Loading...
1/*
2 * linux/drivers/cpufreq/cpufreq.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7 *
8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9 * Added handling for CPU hotplug
10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11 * Fix handling for CPU hotplug -- affected CPUs
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 */
17
18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20#include <linux/cpu.h>
21#include <linux/cpufreq.h>
22#include <linux/delay.h>
23#include <linux/device.h>
24#include <linux/init.h>
25#include <linux/kernel_stat.h>
26#include <linux/module.h>
27#include <linux/mutex.h>
28#include <linux/slab.h>
29#include <linux/suspend.h>
30#include <linux/tick.h>
31#include <trace/events/power.h>
32
33/**
34 * The "cpufreq driver" - the arch- or hardware-dependent low
35 * level driver of CPUFreq support, and its spinlock. This lock
36 * also protects the cpufreq_cpu_data array.
37 */
38static struct cpufreq_driver *cpufreq_driver;
39static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
40static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data_fallback);
41static DEFINE_RWLOCK(cpufreq_driver_lock);
42DEFINE_MUTEX(cpufreq_governor_lock);
43static LIST_HEAD(cpufreq_policy_list);
44
45/* This one keeps track of the previously set governor of a removed CPU */
46static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor);
47
48/* Flag to suspend/resume CPUFreq governors */
49static bool cpufreq_suspended;
50
51static inline bool has_target(void)
52{
53 return cpufreq_driver->target_index || cpufreq_driver->target;
54}
55
56/*
57 * rwsem to guarantee that cpufreq driver module doesn't unload during critical
58 * sections
59 */
60static DECLARE_RWSEM(cpufreq_rwsem);
61
62/* internal prototypes */
63static int __cpufreq_governor(struct cpufreq_policy *policy,
64 unsigned int event);
65static unsigned int __cpufreq_get(unsigned int cpu);
66static void handle_update(struct work_struct *work);
67
68/**
69 * Two notifier lists: the "policy" list is involved in the
70 * validation process for a new CPU frequency policy; the
71 * "transition" list for kernel code that needs to handle
72 * changes to devices when the CPU clock speed changes.
73 * The mutex locks both lists.
74 */
75static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
76static struct srcu_notifier_head cpufreq_transition_notifier_list;
77
78static bool init_cpufreq_transition_notifier_list_called;
79static int __init init_cpufreq_transition_notifier_list(void)
80{
81 srcu_init_notifier_head(&cpufreq_transition_notifier_list);
82 init_cpufreq_transition_notifier_list_called = true;
83 return 0;
84}
85pure_initcall(init_cpufreq_transition_notifier_list);
86
87static int off __read_mostly;
88static int cpufreq_disabled(void)
89{
90 return off;
91}
92void disable_cpufreq(void)
93{
94 off = 1;
95}
96static LIST_HEAD(cpufreq_governor_list);
97static DEFINE_MUTEX(cpufreq_governor_mutex);
98
99bool have_governor_per_policy(void)
100{
101 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
102}
103EXPORT_SYMBOL_GPL(have_governor_per_policy);
104
105struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
106{
107 if (have_governor_per_policy())
108 return &policy->kobj;
109 else
110 return cpufreq_global_kobject;
111}
112EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
113
114static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
115{
116 u64 idle_time;
117 u64 cur_wall_time;
118 u64 busy_time;
119
120 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
121
122 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
123 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
124 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
125 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
126 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
127 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
128
129 idle_time = cur_wall_time - busy_time;
130 if (wall)
131 *wall = cputime_to_usecs(cur_wall_time);
132
133 return cputime_to_usecs(idle_time);
134}
135
136u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
137{
138 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
139
140 if (idle_time == -1ULL)
141 return get_cpu_idle_time_jiffy(cpu, wall);
142 else if (!io_busy)
143 idle_time += get_cpu_iowait_time_us(cpu, wall);
144
145 return idle_time;
146}
147EXPORT_SYMBOL_GPL(get_cpu_idle_time);
148
149/*
150 * This is a generic cpufreq init() routine which can be used by cpufreq
151 * drivers of SMP systems. It will do following:
152 * - validate & show freq table passed
153 * - set policies transition latency
154 * - policy->cpus with all possible CPUs
155 */
156int cpufreq_generic_init(struct cpufreq_policy *policy,
157 struct cpufreq_frequency_table *table,
158 unsigned int transition_latency)
159{
160 int ret;
161
162 ret = cpufreq_table_validate_and_show(policy, table);
163 if (ret) {
164 pr_err("%s: invalid frequency table: %d\n", __func__, ret);
165 return ret;
166 }
167
168 policy->cpuinfo.transition_latency = transition_latency;
169
170 /*
171 * The driver only supports the SMP configuartion where all processors
172 * share the clock and voltage and clock.
173 */
174 cpumask_setall(policy->cpus);
175
176 return 0;
177}
178EXPORT_SYMBOL_GPL(cpufreq_generic_init);
179
180unsigned int cpufreq_generic_get(unsigned int cpu)
181{
182 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
183
184 if (!policy || IS_ERR(policy->clk)) {
185 pr_err("%s: No %s associated to cpu: %d\n",
186 __func__, policy ? "clk" : "policy", cpu);
187 return 0;
188 }
189
190 return clk_get_rate(policy->clk) / 1000;
191}
192EXPORT_SYMBOL_GPL(cpufreq_generic_get);
193
194/* Only for cpufreq core internal use */
195struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
196{
197 return per_cpu(cpufreq_cpu_data, cpu);
198}
199
200struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
201{
202 struct cpufreq_policy *policy = NULL;
203 unsigned long flags;
204
205 if (cpufreq_disabled() || (cpu >= nr_cpu_ids))
206 return NULL;
207
208 if (!down_read_trylock(&cpufreq_rwsem))
209 return NULL;
210
211 /* get the cpufreq driver */
212 read_lock_irqsave(&cpufreq_driver_lock, flags);
213
214 if (cpufreq_driver) {
215 /* get the CPU */
216 policy = per_cpu(cpufreq_cpu_data, cpu);
217 if (policy)
218 kobject_get(&policy->kobj);
219 }
220
221 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
222
223 if (!policy)
224 up_read(&cpufreq_rwsem);
225
226 return policy;
227}
228EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
229
230void cpufreq_cpu_put(struct cpufreq_policy *policy)
231{
232 if (cpufreq_disabled())
233 return;
234
235 kobject_put(&policy->kobj);
236 up_read(&cpufreq_rwsem);
237}
238EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
239
240/*********************************************************************
241 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
242 *********************************************************************/
243
244/**
245 * adjust_jiffies - adjust the system "loops_per_jiffy"
246 *
247 * This function alters the system "loops_per_jiffy" for the clock
248 * speed change. Note that loops_per_jiffy cannot be updated on SMP
249 * systems as each CPU might be scaled differently. So, use the arch
250 * per-CPU loops_per_jiffy value wherever possible.
251 */
252#ifndef CONFIG_SMP
253static unsigned long l_p_j_ref;
254static unsigned int l_p_j_ref_freq;
255
256static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
257{
258 if (ci->flags & CPUFREQ_CONST_LOOPS)
259 return;
260
261 if (!l_p_j_ref_freq) {
262 l_p_j_ref = loops_per_jiffy;
263 l_p_j_ref_freq = ci->old;
264 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
265 l_p_j_ref, l_p_j_ref_freq);
266 }
267 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
268 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
269 ci->new);
270 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
271 loops_per_jiffy, ci->new);
272 }
273}
274#else
275static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
276{
277 return;
278}
279#endif
280
281static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
282 struct cpufreq_freqs *freqs, unsigned int state)
283{
284 BUG_ON(irqs_disabled());
285
286 if (cpufreq_disabled())
287 return;
288
289 freqs->flags = cpufreq_driver->flags;
290 pr_debug("notification %u of frequency transition to %u kHz\n",
291 state, freqs->new);
292
293 switch (state) {
294
295 case CPUFREQ_PRECHANGE:
296 /* detect if the driver reported a value as "old frequency"
297 * which is not equal to what the cpufreq core thinks is
298 * "old frequency".
299 */
300 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
301 if ((policy) && (policy->cpu == freqs->cpu) &&
302 (policy->cur) && (policy->cur != freqs->old)) {
303 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
304 freqs->old, policy->cur);
305 freqs->old = policy->cur;
306 }
307 }
308 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
309 CPUFREQ_PRECHANGE, freqs);
310 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
311 break;
312
313 case CPUFREQ_POSTCHANGE:
314 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
315 pr_debug("FREQ: %lu - CPU: %lu\n",
316 (unsigned long)freqs->new, (unsigned long)freqs->cpu);
317 trace_cpu_frequency(freqs->new, freqs->cpu);
318 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
319 CPUFREQ_POSTCHANGE, freqs);
320 if (likely(policy) && likely(policy->cpu == freqs->cpu))
321 policy->cur = freqs->new;
322 break;
323 }
324}
325
326/**
327 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
328 * on frequency transition.
329 *
330 * This function calls the transition notifiers and the "adjust_jiffies"
331 * function. It is called twice on all CPU frequency changes that have
332 * external effects.
333 */
334static void cpufreq_notify_transition(struct cpufreq_policy *policy,
335 struct cpufreq_freqs *freqs, unsigned int state)
336{
337 for_each_cpu(freqs->cpu, policy->cpus)
338 __cpufreq_notify_transition(policy, freqs, state);
339}
340
341/* Do post notifications when there are chances that transition has failed */
342static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
343 struct cpufreq_freqs *freqs, int transition_failed)
344{
345 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
346 if (!transition_failed)
347 return;
348
349 swap(freqs->old, freqs->new);
350 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
351 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
352}
353
354void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
355 struct cpufreq_freqs *freqs)
356{
357wait:
358 wait_event(policy->transition_wait, !policy->transition_ongoing);
359
360 spin_lock(&policy->transition_lock);
361
362 if (unlikely(policy->transition_ongoing)) {
363 spin_unlock(&policy->transition_lock);
364 goto wait;
365 }
366
367 policy->transition_ongoing = true;
368
369 spin_unlock(&policy->transition_lock);
370
371 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
372}
373EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
374
375void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
376 struct cpufreq_freqs *freqs, int transition_failed)
377{
378 if (unlikely(WARN_ON(!policy->transition_ongoing)))
379 return;
380
381 cpufreq_notify_post_transition(policy, freqs, transition_failed);
382
383 policy->transition_ongoing = false;
384
385 wake_up(&policy->transition_wait);
386}
387EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
388
389
390/*********************************************************************
391 * SYSFS INTERFACE *
392 *********************************************************************/
393static ssize_t show_boost(struct kobject *kobj,
394 struct attribute *attr, char *buf)
395{
396 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
397}
398
399static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
400 const char *buf, size_t count)
401{
402 int ret, enable;
403
404 ret = sscanf(buf, "%d", &enable);
405 if (ret != 1 || enable < 0 || enable > 1)
406 return -EINVAL;
407
408 if (cpufreq_boost_trigger_state(enable)) {
409 pr_err("%s: Cannot %s BOOST!\n",
410 __func__, enable ? "enable" : "disable");
411 return -EINVAL;
412 }
413
414 pr_debug("%s: cpufreq BOOST %s\n",
415 __func__, enable ? "enabled" : "disabled");
416
417 return count;
418}
419define_one_global_rw(boost);
420
421static struct cpufreq_governor *__find_governor(const char *str_governor)
422{
423 struct cpufreq_governor *t;
424
425 list_for_each_entry(t, &cpufreq_governor_list, governor_list)
426 if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN))
427 return t;
428
429 return NULL;
430}
431
432/**
433 * cpufreq_parse_governor - parse a governor string
434 */
435static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
436 struct cpufreq_governor **governor)
437{
438 int err = -EINVAL;
439
440 if (!cpufreq_driver)
441 goto out;
442
443 if (cpufreq_driver->setpolicy) {
444 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
445 *policy = CPUFREQ_POLICY_PERFORMANCE;
446 err = 0;
447 } else if (!strnicmp(str_governor, "powersave",
448 CPUFREQ_NAME_LEN)) {
449 *policy = CPUFREQ_POLICY_POWERSAVE;
450 err = 0;
451 }
452 } else if (has_target()) {
453 struct cpufreq_governor *t;
454
455 mutex_lock(&cpufreq_governor_mutex);
456
457 t = __find_governor(str_governor);
458
459 if (t == NULL) {
460 int ret;
461
462 mutex_unlock(&cpufreq_governor_mutex);
463 ret = request_module("cpufreq_%s", str_governor);
464 mutex_lock(&cpufreq_governor_mutex);
465
466 if (ret == 0)
467 t = __find_governor(str_governor);
468 }
469
470 if (t != NULL) {
471 *governor = t;
472 err = 0;
473 }
474
475 mutex_unlock(&cpufreq_governor_mutex);
476 }
477out:
478 return err;
479}
480
481/**
482 * cpufreq_per_cpu_attr_read() / show_##file_name() -
483 * print out cpufreq information
484 *
485 * Write out information from cpufreq_driver->policy[cpu]; object must be
486 * "unsigned int".
487 */
488
489#define show_one(file_name, object) \
490static ssize_t show_##file_name \
491(struct cpufreq_policy *policy, char *buf) \
492{ \
493 return sprintf(buf, "%u\n", policy->object); \
494}
495
496show_one(cpuinfo_min_freq, cpuinfo.min_freq);
497show_one(cpuinfo_max_freq, cpuinfo.max_freq);
498show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
499show_one(scaling_min_freq, min);
500show_one(scaling_max_freq, max);
501show_one(scaling_cur_freq, cur);
502
503static int cpufreq_set_policy(struct cpufreq_policy *policy,
504 struct cpufreq_policy *new_policy);
505
506/**
507 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
508 */
509#define store_one(file_name, object) \
510static ssize_t store_##file_name \
511(struct cpufreq_policy *policy, const char *buf, size_t count) \
512{ \
513 int ret; \
514 struct cpufreq_policy new_policy; \
515 \
516 ret = cpufreq_get_policy(&new_policy, policy->cpu); \
517 if (ret) \
518 return -EINVAL; \
519 \
520 ret = sscanf(buf, "%u", &new_policy.object); \
521 if (ret != 1) \
522 return -EINVAL; \
523 \
524 ret = cpufreq_set_policy(policy, &new_policy); \
525 policy->user_policy.object = policy->object; \
526 \
527 return ret ? ret : count; \
528}
529
530store_one(scaling_min_freq, min);
531store_one(scaling_max_freq, max);
532
533/**
534 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
535 */
536static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
537 char *buf)
538{
539 unsigned int cur_freq = __cpufreq_get(policy->cpu);
540 if (!cur_freq)
541 return sprintf(buf, "<unknown>");
542 return sprintf(buf, "%u\n", cur_freq);
543}
544
545/**
546 * show_scaling_governor - show the current policy for the specified CPU
547 */
548static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
549{
550 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
551 return sprintf(buf, "powersave\n");
552 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
553 return sprintf(buf, "performance\n");
554 else if (policy->governor)
555 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
556 policy->governor->name);
557 return -EINVAL;
558}
559
560/**
561 * store_scaling_governor - store policy for the specified CPU
562 */
563static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
564 const char *buf, size_t count)
565{
566 int ret;
567 char str_governor[16];
568 struct cpufreq_policy new_policy;
569
570 ret = cpufreq_get_policy(&new_policy, policy->cpu);
571 if (ret)
572 return ret;
573
574 ret = sscanf(buf, "%15s", str_governor);
575 if (ret != 1)
576 return -EINVAL;
577
578 if (cpufreq_parse_governor(str_governor, &new_policy.policy,
579 &new_policy.governor))
580 return -EINVAL;
581
582 ret = cpufreq_set_policy(policy, &new_policy);
583
584 policy->user_policy.policy = policy->policy;
585 policy->user_policy.governor = policy->governor;
586
587 if (ret)
588 return ret;
589 else
590 return count;
591}
592
593/**
594 * show_scaling_driver - show the cpufreq driver currently loaded
595 */
596static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
597{
598 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
599}
600
601/**
602 * show_scaling_available_governors - show the available CPUfreq governors
603 */
604static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
605 char *buf)
606{
607 ssize_t i = 0;
608 struct cpufreq_governor *t;
609
610 if (!has_target()) {
611 i += sprintf(buf, "performance powersave");
612 goto out;
613 }
614
615 list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
616 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
617 - (CPUFREQ_NAME_LEN + 2)))
618 goto out;
619 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
620 }
621out:
622 i += sprintf(&buf[i], "\n");
623 return i;
624}
625
626ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
627{
628 ssize_t i = 0;
629 unsigned int cpu;
630
631 for_each_cpu(cpu, mask) {
632 if (i)
633 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
634 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
635 if (i >= (PAGE_SIZE - 5))
636 break;
637 }
