Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 *  gendisk handling
   3 */
   4
   5#include <linux/module.h>
 
   6#include <linux/fs.h>
   7#include <linux/genhd.h>
   8#include <linux/kdev_t.h>
   9#include <linux/kernel.h>
  10#include <linux/blkdev.h>
 
  11#include <linux/init.h>
  12#include <linux/spinlock.h>
  13#include <linux/proc_fs.h>
  14#include <linux/seq_file.h>
  15#include <linux/slab.h>
  16#include <linux/kmod.h>
  17#include <linux/kobj_map.h>
  18#include <linux/mutex.h>
  19#include <linux/idr.h>
  20#include <linux/log2.h>
  21#include <linux/pm_runtime.h>
 
  22
  23#include "blk.h"
  24
  25static DEFINE_MUTEX(block_class_lock);
  26struct kobject *block_depr;
  27
  28/* for extended dynamic devt allocation, currently only one major is used */
  29#define NR_EXT_DEVT		(1 << MINORBITS)
  30
  31/* For extended devt allocation.  ext_devt_mutex prevents look up
  32 * results from going away underneath its user.
  33 */
  34static DEFINE_MUTEX(ext_devt_mutex);
  35static DEFINE_IDR(ext_devt_idr);
  36
  37static struct device_type disk_type;
  38
  39static void disk_check_events(struct disk_events *ev,
  40			      unsigned int *clearing_ptr);
  41static void disk_alloc_events(struct gendisk *disk);
  42static void disk_add_events(struct gendisk *disk);
  43static void disk_del_events(struct gendisk *disk);
  44static void disk_release_events(struct gendisk *disk);
  45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  46/**
  47 * disk_get_part - get partition
  48 * @disk: disk to look partition from
  49 * @partno: partition number
  50 *
  51 * Look for partition @partno from @disk.  If found, increment
  52 * reference count and return it.
  53 *
  54 * CONTEXT:
  55 * Don't care.
  56 *
  57 * RETURNS:
  58 * Pointer to the found partition on success, NULL if not found.
  59 */
  60struct hd_struct *disk_get_part(struct gendisk *disk, int partno)
  61{
  62	struct hd_struct *part = NULL;
  63	struct disk_part_tbl *ptbl;
  64
  65	if (unlikely(partno < 0))
  66		return NULL;
  67
  68	rcu_read_lock();
  69
  70	ptbl = rcu_dereference(disk->part_tbl);
  71	if (likely(partno < ptbl->len)) {
  72		part = rcu_dereference(ptbl->part[partno]);
  73		if (part)
  74			get_device(part_to_dev(part));
  75	}
  76
  77	rcu_read_unlock();
  78
  79	return part;
  80}
  81EXPORT_SYMBOL_GPL(disk_get_part);
  82
  83/**
  84 * disk_part_iter_init - initialize partition iterator
  85 * @piter: iterator to initialize
  86 * @disk: disk to iterate over
  87 * @flags: DISK_PITER_* flags
  88 *
  89 * Initialize @piter so that it iterates over partitions of @disk.
  90 *
  91 * CONTEXT:
  92 * Don't care.
  93 */
  94void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk,
  95			  unsigned int flags)
  96{
  97	struct disk_part_tbl *ptbl;
  98
  99	rcu_read_lock();
 100	ptbl = rcu_dereference(disk->part_tbl);
 101
 102	piter->disk = disk;
 103	piter->part = NULL;
 104
 105	if (flags & DISK_PITER_REVERSE)
 106		piter->idx = ptbl->len - 1;
 107	else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0))
 108		piter->idx = 0;
 109	else
 110		piter->idx = 1;
 111
 112	piter->flags = flags;
 113
 114	rcu_read_unlock();
 115}
 116EXPORT_SYMBOL_GPL(disk_part_iter_init);
 117
 118/**
 119 * disk_part_iter_next - proceed iterator to the next partition and return it
 120 * @piter: iterator of interest
 121 *
 122 * Proceed @piter to the next partition and return it.
 123 *
 124 * CONTEXT:
 125 * Don't care.
 126 */
 127struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter)
 128{
 129	struct disk_part_tbl *ptbl;
 130	int inc, end;
 131
 132	/* put the last partition */
 133	disk_put_part(piter->part);
 134	piter->part = NULL;
 135
 136	/* get part_tbl */
 137	rcu_read_lock();
 138	ptbl = rcu_dereference(piter->disk->part_tbl);
 139
 140	/* determine iteration parameters */
 141	if (piter->flags & DISK_PITER_REVERSE) {
 142		inc = -1;
 143		if (piter->flags & (DISK_PITER_INCL_PART0 |
 144				    DISK_PITER_INCL_EMPTY_PART0))
 145			end = -1;
 146		else
 147			end = 0;
 148	} else {
 149		inc = 1;
 150		end = ptbl->len;
 151	}
 152
 153	/* iterate to the next partition */
 154	for (; piter->idx != end; piter->idx += inc) {
 155		struct hd_struct *part;
 156
 157		part = rcu_dereference(ptbl->part[piter->idx]);
 158		if (!part)
 159			continue;
 160		if (!part_nr_sects_read(part) &&
 161		    !(piter->flags & DISK_PITER_INCL_EMPTY) &&
 162		    !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 &&
 163		      piter->idx == 0))
 164			continue;
 165
 166		get_device(part_to_dev(part));
 167		piter->part = part;
 168		piter->idx += inc;
 169		break;
 170	}
 171
 172	rcu_read_unlock();
 173
 174	return piter->part;
 175}
 176EXPORT_SYMBOL_GPL(disk_part_iter_next);
 177
 178/**
 179 * disk_part_iter_exit - finish up partition iteration
 180 * @piter: iter of interest
 181 *
 182 * Called when iteration is over.  Cleans up @piter.
 183 *
 184 * CONTEXT:
 185 * Don't care.
 186 */
 187void disk_part_iter_exit(struct disk_part_iter *piter)
 188{
 189	disk_put_part(piter->part);
 190	piter->part = NULL;
 191}
 192EXPORT_SYMBOL_GPL(disk_part_iter_exit);
 193
 194static inline int sector_in_part(struct hd_struct *part, sector_t sector)
 195{
 196	return part->start_sect <= sector &&
 197		sector < part->start_sect + part_nr_sects_read(part);
 198}
 199
 200/**
 201 * disk_map_sector_rcu - map sector to partition
 202 * @disk: gendisk of interest
 203 * @sector: sector to map
 204 *
 205 * Find out which partition @sector maps to on @disk.  This is
 206 * primarily used for stats accounting.
 207 *
 208 * CONTEXT:
 209 * RCU read locked.  The returned partition pointer is valid only
 210 * while preemption is disabled.
 
