Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 *  linux/drivers/cpufreq/cpufreq.c
   3 *
   4 *  Copyright (C) 2001 Russell King
   5 *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
   6 *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
   7 *
   8 *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
   9 *	Added handling for CPU hotplug
  10 *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
  11 *	Fix handling for CPU hotplug -- affected CPUs
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License version 2 as
  15 * published by the Free Software Foundation.
  16 */
  17
  18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  19
  20#include <linux/cpu.h>
  21#include <linux/cpufreq.h>
 
  22#include <linux/delay.h>
  23#include <linux/device.h>
  24#include <linux/init.h>
  25#include <linux/kernel_stat.h>
  26#include <linux/module.h>
  27#include <linux/mutex.h>
 
  28#include <linux/slab.h>
  29#include <linux/suspend.h>
 
  30#include <linux/tick.h>
  31#include <trace/events/power.h>
  32
  33/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  34 * The "cpufreq driver" - the arch- or hardware-dependent low
  35 * level driver of CPUFreq support, and its spinlock. This lock
  36 * also protects the cpufreq_cpu_data array.
  37 */
  38static struct cpufreq_driver *cpufreq_driver;
  39static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
  40static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data_fallback);
  41static DEFINE_RWLOCK(cpufreq_driver_lock);
  42DEFINE_MUTEX(cpufreq_governor_lock);
  43static LIST_HEAD(cpufreq_policy_list);
  44
  45/* This one keeps track of the previously set governor of a removed CPU */
  46static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor);
  47
  48/* Flag to suspend/resume CPUFreq governors */
  49static bool cpufreq_suspended;
  50
  51static inline bool has_target(void)
  52{
  53	return cpufreq_driver->target_index || cpufreq_driver->target;
  54}
  55
  56/*
  57 * rwsem to guarantee that cpufreq driver module doesn't unload during critical
  58 * sections
  59 */
  60static DECLARE_RWSEM(cpufreq_rwsem);
  61
  62/* internal prototypes */
  63static int __cpufreq_governor(struct cpufreq_policy *policy,
  64		unsigned int event);
  65static unsigned int __cpufreq_get(unsigned int cpu);
  66static void handle_update(struct work_struct *work);
 
 
 
  67
  68/**
  69 * Two notifier lists: the "policy" list is involved in the
  70 * validation process for a new CPU frequency policy; the
  71 * "transition" list for kernel code that needs to handle
  72 * changes to devices when the CPU clock speed changes.
  73 * The mutex locks both lists.
  74 */
  75static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
  76static struct srcu_notifier_head cpufreq_transition_notifier_list;
  77
  78static bool init_cpufreq_transition_notifier_list_called;
  79static int __init init_cpufreq_transition_notifier_list(void)
  80{
  81	srcu_init_notifier_head(&cpufreq_transition_notifier_list);
  82	init_cpufreq_transition_notifier_list_called = true;
  83	return 0;
  84}
  85pure_initcall(init_cpufreq_transition_notifier_list);
  86
  87static int off __read_mostly;
  88static int cpufreq_disabled(void)
  89{
  90	return off;
  91}
  92void disable_cpufreq(void)
  93{
  94	off = 1;
  95}
  96static LIST_HEAD(cpufreq_governor_list);
  97static DEFINE_MUTEX(cpufreq_governor_mutex);
  98
  99bool have_governor_per_policy(void)
 100{
 101	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
 102}
 103EXPORT_SYMBOL_GPL(have_governor_per_policy);
 104
 
 
 105struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
 106{
 107	if (have_governor_per_policy())
 108		return &policy->kobj;
 109	else
 110		return cpufreq_global_kobject;
 111}
 112EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
 113
 114static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
 115{
 116	u64 idle_time;
 117	u64 cur_wall_time;
 
 118	u64 busy_time;
 119
 120	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
 121
 122	busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
 123	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
 124	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
 125	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
 126	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
 127	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
 
 
 128
 129	idle_time = cur_wall_time - busy_time;
 130	if (wall)
 131		*wall = cputime_to_usecs(cur_wall_time);
 132
 133	return cputime_to_usecs(idle_time);
 134}
 135
 136u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
 137{
 138	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
 139
 140	if (idle_time == -1ULL)
 141		return get_cpu_idle_time_jiffy(cpu, wall);
 142	else if (!io_busy)
 143		idle_time += get_cpu_iowait_time_us(cpu, wall);
 144
 145	return idle_time;
 146}
 147EXPORT_SYMBOL_GPL(get_cpu_idle_time);
 148
 
 
 
 
 
 
 149/*
 150 * This is a generic cpufreq init() routine which can be used by cpufreq
 151 * drivers of SMP systems. It will do following:
 152 * - validate & show freq table passed
 153 * - set policies transition latency
 154 * - policy->cpus with all possible CPUs
 155 */
 156int cpufreq_generic_init(struct cpufreq_policy *policy,
 157		struct cpufreq_frequency_table *table,
 158		unsigned int transition_latency)
 159{
 160	int ret;
 161
 162	ret = cpufreq_table_validate_and_show(policy, table);
 163	if (ret) {
 164		pr_err("%s: invalid frequency table: %d\n", __func__, ret);
 165		return ret;
 166	}
 167
 168	policy->cpuinfo.transition_latency = transition_latency;
 169
 170	/*
 171	 * The driver only supports the SMP configuartion where all processors
 172	 * share the clock and voltage and clock.
 173	 */
 174	cpumask_setall(policy->cpus);
 175
 176	return 0;
 177}
 178EXPORT_SYMBOL_GPL(cpufreq_generic_init);
 179
 180unsigned int cpufreq_generic_get(unsigned int cpu)
 181{
 182	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
 183
 
 
 
 
 
 
 
 
 184	if (!policy || IS_ERR(policy->clk)) {
 185		pr_err("%s: No %s associated to cpu: %d\n",
 186		       __func__, policy ? "clk" : "policy", cpu);
 187		return 0;
 188	}
 189
 190	return clk_get_rate(policy->clk) / 1000;
 191}
 192EXPORT_SYMBOL_GPL(cpufreq_generic_get);
 193
 194/* Only for cpufreq core internal use */
 195struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
 196{
 197	return per_cpu(cpufreq_cpu_data, cpu);
 198}
 199
 
 
 
 
 
 200struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
 201{
 202	struct cpufreq_policy *policy = NULL;
 203	unsigned long flags;
 204
 205	if (cpufreq_disabled() || (cpu >= nr_cpu_ids))
 206		return NULL;
 207
 208	if (!down_read_trylock(&cpufreq_rwsem))
 209		return NULL;
 210
 211	/* get the cpufreq driver */
 212	read_lock_irqsave(&cpufreq_driver_lock, flags);
 213
 214	if (cpufreq_driver) {
 215		/* get the CPU */
 216		policy = per_cpu(cpufreq_cpu_data, cpu);
 217		if (policy)
 218			kobject_get(&policy->kobj);
 219	}
 220
 221	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
 222
 223	if (!policy)
 224		up_read(&cpufreq_rwsem);
 225
 226	return policy;
 227}
 228EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
 229
 
 
 
 
 230void cpufreq_cpu_put(struct cpufreq_policy *policy)
 231{
 232	if (cpufreq_disabled())
 233		return;
 234
 235	kobject_put(&policy->kobj);
 236	up_read(&cpufreq_rwsem);
 237}
 238EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
 239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 240/*********************************************************************
 241 *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
 242 *********************************************************************/
 243
 244/**
 245 * adjust_jiffies - adjust the system "loops_per_jiffy"
 246 *
 247 * This function alters the system "loops_per_jiffy" for the clock
 248 * speed change. Note that loops_per_jiffy cannot be updated on SMP
 249 * systems as each CPU might be scaled differently. So, use the arch
 250 * per-CPU loops_per_jiffy value wherever possible.
 251 */
 252#ifndef CONFIG_SMP
 253static unsigned long l_p_j_ref;
 254static unsigned int l_p_j_ref_freq;
 255
 256static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 257{
 
 
 
 
 258	if (ci->flags & CPUFREQ_CONST_LOOPS)
 259		return;
 260
 261	if (!l_p_j_ref_freq) {
 262		l_p_j_ref = loops_per_jiffy;
 263		l_p_j_ref_freq = ci->old;
 264		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
 265			 l_p_j_ref, l_p_j_ref_freq);
 266	}
 267	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
 268		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
 269								ci->new);
 270		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
 271			 loops_per_jiffy, ci->new);
 272	}
 273}
 274#else
 275static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 276{
 277	return;
 278}
 279#endif
 
 280
 281static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
 282		struct cpufreq_freqs *freqs, unsigned int state)
 
 
 
 
 
 
 
 
 
 
 
 283{
 
 
 284	BUG_ON(irqs_disabled());
 285
 286	if (cpufreq_disabled())
 287		return;
 288
 
 289	freqs->flags = cpufreq_driver->flags;
 290	pr_debug("notification %u of frequency transition to %u kHz\n",
 291		 state, freqs->new);
 292
 293	switch (state) {
 294
 295	case CPUFREQ_PRECHANGE:
 296		/* detect if the driver reported a value as "old frequency"
 
 297		 * which is not equal to what the cpufreq core thinks is
 298		 * "old frequency".
 299		 */
 300		if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
 301			if ((policy) && (policy->cpu == freqs->cpu) &&
 302			    (policy->cur) && (policy->cur != freqs->old)) {
 303				pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
 304					 freqs->old, policy->cur);
 305				freqs->old = policy->cur;
 306			}
 307		}
 
 308		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 309				CPUFREQ_PRECHANGE, freqs);
 
 310		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
 311		break;
 312
 313	case CPUFREQ_POSTCHANGE:
 314		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
 315		pr_debug("FREQ: %lu - CPU: %lu\n",
 316			 (unsigned long)freqs->new, (unsigned long)freqs->cpu);
 317		trace_cpu_frequency(freqs->new, freqs->cpu);
 
 
 
 318		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 319				CPUFREQ_POSTCHANGE, freqs);
 320		if (likely(policy) && likely(policy->cpu == freqs->cpu))
 321			policy->cur = freqs->new;
 322		break;
 323	}
 324}
 325
 326/**
 327 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
 328 * on frequency transition.
 329 *
 330 * This function calls the transition notifiers and the "adjust_jiffies"
 331 * function. It is called twice on all CPU frequency changes that have
 332 * external effects.
 333 */
 334static void cpufreq_notify_transition(struct cpufreq_policy *policy,
 335		struct cpufreq_freqs *freqs, unsigned int state)
 336{
 337	for_each_cpu(freqs->cpu, policy->cpus)
 338		__cpufreq_notify_transition(policy, freqs, state);
 339}
 340
 341/* Do post notifications when there are chances that transition has failed */
 342static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
 343		struct cpufreq_freqs *freqs, int transition_failed)
 344{
 345	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 346	if (!transition_failed)
 347		return;
 348
 349	swap(freqs->old, freqs->new);
 350	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 351	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 352}
 353
 354void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
 355		struct cpufreq_freqs *freqs)
 356{
 
 
 
 
 
 
 
 
 
 
 
 
 357wait:
 358	wait_event(policy->transition_wait, !policy->transition_ongoing);
 359
 360	spin_lock(&policy->transition_lock);
 361
 362	if (unlikely(policy->transition_ongoing)) {
 363		spin_unlock(&policy->transition_lock);
 364		goto wait;
 365	}
 366
 367	policy->transition_ongoing = true;
 
 368
 369	spin_unlock(&policy->transition_lock);
 370
 371	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 372}
 373EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
 374
 375void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
 376		struct cpufreq_freqs *freqs, int transition_failed)
 377{
 378	if (unlikely(WARN_ON(!policy->transition_ongoing)))
 379		return;
 380
 381	cpufreq_notify_post_transition(policy, freqs, transition_failed);
 382
 383	policy->transition_ongoing = false;
 
 384
 385	wake_up(&policy->transition_wait);
 386}
 387EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
 388
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 389
 390/*********************************************************************
 391 *                          SYSFS INTERFACE                          *
 392 *********************************************************************/
 393static ssize_t show_boost(struct kobject *kobj,
 394				 struct attribute *attr, char *buf)
 395{
 396	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
 397}
 398
 399static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
 400				  const char *buf, size_t count)
 401{
 402	int ret, enable;
 403
 404	ret = sscanf(buf, "%d", &enable);
 405	if (ret != 1 || enable < 0 || enable > 1)
 406		return -EINVAL;
 407
 408	if (cpufreq_boost_trigger_state(enable)) {
 409		pr_err("%s: Cannot %s BOOST!\n",
 410		       __func__, enable ? "enable" : "disable");
 411		return -EINVAL;
 412	}
 413
 414	pr_debug("%s: cpufreq BOOST %s\n",
 415		 __func__, enable ? "enabled" : "disabled");
 416
 417	return count;
 418}
 419define_one_global_rw(boost);
 420
 421static struct cpufreq_governor *__find_governor(const char *str_governor)
 422{
 423	struct cpufreq_governor *t;
 424
 425	list_for_each_entry(t, &cpufreq_governor_list, governor_list)
 426		if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN))
 427			return t;
 428
 429	return NULL;
 430}
 431
 432/**
 433 * cpufreq_parse_governor - parse a governor string
 434 */
 435static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
 436				struct cpufreq_governor **governor)
 437{
 438	int err = -EINVAL;
 439
 440	if (!cpufreq_driver)
 441		goto out;
 
 
 442
 443	if (cpufreq_driver->setpolicy) {
 444		if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
 445			*policy = CPUFREQ_POLICY_PERFORMANCE;
 446			err = 0;
 447		} else if (!strnicmp(str_governor, "powersave",
 448						CPUFREQ_NAME_LEN)) {
 449			*policy = CPUFREQ_POLICY_POWERSAVE;
 450			err = 0;
 451		}
 452	} else if (has_target()) {
 453		struct cpufreq_governor *t;
 454
 455		mutex_lock(&cpufreq_governor_mutex);
 
 456
 457		t = __find_governor(str_governor);
 
 
 
 458
 459		if (t == NULL) {
 460			int ret;
 461
 462			mutex_unlock(&cpufreq_governor_mutex);
 463			ret = request_module("cpufreq_%s", str_governor);
 464			mutex_lock(&cpufreq_governor_mutex);
 465
 466			if (ret == 0)
 467				t = __find_governor(str_governor);
 468		}
 
 
 
 
 469
 470		if (t != NULL) {
 471			*governor = t;
 472			err = 0;
 473		}
 474
 475		mutex_unlock(&cpufreq_governor_mutex);
 476	}
 477out:
 478	return err;
 479}
 480
 481/**
 482 * cpufreq_per_cpu_attr_read() / show_##file_name() -
 483 * print out cpufreq information
 484 *
 485 * Write out information from cpufreq_driver->policy[cpu]; object must be
 486 * "unsigned int".
 487 */
 488
 489#define show_one(file_name, object)			\
 490static ssize_t show_##file_name				\
 491(struct cpufreq_policy *policy, char *buf)		\
 492{							\
 493	return sprintf(buf, "%u\n", policy->object);	\
 494}
 495
 496show_one(cpuinfo_min_freq, cpuinfo.min_freq);
 497show_one(cpuinfo_max_freq, cpuinfo.max_freq);
 498show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
 499show_one(scaling_min_freq, min);
 500show_one(scaling_max_freq, max);
 501show_one(scaling_cur_freq, cur);
 502
 503static int cpufreq_set_policy(struct cpufreq_policy *policy,
 504				struct cpufreq_policy *new_policy);
 
 
 505
 506/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 507 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
 508 */
 509#define store_one(file_name, object)			\
 510static ssize_t store_##file_name					\
 511(struct cpufreq_policy *policy, const char *buf, size_t count)		\
 512{									\
 
 513	int ret;							\
 514	struct cpufreq_policy new_policy;				\
 515									\
 516	ret = cpufreq_get_policy(&new_policy, policy->cpu);		\
 517	if (ret)							\
 518		return -EINVAL;						\
 519									\
 520	ret = sscanf(buf, "%u", &new_policy.object);			\
 521	if (ret != 1)							\
 522		return -EINVAL;						\
 523									\
 524	ret = cpufreq_set_policy(policy, &new_policy);		\
 525	policy->user_policy.object = policy->object;			\
 526									\
 527	return ret ? ret : count;					\
 528}
 529
 530store_one(scaling_min_freq, min);
 531store_one(scaling_max_freq, max);
 532
 533/**
 534 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
 535 */
 536static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
 537					char *buf)
 538{
 539	unsigned int cur_freq = __cpufreq_get(policy->cpu);
 540	if (!cur_freq)
 541		return sprintf(buf, "<unknown>");
 542	return sprintf(buf, "%u\n", cur_freq);
 
 
 543}
 544
 545/**
 546 * show_scaling_governor - show the current policy for the specified CPU
 547 */
 548static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
 549{
 550	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
 551		return sprintf(buf, "powersave\n");
 552	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
 553		return sprintf(buf, "performance\n");
 554	else if (policy->governor)
 555		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
 556				policy->governor->name);
 557	return -EINVAL;
 558}
 559
 560/**
 561 * store_scaling_governor - store policy for the specified CPU
 562 */
 563static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
 564					const char *buf, size_t count)
 565{
 
 566	int ret;
 567	char	str_governor[16];
 568	struct cpufreq_policy new_policy;
 569
 570	ret = cpufreq_get_policy(&new_policy, policy->cpu);
 571	if (ret)
 572		return ret;
 573
 574	ret = sscanf(buf, "%15s", str_governor);
 575	if (ret != 1)
 576		return -EINVAL;
 577
 578	if (cpufreq_parse_governor(str_governor, &new_policy.policy,
 579						&new_policy.governor))
 580		return -EINVAL;
 581
 582	ret = cpufreq_set_policy(policy, &new_policy);
 
 
 583
 584	policy->user_policy.policy = policy->policy;
 585	policy->user_policy.governor = policy->governor;
 
 586
 587	if (ret)
 588		return ret;
 589	else
 590		return count;
 
 
 
 
 
 
 
 591}
 592
 593/**
 594 * show_scaling_driver - show the cpufreq driver currently loaded
 595 */
 596static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
 597{
 598	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
 599}
 600
 601/**
 602 * show_scaling_available_governors - show the available CPUfreq governors
 603 */
 604static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
 605						char *buf)
 606{
 607	ssize_t i = 0;
 608	struct cpufreq_governor *t;
 609
 610	if (!has_target()) {
 611		i += sprintf(buf, "performance powersave");
 612		goto out;
 613	}
 614
 615	list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
 
 616		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
 617		    - (CPUFREQ_NAME_LEN + 2)))
 618			goto out;
 619		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
 620	}
 
