Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 * raid1.c : Multiple Devices driver for Linux
   3 *
   4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
   5 *
   6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   7 *
   8 * RAID-1 management functions.
   9 *
  10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  11 *
  12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  14 *
  15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  16 * bitmapped intelligence in resync:
  17 *
  18 *      - bitmap marked during normal i/o
  19 *      - bitmap used to skip nondirty blocks during sync
  20 *
  21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  22 * - persistent bitmap code
  23 *
  24 * This program is free software; you can redistribute it and/or modify
  25 * it under the terms of the GNU General Public License as published by
  26 * the Free Software Foundation; either version 2, or (at your option)
  27 * any later version.
  28 *
  29 * You should have received a copy of the GNU General Public License
  30 * (for example /usr/src/linux/COPYING); if not, write to the Free
  31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  32 */
  33
  34#include <linux/slab.h>
  35#include <linux/delay.h>
  36#include <linux/blkdev.h>
  37#include <linux/module.h>
  38#include <linux/seq_file.h>
  39#include <linux/ratelimit.h>
 
 
 
 
  40#include "md.h"
  41#include "raid1.h"
  42#include "bitmap.h"
  43
  44/*
  45 * Number of guaranteed r1bios in case of extreme VM load:
  46 */
  47#define	NR_RAID1_BIOS 256
 
  48
  49/* when we get a read error on a read-only array, we redirect to another
  50 * device without failing the first device, or trying to over-write to
  51 * correct the read error.  To keep track of bad blocks on a per-bio
  52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
  53 */
  54#define IO_BLOCKED ((struct bio *)1)
  55/* When we successfully write to a known bad-block, we need to remove the
  56 * bad-block marking which must be done from process context.  So we record
  57 * the success by setting devs[n].bio to IO_MADE_GOOD
  58 */
  59#define IO_MADE_GOOD ((struct bio *)2)
  60
  61#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
 
  62
  63/* When there are this many requests queue to be written by
  64 * the raid1 thread, we become 'congested' to provide back-pressure
  65 * for writeback.
  66 */
  67static int max_queued_requests = 1024;
 
  68
  69static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
  70			  sector_t bi_sector);
  71static void lower_barrier(struct r1conf *conf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  72
  73static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
  74{
  75	struct pool_info *pi = data;
  76	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
  77
  78	/* allocate a r1bio with room for raid_disks entries in the bios array */
  79	return kzalloc(size, gfp_flags);
  80}
  81
  82static void r1bio_pool_free(void *r1_bio, void *data)
  83{
  84	kfree(r1_bio);
  85}
  86
  87#define RESYNC_BLOCK_SIZE (64*1024)
  88#define RESYNC_DEPTH 32
  89#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
  90#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
  91#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
  92#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
  93#define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
 
  94
  95static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
  96{
  97	struct pool_info *pi = data;
  98	struct r1bio *r1_bio;
  99	struct bio *bio;
 100	int need_pages;
 101	int i, j;
 
 102
 103	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
 104	if (!r1_bio)
 105		return NULL;
 106
 
 
 
 
 
 107	/*
 108	 * Allocate bios : 1 for reading, n-1 for writing
 109	 */
 110	for (j = pi->raid_disks ; j-- ; ) {
 111		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 112		if (!bio)
 113			goto out_free_bio;
 114		r1_bio->bios[j] = bio;
 115	}
 116	/*
 117	 * Allocate RESYNC_PAGES data pages and attach them to
 118	 * the first bio.
 119	 * If this is a user-requested check/repair, allocate
 120	 * RESYNC_PAGES for each bio.
 121	 */
 122	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
 123		need_pages = pi->raid_disks;
 124	else
 125		need_pages = 1;
 126	for (j = 0; j < need_pages; j++) {
 
 
 127		bio = r1_bio->bios[j];
 128		bio->bi_vcnt = RESYNC_PAGES;
 129
 130		if (bio_alloc_pages(bio, gfp_flags))
 131			goto out_free_pages;
 132	}
 133	/* If not user-requests, copy the page pointers to all bios */
 134	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
 135		for (i=0; i<RESYNC_PAGES ; i++)
 136			for (j=1; j<pi->raid_disks; j++)
 137				r1_bio->bios[j]->bi_io_vec[i].bv_page =
 138					r1_bio->bios[0]->bi_io_vec[i].bv_page;
 
 139	}
 140
 141	r1_bio->master_bio = NULL;
 142
 143	return r1_bio;
 144
 145out_free_pages:
 146	while (--j >= 0) {
 147		struct bio_vec *bv;
 148
 149		bio_for_each_segment_all(bv, r1_bio->bios[j], i)
 150			__free_page(bv->bv_page);
 151	}
 152
 153out_free_bio:
 154	while (++j < pi->raid_disks)
 155		bio_put(r1_bio->bios[j]);
 156	r1bio_pool_free(r1_bio, data);
 
 
 
 157	return NULL;
 158}
 159
 160static void r1buf_pool_free(void *__r1_bio, void *data)
 161{
 162	struct pool_info *pi = data;
 163	int i,j;
 164	struct r1bio *r1bio = __r1_bio;
 
 165
 166	for (i = 0; i < RESYNC_PAGES; i++)
 167		for (j = pi->raid_disks; j-- ;) {
 168			if (j == 0 ||
 169			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
 170			    r1bio->bios[0]->bi_io_vec[i].bv_page)
 171				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
 172		}
 173	for (i=0 ; i < pi->raid_disks; i++)
 174		bio_put(r1bio->bios[i]);
 
 175
 176	r1bio_pool_free(r1bio, data);
 
 
 
 177}
 178
 179static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
 180{
 181	int i;
 182
 183	for (i = 0; i < conf->raid_disks * 2; i++) {
 184		struct bio **bio = r1_bio->bios + i;
 185		if (!BIO_SPECIAL(*bio))
 186			bio_put(*bio);
 187		*bio = NULL;
 188	}
 189}
 190
 191static void free_r1bio(struct r1bio *r1_bio)
 192{
 193	struct r1conf *conf = r1_bio->mddev->private;
 194
 195	put_all_bios(conf, r1_bio);
 196	mempool_free(r1_bio, conf->r1bio_pool);
 197}
 198
 199static void put_buf(struct r1bio *r1_bio)
 200{
 201	struct r1conf *conf = r1_bio->mddev->private;
 
 202	int i;
 203
 204	for (i = 0; i < conf->raid_disks * 2; i++) {
 205		struct bio *bio = r1_bio->bios[i];
 206		if (bio->bi_end_io)
 207			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
 208	}
 209
 210	mempool_free(r1_bio, conf->r1buf_pool);
 211
 212	lower_barrier(conf);
 213}
 214
 215static void reschedule_retry(struct r1bio *r1_bio)
 216{
 217	unsigned long flags;
 218	struct mddev *mddev = r1_bio->mddev;
 219	struct r1conf *conf = mddev->private;
 
 220
 
 221	spin_lock_irqsave(&conf->device_lock, flags);
 222	list_add(&r1_bio->retry_list, &conf->retry_list);
 223	conf->nr_queued ++;
 224	spin_unlock_irqrestore(&conf->device_lock, flags);
 225
 226	wake_up(&conf->wait_barrier);
 227	md_wakeup_thread(mddev->thread);
 228}
 229
 230/*
 231 * raid_end_bio_io() is called when we have finished servicing a mirrored
 232 * operation and are ready to return a success/failure code to the buffer
 233 * cache layer.
 234 */
 235static void call_bio_endio(struct r1bio *r1_bio)
 236{
 237	struct bio *bio = r1_bio->master_bio;
 238	int done;
 239	struct r1conf *conf = r1_bio->mddev->private;
 240	sector_t start_next_window = r1_bio->start_next_window;
 241	sector_t bi_sector = bio->bi_iter.bi_sector;
 242
 243	if (bio->bi_phys_segments) {
 244		unsigned long flags;
 245		spin_lock_irqsave(&conf->device_lock, flags);
 246		bio->bi_phys_segments--;
 247		done = (bio->bi_phys_segments == 0);
 248		spin_unlock_irqrestore(&conf->device_lock, flags);
 249		/*
 250		 * make_request() might be waiting for
 251		 * bi_phys_segments to decrease
 252		 */
 253		wake_up(&conf->wait_barrier);
 254	} else
 255		done = 1;
 256
 257	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
 258		clear_bit(BIO_UPTODATE, &bio->bi_flags);
 259	if (done) {
 260		bio_endio(bio, 0);
 261		/*
 262		 * Wake up any possible resync thread that waits for the device
 263		 * to go idle.
 264		 */
 265		allow_barrier(conf, start_next_window, bi_sector);
 266	}
 267}
 268
 269static void raid_end_bio_io(struct r1bio *r1_bio)
 270{
 271	struct bio *bio = r1_bio->master_bio;
 
 272
 273	/* if nobody has done the final endio yet, do it now */
 274	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 275		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
 276			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
 277			 (unsigned long long) bio->bi_iter.bi_sector,
 278			 (unsigned long long) bio_end_sector(bio) - 1);
 279
 280		call_bio_endio(r1_bio);
 281	}
 
 
 
 
 
 
 282	free_r1bio(r1_bio);
 283}
 284
 285/*
 286 * Update disk head position estimator based on IRQ completion info.
 287 */
 288static inline void update_head_pos(int disk, struct r1bio *r1_bio)
 289{
 290	struct r1conf *conf = r1_bio->mddev->private;
 291
 292	conf->mirrors[disk].head_position =
 293		r1_bio->sector + (r1_bio->sectors);
 294}
 295
 296/*
 297 * Find the disk number which triggered given bio
 298 */
 299static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
 300{
 301	int mirror;
 302	struct r1conf *conf = r1_bio->mddev->private;
 303	int raid_disks = conf->raid_disks;
 304
 305	for (mirror = 0; mirror < raid_disks * 2; mirror++)
 306		if (r1_bio->bios[mirror] == bio)
 307			break;
 308
 309	BUG_ON(mirror == raid_disks * 2);
 310	update_head_pos(mirror, r1_bio);
 311
 312	return mirror;
 313}
 314
 315static void raid1_end_read_request(struct bio *bio, int error)
 316{
 317	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 318	struct r1bio *r1_bio = bio->bi_private;
 319	int mirror;
 320	struct r1conf *conf = r1_bio->mddev->private;
 
 321
 322	mirror = r1_bio->read_disk;
 323	/*
 324	 * this branch is our 'one mirror IO has finished' event handler:
 325	 */
 326	update_head_pos(mirror, r1_bio);
 327
 328	if (uptodate)
 329		set_bit(R1BIO_Uptodate, &r1_bio->state);
 
 
 
 
 
 330	else {
 331		/* If all other devices have failed, we want to return
 332		 * the error upwards rather than fail the last device.
 333		 * Here we redefine "uptodate" to mean "Don't want to retry"
 334		 */
 335		unsigned long flags;
 336		spin_lock_irqsave(&conf->device_lock, flags);
 337		if (r1_bio->mddev->degraded == conf->raid_disks ||
 338		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
 339		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
 340			uptodate = 1;
 341		spin_unlock_irqrestore(&conf->device_lock, flags);
 342	}
 343
 344	if (uptodate) {
 345		raid_end_bio_io(r1_bio);
 346		rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
 347	} else {
 348		/*
 349		 * oops, read error:
 350		 */
 351		char b[BDEVNAME_SIZE];
 352		printk_ratelimited(
 353			KERN_ERR "md/raid1:%s: %s: "
 354			"rescheduling sector %llu\n",
 355			mdname(conf->mddev),
 356			bdevname(conf->mirrors[mirror].rdev->bdev,
 357				 b),
 358			(unsigned long long)r1_bio->sector);
 359		set_bit(R1BIO_ReadError, &r1_bio->state);
 360		reschedule_retry(r1_bio);
 361		/* don't drop the reference on read_disk yet */
 362	}
 363}
 364
 365static void close_write(struct r1bio *r1_bio)
 366{
 367	/* it really is the end of this request */
 368	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
 369		/* free extra copy of the data pages */
 370		int i = r1_bio->behind_page_count;
 371		while (i--)
 372			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
 373		kfree(r1_bio->behind_bvecs);
 374		r1_bio->behind_bvecs = NULL;
 375	}
 376	/* clear the bitmap if all writes complete successfully */
 377	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
 378			r1_bio->sectors,
 379			!test_bit(R1BIO_Degraded, &r1_bio->state),
 380			test_bit(R1BIO_BehindIO, &r1_bio->state));
 381	md_write_end(r1_bio->mddev);
 382}
 383
 384static void r1_bio_write_done(struct r1bio *r1_bio)
 385{
 386	if (!atomic_dec_and_test(&r1_bio->remaining))
 387		return;
 388
 389	if (test_bit(R1BIO_WriteError, &r1_bio->state))
 390		reschedule_retry(r1_bio);
 391	else {
 392		close_write(r1_bio);
 393		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
 394			reschedule_retry(r1_bio);
 395		else
 396			raid_end_bio_io(r1_bio);
 397	}
 398}
 399
 400static void raid1_end_write_request(struct bio *bio, int error)
 401{
 402	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 403	struct r1bio *r1_bio = bio->bi_private;
 404	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
 405	struct r1conf *conf = r1_bio->mddev->private;
 406	struct bio *to_put = NULL;
 
 
 
 
 
 407
 408	mirror = find_bio_disk(r1_bio, bio);
 409
 410	/*
 411	 * 'one mirror IO has finished' event handler:
 412	 */
 413	if (!uptodate) {
 414		set_bit(WriteErrorSeen,
 415			&conf->mirrors[mirror].rdev->flags);
 416		if (!test_and_set_bit(WantReplacement,
 417				      &conf->mirrors[mirror].rdev->flags))
 418			set_bit(MD_RECOVERY_NEEDED, &
 419				conf->mddev->recovery);
 420
 421		set_bit(R1BIO_WriteError, &r1_bio->state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 422	} else {
 423		/*
 424		 * Set R1BIO_Uptodate in our master bio, so that we
 425		 * will return a good error code for to the higher
 426		 * levels even if IO on some other mirrored buffer
 427		 * fails.
 428		 *
 429		 * The 'master' represents the composite IO operation
 430		 * to user-side. So if something waits for IO, then it
 431		 * will wait for the 'master' bio.
 432		 */
 433		sector_t first_bad;
 434		int bad_sectors;
 435
 436		r1_bio->bios[mirror] = NULL;
 437		to_put = bio;
 438		/*
 439		 * Do not set R1BIO_Uptodate if the current device is
 440		 * rebuilding or Faulty. This is because we cannot use
 441		 * such device for properly reading the data back (we could
 442		 * potentially use it, if the current write would have felt
 443		 * before rdev->recovery_offset, but for simplicity we don't
 444		 * check this here.
 445		 */
 446		if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
 447		    !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
 448			set_bit(R1BIO_Uptodate, &r1_bio->state);
 449
 450		/* Maybe we can clear some bad blocks. */
 451		if (is_badblock(conf->mirrors[mirror].rdev,
 452				r1_bio->sector, r1_bio->sectors,
 453				&first_bad, &bad_sectors)) {
 454			r1_bio->bios[mirror] = IO_MADE_GOOD;
 455			set_bit(R1BIO_MadeGood, &r1_bio->state);
 456		}
 457	}
 458
 459	if (behind) {
 460		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
 
 
 461			atomic_dec(&r1_bio->behind_remaining);
 462
 463		/*
 464		 * In behind mode, we ACK the master bio once the I/O
 465		 * has safely reached all non-writemostly
 466		 * disks. Setting the Returned bit ensures that this
 467		 * gets done only once -- we don't ever want to return
 468		 * -EIO here, instead we'll wait
 469		 */
 470		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
 471		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
 472			/* Maybe we can return now */
 473			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 474				struct bio *mbio = r1_bio->master_bio;
 475				pr_debug("raid1: behind end write sectors"
 476					 " %llu-%llu\n",
 477					 (unsigned long long) mbio->bi_iter.bi_sector,
 478					 (unsigned long long) bio_end_sector(mbio) - 1);
 479				call_bio_endio(r1_bio);
 480			}
 481		}
 482	}
 
 483	if (r1_bio->bios[mirror] == NULL)
 484		rdev_dec_pending(conf->mirrors[mirror].rdev,
 485				 conf->mddev);
 486
 487	/*
 488	 * Let's see if all mirrored write operations have finished
 489	 * already.
 490	 */
 491	r1_bio_write_done(r1_bio);
 492
 493	if (to_put)
 494		bio_put(to_put);
 495}
 496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 497
 498/*
 499 * This routine returns the disk from which the requested read should
 500 * be done. There is a per-array 'next expected sequential IO' sector
 501 * number - if this matches on the next IO then we use the last disk.
 502 * There is also a per-disk 'last know head position' sector that is
 503 * maintained from IRQ contexts, both the normal and the resync IO
 504 * completion handlers update this position correctly. If there is no
 505 * perfect sequential match then we pick the disk whose head is closest.
 506 *
 507 * If there are 2 mirrors in the same 2 devices, performance degrades
 508 * because position is mirror, not device based.
 509 *
 510 * The rdev for the device selected will have nr_pending incremented.
 511 */
 512static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
 513{
 514	const sector_t this_sector = r1_bio->sector;
 515	int sectors;
 516	int best_good_sectors;
 517	int best_disk, best_dist_disk, best_pending_disk;
 518	int has_nonrot_disk;
 519	int disk;
 520	sector_t best_dist;
 521	unsigned int min_pending;
 522	struct md_rdev *rdev;
 523	int choose_first;
 524	int choose_next_idle;
 525
 526	rcu_read_lock();
 527	/*
 528	 * Check if we can balance. We can balance on the whole
 529	 * device if no resync is going on, or below the resync window.
 530	 * We take the first readable disk when above the resync window.
 531	 */
 532 retry:
 533	sectors = r1_bio->sectors;
 534	best_disk = -1;
 535	best_dist_disk = -1;
 536	best_dist = MaxSector;
 537	best_pending_disk = -1;
 538	min_pending = UINT_MAX;
 539	best_good_sectors = 0;
 540	has_nonrot_disk = 0;
 541	choose_next_idle = 0;
 
 542
 543	if (conf->mddev->recovery_cp < MaxSector &&
 544	    (this_sector + sectors >= conf->next_resync))
 
 
 545		choose_first = 1;
 546	else
 547		choose_first = 0;
 548
 549	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
 550		sector_t dist;
 551		sector_t first_bad;
 552		int bad_sectors;
 553		unsigned int pending;
 554		bool nonrot;
 555
 556		rdev = rcu_dereference(conf->mirrors[disk].rdev);
 557		if (r1_bio->bios[disk] == IO_BLOCKED
 558		    || rdev == NULL
 559		    || test_bit(Unmerged, &rdev->flags)
 560		    || test_bit(Faulty, &rdev->flags))
 561			continue;
 562		if (!test_bit(In_sync, &rdev->flags) &&
 563		    rdev->recovery_offset < this_sector + sectors)
 564			continue;
 565		if (test_bit(WriteMostly, &rdev->flags)) {
 566			/* Don't balance among write-mostly, just
 567			 * use the first as a last resort */
 568			if (best_disk < 0) {
 569				if (is_badblock(rdev, this_sector, sectors,
 570						&first_bad, &bad_sectors)) {
 571					if (first_bad < this_sector)
 572						/* Cannot use this */
 573						continue;
 574					best_good_sectors = first_bad - this_sector;
 575				} else
 576					best_good_sectors = sectors;
 577				best_disk = disk;
 
 578			}
 579			continue;
 580		}
 581		/* This is a reasonable device to use.  It might
 582		 * even be best.
 583		 */
 584		if (is_badblock(rdev, this_sector, sectors,
 585				&first_bad, &bad_sectors)) {
 586			if (best_dist < MaxSector)
 587				/* already have a better device */
 588				continue;
 589			if (first_bad <= this_sector) {
 590				/* cannot read here. If this is the 'primary'
 591				 * device, then we must not read beyond
 592				 * bad_sectors from another device..
 593				 */
 594				bad_sectors -= (this_sector - first_bad);
 595				if (choose_first && sectors > bad_sectors)
 596					sectors = bad_sectors;
 597				if (best_good_sectors > sectors)
 598					best_good_sectors = sectors;
 599
 600			} else {
 601				sector_t good_sectors = first_bad - this_sector;
 602				if (good_sectors > best_good_sectors) {
 603					best_good_sectors = good_sectors;
 604					best_disk = disk;
 605				}
 606				if (choose_first)
 607					break;
 608			}
 609			continue;
 610		} else
 
 
 611			best_good_sectors = sectors;
 
 
 
 
 
 612
 613		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
 614		has_nonrot_disk |= nonrot;
 615		pending = atomic_read(&rdev->nr_pending);
 616		dist = abs(this_sector - conf->mirrors[disk].head_position);
 617		if (choose_first) {
 618			best_disk = disk;
 619			break;
 620		}
 621		/* Don't change to another disk for sequential reads */
 622		if (conf->mirrors[disk].next_seq_sect == this_sector
 623		    || dist == 0) {
 624			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
 625			struct raid1_info *mirror = &conf->mirrors[disk];
 626
 627			best_disk = disk;
 628			/*
 629			 * If buffered sequential IO size exceeds optimal
 630			 * iosize, check if there is idle disk. If yes, choose
 631			 * the idle disk. read_balance could already choose an
 632			 * idle disk before noticing it's a sequential IO in
 633			 * this disk. This doesn't matter because this disk
 634			 * will idle, next time it will be utilized after the
 635			 * first disk has IO size exceeds optimal iosize. In
 636			 * this way, iosize of the first disk will be optimal
 637			 * iosize at least. iosize of the second disk might be
 638			 * small, but not a big deal since when the second disk
 639			 * starts IO, the first disk is likely still busy.
 640			 */
 641			if (nonrot && opt_iosize > 0 &&
 642			    mirror->seq_start != MaxSector &&
 643			    mirror->next_seq_sect > opt_iosize &&
 644			    mirror->next_seq_sect - opt_iosize >=
 645			    mirror->seq_start) {
 646				choose_next_idle = 1;
 647				continue;
 648			}
 649			break;
 650		}
 651		/* If device is idle, use it */
 652		if (pending == 0) {
 653			best_disk = disk;
 654			break;
 655		}
 656
 657		if (choose_next_idle)
 658			continue;
 659
 660		if (min_pending > pending) {
 661			min_pending = pending;
 662			best_pending_disk = disk;
 663		}
 664
 665		if (dist < best_dist) {
 666			best_dist = dist;
 667			best_dist_disk = disk;
 668		}
 669	}
 670
 671	/*
 672	 * If all disks are rotational, choose the closest disk. If any disk is
 673	 * non-rotational, choose the disk with less pending request even the
 674	 * disk is rotational, which might/might not be optimal for raids with
 675	 * mixed ratation/non-rotational disks depending on workload.
 676	 */
 677	if (best_disk == -1) {
 678		if (has_nonrot_disk)
 679			best_disk = best_pending_disk;
 680		else
 681			best_disk = best_dist_disk;
 682	}
 683
 684	if (best_disk >= 0) {
 685		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
 686		if (!rdev)
 687			goto retry;
 688		atomic_inc(&rdev->nr_pending);
 689		if (test_bit(Faulty, &rdev->flags)) {
 690			/* cannot risk returning a device that failed
 691			 * before we inc'ed nr_pending
 692			 */
 693			rdev_dec_pending(rdev, conf->mddev);
 694			goto retry;
 695		}
 696		sectors = best_good_sectors;
 697
 698		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
 699			conf->mirrors[best_disk].seq_start = this_sector;
 700
 701		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
 702	}
 703	rcu_read_unlock();
 704	*max_sectors = sectors;
 705
 706	return best_disk;
 707}
 708
 709static int raid1_mergeable_bvec(struct request_queue *q,
 710				struct bvec_merge_data *bvm,
 711				struct bio_vec *biovec)
 712{
 713	struct mddev *mddev = q->queuedata;
 714	struct r1conf *conf = mddev->private;
 715	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
 716	int max = biovec->bv_len;
 717
 718	if (mddev->merge_check_needed) {
 719		int disk;
 720		rcu_read_lock();
 721		for (disk = 0; disk < conf->raid_disks * 2; disk++) {
 722			struct md_rdev *rdev = rcu_dereference(
 723				conf->mirrors[disk].rdev);
 724			if (rdev && !test_bit(Faulty, &rdev->flags)) {
 725				struct request_queue *q =
 726					bdev_get_queue(rdev->bdev);
 727				if (q->merge_bvec_fn) {
 728					bvm->bi_sector = sector +
 729						rdev->data_offset;
 730					bvm->bi_bdev = rdev->bdev;
 731					max = min(max, q->merge_bvec_fn(
 732							  q, bvm, biovec));
 733				}
 734			}
 735		}
 736		rcu_read_unlock();
 737	}
 738	return max;
 739
 740}
 741
 742int md_raid1_congested(struct mddev *mddev, int bits)
 743{
 744	struct r1conf *conf = mddev->private;
 745	int i, ret = 0;
 746
 747	if ((bits & (1 << BDI_async_congested)) &&
 748	    conf->pending_count >= max_queued_requests)
 749		return 1;
 750
 751	rcu_read_lock();
 752	for (i = 0; i < conf->raid_disks * 2; i++) {
 753		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 754		if (rdev && !test_bit(Faulty, &rdev->flags)) {
 755			struct request_queue *q = bdev_get_queue(rdev->bdev);
 756
 757			BUG_ON(!q);
 758
 759			/* Note the '|| 1' - when read_balance prefers
 760			 * non-congested targets, it can be removed
 761			 */
 762			if ((bits & (1<<BDI_async_congested)) || 1)
 763				ret |= bdi_congested(&q->backing_dev_info, bits);
 764			else
 765				ret &= bdi_congested(&q->backing_dev_info, bits);
 766		}
 
 
 
 
 
 
 
 767	}
 768	rcu_read_unlock();
 769	return ret;
 770}
 771EXPORT_SYMBOL_GPL(md_raid1_congested);
 772
 773static int raid1_congested(void *data, int bits)
 774{
 775	struct mddev *mddev = data;
 776
 777	return mddev_congested(mddev, bits) ||
 778		md_raid1_congested(mddev, bits);
 779}
 780
 781static void flush_pending_writes(struct r1conf *conf)
 782{
 783	/* Any writes that have been queued but are awaiting
 784	 * bitmap updates get flushed here.
 785	 */
 786	spin_lock_irq(&conf->device_lock);
 787
 788	if (conf->pending_bio_list.head) {
 
 789		struct bio *bio;
 
 790		bio = bio_list_get(&conf->pending_bio_list);
 791		conf->pending_count = 0;
 792		spin_unlock_irq(&conf->device_lock);
 793		/* flush any pending bitmap writes to
 794		 * disk before proceeding w/ I/O */
 795		bitmap_unplug(conf->mddev->bitmap);
 796		wake_up(&conf->wait_barrier);
 797
 798		while (bio) { /* submit pending writes */
 799			struct bio *next = bio->bi_next;
 800			bio->bi_next = NULL;
 801			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
 802			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
 803				/* Just ignore it */
 804				bio_endio(bio, 0);
 805			else
 806				generic_make_request(bio);
 807			bio = next;
 808		}
 
 
 809	} else
 810		spin_unlock_irq(&conf->device_lock);
 811}
 812
 813/* Barriers....
 814 * Sometimes we need to suspend IO while we do something else,
 815 * either some resync/recovery, or reconfigure the array.
 816 * To do this we raise a 'barrier'.
 817 * The 'barrier' is a counter that can be raised multiple times
 818 * to count how many activities are happening which preclude
 819 * normal IO.
 820 * We can only raise the barrier if there is no pending IO.
 821 * i.e. if nr_pending == 0.
 822 * We choose only to raise the barrier if no-one is waiting for the
 823 * barrier to go down.  This means that as soon as an IO request
 824 * is ready, no other operations which require a barrier will start
 825 * until the IO request has had a chance.
 826 *
 827 * So: regular IO calls 'wait_barrier'.  When that returns there
 828 *    is no backgroup IO happening,  It must arrange to call
 829 *    allow_barrier when it has finished its IO.
 830 * backgroup IO calls must call raise_barrier.  Once that returns
 831 *    there is no normal IO happeing.  It must arrange to call
 832 *    lower_barrier when the particular background IO completes.
 