 211 *
 212 * RETURNS:
 213 * Found partition on success, part0 is returned if no partition matches
 
 214 */
 215struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector)
 216{
 217	struct disk_part_tbl *ptbl;
 218	struct hd_struct *part;
 219	int i;
 220
 
 221	ptbl = rcu_dereference(disk->part_tbl);
 222
 223	part = rcu_dereference(ptbl->last_lookup);
 224	if (part && sector_in_part(part, sector))
 225		return part;
 226
 227	for (i = 1; i < ptbl->len; i++) {
 228		part = rcu_dereference(ptbl->part[i]);
 229
 230		if (part && sector_in_part(part, sector)) {
 
 
 
 
 
 
 
 231			rcu_assign_pointer(ptbl->last_lookup, part);
 232			return part;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 233		}
 234	}
 235	return &disk->part0;
 
 
 
 236}
 237EXPORT_SYMBOL_GPL(disk_map_sector_rcu);
 238
 239/*
 240 * Can be deleted altogether. Later.
 241 *
 242 */
 
 243static struct blk_major_name {
 244	struct blk_major_name *next;
 245	int major;
 246	char name[16];
 247} *major_names[BLKDEV_MAJOR_HASH_SIZE];
 248
 249/* index in the above - for now: assume no multimajor ranges */
 250static inline int major_to_index(unsigned major)
 251{
 252	return major % BLKDEV_MAJOR_HASH_SIZE;
 253}
 254
 255#ifdef CONFIG_PROC_FS
 256void blkdev_show(struct seq_file *seqf, off_t offset)
 257{
 258	struct blk_major_name *dp;
 259
 260	if (offset < BLKDEV_MAJOR_HASH_SIZE) {
 261		mutex_lock(&block_class_lock);
 262		for (dp = major_names[offset]; dp; dp = dp->next)
 263			seq_printf(seqf, "%3d %s\n", dp->major, dp->name);
 264		mutex_unlock(&block_class_lock);
 265	}
 266}
 267#endif /* CONFIG_PROC_FS */
 268
 269/**
 270 * register_blkdev - register a new block device
 271 *
 272 * @major: the requested major device number [1..255]. If @major=0, try to
 273 *         allocate any unused major number.
 274 * @name: the name of the new block device as a zero terminated string
 275 *
 276 * The @name must be unique within the system.
 277 *
 278 * The return value depends on the @major input parameter.
 279 *  - if a major device number was requested in range [1..255] then the
 280 *    function returns zero on success, or a negative error code
 281 *  - if any unused major number was requested with @major=0 parameter
 
 282 *    then the return value is the allocated major number in range
 283 *    [1..255] or a negative error code otherwise
 
 
 
 284 */
 285int register_blkdev(unsigned int major, const char *name)
 286{
 287	struct blk_major_name **n, *p;
 288	int index, ret = 0;
 289
 290	mutex_lock(&block_class_lock);
 291
 292	/* temporary */
 293	if (major == 0) {
 294		for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) {
 295			if (major_names[index] == NULL)
 296				break;
 297		}
 298
 299		if (index == 0) {
 300			printk("register_blkdev: failed to get major for %s\n",
 301			       name);
 302			ret = -EBUSY;
 303			goto out;
 304		}
 305		major = index;
 306		ret = major;
 307	}
 308
 
 
 
 
 
 
 