 621out:
 622	i += sprintf(&buf[i], "\n");
 623	return i;
 624}
 625
 626ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
 627{
 628	ssize_t i = 0;
 629	unsigned int cpu;
 630
 631	for_each_cpu(cpu, mask) {
 632		if (i)
 633			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
 634		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
 635		if (i >= (PAGE_SIZE - 5))
 636			break;
 637	}
 638	i += sprintf(&buf[i], "\n");
 639	return i;
 640}
 641EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
 642
 643/**
 644 * show_related_cpus - show the CPUs affected by each transition even if
 645 * hw coordination is in use
 646 */
 647static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
 648{
 649	return cpufreq_show_cpus(policy->related_cpus, buf);
 650}
 651
 652/**
 653 * show_affected_cpus - show the CPUs affected by each transition
 654 */
 655static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
 656{
 657	return cpufreq_show_cpus(policy->cpus, buf);
 658}
 659
 660static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
 661					const char *buf, size_t count)
 662{
 663	unsigned int freq = 0;
 664	unsigned int ret;
 665
 666	if (!policy->governor || !policy->governor->store_setspeed)
 667		return -EINVAL;
 668
 669	ret = sscanf(buf, "%u", &freq);
 670	if (ret != 1)
 671		return -EINVAL;
 672
 673	policy->governor->store_setspeed(policy, freq);
 674
 675	return count;
 676}
 677
 678static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
 679{
 680	if (!policy->governor || !policy->governor->show_setspeed)
 681		return sprintf(buf, "<unsupported>\n");
 682
 683	return policy->governor->show_setspeed(policy, buf);
 684}
 685
 686/**
 687 * show_bios_limit - show the current cpufreq HW/BIOS limitation
 688 */
 689static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
 690{
 691	unsigned int limit;
 692	int ret;
 693	if (cpufreq_driver->bios_limit) {
 694		ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
 695		if (!ret)
 696			return sprintf(buf, "%u\n", limit);
 697	}
 698	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
 699}
 700
 701cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
 702cpufreq_freq_attr_ro(cpuinfo_min_freq);
 703cpufreq_freq_attr_ro(cpuinfo_max_freq);
 704cpufreq_freq_attr_ro(cpuinfo_transition_latency);
 705cpufreq_freq_attr_ro(scaling_available_governors);
 706cpufreq_freq_attr_ro(scaling_driver);
 707cpufreq_freq_attr_ro(scaling_cur_freq);
 708cpufreq_freq_attr_ro(bios_limit);
 709cpufreq_freq_attr_ro(related_cpus);
 710cpufreq_freq_attr_ro(affected_cpus);
 711cpufreq_freq_attr_rw(scaling_min_freq);
 712cpufreq_freq_attr_rw(scaling_max_freq);
 713cpufreq_freq_attr_rw(scaling_governor);
 714cpufreq_freq_attr_rw(scaling_setspeed);
 715
 716static struct attribute *default_attrs[] = {
 717	&cpuinfo_min_freq.attr,
 718	&cpuinfo_max_freq.attr,
 719	&cpuinfo_transition_latency.attr,
 720	&scaling_min_freq.attr,
 721	&scaling_max_freq.attr,
 722	&affected_cpus.attr,
 723	&related_cpus.attr,
 724	&scaling_governor.attr,
 725	&scaling_driver.attr,
 726	&scaling_available_governors.attr,
 727	&scaling_setspeed.attr,
 728	NULL
 729};
 730
 731#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
 732#define to_attr(a) container_of(a, struct freq_attr, attr)
 733
 734static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
 735{
 736	struct cpufreq_policy *policy = to_policy(kobj);
 737	struct freq_attr *fattr = to_attr(attr);
 738	ssize_t ret;
 739
 740	if (!down_read_trylock(&cpufreq_rwsem))
 741		return -EINVAL;
 742
 743	down_read(&policy->rwsem);
 744
 745	if (fattr->show)
 746		ret = fattr->show(policy, buf);
 747	else
 748		ret = -EIO;
 749
 750	up_read(&policy->rwsem);
 751	up_read(&cpufreq_rwsem);
 752
 753	return ret;
 754}
 755
 756static ssize_t store(struct kobject *kobj, struct attribute *attr,
 757		     const char *buf, size_t count)
 758{
 759	struct cpufreq_policy *policy = to_policy(kobj);
 760	struct freq_attr *fattr = to_attr(attr);
 761	ssize_t ret = -EINVAL;
 762
 763	get_online_cpus();
 764
 765	if (!cpu_online(policy->cpu))
 766		goto unlock;
 767
 768	if (!down_read_trylock(&cpufreq_rwsem))
 769		goto unlock;
 770
 771	down_write(&policy->rwsem);
 
 
 
 
 
 772
 773	if (fattr->store)
 
 774		ret = fattr->store(policy, buf, count);
 775	else
 776		ret = -EIO;
 777
 778	up_write(&policy->rwsem);
 779
 780	up_read(&cpufreq_rwsem);
 781unlock:
 782	put_online_cpus();
 783
 784	return ret;
 785}
 786
 787static void cpufreq_sysfs_release(struct kobject *kobj)
 788{
 789	struct cpufreq_policy *policy = to_policy(kobj);
 790	pr_debug("last reference is dropped\n");
 791	complete(&policy->kobj_unregister);
 792}
 793
 794static const struct sysfs_ops sysfs_ops = {
 795	.show	= show,
 796	.store	= store,
 797};
 798
 799static struct kobj_type ktype_cpufreq = {
 800	.sysfs_ops	= &sysfs_ops,
 801	.default_attrs	= default_attrs,
 802	.release	= cpufreq_sysfs_release,
 803};
 804
 805struct kobject *cpufreq_global_kobject;
 806EXPORT_SYMBOL(cpufreq_global_kobject);
 807
 808static int cpufreq_global_kobject_usage;
 809
 810int cpufreq_get_global_kobject(void)
 811{
 812	if (!cpufreq_global_kobject_usage++)
 813		return kobject_add(cpufreq_global_kobject,
 814				&cpu_subsys.dev_root->kobj, "%s", "cpufreq");
 815
 816	return 0;
 817}
 818EXPORT_SYMBOL(cpufreq_get_global_kobject);
 819
 820void cpufreq_put_global_kobject(void)
 821{
 822	if (!--cpufreq_global_kobject_usage)
 823		kobject_del(cpufreq_global_kobject);
 824}
 825EXPORT_SYMBOL(cpufreq_put_global_kobject);
 826
 827int cpufreq_sysfs_create_file(const struct attribute *attr)
 828{
 829	int ret = cpufreq_get_global_kobject();
 830
 831	if (!ret) {
 832		ret = sysfs_create_file(cpufreq_global_kobject, attr);
 833		if (ret)
 834			cpufreq_put_global_kobject();
 835	}
 836
 837	return ret;
 838}
 839EXPORT_SYMBOL(cpufreq_sysfs_create_file);
 840
 841void cpufreq_sysfs_remove_file(const struct attribute *attr)
 842{
 843	sysfs_remove_file(cpufreq_global_kobject, attr);
 844	cpufreq_put_global_kobject();
 845}
 846EXPORT_SYMBOL(cpufreq_sysfs_remove_file);
 847
 848/* symlink affected CPUs */
 849static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy)
 850{
 851	unsigned int j;
 852	int ret = 0;
 853
 854	for_each_cpu(j, policy->cpus) {
 855		struct device *cpu_dev;
 856
 857		if (j == policy->cpu)
 858			continue;
 859
 860		pr_debug("Adding link for CPU: %u\n", j);
 861		cpu_dev = get_cpu_device(j);
 862		ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
 863					"cpufreq");
 864		if (ret)
 865			break;
 866	}
 867	return ret;
 868}
 869
 870static int cpufreq_add_dev_interface(struct cpufreq_policy *policy,
 871				     struct device *dev)
 872{
 873	struct freq_attr **drv_attr;
 874	int ret = 0;
 875
 876	/* prepare interface data */
 877	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
 878				   &dev->kobj, "cpufreq");
 879	if (ret)
 880		return ret;
 881
 882	/* set up files for this cpu device */
 883	drv_attr = cpufreq_driver->attr;
 884	while ((drv_attr) && (*drv_attr)) {
 885		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
 886		if (ret)
 887			goto err_out_kobj_put;
 888		drv_attr++;
 889	}
 890	if (cpufreq_driver->get) {
 891		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
 892		if (ret)
 893			goto err_out_kobj_put;
 894	}
 895	if (has_target()) {
 896		ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
 897		if (ret)
 898			goto err_out_kobj_put;
 899	}
 
 
 
 
 
 900	if (cpufreq_driver->bios_limit) {
 901		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
 902		if (ret)
 903			goto err_out_kobj_put;
 904	}
 905
 906	ret = cpufreq_add_dev_symlink(policy);
 907	if (ret)
 908		goto err_out_kobj_put;
 909
 910	return ret;
 911
 912err_out_kobj_put:
 913	kobject_put(&policy->kobj);
 914	wait_for_completion(&policy->kobj_unregister);
 915	return ret;
 916}
 917
 918static void cpufreq_init_policy(struct cpufreq_policy *policy)
 919{
 920	struct cpufreq_governor *gov = NULL;
 921	struct cpufreq_policy new_policy;
 922	int ret = 0;
 923
 924	memcpy(&new_policy, policy, sizeof(*policy));
 925
 926	/* Update governor of new_policy to the governor used before hotplug */
 927	gov = __find_governor(per_cpu(cpufreq_cpu_governor, policy->cpu));
 928	if (gov)
 929		pr_debug("Restoring governor %s for cpu %d\n",
 930				policy->governor->name, policy->cpu);
 931	else
 932		gov = CPUFREQ_DEFAULT_GOVERNOR;
 
 
 933
 934	new_policy.governor = gov;
 
 
 
 935
 936	/* Use the default policy if its valid. */
 937	if (cpufreq_driver->setpolicy)
 938		cpufreq_parse_governor(gov->name, &new_policy.policy, NULL);
 939
 940	/* set default policy */
 941	ret = cpufreq_set_policy(policy, &new_policy);
 942	if (ret) {
 943		pr_debug("setting policy failed\n");
 944		if (cpufreq_driver->exit)
 945			cpufreq_driver->exit(policy);
 
 
 
 
 
 
 
 
 
 
 946	}
 
 
 
 
 
 
 947}
 948
 949#ifdef CONFIG_HOTPLUG_CPU
 950static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy,
 951				  unsigned int cpu, struct device *dev)
 952{
 953	int ret = 0;
 954	unsigned long flags;
 955
 956	if (has_target()) {
 957		ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
 958		if (ret) {
 959			pr_err("%s: Failed to stop governor\n", __func__);
 960			return ret;
 961		}
 962	}
 963
 964	down_write(&policy->rwsem);
 965
 966	write_lock_irqsave(&cpufreq_driver_lock, flags);
 967
 968	cpumask_set_cpu(cpu, policy->cpus);
 969	per_cpu(cpufreq_cpu_data, cpu) = policy;
 970	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
 971
 
 
 
 
 
 972	up_write(&policy->rwsem);
 
 
 973
 974	if (has_target()) {
 975		ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
 976		if (!ret)
 977			ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
 978
 979		if (ret) {
 980			pr_err("%s: Failed to start governor\n", __func__);
 981			return ret;
 982		}
 983	}
 
 
 
 
 
 
 
 984
 985	return sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq");
 
 
 
 986}
 987#endif
 988
 989static struct cpufreq_policy *cpufreq_policy_restore(unsigned int cpu)
 
 990{
 991	struct cpufreq_policy *policy;
 992	unsigned long flags;
 993
 994	read_lock_irqsave(&cpufreq_driver_lock, flags);
 
 
 
 
 
 
 
 995
 996	policy = per_cpu(cpufreq_cpu_data_fallback, cpu);
 
 
 997
 998	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 
 
 999
1000	policy->governor = NULL;
 
 
 
 
 
1001
1002	return policy;
 
 
 
 
 
 
 
1003}
1004
1005static struct cpufreq_policy *cpufreq_policy_alloc(void)
1006{
1007	struct cpufreq_policy *policy;
 
 
 
 
 
1008
1009	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1010	if (!policy)
1011		return NULL;
1012
1013	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1014		goto err_free_policy;
1015
1016	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1017		goto err_free_cpumask;
1018
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1019	INIT_LIST_HEAD(&policy->policy_list);
1020	init_rwsem(&policy->rwsem);
1021	spin_lock_init(&policy->transition_lock);
1022	init_waitqueue_head(&policy->transition_wait);
 
 
1023
 
1024	return policy;
1025
 
 
 
 
 
 
 
 
 
1026err_free_cpumask:
1027	free_cpumask_var(policy->cpus);
1028err_free_policy:
1029	kfree(policy);
1030
1031	return NULL;
1032}
1033
1034static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1035{
1036	struct kobject *kobj;
1037	struct completion *cmp;
1038
1039	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1040			CPUFREQ_REMOVE_POLICY, policy);
1041
1042	down_read(&policy->rwsem);
1043	kobj = &policy->kobj;
1044	cmp = &policy->kobj_unregister;
1045	up_read(&policy->rwsem);
1046	kobject_put(kobj);
1047
1048	/*
1049	 * We need to make sure that the underlying kobj is
1050	 * actually not referenced anymore by anybody before we
1051	 * proceed with unloading.
1052	 */
1053	pr_debug("waiting for dropping of refcount\n");
1054	wait_for_completion(cmp);
1055	pr_debug("wait complete\n");
1056}
1057
1058static void cpufreq_policy_free(struct cpufreq_policy *policy)
1059{
1060	free_cpumask_var(policy->related_cpus);
1061	free_cpumask_var(policy->cpus);
1062	kfree(policy);
1063}
1064
1065static void update_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1066{
1067	if (WARN_ON(cpu == policy->cpu))
1068		return;
1069
1070	down_write(&policy->rwsem);
 
1071
1072	policy->last_cpu = policy->cpu;
1073	policy->cpu = cpu;
 
 
 
 
 
 
 
1074
1075	up_write(&policy->rwsem);
 
1076
1077	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1078			CPUFREQ_UPDATE_POLICY_CPU, policy);
 
 
 
1079}
1080
1081static int __cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1082{
1083	unsigned int j, cpu = dev->id;
1084	int ret = -ENOMEM;
1085	struct cpufreq_policy *policy;
 
1086	unsigned long flags;
1087	bool recover_policy = cpufreq_suspended;
1088#ifdef CONFIG_HOTPLUG_CPU
1089	struct cpufreq_policy *tpolicy;
1090#endif
1091
1092	if (cpu_is_offline(cpu))
1093		return 0;
1094
1095	pr_debug("adding CPU %u\n", cpu);
 
 
 
 
 
1096
1097#ifdef CONFIG_SMP
1098	/* check whether a different CPU already registered this
1099	 * CPU because it is in the same boat. */
1100	policy = cpufreq_cpu_get(cpu);
1101	if (unlikely(policy)) {
1102		cpufreq_cpu_put(policy);
1103		return 0;
 
 
 
 
1104	}
1105#endif
1106
1107	if (!down_read_trylock(&cpufreq_rwsem))
1108		return 0;
1109
1110#ifdef CONFIG_HOTPLUG_CPU
1111	/* Check if this cpu was hot-unplugged earlier and has siblings */
1112	read_lock_irqsave(&cpufreq_driver_lock, flags);
1113	list_for_each_entry(tpolicy, &cpufreq_policy_list, policy_list) {
1114		if (cpumask_test_cpu(cpu, tpolicy->related_cpus)) {
1115			read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1116			ret = cpufreq_add_policy_cpu(tpolicy, cpu, dev);
1117			up_read(&cpufreq_rwsem);
1118			return ret;
1119		}
1120	}
1121	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1122#endif
1123
1124	/*
1125	 * Restore the saved policy when doing light-weight init and fall back
1126	 * to the full init if that fails.
1127	 */
1128	policy = recover_policy ? cpufreq_policy_restore(cpu) : NULL;
1129	if (!policy) {
1130		recover_policy = false;
1131		policy = cpufreq_policy_alloc();
1132		if (!policy)
1133			goto nomem_out;
1134	}
1135
1136	/*
1137	 * In the resume path, since we restore a saved policy, the assignment
1138	 * to policy->cpu is like an update of the existing policy, rather than
1139	 * the creation of a brand new one. So we need to perform this update
1140	 * by invoking update_policy_cpu().
1141	 */
1142	if (recover_policy && cpu != policy->cpu)
1143		update_policy_cpu(policy, cpu);
1144	else
1145		policy->cpu = cpu;
1146
1147	cpumask_copy(policy->cpus, cpumask_of(cpu));
 
 
 
 
 
 
 
 
 
1148
1149	init_completion(&policy->kobj_unregister);
1150	INIT_WORK(&policy->update, handle_update);
 
1151
1152	/* call driver. From then on the cpufreq must be able
1153	 * to accept all calls to ->verify and ->setpolicy for this CPU
1154	 */
1155	ret = cpufreq_driver->init(policy);
1156	if (ret) {
1157		pr_debug("initialization failed\n");
1158		goto err_set_policy_cpu;
1159	}
1160
1161	/* related cpus should atleast have policy->cpus */
1162	cpumask_or(policy->related_cpus, policy->related_cpus, policy->cpus);
1163
1164	/*
1165	 * affected cpus must always be the one, which are online. We aren't
1166	 * managing offline cpus here.
1167	 */
1168	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1169
1170	if (!recover_policy) {
1171		policy->user_policy.min = policy->min;
1172		policy->user_policy.max = policy->max;
1173	}
 
1174
1175	down_write(&policy->rwsem);
1176	write_lock_irqsave(&cpufreq_driver_lock, flags);
1177	for_each_cpu(j, policy->cpus)
1178		per_cpu(cpufreq_cpu_data, j) = policy;
1179	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1180
1181	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
 
 
 
 
 
 
 
 
 
 
 
 
1182		policy->cur = cpufreq_driver->get(policy->cpu);
1183		if (!policy->cur) {
1184			pr_err("%s: ->get() failed\n", __func__);
1185			goto err_get_freq;
1186		}
1187	}
1188
1189	/*
1190	 * Sometimes boot loaders set CPU frequency to a value outside of
1191	 * frequency table present with cpufreq core. In such cases CPU might be
1192	 * unstable if it has to run on that frequency for long duration of time
1193	 * and so its better to set it to a frequency which is specified in
1194	 * freq-table. This also makes cpufreq stats inconsistent as
1195	 * cpufreq-stats would fail to register because current frequency of CPU
1196	 * isn't found in freq-table.
1197	 *
1198	 * Because we don't want this change to effect boot process badly, we go
1199	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1200	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1201	 * is initialized to zero).
1202	 *
1203	 * We are passing target-freq as "policy->cur - 1" otherwise
1204	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1205	 * equal to target-freq.
1206	 */
1207	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1208	    && has_target()) {
1209		/* Are we running at unknown frequency ? */
1210		ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1211		if (ret == -EINVAL) {
1212			/* Warn user and fix it */
1213			pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1214				__func__, policy->cpu, policy->cur);
1215			ret = __cpufreq_driver_target(policy, policy->cur - 1,
1216				CPUFREQ_RELATION_L);
1217
1218			/*
1219			 * Reaching here after boot in a few seconds may not
1220			 * mean that system will remain stable at "unknown"
1221			 * frequency for longer duration. Hence, a BUG_ON().
1222			 */
1223			BUG_ON(ret);
1224			pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1225				__func__, policy->cpu, policy->cur);
1226		}
1227	}
1228
1229	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1230				     CPUFREQ_START, policy);
1231
1232	if (!recover_policy) {
1233		ret = cpufreq_add_dev_interface(policy, dev);
1234		if (ret)
1235			goto err_out_unregister;
1236		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1237				CPUFREQ_CREATE_POLICY, policy);
1238	}
1239
1240	write_lock_irqsave(&cpufreq_driver_lock, flags);
1241	list_add(&policy->policy_list, &cpufreq_policy_list);
1242	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1243
1244	cpufreq_init_policy(policy);
 
 
 
1245
1246	if (!recover_policy) {
1247		policy->user_policy.policy = policy->policy;
1248		policy->user_policy.governor = policy->governor;
 
 
1249	}
 
1250	up_write(&policy->rwsem);
1251
1252	kobject_uevent(&policy->kobj, KOBJ_ADD);
1253	up_read(&cpufreq_rwsem);
 
 
 
 
 
 
1254
1255	pr_debug("initialization complete\n");
1256
1257	return 0;
1258
1259err_out_unregister:
1260err_get_freq:
1261	write_lock_irqsave(&cpufreq_driver_lock, flags);
1262	for_each_cpu(j, policy->cpus)
1263		per_cpu(cpufreq_cpu_data, j) = NULL;
1264	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1265
 
1266	if (cpufreq_driver->exit)
1267		cpufreq_driver->exit(policy);
1268err_set_policy_cpu:
1269	if (recover_policy) {
1270		/* Do not leave stale fallback data behind. */
1271		per_cpu(cpufreq_cpu_data_fallback, cpu) = NULL;
1272		cpufreq_policy_put_kobj(policy);
1273	}
1274	cpufreq_policy_free(policy);
1275
1276nomem_out:
1277	up_read(&cpufreq_rwsem);
1278
 