 
 
 833 */
 834static void raise_barrier(struct r1conf *conf)
 835{
 
 
 836	spin_lock_irq(&conf->resync_lock);
 837
 838	/* Wait until no block IO is waiting */
 839	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
 
 840			    conf->resync_lock);
 841
 842	/* block any new IO from starting */
 843	conf->barrier++;
 
 
 
 
 
 
 
 
 
 844
 845	/* For these conditions we must wait:
 846	 * A: while the array is in frozen state
 847	 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
 848	 *    the max count which allowed.
 849	 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
 850	 *    next resync will reach to the window which normal bios are
 851	 *    handling.
 852	 */
 853	wait_event_lock_irq(conf->wait_barrier,
 854			    !conf->array_frozen &&
 855			    conf->barrier < RESYNC_DEPTH &&
 856			    (conf->start_next_window >=
 857			     conf->next_resync + RESYNC_SECTORS),
 858			    conf->resync_lock);
 859
 
 
 
 
 
 
 
 
 860	spin_unlock_irq(&conf->resync_lock);
 
 
 861}
 862
 863static void lower_barrier(struct r1conf *conf)
 864{
 865	unsigned long flags;
 866	BUG_ON(conf->barrier <= 0);
 867	spin_lock_irqsave(&conf->resync_lock, flags);
 868	conf->barrier--;
 869	spin_unlock_irqrestore(&conf->resync_lock, flags);
 
 870	wake_up(&conf->wait_barrier);
 871}
 872
 873static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
 874{
 875	bool wait = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 876
 877	if (conf->array_frozen || !bio)
 878		wait = true;
 879	else if (conf->barrier && bio_data_dir(bio) == WRITE) {
 880		if (conf->next_resync < RESYNC_WINDOW_SECTORS)
 881			wait = true;
 882		else if ((conf->next_resync - RESYNC_WINDOW_SECTORS
 883				>= bio_end_sector(bio)) ||
 884			 (conf->next_resync + NEXT_NORMALIO_DISTANCE
 885				<= bio->bi_iter.bi_sector))
 886			wait = false;
 887		else
 888			wait = true;
 889	}
 890
 891	return wait;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 892}
 893
 894static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
 895{
 896	sector_t sector = 0;
 897
 898	spin_lock_irq(&conf->resync_lock);
 899	if (need_to_wait_for_sync(conf, bio)) {
 900		conf->nr_waiting++;
 901		/* Wait for the barrier to drop.
 902		 * However if there are already pending
 903		 * requests (preventing the barrier from
 904		 * rising completely), and the
 905		 * pre-process bio queue isn't empty,
 906		 * then don't wait, as we need to empty
 907		 * that queue to get the nr_pending
 908		 * count down.
 909		 */
 910		wait_event_lock_irq(conf->wait_barrier,
 911				    !conf->array_frozen &&
 912				    (!conf->barrier ||
 913				    ((conf->start_next_window <
 914				      conf->next_resync + RESYNC_SECTORS) &&
 915				     current->bio_list &&
 916				     !bio_list_empty(current->bio_list))),
 917				    conf->resync_lock);
 918		conf->nr_waiting--;
 919	}
 920
 921	if (bio && bio_data_dir(bio) == WRITE) {
 922		if (conf->next_resync + NEXT_NORMALIO_DISTANCE
 923		    <= bio->bi_iter.bi_sector) {
 924			if (conf->start_next_window == MaxSector)
 925				conf->start_next_window =
 926					conf->next_resync +
 927					NEXT_NORMALIO_DISTANCE;
 928
 929			if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
 930			    <= bio->bi_iter.bi_sector)
 931				conf->next_window_requests++;
 932			else
 933				conf->current_window_requests++;
 934			sector = conf->start_next_window;
 935		}
 936	}
 937
 938	conf->nr_pending++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 939	spin_unlock_irq(&conf->resync_lock);
 940	return sector;
 941}
 942
 943static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
 944			  sector_t bi_sector)
 945{
 946	unsigned long flags;
 947
 948	spin_lock_irqsave(&conf->resync_lock, flags);
 949	conf->nr_pending--;
 950	if (start_next_window) {
 951		if (start_next_window == conf->start_next_window) {
 952			if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
 953			    <= bi_sector)
 954				conf->next_window_requests--;
 955			else
 956				conf->current_window_requests--;
 957		} else
 958			conf->current_window_requests--;
 959
 960		if (!conf->current_window_requests) {
 961			if (conf->next_window_requests) {
 962				conf->current_window_requests =
 963					conf->next_window_requests;
 964				conf->next_window_requests = 0;
 965				conf->start_next_window +=
 966					NEXT_NORMALIO_DISTANCE;
 967			} else
 968				conf->start_next_window = MaxSector;
 969		}
 970	}
 971	spin_unlock_irqrestore(&conf->resync_lock, flags);
 972	wake_up(&conf->wait_barrier);
 973}
 974
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 975static void freeze_array(struct r1conf *conf, int extra)
 976{
 977	/* stop syncio and normal IO and wait for everything to
 978	 * go quite.
 979	 * We wait until nr_pending match nr_queued+extra
 980	 * This is called in the context of one normal IO request
 981	 * that has failed. Thus any sync request that might be pending
 982	 * will be blocked by nr_pending, and we need to wait for
 983	 * pending IO requests to complete or be queued for re-try.
 984	 * Thus the number queued (nr_queued) plus this request (extra)
 985	 * must match the number of pending IOs (nr_pending) before
 986	 * we continue.
 
 
 
 
 
 
 
 
 
 
 
 
 987	 */
 988	spin_lock_irq(&conf->resync_lock);
 989	conf->array_frozen = 1;
 990	wait_event_lock_irq_cmd(conf->wait_barrier,
 991				conf->nr_pending == conf->nr_queued+extra,
 992				conf->resync_lock,
 993				flush_pending_writes(conf));
 
 
 994	spin_unlock_irq(&conf->resync_lock);
 995}
 996static void unfreeze_array(struct r1conf *conf)
 997{
 998	/* reverse the effect of the freeze */
 999	spin_lock_irq(&conf->resync_lock);
1000	conf->array_frozen = 0;
1001	wake_up(&conf->wait_barrier);
1002	spin_unlock_irq(&conf->resync_lock);
 
1003}
1004
1005
1006/* duplicate the data pages for behind I/O 
1007 */
1008static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
1009{
1010	int i;
1011	struct bio_vec *bvec;
1012	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1013					GFP_NOIO);
1014	if (unlikely(!bvecs))
 
 
1015		return;
1016
1017	bio_for_each_segment_all(bvec, bio, i) {
1018		bvecs[i] = *bvec;
1019		bvecs[i].bv_page = alloc_page(GFP_NOIO);
1020		if (unlikely(!bvecs[i].bv_page))
1021			goto do_sync_io;
1022		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1023		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1024		kunmap(bvecs[i].bv_page);
1025		kunmap(bvec->bv_page);
1026	}
1027	r1_bio->behind_bvecs = bvecs;
1028	r1_bio->behind_page_count = bio->bi_vcnt;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1029	set_bit(R1BIO_BehindIO, &r1_bio->state);
 
1030	return;
1031
1032do_sync_io:
1033	for (i = 0; i < bio->bi_vcnt; i++)
1034		if (bvecs[i].bv_page)
1035			put_page(bvecs[i].bv_page);
1036	kfree(bvecs);
1037	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1038		 bio->bi_iter.bi_size);
 
 
1039}
1040
1041struct raid1_plug_cb {
1042	struct blk_plug_cb	cb;
1043	struct bio_list		pending;
1044	int			pending_cnt;
1045};
1046
1047static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1048{
1049	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1050						  cb);
1051	struct mddev *mddev = plug->cb.data;
1052	struct r1conf *conf = mddev->private;
1053	struct bio *bio;
1054
1055	if (from_schedule || current->bio_list) {
1056		spin_lock_irq(&conf->device_lock);
1057		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1058		conf->pending_count += plug->pending_cnt;
1059		spin_unlock_irq(&conf->device_lock);
1060		wake_up(&conf->wait_barrier);
1061		md_wakeup_thread(mddev->thread);
1062		kfree(plug);
1063		return;
1064	}
1065
1066	/* we aren't scheduling, so we can do the write-out directly. */
1067	bio = bio_list_get(&plug->pending);
1068	bitmap_unplug(mddev->bitmap);
1069	wake_up(&conf->wait_barrier);
1070
1071	while (bio) { /* submit pending writes */
1072		struct bio *next = bio->bi_next;
1073		bio->bi_next = NULL;
1074		if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1075		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1076			/* Just ignore it */
1077			bio_endio(bio, 0);
1078		else
1079			generic_make_request(bio);
1080		bio = next;
1081	}
1082	kfree(plug);
1083}
1084
1085static void make_request(struct mddev *mddev, struct bio * bio)
 
 
 
 
 
 
 
 
 
 
1086{
1087	struct r1conf *conf = mddev->private;
1088	struct raid1_info *mirror;
1089	struct r1bio *r1_bio;
 
 
 
 
 
 
 
 
 
 
 
 
 
1090	struct bio *read_bio;
1091	int i, disks;
1092	struct bitmap *bitmap;
1093	unsigned long flags;
1094	const int rw = bio_data_dir(bio);
1095	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1096	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1097	const unsigned long do_discard = (bio->bi_rw
1098					  & (REQ_DISCARD | REQ_SECURE));
1099	const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1100	struct md_rdev *blocked_rdev;
1101	struct blk_plug_cb *cb;
1102	struct raid1_plug_cb *plug = NULL;
1103	int first_clone;
1104	int sectors_handled;
1105	int max_sectors;
1106	sector_t start_next_window;
 
 
1107
1108	/*
1109	 * Register the new request and wait if the reconstruction
1110	 * thread has put up a bar for new requests.
1111	 * Continue immediately if no resync is active currently.
1112	 */
 
1113
1114	md_write_start(mddev, bio); /* wait on superblock update early */
1115
1116	if (bio_data_dir(bio) == WRITE &&
1117	    bio_end_sector(bio) > mddev->suspend_lo &&
1118	    bio->bi_iter.bi_sector < mddev->suspend_hi) {
1119		/* As the suspend_* range is controlled by
1120		 * userspace, we want an interruptible
1121		 * wait.
1122		 */
1123		DEFINE_WAIT(w);
1124		for (;;) {
1125			flush_signals(current);
1126			prepare_to_wait(&conf->wait_barrier,
1127					&w, TASK_INTERRUPTIBLE);
1128			if (bio_end_sector(bio) <= mddev->suspend_lo ||
1129			    bio->bi_iter.bi_sector >= mddev->suspend_hi)
1130				break;
1131			schedule();
1132		}
1133		finish_wait(&conf->wait_barrier, &w);
1134	}
1135
1136	start_next_window = wait_barrier(conf, bio);
 
 
 
 
1137
1138	bitmap = mddev->bitmap;
 
 
 
 
1139
1140	/*
1141	 * make_request() can abort the operation when READA is being
1142	 * used and no empty request is available.
1143	 *
1144	 */
1145	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1146
1147	r1_bio->master_bio = bio;
1148	r1_bio->sectors = bio_sectors(bio);
1149	r1_bio->state = 0;
1150	r1_bio->mddev = mddev;
1151	r1_bio->sector = bio->bi_iter.bi_sector;
 
 
 
 
 
 
 
1152
1153	/* We might need to issue multiple reads to different
1154	 * devices if there are bad blocks around, so we keep
1155	 * track of the number of reads in bio->bi_phys_segments.
1156	 * If this is 0, there is only one r1_bio and no locking
1157	 * will be needed when requests complete.  If it is
1158	 * non-zero, then it is the number of not-completed requests.
1159	 */
1160	bio->bi_phys_segments = 0;
1161	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1162
1163	if (rw == READ) {
 
1164		/*
1165		 * read balancing logic:
 
1166		 */
1167		int rdisk;
 
 
 
1168
1169read_again:
1170		rdisk = read_balance(conf, r1_bio, &max_sectors);
 
 
 
 
 
 
 
1171
1172		if (rdisk < 0) {
1173			/* couldn't find anywhere to read from */
1174			raid_end_bio_io(r1_bio);
1175			return;
1176		}
1177		mirror = conf->mirrors + rdisk;
1178
1179		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1180		    bitmap) {
1181			/* Reading from a write-mostly device must
1182			 * take care not to over-take any writes
1183			 * that are 'behind'
1184			 */
1185			wait_event(bitmap->behind_wait,
1186				   atomic_read(&bitmap->behind_writes) == 0);
1187		}
1188		r1_bio->read_disk = rdisk;
1189
1190		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1191		bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1192			 max_sectors);
1193
1194		r1_bio->bios[rdisk] = read_bio;
1195
1196		read_bio->bi_iter.bi_sector = r1_bio->sector +
1197			mirror->rdev->data_offset;
1198		read_bio->bi_bdev = mirror->rdev->bdev;
1199		read_bio->bi_end_io = raid1_end_read_request;
1200		read_bio->bi_rw = READ | do_sync;
1201		read_bio->bi_private = r1_bio;
1202
1203		if (max_sectors < r1_bio->sectors) {
1204			/* could not read all from this device, so we will
1205			 * need another r1_bio.
1206			 */
1207
1208			sectors_handled = (r1_bio->sector + max_sectors
1209					   - bio->bi_iter.bi_sector);
1210			r1_bio->sectors = max_sectors;
1211			spin_lock_irq(&conf->device_lock);
1212			if (bio->bi_phys_segments == 0)
1213				bio->bi_phys_segments = 2;
1214			else
1215				bio->bi_phys_segments++;
1216			spin_unlock_irq(&conf->device_lock);
1217			/* Cannot call generic_make_request directly
1218			 * as that will be queued in __make_request
1219			 * and subsequent mempool_alloc might block waiting
1220			 * for it.  So hand bio over to raid1d.
1221			 */
1222			reschedule_retry(r1_bio);
1223
1224			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
 
 
1225
1226			r1_bio->master_bio = bio;
1227			r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1228			r1_bio->state = 0;
1229			r1_bio->mddev = mddev;
1230			r1_bio->sector = bio->bi_iter.bi_sector +
1231				sectors_handled;
1232			goto read_again;
1233		} else
1234			generic_make_request(read_bio);
1235		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1236	}
1237
1238	/*
1239	 * WRITE:
 
 
1240	 */
 
 
 
 
 
1241	if (conf->pending_count >= max_queued_requests) {
1242		md_wakeup_thread(mddev->thread);
 
1243		wait_event(conf->wait_barrier,
1244			   conf->pending_count < max_queued_requests);
1245	}
1246	/* first select target devices under rcu_lock and
1247	 * inc refcount on their rdev.  Record them by setting
1248	 * bios[x] to bio
1249	 * If there are known/acknowledged bad blocks on any device on
1250	 * which we have seen a write error, we want to avoid writing those
1251	 * blocks.
1252	 * This potentially requires several writes to write around
1253	 * the bad blocks.  Each set of writes gets it's own r1bio
1254	 * with a set of bios attached.
1255	 */
1256
1257	disks = conf->raid_disks * 2;
1258 retry_write:
1259	r1_bio->start_next_window = start_next_window;
1260	blocked_rdev = NULL;
1261	rcu_read_lock();
1262	max_sectors = r1_bio->sectors;
1263	for (i = 0;  i < disks; i++) {
1264		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1265		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1266			atomic_inc(&rdev->nr_pending);
1267			blocked_rdev = rdev;
1268			break;
1269		}
1270		r1_bio->bios[i] = NULL;
1271		if (!rdev || test_bit(Faulty, &rdev->flags)
1272		    || test_bit(Unmerged, &rdev->flags)) {
1273			if (i < conf->raid_disks)
1274				set_bit(R1BIO_Degraded, &r1_bio->state);
1275			continue;
1276		}
1277
1278		atomic_inc(&rdev->nr_pending);
1279		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1280			sector_t first_bad;
1281			int bad_sectors;
1282			int is_bad;
1283
1284			is_bad = is_badblock(rdev, r1_bio->sector,
1285					     max_sectors,
1286					     &first_bad, &bad_sectors);
1287			if (is_bad < 0) {
1288				/* mustn't write here until the bad block is
1289				 * acknowledged*/
1290				set_bit(BlockedBadBlocks, &rdev->flags);
1291				blocked_rdev = rdev;
1292				break;
1293			}
1294			if (is_bad && first_bad <= r1_bio->sector) {
1295				/* Cannot write here at all */
1296				bad_sectors -= (r1_bio->sector - first_bad);
1297				if (bad_sectors < max_sectors)
1298					/* mustn't write more than bad_sectors
1299					 * to other devices yet
1300					 */
1301					max_sectors = bad_sectors;
1302				rdev_dec_pending(rdev, mddev);
1303				/* We don't set R1BIO_Degraded as that
1304				 * only applies if the disk is
1305				 * missing, so it might be re-added,
1306				 * and we want to know to recover this
1307				 * chunk.
1308				 * In this case the device is here,
1309				 * and the fact that this chunk is not
1310				 * in-sync is recorded in the bad
1311				 * block log
1312				 */
1313				continue;
1314			}
1315			if (is_bad) {
1316				int good_sectors = first_bad - r1_bio->sector;
1317				if (good_sectors < max_sectors)
1318					max_sectors = good_sectors;
1319			}
1320		}
1321		r1_bio->bios[i] = bio;
1322	}
1323	rcu_read_unlock();
1324
1325	if (unlikely(blocked_rdev)) {
1326		/* Wait for this device to become unblocked */
1327		int j;
1328		sector_t old = start_next_window;
1329
1330		for (j = 0; j < i; j++)
1331			if (r1_bio->bios[j])
1332				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1333		r1_bio->state = 0;
1334		allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
 
1335		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1336		start_next_window = wait_barrier(conf, bio);
1337		/*
1338		 * We must make sure the multi r1bios of bio have
1339		 * the same value of bi_phys_segments
1340		 */
1341		if (bio->bi_phys_segments && old &&
1342		    old != start_next_window)
1343			/* Wait for the former r1bio(s) to complete */
1344			wait_event(conf->wait_barrier,
1345				   bio->bi_phys_segments == 1);
1346		goto retry_write;
1347	}
1348
1349	if (max_sectors < r1_bio->sectors) {
1350		/* We are splitting this write into multiple parts, so
1351		 * we need to prepare for allocating another r1_bio.
1352		 */
 
 
 
1353		r1_bio->sectors = max_sectors;
1354		spin_lock_irq(&conf->device_lock);
1355		if (bio->bi_phys_segments == 0)
1356			bio->bi_phys_segments = 2;
1357		else
1358			bio->bi_phys_segments++;
1359		spin_unlock_irq(&conf->device_lock);
1360	}
1361	sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1362
1363	atomic_set(&r1_bio->remaining, 1);
1364	atomic_set(&r1_bio->behind_remaining, 0);
1365
1366	first_clone = 1;
 
1367	for (i = 0; i < disks; i++) {
1368		struct bio *mbio;
 
1369		if (!r1_bio->bios[i])
1370			continue;
1371
1372		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1373		bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1374
1375		if (first_clone) {
1376			/* do behind I/O ?
1377			 * Not if there are too many, or cannot
1378			 * allocate memory, or a reader on WriteMostly
1379			 * is waiting for behind writes to flush */
1380			if (bitmap &&
1381			    (atomic_read(&bitmap->behind_writes)
1382			     < mddev->bitmap_info.max_write_behind) &&
1383			    !waitqueue_active(&bitmap->behind_wait))
1384				alloc_behind_pages(mbio, r1_bio);
 
1385
1386			bitmap_startwrite(bitmap, r1_bio->sector,
1387					  r1_bio->sectors,
1388					  test_bit(R1BIO_BehindIO,
1389						   &r1_bio->state));
1390			first_clone = 0;
1391		}
1392		if (r1_bio->behind_bvecs) {
1393			struct bio_vec *bvec;
1394			int j;
1395
1396			/*
1397			 * We trimmed the bio, so _all is legit
1398			 */
1399			bio_for_each_segment_all(bvec, mbio, j)
1400				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1401			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
 
 
 
 
1402				atomic_inc(&r1_bio->behind_remaining);
1403		}
 
1404
1405		r1_bio->bios[i] = mbio;
1406
1407		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1408				   conf->mirrors[i].rdev->data_offset);
1409		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1410		mbio->bi_end_io	= raid1_end_write_request;
1411		mbio->bi_rw =
1412			WRITE | do_flush_fua | do_sync | do_discard | do_same;
 
 
 
1413		mbio->bi_private = r1_bio;
1414
1415		atomic_inc(&r1_bio->remaining);
1416
 
 
 
 
 
 
 
1417		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1418		if (cb)
1419			plug = container_of(cb, struct raid1_plug_cb, cb);
1420		else
1421			plug = NULL;
1422		spin_lock_irqsave(&conf->device_lock, flags);
1423		if (plug) {
1424			bio_list_add(&plug->pending, mbio);
1425			plug->pending_cnt++;
1426		} else {
 
1427			bio_list_add(&conf->pending_bio_list, mbio);
1428			conf->pending_count++;
1429		}
1430		spin_unlock_irqrestore(&conf->device_lock, flags);
1431		if (!plug)
1432			md_wakeup_thread(mddev->thread);
1433	}
1434	/* Mustn't call r1_bio_write_done before this next test,
1435	 * as it could result in the bio being freed.
1436	 */
1437	if (sectors_handled < bio_sectors(bio)) {
1438		r1_bio_write_done(r1_bio);
1439		/* We need another r1_bio.  It has already been counted
1440		 * in bio->bi_phys_segments
1441		 */
1442		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1443		r1_bio->master_bio = bio;
1444		r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1445		r1_bio->state = 0;
1446		r1_bio->mddev = mddev;
1447		r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1448		goto retry_write;
1449	}
1450
1451	r1_bio_write_done(r1_bio);
1452
1453	/* In case raid1d snuck in to freeze_array */
1454	wake_up(&conf->wait_barrier);
1455}
1456
1457static void status(struct seq_file *seq, struct mddev *mddev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1458{
1459	struct r1conf *conf = mddev->private;
1460	int i;
1461
1462	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1463		   conf->raid_disks - mddev->degraded);
1464	rcu_read_lock();
1465	for (i = 0; i < conf->raid_disks; i++) {
1466		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1467		seq_printf(seq, "%s",
1468			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1469	}
1470	rcu_read_unlock();
1471	seq_printf(seq, "]");
1472}
1473
1474
1475static void error(struct mddev *mddev, struct md_rdev *rdev)
1476{
1477	char b[BDEVNAME_SIZE];
1478	struct r1conf *conf = mddev->private;
 
1479
1480	/*
1481	 * If it is not operational, then we have already marked it as dead
1482	 * else if it is the last working disks, ignore the error, let the
1483	 * next level up know.
1484	 * else mark the drive as failed
1485	 */
1486	if (test_bit(In_sync, &rdev->flags)
 
1487	    && (conf->raid_disks - mddev->degraded) == 1) {
1488		/*
1489		 * Don't fail the drive, act as though we were just a
1490		 * normal single drive.
1491		 * However don't try a recovery from this drive as
1492		 * it is very likely to fail.
1493		 */
1494		conf->recovery_disabled = mddev->recovery_disabled;
 
1495		return;
1496	}
1497	set_bit(Blocked, &rdev->flags);
1498	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1499		unsigned long flags;
1500		spin_lock_irqsave(&conf->device_lock, flags);
1501		mddev->degraded++;
1502		set_bit(Faulty, &rdev->flags);
1503		spin_unlock_irqrestore(&conf->device_lock, flags);
1504		/*
1505		 * if recovery is running, make sure it aborts.
1506		 */
1507		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1508	} else
1509		set_bit(Faulty, &rdev->flags);
1510	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1511	printk(KERN_ALERT
1512	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
1513	       "md/raid1:%s: Operation continuing on %d devices.\n",
1514	       mdname(mddev), bdevname(rdev->bdev, b),
1515	       mdname(mddev), conf->raid_disks - mddev->degraded);
1516}
1517
1518static void print_conf(struct r1conf *conf)
1519{
1520	int i;
1521
1522	printk(KERN_DEBUG "RAID1 conf printout:\n");
1523	if (!conf) {
1524		printk(KERN_DEBUG "(!conf)\n");
1525		return;
1526	}
1527	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1528		conf->raid_disks);
1529
1530	rcu_read_lock();
1531	for (i = 0; i < conf->raid_disks; i++) {
1532		char b[BDEVNAME_SIZE];
1533		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1534		if (rdev)
1535			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1536			       i, !test_bit(In_sync, &rdev->flags),
1537			       !test_bit(Faulty, &rdev->flags),
1538			       bdevname(rdev->bdev,b));
1539	}
1540	rcu_read_unlock();
1541}
1542
1543static void close_sync(struct r1conf *conf)
1544{
1545	wait_barrier(conf, NULL);
1546	allow_barrier(conf, 0, 0);
1547
1548	mempool_destroy(conf->r1buf_pool);
1549	conf->r1buf_pool = NULL;
 
 
1550
1551	conf->next_resync = 0;
1552	conf->start_next_window = MaxSector;
1553}
1554
1555static int raid1_spare_active(struct mddev *mddev)
1556{
1557	int i;
1558	struct r1conf *conf = mddev->private;
1559	int count = 0;
1560	unsigned long flags;
1561
1562	/*
1563	 * Find all failed disks within the RAID1 configuration 
1564	 * and mark them readable.
1565	 * Called under mddev lock, so rcu protection not needed.
 