 
 309	p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL);
 310	if (p == NULL) {
 311		ret = -ENOMEM;
 312		goto out;
 313	}
 314
 315	p->major = major;
 316	strlcpy(p->name, name, sizeof(p->name));
 317	p->next = NULL;
 318	index = major_to_index(major);
 319
 320	for (n = &major_names[index]; *n; n = &(*n)->next) {
 321		if ((*n)->major == major)
 322			break;
 323	}
 324	if (!*n)
 325		*n = p;
 326	else
 327		ret = -EBUSY;
 328
 329	if (ret < 0) {
 330		printk("register_blkdev: cannot get major %d for %s\n",
 331		       major, name);
 332		kfree(p);
 333	}
 334out:
 335	mutex_unlock(&block_class_lock);
 336	return ret;
 337}
 338
 339EXPORT_SYMBOL(register_blkdev);
 340
 341void unregister_blkdev(unsigned int major, const char *name)
 342{
 343	struct blk_major_name **n;
 344	struct blk_major_name *p = NULL;
 345	int index = major_to_index(major);
 346
 347	mutex_lock(&block_class_lock);
 348	for (n = &major_names[index]; *n; n = &(*n)->next)
 349		if ((*n)->major == major)
 350			break;
 351	if (!*n || strcmp((*n)->name, name)) {
 352		WARN_ON(1);
 353	} else {
 354		p = *n;
 355		*n = p->next;
 356	}
 357	mutex_unlock(&block_class_lock);
 358	kfree(p);
 359}
 360
 361EXPORT_SYMBOL(unregister_blkdev);
 362
 363static struct kobj_map *bdev_map;
 364
 365/**
 366 * blk_mangle_minor - scatter minor numbers apart
 367 * @minor: minor number to mangle
 368 *
 369 * Scatter consecutively allocated @minor number apart if MANGLE_DEVT
 370 * is enabled.  Mangling twice gives the original value.
 371 *
 372 * RETURNS:
 373 * Mangled value.
 374 *
 375 * CONTEXT:
 376 * Don't care.
 377 */
 378static int blk_mangle_minor(int minor)
 379{
 380#ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT
 381	int i;
 382
 383	for (i = 0; i < MINORBITS / 2; i++) {
 384		int low = minor & (1 << i);
 385		int high = minor & (1 << (MINORBITS - 1 - i));
 386		int distance = MINORBITS - 1 - 2 * i;
 387
 388		minor ^= low | high;	/* clear both bits */
 389		low <<= distance;	/* swap the positions */
 390		high >>= distance;
 391		minor |= low | high;	/* and set */
 392	}
 393#endif
 394	return minor;
 395}
 396
 397/**
 398 * blk_alloc_devt - allocate a dev_t for a partition
 399 * @part: partition to allocate dev_t for
 400 * @devt: out parameter for resulting dev_t
 401 *
 402 * Allocate a dev_t for block device.
 403 *
 404 * RETURNS:
 405 * 0 on success, allocated dev_t is returned in *@devt.  -errno on
 406 * failure.
 407 *
 408 * CONTEXT:
 409 * Might sleep.
 410 */
 411int blk_alloc_devt(struct hd_struct *part, dev_t *devt)
 412{
 413	struct gendisk *disk = part_to_disk(part);
 414	int idx;
 415
 416	/* in consecutive minor range? */
 417	if (part->partno < disk->minors) {
 418		*devt = MKDEV(disk->major, disk->first_minor + part->partno);
 419		return 0;
 420	}
 421
 422	/* allocate ext devt */
 423	mutex_lock(&ext_devt_mutex);
 424	idx = idr_alloc(&ext_devt_idr, part, 0, NR_EXT_DEVT, GFP_KERNEL);
 425	mutex_unlock(&ext_devt_mutex);
 
 
 
 
 426	if (idx < 0)
 427		return idx == -ENOSPC ? -EBUSY : idx;
 428
 429	*devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx));
 430	return 0;
 431}
 432
 433/**
 434 * blk_free_devt - free a dev_t
 435 * @devt: dev_t to free
 436 *
 437 * Free @devt which was allocated using blk_alloc_devt().
 438 *
 439 * CONTEXT:
 440 * Might sleep.
 441 */
 442void blk_free_devt(dev_t devt)
 443{
 444	might_sleep();
 445
 446	if (devt == MKDEV(0, 0))
 447		return;
 448
 449	if (MAJOR(devt) == BLOCK_EXT_MAJOR) {
 450		mutex_lock(&ext_devt_mutex);
 451		idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
 452		mutex_unlock(&ext_devt_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 453	}
 454}
 455
 456static char *bdevt_str(dev_t devt, char *buf)
 457{
 458	if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) {
 459		char tbuf[BDEVT_SIZE];
 460		snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt));
 461		snprintf(buf, BDEVT_SIZE, "%-9s", tbuf);
 462	} else
 463		snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt));
 464
 465	return buf;
 466}
 467
 468/*
 469 * Register device numbers dev..(dev+range-1)
 470 * range must be nonzero
 471 * The hash chain is sorted on range, so that subranges can override.
 472 */
 473void blk_register_region(dev_t devt, unsigned long range, struct module *module,
 474			 struct kobject *(*probe)(dev_t, int *, void *),
 475			 int (*lock)(dev_t, void *), void *data)
 476{
 477	kobj_map(bdev_map, devt, range, module, probe, lock, data);
 478}
 479
 480EXPORT_SYMBOL(blk_register_region);
 481
 482void blk_unregister_region(dev_t devt, unsigned long range)
 483{
 484	kobj_unmap(bdev_map, devt, range);
 485}
 486
 487EXPORT_SYMBOL(blk_unregister_region);
 488
 489static struct kobject *exact_match(dev_t devt, int *partno, void *data)
 490{
 491	struct gendisk *p = data;
 492
 493	return &disk_to_dev(p)->kobj;
 494}
 495
 496static int exact_lock(dev_t devt, void *data)
 497{
 498	struct gendisk *p = data;
 499
 500	if (!get_disk(p))
 501		return -1;
 502	return 0;
 503}
 504
 505static void register_disk(struct gendisk *disk)
 
 506{
 507	struct device *ddev = disk_to_dev(disk);
 508	struct block_device *bdev;
 509	struct disk_part_iter piter;
 510	struct hd_struct *part;
 511	int err;
 512
 513	ddev->parent = disk->driverfs_dev;
 514
 515	dev_set_name(ddev, "%s", disk->disk_name);
 516
 517	/* delay uevents, until we scanned partition table */
 518	dev_set_uevent_suppress(ddev, 1);
 519
 
 
 
 
 520	if (device_add(ddev))
 521		return;
 522	if (!sysfs_deprecated) {
 523		err = sysfs_create_link(block_depr, &ddev->kobj,
 524					kobject_name(&ddev->kobj));
 525		if (err) {
 526			device_del(ddev);
 527			return;
 528		}
 529	}
 530
 531	/*
 532	 * avoid probable deadlock caused by allocating memory with
 533	 * GFP_KERNEL in runtime_resume callback of its all ancestor
 534	 * devices
 535	 */
 536	pm_runtime_set_memalloc_noio(ddev, true);
 537
 538	disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj);
 539	disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj);
 540
 
 
 
 
 
 541	/* No minors to use for partitions */
 542	if (!disk_part_scan_enabled(disk))
 543		goto exit;
 544
 545	/* No such device (e.g., media were just removed) */
 546	if (!get_capacity(disk))
 547		goto exit;
 548
 549	bdev = bdget_disk(disk, 0);
 550	if (!bdev)
 551		goto exit;
 552
 553	bdev->bd_invalidated = 1;
 554	err = blkdev_get(bdev, FMODE_READ, NULL);
 555	if (err < 0)
 556		goto exit;
 557	blkdev_put(bdev, FMODE_READ);
 558
 559exit:
 560	/* announce disk after possible partitions are created */
 561	dev_set_uevent_suppress(ddev, 0);
 562	kobject_uevent(&ddev->kobj, KOBJ_ADD);
 563
 564	/* announce possible partitions */
 565	disk_part_iter_init(&piter, disk, 0);
 566	while ((part = disk_part_iter_next(&piter)))
 567		kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD);
 568	disk_part_iter_exit(&piter);
 