638 i += sprintf(&buf[i], "\n");
639 return i;
640}
641EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
642
643/**
644 * show_related_cpus - show the CPUs affected by each transition even if
645 * hw coordination is in use
646 */
647static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
648{
649 return cpufreq_show_cpus(policy->related_cpus, buf);
650}
651
652/**
653 * show_affected_cpus - show the CPUs affected by each transition
654 */
655static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
656{
657 return cpufreq_show_cpus(policy->cpus, buf);
658}
659
660static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
661 const char *buf, size_t count)
662{
663 unsigned int freq = 0;
664 unsigned int ret;
665
666 if (!policy->governor || !policy->governor->store_setspeed)
667 return -EINVAL;
668
669 ret = sscanf(buf, "%u", &freq);
670 if (ret != 1)
671 return -EINVAL;
672
673 policy->governor->store_setspeed(policy, freq);
674
675 return count;
676}
677
678static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
679{
680 if (!policy->governor || !policy->governor->show_setspeed)
681 return sprintf(buf, "<unsupported>\n");
682
683 return policy->governor->show_setspeed(policy, buf);
684}
685
686/**
687 * show_bios_limit - show the current cpufreq HW/BIOS limitation
688 */
689static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
690{
691 unsigned int limit;
692 int ret;
693 if (cpufreq_driver->bios_limit) {
694 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
695 if (!ret)
696 return sprintf(buf, "%u\n", limit);
697 }
698 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
699}
700
701cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
702cpufreq_freq_attr_ro(cpuinfo_min_freq);
703cpufreq_freq_attr_ro(cpuinfo_max_freq);
704cpufreq_freq_attr_ro(cpuinfo_transition_latency);
705cpufreq_freq_attr_ro(scaling_available_governors);
706cpufreq_freq_attr_ro(scaling_driver);
707cpufreq_freq_attr_ro(scaling_cur_freq);
708cpufreq_freq_attr_ro(bios_limit);
709cpufreq_freq_attr_ro(related_cpus);
710cpufreq_freq_attr_ro(affected_cpus);
711cpufreq_freq_attr_rw(scaling_min_freq);
712cpufreq_freq_attr_rw(scaling_max_freq);
713cpufreq_freq_attr_rw(scaling_governor);
714cpufreq_freq_attr_rw(scaling_setspeed);
715
716static struct attribute *default_attrs[] = {
717 &cpuinfo_min_freq.attr,
718 &cpuinfo_max_freq.attr,
719 &cpuinfo_transition_latency.attr,
720 &scaling_min_freq.attr,
721 &scaling_max_freq.attr,
722 &affected_cpus.attr,
723 &related_cpus.attr,
724 &scaling_governor.attr,
725 &scaling_driver.attr,
726 &scaling_available_governors.attr,
727 &scaling_setspeed.attr,
728 NULL
729};
730
731#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
732#define to_attr(a) container_of(a, struct freq_attr, attr)
733
734static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
735{
736 struct cpufreq_policy *policy = to_policy(kobj);
737 struct freq_attr *fattr = to_attr(attr);
738 ssize_t ret;
739
740 if (!down_read_trylock(&cpufreq_rwsem))
741 return -EINVAL;
742
743 down_read(&policy->rwsem);
744
745 if (fattr->show)
746 ret = fattr->show(policy, buf);
747 else
748 ret = -EIO;
749
750 up_read(&policy->rwsem);
751 up_read(&cpufreq_rwsem);
752
753 return ret;
754}
755
756static ssize_t store(struct kobject *kobj, struct attribute *attr,
757 const char *buf, size_t count)
758{
759 struct cpufreq_policy *policy = to_policy(kobj);
760 struct freq_attr *fattr = to_attr(attr);
761 ssize_t ret = -EINVAL;
762
763 get_online_cpus();
764
765 if (!cpu_online(policy->cpu))
766 goto unlock;
767
768 if (!down_read_trylock(&cpufreq_rwsem))
769 goto unlock;
770
771 down_write(&policy->rwsem);
772
773 if (fattr->store)
774 ret = fattr->store(policy, buf, count);
775 else
776 ret = -EIO;
777
778 up_write(&policy->rwsem);
779
780 up_read(&cpufreq_rwsem);
781unlock:
782 put_online_cpus();
783
784 return ret;
785}
786
787static void cpufreq_sysfs_release(struct kobject *kobj)
788{
789 struct cpufreq_policy *policy = to_policy(kobj);
790 pr_debug("last reference is dropped\n");
791 complete(&policy->kobj_unregister);
792}
793
794static const struct sysfs_ops sysfs_ops = {
795 .show = show,
796 .store = store,
797};
798
799static struct kobj_type ktype_cpufreq = {
800 .sysfs_ops = &sysfs_ops,
801 .default_attrs = default_attrs,
802 .release = cpufreq_sysfs_release,
803};
804
805struct kobject *cpufreq_global_kobject;
806EXPORT_SYMBOL(cpufreq_global_kobject);
807
808static int cpufreq_global_kobject_usage;
809
810int cpufreq_get_global_kobject(void)
811{
812 if (!cpufreq_global_kobject_usage++)
813 return kobject_add(cpufreq_global_kobject,
814 &cpu_subsys.dev_root->kobj, "%s", "cpufreq");
815
816 return 0;
817}
818EXPORT_SYMBOL(cpufreq_get_global_kobject);
819
820void cpufreq_put_global_kobject(void)
821{
822 if (!--cpufreq_global_kobject_usage)
823 kobject_del(cpufreq_global_kobject);
824}
825EXPORT_SYMBOL(cpufreq_put_global_kobject);
826
827int cpufreq_sysfs_create_file(const struct attribute *attr)
828{
829 int ret = cpufreq_get_global_kobject();
830
831 if (!ret) {
832 ret = sysfs_create_file(cpufreq_global_kobject, attr);
833 if (ret)
834 cpufreq_put_global_kobject();
835 }
836
837 return ret;
838}
839EXPORT_SYMBOL(cpufreq_sysfs_create_file);
840
841void cpufreq_sysfs_remove_file(const struct attribute *attr)
842{
843 sysfs_remove_file(cpufreq_global_kobject, attr);
844 cpufreq_put_global_kobject();
845}
846EXPORT_SYMBOL(cpufreq_sysfs_remove_file);
847
848/* symlink affected CPUs */
849static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy)
850{
851 unsigned int j;
852 int ret = 0;
853
854 for_each_cpu(j, policy->cpus) {
855 struct device *cpu_dev;
856
857 if (j == policy->cpu)
858 continue;
859
860 pr_debug("Adding link for CPU: %u\n", j);
861 cpu_dev = get_cpu_device(j);
862 ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
863 "cpufreq");
864 if (ret)
865 break;
866 }
867 return ret;
868}
869
870static int cpufreq_add_dev_interface(struct cpufreq_policy *policy,
871 struct device *dev)
872{
873 struct freq_attr **drv_attr;
874 int ret = 0;
875
876 /* prepare interface data */
877 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
878 &dev->kobj, "cpufreq");
879 if (ret)
880 return ret;
881
882 /* set up files for this cpu device */
883 drv_attr = cpufreq_driver->attr;
884 while ((drv_attr) && (*drv_attr)) {
885 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
886 if (ret)
887 goto err_out_kobj_put;
888 drv_attr++;
889 }
890 if (cpufreq_driver->get) {
891 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
892 if (ret)
893 goto err_out_kobj_put;
894 }
895 if (has_target()) {
896 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
897 if (ret)
898 goto err_out_kobj_put;
899 }
900 if (cpufreq_driver->bios_limit) {
901 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
902 if (ret)
903 goto err_out_kobj_put;
904 }
905
906 ret = cpufreq_add_dev_symlink(policy);
907 if (ret)
908 goto err_out_kobj_put;
909
910 return ret;
911
912err_out_kobj_put:
913 kobject_put(&policy->kobj);
914 wait_for_completion(&policy->kobj_unregister);
915 return ret;
916}
917
918static void cpufreq_init_policy(struct cpufreq_policy *policy)
919{
920 struct cpufreq_governor *gov = NULL;
921 struct cpufreq_policy new_policy;
922 int ret = 0;
923
924 memcpy(&new_policy, policy, sizeof(*policy));
925
926 /* Update governor of new_policy to the governor used before hotplug */
927 gov = __find_governor(per_cpu(cpufreq_cpu_governor, policy->cpu));
928 if (gov)
929 pr_debug("Restoring governor %s for cpu %d\n",
930 policy->governor->name, policy->cpu);
931 else
932 gov = CPUFREQ_DEFAULT_GOVERNOR;
933
934 new_policy.governor = gov;
935
936 /* Use the default policy if its valid. */
937 if (cpufreq_driver->setpolicy)
938 cpufreq_parse_governor(gov->name, &new_policy.policy, NULL);
939
940 /* set default policy */
941 ret = cpufreq_set_policy(policy, &new_policy);
942 if (ret) {
943 pr_debug("setting policy failed\n");
944 if (cpufreq_driver->exit)
945 cpufreq_driver->exit(policy);
946 }
947}
948
949#ifdef CONFIG_HOTPLUG_CPU
950static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy,
951 unsigned int cpu, struct device *dev)
952{
953 int ret = 0;
954 unsigned long flags;
955
956 if (has_target()) {
957 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
958 if (ret) {
959 pr_err("%s: Failed to stop governor\n", __func__);
960 return ret;
961 }
962 }
963
964 down_write(&policy->rwsem);
965
966 write_lock_irqsave(&cpufreq_driver_lock, flags);
967
968 cpumask_set_cpu(cpu, policy->cpus);
969 per_cpu(cpufreq_cpu_data, cpu) = policy;
970 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
971
972 up_write(&policy->rwsem);
973
974 if (has_target()) {
975 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
976 if (!ret)
977 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
978
979 if (ret) {
980 pr_err("%s: Failed to start governor\n", __func__);
981 return ret;
982 }
983 }
984
985 return sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq");
986}
987#endif
988
989static struct cpufreq_policy *cpufreq_policy_restore(unsigned int cpu)
990{
991 struct cpufreq_policy *policy;
992 unsigned long flags;
993
994 read_lock_irqsave(&cpufreq_driver_lock, flags);
995
996 policy = per_cpu(cpufreq_cpu_data_fallback, cpu);
997
998 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
999
1000 policy->governor = NULL;
1001
1002 return policy;
1003}
1004
1005static struct cpufreq_policy *cpufreq_policy_alloc(void)
1006{
1007 struct cpufreq_policy *policy;
1008
1009 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1010 if (!policy)
1011 return NULL;
1012
1013 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1014 goto err_free_policy;
1015
1016 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1017 goto err_free_cpumask;
1018
1019 INIT_LIST_HEAD(&policy->policy_list);
1020 init_rwsem(&policy->rwsem);
1021 spin_lock_init(&policy->transition_lock);
1022 init_waitqueue_head(&policy->transition_wait);
1023
1024 return policy;
1025
1026err_free_cpumask:
1027 free_cpumask_var(policy->cpus);
1028err_free_policy:
1029 kfree(policy);
1030
1031 return NULL;
1032}
1033
1034static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1035{
1036 struct kobject *kobj;
1037 struct completion *cmp;
1038
1039 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1040 CPUFREQ_REMOVE_POLICY, policy);
1041
1042 down_read(&policy->rwsem);
1043 kobj = &policy->kobj;
1044 cmp = &policy->kobj_unregister;
1045 up_read(&policy->rwsem);
1046 kobject_put(kobj);
1047
1048 /*
1049 * We need to make sure that the underlying kobj is
1050 * actually not referenced anymore by anybody before we
1051 * proceed with unloading.
1052 */
1053 pr_debug("waiting for dropping of refcount\n");
1054 wait_for_completion(cmp);
1055 pr_debug("wait complete\n");
1056}
1057
1058static void cpufreq_policy_free(struct cpufreq_policy *policy)
1059{
1060 free_cpumask_var(policy->related_cpus);
1061 free_cpumask_var(policy->cpus);
1062 kfree(policy);
1063}
1064
1065static void update_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1066{
1067 if (WARN_ON(cpu == policy->cpu))
1068 return;
1069
1070 down_write(&policy->rwsem);
1071
1072 policy->last_cpu = policy->cpu;
1073 policy->cpu = cpu;
1074
1075 up_write(&policy->rwsem);
1076
1077 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1078 CPUFREQ_UPDATE_POLICY_CPU, policy);
1079}
1080
1081static int __cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1082{
1083 unsigned int j, cpu = dev->id;
1084 int ret = -ENOMEM;
1085 struct cpufreq_policy *policy;
1086 unsigned long flags;
1087 bool recover_policy = cpufreq_suspended;
1088#ifdef CONFIG_HOTPLUG_CPU
1089 struct cpufreq_policy *tpolicy;
1090#endif
1091
1092 if (cpu_is_offline(cpu))
1093 return 0;
1094
1095 pr_debug("adding CPU %u\n", cpu);
1096
1097#ifdef CONFIG_SMP
1098 /* check whether a different CPU already registered this
1099 * CPU because it is in the same boat. */
1100 policy = cpufreq_cpu_get(cpu);
1101 if (unlikely(policy)) {
1102 cpufreq_cpu_put(policy);
1103 return 0;
1104 }
1105#endif
1106
1107 if (!down_read_trylock(&cpufreq_rwsem))
1108 return 0;
1109
1110#ifdef CONFIG_HOTPLUG_CPU
1111 /* Check if this cpu was hot-unplugged earlier and has siblings */
1112 read_lock_irqsave(&cpufreq_driver_lock, flags);
1113 list_for_each_entry(tpolicy, &cpufreq_policy_list, policy_list) {
1114 if (cpumask_test_cpu(cpu, tpolicy->related_cpus)) {
1115 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1116 ret = cpufreq_add_policy_cpu(tpolicy, cpu, dev);
1117 up_read(&cpufreq_rwsem);
1118 return ret;
1119 }
1120 }
1121 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1122#endif
1123
1124 /*
1125 * Restore the saved policy when doing light-weight init and fall back
1126 * to the full init if that fails.
1127 */
1128 policy = recover_policy ? cpufreq_policy_restore(cpu) : NULL;
1129 if (!policy) {
1130 recover_policy = false;
1131 policy = cpufreq_policy_alloc();
1132 if (!policy)
1133 goto nomem_out;
1134 }
1135
1136 /*
1137 * In the resume path, since we restore a saved policy, the assignment
1138 * to policy->cpu is like an update of the existing policy, rather than
1139 * the creation of a brand new one. So we need to perform this update
1140 * by invoking update_policy_cpu().
1141 */
1142 if (recover_policy && cpu != policy->cpu)
1143 update_policy_cpu(policy, cpu);
1144 else
1145 policy->cpu = cpu;
1146
1147 cpumask_copy(policy->cpus, cpumask_of(cpu));
1148
1149 init_completion(&policy->kobj_unregister);
1150 INIT_WORK(&policy->update, handle_update);
1151
1152 /* call driver. From then on the cpufreq must be able
1153 * to accept all calls to ->verify and ->setpolicy for this CPU
1154 */
1155 ret = cpufreq_driver->init(policy);
1156 if (ret) {
1157 pr_debug("initialization failed\n");
1158 goto err_set_policy_cpu;
1159 }
1160
1161 /* related cpus should atleast have policy->cpus */
1162 cpumask_or(policy->related_cpus, policy->related_cpus, policy->cpus);
1163
1164 /*
1165 * affected cpus must always be the one, which are online. We aren't
1166 * managing offline cpus here.
1167 */
1168 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1169
1170 if (!recover_policy) {
1171 policy->user_policy.min = policy->min;
1172 policy->user_policy.max = policy->max;
1173 }
1174
1175 down_write(&policy->rwsem);
1176 write_lock_irqsave(&cpufreq_driver_lock, flags);
1177 for_each_cpu(j, policy->cpus)
1178 per_cpu(cpufreq_cpu_data, j) = policy;
1179 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1180
1181 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1182 policy->cur = cpufreq_driver->get(policy->cpu);
1183 if (!policy->cur) {
1184 pr_err("%s: ->get() failed\n", __func__);
1185 goto err_get_freq;
1186 }
1187 }
1188
1189 /*
1190 * Sometimes boot loaders set CPU frequency to a value outside of
1191 * frequency table present with cpufreq core. In such cases CPU might be
1192 * unstable if it has to run on that frequency for long duration of time
1193 * and so its better to set it to a frequency which is specified in
1194 * freq-table. This also makes cpufreq stats inconsistent as
1195 * cpufreq-stats would fail to register because current frequency of CPU
1196 * isn't found in freq-table.
1197 *
1198 * Because we don't want this change to effect boot process badly, we go
1199 * for the next freq which is >= policy->cur ('cur' must be set by now,
1200 * otherwise we will end up setting freq to lowest of the table as 'cur'
1201 * is initialized to zero).
1202 *
1203 * We are passing target-freq as "policy->cur - 1" otherwise
1204 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1205 * equal to target-freq.
1206 */
1207 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1208 && has_target()) {
1209 /* Are we running at unknown frequency ? */
1210 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1211 if (ret == -EINVAL) {
1212 /* Warn user and fix it */
1213 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1214 __func__, policy->cpu, policy->cur);
1215 ret = __cpufreq_driver_target(policy, policy->cur - 1,
1216 CPUFREQ_RELATION_L);
1217
1218 /*
1219 * Reaching here after boot in a few seconds may not
1220 * mean that system will remain stable at "unknown"
1221 * frequency for longer duration. Hence, a BUG_ON().
1222 */
1223 BUG_ON(ret);
1224 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1225 __func__, policy->cpu, policy->cur);
1226 }
1227 }
1228
1229 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1230 CPUFREQ_START, policy);
1231
1232 if (!recover_policy) {
1233 ret = cpufreq_add_dev_interface(policy, dev);
1234 if (ret)
1235 goto err_out_unregister;
1236 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1237 CPUFREQ_CREATE_POLICY, policy);
1238 }
1239
1240 write_lock_irqsave(&cpufreq_driver_lock, flags);
1241 list_add(&policy->policy_list, &cpufreq_policy_list);
1242 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1243
1244 cpufreq_init_policy(policy);
1245
1246 if (!recover_policy) {
1247 policy->user_policy.policy = policy->policy;
1248 policy->user_policy.governor = policy->governor;
1249 }
1250 up_write(&policy->rwsem);
1251
1252 kobject_uevent(&policy->kobj, KOBJ_ADD);
1253 up_read(&cpufreq_rwsem);
1254
1255 pr_debug("initialization complete\n");
1256
1257 return 0;
1258
1259err_out_unregister:
1260err_get_freq:
1261 write_lock_irqsave(&cpufreq_driver_lock, flags);
1262 for_each_cpu(j, policy->cpus)
1263 per_cpu(cpufreq_cpu_data, j) = NULL;
1264 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1265
1266 if (cpufreq_driver->exit)
1267 cpufreq_driver->exit(policy);
1268err_set_policy_cpu:
1269 if (recover_policy) {
1270 /* Do not leave stale fallback data behind. */
1271 per_cpu(cpufreq_cpu_data_fallback, cpu) = NULL;
1272 cpufreq_policy_put_kobj(policy);
1273 }
1274 cpufreq_policy_free(policy);
1275
1276nomem_out:
1277 up_read(&cpufreq_rwsem);
1278
1279 return ret;
1280}
1281
1282/**
1283 * cpufreq_add_dev - add a CPU device
1284 *
1285 * Adds the cpufreq interface for a CPU device.
