool_free, conf->poolinfo);
2969 if (err)
2970 goto abort;
2971
2972 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
2973 if (err)
2974 goto abort;
2975
2976 conf->poolinfo->mddev = mddev;
2977
2978 err = -EINVAL;
2979 spin_lock_init(&conf->device_lock);
2980 rdev_for_each(rdev, mddev) {
2981 int disk_idx = rdev->raid_disk;
2982 if (disk_idx >= mddev->raid_disks
2983 || disk_idx < 0)
2984 continue;
2985 if (test_bit(Replacement, &rdev->flags))
2986 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2987 else
2988 disk = conf->mirrors + disk_idx;
2989
2990 if (disk->rdev)
2991 goto abort;
2992 disk->rdev = rdev;
2993 disk->head_position = 0;
2994 disk->seq_start = MaxSector;
2995 }
2996 conf->raid_disks = mddev->raid_disks;
2997 conf->mddev = mddev;
2998 INIT_LIST_HEAD(&conf->retry_list);
2999 INIT_LIST_HEAD(&conf->bio_end_io_list);
3000
3001 spin_lock_init(&conf->resync_lock);
3002 init_waitqueue_head(&conf->wait_barrier);
3003
3004 bio_list_init(&conf->pending_bio_list);
3005 conf->pending_count = 0;
3006 conf->recovery_disabled = mddev->recovery_disabled - 1;
3007
3008 err = -EIO;
3009 for (i = 0; i < conf->raid_disks * 2; i++) {
3010
3011 disk = conf->mirrors + i;
3012
3013 if (i < conf->raid_disks &&
3014 disk[conf->raid_disks].rdev) {
3015 /* This slot has a replacement. */
3016 if (!disk->rdev) {
3017 /* No original, just make the replacement
3018 * a recovering spare
3019 */
3020 disk->rdev =
3021 disk[conf->raid_disks].rdev;
3022 disk[conf->raid_disks].rdev = NULL;
3023 } else if (!test_bit(In_sync, &disk->rdev->flags))
3024 /* Original is not in_sync - bad */
3025 goto abort;
3026 }
3027
3028 if (!disk->rdev ||
3029 !test_bit(In_sync, &disk->rdev->flags)) {
3030 disk->head_position = 0;
3031 if (disk->rdev &&
3032 (disk->rdev->saved_raid_disk < 0))
3033 conf->fullsync = 1;
3034 }
3035 }
3036
3037 err = -ENOMEM;
3038 conf->thread = md_register_thread(raid1d, mddev, "raid1");
3039 if (!conf->thread)
3040 goto abort;
3041
3042 return conf;
3043
3044 abort:
3045 if (conf) {
3046 mempool_exit(&conf->r1bio_pool);
3047 kfree(conf->mirrors);
3048 safe_put_page(conf->tmppage);
3049 kfree(conf->poolinfo);
3050 kfree(conf->nr_pending);
3051 kfree(conf->nr_waiting);
3052 kfree(conf->nr_queued);
3053 kfree(conf->barrier);
3054 bioset_exit(&conf->bio_split);
3055 kfree(conf);
3056 }
3057 return ERR_PTR(err);
3058}
3059
3060static void raid1_free(struct mddev *mddev, void *priv);
3061static int raid1_run(struct mddev *mddev)
3062{
3063 struct r1conf *conf;
3064 int i;
3065 struct md_rdev *rdev;
3066 int ret;
3067 bool discard_supported = false;
3068
3069 if (mddev->level != 1) {
3070 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3071 mdname(mddev), mddev->level);
3072 return -EIO;
3073 }
3074 if (mddev->reshape_position != MaxSector) {
3075 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3076 mdname(mddev));
3077 return -EIO;
3078 }
3079 if (mddev_init_writes_pending(mddev) < 0)
3080 return -ENOMEM;
3081 /*
3082 * copy the already verified devices into our private RAID1
3083 * bookkeeping area. [whatever we allocate in run(),
3084 * should be freed in raid1_free()]
3085 */
3086 if (mddev->private == NULL)
3087 conf = setup_conf(mddev);
3088 else
3089 conf = mddev->private;
3090
3091 if (IS_ERR(conf))
3092 return PTR_ERR(conf);
3093
3094 if (mddev->queue) {
3095 blk_queue_max_write_same_sectors(mddev->queue, 0);
3096 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3097 }
3098
3099 rdev_for_each(rdev, mddev) {
3100 if (!mddev->gendisk)
3101 continue;