 
1566	 */
 
1567	for (i = 0; i < conf->raid_disks; i++) {
1568		struct md_rdev *rdev = conf->mirrors[i].rdev;
1569		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1570		if (repl
 
1571		    && repl->recovery_offset == MaxSector
1572		    && !test_bit(Faulty, &repl->flags)
1573		    && !test_and_set_bit(In_sync, &repl->flags)) {
1574			/* replacement has just become active */
1575			if (!rdev ||
1576			    !test_and_clear_bit(In_sync, &rdev->flags))
1577				count++;
1578			if (rdev) {
1579				/* Replaced device not technically
1580				 * faulty, but we need to be sure
1581				 * it gets removed and never re-added
1582				 */
1583				set_bit(Faulty, &rdev->flags);
1584				sysfs_notify_dirent_safe(
1585					rdev->sysfs_state);
1586			}
1587		}
1588		if (rdev
1589		    && rdev->recovery_offset == MaxSector
1590		    && !test_bit(Faulty, &rdev->flags)
1591		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1592			count++;
1593			sysfs_notify_dirent_safe(rdev->sysfs_state);
1594		}
1595	}
1596	spin_lock_irqsave(&conf->device_lock, flags);
1597	mddev->degraded -= count;
1598	spin_unlock_irqrestore(&conf->device_lock, flags);
1599
1600	print_conf(conf);
1601	return count;
1602}
1603
1604
1605static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1606{
1607	struct r1conf *conf = mddev->private;
1608	int err = -EEXIST;
1609	int mirror = 0;
1610	struct raid1_info *p;
1611	int first = 0;
1612	int last = conf->raid_disks - 1;
1613	struct request_queue *q = bdev_get_queue(rdev->bdev);
1614
1615	if (mddev->recovery_disabled == conf->recovery_disabled)
1616		return -EBUSY;
1617
 
 
 
1618	if (rdev->raid_disk >= 0)
1619		first = last = rdev->raid_disk;
1620
1621	if (q->merge_bvec_fn) {
1622		set_bit(Unmerged, &rdev->flags);
1623		mddev->merge_check_needed = 1;
1624	}
 
 
 
 
 
1625
1626	for (mirror = first; mirror <= last; mirror++) {
1627		p = conf->mirrors+mirror;
1628		if (!p->rdev) {
1629
1630			if (mddev->gendisk)
1631				disk_stack_limits(mddev->gendisk, rdev->bdev,
1632						  rdev->data_offset << 9);
1633
1634			p->head_position = 0;
1635			rdev->raid_disk = mirror;
1636			err = 0;
1637			/* As all devices are equivalent, we don't need a full recovery
1638			 * if this was recently any drive of the array
1639			 */
1640			if (rdev->saved_raid_disk < 0)
1641				conf->fullsync = 1;
1642			rcu_assign_pointer(p->rdev, rdev);
1643			break;
1644		}
1645		if (test_bit(WantReplacement, &p->rdev->flags) &&
1646		    p[conf->raid_disks].rdev == NULL) {
1647			/* Add this device as a replacement */
1648			clear_bit(In_sync, &rdev->flags);
1649			set_bit(Replacement, &rdev->flags);
1650			rdev->raid_disk = mirror;
1651			err = 0;
1652			conf->fullsync = 1;
1653			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1654			break;
1655		}
1656	}
1657	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1658		/* Some requests might not have seen this new
1659		 * merge_bvec_fn.  We must wait for them to complete
1660		 * before merging the device fully.
1661		 * First we make sure any code which has tested
1662		 * our function has submitted the request, then
1663		 * we wait for all outstanding requests to complete.
1664		 */
1665		synchronize_sched();
1666		freeze_array(conf, 0);
1667		unfreeze_array(conf);
1668		clear_bit(Unmerged, &rdev->flags);
1669	}
1670	md_integrity_add_rdev(rdev, mddev);
1671	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1672		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1673	print_conf(conf);
1674	return err;
1675}
1676
1677static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1678{
1679	struct r1conf *conf = mddev->private;
1680	int err = 0;
1681	int number = rdev->raid_disk;
1682	struct raid1_info *p = conf->mirrors + number;
1683
1684	if (rdev != p->rdev)
1685		p = conf->mirrors + conf->raid_disks + number;
1686
1687	print_conf(conf);
1688	if (rdev == p->rdev) {
1689		if (test_bit(In_sync, &rdev->flags) ||
1690		    atomic_read(&rdev->nr_pending)) {
1691			err = -EBUSY;
1692			goto abort;
1693		}
1694		/* Only remove non-faulty devices if recovery
1695		 * is not possible.
1696		 */
1697		if (!test_bit(Faulty, &rdev->flags) &&
1698		    mddev->recovery_disabled != conf->recovery_disabled &&
1699		    mddev->degraded < conf->raid_disks) {
1700			err = -EBUSY;
1701			goto abort;
1702		}
1703		p->rdev = NULL;
1704		synchronize_rcu();
1705		if (atomic_read(&rdev->nr_pending)) {
1706			/* lost the race, try later */
1707			err = -EBUSY;
1708			p->rdev = rdev;
1709			goto abort;
1710		} else if (conf->mirrors[conf->raid_disks + number].rdev) {
 
 
 
1711			/* We just removed a device that is being replaced.
1712			 * Move down the replacement.  We drain all IO before
1713			 * doing this to avoid confusion.
1714			 */
1715			struct md_rdev *repl =
1716				conf->mirrors[conf->raid_disks + number].rdev;
1717			freeze_array(conf, 0);
 
 
 
 
 
 
 
 
 
 
 
1718			clear_bit(Replacement, &repl->flags);
1719			p->rdev = repl;
1720			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1721			unfreeze_array(conf);
1722			clear_bit(WantReplacement, &rdev->flags);
1723		} else
1724			clear_bit(WantReplacement, &rdev->flags);
1725		err = md_integrity_register(mddev);
1726	}
1727abort:
1728
1729	print_conf(conf);
1730	return err;
1731}
1732
1733
1734static void end_sync_read(struct bio *bio, int error)
1735{
1736	struct r1bio *r1_bio = bio->bi_private;
1737
1738	update_head_pos(r1_bio->read_disk, r1_bio);
1739
1740	/*
1741	 * we have read a block, now it needs to be re-written,
1742	 * or re-read if the read failed.
1743	 * We don't do much here, just schedule handling by raid1d
1744	 */
1745	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1746		set_bit(R1BIO_Uptodate, &r1_bio->state);
1747
1748	if (atomic_dec_and_test(&r1_bio->remaining))
1749		reschedule_retry(r1_bio);
1750}
1751
1752static void end_sync_write(struct bio *bio, int error)
1753{
1754	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1755	struct r1bio *r1_bio = bio->bi_private;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1756	struct mddev *mddev = r1_bio->mddev;
1757	struct r1conf *conf = mddev->private;
1758	int mirror=0;
1759	sector_t first_bad;
1760	int bad_sectors;
1761
1762	mirror = find_bio_disk(r1_bio, bio);
1763
1764	if (!uptodate) {
1765		sector_t sync_blocks = 0;
1766		sector_t s = r1_bio->sector;
1767		long sectors_to_go = r1_bio->sectors;
1768		/* make sure these bits doesn't get cleared. */
1769		do {
1770			bitmap_end_sync(mddev->bitmap, s,
1771					&sync_blocks, 1);
1772			s += sync_blocks;
1773			sectors_to_go -= sync_blocks;
1774		} while (sectors_to_go > 0);
1775		set_bit(WriteErrorSeen,
1776			&conf->mirrors[mirror].rdev->flags);
1777		if (!test_and_set_bit(WantReplacement,
1778				      &conf->mirrors[mirror].rdev->flags))
1779			set_bit(MD_RECOVERY_NEEDED, &
1780				mddev->recovery);
1781		set_bit(R1BIO_WriteError, &r1_bio->state);
1782	} else if (is_badblock(conf->mirrors[mirror].rdev,
1783			       r1_bio->sector,
1784			       r1_bio->sectors,
1785			       &first_bad, &bad_sectors) &&
1786		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1787				r1_bio->sector,
1788				r1_bio->sectors,
1789				&first_bad, &bad_sectors)
1790		)
1791		set_bit(R1BIO_MadeGood, &r1_bio->state);
1792
1793	if (atomic_dec_and_test(&r1_bio->remaining)) {
1794		int s = r1_bio->sectors;
1795		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1796		    test_bit(R1BIO_WriteError, &r1_bio->state))
1797			reschedule_retry(r1_bio);
1798		else {
1799			put_buf(r1_bio);
1800			md_done_sync(mddev, s, uptodate);
1801		}
1802	}
1803}
1804
1805static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1806			    int sectors, struct page *page, int rw)
1807{
1808	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1809		/* success */
1810		return 1;
1811	if (rw == WRITE) {
1812		set_bit(WriteErrorSeen, &rdev->flags);
1813		if (!test_and_set_bit(WantReplacement,
1814				      &rdev->flags))
1815			set_bit(MD_RECOVERY_NEEDED, &
1816				rdev->mddev->recovery);
1817	}
1818	/* need to record an error - either for the block or the device */
1819	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1820		md_error(rdev->mddev, rdev);
1821	return 0;
1822}
1823
1824static int fix_sync_read_error(struct r1bio *r1_bio)
1825{
1826	/* Try some synchronous reads of other devices to get
1827	 * good data, much like with normal read errors.  Only
1828	 * read into the pages we already have so we don't
1829	 * need to re-issue the read request.
1830	 * We don't need to freeze the array, because being in an
1831	 * active sync request, there is no normal IO, and
1832	 * no overlapping syncs.
1833	 * We don't need to check is_badblock() again as we
1834	 * made sure that anything with a bad block in range
1835	 * will have bi_end_io clear.
1836	 */
1837	struct mddev *mddev = r1_bio->mddev;
1838	struct r1conf *conf = mddev->private;
1839	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
 
1840	sector_t sect = r1_bio->sector;
1841	int sectors = r1_bio->sectors;
1842	int idx = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
1843
1844	while(sectors) {
1845		int s = sectors;
1846		int d = r1_bio->read_disk;
1847		int success = 0;
1848		struct md_rdev *rdev;
1849		int start;
1850
1851		if (s > (PAGE_SIZE>>9))
1852			s = PAGE_SIZE >> 9;
1853		do {
1854			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1855				/* No rcu protection needed here devices
1856				 * can only be removed when no resync is
1857				 * active, and resync is currently active
1858				 */
1859				rdev = conf->mirrors[d].rdev;
1860				if (sync_page_io(rdev, sect, s<<9,
1861						 bio->bi_io_vec[idx].bv_page,
1862						 READ, false)) {
1863					success = 1;
1864					break;
1865				}
1866			}
1867			d++;
1868			if (d == conf->raid_disks * 2)
1869				d = 0;
1870		} while (!success && d != r1_bio->read_disk);
1871
1872		if (!success) {
1873			char b[BDEVNAME_SIZE];
1874			int abort = 0;
1875			/* Cannot read from anywhere, this block is lost.
1876			 * Record a bad block on each device.  If that doesn't
1877			 * work just disable and interrupt the recovery.
1878			 * Don't fail devices as that won't really help.
1879			 */
1880			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1881			       " for block %llu\n",
1882			       mdname(mddev),
1883			       bdevname(bio->bi_bdev, b),
1884			       (unsigned long long)r1_bio->sector);
1885			for (d = 0; d < conf->raid_disks * 2; d++) {
1886				rdev = conf->mirrors[d].rdev;
1887				if (!rdev || test_bit(Faulty, &rdev->flags))
1888					continue;
1889				if (!rdev_set_badblocks(rdev, sect, s, 0))
1890					abort = 1;
1891			}
1892			if (abort) {
1893				conf->recovery_disabled =
1894					mddev->recovery_disabled;
1895				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1896				md_done_sync(mddev, r1_bio->sectors, 0);
1897				put_buf(r1_bio);
1898				return 0;
1899			}
1900			/* Try next page */
1901			sectors -= s;
1902			sect += s;
1903			idx++;
1904			continue;
1905		}
1906
1907		start = d;
1908		/* write it back and re-read */
1909		while (d != r1_bio->read_disk) {
1910			if (d == 0)
1911				d = conf->raid_disks * 2;
1912			d--;
1913			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1914				continue;
1915			rdev = conf->mirrors[d].rdev;
1916			if (r1_sync_page_io(rdev, sect, s,
1917					    bio->bi_io_vec[idx].bv_page,
1918					    WRITE) == 0) {
1919				r1_bio->bios[d]->bi_end_io = NULL;
1920				rdev_dec_pending(rdev, mddev);
1921			}
1922		}
1923		d = start;
1924		while (d != r1_bio->read_disk) {
1925			if (d == 0)
1926				d = conf->raid_disks * 2;
1927			d--;
1928			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1929				continue;
1930			rdev = conf->mirrors[d].rdev;
1931			if (r1_sync_page_io(rdev, sect, s,
1932					    bio->bi_io_vec[idx].bv_page,
1933					    READ) != 0)
1934				atomic_add(s, &rdev->corrected_errors);
1935		}
1936		sectors -= s;
1937		sect += s;
1938		idx ++;
1939	}
1940	set_bit(R1BIO_Uptodate, &r1_bio->state);
1941	set_bit(BIO_UPTODATE, &bio->bi_flags);
1942	return 1;
1943}
1944
1945static int process_checks(struct r1bio *r1_bio)
1946{
1947	/* We have read all readable devices.  If we haven't
1948	 * got the block, then there is no hope left.
1949	 * If we have, then we want to do a comparison
1950	 * and skip the write if everything is the same.
1951	 * If any blocks failed to read, then we need to
1952	 * attempt an over-write
1953	 */
1954	struct mddev *mddev = r1_bio->mddev;
1955	struct r1conf *conf = mddev->private;
1956	int primary;
1957	int i;
1958	int vcnt;
1959
1960	/* Fix variable parts of all bios */
1961	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1962	for (i = 0; i < conf->raid_disks * 2; i++) {
1963		int j;
1964		int size;
1965		int uptodate;
1966		struct bio *b = r1_bio->bios[i];
 
1967		if (b->bi_end_io != end_sync_read)
1968			continue;
1969		/* fixup the bio for reuse, but preserve BIO_UPTODATE */
1970		uptodate = test_bit(BIO_UPTODATE, &b->bi_flags);
1971		bio_reset(b);
1972		if (!uptodate)
1973			clear_bit(BIO_UPTODATE, &b->bi_flags);
1974		b->bi_vcnt = vcnt;
1975		b->bi_iter.bi_size = r1_bio->sectors << 9;
1976		b->bi_iter.bi_sector = r1_bio->sector +
1977			conf->mirrors[i].rdev->data_offset;
1978		b->bi_bdev = conf->mirrors[i].rdev->bdev;
1979		b->bi_end_io = end_sync_read;
1980		b->bi_private = r1_bio;
 
1981
1982		size = b->bi_iter.bi_size;
1983		for (j = 0; j < vcnt ; j++) {
1984			struct bio_vec *bi;
1985			bi = &b->bi_io_vec[j];
1986			bi->bv_offset = 0;
1987			if (size > PAGE_SIZE)
1988				bi->bv_len = PAGE_SIZE;
1989			else
1990				bi->bv_len = size;
1991			size -= PAGE_SIZE;
1992		}
1993	}
1994	for (primary = 0; primary < conf->raid_disks * 2; primary++)
1995		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1996		    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1997			r1_bio->bios[primary]->bi_end_io = NULL;
1998			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1999			break;
2000		}
2001	r1_bio->read_disk = primary;
2002	for (i = 0; i < conf->raid_disks * 2; i++) {
2003		int j;
2004		struct bio *pbio = r1_bio->bios[primary];
2005		struct bio *sbio = r1_bio->bios[i];
2006		int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags);
 
 
 
 
 
2007
2008		if (sbio->bi_end_io != end_sync_read)
2009			continue;
2010		/* Now we can 'fixup' the BIO_UPTODATE flag */
2011		set_bit(BIO_UPTODATE, &sbio->bi_flags);
 
 
 
2012
2013		if (uptodate) {
2014			for (j = vcnt; j-- ; ) {
2015				struct page *p, *s;
2016				p = pbio->bi_io_vec[j].bv_page;
2017				s = sbio->bi_io_vec[j].bv_page;
2018				if (memcmp(page_address(p),
2019					   page_address(s),
2020					   sbio->bi_io_vec[j].bv_len))
2021					break;
2022			}
2023		} else
2024			j = 0;
2025		if (j >= 0)
2026			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2027		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2028			      && uptodate)) {
2029			/* No need to write to this device. */
2030			sbio->bi_end_io = NULL;
2031			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2032			continue;
2033		}
2034
2035		bio_copy_data(sbio, pbio);
2036	}
2037	return 0;
2038}
2039
2040static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2041{
2042	struct r1conf *conf = mddev->private;
2043	int i;
2044	int disks = conf->raid_disks * 2;
2045	struct bio *bio, *wbio;
2046
2047	bio = r1_bio->bios[r1_bio->read_disk];
2048
2049	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2050		/* ouch - failed to read all of that. */
2051		if (!fix_sync_read_error(r1_bio))
2052			return;
2053
2054	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2055		if (process_checks(r1_bio) < 0)
2056			return;
2057	/*
2058	 * schedule writes
2059	 */
2060	atomic_set(&r1_bio->remaining, 1);
2061	for (i = 0; i < disks ; i++) {
2062		wbio = r1_bio->bios[i];
2063		if (wbio->bi_end_io == NULL ||
2064		    (wbio->bi_end_io == end_sync_read &&
2065		     (i == r1_bio->read_disk ||
2066		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2067			continue;
 
 
 
 
 
 
 
 
2068
2069		wbio->bi_rw = WRITE;
2070		wbio->bi_end_io = end_sync_write;
2071		atomic_inc(&r1_bio->remaining);
2072		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2073
2074		generic_make_request(wbio);
2075	}
2076
2077	if (atomic_dec_and_test(&r1_bio->remaining)) {
2078		/* if we're here, all write(s) have completed, so clean up */
2079		int s = r1_bio->sectors;
2080		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2081		    test_bit(R1BIO_WriteError, &r1_bio->state))
2082			reschedule_retry(r1_bio);
2083		else {
2084			put_buf(r1_bio);
2085			md_done_sync(mddev, s, 1);
2086		}
2087	}
2088}
2089
2090/*
2091 * This is a kernel thread which:
2092 *
2093 *	1.	Retries failed read operations on working mirrors.
2094 *	2.	Updates the raid superblock when problems encounter.
2095 *	3.	Performs writes following reads for array synchronising.
2096 */
2097
2098static void fix_read_error(struct r1conf *conf, int read_disk,
2099			   sector_t sect, int sectors)
2100{
2101	struct mddev *mddev = conf->mddev;
2102	while(sectors) {
2103		int s = sectors;
2104		int d = read_disk;
2105		int success = 0;
2106		int start;
2107		struct md_rdev *rdev;
2108
2109		if (s > (PAGE_SIZE>>9))
2110			s = PAGE_SIZE >> 9;
2111
2112		do {
2113			/* Note: no rcu protection needed here
2114			 * as this is synchronous in the raid1d thread
2115			 * which is the thread that might remove
2116			 * a device.  If raid1d ever becomes multi-threaded....
2117			 */
2118			sector_t first_bad;
2119			int bad_sectors;
2120
2121			rdev = conf->mirrors[d].rdev;
 
2122			if (rdev &&
2123			    (test_bit(In_sync, &rdev->flags) ||
2124			     (!test_bit(Faulty, &rdev->flags) &&
2125			      rdev->recovery_offset >= sect + s)) &&
2126			    is_badblock(rdev, sect, s,
2127					&first_bad, &bad_sectors) == 0 &&
2128			    sync_page_io(rdev, sect, s<<9,
2129					 conf->tmppage, READ, false))
2130				success = 1;
2131			else {
2132				d++;
2133				if (d == conf->raid_disks * 2)
2134					d = 0;
2135			}
 
 
 
 
 
2136		} while (!success && d != read_disk);
2137
2138		if (!success) {
2139			/* Cannot read from anywhere - mark it bad */
2140			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2141			if (!rdev_set_badblocks(rdev, sect, s, 0))
2142				md_error(mddev, rdev);
2143			break;
2144		}
2145		/* write it back and re-read */
2146		start = d;
2147		while (d != read_disk) {
2148			if (d==0)
2149				d = conf->raid_disks * 2;
2150			d--;
2151			rdev = conf->mirrors[d].rdev;
 
2152			if (rdev &&
2153			    test_bit(In_sync, &rdev->flags))
 
 
2154				r1_sync_page_io(rdev, sect, s,
2155						conf->tmppage, WRITE);
 
 
 
2156		}
2157		d = start;
2158		while (d != read_disk) {
2159			char b[BDEVNAME_SIZE];
2160			if (d==0)
2161				d = conf->raid_disks * 2;
2162			d--;
2163			rdev = conf->mirrors[d].rdev;
 
2164			if (rdev &&
2165			    test_bit(In_sync, &rdev->flags)) {
 
 
2166				if (r1_sync_page_io(rdev, sect, s,
2167						    conf->tmppage, READ)) {
2168					atomic_add(s, &rdev->corrected_errors);
2169					printk(KERN_INFO
2170					       "md/raid1:%s: read error corrected "
2171					       "(%d sectors at %llu on %s)\n",
2172					       mdname(mddev), s,
2173					       (unsigned long long)(sect +
2174					           rdev->data_offset),
2175					       bdevname(rdev->bdev, b));
2176				}
2177			}
 
 
2178		}
2179		sectors -= s;
2180		sect += s;
2181	}
2182}
2183
2184static int narrow_write_error(struct r1bio *r1_bio, int i)
2185{
2186	struct mddev *mddev = r1_bio->mddev;
2187	struct r1conf *conf = mddev->private;
2188	struct md_rdev *rdev = conf->mirrors[i].rdev;
2189
2190	/* bio has the data to be written to device 'i' where
2191	 * we just recently had a write error.
2192	 * We repeatedly clone the bio and trim down to one block,
2193	 * then try the write.  Where the write fails we record
2194	 * a bad block.
2195	 * It is conceivable that the bio doesn't exactly align with
2196	 * blocks.  We must handle this somehow.
2197	 *
2198	 * We currently own a reference on the rdev.
2199	 */
2200
2201	int block_sectors;
2202	sector_t sector;
2203	int sectors;
2204	int sect_to_write = r1_bio->sectors;
2205	int ok = 1;
2206
2207	if (rdev->badblocks.shift < 0)
2208		return 0;
2209
2210	block_sectors = 1 << rdev->badblocks.shift;
 
2211	sector = r1_bio->sector;
2212	sectors = ((sector + block_sectors)
2213		   & ~(sector_t)(block_sectors - 1))
2214		- sector;
2215
2216	while (sect_to_write) {
2217		struct bio *wbio;
2218		if (sectors > sect_to_write)
2219			sectors = sect_to_write;
2220		/* Write at 'sector' for 'sectors'*/
2221
2222		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2223			unsigned vcnt = r1_bio->behind_page_count;
2224			struct bio_vec *vec = r1_bio->behind_bvecs;
2225
2226			while (!vec->bv_page) {
2227				vec++;
2228				vcnt--;
2229			}
2230
2231			wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2232			memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2233
2234			wbio->bi_vcnt = vcnt;
2235		} else {
2236			wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
 
2237		}
2238
2239		wbio->bi_rw = WRITE;
2240		wbio->bi_iter.bi_sector = r1_bio->sector;
2241		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2242
2243		bio_trim(wbio, sector - r1_bio->sector, sectors);
2244		wbio->bi_iter.bi_sector += rdev->data_offset;
2245		wbio->bi_bdev = rdev->bdev;
2246		if (submit_bio_wait(WRITE, wbio) == 0)
 
2247			/* failure! */
2248			ok = rdev_set_badblocks(rdev, sector,
2249						sectors, 0)
2250				&& ok;
2251
2252		bio_put(wbio);
2253		sect_to_write -= sectors;
2254		sector += sectors;
2255		sectors = block_sectors;
2256	}
2257	return ok;
2258}
2259
2260static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2261{
2262	int m;
2263	int s = r1_bio->sectors;
2264	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2265		struct md_rdev *rdev = conf->mirrors[m].rdev;
2266		struct bio *bio = r1_bio->bios[m];
2267		if (bio->bi_end_io == NULL)
2268			continue;
2269		if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2270		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2271			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2272		}
2273		if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2274		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2275			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2276				md_error(conf->mddev, rdev);
2277		}
2278	}
2279	put_buf(r1_bio);
2280	md_done_sync(conf->mddev, s, 1);
2281}
2282
2283static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2284{
2285	int m;
 
 
2286	for (m = 0; m < conf->raid_disks * 2 ; m++)
2287		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2288			struct md_rdev *rdev = conf->mirrors[m].rdev;
2289			rdev_clear_badblocks(rdev,
2290					     r1_bio->sector,
2291					     r1_bio->sectors, 0);
2292			rdev_dec_pending(rdev, conf->mddev);
2293		} else if (r1_bio->bios[m] != NULL) {
2294			/* This drive got a write error.  We need to
2295			 * narrow down and record precise write
2296			 * errors.
2297			 */
 
2298			if (!narrow_write_error(r1_bio, m)) {
2299				md_error(conf->mddev,
2300					 conf->mirrors[m].rdev);
2301				/* an I/O failed, we can't clear the bitmap */
2302				set_bit(R1BIO_Degraded, &r1_bio->state);
2303			}
2304			rdev_dec_pending(conf->mirrors[m].rdev,
2305					 conf->mddev);
2306		}
2307	if (test_bit(R1BIO_WriteError, &r1_bio->state))
2308		close_write(r1_bio);
2309	raid_end_bio_io(r1_bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2310}
2311
2312static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2313{
2314	int disk;
2315	int max_sectors;
2316	struct mddev *mddev = conf->mddev;
2317	struct bio *bio;
2318	char b[BDEVNAME_SIZE];
2319	struct md_rdev *rdev;
2320
2321	clear_bit(R1BIO_ReadError, &r1_bio->state);
2322	/* we got a read error. Maybe the drive is bad.  Maybe just
2323	 * the block and we can fix it.
2324	 * We freeze all other IO, and try reading the block from
2325	 * other devices.  When we find one, we re-write
2326	 * and check it that fixes the read error.
2327	 * This is all done synchronously while the array is
2328	 * frozen
2329	 */
2330	if (mddev->ro == 0) {
 
 
 
 
 
 
 
2331		freeze_array(conf, 1);
2332		fix_read_error(conf, r1_bio->read_disk,
2333			       r1_bio->sector, r1_bio->sectors);
2334		unfreeze_array(conf);
2335	} else
2336		md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2337	rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2338
2339	bio = r1_bio->bios[r1_bio->read_disk];
2340	bdevname(bio->bi_bdev, b);
2341read_more:
2342	disk = read_balance(conf, r1_bio, &max_sectors);
2343	if (disk == -1) {
2344		printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2345		       " read error for block %llu\n",
2346		       mdname(mddev), b, (unsigned long long)r1_bio->sector);
2347		raid_end_bio_io(r1_bio);
2348	} else {
2349		const unsigned long do_sync
2350			= r1_bio->master_bio->bi_rw & REQ_SYNC;
2351		if (bio) {
2352			r1_bio->bios[r1_bio->read_disk] =
2353				mddev->ro ? IO_BLOCKED : NULL;
2354			bio_put(bio);
2355		}
2356		r1_bio->read_disk = disk;
2357		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2358		bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2359			 max_sectors);
2360		r1_bio->bios[r1_bio->read_disk] = bio;
2361		rdev = conf->mirrors[disk].rdev;
2362		printk_ratelimited(KERN_ERR
2363				   "md/raid1:%s: redirecting sector %llu"
2364				   " to other mirror: %s\n",
2365				   mdname(mddev),
2366				   (unsigned long long)r1_bio->sector,
2367				   bdevname(rdev->bdev, b));
2368		bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2369		bio->bi_bdev = rdev->bdev;
2370		bio->bi_end_io = raid1_end_read_request;
2371		bio->bi_rw = READ | do_sync;
2372		bio->bi_private = r1_bio;
2373		if (max_sectors < r1_bio->sectors) {
2374			/* Drat - have to split this up more */
2375			struct bio *mbio = r1_bio->master_bio;
2376			int sectors_handled = (r1_bio->sector + max_sectors
2377					       - mbio->bi_iter.bi_sector);
2378			r1_bio->sectors = max_sectors;
2379			spin_lock_irq(&conf->device_lock);
2380			if (mbio->bi_phys_segments == 0)
2381				mbio->bi_phys_segments = 2;
2382			else
2383				mbio->bi_phys_segments++;
2384			spin_unlock_irq(&conf->device_lock);
2385			generic_make_request(bio);
2386			bio = NULL;
2387
2388			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2389
2390			r1_bio->master_bio = mbio;
2391			r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2392			r1_bio->state = 0;
2393			set_bit(R1BIO_ReadError, &r1_bio->state);
2394			r1_bio->mddev = mddev;
2395			r1_bio->sector = mbio->bi_iter.bi_sector +
2396				sectors_handled;
2397
2398			goto read_more;
2399		} else
2400			generic_make_request(bio);
2401	}
 
 
 
 
 
 
 
 
2402}
2403
2404static void raid1d(struct md_thread *thread)
2405{
2406	struct mddev *mddev = thread->mddev;
2407	struct r1bio *r1_bio;
2408	unsigned long flags;
2409	struct r1conf *conf = mddev->private;
2410	struct list_head *head = &conf->retry_list;
2411	struct blk_plug plug;
 
2412
2413	md_check_recovery(mddev);
2414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2415	blk_start_plug(&plug);
2416	for (;;) {
2417
2418		flush_pending_writes(conf);
2419
2420		spin_lock_irqsave(&conf->device_lock, flags);
2421		if (list_empty(head)) {
2422			spin_unlock_irqrestore(&conf->device_lock, flags);
2423			break;
2424		}
2425		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2426		list_del(head->prev);
2427		conf->nr_queued--;
 