1286 *
1287 * The Oracle says: try running cpufreq registration/unregistration concurrently
1288 * with with cpu hotplugging and all hell will break loose. Tried to clean this
1289 * mess up, but more thorough testing is needed. - Mathieu
1290 */
1291static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1292{
1293 return __cpufreq_add_dev(dev, sif);
1294}
1295
1296static int cpufreq_nominate_new_policy_cpu(struct cpufreq_policy *policy,
1297 unsigned int old_cpu)
1298{
1299 struct device *cpu_dev;
1300 int ret;
1301
1302 /* first sibling now owns the new sysfs dir */
1303 cpu_dev = get_cpu_device(cpumask_any_but(policy->cpus, old_cpu));
1304
1305 sysfs_remove_link(&cpu_dev->kobj, "cpufreq");
1306 ret = kobject_move(&policy->kobj, &cpu_dev->kobj);
1307 if (ret) {
1308 pr_err("%s: Failed to move kobj: %d\n", __func__, ret);
1309
1310 down_write(&policy->rwsem);
1311 cpumask_set_cpu(old_cpu, policy->cpus);
1312 up_write(&policy->rwsem);
1313
1314 ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
1315 "cpufreq");
1316
1317 return -EINVAL;
1318 }
1319
1320 return cpu_dev->id;
1321}
1322
1323static int __cpufreq_remove_dev_prepare(struct device *dev,
1324 struct subsys_interface *sif)
1325{
1326 unsigned int cpu = dev->id, cpus;
1327 int new_cpu, ret;
1328 unsigned long flags;
1329 struct cpufreq_policy *policy;
1330
1331 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1332
1333 write_lock_irqsave(&cpufreq_driver_lock, flags);
1334
1335 policy = per_cpu(cpufreq_cpu_data, cpu);
1336
1337 /* Save the policy somewhere when doing a light-weight tear-down */
1338 if (cpufreq_suspended)
1339 per_cpu(cpufreq_cpu_data_fallback, cpu) = policy;
1340
1341 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1342
1343 if (!policy) {
1344 pr_debug("%s: No cpu_data found\n", __func__);
1345 return -EINVAL;
1346 }
1347
1348 if (has_target()) {
1349 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1350 if (ret) {
1351 pr_err("%s: Failed to stop governor\n", __func__);
1352 return ret;
1353 }
1354 }
1355
1356 if (!cpufreq_driver->setpolicy)
1357 strncpy(per_cpu(cpufreq_cpu_governor, cpu),
1358 policy->governor->name, CPUFREQ_NAME_LEN);
1359
1360 down_read(&policy->rwsem);
1361 cpus = cpumask_weight(policy->cpus);
1362 up_read(&policy->rwsem);
1363
1364 if (cpu != policy->cpu) {
1365 sysfs_remove_link(&dev->kobj, "cpufreq");
1366 } else if (cpus > 1) {
1367 new_cpu = cpufreq_nominate_new_policy_cpu(policy, cpu);
1368 if (new_cpu >= 0) {
1369 update_policy_cpu(policy, new_cpu);
1370
1371 if (!cpufreq_suspended)
1372 pr_debug("%s: policy Kobject moved to cpu: %d from: %d\n",
1373 __func__, new_cpu, cpu);
1374 }
1375 } else if (cpufreq_driver->stop_cpu && cpufreq_driver->setpolicy) {
1376 cpufreq_driver->stop_cpu(policy);
1377 }
1378
1379 return 0;
1380}
1381
1382static int __cpufreq_remove_dev_finish(struct device *dev,
1383 struct subsys_interface *sif)
1384{
1385 unsigned int cpu = dev->id, cpus;
1386 int ret;
1387 unsigned long flags;
1388 struct cpufreq_policy *policy;
1389
1390 read_lock_irqsave(&cpufreq_driver_lock, flags);
1391 policy = per_cpu(cpufreq_cpu_data, cpu);
1392 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1393
1394 if (!policy) {
1395 pr_debug("%s: No cpu_data found\n", __func__);
1396 return -EINVAL;
1397 }
1398
1399 down_write(&policy->rwsem);
1400 cpus = cpumask_weight(policy->cpus);
1401
1402 if (cpus > 1)
1403 cpumask_clear_cpu(cpu, policy->cpus);
1404 up_write(&policy->rwsem);
1405
1406 /* If cpu is last user of policy, free policy */
1407 if (cpus == 1) {
1408 if (has_target()) {
1409 ret = __cpufreq_governor(policy,
1410 CPUFREQ_GOV_POLICY_EXIT);
1411 if (ret) {
1412 pr_err("%s: Failed to exit governor\n",
1413 __func__);
1414 return ret;
1415 }
1416 }
1417
1418 if (!cpufreq_suspended)
1419 cpufreq_policy_put_kobj(policy);
1420
1421 /*
1422 * Perform the ->exit() even during light-weight tear-down,
1423 * since this is a core component, and is essential for the
1424 * subsequent light-weight ->init() to succeed.
1425 */
1426 if (cpufreq_driver->exit)
1427 cpufreq_driver->exit(policy);
1428
1429 /* Remove policy from list of active policies */
1430 write_lock_irqsave(&cpufreq_driver_lock, flags);
1431 list_del(&policy->policy_list);
1432 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1433
1434 if (!cpufreq_suspended)
1435 cpufreq_policy_free(policy);
1436 } else if (has_target()) {
1437 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
1438 if (!ret)
1439 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
1440
1441 if (ret) {
1442 pr_err("%s: Failed to start governor\n", __func__);
1443 return ret;
1444 }
1445 }
1446
1447 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1448 return 0;
1449}
1450
1451/**
1452 * cpufreq_remove_dev - remove a CPU device
1453 *
1454 * Removes the cpufreq interface for a CPU device.
1455 */
1456static int cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1457{
1458 unsigned int cpu = dev->id;
1459 int ret;
1460
1461 if (cpu_is_offline(cpu))
1462 return 0;
1463
1464 ret = __cpufreq_remove_dev_prepare(dev, sif);
1465
1466 if (!ret)
1467 ret = __cpufreq_remove_dev_finish(dev, sif);
1468
1469 return ret;
1470}
1471
1472static void handle_update(struct work_struct *work)
1473{
1474 struct cpufreq_policy *policy =
1475 container_of(work, struct cpufreq_policy, update);
1476 unsigned int cpu = policy->cpu;
1477 pr_debug("handle_update for cpu %u called\n", cpu);
1478 cpufreq_update_policy(cpu);
1479}
1480
1481/**
1482 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1483 * in deep trouble.
1484 * @cpu: cpu number
1485 * @old_freq: CPU frequency the kernel thinks the CPU runs at
1486 * @new_freq: CPU frequency the CPU actually runs at
1487 *
1488 * We adjust to current frequency first, and need to clean up later.
1489 * So either call to cpufreq_update_policy() or schedule handle_update()).
1490 */
1491static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1492 unsigned int new_freq)
1493{
1494 struct cpufreq_policy *policy;
1495 struct cpufreq_freqs freqs;
1496 unsigned long flags;
1497
1498 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1499 old_freq, new_freq);
1500
1501 freqs.old = old_freq;
1502 freqs.new = new_freq;
1503
1504 read_lock_irqsave(&cpufreq_driver_lock, flags);
1505 policy = per_cpu(cpufreq_cpu_data, cpu);
1506 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1507
1508 cpufreq_freq_transition_begin(policy, &freqs);
1509 cpufreq_freq_transition_end(policy, &freqs, 0);
1510}
1511
1512/**
1513 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1514 * @cpu: CPU number
1515 *
1516 * This is the last known freq, without actually getting it from the driver.
1517 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1518 */
1519unsigned int cpufreq_quick_get(unsigned int cpu)
1520{
1521 struct cpufreq_policy *policy;
1522 unsigned int ret_freq = 0;
1523
1524 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
1525 return cpufreq_driver->get(cpu);
1526
1527 policy = cpufreq_cpu_get(cpu);
1528 if (policy) {
1529 ret_freq = policy->cur;
1530 cpufreq_cpu_put(policy);
1531 }
1532
1533 return ret_freq;
1534}
1535EXPORT_SYMBOL(cpufreq_quick_get);
1536
1537/**
1538 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1539 * @cpu: CPU number
1540 *
1541 * Just return the max possible frequency for a given CPU.
1542 */
1543unsigned int cpufreq_quick_get_max(unsigned int cpu)
1544{
1545 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1546 unsigned int ret_freq = 0;
1547
1548 if (policy) {
1549 ret_freq = policy->max;
1550 cpufreq_cpu_put(policy);
1551 }
1552
1553 return ret_freq;
1554}
1555EXPORT_SYMBOL(cpufreq_quick_get_max);
1556
1557static unsigned int __cpufreq_get(unsigned int cpu)
1558{
1559 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1560 unsigned int ret_freq = 0;
1561
1562 if (!cpufreq_driver->get)
1563 return ret_freq;
1564
1565 ret_freq = cpufreq_driver->get(cpu);
1566
1567 if (ret_freq && policy->cur &&
1568 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1569 /* verify no discrepancy between actual and
1570 saved value exists */
1571 if (unlikely(ret_freq != policy->cur)) {
1572 cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1573 schedule_work(&policy->update);
1574 }
1575 }
1576
1577 return ret_freq;
1578}
1579
1580/**
1581 * cpufreq_get - get the current CPU frequency (in kHz)
1582 * @cpu: CPU number
1583 *
1584 * Get the CPU current (static) CPU frequency
1585 */
1586unsigned int cpufreq_get(unsigned int cpu)
1587{
1588 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1589 unsigned int ret_freq = 0;
1590
1591 if (policy) {
1592 down_read(&policy->rwsem);
1593 ret_freq = __cpufreq_get(cpu);
1594 up_read(&policy->rwsem);
1595
1596 cpufreq_cpu_put(policy);
1597 }
1598
1599 return ret_freq;
1600}
1601EXPORT_SYMBOL(cpufreq_get);
1602
1603static struct subsys_interface cpufreq_interface = {
1604 .name = "cpufreq",
1605 .subsys = &cpu_subsys,
1606 .add_dev = cpufreq_add_dev,
1607 .remove_dev = cpufreq_remove_dev,
1608};
1609
1610/*
1611 * In case platform wants some specific frequency to be configured
1612 * during suspend..
1613 */
1614int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1615{
1616 int ret;
1617
1618 if (!policy->suspend_freq) {
1619 pr_err("%s: suspend_freq can't be zero\n", __func__);
1620 return -EINVAL;
1621 }
1622
1623 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1624 policy->suspend_freq);
1625
1626 ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1627 CPUFREQ_RELATION_H);
1628 if (ret)
1629 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1630 __func__, policy->suspend_freq, ret);
1631
1632 return ret;
1633}
1634EXPORT_SYMBOL(cpufreq_generic_suspend);
1635
1636/**
1637 * cpufreq_suspend() - Suspend CPUFreq governors
1638 *
1639 * Called during system wide Suspend/Hibernate cycles for suspending governors
1640 * as some platforms can't change frequency after this point in suspend cycle.
1641 * Because some of the devices (like: i2c, regulators, etc) they use for
1642 * changing frequency are suspended quickly after this point.
1643 */
1644void cpufreq_suspend(void)
1645{
1646 struct cpufreq_policy *policy;
1647
1648 if (!cpufreq_driver)
1649 return;
1650
1651 if (!has_target())
1652 return;
1653
1654 pr_debug("%s: Suspending Governors\n", __func__);
1655
1656 list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
1657 if (__cpufreq_governor(policy, CPUFREQ_GOV_STOP))
1658 pr_err("%s: Failed to stop governor for policy: %p\n",
1659 __func__, policy);
1660 else if (cpufreq_driver->suspend
1661 && cpufreq_driver->suspend(policy))
1662 pr_err("%s: Failed to suspend driver: %p\n", __func__,
1663 policy);
1664 }
1665
1666 cpufreq_suspended = true;
1667}
1668
1669/**
1670 * cpufreq_resume() - Resume CPUFreq governors
1671 *
1672 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1673 * are suspended with cpufreq_suspend().
1674 */
1675void cpufreq_resume(void)
1676{
1677 struct cpufreq_policy *policy;
1678
1679 if (!cpufreq_driver)
1680 return;
1681
1682 if (!has_target())
1683 return;
1684
1685 pr_debug("%s: Resuming Governors\n", __func__);
1686
1687 cpufreq_suspended = false;
1688
1689 list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
1690 if (cpufreq_driver->resume && cpufreq_driver->resume(policy))
1691 pr_err("%s: Failed to resume driver: %p\n", __func__,
1692 policy);
1693 else if (__cpufreq_governor(policy, CPUFREQ_GOV_START)
1694 || __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS))
1695 pr_err("%s: Failed to start governor for policy: %p\n",
1696 __func__, policy);
1697
1698 /*
1699 * schedule call cpufreq_update_policy() for boot CPU, i.e. last
1700 * policy in list. It will verify that the current freq is in
1701 * sync with what we believe it to be.
1702 */
1703 if (list_is_last(&policy->policy_list, &cpufreq_policy_list))
1704 schedule_work(&policy->update);
1705 }
1706}
1707
1708/**
1709 * cpufreq_get_current_driver - return current driver's name
1710 *
1711 * Return the name string of the currently loaded cpufreq driver
1712 * or NULL, if none.
1713 */
1714const char *cpufreq_get_current_driver(void)
1715{
1716 if (cpufreq_driver)
1717 return cpufreq_driver->name;
1718
1719 return NULL;
1720}
1721EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1722
1723/*********************************************************************
1724 * NOTIFIER LISTS INTERFACE *
1725 *********************************************************************/
1726
1727/**
1728 * cpufreq_register_notifier - register a driver with cpufreq
1729 * @nb: notifier function to register
1730 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1731 *
1732 * Add a driver to one of two lists: either a list of drivers that
1733 * are notified about clock rate changes (once before and once after
1734 * the transition), or a list of drivers that are notified about
1735 * changes in cpufreq policy.
1736 *
1737 * This function may sleep, and has the same return conditions as
1738 * blocking_notifier_chain_register.
1739 */
1740int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1741{
1742 int ret;
1743
1744 if (cpufreq_disabled())
1745 return -EINVAL;
1746
1747 WARN_ON(!init_cpufreq_transition_notifier_list_called);
1748
1749 switch (list) {
1750 case CPUFREQ_TRANSITION_NOTIFIER:
1751 ret = srcu_notifier_chain_register(
1752 &cpufreq_transition_notifier_list, nb);
1753 break;
1754 case CPUFREQ_POLICY_NOTIFIER:
1755 ret = blocking_notifier_chain_register(
1756 &cpufreq_policy_notifier_list, nb);
1757 break;
1758 default:
1759 ret = -EINVAL;
1760 }
1761
1762 return ret;
1763}
1764EXPORT_SYMBOL(cpufreq_register_notifier);
1765
1766/**
1767 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1768 * @nb: notifier block to be unregistered
1769 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1770 *
1771 * Remove a driver from the CPU frequency notifier list.
1772 *
1773 * This function may sleep, and has the same return conditions as
1774 * blocking_notifier_chain_unregister.
1775 */
1776int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1777{
1778 int ret;
1779
1780 if (cpufreq_disabled())
1781 return -EINVAL;
1782
1783 switch (list) {
1784 case CPUFREQ_TRANSITION_NOTIFIER:
1785 ret = srcu_notifier_chain_unregister(
1786 &cpufreq_transition_notifier_list, nb);
1787 break;
1788 case CPUFREQ_POLICY_NOTIFIER:
1789 ret = blocking_notifier_chain_unregister(
1790 &cpufreq_policy_notifier_list, nb);
1791 break;
1792 default:
1793 ret = -EINVAL;
1794 }
1795
1796 return ret;
1797}
1798EXPORT_SYMBOL(cpufreq_unregister_notifier);
1799
1800
1801/*********************************************************************
1802 * GOVERNORS *
1803 *********************************************************************/
1804
1805int __cpufreq_driver_target(struct cpufreq_policy *policy,
1806 unsigned int target_freq,
1807 unsigned int relation)
1808{
1809 int retval = -EINVAL;
1810 unsigned int old_target_freq = target_freq;
1811
1812 if (cpufreq_disabled())
1813 return -ENODEV;
1814
1815 /* Make sure that target_freq is within supported range */
1816 if (target_freq > policy->max)
1817 target_freq = policy->max;
1818 if (target_freq < policy->min)
1819 target_freq = policy->min;
1820
1821 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1822 policy->cpu, target_freq, relation, old_target_freq);
1823
1824 /*
1825 * This might look like a redundant call as we are checking it again
1826 * after finding index. But it is left intentionally for cases where
1827 * exactly same freq is called again and so we can save on few function
1828 * calls.
1829 */
1830 if (target_freq == policy->cur)
1831 return 0;
1832
1833 if (cpufreq_driver->target)
1834 retval = cpufreq_driver->target(policy, target_freq, relation);
1835 else if (cpufreq_driver->target_index) {
1836 struct cpufreq_frequency_table *freq_table;
1837 struct cpufreq_freqs freqs;
1838 bool notify;
1839 int index;
1840
1841 freq_table = cpufreq_frequency_get_table(policy->cpu);
1842 if (unlikely(!freq_table)) {
1843 pr_err("%s: Unable to find freq_table\n", __func__);
1844 goto out;
1845 }
1846
1847 retval = cpufreq_frequency_table_target(policy, freq_table,
1848 target_freq, relation, &index);
1849 if (unlikely(retval)) {
1850 pr_err("%s: Unable to find matching freq\n", __func__);
1851 goto out;
1852 }
1853
1854 if (freq_table[index].frequency == policy->cur) {
1855 retval = 0;
1856 goto out;
1857 }
1858
1859 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1860
1861 if (notify) {
1862 freqs.old = policy->cur;
1863 freqs.new = freq_table[index].frequency;
1864 freqs.flags = 0;
1865
1866 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1867 __func__, policy->cpu, freqs.old, freqs.new);
1868
1869 cpufreq_freq_transition_begin(policy, &freqs);
1870 }
1871
1872 retval = cpufreq_driver->target_index(policy, index);
1873 if (retval)
1874 pr_err("%s: Failed to change cpu frequency: %d\n",
1875 __func__, retval);
1876
1877 if (notify)
1878 cpufreq_freq_transition_end(policy, &freqs, retval);
1879 }
1880
1881out:
1882 return retval;
1883}
1884EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1885
1886int cpufreq_driver_target(struct cpufreq_policy *policy,
1887 unsigned int target_freq,
1888 unsigned int relation)
1889{
1890 int ret = -EINVAL;
1891
1892 down_write(&policy->rwsem);
1893
1894 ret = __cpufreq_driver_target(policy, target_freq, relation);
1895
1896 up_write(&policy->rwsem);
1897
1898 return ret;
1899}
1900EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1901
1902/*
1903 * when "event" is CPUFREQ_GOV_LIMITS
1904 */
1905
1906static int __cpufreq_governor(struct cpufreq_policy *policy,
1907 unsigned int event)
1908{
1909 int ret;
1910
1911 /* Only must be defined when default governor is known to have latency
1912 restrictions, like e.g. conservative or ondemand.