 
1279	return ret;
1280}
1281
1282/**
1283 * cpufreq_add_dev - add a CPU device
1284 *
1285 * Adds the cpufreq interface for a CPU device.
1286 *
1287 * The Oracle says: try running cpufreq registration/unregistration concurrently
1288 * with with cpu hotplugging and all hell will break loose. Tried to clean this
1289 * mess up, but more thorough testing is needed. - Mathieu
1290 */
1291static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1292{
1293	return __cpufreq_add_dev(dev, sif);
1294}
1295
1296static int cpufreq_nominate_new_policy_cpu(struct cpufreq_policy *policy,
1297					   unsigned int old_cpu)
1298{
1299	struct device *cpu_dev;
1300	int ret;
1301
1302	/* first sibling now owns the new sysfs dir */
1303	cpu_dev = get_cpu_device(cpumask_any_but(policy->cpus, old_cpu));
1304
1305	sysfs_remove_link(&cpu_dev->kobj, "cpufreq");
1306	ret = kobject_move(&policy->kobj, &cpu_dev->kobj);
1307	if (ret) {
1308		pr_err("%s: Failed to move kobj: %d\n", __func__, ret);
1309
1310		down_write(&policy->rwsem);
1311		cpumask_set_cpu(old_cpu, policy->cpus);
1312		up_write(&policy->rwsem);
1313
1314		ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
1315					"cpufreq");
1316
1317		return -EINVAL;
1318	}
1319
1320	return cpu_dev->id;
1321}
1322
1323static int __cpufreq_remove_dev_prepare(struct device *dev,
1324					struct subsys_interface *sif)
1325{
1326	unsigned int cpu = dev->id, cpus;
1327	int new_cpu, ret;
1328	unsigned long flags;
1329	struct cpufreq_policy *policy;
 
 
1330
1331	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1332
1333	write_lock_irqsave(&cpufreq_driver_lock, flags);
1334
1335	policy = per_cpu(cpufreq_cpu_data, cpu);
1336
1337	/* Save the policy somewhere when doing a light-weight tear-down */
1338	if (cpufreq_suspended)
1339		per_cpu(cpufreq_cpu_data_fallback, cpu) = policy;
1340
1341	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1342
1343	if (!policy) {
1344		pr_debug("%s: No cpu_data found\n", __func__);
1345		return -EINVAL;
1346	}
1347
1348	if (has_target()) {
1349		ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1350		if (ret) {
1351			pr_err("%s: Failed to stop governor\n", __func__);
1352			return ret;
1353		}
1354	}
1355
1356	if (!cpufreq_driver->setpolicy)
1357		strncpy(per_cpu(cpufreq_cpu_governor, cpu),
1358			policy->governor->name, CPUFREQ_NAME_LEN);
1359
1360	down_read(&policy->rwsem);
1361	cpus = cpumask_weight(policy->cpus);
1362	up_read(&policy->rwsem);
1363
1364	if (cpu != policy->cpu) {
1365		sysfs_remove_link(&dev->kobj, "cpufreq");
1366	} else if (cpus > 1) {
1367		new_cpu = cpufreq_nominate_new_policy_cpu(policy, cpu);
1368		if (new_cpu >= 0) {
1369			update_policy_cpu(policy, new_cpu);
1370
1371			if (!cpufreq_suspended)
1372				pr_debug("%s: policy Kobject moved to cpu: %d from: %d\n",
1373					 __func__, new_cpu, cpu);
1374		}
1375	} else if (cpufreq_driver->stop_cpu && cpufreq_driver->setpolicy) {
1376		cpufreq_driver->stop_cpu(policy);
1377	}
1378
1379	return 0;
1380}
1381
1382static int __cpufreq_remove_dev_finish(struct device *dev,
1383				       struct subsys_interface *sif)
1384{
1385	unsigned int cpu = dev->id, cpus;
1386	int ret;
1387	unsigned long flags;
1388	struct cpufreq_policy *policy;
 
1389
1390	read_lock_irqsave(&cpufreq_driver_lock, flags);
1391	policy = per_cpu(cpufreq_cpu_data, cpu);
1392	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1393
 
1394	if (!policy) {
1395		pr_debug("%s: No cpu_data found\n", __func__);
1396		return -EINVAL;
1397	}
1398
1399	down_write(&policy->rwsem);
1400	cpus = cpumask_weight(policy->cpus);
 
1401
1402	if (cpus > 1)
1403		cpumask_clear_cpu(cpu, policy->cpus);
1404	up_write(&policy->rwsem);
 
 
 
 
 
 
 
 
 
1405
1406	/* If cpu is last user of policy, free policy */
1407	if (cpus == 1) {
1408		if (has_target()) {
1409			ret = __cpufreq_governor(policy,
1410					CPUFREQ_GOV_POLICY_EXIT);
1411			if (ret) {
1412				pr_err("%s: Failed to exit governor\n",
1413				       __func__);
1414				return ret;
1415			}
1416		}
1417
1418		if (!cpufreq_suspended)
1419			cpufreq_policy_put_kobj(policy);
1420
1421		/*
1422		 * Perform the ->exit() even during light-weight tear-down,
1423		 * since this is a core component, and is essential for the
1424		 * subsequent light-weight ->init() to succeed.
1425		 */
1426		if (cpufreq_driver->exit)
1427			cpufreq_driver->exit(policy);
1428
1429		/* Remove policy from list of active policies */
1430		write_lock_irqsave(&cpufreq_driver_lock, flags);
1431		list_del(&policy->policy_list);
1432		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1433
1434		if (!cpufreq_suspended)
1435			cpufreq_policy_free(policy);
1436	} else if (has_target()) {
1437		ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
1438		if (!ret)
1439			ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
1440
1441		if (ret) {
1442			pr_err("%s: Failed to start governor\n", __func__);
1443			return ret;
1444		}
 
 
 
 
 
1445	}
1446
1447	per_cpu(cpufreq_cpu_data, cpu) = NULL;
 
1448	return 0;
1449}
1450
1451/**
1452 * cpufreq_remove_dev - remove a CPU device
1453 *
1454 * Removes the cpufreq interface for a CPU device.
1455 */
1456static int cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1457{
1458	unsigned int cpu = dev->id;
1459	int ret;
1460
1461	if (cpu_is_offline(cpu))
1462		return 0;
1463
1464	ret = __cpufreq_remove_dev_prepare(dev, sif);
 
1465
1466	if (!ret)
1467		ret = __cpufreq_remove_dev_finish(dev, sif);
1468
1469	return ret;
1470}
 
 
1471
1472static void handle_update(struct work_struct *work)
1473{
1474	struct cpufreq_policy *policy =
1475		container_of(work, struct cpufreq_policy, update);
1476	unsigned int cpu = policy->cpu;
1477	pr_debug("handle_update for cpu %u called\n", cpu);
1478	cpufreq_update_policy(cpu);
1479}
1480
1481/**
1482 *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1483 *	in deep trouble.
1484 *	@cpu: cpu number
1485 *	@old_freq: CPU frequency the kernel thinks the CPU runs at
1486 *	@new_freq: CPU frequency the CPU actually runs at
1487 *
1488 *	We adjust to current frequency first, and need to clean up later.
1489 *	So either call to cpufreq_update_policy() or schedule handle_update()).
1490 */
1491static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1492				unsigned int new_freq)
1493{
1494	struct cpufreq_policy *policy;
1495	struct cpufreq_freqs freqs;
1496	unsigned long flags;
1497
1498	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1499		 old_freq, new_freq);
1500
1501	freqs.old = old_freq;
1502	freqs.new = new_freq;
1503
1504	read_lock_irqsave(&cpufreq_driver_lock, flags);
1505	policy = per_cpu(cpufreq_cpu_data, cpu);
1506	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1507
1508	cpufreq_freq_transition_begin(policy, &freqs);
1509	cpufreq_freq_transition_end(policy, &freqs, 0);
1510}
1511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1512/**
1513 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1514 * @cpu: CPU number
1515 *
1516 * This is the last known freq, without actually getting it from the driver.
1517 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1518 */
1519unsigned int cpufreq_quick_get(unsigned int cpu)
1520{
1521	struct cpufreq_policy *policy;
1522	unsigned int ret_freq = 0;
 
 
 
1523
1524	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
1525		return cpufreq_driver->get(cpu);
 
 
 
 
 
1526
1527	policy = cpufreq_cpu_get(cpu);
1528	if (policy) {
1529		ret_freq = policy->cur;
1530		cpufreq_cpu_put(policy);
1531	}
1532
1533	return ret_freq;
1534}
1535EXPORT_SYMBOL(cpufreq_quick_get);
1536
1537/**
1538 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1539 * @cpu: CPU number
1540 *
1541 * Just return the max possible frequency for a given CPU.
1542 */
1543unsigned int cpufreq_quick_get_max(unsigned int cpu)
1544{
1545	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1546	unsigned int ret_freq = 0;
1547
1548	if (policy) {
1549		ret_freq = policy->max;
1550		cpufreq_cpu_put(policy);
1551	}
1552
1553	return ret_freq;
1554}
1555EXPORT_SYMBOL(cpufreq_quick_get_max);
1556
1557static unsigned int __cpufreq_get(unsigned int cpu)
 
 
 
 
 
 
1558{
1559	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1560	unsigned int ret_freq = 0;
1561
1562	if (!cpufreq_driver->get)
1563		return ret_freq;
1564
1565	ret_freq = cpufreq_driver->get(cpu);
1566
1567	if (ret_freq && policy->cur &&
1568		!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1569		/* verify no discrepancy between actual and
1570					saved value exists */
1571		if (unlikely(ret_freq != policy->cur)) {
1572			cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1573			schedule_work(&policy->update);
1574		}
1575	}
1576
1577	return ret_freq;
1578}
 
 
 
 
 
 
 
 
 
1579
1580/**
1581 * cpufreq_get - get the current CPU frequency (in kHz)
1582 * @cpu: CPU number
1583 *
1584 * Get the CPU current (static) CPU frequency
1585 */
1586unsigned int cpufreq_get(unsigned int cpu)
1587{
1588	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1589	unsigned int ret_freq = 0;
1590
1591	if (policy) {
1592		down_read(&policy->rwsem);
1593		ret_freq = __cpufreq_get(cpu);
 
1594		up_read(&policy->rwsem);
1595
1596		cpufreq_cpu_put(policy);
1597	}
1598
1599	return ret_freq;
1600}
1601EXPORT_SYMBOL(cpufreq_get);
1602
1603static struct subsys_interface cpufreq_interface = {
1604	.name		= "cpufreq",
1605	.subsys		= &cpu_subsys,
1606	.add_dev	= cpufreq_add_dev,
1607	.remove_dev	= cpufreq_remove_dev,
1608};
1609
1610/*
1611 * In case platform wants some specific frequency to be configured
1612 * during suspend..
1613 */
1614int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1615{
1616	int ret;
1617
1618	if (!policy->suspend_freq) {
1619		pr_err("%s: suspend_freq can't be zero\n", __func__);
1620		return -EINVAL;
1621	}
1622
1623	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1624			policy->suspend_freq);
1625
1626	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1627			CPUFREQ_RELATION_H);
1628	if (ret)
1629		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1630				__func__, policy->suspend_freq, ret);
1631
1632	return ret;
1633}
1634EXPORT_SYMBOL(cpufreq_generic_suspend);
1635
1636/**
1637 * cpufreq_suspend() - Suspend CPUFreq governors
1638 *
1639 * Called during system wide Suspend/Hibernate cycles for suspending governors
1640 * as some platforms can't change frequency after this point in suspend cycle.
1641 * Because some of the devices (like: i2c, regulators, etc) they use for
1642 * changing frequency are suspended quickly after this point.
1643 */
1644void cpufreq_suspend(void)
1645{
1646	struct cpufreq_policy *policy;
1647
1648	if (!cpufreq_driver)
1649		return;
1650
1651	if (!has_target())
1652		return;
1653
1654	pr_debug("%s: Suspending Governors\n", __func__);
1655
1656	list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
1657		if (__cpufreq_governor(policy, CPUFREQ_GOV_STOP))
1658			pr_err("%s: Failed to stop governor for policy: %p\n",
1659				__func__, policy);
1660		else if (cpufreq_driver->suspend
1661		    && cpufreq_driver->suspend(policy))
1662			pr_err("%s: Failed to suspend driver: %p\n", __func__,
1663				policy);
 
 
1664	}
1665
 
1666	cpufreq_suspended = true;
1667}
1668
1669/**
1670 * cpufreq_resume() - Resume CPUFreq governors
1671 *
1672 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1673 * are suspended with cpufreq_suspend().
1674 */
1675void cpufreq_resume(void)
1676{
1677	struct cpufreq_policy *policy;
 
1678
1679	if (!cpufreq_driver)
1680		return;
1681
1682	if (!has_target())
1683		return;
1684
1685	pr_debug("%s: Resuming Governors\n", __func__);
1686
1687	cpufreq_suspended = false;
1688
1689	list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
1690		if (cpufreq_driver->resume && cpufreq_driver->resume(policy))
 
 
 
 
 
1691			pr_err("%s: Failed to resume driver: %p\n", __func__,
1692				policy);
1693		else if (__cpufreq_governor(policy, CPUFREQ_GOV_START)
1694		    || __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS))
1695			pr_err("%s: Failed to start governor for policy: %p\n",
1696				__func__, policy);
1697
1698		/*
1699		 * schedule call cpufreq_update_policy() for boot CPU, i.e. last
1700		 * policy in list. It will verify that the current freq is in
1701		 * sync with what we believe it to be.
1702		 */
1703		if (list_is_last(&policy->policy_list, &cpufreq_policy_list))
1704			schedule_work(&policy->update);
1705	}
1706}
1707
1708/**
1709 *	cpufreq_get_current_driver - return current driver's name
1710 *
1711 *	Return the name string of the currently loaded cpufreq driver
1712 *	or NULL, if none.
1713 */
1714const char *cpufreq_get_current_driver(void)
1715{
1716	if (cpufreq_driver)
1717		return cpufreq_driver->name;
1718
1719	return NULL;
1720}
1721EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1723/*********************************************************************
1724 *                     NOTIFIER LISTS INTERFACE                      *
1725 *********************************************************************/
1726
1727/**
1728 *	cpufreq_register_notifier - register a driver with cpufreq
1729 *	@nb: notifier function to register
1730 *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1731 *
1732 *	Add a driver to one of two lists: either a list of drivers that
1733 *      are notified about clock rate changes (once before and once after
1734 *      the transition), or a list of drivers that are notified about
1735 *      changes in cpufreq policy.
1736 *
1737 *	This function may sleep, and has the same return conditions as
1738 *	blocking_notifier_chain_register.
1739 */
1740int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1741{
1742	int ret;
1743
1744	if (cpufreq_disabled())
1745		return -EINVAL;
1746
1747	WARN_ON(!init_cpufreq_transition_notifier_list_called);
1748
1749	switch (list) {
1750	case CPUFREQ_TRANSITION_NOTIFIER:
 
 
 
 
 
 
1751		ret = srcu_notifier_chain_register(
1752				&cpufreq_transition_notifier_list, nb);
 
 
 
 
1753		break;
1754	case CPUFREQ_POLICY_NOTIFIER:
1755		ret = blocking_notifier_chain_register(
1756				&cpufreq_policy_notifier_list, nb);
1757		break;
1758	default:
1759		ret = -EINVAL;
1760	}
1761
1762	return ret;
1763}
1764EXPORT_SYMBOL(cpufreq_register_notifier);
1765
1766/**
1767 *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1768 *	@nb: notifier block to be unregistered
1769 *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1770 *
1771 *	Remove a driver from the CPU frequency notifier list.
1772 *
1773 *	This function may sleep, and has the same return conditions as
1774 *	blocking_notifier_chain_unregister.
1775 */
1776int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1777{
1778	int ret;
1779
1780	if (cpufreq_disabled())
1781		return -EINVAL;
1782
1783	switch (list) {
1784	case CPUFREQ_TRANSITION_NOTIFIER:
 
 
1785		ret = srcu_notifier_chain_unregister(
1786				&cpufreq_transition_notifier_list, nb);
 
 
 
 
1787		break;
1788	case CPUFREQ_POLICY_NOTIFIER:
1789		ret = blocking_notifier_chain_unregister(
1790				&cpufreq_policy_notifier_list, nb);
1791		break;
1792	default:
1793		ret = -EINVAL;
1794	}
1795
1796	return ret;
1797}
1798EXPORT_SYMBOL(cpufreq_unregister_notifier);
1799
1800
1801/*********************************************************************
1802 *                              GOVERNORS                            *
1803 *********************************************************************/
1804
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1805int __cpufreq_driver_target(struct cpufreq_policy *policy,
1806			    unsigned int target_freq,
1807			    unsigned int relation)
1808{
1809	int retval = -EINVAL;
1810	unsigned int old_target_freq = target_freq;
 
1811
1812	if (cpufreq_disabled())
1813		return -ENODEV;
1814
1815	/* Make sure that target_freq is within supported range */
1816	if (target_freq > policy->max)
1817		target_freq = policy->max;
1818	if (target_freq < policy->min)
1819		target_freq = policy->min;
1820
1821	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1822		 policy->cpu, target_freq, relation, old_target_freq);
1823
1824	/*
1825	 * This might look like a redundant call as we are checking it again
1826	 * after finding index. But it is left intentionally for cases where
1827	 * exactly same freq is called again and so we can save on few function
1828	 * calls.
1829	 */
1830	if (target_freq == policy->cur)
1831		return 0;
1832
1833	if (cpufreq_driver->target)
1834		retval = cpufreq_driver->target(policy, target_freq, relation);
1835	else if (cpufreq_driver->target_index) {
1836		struct cpufreq_frequency_table *freq_table;
1837		struct cpufreq_freqs freqs;
1838		bool notify;
1839		int index;
1840
1841		freq_table = cpufreq_frequency_get_table(policy->cpu);
1842		if (unlikely(!freq_table)) {
1843			pr_err("%s: Unable to find freq_table\n", __func__);
1844			goto out;
1845		}
1846
1847		retval = cpufreq_frequency_table_target(policy, freq_table,
1848				target_freq, relation, &index);
1849		if (unlikely(retval)) {
1850			pr_err("%s: Unable to find matching freq\n", __func__);
1851			goto out;
1852		}
1853
1854		if (freq_table[index].frequency == policy->cur) {
1855			retval = 0;
1856			goto out;
1857		}
1858
1859		notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1860
1861		if (notify) {
1862			freqs.old = policy->cur;
1863			freqs.new = freq_table[index].frequency;
1864			freqs.flags = 0;
1865
1866			pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1867				 __func__, policy->cpu, freqs.old, freqs.new);
1868
1869			cpufreq_freq_transition_begin(policy, &freqs);
1870		}
1871
1872		retval = cpufreq_driver->target_index(policy, index);
1873		if (retval)
1874			pr_err("%s: Failed to change cpu frequency: %d\n",
1875			       __func__, retval);
1876
1877		if (notify)
1878			cpufreq_freq_transition_end(policy, &freqs, retval);
1879	}
1880
1881out:
1882	return retval;
1883}
1884EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1885
1886int cpufreq_driver_target(struct cpufreq_policy *policy,
1887			  unsigned int target_freq,
1888			  unsigned int relation)
1889{
1890	int ret = -EINVAL;
1891
1892	down_write(&policy->rwsem);
1893
1894	ret = __cpufreq_driver_target(policy, target_freq, relation);
1895
1896	up_write(&policy->rwsem);
1897
1898	return ret;
1899}
1900EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1901
1902/*
1903 * when "event" is CPUFREQ_GOV_LIMITS
1904 */
 
1905
1906static int __cpufreq_governor(struct cpufreq_policy *policy,
1907					unsigned int event)
1908{
1909	int ret;
1910
1911	/* Only must be defined when default governor is known to have latency
1912	   restrictions, like e.g. conservative or ondemand.
1913	   That this is the case is already ensured in Kconfig
1914	*/
1915#ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1916	struct cpufreq_governor *gov = &cpufreq_gov_performance;
1917#else
1918	struct cpufreq_governor *gov = NULL;
1919#endif
1920
1921	/* Don't start any governor operations if we are entering suspend */
1922	if (cpufreq_suspended)
1923		return 0;
 