2428		spin_unlock_irqrestore(&conf->device_lock, flags);
2429
2430		mddev = r1_bio->mddev;
2431		conf = mddev->private;
2432		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2433			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2434			    test_bit(R1BIO_WriteError, &r1_bio->state))
2435				handle_sync_write_finished(conf, r1_bio);
2436			else
2437				sync_request_write(mddev, r1_bio);
2438		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2439			   test_bit(R1BIO_WriteError, &r1_bio->state))
2440			handle_write_finished(conf, r1_bio);
2441		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2442			handle_read_error(conf, r1_bio);
2443		else
2444			/* just a partial read to be scheduled from separate
2445			 * context
2446			 */
2447			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2448
2449		cond_resched();
2450		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2451			md_check_recovery(mddev);
2452	}
2453	blk_finish_plug(&plug);
2454}
2455
2456
2457static int init_resync(struct r1conf *conf)
2458{
2459	int buffs;
2460
2461	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2462	BUG_ON(conf->r1buf_pool);
2463	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2464					  conf->poolinfo);
2465	if (!conf->r1buf_pool)
2466		return -ENOMEM;
2467	conf->next_resync = 0;
2468	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2469}
2470
2471/*
2472 * perform a "sync" on one "block"
2473 *
2474 * We need to make sure that no normal I/O request - particularly write
2475 * requests - conflict with active sync requests.
2476 *
2477 * This is achieved by tracking pending requests and a 'barrier' concept
2478 * that can be installed to exclude normal IO requests.
2479 */
2480
2481static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
 
2482{
2483	struct r1conf *conf = mddev->private;
2484	struct r1bio *r1_bio;
2485	struct bio *bio;
2486	sector_t max_sector, nr_sectors;
2487	int disk = -1;
2488	int i;
2489	int wonly = -1;
2490	int write_targets = 0, read_targets = 0;
2491	sector_t sync_blocks;
2492	int still_degraded = 0;
2493	int good_sectors = RESYNC_SECTORS;
2494	int min_bad = 0; /* number of sectors that are bad in all devices */
 
 
2495
2496	if (!conf->r1buf_pool)
2497		if (init_resync(conf))
2498			return 0;
2499
2500	max_sector = mddev->dev_sectors;
2501	if (sector_nr >= max_sector) {
2502		/* If we aborted, we need to abort the
2503		 * sync on the 'current' bitmap chunk (there will
2504		 * only be one in raid1 resync.
2505		 * We can find the current addess in mddev->curr_resync
2506		 */
2507		if (mddev->curr_resync < max_sector) /* aborted */
2508			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2509						&sync_blocks, 1);
2510		else /* completed sync */
2511			conf->fullsync = 0;
2512
2513		bitmap_close_sync(mddev->bitmap);
2514		close_sync(conf);
 
 
 
 
 
2515		return 0;
2516	}
2517
2518	if (mddev->bitmap == NULL &&
2519	    mddev->recovery_cp == MaxSector &&
2520	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2521	    conf->fullsync == 0) {
2522		*skipped = 1;
2523		return max_sector - sector_nr;
2524	}
2525	/* before building a request, check if we can skip these blocks..
2526	 * This call the bitmap_start_sync doesn't actually record anything
2527	 */
2528	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2529	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2530		/* We can skip this block, and probably several more */
2531		*skipped = 1;
2532		return sync_blocks;
2533	}
 
2534	/*
2535	 * If there is non-resync activity waiting for a turn,
2536	 * and resync is going fast enough,
2537	 * then let it though before starting on this new sync request.
2538	 */
2539	if (!go_faster && conf->nr_waiting)
2540		msleep_interruptible(1000);
2541
2542	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2543	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2544	raise_barrier(conf);
 
 
 
 
 
 
2545
2546	conf->next_resync = sector_nr;
2547
2548	rcu_read_lock();
2549	/*
2550	 * If we get a correctably read error during resync or recovery,
2551	 * we might want to read from a different device.  So we
2552	 * flag all drives that could conceivably be read from for READ,
2553	 * and any others (which will be non-In_sync devices) for WRITE.
2554	 * If a read fails, we try reading from something else for which READ
2555	 * is OK.
2556	 */
2557
2558	r1_bio->mddev = mddev;
2559	r1_bio->sector = sector_nr;
2560	r1_bio->state = 0;
2561	set_bit(R1BIO_IsSync, &r1_bio->state);
 
 
2562
2563	for (i = 0; i < conf->raid_disks * 2; i++) {
2564		struct md_rdev *rdev;
2565		bio = r1_bio->bios[i];
2566		bio_reset(bio);
2567
2568		rdev = rcu_dereference(conf->mirrors[i].rdev);
2569		if (rdev == NULL ||
2570		    test_bit(Faulty, &rdev->flags)) {
2571			if (i < conf->raid_disks)
2572				still_degraded = 1;
2573		} else if (!test_bit(In_sync, &rdev->flags)) {
2574			bio->bi_rw = WRITE;
2575			bio->bi_end_io = end_sync_write;
2576			write_targets ++;
2577		} else {
2578			/* may need to read from here */
2579			sector_t first_bad = MaxSector;
2580			int bad_sectors;
2581
2582			if (is_badblock(rdev, sector_nr, good_sectors,
2583					&first_bad, &bad_sectors)) {
2584				if (first_bad > sector_nr)
2585					good_sectors = first_bad - sector_nr;
2586				else {
2587					bad_sectors -= (sector_nr - first_bad);
2588					if (min_bad == 0 ||
2589					    min_bad > bad_sectors)
2590						min_bad = bad_sectors;
2591				}
2592			}
2593			if (sector_nr < first_bad) {
2594				if (test_bit(WriteMostly, &rdev->flags)) {
2595					if (wonly < 0)
2596						wonly = i;
2597				} else {
2598					if (disk < 0)
2599						disk = i;
2600				}
2601				bio->bi_rw = READ;
2602				bio->bi_end_io = end_sync_read;
2603				read_targets++;
2604			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2605				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2606				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2607				/*
2608				 * The device is suitable for reading (InSync),
2609				 * but has bad block(s) here. Let's try to correct them,
2610				 * if we are doing resync or repair. Otherwise, leave
2611				 * this device alone for this sync request.
2612				 */
2613				bio->bi_rw = WRITE;
2614				bio->bi_end_io = end_sync_write;
2615				write_targets++;
2616			}
2617		}
2618		if (bio->bi_end_io) {
2619			atomic_inc(&rdev->nr_pending);
2620			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2621			bio->bi_bdev = rdev->bdev;
2622			bio->bi_private = r1_bio;
 
2623		}
2624	}
2625	rcu_read_unlock();
2626	if (disk < 0)
2627		disk = wonly;
2628	r1_bio->read_disk = disk;
2629
2630	if (read_targets == 0 && min_bad > 0) {
2631		/* These sectors are bad on all InSync devices, so we
2632		 * need to mark them bad on all write targets
2633		 */
2634		int ok = 1;
2635		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2636			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2637				struct md_rdev *rdev = conf->mirrors[i].rdev;
2638				ok = rdev_set_badblocks(rdev, sector_nr,
2639							min_bad, 0
2640					) && ok;
2641			}
2642		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2643		*skipped = 1;
2644		put_buf(r1_bio);
2645
2646		if (!ok) {
2647			/* Cannot record the badblocks, so need to
2648			 * abort the resync.
2649			 * If there are multiple read targets, could just
2650			 * fail the really bad ones ???
2651			 */
2652			conf->recovery_disabled = mddev->recovery_disabled;
2653			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2654			return 0;
2655		} else
2656			return min_bad;
2657
2658	}
2659	if (min_bad > 0 && min_bad < good_sectors) {
2660		/* only resync enough to reach the next bad->good
2661		 * transition */
2662		good_sectors = min_bad;
2663	}
2664
2665	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2666		/* extra read targets are also write targets */
2667		write_targets += read_targets-1;
2668
2669	if (write_targets == 0 || read_targets == 0) {
2670		/* There is nowhere to write, so all non-sync
2671		 * drives must be failed - so we are finished
2672		 */
2673		sector_t rv;
2674		if (min_bad > 0)
2675			max_sector = sector_nr + min_bad;
2676		rv = max_sector - sector_nr;
2677		*skipped = 1;
2678		put_buf(r1_bio);
2679		return rv;
2680	}
2681
2682	if (max_sector > mddev->resync_max)
2683		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2684	if (max_sector > sector_nr + good_sectors)
2685		max_sector = sector_nr + good_sectors;
2686	nr_sectors = 0;
2687	sync_blocks = 0;
2688	do {
2689		struct page *page;
2690		int len = PAGE_SIZE;
2691		if (sector_nr + (len>>9) > max_sector)
2692			len = (max_sector - sector_nr) << 9;
2693		if (len == 0)
2694			break;
2695		if (sync_blocks == 0) {
2696			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2697					       &sync_blocks, still_degraded) &&
2698			    !conf->fullsync &&
2699			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2700				break;
2701			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2702			if ((len >> 9) > sync_blocks)
2703				len = sync_blocks<<9;
2704		}
2705
2706		for (i = 0 ; i < conf->raid_disks * 2; i++) {
 
 
2707			bio = r1_bio->bios[i];
 
2708			if (bio->bi_end_io) {
2709				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2710				if (bio_add_page(bio, page, len, 0) == 0) {
2711					/* stop here */
2712					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2713					while (i > 0) {
2714						i--;
2715						bio = r1_bio->bios[i];
2716						if (bio->bi_end_io==NULL)
2717							continue;
2718						/* remove last page from this bio */
2719						bio->bi_vcnt--;
2720						bio->bi_iter.bi_size -= len;
2721						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2722					}
2723					goto bio_full;
2724				}
2725			}
2726		}
2727		nr_sectors += len>>9;
2728		sector_nr += len>>9;
2729		sync_blocks -= (len>>9);
2730	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2731 bio_full:
2732	r1_bio->sectors = nr_sectors;
2733
 
 
 
 
 
 
 
 
 
 
2734	/* For a user-requested sync, we read all readable devices and do a
2735	 * compare
2736	 */
2737	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2738		atomic_set(&r1_bio->remaining, read_targets);
2739		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2740			bio = r1_bio->bios[i];
2741			if (bio->bi_end_io == end_sync_read) {
2742				read_targets--;
2743				md_sync_acct(bio->bi_bdev, nr_sectors);
2744				generic_make_request(bio);
 
 
2745			}
2746		}
2747	} else {
2748		atomic_set(&r1_bio->remaining, 1);
2749		bio = r1_bio->bios[r1_bio->read_disk];
2750		md_sync_acct(bio->bi_bdev, nr_sectors);
2751		generic_make_request(bio);
2752
 
2753	}
2754	return nr_sectors;
2755}
2756
2757static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2758{
2759	if (sectors)
2760		return sectors;
2761
2762	return mddev->dev_sectors;
2763}
2764
2765static struct r1conf *setup_conf(struct mddev *mddev)
2766{
2767	struct r1conf *conf;
2768	int i;
2769	struct raid1_info *disk;
2770	struct md_rdev *rdev;
2771	int err = -ENOMEM;
2772
2773	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2774	if (!conf)
2775		goto abort;
2776
2777	conf->mirrors = kzalloc(sizeof(struct raid1_info)
2778				* mddev->raid_disks * 2,
2779				 GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2780	if (!conf->mirrors)
2781		goto abort;
2782
2783	conf->tmppage = alloc_page(GFP_KERNEL);
2784	if (!conf->tmppage)
2785		goto abort;
2786
2787	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2788	if (!conf->poolinfo)
2789		goto abort;
2790	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2791	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2792					  r1bio_pool_free,
2793					  conf->poolinfo);
2794	if (!conf->r1bio_pool)
 
 
 
2795		goto abort;
2796
2797	conf->poolinfo->mddev = mddev;
2798
2799	err = -EINVAL;
2800	spin_lock_init(&conf->device_lock);
2801	rdev_for_each(rdev, mddev) {
2802		struct request_queue *q;
2803		int disk_idx = rdev->raid_disk;
2804		if (disk_idx >= mddev->raid_disks
2805		    || disk_idx < 0)
2806			continue;
2807		if (test_bit(Replacement, &rdev->flags))
2808			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2809		else
2810			disk = conf->mirrors + disk_idx;
2811
2812		if (disk->rdev)
2813			goto abort;
2814		disk->rdev = rdev;
2815		q = bdev_get_queue(rdev->bdev);
2816		if (q->merge_bvec_fn)
2817			mddev->merge_check_needed = 1;
2818
2819		disk->head_position = 0;
2820		disk->seq_start = MaxSector;
2821	}
2822	conf->raid_disks = mddev->raid_disks;
2823	conf->mddev = mddev;
2824	INIT_LIST_HEAD(&conf->retry_list);
 
2825
2826	spin_lock_init(&conf->resync_lock);
2827	init_waitqueue_head(&conf->wait_barrier);
2828
2829	bio_list_init(&conf->pending_bio_list);
2830	conf->pending_count = 0;
2831	conf->recovery_disabled = mddev->recovery_disabled - 1;
2832
2833	conf->start_next_window = MaxSector;
2834	conf->current_window_requests = conf->next_window_requests = 0;
2835
2836	err = -EIO;
2837	for (i = 0; i < conf->raid_disks * 2; i++) {
2838
2839		disk = conf->mirrors + i;
2840
2841		if (i < conf->raid_disks &&
2842		    disk[conf->raid_disks].rdev) {
2843			/* This slot has a replacement. */
2844			if (!disk->rdev) {
2845				/* No original, just make the replacement
2846				 * a recovering spare
2847				 */
2848				disk->rdev =
2849					disk[conf->raid_disks].rdev;
2850				disk[conf->raid_disks].rdev = NULL;
2851			} else if (!test_bit(In_sync, &disk->rdev->flags))
2852				/* Original is not in_sync - bad */
2853				goto abort;
2854		}
2855
2856		if (!disk->rdev ||
2857		    !test_bit(In_sync, &disk->rdev->flags)) {
2858			disk->head_position = 0;
2859			if (disk->rdev &&
2860			    (disk->rdev->saved_raid_disk < 0))
2861				conf->fullsync = 1;
2862		}
2863	}
2864
2865	err = -ENOMEM;
2866	conf->thread = md_register_thread(raid1d, mddev, "raid1");
2867	if (!conf->thread) {
2868		printk(KERN_ERR
2869		       "md/raid1:%s: couldn't allocate thread\n",
2870		       mdname(mddev));
2871		goto abort;
2872	}
2873
2874	return conf;
2875
2876 abort:
2877	if (conf) {
2878		if (conf->r1bio_pool)
2879			mempool_destroy(conf->r1bio_pool);
2880		kfree(conf->mirrors);
2881		safe_put_page(conf->tmppage);
2882		kfree(conf->poolinfo);
 
 
 
 
 
2883		kfree(conf);
2884	}
2885	return ERR_PTR(err);
2886}
2887
2888static int stop(struct mddev *mddev);
2889static int run(struct mddev *mddev)
2890{
2891	struct r1conf *conf;
2892	int i;
2893	struct md_rdev *rdev;
2894	int ret;
2895	bool discard_supported = false;
2896
2897	if (mddev->level != 1) {
2898		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2899		       mdname(mddev), mddev->level);
2900		return -EIO;
2901	}
2902	if (mddev->reshape_position != MaxSector) {
2903		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2904		       mdname(mddev));
2905		return -EIO;
2906	}
 
 
2907	/*
2908	 * copy the already verified devices into our private RAID1
2909	 * bookkeeping area. [whatever we allocate in run(),
2910	 * should be freed in stop()]
2911	 */
2912	if (mddev->private == NULL)
2913		conf = setup_conf(mddev);
2914	else
2915		conf = mddev->private;
2916
2917	if (IS_ERR(conf))
2918		return PTR_ERR(conf);
2919
2920	if (mddev->queue)
2921		blk_queue_max_write_same_sectors(mddev->queue, 0);
 
 
2922
2923	rdev_for_each(rdev, mddev) {
2924		if (!mddev->gendisk)
2925			continue;
2926		disk_stack_limits(mddev->gendisk, rdev->bdev,
2927				  rdev->data_offset << 9);
2928		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2929			discard_supported = true;
2930	}
2931
2932	mddev->degraded = 0;
2933	for (i=0; i < conf->raid_disks; i++)
2934		if (conf->mirrors[i].rdev == NULL ||
2935		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2936		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2937			mddev->degraded++;
 
 
 
 
 
 
 
2938
2939	if (conf->raid_disks - mddev->degraded == 1)
2940		mddev->recovery_cp = MaxSector;
2941
2942	if (mddev->recovery_cp != MaxSector)
2943		printk(KERN_NOTICE "md/raid1:%s: not clean"
2944		       " -- starting background reconstruction\n",
2945		       mdname(mddev));
2946	printk(KERN_INFO 
2947		"md/raid1:%s: active with %d out of %d mirrors\n",
2948		mdname(mddev), mddev->raid_disks - mddev->degraded, 
2949		mddev->raid_disks);
2950
2951	/*
2952	 * Ok, everything is just fine now
2953	 */
2954	mddev->thread = conf->thread;
2955	conf->thread = NULL;
2956	mddev->private = conf;
 
2957
2958	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2959
2960	if (mddev->queue) {
2961		mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2962		mddev->queue->backing_dev_info.congested_data = mddev;
2963		blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2964
2965		if (discard_supported)
2966			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2967						mddev->queue);
2968		else
2969			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2970						  mddev->queue);
2971	}
2972
2973	ret =  md_integrity_register(mddev);
2974	if (ret)
2975		stop(mddev);
 
 
 
 
 
 
2976	return ret;
2977}
2978
2979static int stop(struct mddev *mddev)
2980{
2981	struct r1conf *conf = mddev->private;
2982	struct bitmap *bitmap = mddev->bitmap;
2983
2984	/* wait for behind writes to complete */
2985	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2986		printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2987		       mdname(mddev));
2988		/* need to kick something here to make sure I/O goes? */
2989		wait_event(bitmap->behind_wait,
2990			   atomic_read(&bitmap->behind_writes) == 0);
2991	}
2992
2993	freeze_array(conf, 0);
2994	unfreeze_array(conf);
2995
2996	md_unregister_thread(&mddev->thread);
2997	if (conf->r1bio_pool)
2998		mempool_destroy(conf->r1bio_pool);
2999	kfree(conf->mirrors);
3000	safe_put_page(conf->tmppage);
3001	kfree(conf->poolinfo);
 
 
 
 
 
3002	kfree(conf);
3003	mddev->private = NULL;
3004	return 0;
3005}
3006
3007static int raid1_resize(struct mddev *mddev, sector_t sectors)
3008{
3009	/* no resync is happening, and there is enough space
3010	 * on all devices, so we can resize.
3011	 * We need to make sure resync covers any new space.
3012	 * If the array is shrinking we should possibly wait until
3013	 * any io in the removed space completes, but it hardly seems
3014	 * worth it.
3015	 */
3016	sector_t newsize = raid1_size(mddev, sectors, 0);
3017	if (mddev->external_size &&
3018	    mddev->array_sectors > newsize)
3019		return -EINVAL;
3020	if (mddev->bitmap) {
3021		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3022		if (ret)
3023			return ret;
3024	}
3025	md_set_array_sectors(mddev, newsize);
3026	set_capacity(mddev->gendisk, mddev->array_sectors);
3027	revalidate_disk(mddev->gendisk);
3028	if (sectors > mddev->dev_sectors &&
3029	    mddev->recovery_cp > mddev->dev_sectors) {
3030		mddev->recovery_cp = mddev->dev_sectors;
3031		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3032	}
3033	mddev->dev_sectors = sectors;
3034	mddev->resync_max_sectors = sectors;
3035	return 0;
3036}
3037
3038static int raid1_reshape(struct mddev *mddev)
3039{
3040	/* We need to:
3041	 * 1/ resize the r1bio_pool
3042	 * 2/ resize conf->mirrors
3043	 *
3044	 * We allocate a new r1bio_pool if we can.
3045	 * Then raise a device barrier and wait until all IO stops.
3046	 * Then resize conf->mirrors and swap in the new r1bio pool.
3047	 *
3048	 * At the same time, we "pack" the devices so that all the missing
3049	 * devices have the higher raid_disk numbers.
3050	 */
3051	mempool_t *newpool, *oldpool;
3052	struct pool_info *newpoolinfo;
3053	struct raid1_info *newmirrors;
3054	struct r1conf *conf = mddev->private;
3055	int cnt, raid_disks;
3056	unsigned long flags;
3057	int d, d2, err;
 
 
 
 
3058
3059	/* Cannot change chunk_size, layout, or level */
3060	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3061	    mddev->layout != mddev->new_layout ||
3062	    mddev->level != mddev->new_level) {
3063		mddev->new_chunk_sectors = mddev->chunk_sectors;
3064		mddev->new_layout = mddev->layout;
3065		mddev->new_level = mddev->level;
3066		return -EINVAL;
3067	}
3068
3069	err = md_allow_write(mddev);
3070	if (err)
3071		return err;
3072
3073	raid_disks = mddev->raid_disks + mddev->delta_disks;
3074
3075	if (raid_disks < conf->raid_disks) {
3076		cnt=0;
3077		for (d= 0; d < conf->raid_disks; d++)
3078			if (conf->mirrors[d].rdev)
3079				cnt++;
3080		if (cnt > raid_disks)
3081			return -EBUSY;
3082	}
3083
3084	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3085	if (!newpoolinfo)
3086		return -ENOMEM;
3087	newpoolinfo->mddev = mddev;
3088	newpoolinfo->raid_disks = raid_disks * 2;
3089
3090	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3091				 r1bio_pool_free, newpoolinfo);
3092	if (!newpool) {
3093		kfree(newpoolinfo);
3094		return -ENOMEM;
3095	}
3096	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
 
3097			     GFP_KERNEL);
3098	if (!newmirrors) {
3099		kfree(newpoolinfo);
3100		mempool_destroy(newpool);
3101		return -ENOMEM;
3102	}
3103
3104	freeze_array(conf, 0);
3105
3106	/* ok, everything is stopped */
3107	oldpool = conf->r1bio_pool;
3108	conf->r1bio_pool = newpool;
3109
3110	for (d = d2 = 0; d < conf->raid_disks; d++) {
3111		struct md_rdev *rdev = conf->mirrors[d].rdev;
3112		if (rdev && rdev->raid_disk != d2) {
3113			sysfs_unlink_rdev(mddev, rdev);
3114			rdev->raid_disk = d2;
3115			sysfs_unlink_rdev(mddev, rdev);
3116			if (sysfs_link_rdev(mddev, rdev))
3117				printk(KERN_WARNING
3118				       "md/raid1:%s: cannot register rd%d\n",
3119				       mdname(mddev), rdev->raid_disk);
3120		}
3121		if (rdev)
3122			newmirrors[d2++].rdev = rdev;
3123	}
3124	kfree(conf->mirrors);
3125	conf->mirrors = newmirrors;
3126	kfree(conf->poolinfo);
3127	conf->poolinfo = newpoolinfo;
3128
3129	spin_lock_irqsave(&conf->device_lock, flags);
3130	mddev->degraded += (raid_disks - conf->raid_disks);
3131	spin_unlock_irqrestore(&conf->device_lock, flags);
3132	conf->raid_disks = mddev->raid_disks = raid_disks;
3133	mddev->delta_disks = 0;
3134
3135	unfreeze_array(conf);
3136
 
3137	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3138	md_wakeup_thread(mddev->thread);
3139
3140	mempool_destroy(oldpool);
3141	return 0;
3142}
3143
3144static void raid1_quiesce(struct mddev *mddev, int state)
3145{
3146	struct r1conf *conf = mddev->private;
3147
3148	switch(state) {
3149	case 2: /* wake for suspend */
3150		wake_up(&conf->wait_barrier);
3151		break;
3152	case 1:
3153		freeze_array(conf, 0);
3154		break;
3155	case 0:
3156		unfreeze_array(conf);
3157		break;
3158	}
3159}
3160
3161static void *raid1_takeover(struct mddev *mddev)
3162{
3163	/* raid1 can take over:
3164	 *  raid5 with 2 devices, any layout or chunk size
3165	 */
3166	if (mddev->level == 5 && mddev->raid_disks == 2) {
3167		struct r1conf *conf;
3168		mddev->new_level = 1;
3169		mddev->new_layout = 0;
3170		mddev->new_chunk_sectors = 0;
3171		conf = setup_conf(mddev);
3172		if (!IS_ERR(conf))
3173			/* Array must appear to be quiesced */
3174			conf->array_frozen = 1;
 
 
 
3175		return conf;
3176	}
3177	return ERR_PTR(-EINVAL);
3178}
3179
3180static struct md_personality raid1_personality =
3181{
3182	.name		= "raid1",
3183	.level		= 1,
3184	.owner		= THIS_MODULE,
3185	.make_request	= make_request,
3186	.run		= run,
3187	.stop		= stop,
3188	.status		= status,
3189	.error_handler	= error,
3190	.hot_add_disk	= raid1_add_disk,
3191	.hot_remove_disk= raid1_remove_disk,
3192	.spare_active	= raid1_spare_active,
3193	.sync_request	= sync_request,
3194	.resize		= raid1_resize,
3195	.size		= raid1_size,
3196	.check_reshape	= raid1_reshape,
3197	.quiesce	= raid1_quiesce,
3198	.takeover	= raid1_takeover,
3199};
3200
3201static int __init raid_init(void)
3202{
3203	return register_md_personality(&raid1_personality);
3204}
3205
3206static void raid_exit(void)
3207{
3208	unregister_md_personality(&raid1_personality);
3209}
3210
3211module_init(raid_init);
3212module_exit(raid_exit);
3213MODULE_LICENSE("GPL");
3214MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3215MODULE_ALIAS("md-personality-3"); /* RAID1 */
3216MODULE_ALIAS("md-raid1");
3217MODULE_ALIAS("md-level-1");
3218
3219module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * raid1.c : Multiple Devices driver for Linux
   4 *
   5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
   6 *
   7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   8 *
   9 * RAID-1 management functions.
  10 *
  11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  12 *
  13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  15 *
  16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  17 * bitmapped intelligence in resync:
  18 *
  19 *      - bitmap marked during normal i/o
  20 *      - bitmap used to skip nondirty blocks during sync
  21 *
  22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  23 * - persistent bitmap code
 
 
 
 
 
 
 
 
 
  24 */
  25
  26#include <linux/slab.h>
  27#include <linux/delay.h>
  28#include <linux/blkdev.h>
  29#include <linux/module.h>
  30#include <linux/seq_file.h>
  31#include <linux/ratelimit.h>
  32#include <linux/interval_tree_generic.h>
  33
  34#include <trace/events/block.h>
  35
  36#include "md.h"
  37#include "raid1.h"
  38#include "md-bitmap.h"
  39
  40#define UNSUPPORTED_MDDEV_FLAGS		\
  41	((1L << MD_HAS_JOURNAL) |	\
  42	 (1L << MD_JOURNAL_CLEAN) |	\
  43	 (1L << MD_HAS_PPL) |		\
  44	 (1L << MD_HAS_MULTIPLE_PPLS))
  45
  46static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
  47static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
 
 
 
 
 
 
 
 
 