 
 
 
 
 
 
 569}
 570
 571/**
 572 * add_disk - add partitioning information to kernel list
 
 573 * @disk: per-device partitioning information
 
 
 574 *
 575 * This function registers the partitioning information in @disk
 576 * with the kernel.
 577 *
 578 * FIXME: error handling
 579 */
 580void add_disk(struct gendisk *disk)
 
 
 581{
 582	struct backing_dev_info *bdi;
 583	dev_t devt;
 584	int retval;
 585
 
 
 
 
 
 
 
 
 
 586	/* minors == 0 indicates to use ext devt from part0 and should
 587	 * be accompanied with EXT_DEVT flag.  Make sure all
 588	 * parameters make sense.
 589	 */
 590	WARN_ON(disk->minors && !(disk->major || disk->first_minor));
 591	WARN_ON(!disk->minors && !(disk->flags & GENHD_FL_EXT_DEVT));
 
 592
 593	disk->flags |= GENHD_FL_UP;
 594
 595	retval = blk_alloc_devt(&disk->part0, &devt);
 596	if (retval) {
 597		WARN_ON(1);
 598		return;
 599	}
 600	disk_to_dev(disk)->devt = devt;
 601
 602	/* ->major and ->first_minor aren't supposed to be
 603	 * dereferenced from here on, but set them just in case.
 604	 */
 605	disk->major = MAJOR(devt);
 606	disk->first_minor = MINOR(devt);
 607
 608	disk_alloc_events(disk);
 609
 610	/* Register BDI before referencing it from bdev */
 611	bdi = &disk->queue->backing_dev_info;
 612	bdi_register_dev(bdi, disk_devt(disk));
 613
 614	blk_register_region(disk_devt(disk), disk->minors, NULL,
 615			    exact_match, exact_lock, disk);
 616	register_disk(disk);
 617	blk_register_queue(disk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 618
 619	/*
 620	 * Take an extra ref on queue which will be put on disk_release()
 621	 * so that it sticks around as long as @disk is there.
 622	 */
 623	WARN_ON_ONCE(!blk_get_queue(disk->queue));
 624
 625	retval = sysfs_create_link(&disk_to_dev(disk)->kobj, &bdi->dev->kobj,
 626				   "bdi");
 627	WARN_ON(retval);
 628
 629	disk_add_events(disk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 630}
 631EXPORT_SYMBOL(add_disk);
 632
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 633void del_gendisk(struct gendisk *disk)
 634{
 635	struct disk_part_iter piter;
 636	struct hd_struct *part;
 637
 
 
 
 638	disk_del_events(disk);
 639
 
 
 
 
 
 640	/* invalidate stuff */
 641	disk_part_iter_init(&piter, disk,
 642			     DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE);
 643	while ((part = disk_part_iter_next(&piter))) {
 644		invalidate_partition(disk, part->partno);
 645		delete_partition(disk, part->partno);
 646	}
 647	disk_part_iter_exit(&piter);
 648
 649	invalidate_partition(disk, 0);
 650	set_capacity(disk, 0);
 651	disk->flags &= ~GENHD_FL_UP;
 
 652
 653	sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi");
 654	bdi_unregister(&disk->queue->backing_dev_info);
 655	blk_unregister_queue(disk);
 656	blk_unregister_region(disk_devt(disk), disk->minors);
 
 
 
 
 
 
 
 
 
 657
 658	part_stat_set_all(&disk->part0, 0);
 659	disk->part0.stamp = 0;
 
 
 
 
 
 
 
 660
 661	kobject_put(disk->part0.holder_dir);
 662	kobject_put(disk->slave_dir);
 663	disk->driverfs_dev = NULL;
 
 
 664	if (!sysfs_deprecated)
 665		sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk)));
 666	pm_runtime_set_memalloc_noio(disk_to_dev(disk), false);
 667	device_del(disk_to_dev(disk));
 668	blk_free_devt(disk_to_dev(disk)->devt);
 669}
 670EXPORT_SYMBOL(del_gendisk);
 671
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 672/**
 673 * get_gendisk - get partitioning information for a given device
 674 * @devt: device to get partitioning information for
 675 * @partno: returned partition index
 676 *
 677 * This function gets the structure containing partitioning
 678 * information for the given device @devt.
 
 
 679 */
 680struct gendisk *get_gendisk(dev_t devt, int *partno)
 681{
 682	struct gendisk *disk = NULL;
 683
 