 
 
 
 
 
1924
1925	if (policy->governor->max_transition_latency &&
1926	    policy->cpuinfo.transition_latency >
1927	    policy->governor->max_transition_latency) {
1928		if (!gov)
1929			return -EINVAL;
1930		else {
1931			pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n",
1932				policy->governor->name, gov->name);
1933			policy->governor = gov;
 
 
1934		}
1935	}
1936
1937	if (event == CPUFREQ_GOV_POLICY_INIT)
1938		if (!try_module_get(policy->governor->owner))
1939			return -EINVAL;
1940
1941	pr_debug("__cpufreq_governor for CPU %u, event %u\n",
1942		 policy->cpu, event);
1943
1944	mutex_lock(&cpufreq_governor_lock);
1945	if ((policy->governor_enabled && event == CPUFREQ_GOV_START)
1946	    || (!policy->governor_enabled
1947	    && (event == CPUFREQ_GOV_LIMITS || event == CPUFREQ_GOV_STOP))) {
1948		mutex_unlock(&cpufreq_governor_lock);
1949		return -EBUSY;
1950	}
1951
1952	if (event == CPUFREQ_GOV_STOP)
1953		policy->governor_enabled = false;
1954	else if (event == CPUFREQ_GOV_START)
1955		policy->governor_enabled = true;
1956
1957	mutex_unlock(&cpufreq_governor_lock);
 
 
 
1958
1959	ret = policy->governor->governor(policy, event);
1960
1961	if (!ret) {
1962		if (event == CPUFREQ_GOV_POLICY_INIT)
1963			policy->governor->initialized++;
1964		else if (event == CPUFREQ_GOV_POLICY_EXIT)
1965			policy->governor->initialized--;
1966	} else {
1967		/* Restore original values */
1968		mutex_lock(&cpufreq_governor_lock);
1969		if (event == CPUFREQ_GOV_STOP)
1970			policy->governor_enabled = true;
1971		else if (event == CPUFREQ_GOV_START)
1972			policy->governor_enabled = false;
1973		mutex_unlock(&cpufreq_governor_lock);
 
 
 
 
 
 
 
 
 
 
 
 
1974	}
1975
1976	if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) ||
1977			((event == CPUFREQ_GOV_POLICY_EXIT) && !ret))
1978		module_put(policy->governor->owner);
1979
1980	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1981}
1982
1983int cpufreq_register_governor(struct cpufreq_governor *governor)
1984{
1985	int err;
1986
1987	if (!governor)
1988		return -EINVAL;
1989
1990	if (cpufreq_disabled())
1991		return -ENODEV;
1992
1993	mutex_lock(&cpufreq_governor_mutex);
1994
1995	governor->initialized = 0;
1996	err = -EBUSY;
1997	if (__find_governor(governor->name) == NULL) {
1998		err = 0;
1999		list_add(&governor->governor_list, &cpufreq_governor_list);
2000	}
2001
2002	mutex_unlock(&cpufreq_governor_mutex);
2003	return err;
2004}
2005EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2006
2007void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2008{
2009	int cpu;
 
2010
2011	if (!governor)
2012		return;
2013
2014	if (cpufreq_disabled())
2015		return;
2016
2017	for_each_present_cpu(cpu) {
2018		if (cpu_online(cpu))
2019			continue;
2020		if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name))
2021			strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0");
 
 
2022	}
 
2023
2024	mutex_lock(&cpufreq_governor_mutex);
2025	list_del(&governor->governor_list);
2026	mutex_unlock(&cpufreq_governor_mutex);
2027	return;
2028}
2029EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2030
2031
2032/*********************************************************************
2033 *                          POLICY INTERFACE                         *
2034 *********************************************************************/
2035
2036/**
2037 * cpufreq_get_policy - get the current cpufreq_policy
2038 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2039 *	is written
 
2040 *
2041 * Reads the current cpufreq policy.
2042 */
2043int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2044{
2045	struct cpufreq_policy *cpu_policy;
2046	if (!policy)
2047		return -EINVAL;
2048
2049	cpu_policy = cpufreq_cpu_get(cpu);
2050	if (!cpu_policy)
2051		return -EINVAL;
2052
2053	memcpy(policy, cpu_policy, sizeof(*policy));
2054
2055	cpufreq_cpu_put(cpu_policy);
2056	return 0;
2057}
2058EXPORT_SYMBOL(cpufreq_get_policy);
2059
2060/*
2061 * policy : current policy.
2062 * new_policy: policy to be set.
 
 
 
 
 
 
 
 
 
 
 
2063 */
2064static int cpufreq_set_policy(struct cpufreq_policy *policy,
2065				struct cpufreq_policy *new_policy)
 
2066{
 
2067	struct cpufreq_governor *old_gov;
2068	int ret;
2069
2070	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2071		 new_policy->cpu, new_policy->min, new_policy->max);
2072
2073	memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2074
2075	if (new_policy->min > policy->max || new_policy->max < policy->min)
2076		return -EINVAL;
2077
2078	/* verify the cpu speed can be set within this limit */
2079	ret = cpufreq_driver->verify(new_policy);
2080	if (ret)
2081		return ret;
2082
2083	/* adjust if necessary - all reasons */
2084	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2085			CPUFREQ_ADJUST, new_policy);
2086
2087	/* adjust if necessary - hardware incompatibility*/
2088	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2089			CPUFREQ_INCOMPATIBLE, new_policy);
2090
2091	/*
2092	 * verify the cpu speed can be set within this limit, which might be
2093	 * different to the first one
2094	 */
2095	ret = cpufreq_driver->verify(new_policy);
2096	if (ret)
2097		return ret;
2098
2099	/* notification of the new policy */
2100	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2101			CPUFREQ_NOTIFY, new_policy);
2102
2103	policy->min = new_policy->min;
2104	policy->max = new_policy->max;
2105
2106	pr_debug("new min and max freqs are %u - %u kHz\n",
2107		 policy->min, policy->max);
2108
2109	if (cpufreq_driver->setpolicy) {
2110		policy->policy = new_policy->policy;
2111		pr_debug("setting range\n");
2112		return cpufreq_driver->setpolicy(new_policy);
2113	}
2114
2115	if (new_policy->governor == policy->governor)
2116		goto out;
 
 
 
2117
2118	pr_debug("governor switch\n");
2119
2120	/* save old, working values */
2121	old_gov = policy->governor;
2122	/* end old governor */
2123	if (old_gov) {
2124		__cpufreq_governor(policy, CPUFREQ_GOV_STOP);
2125		up_write(&policy->rwsem);
2126		__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2127		down_write(&policy->rwsem);
2128	}
2129
2130	/* start new governor */
2131	policy->governor = new_policy->governor;
2132	if (!__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT)) {
2133		if (!__cpufreq_governor(policy, CPUFREQ_GOV_START))
2134			goto out;
2135
2136		up_write(&policy->rwsem);
2137		__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2138		down_write(&policy->rwsem);
 
 
2139	}
2140
2141	/* new governor failed, so re-start old one */
2142	pr_debug("starting governor %s failed\n", policy->governor->name);
2143	if (old_gov) {
2144		policy->governor = old_gov;
2145		__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT);
2146		__cpufreq_governor(policy, CPUFREQ_GOV_START);
 
 
2147	}
2148
2149	return -EINVAL;
2150
2151 out:
2152	pr_debug("governor: change or update limits\n");
2153	return __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2154}
2155
2156/**
2157 *	cpufreq_update_policy - re-evaluate an existing cpufreq policy
2158 *	@cpu: CPU which shall be re-evaluated
2159 *
2160 *	Useful for policy notifiers which have different necessities
2161 *	at different times.
 
 
2162 */
2163int cpufreq_update_policy(unsigned int cpu)
2164{
2165	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2166	struct cpufreq_policy new_policy;
2167	int ret;
2168
2169	if (!policy) {
2170		ret = -ENODEV;
2171		goto no_policy;
2172	}
2173
2174	down_write(&policy->rwsem);
2175
2176	pr_debug("updating policy for CPU %u\n", cpu);
2177	memcpy(&new_policy, policy, sizeof(*policy));
2178	new_policy.min = policy->user_policy.min;
2179	new_policy.max = policy->user_policy.max;
2180	new_policy.policy = policy->user_policy.policy;
2181	new_policy.governor = policy->user_policy.governor;
2182
2183	/*
2184	 * BIOS might change freq behind our back
2185	 * -> ask driver for current freq and notify governors about a change
2186	 */
2187	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2188		new_policy.cur = cpufreq_driver->get(cpu);
2189		if (WARN_ON(!new_policy.cur)) {
2190			ret = -EIO;
2191			goto no_policy;
2192		}
2193
2194		if (!policy->cur) {
2195			pr_debug("Driver did not initialize current freq\n");
2196			policy->cur = new_policy.cur;
2197		} else {
2198			if (policy->cur != new_policy.cur && has_target())
2199				cpufreq_out_of_sync(cpu, policy->cur,
2200								new_policy.cur);
2201		}
2202	}
2203
2204	ret = cpufreq_set_policy(policy, &new_policy);
2205
2206	up_write(&policy->rwsem);
2207
2208	cpufreq_cpu_put(policy);
2209no_policy:
2210	return ret;
2211}
2212EXPORT_SYMBOL(cpufreq_update_policy);
2213
2214static int cpufreq_cpu_callback(struct notifier_block *nfb,
2215					unsigned long action, void *hcpu)
 
 
 
 
 
 
2216{
2217	unsigned int cpu = (unsigned long)hcpu;
2218	struct device *dev;
2219
2220	dev = get_cpu_device(cpu);
2221	if (dev) {
2222		switch (action & ~CPU_TASKS_FROZEN) {
2223		case CPU_ONLINE:
2224			__cpufreq_add_dev(dev, NULL);
2225			break;
2226
2227		case CPU_DOWN_PREPARE:
2228			__cpufreq_remove_dev_prepare(dev, NULL);
2229			break;
2230
2231		case CPU_POST_DEAD:
2232			__cpufreq_remove_dev_finish(dev, NULL);
2233			break;
2234
2235		case CPU_DOWN_FAILED:
2236			__cpufreq_add_dev(dev, NULL);
2237			break;
2238		}
2239	}
2240	return NOTIFY_OK;
2241}
2242
2243static struct notifier_block __refdata cpufreq_cpu_notifier = {
2244	.notifier_call = cpufreq_cpu_callback,
2245};
2246
2247/*********************************************************************
2248 *               BOOST						     *
2249 *********************************************************************/
2250static int cpufreq_boost_set_sw(int state)
2251{
2252	struct cpufreq_frequency_table *freq_table;
2253	struct cpufreq_policy *policy;
2254	int ret = -EINVAL;
2255
2256	list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
2257		freq_table = cpufreq_frequency_get_table(policy->cpu);
2258		if (freq_table) {
2259			ret = cpufreq_frequency_table_cpuinfo(policy,
2260							freq_table);
2261			if (ret) {
2262				pr_err("%s: Policy frequency update failed\n",
2263				       __func__);
2264				break;
2265			}
2266			policy->user_policy.max = policy->max;
2267			__cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2268		}
2269	}
2270
2271	return ret;
 
 
 
 
2272}
2273
2274int cpufreq_boost_trigger_state(int state)
2275{
 
2276	unsigned long flags;
2277	int ret = 0;
2278
2279	if (cpufreq_driver->boost_enabled == state)
2280		return 0;
2281
2282	write_lock_irqsave(&cpufreq_driver_lock, flags);
2283	cpufreq_driver->boost_enabled = state;
2284	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2285
2286	ret = cpufreq_driver->set_boost(state);
2287	if (ret) {
2288		write_lock_irqsave(&cpufreq_driver_lock, flags);
2289		cpufreq_driver->boost_enabled = !state;
2290		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2291
2292		pr_err("%s: Cannot %s BOOST\n",
2293		       __func__, state ? "enable" : "disable");
2294	}
 
 
 
 
 
 
 
 
 
 
 
 
 
2295
2296	return ret;
2297}
2298
2299int cpufreq_boost_supported(void)
2300{
2301	if (likely(cpufreq_driver))
2302		return cpufreq_driver->boost_supported;
2303
2304	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2305}
2306EXPORT_SYMBOL_GPL(cpufreq_boost_supported);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2307
2308int cpufreq_boost_enabled(void)
2309{
2310	return cpufreq_driver->boost_enabled;
2311}
2312EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2313
2314/*********************************************************************
2315 *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2316 *********************************************************************/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2317
2318/**
2319 * cpufreq_register_driver - register a CPU Frequency driver
2320 * @driver_data: A struct cpufreq_driver containing the values#
2321 * submitted by the CPU Frequency driver.
2322 *
2323 * Registers a CPU Frequency driver to this core code. This code
2324 * returns zero on success, -EBUSY when another driver got here first
2325 * (and isn't unregistered in the meantime).
2326 *
2327 */
2328int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2329{
2330	unsigned long flags;
2331	int ret;
2332
2333	if (cpufreq_disabled())
2334		return -ENODEV;
2335
 
 
 
 
 
 
 
2336	if (!driver_data || !driver_data->verify || !driver_data->init ||
2337	    !(driver_data->setpolicy || driver_data->target_index ||
2338		    driver_data->target) ||
2339	     (driver_data->setpolicy && (driver_data->target_index ||
2340		    driver_data->target)))
 
 
2341		return -EINVAL;
2342
2343	pr_debug("trying to register driver %s\n", driver_data->name);
2344
2345	if (driver_data->setpolicy)
2346		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2347
2348	write_lock_irqsave(&cpufreq_driver_lock, flags);
2349	if (cpufreq_driver) {
2350		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2351		return -EEXIST;
 
2352	}
2353	cpufreq_driver = driver_data;
2354	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2355
2356	if (cpufreq_boost_supported()) {
2357		/*
2358		 * Check if driver provides function to enable boost -
2359		 * if not, use cpufreq_boost_set_sw as default
2360		 */
2361		if (!cpufreq_driver->set_boost)
2362			cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2363
2364		ret = cpufreq_sysfs_create_file(&boost.attr);
2365		if (ret) {
2366			pr_err("%s: cannot register global BOOST sysfs file\n",
2367			       __func__);
2368			goto err_null_driver;
2369		}
2370	}
2371
2372	ret = subsys_interface_register(&cpufreq_interface);
2373	if (ret)
2374		goto err_boost_unreg;
2375
2376	if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) {
2377		int i;
2378		ret = -ENODEV;
2379
2380		/* check for at least one working CPU */
2381		for (i = 0; i < nr_cpu_ids; i++)
2382			if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
2383				ret = 0;
2384				break;
2385			}
2386
2387		/* if all ->init() calls failed, unregister */
2388		if (ret) {
2389			pr_debug("no CPU initialized for driver %s\n",
2390				 driver_data->name);
2391			goto err_if_unreg;
2392		}
2393	}
2394
2395	register_hotcpu_notifier(&cpufreq_cpu_notifier);
 
 
 
 
 
 
 
 
2396	pr_debug("driver %s up and running\n", driver_data->name);
 
2397
2398	return 0;
2399err_if_unreg:
2400	subsys_interface_unregister(&cpufreq_interface);
2401err_boost_unreg:
2402	if (cpufreq_boost_supported())
2403		cpufreq_sysfs_remove_file(&boost.attr);
2404err_null_driver:
2405	write_lock_irqsave(&cpufreq_driver_lock, flags);
2406	cpufreq_driver = NULL;
2407	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 
2408	return ret;
2409}
2410EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2411
2412/**
2413 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2414 *
2415 * Unregister the current CPUFreq driver. Only call this if you have
2416 * the right to do so, i.e. if you have succeeded in initialising before!
2417 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2418 * currently not initialised.
2419 */
2420int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2421{
2422	unsigned long flags;
2423
2424	if (!cpufreq_driver || (driver != cpufreq_driver))
2425		return -EINVAL;
2426
2427	pr_debug("unregistering driver %s\n", driver->name);
2428
 
 
2429	subsys_interface_unregister(&cpufreq_interface);
2430	if (cpufreq_boost_supported())
2431		cpufreq_sysfs_remove_file(&boost.attr);
2432
2433	unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
2434
2435	down_write(&cpufreq_rwsem);
2436	write_lock_irqsave(&cpufreq_driver_lock, flags);
2437
2438	cpufreq_driver = NULL;
2439
2440	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2441	up_write(&cpufreq_rwsem);
2442
2443	return 0;
2444}
2445EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2446
2447static int __init cpufreq_core_init(void)
2448{
 
 
2449	if (cpufreq_disabled())
2450		return -ENODEV;
2451
2452	cpufreq_global_kobject = kobject_create();
2453	BUG_ON(!cpufreq_global_kobject);
2454
 
 
 
2455	return 0;
2456}
 
 
2457core_initcall(cpufreq_core_init);
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/cpufreq/cpufreq.c
   4 *
   5 *  Copyright (C) 2001 Russell King
   6 *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
   7 *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
   8 *
   9 *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
  10 *	Added handling for CPU hotplug
  11 *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
  12 *	Fix handling for CPU hotplug -- affected CPUs
 
 
 
 
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/cpu.h>
  18#include <linux/cpufreq.h>
  19#include <linux/cpu_cooling.h>
  20#include <linux/delay.h>
  21#include <linux/device.h>
  22#include <linux/init.h>
  23#include <linux/kernel_stat.h>
  24#include <linux/module.h>
  25#include <linux/mutex.h>
  26#include <linux/pm_qos.h>
  27#include <linux/slab.h>
  28#include <linux/suspend.h>
  29#include <linux/syscore_ops.h>
  30#include <linux/tick.h>
  31#include <trace/events/power.h>
  32
  33static LIST_HEAD(cpufreq_policy_list);
  34
  35/* Macros to iterate over CPU policies */
  36#define for_each_suitable_policy(__policy, __active)			 \
  37	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
  38		if ((__active) == !policy_is_inactive(__policy))
  39
  40#define for_each_active_policy(__policy)		\
  41	for_each_suitable_policy(__policy, true)
  42#define for_each_inactive_policy(__policy)		\
  43	for_each_suitable_policy(__policy, false)
  44
  45#define for_each_policy(__policy)			\
  46	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
  47
  48/* Iterate over governors */
  49static LIST_HEAD(cpufreq_governor_list);
  50#define for_each_governor(__governor)				\
  51	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
  52
  53static char default_governor[CPUFREQ_NAME_LEN];
  54
  55/*
  56 * The "cpufreq driver" - the arch- or hardware-dependent low
  57 * level driver of CPUFreq support, and its spinlock. This lock
  58 * also protects the cpufreq_cpu_data array.
  59 */
  60static struct cpufreq_driver *cpufreq_driver;
  61static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
 
  62static DEFINE_RWLOCK(cpufreq_driver_lock);
 
 
 
 
 
  63
  64/* Flag to suspend/resume CPUFreq governors */
  65static bool cpufreq_suspended;
  66
  67static inline bool has_target(void)
  68{
  69	return cpufreq_driver->target_index || cpufreq_driver->target;
  70}
  71
 
 
 
 
 
 
  72/* internal prototypes */
  73static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
  74static int cpufreq_init_governor(struct cpufreq_policy *policy);
  75static void cpufreq_exit_governor(struct cpufreq_policy *policy);
  76static void cpufreq_governor_limits(struct cpufreq_policy *policy);
  77static int cpufreq_set_policy(struct cpufreq_policy *policy,
  78			      struct cpufreq_governor *new_gov,
  79			      unsigned int new_pol);
  80
  81/*
  82 * Two notifier lists: the "policy" list is involved in the
  83 * validation process for a new CPU frequency policy; the
  84 * "transition" list for kernel code that needs to handle
  85 * changes to devices when the CPU clock speed changes.
  86 * The mutex locks both lists.
  87 */
  88static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
  89SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
 
 
 
 
 
 
 
 
 