  48
  49#define raid1_log(md, fmt, args...)				\
  50	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
  51
  52#include "raid1-10.c"
  53
  54#define START(node) ((node)->start)
  55#define LAST(node) ((node)->last)
  56INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
  57		     START, LAST, static inline, raid1_rb);
  58
  59static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
  60				struct serial_info *si, int idx)
  61{
  62	unsigned long flags;
  63	int ret = 0;
  64	sector_t lo = r1_bio->sector;
  65	sector_t hi = lo + r1_bio->sectors;
  66	struct serial_in_rdev *serial = &rdev->serial[idx];
  67
  68	spin_lock_irqsave(&serial->serial_lock, flags);
  69	/* collision happened */
  70	if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
  71		ret = -EBUSY;
  72	else {
  73		si->start = lo;
  74		si->last = hi;
  75		raid1_rb_insert(si, &serial->serial_rb);
  76	}
  77	spin_unlock_irqrestore(&serial->serial_lock, flags);
  78
  79	return ret;
  80}
  81
  82static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
  83{
  84	struct mddev *mddev = rdev->mddev;
  85	struct serial_info *si;
  86	int idx = sector_to_idx(r1_bio->sector);
  87	struct serial_in_rdev *serial = &rdev->serial[idx];
  88
  89	if (WARN_ON(!mddev->serial_info_pool))
  90		return;
  91	si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
  92	wait_event(serial->serial_io_wait,
  93		   check_and_add_serial(rdev, r1_bio, si, idx) == 0);
  94}
  95
  96static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
  97{
  98	struct serial_info *si;
  99	unsigned long flags;
 100	int found = 0;
 101	struct mddev *mddev = rdev->mddev;
 102	int idx = sector_to_idx(lo);
 103	struct serial_in_rdev *serial = &rdev->serial[idx];
 104
 105	spin_lock_irqsave(&serial->serial_lock, flags);
 106	for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
 107	     si; si = raid1_rb_iter_next(si, lo, hi)) {
 108		if (si->start == lo && si->last == hi) {
 109			raid1_rb_remove(si, &serial->serial_rb);
 110			mempool_free(si, mddev->serial_info_pool);
 111			found = 1;
 112			break;
 113		}
 114	}
 115	if (!found)
 116		WARN(1, "The write IO is not recorded for serialization\n");
 117	spin_unlock_irqrestore(&serial->serial_lock, flags);
 118	wake_up(&serial->serial_io_wait);
 119}
 120
 121/*
 122 * for resync bio, r1bio pointer can be retrieved from the per-bio
 123 * 'struct resync_pages'.
 124 */
 125static inline struct r1bio *get_resync_r1bio(struct bio *bio)
 126{
 127	return get_resync_pages(bio)->raid_bio;
 128}
 129
 130static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
 131{
 132	struct pool_info *pi = data;
 133	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
 134
 135	/* allocate a r1bio with room for raid_disks entries in the bios array */
 136	return kzalloc(size, gfp_flags);
 137}
 138
 
 
 
 
 
 
 139#define RESYNC_DEPTH 32
 140#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
 
 141#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
 142#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
 143#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
 144#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
 145
 146static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
 147{
 148	struct pool_info *pi = data;
 149	struct r1bio *r1_bio;
 150	struct bio *bio;
 151	int need_pages;
 152	int j;
 153	struct resync_pages *rps;
 154
 155	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
 156	if (!r1_bio)
 157		return NULL;
 158
 159	rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
 160			    gfp_flags);
 161	if (!rps)
 162		goto out_free_r1bio;
 163
 164	/*
 165	 * Allocate bios : 1 for reading, n-1 for writing
 166	 */
 167	for (j = pi->raid_disks ; j-- ; ) {
 168		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 169		if (!bio)
 170			goto out_free_bio;
 171		r1_bio->bios[j] = bio;
 172	}
 173	/*
 174	 * Allocate RESYNC_PAGES data pages and attach them to
 175	 * the first bio.
 176	 * If this is a user-requested check/repair, allocate
 177	 * RESYNC_PAGES for each bio.
 178	 */
 179	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
 180		need_pages = pi->raid_disks;
 181	else
 182		need_pages = 1;
 183	for (j = 0; j < pi->raid_disks; j++) {
 184		struct resync_pages *rp = &rps[j];
 185
 186		bio = r1_bio->bios[j];
 
 187
 188		if (j < need_pages) {
 189			if (resync_alloc_pages(rp, gfp_flags))
 190				goto out_free_pages;
 191		} else {
 192			memcpy(rp, &rps[0], sizeof(*rp));
 193			resync_get_all_pages(rp);
 194		}
 195
 196		rp->raid_bio = r1_bio;
 197		bio->bi_private = rp;
 198	}
 199
 200	r1_bio->master_bio = NULL;
 201
 202	return r1_bio;
 203
 204out_free_pages:
 205	while (--j >= 0)
 206		resync_free_pages(&rps[j]);
 
 
 
 
 207
 208out_free_bio:
 209	while (++j < pi->raid_disks)
 210		bio_put(r1_bio->bios[j]);
 211	kfree(rps);
 212
 213out_free_r1bio:
 214	rbio_pool_free(r1_bio, data);
 215	return NULL;
 216}
 217
 218static void r1buf_pool_free(void *__r1_bio, void *data)
 219{
 220	struct pool_info *pi = data;
 221	int i;
 222	struct r1bio *r1bio = __r1_bio;
 223	struct resync_pages *rp = NULL;
 224
 225	for (i = pi->raid_disks; i--; ) {
 226		rp = get_resync_pages(r1bio->bios[i]);
 227		resync_free_pages(rp);
 
 
 
 
 
 228		bio_put(r1bio->bios[i]);
 229	}
 230
 231	/* resync pages array stored in the 1st bio's .bi_private */
 232	kfree(rp);
 233
 234	rbio_pool_free(r1bio, data);
 235}
 236
 237static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
 238{
 239	int i;
 240
 241	for (i = 0; i < conf->raid_disks * 2; i++) {
 242		struct bio **bio = r1_bio->bios + i;
 243		if (!BIO_SPECIAL(*bio))
 244			bio_put(*bio);
 245		*bio = NULL;
 246	}
 247}
 248
 249static void free_r1bio(struct r1bio *r1_bio)
 250{
 251	struct r1conf *conf = r1_bio->mddev->private;
 252
 253	put_all_bios(conf, r1_bio);
 254	mempool_free(r1_bio, &conf->r1bio_pool);
 255}
 256
 257static void put_buf(struct r1bio *r1_bio)
 258{
 259	struct r1conf *conf = r1_bio->mddev->private;
 260	sector_t sect = r1_bio->sector;
 261	int i;
 262
 263	for (i = 0; i < conf->raid_disks * 2; i++) {
 264		struct bio *bio = r1_bio->bios[i];
 265		if (bio->bi_end_io)
 266			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
 267	}
 268
 269	mempool_free(r1_bio, &conf->r1buf_pool);
 270
 271	lower_barrier(conf, sect);
 272}
 273
 274static void reschedule_retry(struct r1bio *r1_bio)
 275{
 276	unsigned long flags;
 277	struct mddev *mddev = r1_bio->mddev;
 278	struct r1conf *conf = mddev->private;
 279	int idx;
 280
 281	idx = sector_to_idx(r1_bio->sector);
 282	spin_lock_irqsave(&conf->device_lock, flags);
 283	list_add(&r1_bio->retry_list, &conf->retry_list);
 284	atomic_inc(&conf->nr_queued[idx]);
 285	spin_unlock_irqrestore(&conf->device_lock, flags);
 286
 287	wake_up(&conf->wait_barrier);
 288	md_wakeup_thread(mddev->thread);
 289}
 290
 291/*
 292 * raid_end_bio_io() is called when we have finished servicing a mirrored
 293 * operation and are ready to return a success/failure code to the buffer
 294 * cache layer.
 295 */
 296static void call_bio_endio(struct r1bio *r1_bio)
 297{
 298	struct bio *bio = r1_bio->master_bio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 299
 300	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
 301		bio->bi_status = BLK_STS_IOERR;
 302
 303	bio_endio(bio);
 
 
 
 
 
 
 304}
 305
 306static void raid_end_bio_io(struct r1bio *r1_bio)
 307{
 308	struct bio *bio = r1_bio->master_bio;
 309	struct r1conf *conf = r1_bio->mddev->private;
 310
 311	/* if nobody has done the final endio yet, do it now */
 312	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 313		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
 314			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
 315			 (unsigned long long) bio->bi_iter.bi_sector,
 316			 (unsigned long long) bio_end_sector(bio) - 1);
 317
 318		call_bio_endio(r1_bio);
 319	}
 320	/*
 321	 * Wake up any possible resync thread that waits for the device
 322	 * to go idle.  All I/Os, even write-behind writes, are done.
 323	 */
 324	allow_barrier(conf, r1_bio->sector);
 325
 326	free_r1bio(r1_bio);
 327}
 328
 329/*
 330 * Update disk head position estimator based on IRQ completion info.
 331 */
 332static inline void update_head_pos(int disk, struct r1bio *r1_bio)
 333{
 334	struct r1conf *conf = r1_bio->mddev->private;
 335
 336	conf->mirrors[disk].head_position =
 337		r1_bio->sector + (r1_bio->sectors);
 338}
 339
 340/*
 341 * Find the disk number which triggered given bio
 342 */
 343static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
 344{
 345	int mirror;
 346	struct r1conf *conf = r1_bio->mddev->private;
 347	int raid_disks = conf->raid_disks;
 348
 349	for (mirror = 0; mirror < raid_disks * 2; mirror++)
 350		if (r1_bio->bios[mirror] == bio)
 351			break;
 352
 353	BUG_ON(mirror == raid_disks * 2);
 354	update_head_pos(mirror, r1_bio);
 355
 356	return mirror;
 357}
 358
 359static void raid1_end_read_request(struct bio *bio)
 360{
 361	int uptodate = !bio->bi_status;
 362	struct r1bio *r1_bio = bio->bi_private;
 
 363	struct r1conf *conf = r1_bio->mddev->private;
 364	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
 365
 
 366	/*
 367	 * this branch is our 'one mirror IO has finished' event handler:
 368	 */
 369	update_head_pos(r1_bio->read_disk, r1_bio);
 370
 371	if (uptodate)
 372		set_bit(R1BIO_Uptodate, &r1_bio->state);
 373	else if (test_bit(FailFast, &rdev->flags) &&
 374		 test_bit(R1BIO_FailFast, &r1_bio->state))
 375		/* This was a fail-fast read so we definitely
 376		 * want to retry */
 377		;
 378	else {
 379		/* If all other devices have failed, we want to return
 380		 * the error upwards rather than fail the last device.
 381		 * Here we redefine "uptodate" to mean "Don't want to retry"
 382		 */
 383		unsigned long flags;
 384		spin_lock_irqsave(&conf->device_lock, flags);
 385		if (r1_bio->mddev->degraded == conf->raid_disks ||
 386		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
 387		     test_bit(In_sync, &rdev->flags)))
 388			uptodate = 1;
 389		spin_unlock_irqrestore(&conf->device_lock, flags);
 390	}
 391
 392	if (uptodate) {
 393		raid_end_bio_io(r1_bio);
 394		rdev_dec_pending(rdev, conf->mddev);
 395	} else {
 396		/*
 397		 * oops, read error:
 398		 */
 399		char b[BDEVNAME_SIZE];
 400		pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
 401				   mdname(conf->mddev),
 402				   bdevname(rdev->bdev, b),
 403				   (unsigned long long)r1_bio->sector);
 
 
 
 404		set_bit(R1BIO_ReadError, &r1_bio->state);
 405		reschedule_retry(r1_bio);
 406		/* don't drop the reference on read_disk yet */
 407	}
 408}
 409
 410static void close_write(struct r1bio *r1_bio)
 411{
 412	/* it really is the end of this request */
 413	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
 414		bio_free_pages(r1_bio->behind_master_bio);
 415		bio_put(r1_bio->behind_master_bio);
 416		r1_bio->behind_master_bio = NULL;
 
 
 
 417	}
 418	/* clear the bitmap if all writes complete successfully */
 419	md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
 420			   r1_bio->sectors,
 421			   !test_bit(R1BIO_Degraded, &r1_bio->state),
 422			   test_bit(R1BIO_BehindIO, &r1_bio->state));
 423	md_write_end(r1_bio->mddev);
 424}
 425
 426static void r1_bio_write_done(struct r1bio *r1_bio)
 427{
 428	if (!atomic_dec_and_test(&r1_bio->remaining))
 429		return;
 430
 431	if (test_bit(R1BIO_WriteError, &r1_bio->state))
 432		reschedule_retry(r1_bio);
 433	else {
 434		close_write(r1_bio);
 435		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
 436			reschedule_retry(r1_bio);
 437		else
 438			raid_end_bio_io(r1_bio);
 439	}
 440}
 441
 442static void raid1_end_write_request(struct bio *bio)
 443{
 
 444	struct r1bio *r1_bio = bio->bi_private;
 445	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
 446	struct r1conf *conf = r1_bio->mddev->private;
 447	struct bio *to_put = NULL;
 448	int mirror = find_bio_disk(r1_bio, bio);
 449	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
 450	bool discard_error;
 451	sector_t lo = r1_bio->sector;
 452	sector_t hi = r1_bio->sector + r1_bio->sectors;
 453
 454	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
 455
 456	/*
 457	 * 'one mirror IO has finished' event handler:
 458	 */
 459	if (bio->bi_status && !discard_error) {
 460		set_bit(WriteErrorSeen,	&rdev->flags);
 461		if (!test_and_set_bit(WantReplacement, &rdev->flags))
 
 
 462			set_bit(MD_RECOVERY_NEEDED, &
 463				conf->mddev->recovery);
 464
 465		if (test_bit(FailFast, &rdev->flags) &&
 466		    (bio->bi_opf & MD_FAILFAST) &&
 467		    /* We never try FailFast to WriteMostly devices */
 468		    !test_bit(WriteMostly, &rdev->flags)) {
 469			md_error(r1_bio->mddev, rdev);
 470		}
 471
 472		/*
 473		 * When the device is faulty, it is not necessary to
 474		 * handle write error.
 475		 * For failfast, this is the only remaining device,
 476		 * We need to retry the write without FailFast.
 477		 */
 478		if (!test_bit(Faulty, &rdev->flags))
 479			set_bit(R1BIO_WriteError, &r1_bio->state);
 480		else {
 481			/* Finished with this branch */
 482			r1_bio->bios[mirror] = NULL;
 483			to_put = bio;
 484		}
 485	} else {
 486		/*
 487		 * Set R1BIO_Uptodate in our master bio, so that we
 488		 * will return a good error code for to the higher
 489		 * levels even if IO on some other mirrored buffer
 490		 * fails.
 491		 *
 492		 * The 'master' represents the composite IO operation
 493		 * to user-side. So if something waits for IO, then it
 494		 * will wait for the 'master' bio.
 495		 */
 496		sector_t first_bad;
 497		int bad_sectors;
 498
 499		r1_bio->bios[mirror] = NULL;
 500		to_put = bio;
 501		/*
 502		 * Do not set R1BIO_Uptodate if the current device is
 503		 * rebuilding or Faulty. This is because we cannot use
 504		 * such device for properly reading the data back (we could
 505		 * potentially use it, if the current write would have felt
 506		 * before rdev->recovery_offset, but for simplicity we don't
 507		 * check this here.
 508		 */
 509		if (test_bit(In_sync, &rdev->flags) &&
 510		    !test_bit(Faulty, &rdev->flags))
 511			set_bit(R1BIO_Uptodate, &r1_bio->state);
 512
 513		/* Maybe we can clear some bad blocks. */
 514		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
 515				&first_bad, &bad_sectors) && !discard_error) {
 
 516			r1_bio->bios[mirror] = IO_MADE_GOOD;
 517			set_bit(R1BIO_MadeGood, &r1_bio->state);
 518		}
 519	}
 520
 521	if (behind) {
 522		if (test_bit(CollisionCheck, &rdev->flags))
 523			remove_serial(rdev, lo, hi);
 524		if (test_bit(WriteMostly, &rdev->flags))
 525			atomic_dec(&r1_bio->behind_remaining);
 526
 527		/*
 528		 * In behind mode, we ACK the master bio once the I/O
 529		 * has safely reached all non-writemostly
 530		 * disks. Setting the Returned bit ensures that this
 531		 * gets done only once -- we don't ever want to return
 532		 * -EIO here, instead we'll wait
 533		 */
 534		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
 535		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
 536			/* Maybe we can return now */
 537			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 538				struct bio *mbio = r1_bio->master_bio;
 539				pr_debug("raid1: behind end write sectors"
 540					 " %llu-%llu\n",
 541					 (unsigned long long) mbio->bi_iter.bi_sector,
 542					 (unsigned long long) bio_end_sector(mbio) - 1);
 543				call_bio_endio(r1_bio);
 544			}
 545		}
 546	} else if (rdev->mddev->serialize_policy)
 547		remove_serial(rdev, lo, hi);
 548	if (r1_bio->bios[mirror] == NULL)
 549		rdev_dec_pending(rdev, conf->mddev);
 
 550
 551	/*
 552	 * Let's see if all mirrored write operations have finished
 553	 * already.
 554	 */
 555	r1_bio_write_done(r1_bio);
 556
 557	if (to_put)
 558		bio_put(to_put);
 559}
 560
 561static sector_t align_to_barrier_unit_end(sector_t start_sector,
 562					  sector_t sectors)
 563{
 564	sector_t len;
 565
 566	WARN_ON(sectors == 0);
 567	/*
 568	 * len is the number of sectors from start_sector to end of the
 569	 * barrier unit which start_sector belongs to.
 570	 */
 571	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
 572	      start_sector;
 573
 574	if (len > sectors)
 575		len = sectors;
 576
 577	return len;
 578}
 579
 580/*
 581 * This routine returns the disk from which the requested read should
 582 * be done. There is a per-array 'next expected sequential IO' sector
 583 * number - if this matches on the next IO then we use the last disk.
 584 * There is also a per-disk 'last know head position' sector that is
 585 * maintained from IRQ contexts, both the normal and the resync IO
 586 * completion handlers update this position correctly. If there is no
 587 * perfect sequential match then we pick the disk whose head is closest.
 588 *
 589 * If there are 2 mirrors in the same 2 devices, performance degrades
 590 * because position is mirror, not device based.
 591 *
 592 * The rdev for the device selected will have nr_pending incremented.
 593 */
 594static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
 595{
 596	const sector_t this_sector = r1_bio->sector;
 597	int sectors;
 598	int best_good_sectors;
 599	int best_disk, best_dist_disk, best_pending_disk;
 600	int has_nonrot_disk;
 601	int disk;
 602	sector_t best_dist;
 603	unsigned int min_pending;
 604	struct md_rdev *rdev;
 605	int choose_first;
 606	int choose_next_idle;
 607
 608	rcu_read_lock();
 609	/*
 610	 * Check if we can balance. We can balance on the whole
 611	 * device if no resync is going on, or below the resync window.
 612	 * We take the first readable disk when above the resync window.
 613	 */
 614 retry:
 615	sectors = r1_bio->sectors;
 616	best_disk = -1;
 617	best_dist_disk = -1;
 618	best_dist = MaxSector;
 619	best_pending_disk = -1;
 620	min_pending = UINT_MAX;
 621	best_good_sectors = 0;
 622	has_nonrot_disk = 0;
 623	choose_next_idle = 0;
 624	clear_bit(R1BIO_FailFast, &r1_bio->state);
 625
 626	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
 627	    (mddev_is_clustered(conf->mddev) &&
 628	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
 629		    this_sector + sectors)))
 630		choose_first = 1;
 631	else
 632		choose_first = 0;
 633
 634	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
 635		sector_t dist;
 636		sector_t first_bad;
 637		int bad_sectors;
 638		unsigned int pending;
 639		bool nonrot;
 640
 641		rdev = rcu_dereference(conf->mirrors[disk].rdev);
 642		if (r1_bio->bios[disk] == IO_BLOCKED
 643		    || rdev == NULL
 
 644		    || test_bit(Faulty, &rdev->flags))
 645			continue;
 646		if (!test_bit(In_sync, &rdev->flags) &&
 647		    rdev->recovery_offset < this_sector + sectors)
 648			continue;
 649		if (test_bit(WriteMostly, &rdev->flags)) {
 650			/* Don't balance among write-mostly, just
 651			 * use the first as a last resort */
 652			if (best_dist_disk < 0) {
 653				if (is_badblock(rdev, this_sector, sectors,
 654						&first_bad, &bad_sectors)) {
 655					if (first_bad <= this_sector)
 656						/* Cannot use this */
 657						continue;
 658					best_good_sectors = first_bad - this_sector;
 659				} else
 660					best_good_sectors = sectors;
 661				best_dist_disk = disk;
 662				best_pending_disk = disk;
 663			}
 664			continue;
 665		}
 666		/* This is a reasonable device to use.  It might
 667		 * even be best.
 668		 */
 669		if (is_badblock(rdev, this_sector, sectors,
 670				&first_bad, &bad_sectors)) {
 671			if (best_dist < MaxSector)
 672				/* already have a better device */
 673				continue;
 674			if (first_bad <= this_sector) {
 675				/* cannot read here. If this is the 'primary'
 676				 * device, then we must not read beyond
 677				 * bad_sectors from another device..
 678				 */
 679				bad_sectors -= (this_sector - first_bad);
 680				if (choose_first && sectors > bad_sectors)
 681					sectors = bad_sectors;
 682				if (best_good_sectors > sectors)
 683					best_good_sectors = sectors;
 684
 685			} else {
 686				sector_t good_sectors = first_bad - this_sector;
 687				if (good_sectors > best_good_sectors) {
 688					best_good_sectors = good_sectors;
 689					best_disk = disk;
 690				}
 691				if (choose_first)
 692					break;
 693			}
 694			continue;
 695		} else {
 696			if ((sectors > best_good_sectors) && (best_disk >= 0))
 697				best_disk = -1;
 698			best_good_sectors = sectors;
 699		}
 700
 701		if (best_disk >= 0)
 702			/* At least two disks to choose from so failfast is OK */
 703			set_bit(R1BIO_FailFast, &r1_bio->state);
 704
 705		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
 706		has_nonrot_disk |= nonrot;
 707		pending = atomic_read(&rdev->nr_pending);
 708		dist = abs(this_sector - conf->mirrors[disk].head_position);
 709		if (choose_first) {
 710			best_disk = disk;
 711			break;
 712		}
 713		/* Don't change to another disk for sequential reads */
 714		if (conf->mirrors[disk].next_seq_sect == this_sector
 715		    || dist == 0) {
 716			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
 717			struct raid1_info *mirror = &conf->mirrors[disk];
 718
 719			best_disk = disk;
 720			/*
 721			 * If buffered sequential IO size exceeds optimal
 722			 * iosize, check if there is idle disk. If yes, choose
 723			 * the idle disk. read_balance could already choose an
 724			 * idle disk before noticing it's a sequential IO in
 725			 * this disk. This doesn't matter because this disk
 726			 * will idle, next time it will be utilized after the
 727			 * first disk has IO size exceeds optimal iosize. In
 728			 * this way, iosize of the first disk will be optimal
 729			 * iosize at least. iosize of the second disk might be
 730			 * small, but not a big deal since when the second disk
 731			 * starts IO, the first disk is likely still busy.
 732			 */
 733			if (nonrot && opt_iosize > 0 &&
 734			    mirror->seq_start != MaxSector &&
 735			    mirror->next_seq_sect > opt_iosize &&
 736			    mirror->next_seq_sect - opt_iosize >=
 737			    mirror->seq_start) {
 738				choose_next_idle = 1;
 739				continue;
 740			}
 741			break;
 742		}
 
 
 
 
 
 743
 744		if (choose_next_idle)
 745			continue;
 746
 747		if (min_pending > pending) {
 748			min_pending = pending;
 749			best_pending_disk = disk;
 750		}
 751
 752		if (dist < best_dist) {
 753			best_dist = dist;
 754			best_dist_disk = disk;
 755		}
 756	}
 757
 758	/*
 759	 * If all disks are rotational, choose the closest disk. If any disk is
 760	 * non-rotational, choose the disk with less pending request even the
 761	 * disk is rotational, which might/might not be optimal for raids with
 762	 * mixed ratation/non-rotational disks depending on workload.
 763	 */
 764	if (best_disk == -1) {
 765		if (has_nonrot_disk || min_pending == 0)
 766			best_disk = best_pending_disk;
 767		else
 768			best_disk = best_dist_disk;
 769	}
 770
 771	if (best_disk >= 0) {
 772		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
 773		if (!rdev)
 774			goto retry;
 775		atomic_inc(&rdev->nr_pending);
 
 
 
 
 
 
 
 776		sectors = best_good_sectors;
 777
 778		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
 779			conf->mirrors[best_disk].seq_start = this_sector;
 780
 781		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
 782	}
 783	rcu_read_unlock();
 784	*max_sectors = sectors;
 785
 786	return best_disk;
 787}
 788
 789static void flush_bio_list(struct r1conf *conf, struct bio *bio)
 
 
 790{
 791	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
 792	md_bitmap_unplug(conf->mddev->bitmap);
 793	wake_up(&conf->wait_barrier);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 794
 795	while (bio) { /* submit pending writes */
 796		struct bio *next = bio->bi_next;
 797		struct md_rdev *rdev = (void *)bio->bi_disk;
 798		bio->bi_next = NULL;
 799		bio_set_dev(bio, rdev->bdev);
 800		if (test_bit(Faulty, &rdev->flags)) {
 801			bio_io_error(bio);
 802		} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
 803				    !blk_queue_discard(bio->bi_disk->queue)))
 804			/* Just ignore it */
 805			bio_endio(bio);
 806		else
 807			submit_bio_noacct(bio);
 808		bio = next;
 809		cond_resched();
 810	}
 
 
 
 
 
 
 
 
 
 
 
 811}
 812
 813static void flush_pending_writes(struct r1conf *conf)
 814{
 815	/* Any writes that have been queued but are awaiting
 816	 * bitmap updates get flushed here.
 817	 */
 818	spin_lock_irq(&conf->device_lock);
 819
 820	if (conf->pending_bio_list.head) {
 821		struct blk_plug plug;
 822		struct bio *bio;
 823
 824		bio = bio_list_get(&conf->pending_bio_list);
 825		conf->pending_count = 0;
 826		spin_unlock_irq(&conf->device_lock);
 
 
 
 
 827
 828		/*
 829		 * As this is called in a wait_event() loop (see freeze_array),
 830		 * current->state might be TASK_UNINTERRUPTIBLE which will
 831		 * cause a warning when we prepare to wait again.  As it is
 832		 * rare that this path is taken, it is perfectly safe to force
 833		 * us to go around the wait_event() loop again, so the warning
 834		 * is a false-positive.  Silence the warning by resetting
 835		 * thread state
 836		 */
 837		__set_current_state(TASK_RUNNING);
 838		blk_start_plug(&plug);
 839		flush_bio_list(conf, bio);
 840		blk_finish_plug(&plug);
 841	} else
 842		spin_unlock_irq(&conf->device_lock);
 843}
 844
 845/* Barriers....
 846 * Sometimes we need to suspend IO while we do something else,
 847 * either some resync/recovery, or reconfigure the array.
 848 * To do this we raise a 'barrier'.
 849 * The 'barrier' is a counter that can be raised multiple times
 850 * to count how many activities are happening which preclude
 851 * normal IO.
 852 * We can only raise the barrier if there is no pending IO.
 853 * i.e. if nr_pending == 0.
 854 * We choose only to raise the barrier if no-one is waiting for the
 855 * barrier to go down.  This means that as soon as an IO request
 856 * is ready, no other operations which require a barrier will start
 857 * until the IO request has had a chance.
 858 *
 859 * So: regular IO calls 'wait_barrier'.  When that returns there
 860 *    is no backgroup IO happening,  It must arrange to call
 861 *    allow_barrier when it has finished its IO.
 862 * backgroup IO calls must call raise_barrier.  Once that returns
 863 *    there is no normal IO happeing.  It must arrange to call
 864 *    lower_barrier when the particular background IO completes.
 865 *
 866 * If resync/recovery is interrupted, returns -EINTR;
 867 * Otherwise, returns 0.
 868 */
 869static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
 870{
 871	int idx = sector_to_idx(sector_nr);
 872
 873	spin_lock_irq(&conf->resync_lock);
 874
 875	/* Wait until no block IO is waiting */
 876	wait_event_lock_irq(conf->wait_barrier,
 877			    !atomic_read(&conf->nr_waiting[idx]),
 878			    conf->resync_lock);
 879
 880	/* block any new IO from starting */
 881	atomic_inc(&conf->barrier[idx]);
 882	/*
 883	 * In raise_barrier() we firstly increase conf->barrier[idx] then
 884	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
 885	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
 886	 * A memory barrier here to make sure conf->nr_pending[idx] won't
 887	 * be fetched before conf->barrier[idx] is increased. Otherwise
 888	 * there will be a race between raise_barrier() and _wait_barrier().
 889	 */
 890	smp_mb__after_atomic();
 891
 892	/* For these conditions we must wait:
 893	 * A: while the array is in frozen state
 894	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
 895	 *    existing in corresponding I/O barrier bucket.
 896	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
 897	 *    max resync count which allowed on current I/O barrier bucket.
 