1913 That this is the case is already ensured in Kconfig
1914 */
1915#ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1916 struct cpufreq_governor *gov = &cpufreq_gov_performance;
1917#else
1918 struct cpufreq_governor *gov = NULL;
1919#endif
1920
1921 /* Don't start any governor operations if we are entering suspend */
1922 if (cpufreq_suspended)
1923 return 0;
1924
1925 if (policy->governor->max_transition_latency &&
1926 policy->cpuinfo.transition_latency >
1927 policy->governor->max_transition_latency) {
1928 if (!gov)
1929 return -EINVAL;
1930 else {
1931 pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n",
1932 policy->governor->name, gov->name);
1933 policy->governor = gov;
1934 }
1935 }
1936
1937 if (event == CPUFREQ_GOV_POLICY_INIT)
1938 if (!try_module_get(policy->governor->owner))
1939 return -EINVAL;
1940
1941 pr_debug("__cpufreq_governor for CPU %u, event %u\n",
1942 policy->cpu, event);
1943
1944 mutex_lock(&cpufreq_governor_lock);
1945 if ((policy->governor_enabled && event == CPUFREQ_GOV_START)
1946 || (!policy->governor_enabled
1947 && (event == CPUFREQ_GOV_LIMITS || event == CPUFREQ_GOV_STOP))) {
1948 mutex_unlock(&cpufreq_governor_lock);
1949 return -EBUSY;
1950 }
1951
1952 if (event == CPUFREQ_GOV_STOP)
1953 policy->governor_enabled = false;
1954 else if (event == CPUFREQ_GOV_START)
1955 policy->governor_enabled = true;
1956
1957 mutex_unlock(&cpufreq_governor_lock);
1958
1959 ret = policy->governor->governor(policy, event);
1960
1961 if (!ret) {
1962 if (event == CPUFREQ_GOV_POLICY_INIT)
1963 policy->governor->initialized++;
1964 else if (event == CPUFREQ_GOV_POLICY_EXIT)
1965 policy->governor->initialized--;
1966 } else {
1967 /* Restore original values */
1968 mutex_lock(&cpufreq_governor_lock);
1969 if (event == CPUFREQ_GOV_STOP)
1970 policy->governor_enabled = true;
1971 else if (event == CPUFREQ_GOV_START)
1972 policy->governor_enabled = false;
1973 mutex_unlock(&cpufreq_governor_lock);
1974 }
1975
1976 if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) ||
1977 ((event == CPUFREQ_GOV_POLICY_EXIT) && !ret))
1978 module_put(policy->governor->owner);
1979
1980 return ret;
1981}
1982
1983int cpufreq_register_governor(struct cpufreq_governor *governor)
1984{
1985 int err;
1986
1987 if (!governor)
1988 return -EINVAL;
1989
1990 if (cpufreq_disabled())
1991 return -ENODEV;
1992
1993 mutex_lock(&cpufreq_governor_mutex);
1994
1995 governor->initialized = 0;
1996 err = -EBUSY;
1997 if (__find_governor(governor->name) == NULL) {
1998 err = 0;
1999 list_add(&governor->governor_list, &cpufreq_governor_list);
2000 }
2001
2002 mutex_unlock(&cpufreq_governor_mutex);
2003 return err;
2004}
2005EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2006
2007void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2008{
2009 int cpu;
2010
2011 if (!governor)
2012 return;
2013
2014 if (cpufreq_disabled())
2015 return;
2016
2017 for_each_present_cpu(cpu) {
2018 if (cpu_online(cpu))
2019 continue;
2020 if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name))
2021 strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0");
2022 }
2023
2024 mutex_lock(&cpufreq_governor_mutex);
2025 list_del(&governor->governor_list);
2026 mutex_unlock(&cpufreq_governor_mutex);
2027 return;
2028}
2029EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2030
2031
2032/*********************************************************************
2033 * POLICY INTERFACE *
2034 *********************************************************************/
2035
2036/**
2037 * cpufreq_get_policy - get the current cpufreq_policy
2038 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2039 * is written
2040 *
2041 * Reads the current cpufreq policy.
2042 */
2043int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2044{
2045 struct cpufreq_policy *cpu_policy;
2046 if (!policy)
2047 return -EINVAL;
2048
2049 cpu_policy = cpufreq_cpu_get(cpu);
2050 if (!cpu_policy)
2051 return -EINVAL;
2052
2053 memcpy(policy, cpu_policy, sizeof(*policy));
2054
2055 cpufreq_cpu_put(cpu_policy);
2056 return 0;
2057}
2058EXPORT_SYMBOL(cpufreq_get_policy);
2059
2060/*
2061 * policy : current policy.
2062 * new_policy: policy to be set.
2063 */
2064static int cpufreq_set_policy(struct cpufreq_policy *policy,
2065 struct cpufreq_policy *new_policy)
2066{
2067 struct cpufreq_governor *old_gov;
2068 int ret;
2069
2070 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2071 new_policy->cpu, new_policy->min, new_policy->max);
2072
2073 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2074
2075 if (new_policy->min > policy->max || new_policy->max < policy->min)
2076 return -EINVAL;
2077
2078 /* verify the cpu speed can be set within this limit */
2079 ret = cpufreq_driver->verify(new_policy);
2080 if (ret)
2081 return ret;
2082
2083 /* adjust if necessary - all reasons */
2084 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2085 CPUFREQ_ADJUST, new_policy);
2086
2087 /* adjust if necessary - hardware incompatibility*/
2088 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2089 CPUFREQ_INCOMPATIBLE, new_policy);
2090
2091 /*
2092 * verify the cpu speed can be set within this limit, which might be
2093 * different to the first one
2094 */
2095 ret = cpufreq_driver->verify(new_policy);
2096 if (ret)
2097 return ret;
2098
2099 /* notification of the new policy */
2100 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2101 CPUFREQ_NOTIFY, new_policy);
2102
2103 policy->min = new_policy->min;
2104 policy->max = new_policy->max;
2105
2106 pr_debug("new min and max freqs are %u - %u kHz\n",
2107 policy->min, policy->max);
2108
2109 if (cpufreq_driver->setpolicy) {
2110 policy->policy = new_policy->policy;
2111 pr_debug("setting range\n");
2112 return cpufreq_driver->setpolicy(new_policy);
2113 }
2114
2115 if (new_policy->governor == policy->governor)
2116 goto out;
2117
2118 pr_debug("governor switch\n");
2119
2120 /* save old, working values */
2121 old_gov = policy->governor;
2122 /* end old governor */
2123 if (old_gov) {
2124 __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
2125 up_write(&policy->rwsem);
2126 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2127 down_write(&policy->rwsem);
2128 }
2129
2130 /* start new governor */
2131 policy->governor = new_policy->governor;
2132 if (!__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT)) {
2133 if (!__cpufreq_governor(policy, CPUFREQ_GOV_START))
2134 goto out;
2135
2136 up_write(&policy->rwsem);
2137 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2138 down_write(&policy->rwsem);
2139 }
2140
2141 /* new governor failed, so re-start old one */
2142 pr_debug("starting governor %s failed\n", policy->governor->name);
2143 if (old_gov) {
2144 policy->governor = old_gov;
2145 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT);
2146 __cpufreq_governor(policy, CPUFREQ_GOV_START);
2147 }
2148
2149 return -EINVAL;
2150
2151 out:
2152 pr_debug("governor: change or update limits\n");
2153 return __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2154}
2155
2156/**
2157 * cpufreq_update_policy - re-evaluate an existing cpufreq policy
2158 * @cpu: CPU which shall be re-evaluated
2159 *
2160 * Useful for policy notifiers which have different necessities
2161 * at different times.
2162 */
2163int cpufreq_update_policy(unsigned int cpu)
2164{
2165 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2166 struct cpufreq_policy new_policy;
2167 int ret;
2168
2169 if (!policy) {
2170 ret = -ENODEV;
2171 goto no_policy;
2172 }
2173
2174 down_write(&policy->rwsem);
2175
2176 pr_debug("updating policy for CPU %u\n", cpu);
2177 memcpy(&new_policy, policy, sizeof(*policy));
2178 new_policy.min = policy->user_policy.min;
2179 new_policy.max = policy->user_policy.max;
2180 new_policy.policy = policy->user_policy.policy;
2181 new_policy.governor = policy->user_policy.governor;
2182
2183 /*
2184 * BIOS might change freq behind our back
2185 * -> ask driver for current freq and notify governors about a change
2186 */
2187 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2188 new_policy.cur = cpufreq_driver->get(cpu);
2189 if (WARN_ON(!new_policy.cur)) {
2190 ret = -EIO;
2191 goto no_policy;
2192 }
2193
2194 if (!policy->cur) {
2195 pr_debug("Driver did not initialize current freq\n");
2196 policy->cur = new_policy.cur;
2197 } else {
2198 if (policy->cur != new_policy.cur && has_target())
2199 cpufreq_out_of_sync(cpu, policy->cur,
2200 new_policy.cur);
2201 }
2202 }
2203
2204 ret = cpufreq_set_policy(policy, &new_policy);
2205
2206 up_write(&policy->rwsem);
2207
2208 cpufreq_cpu_put(policy);
2209no_policy:
2210 return ret;
2211}
2212EXPORT_SYMBOL(cpufreq_update_policy);
2213
2214static int cpufreq_cpu_callback(struct notifier_block *nfb,
2215 unsigned long action, void *hcpu)
2216{
2217 unsigned int cpu = (unsigned long)hcpu;
2218 struct device *dev;
2219
2220 dev = get_cpu_device(cpu);
2221 if (dev) {
2222 switch (action & ~CPU_TASKS_FROZEN) {
2223 case CPU_ONLINE:
2224 __cpufreq_add_dev(dev, NULL);
2225 break;
2226
2227 case CPU_DOWN_PREPARE:
2228 __cpufreq_remove_dev_prepare(dev, NULL);
2229 break;
2230
2231 case CPU_POST_DEAD:
2232 __cpufreq_remove_dev_finish(dev, NULL);
2233 break;
2234
2235 case CPU_DOWN_FAILED:
2236 __cpufreq_add_dev(dev, NULL);
2237 break;
2238 }
2239 }
2240 return NOTIFY_OK;
2241}
2242
2243static struct notifier_block __refdata cpufreq_cpu_notifier = {
2244 .notifier_call = cpufreq_cpu_callback,
2245};
2246
2247/*********************************************************************
2248 * BOOST *
2249 *********************************************************************/
2250static int cpufreq_boost_set_sw(int state)
2251{
2252 struct cpufreq_frequency_table *freq_table;
2253 struct cpufreq_policy *policy;
2254 int ret = -EINVAL;
2255
2256 list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
2257 freq_table = cpufreq_frequency_get_table(policy->cpu);
2258 if (freq_table) {
2259 ret = cpufreq_frequency_table_cpuinfo(policy,
2260 freq_table);
2261 if (ret) {
2262 pr_err("%s: Policy frequency update failed\n",
2263 __func__);
2264 break;
2265 }
2266 policy->user_policy.max = policy->max;
2267 __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2268 }
2269 }
2270
2271 return ret;
2272}
2273
2274int cpufreq_boost_trigger_state(int state)
2275{
2276 unsigned long flags;
2277 int ret = 0;
2278
2279 if (cpufreq_driver->boost_enabled == state)
2280 return 0;
2281
2282 write_lock_irqsave(&cpufreq_driver_lock, flags);
2283 cpufreq_driver->boost_enabled = state;
2284 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2285
2286 ret = cpufreq_driver->set_boost(state);
2287 if (ret) {
2288 write_lock_irqsave(&cpufreq_driver_lock, flags);
2289 cpufreq_driver->boost_enabled = !state;
2290 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2291
2292 pr_err("%s: Cannot %s BOOST\n",
2293 __func__, state ? "enable" : "disable");
2294 }
2295
2296 return ret;
2297}
2298
2299int cpufreq_boost_supported(void)
2300{
2301 if (likely(cpufreq_driver))
2302 return cpufreq_driver->boost_supported;
2303
2304 return 0;
2305}
2306EXPORT_SYMBOL_GPL(cpufreq_boost_supported);
2307
2308int cpufreq_boost_enabled(void)
2309{
2310 return cpufreq_driver->boost_enabled;
2311}
2312EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2313
2314/*********************************************************************
2315 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2316 *********************************************************************/
2317
2318/**
2319 * cpufreq_register_driver - register a CPU Frequency driver
2320 * @driver_data: A struct cpufreq_driver containing the values#
2321 * submitted by the CPU Frequency driver.
2322 *
2323 * Registers a CPU Frequency driver to this core code. This code
2324 * returns zero on success, -EBUSY when another driver got here first
2325 * (and isn't unregistered in the meantime).
2326 *
2327 */
2328int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2329{
2330 unsigned long flags;
2331 int ret;
2332
2333 if (cpufreq_disabled())
2334 return -ENODEV;
2335
2336 if (!driver_data || !driver_data->verify || !driver_data->init ||
2337 !(driver_data->setpolicy || driver_data->target_index ||
2338 driver_data->target) ||
2339 (driver_data->setpolicy && (driver_data->target_index ||
2340 driver_data->target)))
2341 return -EINVAL;
2342
2343 pr_debug("trying to register driver %s\n", driver_data->name);
2344
2345 if (driver_data->setpolicy)
2346 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2347
2348 write_lock_irqsave(&cpufreq_driver_lock, flags);
2349 if (cpufreq_driver) {
2350 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2351 return -EEXIST;
2352 }
2353 cpufreq_driver = driver_data;
2354 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2355
2356 if (cpufreq_boost_supported()) {
2357 /*
2358 * Check if driver provides function to enable boost -
2359 * if not, use cpufreq_boost_set_sw as default
2360 */
2361 if (!cpufreq_driver->set_boost)
2362 cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2363
2364 ret = cpufreq_sysfs_create_file(&boost.attr);
2365 if (ret) {
2366 pr_err("%s: cannot register global BOOST sysfs file\n",
2367 __func__);
2368 goto err_null_driver;
2369 }
2370 }
2371
2372 ret = subsys_interface_register(&cpufreq_interface);
2373 if (ret)
2374 goto err_boost_unreg;
2375
2376 if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) {
2377 int i;
2378 ret = -ENODEV;
2379
2380 /* check for at least one working CPU */
2381 for (i = 0; i < nr_cpu_ids; i++)
2382 if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
2383 ret = 0;
2384 break;
2385 }
2386
2387 /* if all ->init() calls failed, unregister */
2388 if (ret) {
2389 pr_debug("no CPU initialized for driver %s\n",
2390 driver_data->name);
2391 goto err_if_unreg;
2392 }
2393 }
2394
2395 register_hotcpu_notifier(&cpufreq_cpu_notifier);
2396 pr_debug("driver %s up and running\n", driver_data->name);
2397
2398 return 0;
2399err_if_unreg:
2400 subsys_interface_unregister(&cpufreq_interface);
2401err_boost_unreg:
2402 if (cpufreq_boost_supported())
2403 cpufreq_sysfs_remove_file(&boost.attr);
2404err_null_driver:
2405 write_lock_irqsave(&cpufreq_driver_lock, flags);
2406 cpufreq_driver = NULL;
2407 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2408 return ret;
2409}
2410EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2411
2412/**
2413 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2414 *
2415 * Unregister the current CPUFreq driver. Only call this if you have
2416 * the right to do so, i.e. if you have succeeded in initialising before!
2417 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2418 * currently not initialised.
2419 */
2420int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2421{
2422 unsigned long flags;
2423
2424 if (!cpufreq_driver || (driver != cpufreq_driver))
2425 return -EINVAL;
2426
2427 pr_debug("unregistering driver %s\n", driver->name);
2428
2429 subsys_interface_unregister(&cpufreq_interface);
2430 if (cpufreq_boost_supported())
2431 cpufreq_sysfs_remove_file(&boost.attr);
2432
2433 unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
2434
2435 down_write(&cpufreq_rwsem);
2436 write_lock_irqsave(&cpufreq_driver_lock, flags);
2437
2438 cpufreq_driver = NULL;
2439
2440 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2441 up_write(&cpufreq_rwsem);
2442
2443 return 0;
2444}
2445EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2446
2447static int __init cpufreq_core_init(void)
2448{
2449 if (cpufreq_disabled())
2450 return -ENODEV;
2451
2452 cpufreq_global_kobject = kobject_create();
2453 BUG_ON(!cpufreq_global_kobject);
2454
2455 return 0;
2456}
2457core_initcall(cpufreq_core_init);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/drivers/cpufreq/cpufreq.c
4 *
5 * Copyright (C) 2001 Russell King
6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8 *
9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10 * Added handling for CPU hotplug
11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12 * Fix handling for CPU hotplug -- affected CPUs
13 */
14
15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17#include <linux/cpu.h>
18#include <linux/cpufreq.h>
19#include <linux/cpu_cooling.h>
20#include <linux/delay.h>
21#include <linux/device.h>
22#include <linux/init.h>
23#include <linux/kernel_stat.h>
24#include <linux/module.h>
25#include <linux/mutex.h>
26#include <linux/pm_qos.h>
27#include <linux/slab.h>
28#include <linux/suspend.h>
29#include <linux/syscore_ops.h>
30#include <linux/tick.h>
31#include <trace/events/power.h>
32
33static LIST_HEAD(cpufreq_policy_list);
34
35/* Macros to iterate over CPU policies */
36#define for_each_suitable_policy(__policy, __active) \
37 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
38 if ((__active) == !policy_is_inactive(__policy))
39
40#define for_each_active_policy(__policy) \
41 for_each_suitable_policy(__policy, true)
42#define for_each_inactive_policy(__policy) \
43 for_each_suitable_policy(__policy, false)
44
45#define for_each_policy(__policy) \
46 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
47
48/* Iterate over governors */
49static LIST_HEAD(cpufreq_governor_list);
50#define for_each_governor(__governor) \
51 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
52
53static char default_governor[CPUFREQ_NAME_LEN];
54
55/*
56 * The "cpufreq driver" - the arch- or hardware-dependent low
57 * level driver of CPUFreq support, and its spinlock. This lock
58 * also protects the cpufreq_cpu_data array.
59 */
60static struct cpufreq_driver *cpufreq_driver;
61static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
62static DEFINE_RWLOCK(cpufreq_driver_lock);
63
64/* Flag to suspend/resume CPUFreq governors */
65static bool cpufreq_suspended;
66
67static inline bool has_target(void)
68{
69 return cpufreq_driver->target_index || cpufreq_driver->target;
70}
71
72/* internal prototypes */
73static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
74static int cpufreq_init_governor(struct cpufreq_policy *policy);
75static void cpufreq_exit_governor(struct cpufreq_policy *policy);
76static void cpufreq_governor_limits(struct cpufreq_policy *policy);
77static int cpufreq_set_policy(struct cpufreq_policy *policy,
78 struct cpufreq_governor *new_gov,
79 unsigned int new_pol);
80
81/*
82 * Two notifier lists: the "policy" list is involved in the
83 * validation process for a new CPU frequency policy; the
84 * "transition" list for kernel code that needs to handle
85 * changes to devices when the CPU clock speed changes.
86 * The mutex locks both lists.