3102 disk_stack_limits(mddev->gendisk, rdev->bdev,
3103 rdev->data_offset << 9);
3104 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3105 discard_supported = true;
3106 }
3107
3108 mddev->degraded = 0;
3109 for (i = 0; i < conf->raid_disks; i++)
3110 if (conf->mirrors[i].rdev == NULL ||
3111 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3112 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3113 mddev->degraded++;
3114 /*
3115 * RAID1 needs at least one disk in active
3116 */
3117 if (conf->raid_disks - mddev->degraded < 1) {
3118 ret = -EINVAL;
3119 goto abort;
3120 }
3121
3122 if (conf->raid_disks - mddev->degraded == 1)
3123 mddev->recovery_cp = MaxSector;
3124
3125 if (mddev->recovery_cp != MaxSector)
3126 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3127 mdname(mddev));
3128 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3129 mdname(mddev), mddev->raid_disks - mddev->degraded,
3130 mddev->raid_disks);
3131
3132 /*
3133 * Ok, everything is just fine now
3134 */
3135 mddev->thread = conf->thread;
3136 conf->thread = NULL;
3137 mddev->private = conf;
3138 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3139
3140 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3141
3142 if (mddev->queue) {
3143 if (discard_supported)
3144 blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3145 mddev->queue);
3146 else
3147 blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3148 mddev->queue);
3149 }
3150
3151 ret = md_integrity_register(mddev);
3152 if (ret) {
3153 md_unregister_thread(&mddev->thread);
3154 goto abort;
3155 }
3156 return 0;
3157
3158abort:
3159 raid1_free(mddev, conf);
3160 return ret;
3161}
3162
3163static void raid1_free(struct mddev *mddev, void *priv)
3164{
3165 struct r1conf *conf = priv;
3166
3167 mempool_exit(&conf->r1bio_pool);
3168 kfree(conf->mirrors);
3169 safe_put_page(conf->tmppage);
3170 kfree(conf->poolinfo);
3171 kfree(conf->nr_pending);
3172 kfree(conf->nr_waiting);
3173 kfree(conf->nr_queued);
3174 kfree(conf->barrier);
3175 bioset_exit(&conf->bio_split);
3176 kfree(conf);
3177}
3178
3179static int raid1_resize(struct mddev *mddev, sector_t sectors)
3180{
3181 /* no resync is happening, and there is enough space
3182 * on all devices, so we can resize.
3183 * We need to make sure resync covers any new space.
3184 * If the array is shrinking we should possibly wait until
3185 * any io in the removed space completes, but it hardly seems
3186 * worth it.
3187 */
3188 sector_t newsize = raid1_size(mddev, sectors, 0);
3189 if (mddev->external_size &&
3190 mddev->array_sectors > newsize)
3191 return -EINVAL;
3192 if (mddev->bitmap) {
3193 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3194 if (ret)
3195 return ret;
3196 }
3197 md_set_array_sectors(mddev, newsize);
3198 if (sectors > mddev->dev_sectors &&
3199 mddev->recovery_cp > mddev->dev_sectors) {
3200 mddev->recovery_cp = mddev->dev_sectors;
3201 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3202 }
3203 mddev->dev_sectors = sectors;
3204 mddev->resync_max_sectors = sectors;
3205 return 0;
3206}
3207
3208static int raid1_reshape(struct mddev *mddev)
3209{
3210 /* We need to:
3211 * 1/ resize the r1bio_pool
3212 * 2/ resize conf->mirrors
3213 *
3214 * We allocate a new r1bio_pool if we can.
3215 * Then raise a device barrier and wait until all IO stops.
3216 * Then resize conf->mirrors and swap in the new r1bio pool.
3217 *
3218 * At the same time, we "pack" the devices so that all the missing
3219 * devices have the higher raid_disk numbers.