  90
  91static int off __read_mostly;
  92static int cpufreq_disabled(void)
  93{
  94	return off;
  95}
  96void disable_cpufreq(void)
  97{
  98	off = 1;
  99}
 
 100static DEFINE_MUTEX(cpufreq_governor_mutex);
 101
 102bool have_governor_per_policy(void)
 103{
 104	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
 105}
 106EXPORT_SYMBOL_GPL(have_governor_per_policy);
 107
 108static struct kobject *cpufreq_global_kobject;
 109
 110struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
 111{
 112	if (have_governor_per_policy())
 113		return &policy->kobj;
 114	else
 115		return cpufreq_global_kobject;
 116}
 117EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
 118
 119static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
 120{
 121	struct kernel_cpustat kcpustat;
 122	u64 cur_wall_time;
 123	u64 idle_time;
 124	u64 busy_time;
 125
 126	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
 127
 128	kcpustat_cpu_fetch(&kcpustat, cpu);
 129
 130	busy_time = kcpustat.cpustat[CPUTIME_USER];
 131	busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
 132	busy_time += kcpustat.cpustat[CPUTIME_IRQ];
 133	busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
 134	busy_time += kcpustat.cpustat[CPUTIME_STEAL];
 135	busy_time += kcpustat.cpustat[CPUTIME_NICE];
 136
 137	idle_time = cur_wall_time - busy_time;
 138	if (wall)
 139		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
 140
 141	return div_u64(idle_time, NSEC_PER_USEC);
 142}
 143
 144u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
 145{
 146	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
 147
 148	if (idle_time == -1ULL)
 149		return get_cpu_idle_time_jiffy(cpu, wall);
 150	else if (!io_busy)
 151		idle_time += get_cpu_iowait_time_us(cpu, wall);
 152
 153	return idle_time;
 154}
 155EXPORT_SYMBOL_GPL(get_cpu_idle_time);
 156
 157__weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
 158		unsigned long max_freq)
 159{
 160}
 161EXPORT_SYMBOL_GPL(arch_set_freq_scale);
 162
 163/*
 164 * This is a generic cpufreq init() routine which can be used by cpufreq
 165 * drivers of SMP systems. It will do following:
 166 * - validate & show freq table passed
 167 * - set policies transition latency
 168 * - policy->cpus with all possible CPUs
 169 */
 170void cpufreq_generic_init(struct cpufreq_policy *policy,
 171		struct cpufreq_frequency_table *table,
 172		unsigned int transition_latency)
 173{
 174	policy->freq_table = table;
 
 
 
 
 
 
 
 175	policy->cpuinfo.transition_latency = transition_latency;
 176
 177	/*
 178	 * The driver only supports the SMP configuration where all processors
 179	 * share the clock and voltage and clock.
 180	 */
 181	cpumask_setall(policy->cpus);
 
 
 182}
 183EXPORT_SYMBOL_GPL(cpufreq_generic_init);
 184
 185struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
 186{
 187	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
 188
 189	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
 190}
 191EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
 192
 193unsigned int cpufreq_generic_get(unsigned int cpu)
 194{
 195	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
 196
 197	if (!policy || IS_ERR(policy->clk)) {
 198		pr_err("%s: No %s associated to cpu: %d\n",
 199		       __func__, policy ? "clk" : "policy", cpu);
 200		return 0;
 201	}
 202
 203	return clk_get_rate(policy->clk) / 1000;
 204}
 205EXPORT_SYMBOL_GPL(cpufreq_generic_get);
 206
 207/**
 208 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
 209 * @cpu: CPU to find the policy for.
 210 *
 211 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
 212 * the kobject reference counter of that policy.  Return a valid policy on
 213 * success or NULL on failure.
 214 *
 215 * The policy returned by this function has to be released with the help of
 216 * cpufreq_cpu_put() to balance its kobject reference counter properly.
 217 */
 218struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
 219{
 220	struct cpufreq_policy *policy = NULL;
 221	unsigned long flags;
 222
 223	if (WARN_ON(cpu >= nr_cpu_ids))
 
 
 
 224		return NULL;
 225
 226	/* get the cpufreq driver */
 227	read_lock_irqsave(&cpufreq_driver_lock, flags);
 228
 229	if (cpufreq_driver) {
 230		/* get the CPU */
 231		policy = cpufreq_cpu_get_raw(cpu);
 232		if (policy)
 233			kobject_get(&policy->kobj);
 234	}
 235
 236	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
 237
 
 
 
 238	return policy;
 239}
 240EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
 241
 242/**
 243 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
 244 * @policy: cpufreq policy returned by cpufreq_cpu_get().
 245 */
 246void cpufreq_cpu_put(struct cpufreq_policy *policy)
 247{
 
 
 
 248	kobject_put(&policy->kobj);
 
 249}
 250EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
 251
 252/**
 253 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
 254 * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
 255 */
 256void cpufreq_cpu_release(struct cpufreq_policy *policy)
 257{
 258	if (WARN_ON(!policy))
 259		return;
 260
 261	lockdep_assert_held(&policy->rwsem);
 262
 263	up_write(&policy->rwsem);
 264
 265	cpufreq_cpu_put(policy);
 266}
 267
 268/**
 269 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
 270 * @cpu: CPU to find the policy for.
 271 *
 272 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
 273 * if the policy returned by it is not NULL, acquire its rwsem for writing.
 274 * Return the policy if it is active or release it and return NULL otherwise.
 275 *
 276 * The policy returned by this function has to be released with the help of
 277 * cpufreq_cpu_release() in order to release its rwsem and balance its usage
 278 * counter properly.
 279 */
 280struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
 281{
 282	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
 283
 284	if (!policy)
 285		return NULL;
 286
 287	down_write(&policy->rwsem);
 288
 289	if (policy_is_inactive(policy)) {
 290		cpufreq_cpu_release(policy);
 291		return NULL;
 292	}
 293
 294	return policy;
 295}
 296
 297/*********************************************************************
 298 *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
 299 *********************************************************************/
 300
 301/*
 302 * adjust_jiffies - adjust the system "loops_per_jiffy"
 303 *
 304 * This function alters the system "loops_per_jiffy" for the clock
 305 * speed change. Note that loops_per_jiffy cannot be updated on SMP
 306 * systems as each CPU might be scaled differently. So, use the arch
 307 * per-CPU loops_per_jiffy value wherever possible.
 308 */
 
 
 
 
 309static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 310{
 311#ifndef CONFIG_SMP
 312	static unsigned long l_p_j_ref;
 313	static unsigned int l_p_j_ref_freq;
 314
 315	if (ci->flags & CPUFREQ_CONST_LOOPS)
 316		return;
 317
 318	if (!l_p_j_ref_freq) {
 319		l_p_j_ref = loops_per_jiffy;
 320		l_p_j_ref_freq = ci->old;
 321		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
 322			 l_p_j_ref, l_p_j_ref_freq);
 323	}
 324	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
 325		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
 326								ci->new);
 327		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
 328			 loops_per_jiffy, ci->new);
 329	}
 
 
 
 
 
 
 330#endif
 331}
 332
 333/**
 334 * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
 335 * @policy: cpufreq policy to enable fast frequency switching for.
 336 * @freqs: contain details of the frequency update.
 337 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
 338 *
 339 * This function calls the transition notifiers and the "adjust_jiffies"
 340 * function. It is called twice on all CPU frequency changes that have
 341 * external effects.
 342 */
 343static void cpufreq_notify_transition(struct cpufreq_policy *policy,
 344				      struct cpufreq_freqs *freqs,
 345				      unsigned int state)
 346{
 347	int cpu;
 348
 349	BUG_ON(irqs_disabled());
 350
 351	if (cpufreq_disabled())
 352		return;
 353
 354	freqs->policy = policy;
 355	freqs->flags = cpufreq_driver->flags;
 356	pr_debug("notification %u of frequency transition to %u kHz\n",
 357		 state, freqs->new);
 358
 359	switch (state) {
 
 360	case CPUFREQ_PRECHANGE:
 361		/*
 362		 * Detect if the driver reported a value as "old frequency"
 363		 * which is not equal to what the cpufreq core thinks is
 364		 * "old frequency".
 365		 */
 366		if (policy->cur && policy->cur != freqs->old) {
 367			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
 368				 freqs->old, policy->cur);
 369			freqs->old = policy->cur;
 
 
 
 370		}
 371
 372		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 373					 CPUFREQ_PRECHANGE, freqs);
 374
 375		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
 376		break;
 377
 378	case CPUFREQ_POSTCHANGE:
 379		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
 380		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
 381			 cpumask_pr_args(policy->cpus));
 382
 383		for_each_cpu(cpu, policy->cpus)
 384			trace_cpu_frequency(freqs->new, cpu);
 385
 386		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 387					 CPUFREQ_POSTCHANGE, freqs);
 
 
 
 
 
 388
 389		cpufreq_stats_record_transition(policy, freqs->new);
 390		policy->cur = freqs->new;
 391	}
 
 
 
 
 
 
 
 
 
 
 392}
 393
 394/* Do post notifications when there are chances that transition has failed */
 395static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
 396		struct cpufreq_freqs *freqs, int transition_failed)
 397{
 398	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 399	if (!transition_failed)
 400		return;
 401
 402	swap(freqs->old, freqs->new);
 403	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 404	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 405}
 406
 407void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
 408		struct cpufreq_freqs *freqs)
 409{
 410
 411	/*
 412	 * Catch double invocations of _begin() which lead to self-deadlock.
 413	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
 414	 * doesn't invoke _begin() on their behalf, and hence the chances of
 415	 * double invocations are very low. Moreover, there are scenarios
 416	 * where these checks can emit false-positive warnings in these
 417	 * drivers; so we avoid that by skipping them altogether.
 418	 */
 419	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
 420				&& current == policy->transition_task);
 421
 422wait:
 423	wait_event(policy->transition_wait, !policy->transition_ongoing);
 424
 425	spin_lock(&policy->transition_lock);
 426
 427	if (unlikely(policy->transition_ongoing)) {
 428		spin_unlock(&policy->transition_lock);
 429		goto wait;
 430	}
 431
 432	policy->transition_ongoing = true;
 433	policy->transition_task = current;
 434
 435	spin_unlock(&policy->transition_lock);
 436
 437	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 438}
 439EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
 440
 441void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
 442		struct cpufreq_freqs *freqs, int transition_failed)
 443{
 444	if (WARN_ON(!policy->transition_ongoing))
 445		return;
 446
 447	cpufreq_notify_post_transition(policy, freqs, transition_failed);
 448
 449	policy->transition_ongoing = false;
 450	policy->transition_task = NULL;
 451
 452	wake_up(&policy->transition_wait);
 453}
 454EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
 455
 456/*
 457 * Fast frequency switching status count.  Positive means "enabled", negative
 458 * means "disabled" and 0 means "not decided yet".
 459 */
 460static int cpufreq_fast_switch_count;
 461static DEFINE_MUTEX(cpufreq_fast_switch_lock);
 462
 463static void cpufreq_list_transition_notifiers(void)
 464{
 465	struct notifier_block *nb;
 466
 467	pr_info("Registered transition notifiers:\n");
 468
 469	mutex_lock(&cpufreq_transition_notifier_list.mutex);
 470
 471	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
 472		pr_info("%pS\n", nb->notifier_call);
 473
 474	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
 475}
 476
 477/**
 478 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
 479 * @policy: cpufreq policy to enable fast frequency switching for.
 480 *
 481 * Try to enable fast frequency switching for @policy.
 482 *
 483 * The attempt will fail if there is at least one transition notifier registered
 484 * at this point, as fast frequency switching is quite fundamentally at odds
 485 * with transition notifiers.  Thus if successful, it will make registration of
 486 * transition notifiers fail going forward.
 487 */
 488void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
 489{
 490	lockdep_assert_held(&policy->rwsem);
 491
 492	if (!policy->fast_switch_possible)
 493		return;
 494
 495	mutex_lock(&cpufreq_fast_switch_lock);
 496	if (cpufreq_fast_switch_count >= 0) {
 497		cpufreq_fast_switch_count++;
 498		policy->fast_switch_enabled = true;
 499	} else {
 500		pr_warn("CPU%u: Fast frequency switching not enabled\n",
 501			policy->cpu);
 502		cpufreq_list_transition_notifiers();
 503	}
 504	mutex_unlock(&cpufreq_fast_switch_lock);
 505}
 506EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
 507
 508/**
 509 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
 510 * @policy: cpufreq policy to disable fast frequency switching for.
 511 */
 512void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
 513{
 514	mutex_lock(&cpufreq_fast_switch_lock);
 515	if (policy->fast_switch_enabled) {
 516		policy->fast_switch_enabled = false;
 517		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
 518			cpufreq_fast_switch_count--;
 519	}
 520	mutex_unlock(&cpufreq_fast_switch_lock);
 521}
 522EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
 523
 524/**
 525 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
 526 * one.
 527 * @policy: associated policy to interrogate
 528 * @target_freq: target frequency to resolve.
 529 *
 530 * The target to driver frequency mapping is cached in the policy.
 531 *
 532 * Return: Lowest driver-supported frequency greater than or equal to the
 533 * given target_freq, subject to policy (min/max) and driver limitations.
 534 */
 535unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
 536					 unsigned int target_freq)
 537{
 538	target_freq = clamp_val(target_freq, policy->min, policy->max);
 539	policy->cached_target_freq = target_freq;
 540
 541	if (cpufreq_driver->target_index) {
 542		unsigned int idx;
 543
 544		idx = cpufreq_frequency_table_target(policy, target_freq,
 545						     CPUFREQ_RELATION_L);
 546		policy->cached_resolved_idx = idx;
 547		return policy->freq_table[idx].frequency;
 548	}
 549
 550	if (cpufreq_driver->resolve_freq)
 551		return cpufreq_driver->resolve_freq(policy, target_freq);
 552
 553	return target_freq;
 554}
 555EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
 556
 557unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
 558{
 559	unsigned int latency;
 560
 561	if (policy->transition_delay_us)
 562		return policy->transition_delay_us;
 563
 564	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
 565	if (latency) {
 566		/*
 567		 * For platforms that can change the frequency very fast (< 10
 568		 * us), the above formula gives a decent transition delay. But
 569		 * for platforms where transition_latency is in milliseconds, it
 570		 * ends up giving unrealistic values.
 571		 *
 572		 * Cap the default transition delay to 10 ms, which seems to be
 573		 * a reasonable amount of time after which we should reevaluate
 574		 * the frequency.
 575		 */
 576		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
 577	}
 578
 579	return LATENCY_MULTIPLIER;
 580}
 581EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
 582
 583/*********************************************************************
 584 *                          SYSFS INTERFACE                          *
 585 *********************************************************************/
 586static ssize_t show_boost(struct kobject *kobj,
 587			  struct kobj_attribute *attr, char *buf)
 588{
 589	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
 590}
 591
 592static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
 593			   const char *buf, size_t count)
 594{
 595	int ret, enable;
 596
 597	ret = sscanf(buf, "%d", &enable);
 598	if (ret != 1 || enable < 0 || enable > 1)
 599		return -EINVAL;
 600
 601	if (cpufreq_boost_trigger_state(enable)) {
 602		pr_err("%s: Cannot %s BOOST!\n",
 603		       __func__, enable ? "enable" : "disable");
 604		return -EINVAL;
 605	}
 606
 607	pr_debug("%s: cpufreq BOOST %s\n",
 608		 __func__, enable ? "enabled" : "disabled");
 609
 610	return count;
 611}
 612define_one_global_rw(boost);
 613
 614static struct cpufreq_governor *find_governor(const char *str_governor)
 615{
 616	struct cpufreq_governor *t;
 617
 618	for_each_governor(t)
 619		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
 620			return t;
 621
 622	return NULL;
 623}
 624
 625static struct cpufreq_governor *get_governor(const char *str_governor)
 
 
 
 
 626{
 627	struct cpufreq_governor *t;
 628
 629	mutex_lock(&cpufreq_governor_mutex);
 630	t = find_governor(str_governor);
 631	if (!t)
 632		goto unlock;
 633
 634	if (!try_module_get(t->owner))
 635		t = NULL;
 636
 637unlock:
 638	mutex_unlock(&cpufreq_governor_mutex);
 
 
 
 
 
 
 639
 640	return t;
 641}
 642
 643static unsigned int cpufreq_parse_policy(char *str_governor)
 644{
 645	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
 646		return CPUFREQ_POLICY_PERFORMANCE;
 647
 648	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
 649		return CPUFREQ_POLICY_POWERSAVE;
 650
 651	return CPUFREQ_POLICY_UNKNOWN;
 652}
 
 653
 654/**
 655 * cpufreq_parse_governor - parse a governor string only for has_target()
 656 * @str_governor: Governor name.
 657 */
 658static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
 659{
 660	struct cpufreq_governor *t;
 661
 662	t = get_governor(str_governor);
 663	if (t)
 664		return t;
 
 665
 666	if (request_module("cpufreq_%s", str_governor))
 667		return NULL;
 668
 669	return get_governor(str_governor);
 670}
 671
 672/*
 673 * cpufreq_per_cpu_attr_read() / show_##file_name() -
 674 * print out cpufreq information
 675 *
 676 * Write out information from cpufreq_driver->policy[cpu]; object must be
 677 * "unsigned int".
 678 */
 679
 680#define show_one(file_name, object)			\
 681static ssize_t show_##file_name				\
 682(struct cpufreq_policy *policy, char *buf)		\
 683{							\
 684	return sprintf(buf, "%u\n", policy->object);	\
 685}
 686
 687show_one(cpuinfo_min_freq, cpuinfo.min_freq);
 688show_one(cpuinfo_max_freq, cpuinfo.max_freq);
 689show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
 690show_one(scaling_min_freq, min);
 691show_one(scaling_max_freq, max);
 
 692
 693__weak unsigned int arch_freq_get_on_cpu(int cpu)
 694{
 695	return 0;
 696}
 697
 698static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
 699{
 700	ssize_t ret;
 701	unsigned int freq;
 702
 703	freq = arch_freq_get_on_cpu(policy->cpu);
 704	if (freq)
 705		ret = sprintf(buf, "%u\n", freq);
 706	else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
 707		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
 708	else
 709		ret = sprintf(buf, "%u\n", policy->cur);
 710	return ret;
 711}
 712
 713/*
 714 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
 715 */
 716#define store_one(file_name, object)			\
 717static ssize_t store_##file_name					\
 718(struct cpufreq_policy *policy, const char *buf, size_t count)		\
 719{									\
 720	unsigned long val;						\
 721	int ret;							\
 
 722									\
 723	ret = sscanf(buf, "%lu", &val);					\
 
 
 
 
 724	if (ret != 1)							\
 725		return -EINVAL;						\
 726									\
 727	ret = freq_qos_update_request(policy->object##_freq_req, val);\
 728	return ret >= 0 ? count : ret;					\
 
 
 729}
 730
 731store_one(scaling_min_freq, min);
 732store_one(scaling_max_freq, max);
 733
 734/*
 735 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
 736 */
 737static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
 738					char *buf)
 739{
 740	unsigned int cur_freq = __cpufreq_get(policy);
 741
 742	if (cur_freq)
 743		return sprintf(buf, "%u\n", cur_freq);
 744
 745	return sprintf(buf, "<unknown>\n");
 746}
 747
 748/*
 749 * show_scaling_governor - show the current policy for the specified CPU
 750 */
 751static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
 752{
 753	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
 754		return sprintf(buf, "powersave\n");
 755	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
 756		return sprintf(buf, "performance\n");
 757	else if (policy->governor)
 758		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
 759				policy->governor->name);
 760	return -EINVAL;
 761}
 762
 763/*
 764 * store_scaling_governor - store policy for the specified CPU
 765 */
 766static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
 767					const char *buf, size_t count)
 768{
 769	char str_governor[16];
 770	int ret;
 
 
 
 
 
 
 771
 772	ret = sscanf(buf, "%15s", str_governor);
 773	if (ret != 1)
 774		return -EINVAL;
 775
 776	if (cpufreq_driver->setpolicy) {
 777		unsigned int new_pol;
 