 
 684	if (MAJOR(devt) != BLOCK_EXT_MAJOR) {
 685		struct kobject *kobj;
 686
 687		kobj = kobj_lookup(bdev_map, devt, partno);
 688		if (kobj)
 689			disk = dev_to_disk(kobj_to_dev(kobj));
 690	} else {
 691		struct hd_struct *part;
 692
 693		mutex_lock(&ext_devt_mutex);
 694		part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
 695		if (part && get_disk(part_to_disk(part))) {
 696			*partno = part->partno;
 697			disk = part_to_disk(part);
 698		}
 699		mutex_unlock(&ext_devt_mutex);
 700	}
 701
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 702	return disk;
 703}
 704EXPORT_SYMBOL(get_gendisk);
 705
 706/**
 707 * bdget_disk - do bdget() by gendisk and partition number
 708 * @disk: gendisk of interest
 709 * @partno: partition number
 710 *
 711 * Find partition @partno from @disk, do bdget() on it.
 712 *
 713 * CONTEXT:
 714 * Don't care.
 715 *
 716 * RETURNS:
 717 * Resulting block_device on success, NULL on failure.
 718 */
 719struct block_device *bdget_disk(struct gendisk *disk, int partno)
 720{
 721	struct hd_struct *part;
 722	struct block_device *bdev = NULL;
 723
 724	part = disk_get_part(disk, partno);
 725	if (part)
 726		bdev = bdget(part_devt(part));
 727	disk_put_part(part);
 728
 729	return bdev;
 730}
 731EXPORT_SYMBOL(bdget_disk);
 732
 733/*
 734 * print a full list of all partitions - intended for places where the root
 735 * filesystem can't be mounted and thus to give the victim some idea of what
 736 * went wrong
 737 */
 738void __init printk_all_partitions(void)
 739{
 740	struct class_dev_iter iter;
 741	struct device *dev;
 742
 743	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
 744	while ((dev = class_dev_iter_next(&iter))) {
 745		struct gendisk *disk = dev_to_disk(dev);
 746		struct disk_part_iter piter;
 747		struct hd_struct *part;
 748		char name_buf[BDEVNAME_SIZE];
 749		char devt_buf[BDEVT_SIZE];
 750
 751		/*
 752		 * Don't show empty devices or things that have been
 753		 * suppressed
 754		 */
 755		if (get_capacity(disk) == 0 ||
 756		    (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO))
 757			continue;
 758
 759		/*
 760		 * Note, unlike /proc/partitions, I am showing the
 761		 * numbers in hex - the same format as the root=
 762		 * option takes.
 763		 */
 764		disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0);
 765		while ((part = disk_part_iter_next(&piter))) {
 766			bool is_part0 = part == &disk->part0;
 767
 768			printk("%s%s %10llu %s %s", is_part0 ? "" : "  ",
 769			       bdevt_str(part_devt(part), devt_buf),
 770			       (unsigned long long)part_nr_sects_read(part) >> 1
 771			       , disk_name(disk, part->partno, name_buf),
 772			       part->info ? part->info->uuid : "");
 773			if (is_part0) {
 774				if (disk->driverfs_dev != NULL &&
 775				    disk->driverfs_dev->driver != NULL)
 776					printk(" driver: %s\n",
 777					      disk->driverfs_dev->driver->name);
 778				else
 779					printk(" (driver?)\n");
 780			} else
 781				printk("\n");
 782		}
 783		disk_part_iter_exit(&piter);
 784	}
 785	class_dev_iter_exit(&iter);
 786}
 787
 788#ifdef CONFIG_PROC_FS
 789/* iterator */
 790static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos)
 791{
 792	loff_t skip = *pos;
 793	struct class_dev_iter *iter;
 794	struct device *dev;
 795
 796	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
 797	if (!iter)
 798		return ERR_PTR(-ENOMEM);
 799
 800	seqf->private = iter;
 801	class_dev_iter_init(iter, &block_class, NULL, &disk_type);
 802	do {
 803		dev = class_dev_iter_next(iter);
 804		if (!dev)
 805			return NULL;
 806	} while (skip--);
 807
 808	return dev_to_disk(dev);
 809}
 810
 811static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos)
 812{
 813	struct device *dev;
 814
 815	(*pos)++;
 816	dev = class_dev_iter_next(seqf->private);
 817	if (dev)
 818		return dev_to_disk(dev);
 819
 820	return NULL;
 821}
 822
 823static void disk_seqf_stop(struct seq_file *seqf, void *v)
 824{
 825	struct class_dev_iter *iter = seqf->private;
 826
 827	/* stop is called even after start failed :-( */
 828	if (iter) {
 829		class_dev_iter_exit(iter);
 830		kfree(iter);
 
 831	}
 832}
 833
 834static void *show_partition_start(struct seq_file *seqf, loff_t *pos)
 835{
 836	void *p;
 837
 838	p = disk_seqf_start(seqf, pos);
 839	if (!IS_ERR_OR_NULL(p) && !*pos)
 840		seq_puts(seqf, "major minor  #blocks  name\n\n");
 841	return p;
 842}
 843
 844static int show_partition(struct seq_file *seqf, void *v)
 845{
 846	struct gendisk *sgp = v;
 847	struct disk_part_iter piter;
 848	struct hd_struct *part;
 849	char buf[BDEVNAME_SIZE];
 850
 851	/* Don't show non-partitionable removeable devices or empty devices */
 852	if (!get_capacity(sgp) || (!disk_max_parts(sgp) &&
 853				   (sgp->flags & GENHD_FL_REMOVABLE)))
 854		return 0;
 855	if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)
 856		return 0;
 857
 858	/* show the full disk and all non-0 size partitions of it */
 859	disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0);
 860	while ((part = disk_part_iter_next(&piter)))
 861		seq_printf(seqf, "%4d  %7d %10llu %s\n",
 862			   MAJOR(part_devt(part)), MINOR(part_devt(part)),
 863			   (unsigned long long)part_nr_sects_read(part) >> 1,
 864			   disk_name(sgp, part->partno, buf));
 865	disk_part_iter_exit(&piter);
 866
 867	return 0;
 868}
 869
 870static const struct seq_operations partitions_op = {
 871	.start	= show_partition_start,
 872	.next	= disk_seqf_next,
 873	.stop	= disk_seqf_stop,
 874	.show	= show_partition
 875};
 876
 877static int partitions_open(struct inode *inode, struct file *file)
 878{
 879	return seq_open(file, &partitions_op);
 880}
 881
 882static const struct file_operations proc_partitions_operations = {
 883	.open		= partitions_open,
 884	.read		= seq_read,
 885	.llseek		= seq_lseek,
 886	.release	= seq_release,
 887};
 888#endif
 889
 890
 891static struct kobject *base_probe(dev_t devt, int *partno, void *data)
 892{
 893	if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0)
 894		/* Make old-style 2.4 aliases work */
 895		request_module("block-major-%d", MAJOR(devt));
 896	return NULL;
 897}
 898
 899static int __init genhd_device_init(void)
 900{
 901	int error;
 902
 903	block_class.dev_kobj = sysfs_dev_block_kobj;
 904	error = class_register(&block_class);
 905	if (unlikely(error))
 906		return error;
 907	bdev_map = kobj_map_init(base_probe, &block_class_lock);
 908	blk_dev_init();
 909
 910	register_blkdev(BLOCK_EXT_MAJOR, "blkext");
 911
 912	/* create top-level block dir */
 913	if (!sysfs_deprecated)
 914		block_depr = kobject_create_and_add("block", NULL);
 915	return 0;
 916}
 917
 918subsys_initcall(genhd_device_init);
 919
 920static ssize_t disk_range_show(struct device *dev,
 921			       struct device_attribute *attr, char *buf)
 922{
 923	struct gendisk *disk = dev_to_disk(dev);
 924
 925	return sprintf(buf, "%d\n", disk->minors);
 926}
 927
 928static ssize_t disk_ext_range_show(struct device *dev,
 929				   struct device_attribute *attr, char *buf)
 930{
 931	struct gendisk *disk = dev_to_disk(dev);
 932
 933	return sprintf(buf, "%d\n", disk_max_parts(disk));
 934}
 935
 936static ssize_t disk_removable_show(struct device *dev,
 937				   struct device_attribute *attr, char *buf)
 938{
 939	struct gendisk *disk = dev_to_disk(dev);
 940
 941	return sprintf(buf, "%d\n",
 942		       (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0));
 943}
 944
 