87 */
88static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
89SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
90
91static int off __read_mostly;
92static int cpufreq_disabled(void)
93{
94 return off;
95}
96void disable_cpufreq(void)
97{
98 off = 1;
99}
100static DEFINE_MUTEX(cpufreq_governor_mutex);
101
102bool have_governor_per_policy(void)
103{
104 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
105}
106EXPORT_SYMBOL_GPL(have_governor_per_policy);
107
108static struct kobject *cpufreq_global_kobject;
109
110struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
111{
112 if (have_governor_per_policy())
113 return &policy->kobj;
114 else
115 return cpufreq_global_kobject;
116}
117EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
118
119static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
120{
121 struct kernel_cpustat kcpustat;
122 u64 cur_wall_time;
123 u64 idle_time;
124 u64 busy_time;
125
126 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
127
128 kcpustat_cpu_fetch(&kcpustat, cpu);
129
130 busy_time = kcpustat.cpustat[CPUTIME_USER];
131 busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
132 busy_time += kcpustat.cpustat[CPUTIME_IRQ];
133 busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
134 busy_time += kcpustat.cpustat[CPUTIME_STEAL];
135 busy_time += kcpustat.cpustat[CPUTIME_NICE];
136
137 idle_time = cur_wall_time - busy_time;
138 if (wall)
139 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
140
141 return div_u64(idle_time, NSEC_PER_USEC);
142}
143
144u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
145{
146 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
147
148 if (idle_time == -1ULL)
149 return get_cpu_idle_time_jiffy(cpu, wall);
150 else if (!io_busy)
151 idle_time += get_cpu_iowait_time_us(cpu, wall);
152
153 return idle_time;
154}
155EXPORT_SYMBOL_GPL(get_cpu_idle_time);
156
157__weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
158 unsigned long max_freq)
159{
160}
161EXPORT_SYMBOL_GPL(arch_set_freq_scale);
162
163/*
164 * This is a generic cpufreq init() routine which can be used by cpufreq
165 * drivers of SMP systems. It will do following:
166 * - validate & show freq table passed
167 * - set policies transition latency
168 * - policy->cpus with all possible CPUs
169 */
170void cpufreq_generic_init(struct cpufreq_policy *policy,
171 struct cpufreq_frequency_table *table,
172 unsigned int transition_latency)
173{
174 policy->freq_table = table;
175 policy->cpuinfo.transition_latency = transition_latency;
176
177 /*
178 * The driver only supports the SMP configuration where all processors
179 * share the clock and voltage and clock.
180 */
181 cpumask_setall(policy->cpus);
182}
183EXPORT_SYMBOL_GPL(cpufreq_generic_init);
184
185struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
186{
187 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
188
189 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
190}
191EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
192
193unsigned int cpufreq_generic_get(unsigned int cpu)
194{
195 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
196
197 if (!policy || IS_ERR(policy->clk)) {
198 pr_err("%s: No %s associated to cpu: %d\n",
199 __func__, policy ? "clk" : "policy", cpu);
200 return 0;
201 }
202
203 return clk_get_rate(policy->clk) / 1000;
204}
205EXPORT_SYMBOL_GPL(cpufreq_generic_get);
206
207/**
208 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
209 * @cpu: CPU to find the policy for.
210 *
211 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
212 * the kobject reference counter of that policy. Return a valid policy on
213 * success or NULL on failure.
214 *
215 * The policy returned by this function has to be released with the help of
216 * cpufreq_cpu_put() to balance its kobject reference counter properly.
217 */
218struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
219{
220 struct cpufreq_policy *policy = NULL;
221 unsigned long flags;
222
223 if (WARN_ON(cpu >= nr_cpu_ids))
224 return NULL;
225
226 /* get the cpufreq driver */
227 read_lock_irqsave(&cpufreq_driver_lock, flags);
228
229 if (cpufreq_driver) {
230 /* get the CPU */
231 policy = cpufreq_cpu_get_raw(cpu);
232 if (policy)
233 kobject_get(&policy->kobj);
234 }
235
236 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
237
238 return policy;
239}
240EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
241
242/**
243 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
244 * @policy: cpufreq policy returned by cpufreq_cpu_get().
245 */
246void cpufreq_cpu_put(struct cpufreq_policy *policy)
247{
248 kobject_put(&policy->kobj);
249}
250EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
251
252/**
253 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
254 * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
255 */
256void cpufreq_cpu_release(struct cpufreq_policy *policy)
257{
258 if (WARN_ON(!policy))
259 return;
260
261 lockdep_assert_held(&policy->rwsem);
262
263 up_write(&policy->rwsem);
264
265 cpufreq_cpu_put(policy);
266}
267
268/**
269 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
270 * @cpu: CPU to find the policy for.
271 *
272 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
273 * if the policy returned by it is not NULL, acquire its rwsem for writing.
274 * Return the policy if it is active or release it and return NULL otherwise.
275 *
276 * The policy returned by this function has to be released with the help of
277 * cpufreq_cpu_release() in order to release its rwsem and balance its usage
278 * counter properly.
279 */
280struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
281{
282 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
283
284 if (!policy)
285 return NULL;
286
287 down_write(&policy->rwsem);
288
289 if (policy_is_inactive(policy)) {
290 cpufreq_cpu_release(policy);
291 return NULL;
292 }
293
294 return policy;
295}
296
297/*********************************************************************
298 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
299 *********************************************************************/
300
301/*
302 * adjust_jiffies - adjust the system "loops_per_jiffy"
303 *
304 * This function alters the system "loops_per_jiffy" for the clock
305 * speed change. Note that loops_per_jiffy cannot be updated on SMP
306 * systems as each CPU might be scaled differently. So, use the arch
307 * per-CPU loops_per_jiffy value wherever possible.
308 */
309static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
310{
311#ifndef CONFIG_SMP
312 static unsigned long l_p_j_ref;
313 static unsigned int l_p_j_ref_freq;
314
315 if (ci->flags & CPUFREQ_CONST_LOOPS)
316 return;
317
318 if (!l_p_j_ref_freq) {
319 l_p_j_ref = loops_per_jiffy;
320 l_p_j_ref_freq = ci->old;
321 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
322 l_p_j_ref, l_p_j_ref_freq);
323 }
324 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
325 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
326 ci->new);
327 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
328 loops_per_jiffy, ci->new);
329 }
330#endif
331}
332
333/**
334 * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
335 * @policy: cpufreq policy to enable fast frequency switching for.
336 * @freqs: contain details of the frequency update.
337 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
338 *
339 * This function calls the transition notifiers and the "adjust_jiffies"
340 * function. It is called twice on all CPU frequency changes that have
341 * external effects.
342 */
343static void cpufreq_notify_transition(struct cpufreq_policy *policy,
344 struct cpufreq_freqs *freqs,
345 unsigned int state)
346{
347 int cpu;
348
349 BUG_ON(irqs_disabled());
350
351 if (cpufreq_disabled())
352 return;
353
354 freqs->policy = policy;
355 freqs->flags = cpufreq_driver->flags;
356 pr_debug("notification %u of frequency transition to %u kHz\n",
357 state, freqs->new);
358
359 switch (state) {
360 case CPUFREQ_PRECHANGE:
361 /*
362 * Detect if the driver reported a value as "old frequency"
363 * which is not equal to what the cpufreq core thinks is
364 * "old frequency".
365 */
366 if (policy->cur && policy->cur != freqs->old) {
367 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
368 freqs->old, policy->cur);
369 freqs->old = policy->cur;
370 }
371
372 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
373 CPUFREQ_PRECHANGE, freqs);
374
375 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
376 break;
377
378 case CPUFREQ_POSTCHANGE:
379 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
380 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
381 cpumask_pr_args(policy->cpus));
382
383 for_each_cpu(cpu, policy->cpus)
384 trace_cpu_frequency(freqs->new, cpu);
385
386 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
387 CPUFREQ_POSTCHANGE, freqs);
388
389 cpufreq_stats_record_transition(policy, freqs->new);
390 policy->cur = freqs->new;
391 }
392}
393
394/* Do post notifications when there are chances that transition has failed */
395static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
396 struct cpufreq_freqs *freqs, int transition_failed)
397{
398 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
399 if (!transition_failed)
400 return;
401
402 swap(freqs->old, freqs->new);
403 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
404 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
405}
406
407void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
408 struct cpufreq_freqs *freqs)
409{
410
411 /*
412 * Catch double invocations of _begin() which lead to self-deadlock.
413 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
414 * doesn't invoke _begin() on their behalf, and hence the chances of
415 * double invocations are very low. Moreover, there are scenarios
416 * where these checks can emit false-positive warnings in these
417 * drivers; so we avoid that by skipping them altogether.
418 */
419 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
420 && current == policy->transition_task);
421
422wait:
423 wait_event(policy->transition_wait, !policy->transition_ongoing);
424
425 spin_lock(&policy->transition_lock);
426
427 if (unlikely(policy->transition_ongoing)) {
428 spin_unlock(&policy->transition_lock);
429 goto wait;
430 }
431
432 policy->transition_ongoing = true;
433 policy->transition_task = current;
434
435 spin_unlock(&policy->transition_lock);
436
437 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
438}
439EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
440
441void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
442 struct cpufreq_freqs *freqs, int transition_failed)
443{
444 if (WARN_ON(!policy->transition_ongoing))
445 return;
446
447 cpufreq_notify_post_transition(policy, freqs, transition_failed);
448
449 policy->transition_ongoing = false;
450 policy->transition_task = NULL;
451
452 wake_up(&policy->transition_wait);
453}
454EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
455
456/*
457 * Fast frequency switching status count. Positive means "enabled", negative
458 * means "disabled" and 0 means "not decided yet".
459 */
460static int cpufreq_fast_switch_count;
461static DEFINE_MUTEX(cpufreq_fast_switch_lock);
462
463static void cpufreq_list_transition_notifiers(void)
464{
465 struct notifier_block *nb;
466
467 pr_info("Registered transition notifiers:\n");
468
469 mutex_lock(&cpufreq_transition_notifier_list.mutex);
470
471 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
472 pr_info("%pS\n", nb->notifier_call);
473
474 mutex_unlock(&cpufreq_transition_notifier_list.mutex);
475}
476
477/**
478 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
479 * @policy: cpufreq policy to enable fast frequency switching for.
480 *
481 * Try to enable fast frequency switching for @policy.
482 *
483 * The attempt will fail if there is at least one transition notifier registered
484 * at this point, as fast frequency switching is quite fundamentally at odds
485 * with transition notifiers. Thus if successful, it will make registration of
486 * transition notifiers fail going forward.
487 */
488void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
489{
490 lockdep_assert_held(&policy->rwsem);
491
492 if (!policy->fast_switch_possible)
493 return;
494
495 mutex_lock(&cpufreq_fast_switch_lock);
496 if (cpufreq_fast_switch_count >= 0) {
497 cpufreq_fast_switch_count++;
498 policy->fast_switch_enabled = true;
499 } else {
500 pr_warn("CPU%u: Fast frequency switching not enabled\n",
501 policy->cpu);
502 cpufreq_list_transition_notifiers();
503 }
504 mutex_unlock(&cpufreq_fast_switch_lock);
505}
506EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
507
508/**
509 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
510 * @policy: cpufreq policy to disable fast frequency switching for.
511 */
512void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
513{
514 mutex_lock(&cpufreq_fast_switch_lock);
515 if (policy->fast_switch_enabled) {
516 policy->fast_switch_enabled = false;
517 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
518 cpufreq_fast_switch_count--;
519 }
520 mutex_unlock(&cpufreq_fast_switch_lock);
521}
522EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
523
524/**
525 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
526 * one.
527 * @policy: associated policy to interrogate
528 * @target_freq: target frequency to resolve.
529 *
530 * The target to driver frequency mapping is cached in the policy.
531 *
532 * Return: Lowest driver-supported frequency greater than or equal to the
533 * given target_freq, subject to policy (min/max) and driver limitations.
534 */
535unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
536 unsigned int target_freq)
537{
538 target_freq = clamp_val(target_freq, policy->min, policy->max);
539 policy->cached_target_freq = target_freq;
540
541 if (cpufreq_driver->target_index) {
542 unsigned int idx;
543
544 idx = cpufreq_frequency_table_target(policy, target_freq,
545 CPUFREQ_RELATION_L);
546 policy->cached_resolved_idx = idx;
547 return policy->freq_table[idx].frequency;
548 }
549
550 if (cpufreq_driver->resolve_freq)
551 return cpufreq_driver->resolve_freq(policy, target_freq);
552
553 return target_freq;
554}
555EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
556
557unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
558{
559 unsigned int latency;
560
561 if (policy->transition_delay_us)
562 return policy->transition_delay_us;
563
564 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
565 if (latency) {
566 /*
567 * For platforms that can change the frequency very fast (< 10
568 * us), the above formula gives a decent transition delay. But
569 * for platforms where transition_latency is in milliseconds, it
570 * ends up giving unrealistic values.
571 *
572 * Cap the default transition delay to 10 ms, which seems to be
573 * a reasonable amount of time after which we should reevaluate
574 * the frequency.
575 */
576 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
577 }
578
579 return LATENCY_MULTIPLIER;
580}
581EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
582
583/*********************************************************************
584 * SYSFS INTERFACE *
585 *********************************************************************/
586static ssize_t show_boost(struct kobject *kobj,
587 struct kobj_attribute *attr, char *buf)
588{
589 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
590}
591
592static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
593 const char *buf, size_t count)
594{
595 int ret, enable;
596
597 ret = sscanf(buf, "%d", &enable);
598 if (ret != 1 || enable < 0 || enable > 1)
599 return -EINVAL;
600
601 if (cpufreq_boost_trigger_state(enable)) {
602 pr_err("%s: Cannot %s BOOST!\n",
603 __func__, enable ? "enable" : "disable");
604 return -EINVAL;
605 }
606
607 pr_debug("%s: cpufreq BOOST %s\n",
608 __func__, enable ? "enabled" : "disabled");
609
610 return count;
611}
612define_one_global_rw(boost);
613
614static struct cpufreq_governor *find_governor(const char *str_governor)
615{
616 struct cpufreq_governor *t;
617
618 for_each_governor(t)
619 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
620 return t;
621
622 return NULL;
623}
624
625static struct cpufreq_governor *get_governor(const char *str_governor)
626{
627 struct cpufreq_governor *t;
628
629 mutex_lock(&cpufreq_governor_mutex);
630 t = find_governor(str_governor);
631 if (!t)
632 goto unlock;
633
634 if (!try_module_get(t->owner))
635 t = NULL;
636
637unlock:
638 mutex_unlock(&cpufreq_governor_mutex);
639
640 return t;
641}
642
643static unsigned int cpufreq_parse_policy(char *str_governor)
644{
645 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
646 return CPUFREQ_POLICY_PERFORMANCE;
647
648 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
649 return CPUFREQ_POLICY_POWERSAVE;
650
651 return CPUFREQ_POLICY_UNKNOWN;
652}
653
654/**
655 * cpufreq_parse_governor - parse a governor string only for has_target()
656 * @str_governor: Governor name.
657 */
658static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
659{
660 struct cpufreq_governor *t;
661
662 t = get_governor(str_governor);
663 if (t)
664 return t;
665
666 if (request_module("cpufreq_%s", str_governor))
667 return NULL;
668
669 return get_governor(str_governor);
670}
671
672/*
673 * cpufreq_per_cpu_attr_read() / show_##file_name() -
674 * print out cpufreq information
675 *
676 * Write out information from cpufreq_driver->policy[cpu]; object must be
677 * "unsigned int".
678 */
679
680#define show_one(file_name, object) \
681static ssize_t show_##file_name \
682(struct cpufreq_policy *policy, char *buf) \
683{ \
684 return sprintf(buf, "%u\n", policy->object); \
685}
686
687show_one(cpuinfo_min_freq, cpuinfo.min_freq);
688show_one(cpuinfo_max_freq, cpuinfo.max_freq);
689show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
690show_one(scaling_min_freq, min);
691show_one(scaling_max_freq, max);
692
693__weak unsigned int arch_freq_get_on_cpu(int cpu)
694{
695 return 0;
696}
697
698static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
699{
700 ssize_t ret;
701 unsigned int freq;
702
703 freq = arch_freq_get_on_cpu(policy->cpu);
704 if (freq)
705 ret = sprintf(buf, "%u\n", freq);
706 else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
707 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
708 else
709 ret = sprintf(buf, "%u\n", policy->cur);
710 return ret;
711}
712
713/*
714 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
715 */
716#define store_one(file_name, object) \
717static ssize_t store_##file_name \
718(struct cpufreq_policy *policy, const char *buf, size_t count) \
719{ \
720 unsigned long val; \
721 int ret; \
722 \
723 ret = sscanf(buf, "%lu", &val); \
724 if (ret != 1) \
725 return -EINVAL; \
726 \
727 ret = freq_qos_update_request(policy->object##_freq_req, val);\
728 return ret >= 0 ? count : ret; \
729}
730
731store_one(scaling_min_freq, min);
732store_one(scaling_max_freq, max);
733
734/*
735 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
736 */
737static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
738 char *buf)
739{
740 unsigned int cur_freq = __cpufreq_get(policy);
741
742 if (cur_freq)
743 return sprintf(buf, "%u\n", cur_freq);
744
745 return sprintf(buf, "<unknown>\n");
746}
747
748/*
749 * show_scaling_governor - show the current policy for the specified CPU
750 */
751static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
752{
753 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
754 return sprintf(buf, "powersave\n");
755 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
756 return sprintf(buf, "performance\n");
757 else if (policy->governor)
758 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
759 policy->governor->name);
760 return -EINVAL;
761}
762
763/*
764 * store_scaling_governor - store policy for the specified CPU
765 */
766static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
767 const char *buf, size_t count)
768{
769 char str_governor[16];
770 int ret;
771
772 ret = sscanf(buf, "%15s", str_governor);
773 if (ret != 1)
774 return -EINVAL;
775
776 if (cpufreq_driver->setpolicy) {
777 unsigned int new_pol;
778
779 new_pol = cpufreq_parse_policy(str_governor);
780 if (!new_pol)
781 return -EINVAL;
782
783 ret = cpufreq_set_policy(policy, NULL, new_pol);
784 } else {
785 struct cpufreq_governor *new_gov;
786
787 new_gov = cpufreq_parse_governor(str_governor);
788 if (!new_gov)
789 return -EINVAL;
790
791 ret = cpufreq_set_policy(policy, new_gov,
792 CPUFREQ_POLICY_UNKNOWN);
793
794 module_put(new_gov->owner);
795 }
796
797 return ret ? ret : count;
798}
799
800/*
801 * show_scaling_driver - show the cpufreq driver currently loaded
802 */
803static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
804{
805 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
806}
807
808/*
809 * show_scaling_available_governors - show the available CPUfreq governors
810 */
811static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
812 char *buf)
813{
814 ssize_t i = 0;
815 struct cpufreq_governor *t;
816
817 if (!has_target()) {
818 i += sprintf(buf, "performance powersave");
819 goto out;
820 }
821
822 mutex_lock(&cpufreq_governor_mutex);
823 for_each_governor(t) {
824 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
825 - (CPUFREQ_NAME_LEN + 2)))
826 break;
827 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
828 }
829 mutex_unlock(&cpufreq_governor_mutex);
830out:
831 i += sprintf(&buf[i], "\n");
832 return i;
833}
834
835ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
836{
837 ssize_t i = 0;
838 unsigned int cpu;
839
840 for_each_cpu(cpu, mask) {
841 if (i)
842 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
843 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
844 if (i >= (PAGE_SIZE - 5))
845 break;
846 }
847 i += sprintf(&buf[i], "\n");
848 return i;
849}
850EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
851
852/*
853 * show_related_cpus - show the CPUs affected by each transition even if
854 * hw coordination is in use
855 */
856static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
857{
858 return cpufreq_show_cpus(policy->related_cpus, buf);
859}
860
861/*
862 * show_affected_cpus - show the CPUs affected by each transition
863 */
864static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
865{
866 return cpufreq_show_cpus(policy->cpus, buf);
867}
868
869static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
870 const char *buf, size_t count)
871{
872 unsigned int freq = 0;
873 unsigned int ret;
874
875 if (!policy->governor || !policy->governor->store_setspeed)
876 return -EINVAL;
877
878 ret = sscanf(buf, "%u", &freq);
879 if (ret != 1)
880 return -EINVAL;
881
882 policy->governor->store_setspeed(policy, freq);
883
884 return count;
885}
886
887static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
888{
889 if (!policy->governor || !policy->governor->show_setspeed)
890 return sprintf(buf, "<unsupported>\n");
891
892 return policy->governor->show_setspeed(policy, buf);
893}
894
895/*
896 * show_bios_limit - show the current cpufreq HW/BIOS limitation
897 */
898static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
899{
900 unsigned int limit;
901 int ret;
902 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
903 if (!ret)
904 return sprintf(buf, "%u\n", limit);
905 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
906}
907
908cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
909cpufreq_freq_attr_ro(cpuinfo_min_freq);
910cpufreq_freq_attr_ro(cpuinfo_max_freq);
911cpufreq_freq_attr_ro(cpuinfo_transition_latency);
912cpufreq_freq_attr_ro(scaling_available_governors);
913cpufreq_freq_attr_ro(scaling_driver);
914cpufreq_freq_attr_ro(scaling_cur_freq);
915cpufreq_freq_attr_ro(bios_limit);
916cpufreq_freq_attr_ro(related_cpus);
917cpufreq_freq_attr_ro(affected_cpus);
918cpufreq_freq_attr_rw(scaling_min_freq);
919cpufreq_freq_attr_rw(scaling_max_freq);
920cpufreq_freq_attr_rw(scaling_governor);
921cpufreq_freq_attr_rw(scaling_setspeed);
922
923static struct attribute *default_attrs[] = {
924 &cpuinfo_min_freq.attr,
925 &cpuinfo_max_freq.attr,
926 &cpuinfo_transition_latency.attr,
927 &scaling_min_freq.attr,
928 &scaling_max_freq.attr,
929 &affected_cpus.attr,
930 &related_cpus.attr,
931 &scaling_governor.attr,
932 &scaling_driver.attr,
933 &scaling_available_governors.attr,
934 &scaling_setspeed.attr,
935 NULL
936};
937
938#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
939#define to_attr(a) container_of(a, struct freq_attr, attr)
940
941static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
942{
943 struct cpufreq_policy *policy = to_policy(kobj);
944 struct freq_attr *fattr = to_attr(attr);
945 ssize_t ret;
946
947 if (!fattr->show)
948 return -EIO;
949
950 down_read(&policy->rwsem);
951 ret = fattr->show(policy, buf);
952 up_read(&policy->rwsem);
953
954 return ret;
955}
956
957static ssize_t store(struct kobject *kobj, struct attribute *attr,
958 const char *buf, size_t count)
959{
960 struct cpufreq_policy *policy = to_policy(kobj);
961 struct freq_attr *fattr = to_attr(attr);
962 ssize_t ret = -EINVAL;
963
964 if (!fattr->store)
965 return -EIO;
966
967 /*
968 * cpus_read_trylock() is used here to work around a circular lock
969 * dependency problem with respect to the cpufreq_register_driver().