 778
 779		new_pol = cpufreq_parse_policy(str_governor);
 780		if (!new_pol)
 781			return -EINVAL;
 782
 783		ret = cpufreq_set_policy(policy, NULL, new_pol);
 784	} else {
 785		struct cpufreq_governor *new_gov;
 786
 787		new_gov = cpufreq_parse_governor(str_governor);
 788		if (!new_gov)
 789			return -EINVAL;
 790
 791		ret = cpufreq_set_policy(policy, new_gov,
 792					 CPUFREQ_POLICY_UNKNOWN);
 793
 794		module_put(new_gov->owner);
 795	}
 796
 797	return ret ? ret : count;
 798}
 799
 800/*
 801 * show_scaling_driver - show the cpufreq driver currently loaded
 802 */
 803static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
 804{
 805	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
 806}
 807
 808/*
 809 * show_scaling_available_governors - show the available CPUfreq governors
 810 */
 811static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
 812						char *buf)
 813{
 814	ssize_t i = 0;
 815	struct cpufreq_governor *t;
 816
 817	if (!has_target()) {
 818		i += sprintf(buf, "performance powersave");
 819		goto out;
 820	}
 821
 822	mutex_lock(&cpufreq_governor_mutex);
 823	for_each_governor(t) {
 824		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
 825		    - (CPUFREQ_NAME_LEN + 2)))
 826			break;
 827		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
 828	}
 829	mutex_unlock(&cpufreq_governor_mutex);
 830out:
 831	i += sprintf(&buf[i], "\n");
 832	return i;
 833}
 834
 835ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
 836{
 837	ssize_t i = 0;
 838	unsigned int cpu;
 839
 840	for_each_cpu(cpu, mask) {
 841		if (i)
 842			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
 843		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
 844		if (i >= (PAGE_SIZE - 5))
 845			break;
 846	}
 847	i += sprintf(&buf[i], "\n");
 848	return i;
 849}
 850EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
 851
 852/*
 853 * show_related_cpus - show the CPUs affected by each transition even if
 854 * hw coordination is in use
 855 */
 856static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
 857{
 858	return cpufreq_show_cpus(policy->related_cpus, buf);
 859}
 860
 861/*
 862 * show_affected_cpus - show the CPUs affected by each transition
 863 */
 864static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
 865{
 866	return cpufreq_show_cpus(policy->cpus, buf);
 867}
 868
 869static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
 870					const char *buf, size_t count)
 871{
 872	unsigned int freq = 0;
 873	unsigned int ret;
 874
 875	if (!policy->governor || !policy->governor->store_setspeed)
 876		return -EINVAL;
 877
 878	ret = sscanf(buf, "%u", &freq);
 879	if (ret != 1)
 880		return -EINVAL;
 881
 882	policy->governor->store_setspeed(policy, freq);
 883
 884	return count;
 885}
 886
 887static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
 888{
 889	if (!policy->governor || !policy->governor->show_setspeed)
 890		return sprintf(buf, "<unsupported>\n");
 891
 892	return policy->governor->show_setspeed(policy, buf);
 893}
 894
 895/*
 896 * show_bios_limit - show the current cpufreq HW/BIOS limitation
 897 */
 898static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
 899{
 900	unsigned int limit;
 901	int ret;
 902	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
 903	if (!ret)
 904		return sprintf(buf, "%u\n", limit);
 
 
 905	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
 906}
 907
 908cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
 909cpufreq_freq_attr_ro(cpuinfo_min_freq);
 910cpufreq_freq_attr_ro(cpuinfo_max_freq);
 911cpufreq_freq_attr_ro(cpuinfo_transition_latency);
 912cpufreq_freq_attr_ro(scaling_available_governors);
 913cpufreq_freq_attr_ro(scaling_driver);
 914cpufreq_freq_attr_ro(scaling_cur_freq);
 915cpufreq_freq_attr_ro(bios_limit);
 916cpufreq_freq_attr_ro(related_cpus);
 917cpufreq_freq_attr_ro(affected_cpus);
 918cpufreq_freq_attr_rw(scaling_min_freq);
 919cpufreq_freq_attr_rw(scaling_max_freq);
 920cpufreq_freq_attr_rw(scaling_governor);
 921cpufreq_freq_attr_rw(scaling_setspeed);
 922
 923static struct attribute *default_attrs[] = {
 924	&cpuinfo_min_freq.attr,
 925	&cpuinfo_max_freq.attr,
 926	&cpuinfo_transition_latency.attr,
 927	&scaling_min_freq.attr,
 928	&scaling_max_freq.attr,
 929	&affected_cpus.attr,
 930	&related_cpus.attr,
 931	&scaling_governor.attr,
 932	&scaling_driver.attr,
 933	&scaling_available_governors.attr,
 934	&scaling_setspeed.attr,
 935	NULL
 936};
 937
 938#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
 939#define to_attr(a) container_of(a, struct freq_attr, attr)
 940
 941static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
 942{
 943	struct cpufreq_policy *policy = to_policy(kobj);
 944	struct freq_attr *fattr = to_attr(attr);
 945	ssize_t ret;
 946
 947	if (!fattr->show)
 948		return -EIO;
 949
 950	down_read(&policy->rwsem);
 951	ret = fattr->show(policy, buf);
 
 
 
 
 
 952	up_read(&policy->rwsem);
 
 953
 954	return ret;
 955}
 956
 957static ssize_t store(struct kobject *kobj, struct attribute *attr,
 958		     const char *buf, size_t count)
 959{
 960	struct cpufreq_policy *policy = to_policy(kobj);
 961	struct freq_attr *fattr = to_attr(attr);
 962	ssize_t ret = -EINVAL;
 963
 964	if (!fattr->store)
 965		return -EIO;
 
 
 
 
 
 966
 967	/*
 968	 * cpus_read_trylock() is used here to work around a circular lock
 969	 * dependency problem with respect to the cpufreq_register_driver().
 970	 */
 971	if (!cpus_read_trylock())
 972		return -EBUSY;
 973
 974	if (cpu_online(policy->cpu)) {
 975		down_write(&policy->rwsem);
 976		ret = fattr->store(policy, buf, count);
 977		up_write(&policy->rwsem);
 978	}
 
 
 979
 980	cpus_read_unlock();
 
 
 981
 982	return ret;
 983}
 984
 985static void cpufreq_sysfs_release(struct kobject *kobj)
 986{
 987	struct cpufreq_policy *policy = to_policy(kobj);
 988	pr_debug("last reference is dropped\n");
 989	complete(&policy->kobj_unregister);
 990}
 991
 992static const struct sysfs_ops sysfs_ops = {
 993	.show	= show,
 994	.store	= store,
 995};
 996
 997static struct kobj_type ktype_cpufreq = {
 998	.sysfs_ops	= &sysfs_ops,
 999	.default_attrs	= default_attrs,
1000	.release	= cpufreq_sysfs_release,
1001};
1002
1003static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1004{
1005	struct device *dev = get_cpu_device(cpu);
1006
1007	if (unlikely(!dev))
1008		return;
 
 
 
1009
1010	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1011		return;
 
1012
1013	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1014	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1015		dev_err(dev, "cpufreq symlink creation failed\n");
 
1016}
 
1017
1018static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1019				   struct device *dev)
1020{
1021	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1022	sysfs_remove_link(&dev->kobj, "cpufreq");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1023}
1024
1025static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
 
1026{
1027	struct freq_attr **drv_attr;
1028	int ret = 0;
1029
 
 
 
 
 
 
1030	/* set up files for this cpu device */
1031	drv_attr = cpufreq_driver->attr;
1032	while (drv_attr && *drv_attr) {
1033		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1034		if (ret)
1035			return ret;
1036		drv_attr++;
1037	}
1038	if (cpufreq_driver->get) {
1039		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1040		if (ret)
1041			return ret;
 
 
 
 
 
1042	}
1043
1044	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1045	if (ret)
1046		return ret;
1047
1048	if (cpufreq_driver->bios_limit) {
1049		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1050		if (ret)
1051			return ret;
1052	}
1053
1054	return 0;
 
 
 
 
 
 
 
 
 
1055}
1056
1057static int cpufreq_init_policy(struct cpufreq_policy *policy)
1058{
1059	struct cpufreq_governor *gov = NULL;
1060	unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1061	int ret;
 
 
1062
1063	if (has_target()) {
1064		/* Update policy governor to the one used before hotplug. */
1065		gov = get_governor(policy->last_governor);
1066		if (gov) {
1067			pr_debug("Restoring governor %s for cpu %d\n",
1068				 gov->name, policy->cpu);
1069		} else {
1070			gov = get_governor(default_governor);
1071		}
1072
1073		if (!gov) {
1074			gov = cpufreq_default_governor();
1075			__module_get(gov->owner);
1076		}
1077
1078	} else {
 
 
1079
1080		/* Use the default policy if there is no last_policy. */
1081		if (policy->last_policy) {
1082			pol = policy->last_policy;
1083		} else {
1084			pol = cpufreq_parse_policy(default_governor);
1085			/*
1086			 * In case the default governor is neither "performance"
1087			 * nor "powersave", fall back to the initial policy
1088			 * value set by the driver.
1089			 */
1090			if (pol == CPUFREQ_POLICY_UNKNOWN)
1091				pol = policy->policy;
1092		}
1093		if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1094		    pol != CPUFREQ_POLICY_POWERSAVE)
1095			return -ENODATA;
1096	}
1097
1098	ret = cpufreq_set_policy(policy, gov, pol);
1099	if (gov)
1100		module_put(gov->owner);
1101
1102	return ret;
1103}
1104
1105static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
 
 
1106{
1107	int ret = 0;
 
1108
1109	/* Has this CPU been taken care of already? */
1110	if (cpumask_test_cpu(cpu, policy->cpus))
1111		return 0;
 
 
 
 
1112
1113	down_write(&policy->rwsem);
1114	if (has_target())
1115		cpufreq_stop_governor(policy);
1116
1117	cpumask_set_cpu(cpu, policy->cpus);
 
 
1118
1119	if (has_target()) {
1120		ret = cpufreq_start_governor(policy);
1121		if (ret)
1122			pr_err("%s: Failed to start governor\n", __func__);
1123	}
1124	up_write(&policy->rwsem);
1125	return ret;
1126}
1127
1128void refresh_frequency_limits(struct cpufreq_policy *policy)
1129{
1130	if (!policy_is_inactive(policy)) {
1131		pr_debug("updating policy for CPU %u\n", policy->cpu);
1132
1133		cpufreq_set_policy(policy, policy->governor, policy->policy);
 
 
 
1134	}
1135}
1136EXPORT_SYMBOL(refresh_frequency_limits);
1137
1138static void handle_update(struct work_struct *work)
1139{
1140	struct cpufreq_policy *policy =
1141		container_of(work, struct cpufreq_policy, update);
1142
1143	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1144	down_write(&policy->rwsem);
1145	refresh_frequency_limits(policy);
1146	up_write(&policy->rwsem);
1147}
 
1148
1149static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1150				void *data)
1151{
1152	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
 
1153
1154	schedule_work(&policy->update);
1155	return 0;
1156}
1157
1158static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1159				void *data)
1160{
1161	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1162
1163	schedule_work(&policy->update);
1164	return 0;
1165}
1166
1167static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1168{
1169	struct kobject *kobj;
1170	struct completion *cmp;
1171
1172	down_write(&policy->rwsem);
1173	cpufreq_stats_free_table(policy);
1174	kobj = &policy->kobj;
1175	cmp = &policy->kobj_unregister;
1176	up_write(&policy->rwsem);
1177	kobject_put(kobj);
1178
1179	/*
1180	 * We need to make sure that the underlying kobj is
1181	 * actually not referenced anymore by anybody before we
1182	 * proceed with unloading.
1183	 */
1184	pr_debug("waiting for dropping of refcount\n");
1185	wait_for_completion(cmp);
1186	pr_debug("wait complete\n");
1187}
1188
1189static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1190{
1191	struct cpufreq_policy *policy;
1192	struct device *dev = get_cpu_device(cpu);
1193	int ret;
1194
1195	if (!dev)
1196		return NULL;
1197
1198	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1199	if (!policy)
1200		return NULL;
1201
1202	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1203		goto err_free_policy;
1204
1205	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1206		goto err_free_cpumask;
1207
1208	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1209		goto err_free_rcpumask;
1210
1211	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1212				   cpufreq_global_kobject, "policy%u", cpu);
1213	if (ret) {
1214		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1215		/*
1216		 * The entire policy object will be freed below, but the extra
1217		 * memory allocated for the kobject name needs to be freed by
1218		 * releasing the kobject.
1219		 */
1220		kobject_put(&policy->kobj);
1221		goto err_free_real_cpus;
1222	}
1223
1224	freq_constraints_init(&policy->constraints);
1225
1226	policy->nb_min.notifier_call = cpufreq_notifier_min;
1227	policy->nb_max.notifier_call = cpufreq_notifier_max;
1228
1229	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1230				    &policy->nb_min);
1231	if (ret) {
1232		dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1233			ret, cpumask_pr_args(policy->cpus));
1234		goto err_kobj_remove;
1235	}
1236
1237	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1238				    &policy->nb_max);
1239	if (ret) {
1240		dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1241			ret, cpumask_pr_args(policy->cpus));
1242		goto err_min_qos_notifier;
1243	}
1244
1245	INIT_LIST_HEAD(&policy->policy_list);
1246	init_rwsem(&policy->rwsem);
1247	spin_lock_init(&policy->transition_lock);
1248	init_waitqueue_head(&policy->transition_wait);
1249	init_completion(&policy->kobj_unregister);
1250	INIT_WORK(&policy->update, handle_update);
1251
1252	policy->cpu = cpu;
1253	return policy;
1254
1255err_min_qos_notifier:
1256	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1257				 &policy->nb_min);
1258err_kobj_remove:
1259	cpufreq_policy_put_kobj(policy);
1260err_free_real_cpus:
1261	free_cpumask_var(policy->real_cpus);
1262err_free_rcpumask:
1263	free_cpumask_var(policy->related_cpus);
1264err_free_cpumask:
1265	free_cpumask_var(policy->cpus);
1266err_free_policy:
1267	kfree(policy);
1268
1269	return NULL;
1270}
1271
1272static void cpufreq_policy_free(struct cpufreq_policy *policy)
1273{
1274	unsigned long flags;
1275	int cpu;
 
 
 
 
 
 
 
 
 
1276
1277	/* Remove policy from list */
1278	write_lock_irqsave(&cpufreq_driver_lock, flags);
1279	list_del(&policy->policy_list);
 
 
 
 
 
 
1280
1281	for_each_cpu(cpu, policy->related_cpus)
1282		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1283	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 
 
1284
1285	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1286				 &policy->nb_max);
1287	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1288				 &policy->nb_min);
1289
1290	/* Cancel any pending policy->update work before freeing the policy. */
1291	cancel_work_sync(&policy->update);
1292
1293	if (policy->max_freq_req) {
1294		/*
1295		 * CPUFREQ_CREATE_POLICY notification is sent only after
1296		 * successfully adding max_freq_req request.
1297		 */
1298		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1299					     CPUFREQ_REMOVE_POLICY, policy);
1300		freq_qos_remove_request(policy->max_freq_req);
1301	}
1302
1303	freq_qos_remove_request(policy->min_freq_req);
1304	kfree(policy->min_freq_req);
1305
1306	cpufreq_policy_put_kobj(policy);
1307	free_cpumask_var(policy->real_cpus);
1308	free_cpumask_var(policy->related_cpus);
1309	free_cpumask_var(policy->cpus);
1310	kfree(policy);
1311}
1312
1313static int cpufreq_online(unsigned int cpu)
1314{
 
 
1315	struct cpufreq_policy *policy;
1316	bool new_policy;
1317	unsigned long flags;
1318	unsigned int j;
1319	int ret;
 
 
1320
1321	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
 
1322
1323	/* Check if this CPU already has a policy to manage it */
1324	policy = per_cpu(cpufreq_cpu_data, cpu);
1325	if (policy) {
1326		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1327		if (!policy_is_inactive(policy))
1328			return cpufreq_add_policy_cpu(policy, cpu);
1329
1330		/* This is the only online CPU for the policy.  Start over. */
1331		new_policy = false;
1332		down_write(&policy->rwsem);
1333		policy->cpu = cpu;
1334		policy->governor = NULL;
1335		up_write(&policy->rwsem);
1336	} else {
1337		new_policy = true;
1338		policy = cpufreq_policy_alloc(cpu);
1339		if (!policy)
1340			return -ENOMEM;
1341	}
 
 
 
 
1342
1343	if (!new_policy && cpufreq_driver->online) {
1344		ret = cpufreq_driver->online(policy);
1345		if (ret) {
1346			pr_debug("%s: %d: initialization failed\n", __func__,
1347				 __LINE__);
1348			goto out_exit_policy;
 
 
 
1349		}
 
 
 
1350
1351		/* Recover policy->cpus using related_cpus */
1352		cpumask_copy(policy->cpus, policy->related_cpus);
1353	} else {
1354		cpumask_copy(policy->cpus, cpumask_of(cpu));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1355
1356		/*
1357		 * Call driver. From then on the cpufreq must be able
1358		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1359		 */
1360		ret = cpufreq_driver->init(policy);
1361		if (ret) {
1362			pr_debug("%s: %d: initialization failed\n", __func__,
1363				 __LINE__);
1364			goto out_free_policy;
1365		}
1366
1367		ret = cpufreq_table_validate_and_sort(policy);
1368		if (ret)
1369			goto out_exit_policy;
1370
1371		/* related_cpus should at least include policy->cpus. */
1372		cpumask_copy(policy->related_cpus, policy->cpus);
 
 
 
 
 
1373	}
1374
1375	down_write(&policy->rwsem);
 
 
1376	/*
1377	 * affected cpus must always be the one, which are online. We aren't
1378	 * managing offline cpus here.
1379	 */
1380	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1381
1382	if (new_policy) {
1383		for_each_cpu(j, policy->related_cpus) {
1384			per_cpu(cpufreq_cpu_data, j) = policy;
1385			add_cpu_dev_symlink(policy, j);
1386		}
1387
1388		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1389					       GFP_KERNEL);
1390		if (!policy->min_freq_req)
1391			goto out_destroy_policy;
1392
1393		ret = freq_qos_add_request(&policy->constraints,
1394					   policy->min_freq_req, FREQ_QOS_MIN,
1395					   policy->min);
1396		if (ret < 0) {
1397			/*
1398			 * So we don't call freq_qos_remove_request() for an
1399			 * uninitialized request.
1400			 */
1401			kfree(policy->min_freq_req);
1402			policy->min_freq_req = NULL;
1403			goto out_destroy_policy;
1404		}
1405
1406		/*
1407		 * This must be initialized right here to avoid calling
1408		 * freq_qos_remove_request() on uninitialized request in case
1409		 * of errors.
1410		 */
1411		policy->max_freq_req = policy->min_freq_req + 1;
1412
1413		ret = freq_qos_add_request(&policy->constraints,
1414					   policy->max_freq_req, FREQ_QOS_MAX,
1415					   policy->max);
1416		if (ret < 0) {
1417			policy->max_freq_req = NULL;
1418			goto out_destroy_policy;
1419		}
1420
1421		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1422				CPUFREQ_CREATE_POLICY, policy);
1423	}
1424
1425	if (cpufreq_driver->get && has_target()) {
1426		policy->cur = cpufreq_driver->get(policy->cpu);
1427		if (!policy->cur) {
1428			pr_err("%s: ->get() failed\n", __func__);
1429			goto out_destroy_policy;
1430		}
1431	}
1432
1433	/*
1434	 * Sometimes boot loaders set CPU frequency to a value outside of
1435	 * frequency table present with cpufreq core. In such cases CPU might be
1436	 * unstable if it has to run on that frequency for long duration of time
1437	 * and so its better to set it to a frequency which is specified in
1438	 * freq-table. This also makes cpufreq stats inconsistent as
1439	 * cpufreq-stats would fail to register because current frequency of CPU
1440	 * isn't found in freq-table.
1441	 *
1442	 * Because we don't want this change to effect boot process badly, we go
1443	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1444	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1445	 * is initialized to zero).
1446	 *
1447	 * We are passing target-freq as "policy->cur - 1" otherwise
1448	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1449	 * equal to target-freq.
1450	 */
1451	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1452	    && has_target()) {
1453		/* Are we running at unknown frequency ? */
1454		ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1455		if (ret == -EINVAL) {
1456			/* Warn user and fix it */
1457			pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1458				__func__, policy->cpu, policy->cur);
1459			ret = __cpufreq_driver_target(policy, policy->cur - 1,
1460				CPUFREQ_RELATION_L);
1461
1462			/*
1463			 * Reaching here after boot in a few seconds may not
1464			 * mean that system will remain stable at "unknown"
1465			 * frequency for longer duration. Hence, a BUG_ON().
1466			 */
1467			BUG_ON(ret);
1468			pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1469				__func__, policy->cpu, policy->cur);
1470		}
1471	}
1472
1473	if (new_policy) {
1474		ret = cpufreq_add_dev_interface(policy);
 