 898	 */
 899	wait_event_lock_irq(conf->wait_barrier,
 900			    (!conf->array_frozen &&
 901			     !atomic_read(&conf->nr_pending[idx]) &&
 902			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
 903				test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
 904			    conf->resync_lock);
 905
 906	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
 907		atomic_dec(&conf->barrier[idx]);
 908		spin_unlock_irq(&conf->resync_lock);
 909		wake_up(&conf->wait_barrier);
 910		return -EINTR;
 911	}
 912
 913	atomic_inc(&conf->nr_sync_pending);
 914	spin_unlock_irq(&conf->resync_lock);
 915
 916	return 0;
 917}
 918
 919static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
 920{
 921	int idx = sector_to_idx(sector_nr);
 922
 923	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
 924
 925	atomic_dec(&conf->barrier[idx]);
 926	atomic_dec(&conf->nr_sync_pending);
 927	wake_up(&conf->wait_barrier);
 928}
 929
 930static void _wait_barrier(struct r1conf *conf, int idx)
 931{
 932	/*
 933	 * We need to increase conf->nr_pending[idx] very early here,
 934	 * then raise_barrier() can be blocked when it waits for
 935	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
 936	 * conf->resync_lock when there is no barrier raised in same
 937	 * barrier unit bucket. Also if the array is frozen, I/O
 938	 * should be blocked until array is unfrozen.
 939	 */
 940	atomic_inc(&conf->nr_pending[idx]);
 941	/*
 942	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
 943	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
 944	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
 945	 * barrier is necessary here to make sure conf->barrier[idx] won't be
 946	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
 947	 * will be a race between _wait_barrier() and raise_barrier().
 948	 */
 949	smp_mb__after_atomic();
 950
 951	/*
 952	 * Don't worry about checking two atomic_t variables at same time
 953	 * here. If during we check conf->barrier[idx], the array is
 954	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
 955	 * 0, it is safe to return and make the I/O continue. Because the
 956	 * array is frozen, all I/O returned here will eventually complete
 957	 * or be queued, no race will happen. See code comment in
 958	 * frozen_array().
 959	 */
 960	if (!READ_ONCE(conf->array_frozen) &&
 961	    !atomic_read(&conf->barrier[idx]))
 962		return;
 
 963
 964	/*
 965	 * After holding conf->resync_lock, conf->nr_pending[idx]
 966	 * should be decreased before waiting for barrier to drop.
 967	 * Otherwise, we may encounter a race condition because
 968	 * raise_barrer() might be waiting for conf->nr_pending[idx]
 969	 * to be 0 at same time.
 970	 */
 971	spin_lock_irq(&conf->resync_lock);
 972	atomic_inc(&conf->nr_waiting[idx]);
 973	atomic_dec(&conf->nr_pending[idx]);
 974	/*
 975	 * In case freeze_array() is waiting for
 976	 * get_unqueued_pending() == extra
 977	 */
 978	wake_up(&conf->wait_barrier);
 979	/* Wait for the barrier in same barrier unit bucket to drop. */
 980	wait_event_lock_irq(conf->wait_barrier,
 981			    !conf->array_frozen &&
 982			     !atomic_read(&conf->barrier[idx]),
 983			    conf->resync_lock);
 984	atomic_inc(&conf->nr_pending[idx]);
 985	atomic_dec(&conf->nr_waiting[idx]);
 986	spin_unlock_irq(&conf->resync_lock);
 987}
 988
 989static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
 990{
 991	int idx = sector_to_idx(sector_nr);
 992
 993	/*
 994	 * Very similar to _wait_barrier(). The difference is, for read
 995	 * I/O we don't need wait for sync I/O, but if the whole array
 996	 * is frozen, the read I/O still has to wait until the array is
 997	 * unfrozen. Since there is no ordering requirement with
 998	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
 999	 */
1000	atomic_inc(&conf->nr_pending[idx]);
1001
1002	if (!READ_ONCE(conf->array_frozen))
1003		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1004
1005	spin_lock_irq(&conf->resync_lock);
1006	atomic_inc(&conf->nr_waiting[idx]);
1007	atomic_dec(&conf->nr_pending[idx]);
1008	/*
1009	 * In case freeze_array() is waiting for
1010	 * get_unqueued_pending() == extra
1011	 */
1012	wake_up(&conf->wait_barrier);
1013	/* Wait for array to be unfrozen */
1014	wait_event_lock_irq(conf->wait_barrier,
1015			    !conf->array_frozen,
1016			    conf->resync_lock);
1017	atomic_inc(&conf->nr_pending[idx]);
1018	atomic_dec(&conf->nr_waiting[idx]);
1019	spin_unlock_irq(&conf->resync_lock);
 
1020}
1021
1022static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
 
1023{
1024	int idx = sector_to_idx(sector_nr);
1025
1026	_wait_barrier(conf, idx);
1027}
 
 
 
 
 
 
 
 
 
1028
1029static void _allow_barrier(struct r1conf *conf, int idx)
1030{
1031	atomic_dec(&conf->nr_pending[idx]);
 
 
 
 
 
 
 
 
 
1032	wake_up(&conf->wait_barrier);
1033}
1034
1035static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1036{
1037	int idx = sector_to_idx(sector_nr);
1038
1039	_allow_barrier(conf, idx);
1040}
1041
1042/* conf->resync_lock should be held */
1043static int get_unqueued_pending(struct r1conf *conf)
1044{
1045	int idx, ret;
1046
1047	ret = atomic_read(&conf->nr_sync_pending);
1048	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1049		ret += atomic_read(&conf->nr_pending[idx]) -
1050			atomic_read(&conf->nr_queued[idx]);
1051
1052	return ret;
1053}
1054
1055static void freeze_array(struct r1conf *conf, int extra)
1056{
1057	/* Stop sync I/O and normal I/O and wait for everything to
1058	 * go quiet.
1059	 * This is called in two situations:
1060	 * 1) management command handlers (reshape, remove disk, quiesce).
1061	 * 2) one normal I/O request failed.
1062
1063	 * After array_frozen is set to 1, new sync IO will be blocked at
1064	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1065	 * or wait_read_barrier(). The flying I/Os will either complete or be
1066	 * queued. When everything goes quite, there are only queued I/Os left.
1067
1068	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1069	 * barrier bucket index which this I/O request hits. When all sync and
1070	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1071	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1072	 * in handle_read_error(), we may call freeze_array() before trying to
1073	 * fix the read error. In this case, the error read I/O is not queued,
1074	 * so get_unqueued_pending() == 1.
1075	 *
1076	 * Therefore before this function returns, we need to wait until
1077	 * get_unqueued_pendings(conf) gets equal to extra. For
1078	 * normal I/O context, extra is 1, in rested situations extra is 0.
1079	 */
1080	spin_lock_irq(&conf->resync_lock);
1081	conf->array_frozen = 1;
1082	raid1_log(conf->mddev, "wait freeze");
1083	wait_event_lock_irq_cmd(
1084		conf->wait_barrier,
1085		get_unqueued_pending(conf) == extra,
1086		conf->resync_lock,
1087		flush_pending_writes(conf));
1088	spin_unlock_irq(&conf->resync_lock);
1089}
1090static void unfreeze_array(struct r1conf *conf)
1091{
1092	/* reverse the effect of the freeze */
1093	spin_lock_irq(&conf->resync_lock);
1094	conf->array_frozen = 0;
 
1095	spin_unlock_irq(&conf->resync_lock);
1096	wake_up(&conf->wait_barrier);
1097}
1098
1099static void alloc_behind_master_bio(struct r1bio *r1_bio,
1100					   struct bio *bio)
 
 
1101{
1102	int size = bio->bi_iter.bi_size;
1103	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1104	int i = 0;
1105	struct bio *behind_bio = NULL;
1106
1107	behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1108	if (!behind_bio)
1109		return;
1110
1111	/* discard op, we don't support writezero/writesame yet */
1112	if (!bio_has_data(bio)) {
1113		behind_bio->bi_iter.bi_size = size;
1114		goto skip_copy;
 
 
 
 
 
1115	}
1116
1117	behind_bio->bi_write_hint = bio->bi_write_hint;
1118
1119	while (i < vcnt && size) {
1120		struct page *page;
1121		int len = min_t(int, PAGE_SIZE, size);
1122
1123		page = alloc_page(GFP_NOIO);
1124		if (unlikely(!page))
1125			goto free_pages;
1126
1127		bio_add_page(behind_bio, page, len, 0);
1128
1129		size -= len;
1130		i++;
1131	}
1132
1133	bio_copy_data(behind_bio, bio);
1134skip_copy:
1135	r1_bio->behind_master_bio = behind_bio;
1136	set_bit(R1BIO_BehindIO, &r1_bio->state);
1137
1138	return;
1139
1140free_pages:
 
 
 
 
1141	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1142		 bio->bi_iter.bi_size);
1143	bio_free_pages(behind_bio);
1144	bio_put(behind_bio);
1145}
1146
1147struct raid1_plug_cb {
1148	struct blk_plug_cb	cb;
1149	struct bio_list		pending;
1150	int			pending_cnt;
1151};
1152
1153static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1154{
1155	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1156						  cb);
1157	struct mddev *mddev = plug->cb.data;
1158	struct r1conf *conf = mddev->private;
1159	struct bio *bio;
1160
1161	if (from_schedule || current->bio_list) {
1162		spin_lock_irq(&conf->device_lock);
1163		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1164		conf->pending_count += plug->pending_cnt;
1165		spin_unlock_irq(&conf->device_lock);
1166		wake_up(&conf->wait_barrier);
1167		md_wakeup_thread(mddev->thread);
1168		kfree(plug);
1169		return;
1170	}
1171
1172	/* we aren't scheduling, so we can do the write-out directly. */
1173	bio = bio_list_get(&plug->pending);
1174	flush_bio_list(conf, bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
1175	kfree(plug);
1176}
1177
1178static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1179{
1180	r1_bio->master_bio = bio;
1181	r1_bio->sectors = bio_sectors(bio);
1182	r1_bio->state = 0;
1183	r1_bio->mddev = mddev;
1184	r1_bio->sector = bio->bi_iter.bi_sector;
1185}
1186
1187static inline struct r1bio *
1188alloc_r1bio(struct mddev *mddev, struct bio *bio)
1189{
1190	struct r1conf *conf = mddev->private;
 
1191	struct r1bio *r1_bio;
1192
1193	r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1194	/* Ensure no bio records IO_BLOCKED */
1195	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1196	init_r1bio(r1_bio, mddev, bio);
1197	return r1_bio;
1198}
1199
1200static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1201			       int max_read_sectors, struct r1bio *r1_bio)
1202{
1203	struct r1conf *conf = mddev->private;
1204	struct raid1_info *mirror;
1205	struct bio *read_bio;
1206	struct bitmap *bitmap = mddev->bitmap;
1207	const int op = bio_op(bio);
1208	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
 
 
 
 
 
 
 
 
 
 
 
1209	int max_sectors;
1210	int rdisk;
1211	bool print_msg = !!r1_bio;
1212	char b[BDEVNAME_SIZE];
1213
1214	/*
1215	 * If r1_bio is set, we are blocking the raid1d thread
1216	 * so there is a tiny risk of deadlock.  So ask for
1217	 * emergency memory if needed.
1218	 */
1219	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1220
1221	if (print_msg) {
1222		/* Need to get the block device name carefully */
1223		struct md_rdev *rdev;
1224		rcu_read_lock();
1225		rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1226		if (rdev)
1227			bdevname(rdev->bdev, b);
1228		else
1229			strcpy(b, "???");
1230		rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
1231	}
1232
1233	/*
1234	 * Still need barrier for READ in case that whole
1235	 * array is frozen.
1236	 */
1237	wait_read_barrier(conf, bio->bi_iter.bi_sector);
1238
1239	if (!r1_bio)
1240		r1_bio = alloc_r1bio(mddev, bio);
1241	else
1242		init_r1bio(r1_bio, mddev, bio);
1243	r1_bio->sectors = max_read_sectors;
1244
1245	/*
1246	 * make_request() can abort the operation when read-ahead is being
1247	 * used and no empty request is available.
 
1248	 */
1249	rdisk = read_balance(conf, r1_bio, &max_sectors);
1250
1251	if (rdisk < 0) {
1252		/* couldn't find anywhere to read from */
1253		if (print_msg) {
1254			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1255					    mdname(mddev),
1256					    b,
1257					    (unsigned long long)r1_bio->sector);
1258		}
1259		raid_end_bio_io(r1_bio);
1260		return;
1261	}
1262	mirror = conf->mirrors + rdisk;
1263
1264	if (print_msg)
1265		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1266				    mdname(mddev),
1267				    (unsigned long long)r1_bio->sector,
1268				    bdevname(mirror->rdev->bdev, b));
 
 
 
 
1269
1270	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1271	    bitmap) {
1272		/*
1273		 * Reading from a write-mostly device must take care not to
1274		 * over-take any writes that are 'behind'
1275		 */
1276		raid1_log(mddev, "wait behind writes");
1277		wait_event(bitmap->behind_wait,
1278			   atomic_read(&bitmap->behind_writes) == 0);
1279	}
1280
1281	if (max_sectors < bio_sectors(bio)) {
1282		struct bio *split = bio_split(bio, max_sectors,
1283					      gfp, &conf->bio_split);
1284		bio_chain(split, bio);
1285		submit_bio_noacct(bio);
1286		bio = split;
1287		r1_bio->master_bio = bio;
1288		r1_bio->sectors = max_sectors;
1289	}
1290
1291	r1_bio->read_disk = rdisk;
 
 
 
 
 
1292
1293	read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
 
 
 
 
 
 
 
 
 
1294
1295	r1_bio->bios[rdisk] = read_bio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1296
1297	read_bio->bi_iter.bi_sector = r1_bio->sector +
1298		mirror->rdev->data_offset;
1299	bio_set_dev(read_bio, mirror->rdev->bdev);
1300	read_bio->bi_end_io = raid1_end_read_request;
1301	bio_set_op_attrs(read_bio, op, do_sync);
1302	if (test_bit(FailFast, &mirror->rdev->flags) &&
1303	    test_bit(R1BIO_FailFast, &r1_bio->state))
1304	        read_bio->bi_opf |= MD_FAILFAST;
1305	read_bio->bi_private = r1_bio;
 
 
 
 
 
 
1306
1307	if (mddev->gendisk)
1308	        trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
1309				disk_devt(mddev->gendisk), r1_bio->sector);
1310
1311	submit_bio_noacct(read_bio);
1312}
1313
1314static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1315				int max_write_sectors)
1316{
1317	struct r1conf *conf = mddev->private;
1318	struct r1bio *r1_bio;
1319	int i, disks;
1320	struct bitmap *bitmap = mddev->bitmap;
1321	unsigned long flags;
1322	struct md_rdev *blocked_rdev;
1323	struct blk_plug_cb *cb;
1324	struct raid1_plug_cb *plug = NULL;
1325	int first_clone;
1326	int max_sectors;
1327
1328	if (mddev_is_clustered(mddev) &&
1329	     md_cluster_ops->area_resyncing(mddev, WRITE,
1330		     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1331
1332		DEFINE_WAIT(w);
1333		for (;;) {
1334			prepare_to_wait(&conf->wait_barrier,
1335					&w, TASK_IDLE);
1336			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1337							bio->bi_iter.bi_sector,
1338							bio_end_sector(bio)))
1339				break;
1340			schedule();
1341		}
1342		finish_wait(&conf->wait_barrier, &w);
1343	}
1344
1345	/*
1346	 * Register the new request and wait if the reconstruction
1347	 * thread has put up a bar for new requests.
1348	 * Continue immediately if no resync is active currently.
1349	 */
1350	wait_barrier(conf, bio->bi_iter.bi_sector);
1351
1352	r1_bio = alloc_r1bio(mddev, bio);
1353	r1_bio->sectors = max_write_sectors;
1354
1355	if (conf->pending_count >= max_queued_requests) {
1356		md_wakeup_thread(mddev->thread);
1357		raid1_log(mddev, "wait queued");
1358		wait_event(conf->wait_barrier,
1359			   conf->pending_count < max_queued_requests);
1360	}
1361	/* first select target devices under rcu_lock and
1362	 * inc refcount on their rdev.  Record them by setting
1363	 * bios[x] to bio
1364	 * If there are known/acknowledged bad blocks on any device on
1365	 * which we have seen a write error, we want to avoid writing those
1366	 * blocks.
1367	 * This potentially requires several writes to write around
1368	 * the bad blocks.  Each set of writes gets it's own r1bio
1369	 * with a set of bios attached.
1370	 */
1371
1372	disks = conf->raid_disks * 2;
1373 retry_write:
 
1374	blocked_rdev = NULL;
1375	rcu_read_lock();
1376	max_sectors = r1_bio->sectors;
1377	for (i = 0;  i < disks; i++) {
1378		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1379		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1380			atomic_inc(&rdev->nr_pending);
1381			blocked_rdev = rdev;
1382			break;
1383		}
1384		r1_bio->bios[i] = NULL;
1385		if (!rdev || test_bit(Faulty, &rdev->flags)) {
 
1386			if (i < conf->raid_disks)
1387				set_bit(R1BIO_Degraded, &r1_bio->state);
1388			continue;
1389		}
1390
1391		atomic_inc(&rdev->nr_pending);
1392		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1393			sector_t first_bad;
1394			int bad_sectors;
1395			int is_bad;
1396
1397			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
 
1398					     &first_bad, &bad_sectors);
1399			if (is_bad < 0) {
1400				/* mustn't write here until the bad block is
1401				 * acknowledged*/
1402				set_bit(BlockedBadBlocks, &rdev->flags);
1403				blocked_rdev = rdev;
1404				break;
1405			}
1406			if (is_bad && first_bad <= r1_bio->sector) {
1407				/* Cannot write here at all */
1408				bad_sectors -= (r1_bio->sector - first_bad);
1409				if (bad_sectors < max_sectors)
1410					/* mustn't write more than bad_sectors
1411					 * to other devices yet
1412					 */
1413					max_sectors = bad_sectors;
1414				rdev_dec_pending(rdev, mddev);
1415				/* We don't set R1BIO_Degraded as that
1416				 * only applies if the disk is
1417				 * missing, so it might be re-added,
1418				 * and we want to know to recover this
1419				 * chunk.
1420				 * In this case the device is here,
1421				 * and the fact that this chunk is not
1422				 * in-sync is recorded in the bad
1423				 * block log
1424				 */
1425				continue;
1426			}
1427			if (is_bad) {
1428				int good_sectors = first_bad - r1_bio->sector;
1429				if (good_sectors < max_sectors)
1430					max_sectors = good_sectors;
1431			}
1432		}
1433		r1_bio->bios[i] = bio;
1434	}
1435	rcu_read_unlock();
1436
1437	if (unlikely(blocked_rdev)) {
1438		/* Wait for this device to become unblocked */
1439		int j;
 
1440
1441		for (j = 0; j < i; j++)
1442			if (r1_bio->bios[j])
1443				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1444		r1_bio->state = 0;
1445		allow_barrier(conf, bio->bi_iter.bi_sector);
1446		raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1447		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1448		wait_barrier(conf, bio->bi_iter.bi_sector);
 
 
 
 
 
 
 
 
 
1449		goto retry_write;
1450	}
1451
1452	if (max_sectors < bio_sectors(bio)) {
1453		struct bio *split = bio_split(bio, max_sectors,
1454					      GFP_NOIO, &conf->bio_split);
1455		bio_chain(split, bio);
1456		submit_bio_noacct(bio);
1457		bio = split;
1458		r1_bio->master_bio = bio;
1459		r1_bio->sectors = max_sectors;
 
 
 
 
 
 
1460	}
 
1461
1462	atomic_set(&r1_bio->remaining, 1);
1463	atomic_set(&r1_bio->behind_remaining, 0);
1464
1465	first_clone = 1;
1466
1467	for (i = 0; i < disks; i++) {
1468		struct bio *mbio = NULL;
1469		struct md_rdev *rdev = conf->mirrors[i].rdev;
1470		if (!r1_bio->bios[i])
1471			continue;
1472
 
 
 
1473		if (first_clone) {
1474			/* do behind I/O ?
1475			 * Not if there are too many, or cannot
1476			 * allocate memory, or a reader on WriteMostly
1477			 * is waiting for behind writes to flush */
1478			if (bitmap &&
1479			    (atomic_read(&bitmap->behind_writes)
1480			     < mddev->bitmap_info.max_write_behind) &&
1481			    !waitqueue_active(&bitmap->behind_wait)) {
1482				alloc_behind_master_bio(r1_bio, bio);
1483			}
1484
1485			md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1486					     test_bit(R1BIO_BehindIO, &r1_bio->state));
 
 
1487			first_clone = 0;
1488		}
 
 
 
1489
1490		if (r1_bio->behind_master_bio)
1491			mbio = bio_clone_fast(r1_bio->behind_master_bio,
1492					      GFP_NOIO, &mddev->bio_set);
1493		else
1494			mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1495
1496		if (r1_bio->behind_master_bio) {
1497			if (test_bit(CollisionCheck, &rdev->flags))
1498				wait_for_serialization(rdev, r1_bio);
1499			if (test_bit(WriteMostly, &rdev->flags))
1500				atomic_inc(&r1_bio->behind_remaining);
1501		} else if (mddev->serialize_policy)
1502			wait_for_serialization(rdev, r1_bio);
1503
1504		r1_bio->bios[i] = mbio;
1505
1506		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1507				   conf->mirrors[i].rdev->data_offset);
1508		bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1509		mbio->bi_end_io	= raid1_end_write_request;
1510		mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1511		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1512		    !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1513		    conf->raid_disks - mddev->degraded > 1)
1514			mbio->bi_opf |= MD_FAILFAST;
1515		mbio->bi_private = r1_bio;
1516
1517		atomic_inc(&r1_bio->remaining);
1518
1519		if (mddev->gendisk)
1520			trace_block_bio_remap(mbio->bi_disk->queue,
1521					      mbio, disk_devt(mddev->gendisk),
1522					      r1_bio->sector);
1523		/* flush_pending_writes() needs access to the rdev so...*/
1524		mbio->bi_disk = (void *)conf->mirrors[i].rdev;
1525
1526		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1527		if (cb)
1528			plug = container_of(cb, struct raid1_plug_cb, cb);
1529		else
1530			plug = NULL;
 
1531		if (plug) {
1532			bio_list_add(&plug->pending, mbio);
1533			plug->pending_cnt++;
1534		} else {
1535			spin_lock_irqsave(&conf->device_lock, flags);
1536			bio_list_add(&conf->pending_bio_list, mbio);
1537			conf->pending_count++;
1538			spin_unlock_irqrestore(&conf->device_lock, flags);
 
 
1539			md_wakeup_thread(mddev->thread);
1540		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1541	}
1542
1543	r1_bio_write_done(r1_bio);
1544
1545	/* In case raid1d snuck in to freeze_array */
1546	wake_up(&conf->wait_barrier);
1547}
1548
1549static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1550{
1551	sector_t sectors;
1552
1553	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1554	    && md_flush_request(mddev, bio))
1555		return true;
1556
1557	/*
1558	 * There is a limit to the maximum size, but
1559	 * the read/write handler might find a lower limit
1560	 * due to bad blocks.  To avoid multiple splits,
1561	 * we pass the maximum number of sectors down
1562	 * and let the lower level perform the split.
1563	 */
1564	sectors = align_to_barrier_unit_end(
1565		bio->bi_iter.bi_sector, bio_sectors(bio));
1566
1567	if (bio_data_dir(bio) == READ)
1568		raid1_read_request(mddev, bio, sectors, NULL);
1569	else {
1570		if (!md_write_start(mddev,bio))
1571			return false;
1572		raid1_write_request(mddev, bio, sectors);
1573	}
1574	return true;
1575}
1576
1577static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1578{
1579	struct r1conf *conf = mddev->private;
1580	int i;
1581
1582	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1583		   conf->raid_disks - mddev->degraded);
1584	rcu_read_lock();
1585	for (i = 0; i < conf->raid_disks; i++) {
1586		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1587		seq_printf(seq, "%s",
1588			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1589	}
1590	rcu_read_unlock();
1591	seq_printf(seq, "]");
1592}
1593
1594static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
 
1595{
1596	char b[BDEVNAME_SIZE];
1597	struct r1conf *conf = mddev->private;
1598	unsigned long flags;
1599
1600	/*
1601	 * If it is not operational, then we have already marked it as dead
1602	 * else if it is the last working disks with "fail_last_dev == false",
1603	 * ignore the error, let the next level up know.
1604	 * else mark the drive as failed
1605	 */
1606	spin_lock_irqsave(&conf->device_lock, flags);
1607	if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1608	    && (conf->raid_disks - mddev->degraded) == 1) {
1609		/*
1610		 * Don't fail the drive, act as though we were just a
1611		 * normal single drive.
1612		 * However don't try a recovery from this drive as
1613		 * it is very likely to fail.
1614		 */
1615		conf->recovery_disabled = mddev->recovery_disabled;
1616		spin_unlock_irqrestore(&conf->device_lock, flags);
1617		return;
1618	}
1619	set_bit(Blocked, &rdev->flags);
1620	if (test_and_clear_bit(In_sync, &rdev->flags))
 
 
1621		mddev->degraded++;
1622	set_bit(Faulty, &rdev->flags);
1623	spin_unlock_irqrestore(&conf->device_lock, flags);
1624	/*
1625	 * if recovery is running, make sure it aborts.
1626	 */
1627	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1628	set_mask_bits(&mddev->sb_flags, 0,
1629		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1630	pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1631		"md/raid1:%s: Operation continuing on %d devices.\n",
1632		mdname(mddev), bdevname(rdev->bdev, b),
1633		mdname(mddev), conf->raid_disks - mddev->degraded);
 
 
1634}
1635
1636static void print_conf(struct r1conf *conf)
1637{
1638	int i;
1639
1640	pr_debug("RAID1 conf printout:\n");
1641	if (!conf) {
1642		pr_debug("(!conf)\n");
1643		return;
1644	}
1645	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1646		 conf->raid_disks);
1647
1648	rcu_read_lock();
1649	for (i = 0; i < conf->raid_disks; i++) {
1650		char b[BDEVNAME_SIZE];
1651		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1652		if (rdev)
1653			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1654				 i, !test_bit(In_sync, &rdev->flags),
1655				 !test_bit(Faulty, &rdev->flags),
1656				 bdevname(rdev->bdev,b));
1657	}
1658	rcu_read_unlock();
1659}
1660
1661static void close_sync(struct r1conf *conf)
1662{
1663	int idx;
 
1664
1665	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1666		_wait_barrier(conf, idx);
1667		_allow_barrier(conf, idx);
1668	}
1669
1670	mempool_exit(&conf->r1buf_pool);
 
1671}
1672
1673static int raid1_spare_active(struct mddev *mddev)
1674{
1675	int i;
1676	struct r1conf *conf = mddev->private;
1677	int count = 0;
1678	unsigned long flags;
1679
1680	/*
1681	 * Find all failed disks within the RAID1 configuration
1682	 * and mark them readable.
1683	 * Called under mddev lock, so rcu protection not needed.
1684	 * device_lock used to avoid races with raid1_end_read_request
1685	 * which expects 'In_sync' flags and ->degraded to be consistent.
1686	 */
1687	spin_lock_irqsave(&conf->device_lock, flags);
1688	for (i = 0; i < conf->raid_disks; i++) {
1689		struct md_rdev *rdev = conf->mirrors[i].rdev;
1690		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1691		if (repl
1692		    && !test_bit(Candidate, &repl->flags)
1693		    && repl->recovery_offset == MaxSector
1694		    && !test_bit(Faulty, &repl->flags)
1695		    && !test_and_set_bit(In_sync, &repl->flags)) {
1696			/* replacement has just become active */
1697			if (!rdev ||
1698			    !test_and_clear_bit(In_sync, &rdev->flags))
1699				count++;
1700			if (rdev) {
1701				/* Replaced device not technically
1702				 * faulty, but we need to be sure
1703				 * it gets removed and never re-added
1704				 */
1705				set_bit(Faulty, &rdev->flags);
1706				sysfs_notify_dirent_safe(
1707					rdev->sysfs_state);
1708			}
1709		}
1710		if (rdev
1711		    && rdev->recovery_offset == MaxSector
1712		    && !test_bit(Faulty, &rdev->flags)
1713		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1714			count++;
1715			sysfs_notify_dirent_safe(rdev->sysfs_state);
1716		}
1717	}
 