970 */
971 if (!cpus_read_trylock())
972 return -EBUSY;
973
974 if (cpu_online(policy->cpu)) {
975 down_write(&policy->rwsem);
976 ret = fattr->store(policy, buf, count);
977 up_write(&policy->rwsem);
978 }
979
980 cpus_read_unlock();
981
982 return ret;
983}
984
985static void cpufreq_sysfs_release(struct kobject *kobj)
986{
987 struct cpufreq_policy *policy = to_policy(kobj);
988 pr_debug("last reference is dropped\n");
989 complete(&policy->kobj_unregister);
990}
991
992static const struct sysfs_ops sysfs_ops = {
993 .show = show,
994 .store = store,
995};
996
997static struct kobj_type ktype_cpufreq = {
998 .sysfs_ops = &sysfs_ops,
999 .default_attrs = default_attrs,
1000 .release = cpufreq_sysfs_release,
1001};
1002
1003static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
1004{
1005 struct device *dev = get_cpu_device(cpu);
1006
1007 if (unlikely(!dev))
1008 return;
1009
1010 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1011 return;
1012
1013 dev_dbg(dev, "%s: Adding symlink\n", __func__);
1014 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1015 dev_err(dev, "cpufreq symlink creation failed\n");
1016}
1017
1018static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1019 struct device *dev)
1020{
1021 dev_dbg(dev, "%s: Removing symlink\n", __func__);
1022 sysfs_remove_link(&dev->kobj, "cpufreq");
1023}
1024
1025static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1026{
1027 struct freq_attr **drv_attr;
1028 int ret = 0;
1029
1030 /* set up files for this cpu device */
1031 drv_attr = cpufreq_driver->attr;
1032 while (drv_attr && *drv_attr) {
1033 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1034 if (ret)
1035 return ret;
1036 drv_attr++;
1037 }
1038 if (cpufreq_driver->get) {
1039 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1040 if (ret)
1041 return ret;
1042 }
1043
1044 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1045 if (ret)
1046 return ret;
1047
1048 if (cpufreq_driver->bios_limit) {
1049 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1050 if (ret)
1051 return ret;
1052 }
1053
1054 return 0;
1055}
1056
1057static int cpufreq_init_policy(struct cpufreq_policy *policy)
1058{
1059 struct cpufreq_governor *gov = NULL;
1060 unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1061 int ret;
1062
1063 if (has_target()) {
1064 /* Update policy governor to the one used before hotplug. */
1065 gov = get_governor(policy->last_governor);
1066 if (gov) {
1067 pr_debug("Restoring governor %s for cpu %d\n",
1068 gov->name, policy->cpu);
1069 } else {
1070 gov = get_governor(default_governor);
1071 }
1072
1073 if (!gov) {
1074 gov = cpufreq_default_governor();
1075 __module_get(gov->owner);
1076 }
1077
1078 } else {
1079
1080 /* Use the default policy if there is no last_policy. */
1081 if (policy->last_policy) {
1082 pol = policy->last_policy;
1083 } else {
1084 pol = cpufreq_parse_policy(default_governor);
1085 /*
1086 * In case the default governor is neither "performance"
1087 * nor "powersave", fall back to the initial policy
1088 * value set by the driver.
1089 */
1090 if (pol == CPUFREQ_POLICY_UNKNOWN)
1091 pol = policy->policy;
1092 }
1093 if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1094 pol != CPUFREQ_POLICY_POWERSAVE)
1095 return -ENODATA;
1096 }
1097
1098 ret = cpufreq_set_policy(policy, gov, pol);
1099 if (gov)
1100 module_put(gov->owner);
1101
1102 return ret;
1103}
1104
1105static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1106{
1107 int ret = 0;
1108
1109 /* Has this CPU been taken care of already? */
1110 if (cpumask_test_cpu(cpu, policy->cpus))
1111 return 0;
1112
1113 down_write(&policy->rwsem);
1114 if (has_target())
1115 cpufreq_stop_governor(policy);
1116
1117 cpumask_set_cpu(cpu, policy->cpus);
1118
1119 if (has_target()) {
1120 ret = cpufreq_start_governor(policy);
1121 if (ret)
1122 pr_err("%s: Failed to start governor\n", __func__);
1123 }
1124 up_write(&policy->rwsem);
1125 return ret;
1126}
1127
1128void refresh_frequency_limits(struct cpufreq_policy *policy)
1129{
1130 if (!policy_is_inactive(policy)) {
1131 pr_debug("updating policy for CPU %u\n", policy->cpu);
1132
1133 cpufreq_set_policy(policy, policy->governor, policy->policy);
1134 }
1135}
1136EXPORT_SYMBOL(refresh_frequency_limits);
1137
1138static void handle_update(struct work_struct *work)
1139{
1140 struct cpufreq_policy *policy =
1141 container_of(work, struct cpufreq_policy, update);
1142
1143 pr_debug("handle_update for cpu %u called\n", policy->cpu);
1144 down_write(&policy->rwsem);
1145 refresh_frequency_limits(policy);
1146 up_write(&policy->rwsem);
1147}
1148
1149static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1150 void *data)
1151{
1152 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1153
1154 schedule_work(&policy->update);
1155 return 0;
1156}
1157
1158static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1159 void *data)
1160{
1161 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1162
1163 schedule_work(&policy->update);
1164 return 0;
1165}
1166
1167static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1168{
1169 struct kobject *kobj;
1170 struct completion *cmp;
1171
1172 down_write(&policy->rwsem);
1173 cpufreq_stats_free_table(policy);
1174 kobj = &policy->kobj;
1175 cmp = &policy->kobj_unregister;
1176 up_write(&policy->rwsem);
1177 kobject_put(kobj);
1178
1179 /*
1180 * We need to make sure that the underlying kobj is
1181 * actually not referenced anymore by anybody before we
1182 * proceed with unloading.
1183 */
1184 pr_debug("waiting for dropping of refcount\n");
1185 wait_for_completion(cmp);
1186 pr_debug("wait complete\n");
1187}
1188
1189static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1190{
1191 struct cpufreq_policy *policy;
1192 struct device *dev = get_cpu_device(cpu);
1193 int ret;
1194
1195 if (!dev)
1196 return NULL;
1197
1198 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1199 if (!policy)
1200 return NULL;
1201
1202 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1203 goto err_free_policy;
1204
1205 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1206 goto err_free_cpumask;
1207
1208 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1209 goto err_free_rcpumask;
1210
1211 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1212 cpufreq_global_kobject, "policy%u", cpu);
1213 if (ret) {
1214 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1215 /*
1216 * The entire policy object will be freed below, but the extra
1217 * memory allocated for the kobject name needs to be freed by
1218 * releasing the kobject.
1219 */
1220 kobject_put(&policy->kobj);
1221 goto err_free_real_cpus;
1222 }
1223
1224 freq_constraints_init(&policy->constraints);
1225
1226 policy->nb_min.notifier_call = cpufreq_notifier_min;
1227 policy->nb_max.notifier_call = cpufreq_notifier_max;
1228
1229 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1230 &policy->nb_min);
1231 if (ret) {
1232 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1233 ret, cpumask_pr_args(policy->cpus));
1234 goto err_kobj_remove;
1235 }
1236
1237 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1238 &policy->nb_max);
1239 if (ret) {
1240 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1241 ret, cpumask_pr_args(policy->cpus));
1242 goto err_min_qos_notifier;
1243 }
1244
1245 INIT_LIST_HEAD(&policy->policy_list);
1246 init_rwsem(&policy->rwsem);
1247 spin_lock_init(&policy->transition_lock);
1248 init_waitqueue_head(&policy->transition_wait);
1249 init_completion(&policy->kobj_unregister);
1250 INIT_WORK(&policy->update, handle_update);
1251
1252 policy->cpu = cpu;
1253 return policy;
1254
1255err_min_qos_notifier:
1256 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1257 &policy->nb_min);
1258err_kobj_remove:
1259 cpufreq_policy_put_kobj(policy);
1260err_free_real_cpus:
1261 free_cpumask_var(policy->real_cpus);
1262err_free_rcpumask:
1263 free_cpumask_var(policy->related_cpus);
1264err_free_cpumask:
1265 free_cpumask_var(policy->cpus);
1266err_free_policy:
1267 kfree(policy);
1268
1269 return NULL;
1270}
1271
1272static void cpufreq_policy_free(struct cpufreq_policy *policy)
1273{
1274 unsigned long flags;
1275 int cpu;
1276
1277 /* Remove policy from list */
1278 write_lock_irqsave(&cpufreq_driver_lock, flags);
1279 list_del(&policy->policy_list);
1280
1281 for_each_cpu(cpu, policy->related_cpus)
1282 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1283 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1284
1285 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1286 &policy->nb_max);
1287 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1288 &policy->nb_min);
1289
1290 /* Cancel any pending policy->update work before freeing the policy. */
1291 cancel_work_sync(&policy->update);
1292
1293 if (policy->max_freq_req) {
1294 /*
1295 * CPUFREQ_CREATE_POLICY notification is sent only after
1296 * successfully adding max_freq_req request.
1297 */
1298 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1299 CPUFREQ_REMOVE_POLICY, policy);
1300 freq_qos_remove_request(policy->max_freq_req);
1301 }
1302
1303 freq_qos_remove_request(policy->min_freq_req);
1304 kfree(policy->min_freq_req);
1305
1306 cpufreq_policy_put_kobj(policy);
1307 free_cpumask_var(policy->real_cpus);
1308 free_cpumask_var(policy->related_cpus);
1309 free_cpumask_var(policy->cpus);
1310 kfree(policy);
1311}
1312
1313static int cpufreq_online(unsigned int cpu)
1314{
1315 struct cpufreq_policy *policy;
1316 bool new_policy;
1317 unsigned long flags;
1318 unsigned int j;
1319 int ret;
1320
1321 pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1322
1323 /* Check if this CPU already has a policy to manage it */
1324 policy = per_cpu(cpufreq_cpu_data, cpu);
1325 if (policy) {
1326 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1327 if (!policy_is_inactive(policy))
1328 return cpufreq_add_policy_cpu(policy, cpu);
1329
1330 /* This is the only online CPU for the policy. Start over. */
1331 new_policy = false;
1332 down_write(&policy->rwsem);
1333 policy->cpu = cpu;
1334 policy->governor = NULL;
1335 up_write(&policy->rwsem);
1336 } else {
1337 new_policy = true;
1338 policy = cpufreq_policy_alloc(cpu);
1339 if (!policy)
1340 return -ENOMEM;
1341 }
1342
1343 if (!new_policy && cpufreq_driver->online) {
1344 ret = cpufreq_driver->online(policy);
1345 if (ret) {
1346 pr_debug("%s: %d: initialization failed\n", __func__,
1347 __LINE__);
1348 goto out_exit_policy;
1349 }
1350
1351 /* Recover policy->cpus using related_cpus */
1352 cpumask_copy(policy->cpus, policy->related_cpus);
1353 } else {
1354 cpumask_copy(policy->cpus, cpumask_of(cpu));
1355
1356 /*
1357 * Call driver. From then on the cpufreq must be able
1358 * to accept all calls to ->verify and ->setpolicy for this CPU.
1359 */
1360 ret = cpufreq_driver->init(policy);
1361 if (ret) {
1362 pr_debug("%s: %d: initialization failed\n", __func__,
1363 __LINE__);
1364 goto out_free_policy;
1365 }
1366
1367 ret = cpufreq_table_validate_and_sort(policy);
1368 if (ret)
1369 goto out_exit_policy;
1370
1371 /* related_cpus should at least include policy->cpus. */
1372 cpumask_copy(policy->related_cpus, policy->cpus);
1373 }
1374
1375 down_write(&policy->rwsem);
1376 /*
1377 * affected cpus must always be the one, which are online. We aren't
1378 * managing offline cpus here.
1379 */
1380 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1381
1382 if (new_policy) {
1383 for_each_cpu(j, policy->related_cpus) {
1384 per_cpu(cpufreq_cpu_data, j) = policy;
1385 add_cpu_dev_symlink(policy, j);
1386 }
1387
1388 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1389 GFP_KERNEL);
1390 if (!policy->min_freq_req)
1391 goto out_destroy_policy;
1392
1393 ret = freq_qos_add_request(&policy->constraints,
1394 policy->min_freq_req, FREQ_QOS_MIN,
1395 policy->min);
1396 if (ret < 0) {
1397 /*
1398 * So we don't call freq_qos_remove_request() for an
1399 * uninitialized request.
1400 */
1401 kfree(policy->min_freq_req);
1402 policy->min_freq_req = NULL;
1403 goto out_destroy_policy;
1404 }
1405
1406 /*
1407 * This must be initialized right here to avoid calling
1408 * freq_qos_remove_request() on uninitialized request in case
1409 * of errors.
1410 */
1411 policy->max_freq_req = policy->min_freq_req + 1;
1412
1413 ret = freq_qos_add_request(&policy->constraints,
1414 policy->max_freq_req, FREQ_QOS_MAX,
1415 policy->max);
1416 if (ret < 0) {
1417 policy->max_freq_req = NULL;
1418 goto out_destroy_policy;
1419 }
1420
1421 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1422 CPUFREQ_CREATE_POLICY, policy);
1423 }
1424
1425 if (cpufreq_driver->get && has_target()) {
1426 policy->cur = cpufreq_driver->get(policy->cpu);
1427 if (!policy->cur) {
1428 pr_err("%s: ->get() failed\n", __func__);
1429 goto out_destroy_policy;
1430 }
1431 }
1432
1433 /*
1434 * Sometimes boot loaders set CPU frequency to a value outside of
1435 * frequency table present with cpufreq core. In such cases CPU might be
1436 * unstable if it has to run on that frequency for long duration of time
1437 * and so its better to set it to a frequency which is specified in
1438 * freq-table. This also makes cpufreq stats inconsistent as
1439 * cpufreq-stats would fail to register because current frequency of CPU
1440 * isn't found in freq-table.
1441 *
1442 * Because we don't want this change to effect boot process badly, we go
1443 * for the next freq which is >= policy->cur ('cur' must be set by now,
1444 * otherwise we will end up setting freq to lowest of the table as 'cur'
1445 * is initialized to zero).
1446 *
1447 * We are passing target-freq as "policy->cur - 1" otherwise
1448 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1449 * equal to target-freq.
1450 */
1451 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1452 && has_target()) {
1453 /* Are we running at unknown frequency ? */
1454 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1455 if (ret == -EINVAL) {
1456 /* Warn user and fix it */
1457 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1458 __func__, policy->cpu, policy->cur);
1459 ret = __cpufreq_driver_target(policy, policy->cur - 1,
1460 CPUFREQ_RELATION_L);
1461
1462 /*
1463 * Reaching here after boot in a few seconds may not
1464 * mean that system will remain stable at "unknown"
1465 * frequency for longer duration. Hence, a BUG_ON().