 
 
 
 
 
 
 
 
 945static ssize_t disk_ro_show(struct device *dev,
 946				   struct device_attribute *attr, char *buf)
 947{
 948	struct gendisk *disk = dev_to_disk(dev);
 949
 950	return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0);
 951}
 952
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 953static ssize_t disk_capability_show(struct device *dev,
 954				    struct device_attribute *attr, char *buf)
 955{
 956	struct gendisk *disk = dev_to_disk(dev);
 957
 958	return sprintf(buf, "%x\n", disk->flags);
 959}
 960
 961static ssize_t disk_alignment_offset_show(struct device *dev,
 962					  struct device_attribute *attr,
 963					  char *buf)
 964{
 965	struct gendisk *disk = dev_to_disk(dev);
 966
 967	return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue));
 968}
 969
 970static ssize_t disk_discard_alignment_show(struct device *dev,
 971					   struct device_attribute *attr,
 972					   char *buf)
 973{
 974	struct gendisk *disk = dev_to_disk(dev);
 975
 976	return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue));
 977}
 978
 979static DEVICE_ATTR(range, S_IRUGO, disk_range_show, NULL);
 980static DEVICE_ATTR(ext_range, S_IRUGO, disk_ext_range_show, NULL);
 981static DEVICE_ATTR(removable, S_IRUGO, disk_removable_show, NULL);
 982static DEVICE_ATTR(ro, S_IRUGO, disk_ro_show, NULL);
 983static DEVICE_ATTR(size, S_IRUGO, part_size_show, NULL);
 984static DEVICE_ATTR(alignment_offset, S_IRUGO, disk_alignment_offset_show, NULL);
 985static DEVICE_ATTR(discard_alignment, S_IRUGO, disk_discard_alignment_show,
 986		   NULL);
 987static DEVICE_ATTR(capability, S_IRUGO, disk_capability_show, NULL);
 988static DEVICE_ATTR(stat, S_IRUGO, part_stat_show, NULL);
 989static DEVICE_ATTR(inflight, S_IRUGO, part_inflight_show, NULL);
 
 
 990#ifdef CONFIG_FAIL_MAKE_REQUEST
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 991static struct device_attribute dev_attr_fail =
 992	__ATTR(make-it-fail, S_IRUGO|S_IWUSR, part_fail_show, part_fail_store);
 993#endif
 
 994#ifdef CONFIG_FAIL_IO_TIMEOUT
 995static struct device_attribute dev_attr_fail_timeout =
 996	__ATTR(io-timeout-fail,  S_IRUGO|S_IWUSR, part_timeout_show,
 997		part_timeout_store);
 998#endif
 999
1000static struct attribute *disk_attrs[] = {
1001	&dev_attr_range.attr,
1002	&dev_attr_ext_range.attr,
1003	&dev_attr_removable.attr,
 
1004	&dev_attr_ro.attr,
1005	&dev_attr_size.attr,
1006	&dev_attr_alignment_offset.attr,
1007	&dev_attr_discard_alignment.attr,
1008	&dev_attr_capability.attr,
1009	&dev_attr_stat.attr,
1010	&dev_attr_inflight.attr,
 
1011#ifdef CONFIG_FAIL_MAKE_REQUEST
1012	&dev_attr_fail.attr,
1013#endif
1014#ifdef CONFIG_FAIL_IO_TIMEOUT
1015	&dev_attr_fail_timeout.attr,
1016#endif
1017	NULL
1018};
1019
 
 
 
 
 
 
 
 
 
 
1020static struct attribute_group disk_attr_group = {
1021	.attrs = disk_attrs,
 
1022};
1023
1024static const struct attribute_group *disk_attr_groups[] = {
1025	&disk_attr_group,
1026	NULL
1027};
1028
1029/**
1030 * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way
1031 * @disk: disk to replace part_tbl for
1032 * @new_ptbl: new part_tbl to install
1033 *
1034 * Replace disk->part_tbl with @new_ptbl in RCU-safe way.  The
1035 * original ptbl is freed using RCU callback.
1036 *
1037 * LOCKING:
1038 * Matching bd_mutx locked.
1039 */
1040static void disk_replace_part_tbl(struct gendisk *disk,
1041				  struct disk_part_tbl *new_ptbl)
1042{
1043	struct disk_part_tbl *old_ptbl = disk->part_tbl;
 
1044
1045	rcu_assign_pointer(disk->part_tbl, new_ptbl);
1046
1047	if (old_ptbl) {
1048		rcu_assign_pointer(old_ptbl->last_lookup, NULL);
1049		kfree_rcu(old_ptbl, rcu_head);
1050	}
1051}
1052
1053/**
1054 * disk_expand_part_tbl - expand disk->part_tbl
1055 * @disk: disk to expand part_tbl for
1056 * @partno: expand such that this partno can fit in
1057 *
1058 * Expand disk->part_tbl such that @partno can fit in.  disk->part_tbl
1059 * uses RCU to allow unlocked dereferencing for stats and other stuff.
1060 *
1061 * LOCKING:
1062 * Matching bd_mutex locked, might sleep.
 