1718	mddev->degraded -= count;
1719	spin_unlock_irqrestore(&conf->device_lock, flags);
1720
1721	print_conf(conf);
1722	return count;
1723}
1724
 
1725static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1726{
1727	struct r1conf *conf = mddev->private;
1728	int err = -EEXIST;
1729	int mirror = 0;
1730	struct raid1_info *p;
1731	int first = 0;
1732	int last = conf->raid_disks - 1;
 
1733
1734	if (mddev->recovery_disabled == conf->recovery_disabled)
1735		return -EBUSY;
1736
1737	if (md_integrity_add_rdev(rdev, mddev))
1738		return -ENXIO;
1739
1740	if (rdev->raid_disk >= 0)
1741		first = last = rdev->raid_disk;
1742
1743	/*
1744	 * find the disk ... but prefer rdev->saved_raid_disk
1745	 * if possible.
1746	 */
1747	if (rdev->saved_raid_disk >= 0 &&
1748	    rdev->saved_raid_disk >= first &&
1749	    rdev->saved_raid_disk < conf->raid_disks &&
1750	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1751		first = last = rdev->saved_raid_disk;
1752
1753	for (mirror = first; mirror <= last; mirror++) {
1754		p = conf->mirrors + mirror;
1755		if (!p->rdev) {
 
1756			if (mddev->gendisk)
1757				disk_stack_limits(mddev->gendisk, rdev->bdev,
1758						  rdev->data_offset << 9);
1759
1760			p->head_position = 0;
1761			rdev->raid_disk = mirror;
1762			err = 0;
1763			/* As all devices are equivalent, we don't need a full recovery
1764			 * if this was recently any drive of the array
1765			 */
1766			if (rdev->saved_raid_disk < 0)
1767				conf->fullsync = 1;
1768			rcu_assign_pointer(p->rdev, rdev);
1769			break;
1770		}
1771		if (test_bit(WantReplacement, &p->rdev->flags) &&
1772		    p[conf->raid_disks].rdev == NULL) {
1773			/* Add this device as a replacement */
1774			clear_bit(In_sync, &rdev->flags);
1775			set_bit(Replacement, &rdev->flags);
1776			rdev->raid_disk = mirror;
1777			err = 0;
1778			conf->fullsync = 1;
1779			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1780			break;
1781		}
1782	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1783	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1784		blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1785	print_conf(conf);
1786	return err;
1787}
1788
1789static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1790{
1791	struct r1conf *conf = mddev->private;
1792	int err = 0;
1793	int number = rdev->raid_disk;
1794	struct raid1_info *p = conf->mirrors + number;
1795
1796	if (rdev != p->rdev)
1797		p = conf->mirrors + conf->raid_disks + number;
1798
1799	print_conf(conf);
1800	if (rdev == p->rdev) {
1801		if (test_bit(In_sync, &rdev->flags) ||
1802		    atomic_read(&rdev->nr_pending)) {
1803			err = -EBUSY;
1804			goto abort;
1805		}
1806		/* Only remove non-faulty devices if recovery
1807		 * is not possible.
1808		 */
1809		if (!test_bit(Faulty, &rdev->flags) &&
1810		    mddev->recovery_disabled != conf->recovery_disabled &&
1811		    mddev->degraded < conf->raid_disks) {
1812			err = -EBUSY;
1813			goto abort;
1814		}
1815		p->rdev = NULL;
1816		if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1817			synchronize_rcu();
1818			if (atomic_read(&rdev->nr_pending)) {
1819				/* lost the race, try later */
1820				err = -EBUSY;
1821				p->rdev = rdev;
1822				goto abort;
1823			}
1824		}
1825		if (conf->mirrors[conf->raid_disks + number].rdev) {
1826			/* We just removed a device that is being replaced.
1827			 * Move down the replacement.  We drain all IO before
1828			 * doing this to avoid confusion.
1829			 */
1830			struct md_rdev *repl =
1831				conf->mirrors[conf->raid_disks + number].rdev;
1832			freeze_array(conf, 0);
1833			if (atomic_read(&repl->nr_pending)) {
1834				/* It means that some queued IO of retry_list
1835				 * hold repl. Thus, we cannot set replacement
1836				 * as NULL, avoiding rdev NULL pointer
1837				 * dereference in sync_request_write and
1838				 * handle_write_finished.
1839				 */
1840				err = -EBUSY;
1841				unfreeze_array(conf);
1842				goto abort;
1843			}
1844			clear_bit(Replacement, &repl->flags);
1845			p->rdev = repl;
1846			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1847			unfreeze_array(conf);
1848		}
1849
1850		clear_bit(WantReplacement, &rdev->flags);
1851		err = md_integrity_register(mddev);
1852	}
1853abort:
1854
1855	print_conf(conf);
1856	return err;
1857}
1858
1859static void end_sync_read(struct bio *bio)
 
1860{
1861	struct r1bio *r1_bio = get_resync_r1bio(bio);
1862
1863	update_head_pos(r1_bio->read_disk, r1_bio);
1864
1865	/*
1866	 * we have read a block, now it needs to be re-written,
1867	 * or re-read if the read failed.
1868	 * We don't do much here, just schedule handling by raid1d
1869	 */
1870	if (!bio->bi_status)
1871		set_bit(R1BIO_Uptodate, &r1_bio->state);
1872
1873	if (atomic_dec_and_test(&r1_bio->remaining))
1874		reschedule_retry(r1_bio);
1875}
1876
1877static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1878{
1879	sector_t sync_blocks = 0;
1880	sector_t s = r1_bio->sector;
1881	long sectors_to_go = r1_bio->sectors;
1882
1883	/* make sure these bits don't get cleared. */
1884	do {
1885		md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1886		s += sync_blocks;
1887		sectors_to_go -= sync_blocks;
1888	} while (sectors_to_go > 0);
1889}
1890
1891static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1892{
1893	if (atomic_dec_and_test(&r1_bio->remaining)) {
1894		struct mddev *mddev = r1_bio->mddev;
1895		int s = r1_bio->sectors;
1896
1897		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1898		    test_bit(R1BIO_WriteError, &r1_bio->state))
1899			reschedule_retry(r1_bio);
1900		else {
1901			put_buf(r1_bio);
1902			md_done_sync(mddev, s, uptodate);
1903		}
1904	}
1905}
1906
1907static void end_sync_write(struct bio *bio)
1908{
1909	int uptodate = !bio->bi_status;
1910	struct r1bio *r1_bio = get_resync_r1bio(bio);
1911	struct mddev *mddev = r1_bio->mddev;
1912	struct r1conf *conf = mddev->private;
 
1913	sector_t first_bad;
1914	int bad_sectors;
1915	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
 
1916
1917	if (!uptodate) {
1918		abort_sync_write(mddev, r1_bio);
1919		set_bit(WriteErrorSeen, &rdev->flags);
1920		if (!test_and_set_bit(WantReplacement, &rdev->flags))
 
 
 
 
 
 
 
 
 
 
 
1921			set_bit(MD_RECOVERY_NEEDED, &
1922				mddev->recovery);
1923		set_bit(R1BIO_WriteError, &r1_bio->state);
1924	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
 
 
1925			       &first_bad, &bad_sectors) &&
1926		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1927				r1_bio->sector,
1928				r1_bio->sectors,
1929				&first_bad, &bad_sectors)
1930		)
1931		set_bit(R1BIO_MadeGood, &r1_bio->state);
1932
1933	put_sync_write_buf(r1_bio, uptodate);
 
 
 
 
 
 
 
 
 
1934}
1935
1936static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1937			    int sectors, struct page *page, int rw)
1938{
1939	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1940		/* success */
1941		return 1;
1942	if (rw == WRITE) {
1943		set_bit(WriteErrorSeen, &rdev->flags);
1944		if (!test_and_set_bit(WantReplacement,
1945				      &rdev->flags))
1946			set_bit(MD_RECOVERY_NEEDED, &
1947				rdev->mddev->recovery);
1948	}
1949	/* need to record an error - either for the block or the device */
1950	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1951		md_error(rdev->mddev, rdev);
1952	return 0;
1953}
1954
1955static int fix_sync_read_error(struct r1bio *r1_bio)
1956{
1957	/* Try some synchronous reads of other devices to get
1958	 * good data, much like with normal read errors.  Only
1959	 * read into the pages we already have so we don't
1960	 * need to re-issue the read request.
1961	 * We don't need to freeze the array, because being in an
1962	 * active sync request, there is no normal IO, and
1963	 * no overlapping syncs.
1964	 * We don't need to check is_badblock() again as we
1965	 * made sure that anything with a bad block in range
1966	 * will have bi_end_io clear.
1967	 */
1968	struct mddev *mddev = r1_bio->mddev;
1969	struct r1conf *conf = mddev->private;
1970	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1971	struct page **pages = get_resync_pages(bio)->pages;
1972	sector_t sect = r1_bio->sector;
1973	int sectors = r1_bio->sectors;
1974	int idx = 0;
1975	struct md_rdev *rdev;
1976
1977	rdev = conf->mirrors[r1_bio->read_disk].rdev;
1978	if (test_bit(FailFast, &rdev->flags)) {
1979		/* Don't try recovering from here - just fail it
1980		 * ... unless it is the last working device of course */
1981		md_error(mddev, rdev);
1982		if (test_bit(Faulty, &rdev->flags))
1983			/* Don't try to read from here, but make sure
1984			 * put_buf does it's thing
1985			 */
1986			bio->bi_end_io = end_sync_write;
1987	}
1988
1989	while(sectors) {
1990		int s = sectors;
1991		int d = r1_bio->read_disk;
1992		int success = 0;
 
1993		int start;
1994
1995		if (s > (PAGE_SIZE>>9))
1996			s = PAGE_SIZE >> 9;
1997		do {
1998			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1999				/* No rcu protection needed here devices
2000				 * can only be removed when no resync is
2001				 * active, and resync is currently active
2002				 */
2003				rdev = conf->mirrors[d].rdev;
2004				if (sync_page_io(rdev, sect, s<<9,
2005						 pages[idx],
2006						 REQ_OP_READ, 0, false)) {
2007					success = 1;
2008					break;
2009				}
2010			}
2011			d++;
2012			if (d == conf->raid_disks * 2)
2013				d = 0;
2014		} while (!success && d != r1_bio->read_disk);
2015
2016		if (!success) {
2017			char b[BDEVNAME_SIZE];
2018			int abort = 0;
2019			/* Cannot read from anywhere, this block is lost.
2020			 * Record a bad block on each device.  If that doesn't
2021			 * work just disable and interrupt the recovery.
2022			 * Don't fail devices as that won't really help.
2023			 */
2024			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2025					    mdname(mddev), bio_devname(bio, b),
2026					    (unsigned long long)r1_bio->sector);
 
 
2027			for (d = 0; d < conf->raid_disks * 2; d++) {
2028				rdev = conf->mirrors[d].rdev;
2029				if (!rdev || test_bit(Faulty, &rdev->flags))
2030					continue;
2031				if (!rdev_set_badblocks(rdev, sect, s, 0))
2032					abort = 1;
2033			}
2034			if (abort) {
2035				conf->recovery_disabled =
2036					mddev->recovery_disabled;
2037				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2038				md_done_sync(mddev, r1_bio->sectors, 0);
2039				put_buf(r1_bio);
2040				return 0;
2041			}
2042			/* Try next page */
2043			sectors -= s;
2044			sect += s;
2045			idx++;
2046			continue;
2047		}
2048
2049		start = d;
2050		/* write it back and re-read */
2051		while (d != r1_bio->read_disk) {
2052			if (d == 0)
2053				d = conf->raid_disks * 2;
2054			d--;
2055			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2056				continue;
2057			rdev = conf->mirrors[d].rdev;
2058			if (r1_sync_page_io(rdev, sect, s,
2059					    pages[idx],
2060					    WRITE) == 0) {
2061				r1_bio->bios[d]->bi_end_io = NULL;
2062				rdev_dec_pending(rdev, mddev);
2063			}
2064		}
2065		d = start;
2066		while (d != r1_bio->read_disk) {
2067			if (d == 0)
2068				d = conf->raid_disks * 2;
2069			d--;
2070			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2071				continue;
2072			rdev = conf->mirrors[d].rdev;
2073			if (r1_sync_page_io(rdev, sect, s,
2074					    pages[idx],
2075					    READ) != 0)
2076				atomic_add(s, &rdev->corrected_errors);
2077		}
2078		sectors -= s;
2079		sect += s;
2080		idx ++;
2081	}
2082	set_bit(R1BIO_Uptodate, &r1_bio->state);
2083	bio->bi_status = 0;
2084	return 1;
2085}
2086
2087static void process_checks(struct r1bio *r1_bio)
2088{
2089	/* We have read all readable devices.  If we haven't
2090	 * got the block, then there is no hope left.
2091	 * If we have, then we want to do a comparison
2092	 * and skip the write if everything is the same.
2093	 * If any blocks failed to read, then we need to
2094	 * attempt an over-write
2095	 */
2096	struct mddev *mddev = r1_bio->mddev;
2097	struct r1conf *conf = mddev->private;
2098	int primary;
2099	int i;
2100	int vcnt;
2101
2102	/* Fix variable parts of all bios */
2103	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2104	for (i = 0; i < conf->raid_disks * 2; i++) {
2105		blk_status_t status;
 
 
2106		struct bio *b = r1_bio->bios[i];
2107		struct resync_pages *rp = get_resync_pages(b);
2108		if (b->bi_end_io != end_sync_read)
2109			continue;
2110		/* fixup the bio for reuse, but preserve errno */
2111		status = b->bi_status;
2112		bio_reset(b);
2113		b->bi_status = status;
 
 
 
2114		b->bi_iter.bi_sector = r1_bio->sector +
2115			conf->mirrors[i].rdev->data_offset;
2116		bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2117		b->bi_end_io = end_sync_read;
2118		rp->raid_bio = r1_bio;
2119		b->bi_private = rp;
2120
2121		/* initialize bvec table again */
2122		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
 
 
 
 
 
 
 
 
 
2123	}
2124	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2125		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2126		    !r1_bio->bios[primary]->bi_status) {
2127			r1_bio->bios[primary]->bi_end_io = NULL;
2128			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2129			break;
2130		}
2131	r1_bio->read_disk = primary;
2132	for (i = 0; i < conf->raid_disks * 2; i++) {
2133		int j = 0;
2134		struct bio *pbio = r1_bio->bios[primary];
2135		struct bio *sbio = r1_bio->bios[i];
2136		blk_status_t status = sbio->bi_status;
2137		struct page **ppages = get_resync_pages(pbio)->pages;
2138		struct page **spages = get_resync_pages(sbio)->pages;
2139		struct bio_vec *bi;
2140		int page_len[RESYNC_PAGES] = { 0 };
2141		struct bvec_iter_all iter_all;
2142
2143		if (sbio->bi_end_io != end_sync_read)
2144			continue;
2145		/* Now we can 'fixup' the error value */
2146		sbio->bi_status = 0;
2147
2148		bio_for_each_segment_all(bi, sbio, iter_all)
2149			page_len[j++] = bi->bv_len;
2150
2151		if (!status) {
2152			for (j = vcnt; j-- ; ) {
2153				if (memcmp(page_address(ppages[j]),
2154					   page_address(spages[j]),
2155					   page_len[j]))
 
 
 
2156					break;
2157			}
2158		} else
2159			j = 0;
2160		if (j >= 0)
2161			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2162		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2163			      && !status)) {
2164			/* No need to write to this device. */
2165			sbio->bi_end_io = NULL;
2166			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2167			continue;
2168		}
2169
2170		bio_copy_data(sbio, pbio);
2171	}
 
2172}
2173
2174static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2175{
2176	struct r1conf *conf = mddev->private;
2177	int i;
2178	int disks = conf->raid_disks * 2;
2179	struct bio *wbio;
 
 
2180
2181	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2182		/* ouch - failed to read all of that. */
2183		if (!fix_sync_read_error(r1_bio))
2184			return;
2185
2186	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2187		process_checks(r1_bio);
2188
2189	/*
2190	 * schedule writes
2191	 */
2192	atomic_set(&r1_bio->remaining, 1);
2193	for (i = 0; i < disks ; i++) {
2194		wbio = r1_bio->bios[i];
2195		if (wbio->bi_end_io == NULL ||
2196		    (wbio->bi_end_io == end_sync_read &&
2197		     (i == r1_bio->read_disk ||
2198		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2199			continue;
2200		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2201			abort_sync_write(mddev, r1_bio);
2202			continue;
2203		}
2204
2205		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2206		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2207			wbio->bi_opf |= MD_FAILFAST;
2208
 
2209		wbio->bi_end_io = end_sync_write;
2210		atomic_inc(&r1_bio->remaining);
2211		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2212
2213		submit_bio_noacct(wbio);
2214	}
2215
2216	put_sync_write_buf(r1_bio, 1);
 
 
 
 
 
 
 
 
 
 
2217}
2218
2219/*
2220 * This is a kernel thread which:
2221 *
2222 *	1.	Retries failed read operations on working mirrors.
2223 *	2.	Updates the raid superblock when problems encounter.
2224 *	3.	Performs writes following reads for array synchronising.
2225 */
2226
2227static void fix_read_error(struct r1conf *conf, int read_disk,
2228			   sector_t sect, int sectors)
2229{
2230	struct mddev *mddev = conf->mddev;
2231	while(sectors) {
2232		int s = sectors;
2233		int d = read_disk;
2234		int success = 0;
2235		int start;
2236		struct md_rdev *rdev;
2237
2238		if (s > (PAGE_SIZE>>9))
2239			s = PAGE_SIZE >> 9;
2240
2241		do {
 
 
 
 
 
2242			sector_t first_bad;
2243			int bad_sectors;
2244
2245			rcu_read_lock();
2246			rdev = rcu_dereference(conf->mirrors[d].rdev);
2247			if (rdev &&
2248			    (test_bit(In_sync, &rdev->flags) ||
2249			     (!test_bit(Faulty, &rdev->flags) &&
2250			      rdev->recovery_offset >= sect + s)) &&
2251			    is_badblock(rdev, sect, s,
2252					&first_bad, &bad_sectors) == 0) {
2253				atomic_inc(&rdev->nr_pending);
2254				rcu_read_unlock();
2255				if (sync_page_io(rdev, sect, s<<9,
2256					 conf->tmppage, REQ_OP_READ, 0, false))
2257					success = 1;
2258				rdev_dec_pending(rdev, mddev);
2259				if (success)
2260					break;
2261			} else
2262				rcu_read_unlock();
2263			d++;
2264			if (d == conf->raid_disks * 2)
2265				d = 0;
2266		} while (!success && d != read_disk);
2267
2268		if (!success) {
2269			/* Cannot read from anywhere - mark it bad */
2270			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2271			if (!rdev_set_badblocks(rdev, sect, s, 0))
2272				md_error(mddev, rdev);
2273			break;
2274		}
2275		/* write it back and re-read */
2276		start = d;
2277		while (d != read_disk) {
2278			if (d==0)
2279				d = conf->raid_disks * 2;
2280			d--;
2281			rcu_read_lock();
2282			rdev = rcu_dereference(conf->mirrors[d].rdev);
2283			if (rdev &&
2284			    !test_bit(Faulty, &rdev->flags)) {
2285				atomic_inc(&rdev->nr_pending);
2286				rcu_read_unlock();
2287				r1_sync_page_io(rdev, sect, s,
2288						conf->tmppage, WRITE);
2289				rdev_dec_pending(rdev, mddev);
2290			} else
2291				rcu_read_unlock();
2292		}
2293		d = start;
2294		while (d != read_disk) {
2295			char b[BDEVNAME_SIZE];
2296			if (d==0)
2297				d = conf->raid_disks * 2;
2298			d--;
2299			rcu_read_lock();
2300			rdev = rcu_dereference(conf->mirrors[d].rdev);
2301			if (rdev &&
2302			    !test_bit(Faulty, &rdev->flags)) {
2303				atomic_inc(&rdev->nr_pending);
2304				rcu_read_unlock();
2305				if (r1_sync_page_io(rdev, sect, s,
2306						    conf->tmppage, READ)) {
2307					atomic_add(s, &rdev->corrected_errors);
2308					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2309						mdname(mddev), s,
2310						(unsigned long long)(sect +
2311								     rdev->data_offset),
2312						bdevname(rdev->bdev, b));
 
 
2313				}
2314				rdev_dec_pending(rdev, mddev);
2315			} else
2316				rcu_read_unlock();
2317		}
2318		sectors -= s;
2319		sect += s;
2320	}
2321}
2322
2323static int narrow_write_error(struct r1bio *r1_bio, int i)
2324{
2325	struct mddev *mddev = r1_bio->mddev;
2326	struct r1conf *conf = mddev->private;
2327	struct md_rdev *rdev = conf->mirrors[i].rdev;
2328
2329	/* bio has the data to be written to device 'i' where
2330	 * we just recently had a write error.
2331	 * We repeatedly clone the bio and trim down to one block,
2332	 * then try the write.  Where the write fails we record
2333	 * a bad block.
2334	 * It is conceivable that the bio doesn't exactly align with
2335	 * blocks.  We must handle this somehow.
2336	 *
2337	 * We currently own a reference on the rdev.
2338	 */
2339
2340	int block_sectors;
2341	sector_t sector;
2342	int sectors;
2343	int sect_to_write = r1_bio->sectors;
2344	int ok = 1;
2345
2346	if (rdev->badblocks.shift < 0)
2347		return 0;
2348
2349	block_sectors = roundup(1 << rdev->badblocks.shift,
2350				bdev_logical_block_size(rdev->bdev) >> 9);
2351	sector = r1_bio->sector;
2352	sectors = ((sector + block_sectors)
2353		   & ~(sector_t)(block_sectors - 1))
2354		- sector;
2355
2356	while (sect_to_write) {
2357		struct bio *wbio;
2358		if (sectors > sect_to_write)
2359			sectors = sect_to_write;
2360		/* Write at 'sector' for 'sectors'*/
2361
2362		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2363			wbio = bio_clone_fast(r1_bio->behind_master_bio,
2364					      GFP_NOIO,
2365					      &mddev->bio_set);
 
 
 
 
 
 
 
 
 
2366		} else {
2367			wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2368					      &mddev->bio_set);
2369		}
2370
2371		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2372		wbio->bi_iter.bi_sector = r1_bio->sector;
2373		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2374
2375		bio_trim(wbio, sector - r1_bio->sector, sectors);
2376		wbio->bi_iter.bi_sector += rdev->data_offset;
2377		bio_set_dev(wbio, rdev->bdev);
2378
2379		if (submit_bio_wait(wbio) < 0)
2380			/* failure! */
2381			ok = rdev_set_badblocks(rdev, sector,
2382						sectors, 0)
2383				&& ok;
2384
2385		bio_put(wbio);
2386		sect_to_write -= sectors;
2387		sector += sectors;
2388		sectors = block_sectors;
2389	}
2390	return ok;
2391}
2392
2393static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2394{
2395	int m;
2396	int s = r1_bio->sectors;
2397	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2398		struct md_rdev *rdev = conf->mirrors[m].rdev;
2399		struct bio *bio = r1_bio->bios[m];
2400		if (bio->bi_end_io == NULL)
2401			continue;
2402		if (!bio->bi_status &&
2403		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2404			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2405		}
2406		if (bio->bi_status &&
2407		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2408			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2409				md_error(conf->mddev, rdev);
2410		}
2411	}
2412	put_buf(r1_bio);
2413	md_done_sync(conf->mddev, s, 1);
2414}
2415
2416static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2417{
2418	int m, idx;
2419	bool fail = false;
2420
2421	for (m = 0; m < conf->raid_disks * 2 ; m++)
2422		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2423			struct md_rdev *rdev = conf->mirrors[m].rdev;
2424			rdev_clear_badblocks(rdev,
2425					     r1_bio->sector,
2426					     r1_bio->sectors, 0);
2427			rdev_dec_pending(rdev, conf->mddev);
2428		} else if (r1_bio->bios[m] != NULL) {
2429			/* This drive got a write error.  We need to
2430			 * narrow down and record precise write
2431			 * errors.
2432			 */
2433			fail = true;
2434			if (!narrow_write_error(r1_bio, m)) {
2435				md_error(conf->mddev,
2436					 conf->mirrors[m].rdev);
2437				/* an I/O failed, we can't clear the bitmap */
2438				set_bit(R1BIO_Degraded, &r1_bio->state);
2439			}
2440			rdev_dec_pending(conf->mirrors[m].rdev,
2441					 conf->mddev);
2442		}
2443	if (fail) {
2444		spin_lock_irq(&conf->device_lock);
2445		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2446		idx = sector_to_idx(r1_bio->sector);
2447		atomic_inc(&conf->nr_queued[idx]);
2448		spin_unlock_irq(&conf->device_lock);
2449		/*
2450		 * In case freeze_array() is waiting for condition
2451		 * get_unqueued_pending() == extra to be true.
2452		 */
2453		wake_up(&conf->wait_barrier);
2454		md_wakeup_thread(conf->mddev->thread);
2455	} else {
2456		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2457			close_write(r1_bio);
2458		raid_end_bio_io(r1_bio);
2459	}
2460}
2461
2462static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2463{
 
 
2464	struct mddev *mddev = conf->mddev;
2465	struct bio *bio;
 
2466	struct md_rdev *rdev;
2467
2468	clear_bit(R1BIO_ReadError, &r1_bio->state);
2469	/* we got a read error. Maybe the drive is bad.  Maybe just
2470	 * the block and we can fix it.
2471	 * We freeze all other IO, and try reading the block from
2472	 * other devices.  When we find one, we re-write
2473	 * and check it that fixes the read error.
2474	 * This is all done synchronously while the array is
2475	 * frozen
2476	 */
2477
2478	bio = r1_bio->bios[r1_bio->read_disk];
2479	bio_put(bio);
2480	r1_bio->bios[r1_bio->read_disk] = NULL;
2481
2482	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2483	if (mddev->ro == 0
2484	    && !test_bit(FailFast, &rdev->flags)) {
2485		freeze_array(conf, 1);
2486		fix_read_error(conf, r1_bio->read_disk,
2487			       r1_bio->sector, r1_bio->sectors);
2488		unfreeze_array(conf);
2489	} else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2490		md_error(mddev, rdev);
 
 
 
 
 
 
 
 
 
 
 
2491	} else {
2492		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2493	}
2494
2495	rdev_dec_pending(rdev, conf->mddev);
2496	allow_barrier(conf, r1_bio->sector);
2497	bio = r1_bio->master_bio;
2498
2499	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2500	r1_bio->state = 0;
2501	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2502}
2503
2504static void raid1d(struct md_thread *thread)
2505{
2506	struct mddev *mddev = thread->mddev;
2507	struct r1bio *r1_bio;
2508	unsigned long flags;
2509	struct r1conf *conf = mddev->private;
2510	struct list_head *head = &conf->retry_list;
2511	struct blk_plug plug;
2512	int idx;
2513
2514	md_check_recovery(mddev);
2515
2516	if (!list_empty_careful(&conf->bio_end_io_list) &&
2517	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2518		LIST_HEAD(tmp);
2519		spin_lock_irqsave(&conf->device_lock, flags);
2520		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2521			list_splice_init(&conf->bio_end_io_list, &tmp);
2522		spin_unlock_irqrestore(&conf->device_lock, flags);
2523		while (!list_empty(&tmp)) {
2524			r1_bio = list_first_entry(&tmp, struct r1bio,
2525						  retry_list);
2526			list_del(&r1_bio->retry_list);
2527			idx = sector_to_idx(r1_bio->sector);
2528			atomic_dec(&conf->nr_queued[idx]);
2529			if (mddev->degraded)
2530				set_bit(R1BIO_Degraded, &r1_bio->state);
2531			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2532				close_write(r1_bio);
2533			raid_end_bio_io(r1_bio);
2534		}
2535	}
2536
2537	blk_start_plug(&plug);
2538	for (;;) {
2539
2540		flush_pending_writes(conf);
2541
2542		spin_lock_irqsave(&conf->device_lock, flags);
2543		if (list_empty(head)) {
2544			spin_unlock_irqrestore(&conf->device_lock, flags);
2545			break;
2546		}
2547		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2548		list_del(head->prev);
2549		idx = sector_to_idx(r1_bio->sector);
2550		atomic_dec(&conf->nr_queued[idx]);
2551		spin_unlock_irqrestore(&conf->device_lock, flags);
2552
2553		mddev = r1_bio->mddev;
2554		conf = mddev->private;
2555		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2556			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2557			    test_bit(R1BIO_WriteError, &r1_bio->state))
2558				handle_sync_write_finished(conf, r1_bio);
2559			else
2560				sync_request_write(mddev, r1_bio);
2561		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2562			   test_bit(R1BIO_WriteError, &r1_bio->state))
2563			handle_write_finished(conf, r1_bio);
2564		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2565			handle_read_error(conf, r1_bio);
2566		else
2567			WARN_ON_ONCE(1);
 