1466 */
1467 BUG_ON(ret);
1468 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1469 __func__, policy->cpu, policy->cur);
1470 }
1471 }
1472
1473 if (new_policy) {
1474 ret = cpufreq_add_dev_interface(policy);
1475 if (ret)
1476 goto out_destroy_policy;
1477
1478 cpufreq_stats_create_table(policy);
1479
1480 write_lock_irqsave(&cpufreq_driver_lock, flags);
1481 list_add(&policy->policy_list, &cpufreq_policy_list);
1482 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1483 }
1484
1485 ret = cpufreq_init_policy(policy);
1486 if (ret) {
1487 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1488 __func__, cpu, ret);
1489 goto out_destroy_policy;
1490 }
1491
1492 up_write(&policy->rwsem);
1493
1494 kobject_uevent(&policy->kobj, KOBJ_ADD);
1495
1496 /* Callback for handling stuff after policy is ready */
1497 if (cpufreq_driver->ready)
1498 cpufreq_driver->ready(policy);
1499
1500 if (cpufreq_thermal_control_enabled(cpufreq_driver))
1501 policy->cdev = of_cpufreq_cooling_register(policy);
1502
1503 pr_debug("initialization complete\n");
1504
1505 return 0;
1506
1507out_destroy_policy:
1508 for_each_cpu(j, policy->real_cpus)
1509 remove_cpu_dev_symlink(policy, get_cpu_device(j));
1510
1511 up_write(&policy->rwsem);
1512
1513out_exit_policy:
1514 if (cpufreq_driver->exit)
1515 cpufreq_driver->exit(policy);
1516
1517out_free_policy:
1518 cpufreq_policy_free(policy);
1519 return ret;
1520}
1521
1522/**
1523 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1524 * @dev: CPU device.
1525 * @sif: Subsystem interface structure pointer (not used)
1526 */
1527static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1528{
1529 struct cpufreq_policy *policy;
1530 unsigned cpu = dev->id;
1531 int ret;
1532
1533 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1534
1535 if (cpu_online(cpu)) {
1536 ret = cpufreq_online(cpu);
1537 if (ret)
1538 return ret;
1539 }
1540
1541 /* Create sysfs link on CPU registration */
1542 policy = per_cpu(cpufreq_cpu_data, cpu);
1543 if (policy)
1544 add_cpu_dev_symlink(policy, cpu);
1545
1546 return 0;
1547}
1548
1549static int cpufreq_offline(unsigned int cpu)
1550{
1551 struct cpufreq_policy *policy;
1552 int ret;
1553
1554 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1555
1556 policy = cpufreq_cpu_get_raw(cpu);
1557 if (!policy) {
1558 pr_debug("%s: No cpu_data found\n", __func__);
1559 return 0;
1560 }
1561
1562 down_write(&policy->rwsem);
1563 if (has_target())
1564 cpufreq_stop_governor(policy);
1565
1566 cpumask_clear_cpu(cpu, policy->cpus);
1567
1568 if (policy_is_inactive(policy)) {
1569 if (has_target())
1570 strncpy(policy->last_governor, policy->governor->name,
1571 CPUFREQ_NAME_LEN);
1572 else
1573 policy->last_policy = policy->policy;
1574 } else if (cpu == policy->cpu) {
1575 /* Nominate new CPU */
1576 policy->cpu = cpumask_any(policy->cpus);
1577 }
1578
1579 /* Start governor again for active policy */
1580 if (!policy_is_inactive(policy)) {
1581 if (has_target()) {
1582 ret = cpufreq_start_governor(policy);
1583 if (ret)
1584 pr_err("%s: Failed to start governor\n", __func__);
1585 }
1586
1587 goto unlock;
1588 }
1589
1590 if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1591 cpufreq_cooling_unregister(policy->cdev);
1592 policy->cdev = NULL;
1593 }
1594
1595 if (cpufreq_driver->stop_cpu)
1596 cpufreq_driver->stop_cpu(policy);
1597
1598 if (has_target())
1599 cpufreq_exit_governor(policy);
1600
1601 /*
1602 * Perform the ->offline() during light-weight tear-down, as
1603 * that allows fast recovery when the CPU comes back.
1604 */
1605 if (cpufreq_driver->offline) {
1606 cpufreq_driver->offline(policy);
1607 } else if (cpufreq_driver->exit) {
1608 cpufreq_driver->exit(policy);
1609 policy->freq_table = NULL;
1610 }
1611
1612unlock:
1613 up_write(&policy->rwsem);
1614 return 0;
1615}
1616
1617/*
1618 * cpufreq_remove_dev - remove a CPU device
1619 *
1620 * Removes the cpufreq interface for a CPU device.
1621 */
1622static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1623{
1624 unsigned int cpu = dev->id;
1625 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1626
1627 if (!policy)
1628 return;
1629
1630 if (cpu_online(cpu))
1631 cpufreq_offline(cpu);
1632
1633 cpumask_clear_cpu(cpu, policy->real_cpus);
1634 remove_cpu_dev_symlink(policy, dev);
1635
1636 if (cpumask_empty(policy->real_cpus)) {
1637 /* We did light-weight exit earlier, do full tear down now */
1638 if (cpufreq_driver->offline)
1639 cpufreq_driver->exit(policy);
1640
1641 cpufreq_policy_free(policy);
1642 }
1643}
1644
1645/**
1646 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1647 * in deep trouble.
1648 * @policy: policy managing CPUs
1649 * @new_freq: CPU frequency the CPU actually runs at
1650 *
1651 * We adjust to current frequency first, and need to clean up later.
1652 * So either call to cpufreq_update_policy() or schedule handle_update()).
1653 */
1654static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1655 unsigned int new_freq)
1656{
1657 struct cpufreq_freqs freqs;
1658
1659 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1660 policy->cur, new_freq);
1661
1662 freqs.old = policy->cur;
1663 freqs.new = new_freq;
1664
1665 cpufreq_freq_transition_begin(policy, &freqs);
1666 cpufreq_freq_transition_end(policy, &freqs, 0);
1667}
1668
1669static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1670{
1671 unsigned int new_freq;
1672
1673 new_freq = cpufreq_driver->get(policy->cpu);
1674 if (!new_freq)
1675 return 0;
1676
1677 /*
1678 * If fast frequency switching is used with the given policy, the check
1679 * against policy->cur is pointless, so skip it in that case.
1680 */
1681 if (policy->fast_switch_enabled || !has_target())
1682 return new_freq;
1683
1684 if (policy->cur != new_freq) {
1685 cpufreq_out_of_sync(policy, new_freq);
1686 if (update)
1687 schedule_work(&policy->update);
1688 }
1689
1690 return new_freq;
1691}
1692
1693/**
1694 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1695 * @cpu: CPU number
1696 *
1697 * This is the last known freq, without actually getting it from the driver.
1698 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1699 */
1700unsigned int cpufreq_quick_get(unsigned int cpu)
1701{
1702 struct cpufreq_policy *policy;
1703 unsigned int ret_freq = 0;
1704 unsigned long flags;
1705
1706 read_lock_irqsave(&cpufreq_driver_lock, flags);
1707
1708 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1709 ret_freq = cpufreq_driver->get(cpu);
1710 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1711 return ret_freq;
1712 }
1713
1714 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1715
1716 policy = cpufreq_cpu_get(cpu);
1717 if (policy) {
1718 ret_freq = policy->cur;
1719 cpufreq_cpu_put(policy);
1720 }
1721
1722 return ret_freq;
1723}
1724EXPORT_SYMBOL(cpufreq_quick_get);
1725
1726/**
1727 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1728 * @cpu: CPU number
1729 *
1730 * Just return the max possible frequency for a given CPU.
1731 */
1732unsigned int cpufreq_quick_get_max(unsigned int cpu)
1733{
1734 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1735 unsigned int ret_freq = 0;
1736
1737 if (policy) {
1738 ret_freq = policy->max;
1739 cpufreq_cpu_put(policy);
1740 }
1741
1742 return ret_freq;
1743}
1744EXPORT_SYMBOL(cpufreq_quick_get_max);
1745
1746/**
1747 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1748 * @cpu: CPU number
1749 *
1750 * The default return value is the max_freq field of cpuinfo.
1751 */
1752__weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1753{
1754 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1755 unsigned int ret_freq = 0;
1756
1757 if (policy) {
1758 ret_freq = policy->cpuinfo.max_freq;
1759 cpufreq_cpu_put(policy);
1760 }
1761
1762 return ret_freq;
1763}
1764EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1765
1766static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1767{
1768 if (unlikely(policy_is_inactive(policy)))
1769 return 0;
1770
1771 return cpufreq_verify_current_freq(policy, true);
1772}
1773
1774/**
1775 * cpufreq_get - get the current CPU frequency (in kHz)
1776 * @cpu: CPU number
1777 *
1778 * Get the CPU current (static) CPU frequency
1779 */
1780unsigned int cpufreq_get(unsigned int cpu)
1781{
1782 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1783 unsigned int ret_freq = 0;
1784
1785 if (policy) {
1786 down_read(&policy->rwsem);
1787 if (cpufreq_driver->get)
1788 ret_freq = __cpufreq_get(policy);
1789 up_read(&policy->rwsem);
1790
1791 cpufreq_cpu_put(policy);
1792 }
1793
1794 return ret_freq;
1795}
1796EXPORT_SYMBOL(cpufreq_get);
1797
1798static struct subsys_interface cpufreq_interface = {
1799 .name = "cpufreq",
1800 .subsys = &cpu_subsys,
1801 .add_dev = cpufreq_add_dev,
1802 .remove_dev = cpufreq_remove_dev,
1803};
1804
1805/*
1806 * In case platform wants some specific frequency to be configured
1807 * during suspend..
1808 */
1809int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1810{
1811 int ret;
1812
1813 if (!policy->suspend_freq) {
1814 pr_debug("%s: suspend_freq not defined\n", __func__);
1815 return 0;
1816 }
1817
1818 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1819 policy->suspend_freq);
1820
1821 ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1822 CPUFREQ_RELATION_H);
1823 if (ret)
1824 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1825 __func__, policy->suspend_freq, ret);
1826
1827 return ret;
1828}
1829EXPORT_SYMBOL(cpufreq_generic_suspend);
1830
1831/**
1832 * cpufreq_suspend() - Suspend CPUFreq governors
1833 *
1834 * Called during system wide Suspend/Hibernate cycles for suspending governors
1835 * as some platforms can't change frequency after this point in suspend cycle.
1836 * Because some of the devices (like: i2c, regulators, etc) they use for
1837 * changing frequency are suspended quickly after this point.
1838 */
1839void cpufreq_suspend(void)
1840{
1841 struct cpufreq_policy *policy;
1842
1843 if (!cpufreq_driver)
1844 return;
1845
1846 if (!has_target() && !cpufreq_driver->suspend)
1847 goto suspend;
1848
1849 pr_debug("%s: Suspending Governors\n", __func__);
1850
1851 for_each_active_policy(policy) {
1852 if (has_target()) {
1853 down_write(&policy->rwsem);
1854 cpufreq_stop_governor(policy);
1855 up_write(&policy->rwsem);
1856 }
1857
1858 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1859 pr_err("%s: Failed to suspend driver: %s\n", __func__,
1860 cpufreq_driver->name);
1861 }
1862
1863suspend:
1864 cpufreq_suspended = true;
1865}
1866
1867/**
1868 * cpufreq_resume() - Resume CPUFreq governors
1869 *
1870 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1871 * are suspended with cpufreq_suspend().
1872 */
1873void cpufreq_resume(void)
1874{
1875 struct cpufreq_policy *policy;
1876 int ret;
1877
1878 if (!cpufreq_driver)
1879 return;
1880
1881 if (unlikely(!cpufreq_suspended))
1882 return;
1883
1884 cpufreq_suspended = false;
1885
1886 if (!has_target() && !cpufreq_driver->resume)
1887 return;
1888
1889 pr_debug("%s: Resuming Governors\n", __func__);
1890
1891 for_each_active_policy(policy) {
1892 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1893 pr_err("%s: Failed to resume driver: %p\n", __func__,
1894 policy);
1895 } else if (has_target()) {
1896 down_write(&policy->rwsem);
1897 ret = cpufreq_start_governor(policy);
1898 up_write(&policy->rwsem);
1899
1900 if (ret)
1901 pr_err("%s: Failed to start governor for policy: %p\n",
1902 __func__, policy);
1903 }
1904 }
1905}
1906
1907/**
1908 * cpufreq_get_current_driver - return current driver's name
1909 *
1910 * Return the name string of the currently loaded cpufreq driver
1911 * or NULL, if none.
1912 */
1913const char *cpufreq_get_current_driver(void)
1914{
1915 if (cpufreq_driver)
1916 return cpufreq_driver->name;
1917
1918 return NULL;
1919}
1920EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1921
1922/**
1923 * cpufreq_get_driver_data - return current driver data
1924 *
1925 * Return the private data of the currently loaded cpufreq
1926 * driver, or NULL if no cpufreq driver is loaded.
1927 */
1928void *cpufreq_get_driver_data(void)
1929{
1930 if (cpufreq_driver)
1931 return cpufreq_driver->driver_data;
1932
1933 return NULL;
1934}
1935EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1936
1937/*********************************************************************
1938 * NOTIFIER LISTS INTERFACE *
1939 *********************************************************************/
1940
1941/**
1942 * cpufreq_register_notifier - register a driver with cpufreq
1943 * @nb: notifier function to register
1944 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1945 *
1946 * Add a driver to one of two lists: either a list of drivers that
1947 * are notified about clock rate changes (once before and once after
1948 * the transition), or a list of drivers that are notified about
1949 * changes in cpufreq policy.
1950 *
1951 * This function may sleep, and has the same return conditions as
1952 * blocking_notifier_chain_register.
1953 */
1954int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1955{
1956 int ret;
1957
1958 if (cpufreq_disabled())
1959 return -EINVAL;
1960
1961 switch (list) {
1962 case CPUFREQ_TRANSITION_NOTIFIER:
1963 mutex_lock(&cpufreq_fast_switch_lock);
1964
1965 if (cpufreq_fast_switch_count > 0) {
1966 mutex_unlock(&cpufreq_fast_switch_lock);
1967 return -EBUSY;
1968 }
1969 ret = srcu_notifier_chain_register(
1970 &cpufreq_transition_notifier_list, nb);
1971 if (!ret)
1972 cpufreq_fast_switch_count--;
1973
1974 mutex_unlock(&cpufreq_fast_switch_lock);
1975 break;
1976 case CPUFREQ_POLICY_NOTIFIER:
1977 ret = blocking_notifier_chain_register(
1978 &cpufreq_policy_notifier_list, nb);
1979 break;
1980 default:
1981 ret = -EINVAL;
1982 }
1983
1984 return ret;
1985}
1986EXPORT_SYMBOL(cpufreq_register_notifier);
1987
1988/**
1989 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1990 * @nb: notifier block to be unregistered
1991 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1992 *
1993 * Remove a driver from the CPU frequency notifier list.
1994 *
1995 * This function may sleep, and has the same return conditions as
1996 * blocking_notifier_chain_unregister.
1997 */
1998int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1999{
2000 int ret;
2001
2002 if (cpufreq_disabled())
2003 return -EINVAL;
2004
2005 switch (list) {
2006 case CPUFREQ_TRANSITION_NOTIFIER:
2007 mutex_lock(&cpufreq_fast_switch_lock);
2008
2009 ret = srcu_notifier_chain_unregister(
2010 &cpufreq_transition_notifier_list, nb);
2011 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2012 cpufreq_fast_switch_count++;
2013
2014 mutex_unlock(&cpufreq_fast_switch_lock);
2015 break;
2016 case CPUFREQ_POLICY_NOTIFIER:
2017 ret = blocking_notifier_chain_unregister(
2018 &cpufreq_policy_notifier_list, nb);
2019 break;
2020 default:
2021 ret = -EINVAL;
2022 }
2023
2024 return ret;
2025}
2026EXPORT_SYMBOL(cpufreq_unregister_notifier);
2027
2028
2029/*********************************************************************
2030 * GOVERNORS *
2031 *********************************************************************/
2032
2033/**
2034 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2035 * @policy: cpufreq policy to switch the frequency for.
2036 * @target_freq: New frequency to set (may be approximate).
2037 *
2038 * Carry out a fast frequency switch without sleeping.
2039 *
2040 * The driver's ->fast_switch() callback invoked by this function must be
2041 * suitable for being called from within RCU-sched read-side critical sections
2042 * and it is expected to select the minimum available frequency greater than or
2043 * equal to @target_freq (CPUFREQ_RELATION_L).
2044 *
2045 * This function must not be called if policy->fast_switch_enabled is unset.
2046 *
2047 * Governors calling this function must guarantee that it will never be invoked
2048 * twice in parallel for the same policy and that it will never be called in
2049 * parallel with either ->target() or ->target_index() for the same policy.
2050 *
2051 * Returns the actual frequency set for the CPU.
2052 *
2053 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2054 * error condition, the hardware configuration must be preserved.
2055 */
2056unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2057 unsigned int target_freq)
2058{
2059 target_freq = clamp_val(target_freq, policy->min, policy->max);
2060
2061 return cpufreq_driver->fast_switch(policy, target_freq);
2062}
2063EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2064
2065/* Must set freqs->new to intermediate frequency */
2066static int __target_intermediate(struct cpufreq_policy *policy,
2067 struct cpufreq_freqs *freqs, int index)
2068{
2069 int ret;
2070
2071 freqs->new = cpufreq_driver->get_intermediate(policy, index);
2072
2073 /* We don't need to switch to intermediate freq */
2074 if (!freqs->new)
2075 return 0;
2076
2077 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2078 __func__, policy->cpu, freqs->old, freqs->new);
2079
2080 cpufreq_freq_transition_begin(policy, freqs);
2081 ret = cpufreq_driver->target_intermediate(policy, index);
2082 cpufreq_freq_transition_end(policy, freqs, ret);
2083
2084 if (ret)
2085 pr_err("%s: Failed to change to intermediate frequency: %d\n",
2086 __func__, ret);
2087
2088 return ret;
2089}
2090
2091static int __target_index(struct cpufreq_policy *policy, int index)
2092{
2093 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2094 unsigned int intermediate_freq = 0;
2095 unsigned int newfreq = policy->freq_table[index].frequency;
2096 int retval = -EINVAL;
2097 bool notify;
2098
2099 if (newfreq == policy->cur)
2100 return 0;
2101
2102 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2103 if (notify) {
2104 /* Handle switching to intermediate frequency */
2105 if (cpufreq_driver->get_intermediate) {
2106 retval = __target_intermediate(policy, &freqs, index);
2107 if (retval)
2108 return retval;
2109
2110 intermediate_freq = freqs.new;
2111 /* Set old freq to intermediate */
2112 if (intermediate_freq)
2113 freqs.old = freqs.new;
2114 }
2115
2116 freqs.new = newfreq;
2117 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2118 __func__, policy->cpu, freqs.old, freqs.new);
2119
2120 cpufreq_freq_transition_begin(policy, &freqs);
2121 }
2122
2123 retval = cpufreq_driver->target_index(policy, index);
2124 if (retval)
2125 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2126 retval);
2127
2128 if (notify) {
2129 cpufreq_freq_transition_end(policy, &freqs, retval);
2130
2131 /*
2132 * Failed after setting to intermediate freq? Driver should have
2133 * reverted back to initial frequency and so should we. Check
2134 * here for intermediate_freq instead of get_intermediate, in
2135 * case we haven't switched to intermediate freq at all.