1063 *
1064 * RETURNS:
1065 * 0 on success, -errno on failure.
1066 */
1067int disk_expand_part_tbl(struct gendisk *disk, int partno)
1068{
1069	struct disk_part_tbl *old_ptbl = disk->part_tbl;
 
1070	struct disk_part_tbl *new_ptbl;
1071	int len = old_ptbl ? old_ptbl->len : 0;
1072	int target = partno + 1;
1073	size_t size;
1074	int i;
 
 
 
 
 
 
1075
1076	/* disk_max_parts() is zero during initialization, ignore if so */
1077	if (disk_max_parts(disk) && target > disk_max_parts(disk))
1078		return -EINVAL;
1079
1080	if (target <= len)
1081		return 0;
1082
1083	size = sizeof(*new_ptbl) + target * sizeof(new_ptbl->part[0]);
1084	new_ptbl = kzalloc_node(size, GFP_KERNEL, disk->node_id);
1085	if (!new_ptbl)
1086		return -ENOMEM;
1087
1088	new_ptbl->len = target;
1089
1090	for (i = 0; i < len; i++)
1091		rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]);
1092
1093	disk_replace_part_tbl(disk, new_ptbl);
1094	return 0;
1095}
1096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1097static void disk_release(struct device *dev)
1098{
1099	struct gendisk *disk = dev_to_disk(dev);
1100
 
 
 
1101	disk_release_events(disk);
1102	kfree(disk->random);
1103	disk_replace_part_tbl(disk, NULL);
1104	free_part_stats(&disk->part0);
1105	free_part_info(&disk->part0);
1106	if (disk->queue)
1107		blk_put_queue(disk->queue);
1108	kfree(disk);
1109}
1110struct class block_class = {
1111	.name		= "block",
1112};
1113
1114static char *block_devnode(struct device *dev, umode_t *mode,
1115			   kuid_t *uid, kgid_t *gid)
1116{
1117	struct gendisk *disk = dev_to_disk(dev);
1118
1119	if (disk->devnode)
1120		return disk->devnode(disk, mode);
1121	return NULL;
1122}
1123
1124static struct device_type disk_type = {
1125	.name		= "disk",
1126	.groups		= disk_attr_groups,
1127	.release	= disk_release,
1128	.devnode	= block_devnode,
1129};
1130
1131#ifdef CONFIG_PROC_FS
1132/*
1133 * aggregate disk stat collector.  Uses the same stats that the sysfs
1134 * entries do, above, but makes them available through one seq_file.
1135 *
1136 * The output looks suspiciously like /proc/partitions with a bunch of
1137 * extra fields.
1138 */
1139static int diskstats_show(struct seq_file *seqf, void *v)
1140{
1141	struct gendisk *gp = v;
1142	struct disk_part_iter piter;
1143	struct hd_struct *hd;
1144	char buf[BDEVNAME_SIZE];
1145	int cpu;
 
1146
1147	/*
1148	if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next)
1149		seq_puts(seqf,	"major minor name"
1150				"     rio rmerge rsect ruse wio wmerge "
1151				"wsect wuse running use aveq"
1152				"\n\n");
1153	*/
1154
1155	disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0);
1156	while ((hd = disk_part_iter_next(&piter))) {
1157		cpu = part_stat_lock();
1158		part_round_stats(cpu, hd);
1159		part_stat_unlock();
1160		seq_printf(seqf, "%4d %7d %s %lu %lu %lu "
1161			   "%u %lu %lu %lu %u %u %u %u\n",
 
 
 
 
 
 
 
 
1162			   MAJOR(part_devt(hd)), MINOR(part_devt(hd)),
1163			   disk_name(gp, hd->partno, buf),
1164			   part_stat_read(hd, ios[READ]),
1165			   part_stat_read(hd, merges[READ]),
1166			   part_stat_read(hd, sectors[READ]),
1167			   jiffies_to_msecs(part_stat_read(hd, ticks[READ])),
1168			   part_stat_read(hd, ios[WRITE]),
1169			   part_stat_read(hd, merges[WRITE]),
1170			   part_stat_read(hd, sectors[WRITE]),
1171			   jiffies_to_msecs(part_stat_read(hd, ticks[WRITE])),
1172			   part_in_flight(hd),
1173			   jiffies_to_msecs(part_stat_read(hd, io_ticks)),
1174			   jiffies_to_msecs(part_stat_read(hd, time_in_queue))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1175			);
1176	}
1177	disk_part_iter_exit(&piter);
1178
1179	return 0;
1180}
1181
1182static const struct seq_operations diskstats_op = {
1183	.start	= disk_seqf_start,
1184	.next	= disk_seqf_next,
1185	.stop	= disk_seqf_stop,
1186	.show	= diskstats_show
1187};
1188
1189static int diskstats_open(struct inode *inode, struct file *file)
1190{
1191	return seq_open(file, &diskstats_op);
1192}
1193
1194static const struct file_operations proc_diskstats_operations = {
1195	.open		= diskstats_open,
1196	.read		= seq_read,
1197	.llseek		= seq_lseek,
1198	.release	= seq_release,
1199};
1200
1201static int __init proc_genhd_init(void)
1202{
1203	proc_create("diskstats", 0, NULL, &proc_diskstats_operations);
1204	proc_create("partitions", 0, NULL, &proc_partitions_operations);
1205	return 0;
1206}
1207module_init(proc_genhd_init);
1208#endif /* CONFIG_PROC_FS */
1209
1210dev_t blk_lookup_devt(const char *name, int partno)
1211{
1212	dev_t devt = MKDEV(0, 0);
1213	struct class_dev_iter iter;
1214	struct device *dev;
1215
1216	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1217	while ((dev = class_dev_iter_next(&iter))) {
1218		struct gendisk *disk = dev_to_disk(dev);
1219		struct hd_struct *part;
1220
1221		if (strcmp(dev_name(dev), name))
1222			continue;
1223
1224		if (partno < disk->minors) {
1225			/* We need to return the right devno, even
1226			 * if the partition doesn't exist yet.
1227			 */
1228			devt = MKDEV(MAJOR(dev->devt),
1229				     MINOR(dev->devt) + partno);
1230			break;
1231		}
1232		part = disk_get_part(disk, partno);
1233		if (part) {
1234			devt = part_devt(part);
1235			disk_put_part(part);
1236			break;
1237		}
1238		disk_put_part(part);
1239	}
1240	class_dev_iter_exit(&iter);
1241	return devt;
1242}
1243EXPORT_SYMBOL(blk_lookup_devt);
1244
1245struct gendisk *alloc_disk(int minors)
1246{
1247	return alloc_disk_node(minors, NUMA_NO_NODE);
1248}
1249EXPORT_SYMBOL(alloc_disk);
1250
1251struct gendisk *alloc_disk_node(int minors, int node_id)
1252{
1253	struct gendisk *disk;
 