 
 
2568
2569		cond_resched();
2570		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2571			md_check_recovery(mddev);
2572	}
2573	blk_finish_plug(&plug);
2574}
2575
 
2576static int init_resync(struct r1conf *conf)
2577{
2578	int buffs;
2579
2580	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2581	BUG_ON(mempool_initialized(&conf->r1buf_pool));
2582
2583	return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2584			    r1buf_pool_free, conf->poolinfo);
2585}
2586
2587static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2588{
2589	struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2590	struct resync_pages *rps;
2591	struct bio *bio;
2592	int i;
2593
2594	for (i = conf->poolinfo->raid_disks; i--; ) {
2595		bio = r1bio->bios[i];
2596		rps = bio->bi_private;
2597		bio_reset(bio);
2598		bio->bi_private = rps;
2599	}
2600	r1bio->master_bio = NULL;
2601	return r1bio;
2602}
2603
2604/*
2605 * perform a "sync" on one "block"
2606 *
2607 * We need to make sure that no normal I/O request - particularly write
2608 * requests - conflict with active sync requests.
2609 *
2610 * This is achieved by tracking pending requests and a 'barrier' concept
2611 * that can be installed to exclude normal IO requests.
2612 */
2613
2614static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2615				   int *skipped)
2616{
2617	struct r1conf *conf = mddev->private;
2618	struct r1bio *r1_bio;
2619	struct bio *bio;
2620	sector_t max_sector, nr_sectors;
2621	int disk = -1;
2622	int i;
2623	int wonly = -1;
2624	int write_targets = 0, read_targets = 0;
2625	sector_t sync_blocks;
2626	int still_degraded = 0;
2627	int good_sectors = RESYNC_SECTORS;
2628	int min_bad = 0; /* number of sectors that are bad in all devices */
2629	int idx = sector_to_idx(sector_nr);
2630	int page_idx = 0;
2631
2632	if (!mempool_initialized(&conf->r1buf_pool))
2633		if (init_resync(conf))
2634			return 0;
2635
2636	max_sector = mddev->dev_sectors;
2637	if (sector_nr >= max_sector) {
2638		/* If we aborted, we need to abort the
2639		 * sync on the 'current' bitmap chunk (there will
2640		 * only be one in raid1 resync.
2641		 * We can find the current addess in mddev->curr_resync
2642		 */
2643		if (mddev->curr_resync < max_sector) /* aborted */
2644			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2645					   &sync_blocks, 1);
2646		else /* completed sync */
2647			conf->fullsync = 0;
2648
2649		md_bitmap_close_sync(mddev->bitmap);
2650		close_sync(conf);
2651
2652		if (mddev_is_clustered(mddev)) {
2653			conf->cluster_sync_low = 0;
2654			conf->cluster_sync_high = 0;
2655		}
2656		return 0;
2657	}
2658
2659	if (mddev->bitmap == NULL &&
2660	    mddev->recovery_cp == MaxSector &&
2661	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2662	    conf->fullsync == 0) {
2663		*skipped = 1;
2664		return max_sector - sector_nr;
2665	}
2666	/* before building a request, check if we can skip these blocks..
2667	 * This call the bitmap_start_sync doesn't actually record anything
2668	 */
2669	if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2670	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2671		/* We can skip this block, and probably several more */
2672		*skipped = 1;
2673		return sync_blocks;
2674	}
2675
2676	/*
2677	 * If there is non-resync activity waiting for a turn, then let it
2678	 * though before starting on this new sync request.
2679	 */
2680	if (atomic_read(&conf->nr_waiting[idx]))
2681		schedule_timeout_uninterruptible(1);
2682
2683	/* we are incrementing sector_nr below. To be safe, we check against
2684	 * sector_nr + two times RESYNC_SECTORS
2685	 */
2686
2687	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2688		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2689
2690
2691	if (raise_barrier(conf, sector_nr))
2692		return 0;
2693
2694	r1_bio = raid1_alloc_init_r1buf(conf);
2695
2696	rcu_read_lock();
2697	/*
2698	 * If we get a correctably read error during resync or recovery,
2699	 * we might want to read from a different device.  So we
2700	 * flag all drives that could conceivably be read from for READ,
2701	 * and any others (which will be non-In_sync devices) for WRITE.
2702	 * If a read fails, we try reading from something else for which READ
2703	 * is OK.
2704	 */
2705
2706	r1_bio->mddev = mddev;
2707	r1_bio->sector = sector_nr;
2708	r1_bio->state = 0;
2709	set_bit(R1BIO_IsSync, &r1_bio->state);
2710	/* make sure good_sectors won't go across barrier unit boundary */
2711	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2712
2713	for (i = 0; i < conf->raid_disks * 2; i++) {
2714		struct md_rdev *rdev;
2715		bio = r1_bio->bios[i];
 
2716
2717		rdev = rcu_dereference(conf->mirrors[i].rdev);
2718		if (rdev == NULL ||
2719		    test_bit(Faulty, &rdev->flags)) {
2720			if (i < conf->raid_disks)
2721				still_degraded = 1;
2722		} else if (!test_bit(In_sync, &rdev->flags)) {
2723			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2724			bio->bi_end_io = end_sync_write;
2725			write_targets ++;
2726		} else {
2727			/* may need to read from here */
2728			sector_t first_bad = MaxSector;
2729			int bad_sectors;
2730
2731			if (is_badblock(rdev, sector_nr, good_sectors,
2732					&first_bad, &bad_sectors)) {
2733				if (first_bad > sector_nr)
2734					good_sectors = first_bad - sector_nr;
2735				else {
2736					bad_sectors -= (sector_nr - first_bad);
2737					if (min_bad == 0 ||
2738					    min_bad > bad_sectors)
2739						min_bad = bad_sectors;
2740				}
2741			}
2742			if (sector_nr < first_bad) {
2743				if (test_bit(WriteMostly, &rdev->flags)) {
2744					if (wonly < 0)
2745						wonly = i;
2746				} else {
2747					if (disk < 0)
2748						disk = i;
2749				}
2750				bio_set_op_attrs(bio, REQ_OP_READ, 0);
2751				bio->bi_end_io = end_sync_read;
2752				read_targets++;
2753			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2754				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2755				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2756				/*
2757				 * The device is suitable for reading (InSync),
2758				 * but has bad block(s) here. Let's try to correct them,
2759				 * if we are doing resync or repair. Otherwise, leave
2760				 * this device alone for this sync request.
2761				 */
2762				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2763				bio->bi_end_io = end_sync_write;
2764				write_targets++;
2765			}
2766		}
2767		if (rdev && bio->bi_end_io) {
2768			atomic_inc(&rdev->nr_pending);
2769			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2770			bio_set_dev(bio, rdev->bdev);
2771			if (test_bit(FailFast, &rdev->flags))
2772				bio->bi_opf |= MD_FAILFAST;
2773		}
2774	}
2775	rcu_read_unlock();
2776	if (disk < 0)
2777		disk = wonly;
2778	r1_bio->read_disk = disk;
2779
2780	if (read_targets == 0 && min_bad > 0) {
2781		/* These sectors are bad on all InSync devices, so we
2782		 * need to mark them bad on all write targets
2783		 */
2784		int ok = 1;
2785		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2786			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2787				struct md_rdev *rdev = conf->mirrors[i].rdev;
2788				ok = rdev_set_badblocks(rdev, sector_nr,
2789							min_bad, 0
2790					) && ok;
2791			}
2792		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2793		*skipped = 1;
2794		put_buf(r1_bio);
2795
2796		if (!ok) {
2797			/* Cannot record the badblocks, so need to
2798			 * abort the resync.
2799			 * If there are multiple read targets, could just
2800			 * fail the really bad ones ???
2801			 */
2802			conf->recovery_disabled = mddev->recovery_disabled;
2803			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2804			return 0;
2805		} else
2806			return min_bad;
2807
2808	}
2809	if (min_bad > 0 && min_bad < good_sectors) {
2810		/* only resync enough to reach the next bad->good
2811		 * transition */
2812		good_sectors = min_bad;
2813	}
2814
2815	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2816		/* extra read targets are also write targets */
2817		write_targets += read_targets-1;
2818
2819	if (write_targets == 0 || read_targets == 0) {
2820		/* There is nowhere to write, so all non-sync
2821		 * drives must be failed - so we are finished
2822		 */
2823		sector_t rv;
2824		if (min_bad > 0)
2825			max_sector = sector_nr + min_bad;
2826		rv = max_sector - sector_nr;
2827		*skipped = 1;
2828		put_buf(r1_bio);
2829		return rv;
2830	}
2831
2832	if (max_sector > mddev->resync_max)
2833		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2834	if (max_sector > sector_nr + good_sectors)
2835		max_sector = sector_nr + good_sectors;
2836	nr_sectors = 0;
2837	sync_blocks = 0;
2838	do {
2839		struct page *page;
2840		int len = PAGE_SIZE;
2841		if (sector_nr + (len>>9) > max_sector)
2842			len = (max_sector - sector_nr) << 9;
2843		if (len == 0)
2844			break;
2845		if (sync_blocks == 0) {
2846			if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2847						  &sync_blocks, still_degraded) &&
2848			    !conf->fullsync &&
2849			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2850				break;
 
2851			if ((len >> 9) > sync_blocks)
2852				len = sync_blocks<<9;
2853		}
2854
2855		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2856			struct resync_pages *rp;
2857
2858			bio = r1_bio->bios[i];
2859			rp = get_resync_pages(bio);
2860			if (bio->bi_end_io) {
2861				page = resync_fetch_page(rp, page_idx);
2862
2863				/*
2864				 * won't fail because the vec table is big
2865				 * enough to hold all these pages
2866				 */
2867				bio_add_page(bio, page, len, 0);
 
 
 
 
 
 
 
 
 
2868			}
2869		}
2870		nr_sectors += len>>9;
2871		sector_nr += len>>9;
2872		sync_blocks -= (len>>9);
2873	} while (++page_idx < RESYNC_PAGES);
2874
2875	r1_bio->sectors = nr_sectors;
2876
2877	if (mddev_is_clustered(mddev) &&
2878			conf->cluster_sync_high < sector_nr + nr_sectors) {
2879		conf->cluster_sync_low = mddev->curr_resync_completed;
2880		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2881		/* Send resync message */
2882		md_cluster_ops->resync_info_update(mddev,
2883				conf->cluster_sync_low,
2884				conf->cluster_sync_high);
2885	}
2886
2887	/* For a user-requested sync, we read all readable devices and do a
2888	 * compare
2889	 */
2890	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2891		atomic_set(&r1_bio->remaining, read_targets);
2892		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2893			bio = r1_bio->bios[i];
2894			if (bio->bi_end_io == end_sync_read) {
2895				read_targets--;
2896				md_sync_acct_bio(bio, nr_sectors);
2897				if (read_targets == 1)
2898					bio->bi_opf &= ~MD_FAILFAST;
2899				submit_bio_noacct(bio);
2900			}
2901		}
2902	} else {
2903		atomic_set(&r1_bio->remaining, 1);
2904		bio = r1_bio->bios[r1_bio->read_disk];
2905		md_sync_acct_bio(bio, nr_sectors);
2906		if (read_targets == 1)
2907			bio->bi_opf &= ~MD_FAILFAST;
2908		submit_bio_noacct(bio);
2909	}
2910	return nr_sectors;
2911}
2912
2913static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2914{
2915	if (sectors)
2916		return sectors;
2917
2918	return mddev->dev_sectors;
2919}
2920
2921static struct r1conf *setup_conf(struct mddev *mddev)
2922{
2923	struct r1conf *conf;
2924	int i;
2925	struct raid1_info *disk;
2926	struct md_rdev *rdev;
2927	int err = -ENOMEM;
2928
2929	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2930	if (!conf)
2931		goto abort;
2932
2933	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2934				   sizeof(atomic_t), GFP_KERNEL);
2935	if (!conf->nr_pending)
2936		goto abort;
2937
2938	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2939				   sizeof(atomic_t), GFP_KERNEL);
2940	if (!conf->nr_waiting)
2941		goto abort;
2942
2943	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2944				  sizeof(atomic_t), GFP_KERNEL);
2945	if (!conf->nr_queued)
2946		goto abort;
2947
2948	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2949				sizeof(atomic_t), GFP_KERNEL);
2950	if (!conf->barrier)
2951		goto abort;
2952
2953	conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2954					    mddev->raid_disks, 2),
2955				GFP_KERNEL);
2956	if (!conf->mirrors)
2957		goto abort;
2958
2959	conf->tmppage = alloc_page(GFP_KERNEL);
2960	if (!conf->tmppage)
2961		goto abort;
2962
2963	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2964	if (!conf->poolinfo)
2965		goto abort;
2966	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2967	err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
2968			   rbio_pool_free, conf->poolinfo);
2969	if (err)
2970		goto abort;
2971
2972	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
2973	if (err)
2974		goto abort;
2975
2976	conf->poolinfo->mddev = mddev;
2977
2978	err = -EINVAL;
2979	spin_lock_init(&conf->device_lock);
2980	rdev_for_each(rdev, mddev) {
 
2981		int disk_idx = rdev->raid_disk;
2982		if (disk_idx >= mddev->raid_disks
2983		    || disk_idx < 0)
2984			continue;
2985		if (test_bit(Replacement, &rdev->flags))
2986			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2987		else
2988			disk = conf->mirrors + disk_idx;
2989
2990		if (disk->rdev)
2991			goto abort;
2992		disk->rdev = rdev;
 
 
 
 
2993		disk->head_position = 0;
2994		disk->seq_start = MaxSector;
2995	}
2996	conf->raid_disks = mddev->raid_disks;
2997	conf->mddev = mddev;
2998	INIT_LIST_HEAD(&conf->retry_list);
2999	INIT_LIST_HEAD(&conf->bio_end_io_list);
3000
3001	spin_lock_init(&conf->resync_lock);
3002	init_waitqueue_head(&conf->wait_barrier);
3003
3004	bio_list_init(&conf->pending_bio_list);
3005	conf->pending_count = 0;
3006	conf->recovery_disabled = mddev->recovery_disabled - 1;
3007
 
 
 
3008	err = -EIO;
3009	for (i = 0; i < conf->raid_disks * 2; i++) {
3010
3011		disk = conf->mirrors + i;
3012
3013		if (i < conf->raid_disks &&
3014		    disk[conf->raid_disks].rdev) {
3015			/* This slot has a replacement. */
3016			if (!disk->rdev) {
3017				/* No original, just make the replacement
3018				 * a recovering spare
3019				 */
3020				disk->rdev =
3021					disk[conf->raid_disks].rdev;
3022				disk[conf->raid_disks].rdev = NULL;
3023			} else if (!test_bit(In_sync, &disk->rdev->flags))
3024				/* Original is not in_sync - bad */
3025				goto abort;
3026		}
3027
3028		if (!disk->rdev ||
3029		    !test_bit(In_sync, &disk->rdev->flags)) {
3030			disk->head_position = 0;
3031			if (disk->rdev &&
3032			    (disk->rdev->saved_raid_disk < 0))
3033				conf->fullsync = 1;
3034		}
3035	}
3036
3037	err = -ENOMEM;
3038	conf->thread = md_register_thread(raid1d, mddev, "raid1");
3039	if (!conf->thread)
 
 
 
3040		goto abort;
 
3041
3042	return conf;
3043
3044 abort:
3045	if (conf) {
3046		mempool_exit(&conf->r1bio_pool);
 
3047		kfree(conf->mirrors);
3048		safe_put_page(conf->tmppage);
3049		kfree(conf->poolinfo);
3050		kfree(conf->nr_pending);
3051		kfree(conf->nr_waiting);
3052		kfree(conf->nr_queued);
3053		kfree(conf->barrier);
3054		bioset_exit(&conf->bio_split);
3055		kfree(conf);
3056	}
3057	return ERR_PTR(err);
3058}
3059
3060static void raid1_free(struct mddev *mddev, void *priv);
3061static int raid1_run(struct mddev *mddev)
3062{
3063	struct r1conf *conf;
3064	int i;
3065	struct md_rdev *rdev;
3066	int ret;
3067	bool discard_supported = false;
3068
3069	if (mddev->level != 1) {
3070		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3071			mdname(mddev), mddev->level);
3072		return -EIO;
3073	}
3074	if (mddev->reshape_position != MaxSector) {
3075		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3076			mdname(mddev));
3077		return -EIO;
3078	}
3079	if (mddev_init_writes_pending(mddev) < 0)
3080		return -ENOMEM;
3081	/*
3082	 * copy the already verified devices into our private RAID1
3083	 * bookkeeping area. [whatever we allocate in run(),
3084	 * should be freed in raid1_free()]
3085	 */
3086	if (mddev->private == NULL)
3087		conf = setup_conf(mddev);
3088	else
3089		conf = mddev->private;
3090
3091	if (IS_ERR(conf))
3092		return PTR_ERR(conf);
3093
3094	if (mddev->queue) {
3095		blk_queue_max_write_same_sectors(mddev->queue, 0);
3096		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3097	}
3098
3099	rdev_for_each(rdev, mddev) {
3100		if (!mddev->gendisk)
3101			continue;
3102		disk_stack_limits(mddev->gendisk, rdev->bdev,
3103				  rdev->data_offset << 9);
3104		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3105			discard_supported = true;
3106	}
3107
3108	mddev->degraded = 0;
3109	for (i = 0; i < conf->raid_disks; i++)
3110		if (conf->mirrors[i].rdev == NULL ||
3111		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3112		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3113			mddev->degraded++;
3114	/*
3115	 * RAID1 needs at least one disk in active
3116	 */
3117	if (conf->raid_disks - mddev->degraded < 1) {
3118		ret = -EINVAL;
3119		goto abort;
3120	}
3121
3122	if (conf->raid_disks - mddev->degraded == 1)
3123		mddev->recovery_cp = MaxSector;
3124
3125	if (mddev->recovery_cp != MaxSector)
3126		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3127			mdname(mddev));
3128	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3129		mdname(mddev), mddev->raid_disks - mddev->degraded,
 
 
3130		mddev->raid_disks);
3131
3132	/*
3133	 * Ok, everything is just fine now
3134	 */
3135	mddev->thread = conf->thread;
3136	conf->thread = NULL;
3137	mddev->private = conf;
3138	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3139
3140	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3141
3142	if (mddev->queue) {
 
 
 
 
3143		if (discard_supported)
3144			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3145						mddev->queue);
3146		else
3147			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3148						  mddev->queue);
3149	}
3150
3151	ret = md_integrity_register(mddev);
3152	if (ret) {
3153		md_unregister_thread(&mddev->thread);
3154		goto abort;
3155	}
3156	return 0;
3157
3158abort:
3159	raid1_free(mddev, conf);
3160	return ret;
3161}
3162
3163static void raid1_free(struct mddev *mddev, void *priv)
3164{
3165	struct r1conf *conf = priv;
 
 
 
 
 
 
 
 
 
 
 
 
 
3166
3167	mempool_exit(&conf->r1bio_pool);
 
 
3168	kfree(conf->mirrors);
3169	safe_put_page(conf->tmppage);
3170	kfree(conf->poolinfo);
3171	kfree(conf->nr_pending);
3172	kfree(conf->nr_waiting);
3173	kfree(conf->nr_queued);
3174	kfree(conf->barrier);
3175	bioset_exit(&conf->bio_split);
3176	kfree(conf);
 
 
3177}
3178
3179static int raid1_resize(struct mddev *mddev, sector_t sectors)
3180{
3181	/* no resync is happening, and there is enough space
3182	 * on all devices, so we can resize.
3183	 * We need to make sure resync covers any new space.
3184	 * If the array is shrinking we should possibly wait until
3185	 * any io in the removed space completes, but it hardly seems
3186	 * worth it.
3187	 */
3188	sector_t newsize = raid1_size(mddev, sectors, 0);
3189	if (mddev->external_size &&
3190	    mddev->array_sectors > newsize)
3191		return -EINVAL;
3192	if (mddev->bitmap) {
3193		int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3194		if (ret)
3195			return ret;
3196	}
3197	md_set_array_sectors(mddev, newsize);
 
 
3198	if (sectors > mddev->dev_sectors &&
3199	    mddev->recovery_cp > mddev->dev_sectors) {
3200		mddev->recovery_cp = mddev->dev_sectors;
3201		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3202	}
3203	mddev->dev_sectors = sectors;
3204	mddev->resync_max_sectors = sectors;
3205	return 0;
3206}
3207
3208static int raid1_reshape(struct mddev *mddev)
3209{
3210	/* We need to:
3211	 * 1/ resize the r1bio_pool
3212	 * 2/ resize conf->mirrors
3213	 *
3214	 * We allocate a new r1bio_pool if we can.
3215	 * Then raise a device barrier and wait until all IO stops.
3216	 * Then resize conf->mirrors and swap in the new r1bio pool.
3217	 *
3218	 * At the same time, we "pack" the devices so that all the missing
3219	 * devices have the higher raid_disk numbers.
3220	 */
3221	mempool_t newpool, oldpool;
3222	struct pool_info *newpoolinfo;
3223	struct raid1_info *newmirrors;
3224	struct r1conf *conf = mddev->private;
3225	int cnt, raid_disks;
3226	unsigned long flags;
3227	int d, d2;
3228	int ret;
3229
3230	memset(&newpool, 0, sizeof(newpool));
3231	memset(&oldpool, 0, sizeof(oldpool));
3232
3233	/* Cannot change chunk_size, layout, or level */
3234	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3235	    mddev->layout != mddev->new_layout ||
3236	    mddev->level != mddev->new_level) {
3237		mddev->new_chunk_sectors = mddev->chunk_sectors;
3238		mddev->new_layout = mddev->layout;
3239		mddev->new_level = mddev->level;
3240		return -EINVAL;
3241	}
3242
3243	if (!mddev_is_clustered(mddev))
3244		md_allow_write(mddev);
 
3245
3246	raid_disks = mddev->raid_disks + mddev->delta_disks;
3247
3248	if (raid_disks < conf->raid_disks) {
3249		cnt=0;
3250		for (d= 0; d < conf->raid_disks; d++)
3251			if (conf->mirrors[d].rdev)
3252				cnt++;
3253		if (cnt > raid_disks)
3254			return -EBUSY;
3255	}
3256
3257	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3258	if (!newpoolinfo)
3259		return -ENOMEM;
3260	newpoolinfo->mddev = mddev;
3261	newpoolinfo->raid_disks = raid_disks * 2;
3262
3263	ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3264			   rbio_pool_free, newpoolinfo);
3265	if (ret) {
3266		kfree(newpoolinfo);
3267		return ret;
3268	}
3269	newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3270					 raid_disks, 2),
3271			     GFP_KERNEL);
3272	if (!newmirrors) {
3273		kfree(newpoolinfo);
3274		mempool_exit(&newpool);
3275		return -ENOMEM;
3276	}
3277
3278	freeze_array(conf, 0);
3279
3280	/* ok, everything is stopped */
3281	oldpool = conf->r1bio_pool;
3282	conf->r1bio_pool = newpool;
3283
3284	for (d = d2 = 0; d < conf->raid_disks; d++) {
3285		struct md_rdev *rdev = conf->mirrors[d].rdev;
3286		if (rdev && rdev->raid_disk != d2) {
3287			sysfs_unlink_rdev(mddev, rdev);
3288			rdev->raid_disk = d2;
3289			sysfs_unlink_rdev(mddev, rdev);
3290			if (sysfs_link_rdev(mddev, rdev))
3291				pr_warn("md/raid1:%s: cannot register rd%d\n",
3292					mdname(mddev), rdev->raid_disk);
 
3293		}
3294		if (rdev)
3295			newmirrors[d2++].rdev = rdev;
3296	}
3297	kfree(conf->mirrors);
3298	conf->mirrors = newmirrors;
3299	kfree(conf->poolinfo);
3300	conf->poolinfo = newpoolinfo;
3301
3302	spin_lock_irqsave(&conf->device_lock, flags);
3303	mddev->degraded += (raid_disks - conf->raid_disks);
3304	spin_unlock_irqrestore(&conf->device_lock, flags);
3305	conf->raid_disks = mddev->raid_disks = raid_disks;
3306	mddev->delta_disks = 0;
3307
3308	unfreeze_array(conf);
3309
3310	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3311	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3312	md_wakeup_thread(mddev->thread);
3313
3314	mempool_exit(&oldpool);
3315	return 0;
3316}
3317
3318static void raid1_quiesce(struct mddev *mddev, int quiesce)
3319{
3320	struct r1conf *conf = mddev->private;
3321
3322	if (quiesce)
 
 
 
 
3323		freeze_array(conf, 0);
3324	else
 
3325		unfreeze_array(conf);
 
 
3326}
3327
3328static void *raid1_takeover(struct mddev *mddev)
3329{
3330	/* raid1 can take over:
3331	 *  raid5 with 2 devices, any layout or chunk size
3332	 */
3333	if (mddev->level == 5 && mddev->raid_disks == 2) {
3334		struct r1conf *conf;
3335		mddev->new_level = 1;
3336		mddev->new_layout = 0;
3337		mddev->new_chunk_sectors = 0;
3338		conf = setup_conf(mddev);
3339		if (!IS_ERR(conf)) {
3340			/* Array must appear to be quiesced */
3341			conf->array_frozen = 1;
3342			mddev_clear_unsupported_flags(mddev,
3343				UNSUPPORTED_MDDEV_FLAGS);
3344		}
3345		return conf;
3346	}
3347	return ERR_PTR(-EINVAL);
3348}
3349
3350static struct md_personality raid1_personality =
3351{
3352	.name		= "raid1",
3353	.level		= 1,
3354	.owner		= THIS_MODULE,
3355	.make_request	= raid1_make_request,
3356	.run		= raid1_run,
3357	.free		= raid1_free,
3358	.status		= raid1_status,
3359	.error_handler	= raid1_error,
3360	.hot_add_disk	= raid1_add_disk,
3361	.hot_remove_disk= raid1_remove_disk,
3362	.spare_active	= raid1_spare_active,
3363	.sync_request	= raid1_sync_request,
3364	.resize		= raid1_resize,
3365	.size		= raid1_size,
3366	.check_reshape	= raid1_reshape,
3367	.quiesce	= raid1_quiesce,
3368	.takeover	= raid1_takeover,
3369};
3370
3371static int __init raid_init(void)
3372{
3373	return register_md_personality(&raid1_personality);
3374}
3375
3376static void raid_exit(void)
3377{
3378	unregister_md_personality(&raid1_personality);
3379}
3380
3381module_init(raid_init);
3382module_exit(raid_exit);
3383MODULE_LICENSE("GPL");
3384MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3385MODULE_ALIAS("md-personality-3"); /* RAID1 */
3386MODULE_ALIAS("md-raid1");
3387MODULE_ALIAS("md-level-1");
3388
3389module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);