2136 */
2137 if (unlikely(retval && intermediate_freq)) {
2138 freqs.old = intermediate_freq;
2139 freqs.new = policy->restore_freq;
2140 cpufreq_freq_transition_begin(policy, &freqs);
2141 cpufreq_freq_transition_end(policy, &freqs, 0);
2142 }
2143 }
2144
2145 return retval;
2146}
2147
2148int __cpufreq_driver_target(struct cpufreq_policy *policy,
2149 unsigned int target_freq,
2150 unsigned int relation)
2151{
2152 unsigned int old_target_freq = target_freq;
2153 int index;
2154
2155 if (cpufreq_disabled())
2156 return -ENODEV;
2157
2158 /* Make sure that target_freq is within supported range */
2159 target_freq = clamp_val(target_freq, policy->min, policy->max);
2160
2161 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2162 policy->cpu, target_freq, relation, old_target_freq);
2163
2164 /*
2165 * This might look like a redundant call as we are checking it again
2166 * after finding index. But it is left intentionally for cases where
2167 * exactly same freq is called again and so we can save on few function
2168 * calls.
2169 */
2170 if (target_freq == policy->cur)
2171 return 0;
2172
2173 /* Save last value to restore later on errors */
2174 policy->restore_freq = policy->cur;
2175
2176 if (cpufreq_driver->target)
2177 return cpufreq_driver->target(policy, target_freq, relation);
2178
2179 if (!cpufreq_driver->target_index)
2180 return -EINVAL;
2181
2182 index = cpufreq_frequency_table_target(policy, target_freq, relation);
2183
2184 return __target_index(policy, index);
2185}
2186EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2187
2188int cpufreq_driver_target(struct cpufreq_policy *policy,
2189 unsigned int target_freq,
2190 unsigned int relation)
2191{
2192 int ret;
2193
2194 down_write(&policy->rwsem);
2195
2196 ret = __cpufreq_driver_target(policy, target_freq, relation);
2197
2198 up_write(&policy->rwsem);
2199
2200 return ret;
2201}
2202EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2203
2204__weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2205{
2206 return NULL;
2207}
2208
2209static int cpufreq_init_governor(struct cpufreq_policy *policy)
2210{
2211 int ret;
2212
2213 /* Don't start any governor operations if we are entering suspend */
2214 if (cpufreq_suspended)
2215 return 0;
2216 /*
2217 * Governor might not be initiated here if ACPI _PPC changed
2218 * notification happened, so check it.
2219 */
2220 if (!policy->governor)
2221 return -EINVAL;
2222
2223 /* Platform doesn't want dynamic frequency switching ? */
2224 if (policy->governor->dynamic_switching &&
2225 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2226 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2227
2228 if (gov) {
2229 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2230 policy->governor->name, gov->name);
2231 policy->governor = gov;
2232 } else {
2233 return -EINVAL;
2234 }
2235 }
2236
2237 if (!try_module_get(policy->governor->owner))
2238 return -EINVAL;
2239
2240 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2241
2242 if (policy->governor->init) {
2243 ret = policy->governor->init(policy);
2244 if (ret) {
2245 module_put(policy->governor->owner);
2246 return ret;
2247 }
2248 }
2249
2250 return 0;
2251}
2252
2253static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2254{
2255 if (cpufreq_suspended || !policy->governor)
2256 return;
2257
2258 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2259
2260 if (policy->governor->exit)
2261 policy->governor->exit(policy);
2262
2263 module_put(policy->governor->owner);
2264}
2265
2266int cpufreq_start_governor(struct cpufreq_policy *policy)
2267{
2268 int ret;
2269
2270 if (cpufreq_suspended)
2271 return 0;
2272
2273 if (!policy->governor)
2274 return -EINVAL;
2275
2276 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2277
2278 if (cpufreq_driver->get)
2279 cpufreq_verify_current_freq(policy, false);
2280
2281 if (policy->governor->start) {
2282 ret = policy->governor->start(policy);
2283 if (ret)
2284 return ret;
2285 }
2286
2287 if (policy->governor->limits)
2288 policy->governor->limits(policy);
2289
2290 return 0;
2291}
2292
2293void cpufreq_stop_governor(struct cpufreq_policy *policy)
2294{
2295 if (cpufreq_suspended || !policy->governor)
2296 return;
2297
2298 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2299
2300 if (policy->governor->stop)
2301 policy->governor->stop(policy);
2302}
2303
2304static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2305{
2306 if (cpufreq_suspended || !policy->governor)
2307 return;
2308
2309 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2310
2311 if (policy->governor->limits)
2312 policy->governor->limits(policy);
2313}
2314
2315int cpufreq_register_governor(struct cpufreq_governor *governor)
2316{
2317 int err;
2318
2319 if (!governor)
2320 return -EINVAL;
2321
2322 if (cpufreq_disabled())
2323 return -ENODEV;
2324
2325 mutex_lock(&cpufreq_governor_mutex);
2326
2327 err = -EBUSY;
2328 if (!find_governor(governor->name)) {
2329 err = 0;
2330 list_add(&governor->governor_list, &cpufreq_governor_list);
2331 }
2332
2333 mutex_unlock(&cpufreq_governor_mutex);
2334 return err;
2335}
2336EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2337
2338void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2339{
2340 struct cpufreq_policy *policy;
2341 unsigned long flags;
2342
2343 if (!governor)
2344 return;
2345
2346 if (cpufreq_disabled())
2347 return;
2348
2349 /* clear last_governor for all inactive policies */
2350 read_lock_irqsave(&cpufreq_driver_lock, flags);
2351 for_each_inactive_policy(policy) {
2352 if (!strcmp(policy->last_governor, governor->name)) {
2353 policy->governor = NULL;
2354 strcpy(policy->last_governor, "\0");
2355 }
2356 }
2357 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2358
2359 mutex_lock(&cpufreq_governor_mutex);
2360 list_del(&governor->governor_list);
2361 mutex_unlock(&cpufreq_governor_mutex);
2362}
2363EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2364
2365
2366/*********************************************************************
2367 * POLICY INTERFACE *
2368 *********************************************************************/
2369
2370/**
2371 * cpufreq_get_policy - get the current cpufreq_policy
2372 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2373 * is written
2374 * @cpu: CPU to find the policy for
2375 *
2376 * Reads the current cpufreq policy.
2377 */
2378int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2379{
2380 struct cpufreq_policy *cpu_policy;
2381 if (!policy)
2382 return -EINVAL;
2383
2384 cpu_policy = cpufreq_cpu_get(cpu);
2385 if (!cpu_policy)
2386 return -EINVAL;
2387
2388 memcpy(policy, cpu_policy, sizeof(*policy));
2389
2390 cpufreq_cpu_put(cpu_policy);
2391 return 0;
2392}
2393EXPORT_SYMBOL(cpufreq_get_policy);
2394
2395/**
2396 * cpufreq_set_policy - Modify cpufreq policy parameters.
2397 * @policy: Policy object to modify.
2398 * @new_gov: Policy governor pointer.
2399 * @new_pol: Policy value (for drivers with built-in governors).
2400 *
2401 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2402 * limits to be set for the policy, update @policy with the verified limits
2403 * values and either invoke the driver's ->setpolicy() callback (if present) or
2404 * carry out a governor update for @policy. That is, run the current governor's
2405 * ->limits() callback (if @new_gov points to the same object as the one in
2406 * @policy) or replace the governor for @policy with @new_gov.
2407 *
2408 * The cpuinfo part of @policy is not updated by this function.
2409 */
2410static int cpufreq_set_policy(struct cpufreq_policy *policy,
2411 struct cpufreq_governor *new_gov,
2412 unsigned int new_pol)
2413{
2414 struct cpufreq_policy_data new_data;
2415 struct cpufreq_governor *old_gov;
2416 int ret;
2417
2418 memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2419 new_data.freq_table = policy->freq_table;
2420 new_data.cpu = policy->cpu;
2421 /*
2422 * PM QoS framework collects all the requests from users and provide us
2423 * the final aggregated value here.
2424 */
2425 new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2426 new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2427
2428 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2429 new_data.cpu, new_data.min, new_data.max);
2430
2431 /*
2432 * Verify that the CPU speed can be set within these limits and make sure
2433 * that min <= max.
2434 */
2435 ret = cpufreq_driver->verify(&new_data);
2436 if (ret)
2437 return ret;
2438
2439 policy->min = new_data.min;
2440 policy->max = new_data.max;
2441 trace_cpu_frequency_limits(policy);
2442
2443 policy->cached_target_freq = UINT_MAX;
2444
2445 pr_debug("new min and max freqs are %u - %u kHz\n",
2446 policy->min, policy->max);
2447
2448 if (cpufreq_driver->setpolicy) {
2449 policy->policy = new_pol;
2450 pr_debug("setting range\n");
2451 return cpufreq_driver->setpolicy(policy);
2452 }
2453
2454 if (new_gov == policy->governor) {
2455 pr_debug("governor limits update\n");
2456 cpufreq_governor_limits(policy);
2457 return 0;
2458 }
2459
2460 pr_debug("governor switch\n");
2461
2462 /* save old, working values */
2463 old_gov = policy->governor;
2464 /* end old governor */
2465 if (old_gov) {
2466 cpufreq_stop_governor(policy);
2467 cpufreq_exit_governor(policy);
2468 }
2469
2470 /* start new governor */
2471 policy->governor = new_gov;
2472 ret = cpufreq_init_governor(policy);
2473 if (!ret) {
2474 ret = cpufreq_start_governor(policy);
2475 if (!ret) {
2476 pr_debug("governor change\n");
2477 sched_cpufreq_governor_change(policy, old_gov);
2478 return 0;
2479 }
2480 cpufreq_exit_governor(policy);
2481 }
2482
2483 /* new governor failed, so re-start old one */
2484 pr_debug("starting governor %s failed\n", policy->governor->name);
2485 if (old_gov) {
2486 policy->governor = old_gov;
2487 if (cpufreq_init_governor(policy))
2488 policy->governor = NULL;
2489 else
2490 cpufreq_start_governor(policy);
2491 }
2492
2493 return ret;
2494}
2495
2496/**
2497 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2498 * @cpu: CPU to re-evaluate the policy for.
2499 *
2500 * Update the current frequency for the cpufreq policy of @cpu and use
2501 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2502 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2503 * for the policy in question, among other things.
2504 */
2505void cpufreq_update_policy(unsigned int cpu)
2506{
2507 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2508
2509 if (!policy)
2510 return;
2511
2512 /*
2513 * BIOS might change freq behind our back
2514 * -> ask driver for current freq and notify governors about a change
2515 */
2516 if (cpufreq_driver->get && has_target() &&
2517 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2518 goto unlock;
2519
2520 refresh_frequency_limits(policy);
2521
2522unlock:
2523 cpufreq_cpu_release(policy);
2524}
2525EXPORT_SYMBOL(cpufreq_update_policy);
2526
2527/**
2528 * cpufreq_update_limits - Update policy limits for a given CPU.
2529 * @cpu: CPU to update the policy limits for.
2530 *
2531 * Invoke the driver's ->update_limits callback if present or call
2532 * cpufreq_update_policy() for @cpu.
2533 */
2534void cpufreq_update_limits(unsigned int cpu)
2535{
2536 if (cpufreq_driver->update_limits)
2537 cpufreq_driver->update_limits(cpu);
2538 else
2539 cpufreq_update_policy(cpu);
2540}
2541EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2542
2543/*********************************************************************
2544 * BOOST *
2545 *********************************************************************/
2546static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2547{
2548 int ret;
2549
2550 if (!policy->freq_table)
2551 return -ENXIO;
2552
2553 ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2554 if (ret) {
2555 pr_err("%s: Policy frequency update failed\n", __func__);
2556 return ret;
2557 }
2558
2559 ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2560 if (ret < 0)
2561 return ret;
2562
2563 return 0;
2564}
2565
2566int cpufreq_boost_trigger_state(int state)
2567{
2568 struct cpufreq_policy *policy;
2569 unsigned long flags;
2570 int ret = 0;
2571
2572 if (cpufreq_driver->boost_enabled == state)
2573 return 0;
2574
2575 write_lock_irqsave(&cpufreq_driver_lock, flags);
2576 cpufreq_driver->boost_enabled = state;
2577 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2578
2579 get_online_cpus();
2580 for_each_active_policy(policy) {
2581 ret = cpufreq_driver->set_boost(policy, state);
2582 if (ret)
2583 goto err_reset_state;
2584 }
2585 put_online_cpus();
2586
2587 return 0;
2588
2589err_reset_state:
2590 put_online_cpus();
2591
2592 write_lock_irqsave(&cpufreq_driver_lock, flags);
2593 cpufreq_driver->boost_enabled = !state;
2594 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2595
2596 pr_err("%s: Cannot %s BOOST\n",
2597 __func__, state ? "enable" : "disable");
2598
2599 return ret;
2600}
2601
2602static bool cpufreq_boost_supported(void)
2603{
2604 return cpufreq_driver->set_boost;
2605}
2606
2607static int create_boost_sysfs_file(void)
2608{
2609 int ret;
2610
2611 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2612 if (ret)
2613 pr_err("%s: cannot register global BOOST sysfs file\n",
2614 __func__);
2615
2616 return ret;
2617}
2618
2619static void remove_boost_sysfs_file(void)
2620{
2621 if (cpufreq_boost_supported())
2622 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2623}
2624
2625int cpufreq_enable_boost_support(void)
2626{
2627 if (!cpufreq_driver)
2628 return -EINVAL;
2629
2630 if (cpufreq_boost_supported())
2631 return 0;
2632
2633 cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2634
2635 /* This will get removed on driver unregister */
2636 return create_boost_sysfs_file();
2637}
2638EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2639
2640int cpufreq_boost_enabled(void)
2641{
2642 return cpufreq_driver->boost_enabled;
2643}
2644EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2645
2646/*********************************************************************
2647 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2648 *********************************************************************/
2649static enum cpuhp_state hp_online;
2650
2651static int cpuhp_cpufreq_online(unsigned int cpu)
2652{
2653 cpufreq_online(cpu);
2654
2655 return 0;
2656}
2657
2658static int cpuhp_cpufreq_offline(unsigned int cpu)
2659{
2660 cpufreq_offline(cpu);
2661
2662 return 0;
2663}
2664
2665/**
2666 * cpufreq_register_driver - register a CPU Frequency driver
2667 * @driver_data: A struct cpufreq_driver containing the values#
2668 * submitted by the CPU Frequency driver.
2669 *
2670 * Registers a CPU Frequency driver to this core code. This code
2671 * returns zero on success, -EEXIST when another driver got here first
2672 * (and isn't unregistered in the meantime).
2673 *
2674 */
2675int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2676{
2677 unsigned long flags;
2678 int ret;
2679
2680 if (cpufreq_disabled())
2681 return -ENODEV;
2682
2683 /*
2684 * The cpufreq core depends heavily on the availability of device
2685 * structure, make sure they are available before proceeding further.
2686 */
2687 if (!get_cpu_device(0))
2688 return -EPROBE_DEFER;
2689
2690 if (!driver_data || !driver_data->verify || !driver_data->init ||
2691 !(driver_data->setpolicy || driver_data->target_index ||
2692 driver_data->target) ||
2693 (driver_data->setpolicy && (driver_data->target_index ||
2694 driver_data->target)) ||
2695 (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2696 (!driver_data->online != !driver_data->offline))
2697 return -EINVAL;
2698
2699 pr_debug("trying to register driver %s\n", driver_data->name);
2700
2701 /* Protect against concurrent CPU online/offline. */
2702 cpus_read_lock();
2703
2704 write_lock_irqsave(&cpufreq_driver_lock, flags);
2705 if (cpufreq_driver) {
2706 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2707 ret = -EEXIST;
2708 goto out;
2709 }
2710 cpufreq_driver = driver_data;
2711 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2712
2713 if (driver_data->setpolicy)
2714 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2715
2716 if (cpufreq_boost_supported()) {
2717 ret = create_boost_sysfs_file();
2718 if (ret)
2719 goto err_null_driver;
2720 }
2721
2722 ret = subsys_interface_register(&cpufreq_interface);
2723 if (ret)
2724 goto err_boost_unreg;
2725
2726 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2727 list_empty(&cpufreq_policy_list)) {
2728 /* if all ->init() calls failed, unregister */
2729 ret = -ENODEV;
2730 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2731 driver_data->name);
2732 goto err_if_unreg;
2733 }
2734
2735 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2736 "cpufreq:online",
2737 cpuhp_cpufreq_online,
2738 cpuhp_cpufreq_offline);
2739 if (ret < 0)
2740 goto err_if_unreg;
2741 hp_online = ret;
2742 ret = 0;
2743
2744 pr_debug("driver %s up and running\n", driver_data->name);
2745 goto out;
2746
2747err_if_unreg:
2748 subsys_interface_unregister(&cpufreq_interface);
2749err_boost_unreg:
2750 remove_boost_sysfs_file();
2751err_null_driver:
2752 write_lock_irqsave(&cpufreq_driver_lock, flags);
2753 cpufreq_driver = NULL;
2754 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2755out:
2756 cpus_read_unlock();
2757 return ret;
2758}
2759EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2760
2761/*
2762 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2763 *
2764 * Unregister the current CPUFreq driver. Only call this if you have
2765 * the right to do so, i.e. if you have succeeded in initialising before!
2766 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2767 * currently not initialised.
2768 */
2769int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2770{
2771 unsigned long flags;
2772
2773 if (!cpufreq_driver || (driver != cpufreq_driver))
2774 return -EINVAL;
2775
2776 pr_debug("unregistering driver %s\n", driver->name);
2777
2778 /* Protect against concurrent cpu hotplug */
2779 cpus_read_lock();
2780 subsys_interface_unregister(&cpufreq_interface);
2781 remove_boost_sysfs_file();
2782 cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2783
2784 write_lock_irqsave(&cpufreq_driver_lock, flags);
2785
2786 cpufreq_driver = NULL;
2787
2788 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2789 cpus_read_unlock();
2790
2791 return 0;
2792}
2793EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2794
2795static int __init cpufreq_core_init(void)
2796{
2797 struct cpufreq_governor *gov = cpufreq_default_governor();
2798
2799 if (cpufreq_disabled())
2800 return -ENODEV;
2801
2802 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2803 BUG_ON(!cpufreq_global_kobject);
2804
2805 if (!strlen(default_governor))
2806 strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
2807
2808 return 0;
2809}
2810module_param(off, int, 0444);
2811module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
2812core_initcall(cpufreq_core_init);