3220 */
3221 mempool_t newpool, oldpool;
3222 struct pool_info *newpoolinfo;
3223 struct raid1_info *newmirrors;
3224 struct r1conf *conf = mddev->private;
3225 int cnt, raid_disks;
3226 unsigned long flags;
3227 int d, d2;
3228 int ret;
3229
3230 memset(&newpool, 0, sizeof(newpool));
3231 memset(&oldpool, 0, sizeof(oldpool));
3232
3233 /* Cannot change chunk_size, layout, or level */
3234 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3235 mddev->layout != mddev->new_layout ||
3236 mddev->level != mddev->new_level) {
3237 mddev->new_chunk_sectors = mddev->chunk_sectors;
3238 mddev->new_layout = mddev->layout;
3239 mddev->new_level = mddev->level;
3240 return -EINVAL;
3241 }
3242
3243 if (!mddev_is_clustered(mddev))
3244 md_allow_write(mddev);
3245
3246 raid_disks = mddev->raid_disks + mddev->delta_disks;
3247
3248 if (raid_disks < conf->raid_disks) {
3249 cnt=0;
3250 for (d= 0; d < conf->raid_disks; d++)
3251 if (conf->mirrors[d].rdev)
3252 cnt++;
3253 if (cnt > raid_disks)
3254 return -EBUSY;
3255 }
3256
3257 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3258 if (!newpoolinfo)
3259 return -ENOMEM;
3260 newpoolinfo->mddev = mddev;
3261 newpoolinfo->raid_disks = raid_disks * 2;
3262
3263 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3264 rbio_pool_free, newpoolinfo);
3265 if (ret) {
3266 kfree(newpoolinfo);
3267 return ret;
3268 }
3269 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3270 raid_disks, 2),
3271 GFP_KERNEL);
3272 if (!newmirrors) {
3273 kfree(newpoolinfo);
3274 mempool_exit(&newpool);
3275 return -ENOMEM;
3276 }
3277
3278 freeze_array(conf, 0);
3279
3280 /* ok, everything is stopped */
3281 oldpool = conf->r1bio_pool;
3282 conf->r1bio_pool = newpool;
3283
3284 for (d = d2 = 0; d < conf->raid_disks; d++) {
3285 struct md_rdev *rdev = conf->mirrors[d].rdev;
3286 if (rdev && rdev->raid_disk != d2) {
3287 sysfs_unlink_rdev(mddev, rdev);
3288 rdev->raid_disk = d2;
3289 sysfs_unlink_rdev(mddev, rdev);
3290 if (sysfs_link_rdev(mddev, rdev))
3291 pr_warn("md/raid1:%s: cannot register rd%d\n",
3292 mdname(mddev), rdev->raid_disk);
3293 }
3294 if (rdev)
3295 newmirrors[d2++].rdev = rdev;
3296 }
3297 kfree(conf->mirrors);
3298 conf->mirrors = newmirrors;
3299 kfree(conf->poolinfo);
3300 conf->poolinfo = newpoolinfo;
3301
3302 spin_lock_irqsave(&conf->device_lock, flags);
3303 mddev->degraded += (raid_disks - conf->raid_disks);
3304 spin_unlock_irqrestore(&conf->device_lock, flags);
3305 conf->raid_disks = mddev->raid_disks = raid_disks;
3306 mddev->delta_disks = 0;
3307
3308 unfreeze_array(conf);
3309
3310 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3311 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3312 md_wakeup_thread(mddev->thread);
3313
3314 mempool_exit(&oldpool);
3315 return 0;
3316}
3317
3318static void raid1_quiesce(struct mddev *mddev, int quiesce)
3319{
3320 struct r1conf *conf = mddev->private;
3321
3322 if (quiesce)
3323 freeze_array(conf, 0);
3324 else
3325 unfreeze_array(conf);
3326}
3327
3328static void *raid1_takeover(struct mddev *mddev)
3329{
3330 /* raid1 can take over:
3331 * raid5 with 2 devices, any layout or chunk size
3332 */
3333 if (mddev->level == 5 && mddev->raid_disks == 2) {
3334 struct r1conf *conf;
3335 mddev->new_level = 1;
3336 mddev->new_layout = 0;
3337 mddev->new_chunk_sectors = 0;
3338 conf = setup_conf(mddev);
3339 if (!IS_ERR(conf)) {
3340 /* Array must appear to be quiesced */
3341 conf->array_frozen = 1;
3342 mddev_clear_unsupported_flags(mddev,
3343 UNSUPPORTED_MDDEV_FLAGS);
3344 }
3345 return conf;
3346 }
3347 return ERR_PTR(-EINVAL);
3348}
3349
3350static struct md_personality raid1_personality =
3351{
3352 .name = "raid1",
3353 .level = 1,
3354 .owner = THIS_MODULE,
3355 .make_request = raid1_make_request,
3356 .run = raid1_run,
3357 .free = raid1_free,
3358 .status = raid1_status,
3359 .error_handler = raid1_error,
3360 .hot_add_disk = raid1_add_disk,
3361 .hot_remove_disk= raid1_remove_disk,
3362 .spare_active = raid1_spare_active,
3363 .sync_request = raid1_sync_request,
3364 .resize = raid1_resize,
3365 .size = raid1_size,
3366 .check_reshape = raid1_reshape,
3367 .quiesce = raid1_quiesce,
3368 .takeover = raid1_takeover,
3369};
3370
3371static int __init raid_init(void)
3372{
3373 return register_md_personality(&raid1_personality);
3374}
3375
3376static void raid_exit(void)
3377{
3378 unregister_md_personality(&raid1_personality);
3379}
3380
3381module_init(raid_init);
3382module_exit(raid_exit);
3383MODULE_LICENSE("GPL");
3384MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3385MODULE_ALIAS("md-personality-3"); /* RAID1 */
3386MODULE_ALIAS("md-raid1");
3387MODULE_ALIAS("md-level-1");
3388
3389module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);