 
 
1475		if (ret)
1476			goto out_destroy_policy;
 
 
 
1477
1478		cpufreq_stats_create_table(policy);
 
 
1479
1480		write_lock_irqsave(&cpufreq_driver_lock, flags);
1481		list_add(&policy->policy_list, &cpufreq_policy_list);
1482		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1483	}
1484
1485	ret = cpufreq_init_policy(policy);
1486	if (ret) {
1487		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1488		       __func__, cpu, ret);
1489		goto out_destroy_policy;
1490	}
1491
1492	up_write(&policy->rwsem);
1493
1494	kobject_uevent(&policy->kobj, KOBJ_ADD);
1495
1496	/* Callback for handling stuff after policy is ready */
1497	if (cpufreq_driver->ready)
1498		cpufreq_driver->ready(policy);
1499
1500	if (cpufreq_thermal_control_enabled(cpufreq_driver))
1501		policy->cdev = of_cpufreq_cooling_register(policy);
1502
1503	pr_debug("initialization complete\n");
1504
1505	return 0;
1506
1507out_destroy_policy:
1508	for_each_cpu(j, policy->real_cpus)
1509		remove_cpu_dev_symlink(policy, get_cpu_device(j));
1510
1511	up_write(&policy->rwsem);
 
1512
1513out_exit_policy:
1514	if (cpufreq_driver->exit)
1515		cpufreq_driver->exit(policy);
 
 
 
 
 
 
 
 
 
 
1516
1517out_free_policy:
1518	cpufreq_policy_free(policy);
1519	return ret;
1520}
1521
1522/**
1523 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1524 * @dev: CPU device.
1525 * @sif: Subsystem interface structure pointer (not used)
 
 
 
 
1526 */
1527static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1528{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1529	struct cpufreq_policy *policy;
1530	unsigned cpu = dev->id;
1531	int ret;
1532
1533	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1534
1535	if (cpu_online(cpu)) {
1536		ret = cpufreq_online(cpu);
1537		if (ret)
 
1538			return ret;
 
1539	}
1540
1541	/* Create sysfs link on CPU registration */
1542	policy = per_cpu(cpufreq_cpu_data, cpu);
1543	if (policy)
1544		add_cpu_dev_symlink(policy, cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1545
1546	return 0;
1547}
1548
1549static int cpufreq_offline(unsigned int cpu)
 
1550{
 
 
 
1551	struct cpufreq_policy *policy;
1552	int ret;
1553
1554	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
 
 
1555
1556	policy = cpufreq_cpu_get_raw(cpu);
1557	if (!policy) {
1558		pr_debug("%s: No cpu_data found\n", __func__);
1559		return 0;
1560	}
1561
1562	down_write(&policy->rwsem);
1563	if (has_target())
1564		cpufreq_stop_governor(policy);
1565
1566	cpumask_clear_cpu(cpu, policy->cpus);
1567
1568	if (policy_is_inactive(policy)) {
1569		if (has_target())
1570			strncpy(policy->last_governor, policy->governor->name,
1571				CPUFREQ_NAME_LEN);
1572		else
1573			policy->last_policy = policy->policy;
1574	} else if (cpu == policy->cpu) {
1575		/* Nominate new CPU */
1576		policy->cpu = cpumask_any(policy->cpus);
1577	}
1578
1579	/* Start governor again for active policy */
1580	if (!policy_is_inactive(policy)) {
1581		if (has_target()) {
1582			ret = cpufreq_start_governor(policy);
1583			if (ret)
1584				pr_err("%s: Failed to start governor\n", __func__);
 
 
 
 
1585		}
1586
1587		goto unlock;
1588	}
1589
1590	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1591		cpufreq_cooling_unregister(policy->cdev);
1592		policy->cdev = NULL;
1593	}
 
 
 
1594
1595	if (cpufreq_driver->stop_cpu)
1596		cpufreq_driver->stop_cpu(policy);
 
 
1597
1598	if (has_target())
1599		cpufreq_exit_governor(policy);
 
 
 
 
1600
1601	/*
1602	 * Perform the ->offline() during light-weight tear-down, as
1603	 * that allows fast recovery when the CPU comes back.
1604	 */
1605	if (cpufreq_driver->offline) {
1606		cpufreq_driver->offline(policy);
1607	} else if (cpufreq_driver->exit) {
1608		cpufreq_driver->exit(policy);
1609		policy->freq_table = NULL;
1610	}
1611
1612unlock:
1613	up_write(&policy->rwsem);
1614	return 0;
1615}
1616
1617/*
1618 * cpufreq_remove_dev - remove a CPU device
1619 *
1620 * Removes the cpufreq interface for a CPU device.
1621 */
1622static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1623{
1624	unsigned int cpu = dev->id;
1625	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1626
1627	if (!policy)
1628		return;
1629
1630	if (cpu_online(cpu))
1631		cpufreq_offline(cpu);
1632
1633	cpumask_clear_cpu(cpu, policy->real_cpus);
1634	remove_cpu_dev_symlink(policy, dev);
1635
1636	if (cpumask_empty(policy->real_cpus)) {
1637		/* We did light-weight exit earlier, do full tear down now */
1638		if (cpufreq_driver->offline)
1639			cpufreq_driver->exit(policy);
1640
1641		cpufreq_policy_free(policy);
1642	}
 
 
 
 
 
1643}
1644
1645/**
1646 *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1647 *	in deep trouble.
1648 *	@policy: policy managing CPUs
 
1649 *	@new_freq: CPU frequency the CPU actually runs at
1650 *
1651 *	We adjust to current frequency first, and need to clean up later.
1652 *	So either call to cpufreq_update_policy() or schedule handle_update()).
1653 */
1654static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1655				unsigned int new_freq)
1656{
 
1657	struct cpufreq_freqs freqs;
 
1658
1659	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1660		 policy->cur, new_freq);
1661
1662	freqs.old = policy->cur;
1663	freqs.new = new_freq;
1664
 
 
 
 
1665	cpufreq_freq_transition_begin(policy, &freqs);
1666	cpufreq_freq_transition_end(policy, &freqs, 0);
1667}
1668
1669static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1670{
1671	unsigned int new_freq;
1672
1673	new_freq = cpufreq_driver->get(policy->cpu);
1674	if (!new_freq)
1675		return 0;
1676
1677	/*
1678	 * If fast frequency switching is used with the given policy, the check
1679	 * against policy->cur is pointless, so skip it in that case.
1680	 */
1681	if (policy->fast_switch_enabled || !has_target())
1682		return new_freq;
1683
1684	if (policy->cur != new_freq) {
1685		cpufreq_out_of_sync(policy, new_freq);
1686		if (update)
1687			schedule_work(&policy->update);
1688	}
1689
1690	return new_freq;
1691}
1692
1693/**
1694 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1695 * @cpu: CPU number
1696 *
1697 * This is the last known freq, without actually getting it from the driver.
1698 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1699 */
1700unsigned int cpufreq_quick_get(unsigned int cpu)
1701{
1702	struct cpufreq_policy *policy;
1703	unsigned int ret_freq = 0;
1704	unsigned long flags;
1705
1706	read_lock_irqsave(&cpufreq_driver_lock, flags);
1707
1708	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1709		ret_freq = cpufreq_driver->get(cpu);
1710		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1711		return ret_freq;
1712	}
1713
1714	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1715
1716	policy = cpufreq_cpu_get(cpu);
1717	if (policy) {
1718		ret_freq = policy->cur;
1719		cpufreq_cpu_put(policy);
1720	}
1721
1722	return ret_freq;
1723}
1724EXPORT_SYMBOL(cpufreq_quick_get);
1725
1726/**
1727 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1728 * @cpu: CPU number
1729 *
1730 * Just return the max possible frequency for a given CPU.
1731 */
1732unsigned int cpufreq_quick_get_max(unsigned int cpu)
1733{
1734	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1735	unsigned int ret_freq = 0;
1736
1737	if (policy) {
1738		ret_freq = policy->max;
1739		cpufreq_cpu_put(policy);
1740	}
1741
1742	return ret_freq;
1743}
1744EXPORT_SYMBOL(cpufreq_quick_get_max);
1745
1746/**
1747 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1748 * @cpu: CPU number
1749 *
1750 * The default return value is the max_freq field of cpuinfo.
1751 */
1752__weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1753{
1754	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1755	unsigned int ret_freq = 0;
1756
1757	if (policy) {
1758		ret_freq = policy->cpuinfo.max_freq;
1759		cpufreq_cpu_put(policy);
 
 
 
 
 
 
 
 
 
 
1760	}
1761
1762	return ret_freq;
1763}
1764EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1765
1766static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1767{
1768	if (unlikely(policy_is_inactive(policy)))
1769		return 0;
1770
1771	return cpufreq_verify_current_freq(policy, true);
1772}
1773
1774/**
1775 * cpufreq_get - get the current CPU frequency (in kHz)
1776 * @cpu: CPU number
1777 *
1778 * Get the CPU current (static) CPU frequency
1779 */
1780unsigned int cpufreq_get(unsigned int cpu)
1781{
1782	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1783	unsigned int ret_freq = 0;
1784
1785	if (policy) {
1786		down_read(&policy->rwsem);
1787		if (cpufreq_driver->get)
1788			ret_freq = __cpufreq_get(policy);
1789		up_read(&policy->rwsem);
1790
1791		cpufreq_cpu_put(policy);
1792	}
1793
1794	return ret_freq;
1795}
1796EXPORT_SYMBOL(cpufreq_get);
1797
1798static struct subsys_interface cpufreq_interface = {
1799	.name		= "cpufreq",
1800	.subsys		= &cpu_subsys,
1801	.add_dev	= cpufreq_add_dev,
1802	.remove_dev	= cpufreq_remove_dev,
1803};
1804
1805/*
1806 * In case platform wants some specific frequency to be configured
1807 * during suspend..
1808 */
1809int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1810{
1811	int ret;
1812
1813	if (!policy->suspend_freq) {
1814		pr_debug("%s: suspend_freq not defined\n", __func__);
1815		return 0;
1816	}
1817
1818	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1819			policy->suspend_freq);
1820
1821	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1822			CPUFREQ_RELATION_H);
1823	if (ret)
1824		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1825				__func__, policy->suspend_freq, ret);
1826
1827	return ret;
1828}
1829EXPORT_SYMBOL(cpufreq_generic_suspend);
1830
1831/**
1832 * cpufreq_suspend() - Suspend CPUFreq governors
1833 *
1834 * Called during system wide Suspend/Hibernate cycles for suspending governors
1835 * as some platforms can't change frequency after this point in suspend cycle.
1836 * Because some of the devices (like: i2c, regulators, etc) they use for
1837 * changing frequency are suspended quickly after this point.
1838 */
1839void cpufreq_suspend(void)
1840{
1841	struct cpufreq_policy *policy;
1842
1843	if (!cpufreq_driver)
1844		return;
1845
1846	if (!has_target() && !cpufreq_driver->suspend)
1847		goto suspend;
1848
1849	pr_debug("%s: Suspending Governors\n", __func__);
1850
1851	for_each_active_policy(policy) {
1852		if (has_target()) {
1853			down_write(&policy->rwsem);
1854			cpufreq_stop_governor(policy);
1855			up_write(&policy->rwsem);
1856		}
1857
1858		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1859			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1860				cpufreq_driver->name);
1861	}
1862
1863suspend:
1864	cpufreq_suspended = true;
1865}
1866
1867/**
1868 * cpufreq_resume() - Resume CPUFreq governors
1869 *
1870 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1871 * are suspended with cpufreq_suspend().
1872 */
1873void cpufreq_resume(void)
1874{
1875	struct cpufreq_policy *policy;
1876	int ret;
1877
1878	if (!cpufreq_driver)
1879		return;
1880
1881	if (unlikely(!cpufreq_suspended))
1882		return;
1883
 
 
1884	cpufreq_suspended = false;
1885
1886	if (!has_target() && !cpufreq_driver->resume)
1887		return;
1888
1889	pr_debug("%s: Resuming Governors\n", __func__);
1890
1891	for_each_active_policy(policy) {
1892		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1893			pr_err("%s: Failed to resume driver: %p\n", __func__,
1894				policy);
1895		} else if (has_target()) {
1896			down_write(&policy->rwsem);
1897			ret = cpufreq_start_governor(policy);
1898			up_write(&policy->rwsem);
1899
1900			if (ret)
1901				pr_err("%s: Failed to start governor for policy: %p\n",
1902				       __func__, policy);
1903		}
 
 
 
1904	}
1905}
1906
1907/**
1908 *	cpufreq_get_current_driver - return current driver's name
1909 *
1910 *	Return the name string of the currently loaded cpufreq driver
1911 *	or NULL, if none.
1912 */
1913const char *cpufreq_get_current_driver(void)
1914{
1915	if (cpufreq_driver)
1916		return cpufreq_driver->name;
1917
1918	return NULL;
1919}
1920EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1921
1922/**
1923 *	cpufreq_get_driver_data - return current driver data
1924 *
1925 *	Return the private data of the currently loaded cpufreq
1926 *	driver, or NULL if no cpufreq driver is loaded.
1927 */
1928void *cpufreq_get_driver_data(void)
1929{
1930	if (cpufreq_driver)
1931		return cpufreq_driver->driver_data;
1932
1933	return NULL;
1934}
1935EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1936
1937/*********************************************************************
1938 *                     NOTIFIER LISTS INTERFACE                      *
1939 *********************************************************************/
1940
1941/**
1942 *	cpufreq_register_notifier - register a driver with cpufreq
1943 *	@nb: notifier function to register
1944 *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1945 *
1946 *	Add a driver to one of two lists: either a list of drivers that
1947 *      are notified about clock rate changes (once before and once after
1948 *      the transition), or a list of drivers that are notified about
1949 *      changes in cpufreq policy.
1950 *
1951 *	This function may sleep, and has the same return conditions as
1952 *	blocking_notifier_chain_register.
1953 */
1954int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1955{
1956	int ret;
1957
1958	if (cpufreq_disabled())
1959		return -EINVAL;
1960
 
 
1961	switch (list) {
1962	case CPUFREQ_TRANSITION_NOTIFIER:
1963		mutex_lock(&cpufreq_fast_switch_lock);
1964
1965		if (cpufreq_fast_switch_count > 0) {
1966			mutex_unlock(&cpufreq_fast_switch_lock);
1967			return -EBUSY;
1968		}
1969		ret = srcu_notifier_chain_register(
1970				&cpufreq_transition_notifier_list, nb);
1971		if (!ret)
1972			cpufreq_fast_switch_count--;
1973
1974		mutex_unlock(&cpufreq_fast_switch_lock);
1975		break;
1976	case CPUFREQ_POLICY_NOTIFIER:
1977		ret = blocking_notifier_chain_register(
1978				&cpufreq_policy_notifier_list, nb);
1979		break;
1980	default:
1981		ret = -EINVAL;
1982	}
1983
1984	return ret;
1985}
1986EXPORT_SYMBOL(cpufreq_register_notifier);
1987
1988/**
1989 *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1990 *	@nb: notifier block to be unregistered
1991 *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1992 *
1993 *	Remove a driver from the CPU frequency notifier list.
1994 *
1995 *	This function may sleep, and has the same return conditions as
1996 *	blocking_notifier_chain_unregister.
1997 */
1998int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1999{
2000	int ret;
2001
2002	if (cpufreq_disabled())
2003		return -EINVAL;
2004
2005	switch (list) {
2006	case CPUFREQ_TRANSITION_NOTIFIER:
2007		mutex_lock(&cpufreq_fast_switch_lock);
2008
2009		ret = srcu_notifier_chain_unregister(
2010				&cpufreq_transition_notifier_list, nb);
2011		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2012			cpufreq_fast_switch_count++;
2013
2014		mutex_unlock(&cpufreq_fast_switch_lock);
2015		break;
2016	case CPUFREQ_POLICY_NOTIFIER:
2017		ret = blocking_notifier_chain_unregister(
2018				&cpufreq_policy_notifier_list, nb);
2019		break;
2020	default:
2021		ret = -EINVAL;
2022	}
2023
2024	return ret;
2025}
2026EXPORT_SYMBOL(cpufreq_unregister_notifier);
2027
2028
2029/*********************************************************************
2030 *                              GOVERNORS                            *
2031 *********************************************************************/
2032
2033/**
2034 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2035 * @policy: cpufreq policy to switch the frequency for.
2036 * @target_freq: New frequency to set (may be approximate).
2037 *
2038 * Carry out a fast frequency switch without sleeping.
2039 *
2040 * The driver's ->fast_switch() callback invoked by this function must be
2041 * suitable for being called from within RCU-sched read-side critical sections
2042 * and it is expected to select the minimum available frequency greater than or
2043 * equal to @target_freq (CPUFREQ_RELATION_L).
2044 *
2045 * This function must not be called if policy->fast_switch_enabled is unset.
2046 *
2047 * Governors calling this function must guarantee that it will never be invoked
2048 * twice in parallel for the same policy and that it will never be called in
2049 * parallel with either ->target() or ->target_index() for the same policy.
2050 *
2051 * Returns the actual frequency set for the CPU.
2052 *
2053 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2054 * error condition, the hardware configuration must be preserved.
2055 */
2056unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2057					unsigned int target_freq)
2058{
2059	target_freq = clamp_val(target_freq, policy->min, policy->max);
2060
2061	return cpufreq_driver->fast_switch(policy, target_freq);
2062}
2063EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2064
2065/* Must set freqs->new to intermediate frequency */
2066static int __target_intermediate(struct cpufreq_policy *policy,
2067				 struct cpufreq_freqs *freqs, int index)
2068{
2069	int ret;
2070
2071	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2072
2073	/* We don't need to switch to intermediate freq */
2074	if (!freqs->new)
2075		return 0;
2076
2077	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2078		 __func__, policy->cpu, freqs->old, freqs->new);
2079
2080	cpufreq_freq_transition_begin(policy, freqs);
2081	ret = cpufreq_driver->target_intermediate(policy, index);
2082	cpufreq_freq_transition_end(policy, freqs, ret);
2083
2084	if (ret)
2085		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2086		       __func__, ret);
2087
2088	return ret;
2089}
2090
2091static int __target_index(struct cpufreq_policy *policy, int index)
2092{
2093	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2094	unsigned int intermediate_freq = 0;
2095	unsigned int newfreq = policy->freq_table[index].frequency;
2096	int retval = -EINVAL;
2097	bool notify;
2098
2099	if (newfreq == policy->cur)
2100		return 0;
2101
2102	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2103	if (notify) {
2104		/* Handle switching to intermediate frequency */
2105		if (cpufreq_driver->get_intermediate) {
2106			retval = __target_intermediate(policy, &freqs, index);
2107			if (retval)
2108				return retval;
2109
2110			intermediate_freq = freqs.new;
2111			/* Set old freq to intermediate */
2112			if (intermediate_freq)
2113				freqs.old = freqs.new;
2114		}
2115
2116		freqs.new = newfreq;
2117		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2118			 __func__, policy->cpu, freqs.old, freqs.new);
2119
2120		cpufreq_freq_transition_begin(policy, &freqs);
2121	}
2122
2123	retval = cpufreq_driver->target_index(policy, index);
2124	if (retval)
2125		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2126		       retval);
2127
2128	if (notify) {
2129		cpufreq_freq_transition_end(policy, &freqs, retval);
2130
2131		/*
2132		 * Failed after setting to intermediate freq? Driver should have
2133		 * reverted back to initial frequency and so should we. Check
2134		 * here for intermediate_freq instead of get_intermediate, in
2135		 * case we haven't switched to intermediate freq at all.
2136		 */
2137		if (unlikely(retval && intermediate_freq)) {
2138			freqs.old = intermediate_freq;
2139			freqs.new = policy->restore_freq;
2140			cpufreq_freq_transition_begin(policy, &freqs);
2141			cpufreq_freq_transition_end(policy, &freqs, 0);
2142		}
2143	}
2144
2145	return retval;
2146}
2147
2148int __cpufreq_driver_target(struct cpufreq_policy *policy,
2149			    unsigned int target_freq,
2150			    unsigned int relation)
2151{
 
2152	unsigned int old_target_freq = target_freq;
2153	int index;
2154
2155	if (cpufreq_disabled())
2156		return -ENODEV;
2157
2158	/* Make sure that target_freq is within supported range */
2159	target_freq = clamp_val(target_freq, policy->min, policy->max);
 
 
 
2160
2161	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2162		 policy->cpu, target_freq, relation, old_target_freq);
2163
2164	/*
2165	 * This might look like a redundant call as we are checking it again
2166	 * after finding index. But it is left intentionally for cases where
2167	 * exactly same freq is called again and so we can save on few function
2168	 * calls.
2169	 */
2170	if (target_freq == policy->cur)
2171		return 0;
2172
2173	/* Save last value to restore later on errors */
2174	policy->restore_freq = policy->cur;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2175
2176	if (cpufreq_driver->target)
2177		return cpufreq_driver->target(policy, target_freq, relation);
 
 
 
 
 
2178
2179	if (!cpufreq_driver->target_index)
2180		return -EINVAL;
2181
2182	index = cpufreq_frequency_table_target(policy, target_freq, relation);
 
 
 
2183
2184	return __target_index(policy, index);
 
 
 
 
 
2185}
2186EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2187
2188int cpufreq_driver_target(struct cpufreq_policy *policy,
2189			  unsigned int target_freq,
2190			  unsigned int relation)
2191{
2192	int ret;
2193
2194	down_write(&policy->rwsem);
2195
2196	ret = __cpufreq_driver_target(policy, target_freq, relation);
2197
2198	up_write(&policy->rwsem);
2199
2200	return ret;
2201}
2202EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2203
2204__weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2205{
2206	return NULL;
2207}
2208
2209static int cpufreq_init_governor(struct cpufreq_policy *policy)
 
2210{
2211	int ret;
2212
 
 
 
 
 
 
 
 
 
 
2213	/* Don't start any governor operations if we are entering suspend */
2214	if (cpufreq_suspended)
2215		return 0;
2216	/*
2217	 * Governor might not be initiated here if ACPI _PPC changed
2218	 * notification happened, so check it.
2219	 */
2220	if (!policy->governor)
2221		return -EINVAL;
2222
2223	/* Platform doesn't want dynamic frequency switching ? */
2224	if (policy->governor->dynamic_switching &&
2225	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2226		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2227
2228		if (gov) {
2229			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2230				policy->governor->name, gov->name);
2231			policy->governor = gov;
2232		} else {
2233			return -EINVAL;
2234		}
2235	}
2236
2237	if (!try_module_get(policy->governor->owner))
2238		return -EINVAL;
 
2239
2240	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
 
2241
2242	if (policy->governor->init) {
2243		ret = policy->governor->init(policy);
2244		if (ret) {
2245			module_put(policy->governor->owner);
2246			return ret;
2247		}
2248	}
2249
2250	return 0;
2251}
 
 
2252
2253static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2254{
2255	if (cpufreq_suspended || !policy->governor)
2256		return;
2257
2258	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2259
2260	if (policy->governor->exit)
2261		policy->governor->exit(policy);
2262
2263	module_put(policy->governor->owner);
2264}
2265
2266int cpufreq_start_governor(struct cpufreq_policy *policy)
2267{
2268	int ret;
2269
2270	if (cpufreq_suspended)
2271		return 0;
2272
2273	if (!policy->governor)
2274		return -EINVAL;
2275
2276	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2277
2278	if (cpufreq_driver->get)
2279		cpufreq_verify_current_freq(policy, false);
2280
2281	if (policy->governor->start) {
2282		ret = policy->governor->start(policy);
2283		if (ret)
2284			return ret;
2285	}
2286
2287	if (policy->governor->limits)
2288		policy->governor->limits(policy);
 
2289
2290	return 0;
2291}
2292
2293void cpufreq_stop_governor(struct cpufreq_policy *policy)
2294{
2295	if (cpufreq_suspended || !policy->governor)
2296		return;
2297
2298	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2299
2300	if (policy->governor->stop)
2301		policy->governor->stop(policy);
2302}
2303
2304static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2305{
2306	if (cpufreq_suspended || !policy->governor)
2307		return;
2308
2309	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2310
2311	if (policy->governor->limits)
2312		policy->governor->limits(policy);
2313}
2314
2315int cpufreq_register_governor(struct cpufreq_governor *governor)
2316{
2317	int err;
2318
2319	if (!governor)
2320		return -EINVAL;
2321
2322	if (cpufreq_disabled())
2323		return -ENODEV;
2324
2325	mutex_lock(&cpufreq_governor_mutex);
2326
 
2327	err = -EBUSY;
2328	if (!find_governor(governor->name)) {
2329		err = 0;
2330		list_add(&governor->governor_list, &cpufreq_governor_list);
2331	}
2332
2333	mutex_unlock(&cpufreq_governor_mutex);
2334	return err;
2335}
2336EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2337
2338void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2339{
2340	struct cpufreq_policy *policy;
2341	unsigned long flags;
2342
2343	if (!governor)
2344		return;
2345
2346	if (cpufreq_disabled())
2347		return;
2348
2349	/* clear last_governor for all inactive policies */
2350	read_lock_irqsave(&cpufreq_driver_lock, flags);
2351	for_each_inactive_policy(policy) {
2352		if (!strcmp(policy->last_governor, governor->name)) {
2353			policy->governor = NULL;
2354			strcpy(policy->last_governor, "\0");
2355		}
2356	}
2357	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2358
2359	mutex_lock(&cpufreq_governor_mutex);
2360	list_del(&governor->governor_list);
2361	mutex_unlock(&cpufreq_governor_mutex);
 
2362}
2363EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2364
2365
2366/*********************************************************************
2367 *                          POLICY INTERFACE                         *
2368 *********************************************************************/
2369
2370/**
2371 * cpufreq_get_policy - get the current cpufreq_policy
2372 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2373 *	is written
2374 * @cpu: CPU to find the policy for
2375 *
2376 * Reads the current cpufreq policy.
2377 */
2378int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2379{
2380	struct cpufreq_policy *cpu_policy;
2381	if (!policy)
2382		return -EINVAL;
2383
2384	cpu_policy = cpufreq_cpu_get(cpu);
2385	if (!cpu_policy)
2386		return -EINVAL;
2387
2388	memcpy(policy, cpu_policy, sizeof(*policy));
2389
2390	cpufreq_cpu_put(cpu_policy);
2391	return 0;
2392}
2393EXPORT_SYMBOL(cpufreq_get_policy);
2394
2395/**
2396 * cpufreq_set_policy - Modify cpufreq policy parameters.
2397 * @policy: Policy object to modify.
2398 * @new_gov: Policy governor pointer.
2399 * @new_pol: Policy value (for drivers with built-in governors).
2400 *
2401 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2402 * limits to be set for the policy, update @policy with the verified limits
2403 * values and either invoke the driver's ->setpolicy() callback (if present) or
2404 * carry out a governor update for @policy.  That is, run the current governor's
2405 * ->limits() callback (if @new_gov points to the same object as the one in
2406 * @policy) or replace the governor for @policy with @new_gov.
2407 *
2408 * The cpuinfo part of @policy is not updated by this function.
2409 */
2410static int cpufreq_set_policy(struct cpufreq_policy *policy,
2411			      struct cpufreq_governor *new_gov,
2412			      unsigned int new_pol)
2413{
2414	struct cpufreq_policy_data new_data;
2415	struct cpufreq_governor *old_gov;
2416	int ret;
2417
2418	memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2419	new_data.freq_table = policy->freq_table;
2420	new_data.cpu = policy->cpu;
2421	/*
2422	 * PM QoS framework collects all the requests from users and provide us
2423	 * the final aggregated value here.
2424	 */
2425	new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2426	new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
 
 
 
2427
2428	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2429		 new_data.cpu, new_data.min, new_data.max);
 
 
 
 
 
2430
2431	/*
2432	 * Verify that the CPU speed can be set within these limits and make sure
2433	 * that min <= max.
2434	 */
2435	ret = cpufreq_driver->verify(&new_data);
2436	if (ret)
2437		return ret;
2438
2439	policy->min = new_data.min;
2440	policy->max = new_data.max;
2441	trace_cpu_frequency_limits(policy);
2442
2443	policy->cached_target_freq = UINT_MAX;
 
2444
2445	pr_debug("new min and max freqs are %u - %u kHz\n",
2446		 policy->min, policy->max);
2447
2448	if (cpufreq_driver->setpolicy) {
2449		policy->policy = new_pol;
2450		pr_debug("setting range\n");
2451		return cpufreq_driver->setpolicy(policy);
2452	}
2453
2454	if (new_gov == policy->governor) {
2455		pr_debug("governor limits update\n");
2456		cpufreq_governor_limits(policy);
2457		return 0;
2458	}
2459
2460	pr_debug("governor switch\n");
2461
2462	/* save old, working values */
2463	old_gov = policy->governor;
2464	/* end old governor */
2465	if (old_gov) {
2466		cpufreq_stop_governor(policy);
2467		cpufreq_exit_governor(policy);
 
 
2468	}
2469
2470	/* start new governor */
2471	policy->governor = new_gov;
2472	ret = cpufreq_init_governor(policy);
2473	if (!ret) {
2474		ret = cpufreq_start_governor(policy);
2475		if (!ret) {
2476			pr_debug("governor change\n");
2477			sched_cpufreq_governor_change(policy, old_gov);
2478			return 0;
2479		}
2480		cpufreq_exit_governor(policy);
2481	}
2482
2483	/* new governor failed, so re-start old one */
2484	pr_debug("starting governor %s failed\n", policy->governor->name);
2485	if (old_gov) {
2486		policy->governor = old_gov;
2487		if (cpufreq_init_governor(policy))
2488			policy->governor = NULL;
2489		else
2490			cpufreq_start_governor(policy);
2491	}
2492
2493	return ret;
 
 
 
 
2494}
2495
2496/**
2497 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2498 * @cpu: CPU to re-evaluate the policy for.
2499 *
2500 * Update the current frequency for the cpufreq policy of @cpu and use
2501 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2502 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2503 * for the policy in question, among other things.
2504 */
2505void cpufreq_update_policy(unsigned int cpu)
2506{
2507	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
 
 
2508
2509	if (!policy)
2510		return;
 
 
 
 
 
 
 
 
 
 
 
2511
2512	/*
2513	 * BIOS might change freq behind our back
2514	 * -> ask driver for current freq and notify governors about a change
2515	 */
2516	if (cpufreq_driver->get && has_target() &&
2517	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2518		goto unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2519
2520	refresh_frequency_limits(policy);
2521
2522unlock:
2523	cpufreq_cpu_release(policy);
 
2524}
2525EXPORT_SYMBOL(cpufreq_update_policy);
2526
2527/**
2528 * cpufreq_update_limits - Update policy limits for a given CPU.
2529 * @cpu: CPU to update the policy limits for.
2530 *
2531 * Invoke the driver's ->update_limits callback if present or call
2532 * cpufreq_update_policy() for @cpu.
2533 */
2534void cpufreq_update_limits(unsigned int cpu)
2535{
2536	if (cpufreq_driver->update_limits)
2537		cpufreq_driver->update_limits(cpu);
2538	else
2539		cpufreq_update_policy(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2540}
2541EXPORT_SYMBOL_GPL(cpufreq_update_limits);
 
 
 
2542
2543/*********************************************************************
2544 *               BOOST						     *
2545 *********************************************************************/
2546static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2547{
2548	int ret;
 
 
2549
2550	if (!policy->freq_table)
2551		return -ENXIO;
2552
2553	ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2554	if (ret) {
2555		pr_err("%s: Policy frequency update failed\n", __func__);
2556		return ret;
 
 
 
 
 
 
2557	}
2558
2559	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2560	if (ret < 0)
2561		return ret;
2562
2563	return 0;
2564}
2565
2566int cpufreq_boost_trigger_state(int state)
2567{
2568	struct cpufreq_policy *policy;
2569	unsigned long flags;
2570	int ret = 0;
2571
2572	if (cpufreq_driver->boost_enabled == state)
2573		return 0;
2574
2575	write_lock_irqsave(&cpufreq_driver_lock, flags);
2576	cpufreq_driver->boost_enabled = state;
2577	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2578
2579	get_online_cpus();
2580	for_each_active_policy(policy) {
2581		ret = cpufreq_driver->set_boost(policy, state);
2582		if (ret)
2583			goto err_reset_state;
 
 
 
2584	}
2585	put_online_cpus();
2586
2587	return 0;
2588
2589err_reset_state:
2590	put_online_cpus();
2591
2592	write_lock_irqsave(&cpufreq_driver_lock, flags);
2593	cpufreq_driver->boost_enabled = !state;
2594	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2595
2596	pr_err("%s: Cannot %s BOOST\n",
2597	       __func__, state ? "enable" : "disable");
2598
2599	return ret;
2600}
2601
2602static bool cpufreq_boost_supported(void)
2603{
2604	return cpufreq_driver->set_boost;
2605}
2606
2607static int create_boost_sysfs_file(void)
2608{
2609	int ret;
2610
2611	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2612	if (ret)
2613		pr_err("%s: cannot register global BOOST sysfs file\n",
2614		       __func__);
2615
2616	return ret;
2617}
2618
2619static void remove_boost_sysfs_file(void)
2620{
2621	if (cpufreq_boost_supported())
2622		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2623}
2624
2625int cpufreq_enable_boost_support(void)
2626{
2627	if (!cpufreq_driver)
2628		return -EINVAL;
2629
2630	if (cpufreq_boost_supported())
2631		return 0;
2632
2633	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2634
2635	/* This will get removed on driver unregister */
2636	return create_boost_sysfs_file();
2637}
2638EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2639
2640int cpufreq_boost_enabled(void)
2641{
2642	return cpufreq_driver->boost_enabled;
2643}
2644EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2645
2646/*********************************************************************
2647 *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2648 *********************************************************************/
2649static enum cpuhp_state hp_online;
2650
2651static int cpuhp_cpufreq_online(unsigned int cpu)
2652{
2653	cpufreq_online(cpu);
2654
2655	return 0;
2656}
2657
2658static int cpuhp_cpufreq_offline(unsigned int cpu)
2659{
2660	cpufreq_offline(cpu);
2661
2662	return 0;
2663}
2664
2665/**
2666 * cpufreq_register_driver - register a CPU Frequency driver
2667 * @driver_data: A struct cpufreq_driver containing the values#
2668 * submitted by the CPU Frequency driver.
2669 *
2670 * Registers a CPU Frequency driver to this core code. This code
2671 * returns zero on success, -EEXIST when another driver got here first
2672 * (and isn't unregistered in the meantime).
2673 *
2674 */
2675int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2676{
2677	unsigned long flags;
2678	int ret;
2679
2680	if (cpufreq_disabled())
2681		return -ENODEV;
2682
2683	/*
2684	 * The cpufreq core depends heavily on the availability of device
2685	 * structure, make sure they are available before proceeding further.
2686	 */
2687	if (!get_cpu_device(0))
2688		return -EPROBE_DEFER;
2689
2690	if (!driver_data || !driver_data->verify || !driver_data->init ||
2691	    !(driver_data->setpolicy || driver_data->target_index ||
2692		    driver_data->target) ||
2693	     (driver_data->setpolicy && (driver_data->target_index ||
2694		    driver_data->target)) ||
2695	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2696	     (!driver_data->online != !driver_data->offline))
2697		return -EINVAL;
2698
2699	pr_debug("trying to register driver %s\n", driver_data->name);
2700
2701	/* Protect against concurrent CPU online/offline. */
2702	cpus_read_lock();
2703
2704	write_lock_irqsave(&cpufreq_driver_lock, flags);
2705	if (cpufreq_driver) {
2706		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2707		ret = -EEXIST;
2708		goto out;
2709	}
2710	cpufreq_driver = driver_data;
2711	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2712
2713	if (driver_data->setpolicy)
2714		driver_data->flags |= CPUFREQ_CONST_LOOPS;
 
 
 
 
 
2715
2716	if (cpufreq_boost_supported()) {
2717		ret = create_boost_sysfs_file();
2718		if (ret)
 
2719			goto err_null_driver;
 
2720	}
2721
2722	ret = subsys_interface_register(&cpufreq_interface);
2723	if (ret)
2724		goto err_boost_unreg;
2725
2726	if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2727	    list_empty(&cpufreq_policy_list)) {
 
 
 
 
 
 
 
 
 
2728		/* if all ->init() calls failed, unregister */
2729		ret = -ENODEV;
2730		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2731			 driver_data->name);
2732		goto err_if_unreg;
 
2733	}
2734
2735	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2736						   "cpufreq:online",
2737						   cpuhp_cpufreq_online,
2738						   cpuhp_cpufreq_offline);
2739	if (ret < 0)
2740		goto err_if_unreg;
2741	hp_online = ret;
2742	ret = 0;
2743
2744	pr_debug("driver %s up and running\n", driver_data->name);
2745	goto out;
2746
 
2747err_if_unreg:
2748	subsys_interface_unregister(&cpufreq_interface);
2749err_boost_unreg:
2750	remove_boost_sysfs_file();
 
2751err_null_driver:
2752	write_lock_irqsave(&cpufreq_driver_lock, flags);
2753	cpufreq_driver = NULL;
2754	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2755out:
2756	cpus_read_unlock();
2757	return ret;
2758}
2759EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2760
2761/*
2762 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2763 *
2764 * Unregister the current CPUFreq driver. Only call this if you have
2765 * the right to do so, i.e. if you have succeeded in initialising before!
2766 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2767 * currently not initialised.
2768 */
2769int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2770{
2771	unsigned long flags;
2772
2773	if (!cpufreq_driver || (driver != cpufreq_driver))
2774		return -EINVAL;
2775
2776	pr_debug("unregistering driver %s\n", driver->name);
2777
2778	/* Protect against concurrent cpu hotplug */
2779	cpus_read_lock();
2780	subsys_interface_unregister(&cpufreq_interface);
2781	remove_boost_sysfs_file();
2782	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2783
 
 
 
2784	write_lock_irqsave(&cpufreq_driver_lock, flags);
2785
2786	cpufreq_driver = NULL;
2787
2788	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2789	cpus_read_unlock();
2790
2791	return 0;
2792}
2793EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2794
2795static int __init cpufreq_core_init(void)
2796{
2797	struct cpufreq_governor *gov = cpufreq_default_governor();
2798
2799	if (cpufreq_disabled())
2800		return -ENODEV;
2801
2802	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2803	BUG_ON(!cpufreq_global_kobject);
2804
2805	if (!strlen(default_governor))
2806		strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
2807
2808	return 0;
2809}
2810module_param(off, int, 0444);
2811module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
2812core_initcall(cpufreq_core_init);