 
 
 
 
 
 
 
1254
1255	disk = kzalloc_node(sizeof(struct gendisk), GFP_KERNEL, node_id);
1256	if (disk) {
1257		if (!init_part_stats(&disk->part0)) {
 
1258			kfree(disk);
1259			return NULL;
1260		}
 
1261		disk->node_id = node_id;
1262		if (disk_expand_part_tbl(disk, 0)) {
1263			free_part_stats(&disk->part0);
1264			kfree(disk);
1265			return NULL;
1266		}
1267		disk->part_tbl->part[0] = &disk->part0;
 
1268
1269		/*
1270		 * set_capacity() and get_capacity() currently don't use
1271		 * seqcounter to read/update the part0->nr_sects. Still init
1272		 * the counter as we can read the sectors in IO submission
1273		 * patch using seqence counters.
1274		 *
1275		 * TODO: Ideally set_capacity() and get_capacity() should be
1276		 * converted to make use of bd_mutex and sequence counters.
1277		 */
1278		seqcount_init(&disk->part0.nr_sects_seq);
1279		hd_ref_init(&disk->part0);
 
 
 
 
1280
1281		disk->minors = minors;
1282		rand_initialize_disk(disk);
1283		disk_to_dev(disk)->class = &block_class;
1284		disk_to_dev(disk)->type = &disk_type;
1285		device_initialize(disk_to_dev(disk));
1286	}
1287	return disk;
1288}
1289EXPORT_SYMBOL(alloc_disk_node);
1290
1291struct kobject *get_disk(struct gendisk *disk)
 
 
 
 
 
 
 
 
 
1292{
1293	struct module *owner;
1294	struct kobject *kobj;
1295
1296	if (!disk->fops)
1297		return NULL;
1298	owner = disk->fops->owner;
1299	if (owner && !try_module_get(owner))
1300		return NULL;
1301	kobj = kobject_get(&disk_to_dev(disk)->kobj);
1302	if (kobj == NULL) {
1303		module_put(owner);
1304		return NULL;
1305	}
1306	return kobj;
1307
1308}
 
1309
1310EXPORT_SYMBOL(get_disk);
1311
 
 
 
 
 
 
 
 
1312void put_disk(struct gendisk *disk)
1313{
1314	if (disk)
1315		kobject_put(&disk_to_dev(disk)->kobj);
1316}
1317
1318EXPORT_SYMBOL(put_disk);
1319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1320static void set_disk_ro_uevent(struct gendisk *gd, int ro)
1321{
1322	char event[] = "DISK_RO=1";
1323	char *envp[] = { event, NULL };
1324
1325	if (!ro)
1326		event[8] = '0';
1327	kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp);
1328}
1329
1330void set_device_ro(struct block_device *bdev, int flag)
1331{
1332	bdev->bd_part->policy = flag;
1333}
1334
1335EXPORT_SYMBOL(set_device_ro);
1336
1337void set_disk_ro(struct gendisk *disk, int flag)
1338{
1339	struct disk_part_iter piter;
1340	struct hd_struct *part;
1341
1342	if (disk->part0.policy != flag) {
1343		set_disk_ro_uevent(disk, flag);
1344		disk->part0.policy = flag;
1345	}
1346
1347	disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
1348	while ((part = disk_part_iter_next(&piter)))
1349		part->policy = flag;
1350	disk_part_iter_exit(&piter);
1351}
1352
1353EXPORT_SYMBOL(set_disk_ro);
1354
1355int bdev_read_only(struct block_device *bdev)
1356{
1357	if (!bdev)
1358		return 0;
1359	return bdev->bd_part->policy;
1360}
1361
1362EXPORT_SYMBOL(bdev_read_only);
1363
1364int invalidate_partition(struct gendisk *disk, int partno)
1365{
1366	int res = 0;
1367	struct block_device *bdev = bdget_disk(disk, partno);
1368	if (bdev) {
1369		fsync_bdev(bdev);
1370		res = __invalidate_device(bdev, true);
1371		bdput(bdev);
1372	}
1373	return res;
1374}
1375
1376EXPORT_SYMBOL(invalidate_partition);
1377
1378/*
1379 * Disk events - monitor disk events like media change and eject request.
1380 */
1381struct disk_events {
1382	struct list_head	node;		/* all disk_event's */
1383	struct gendisk		*disk;		/* the associated disk */
1384	spinlock_t		lock;
1385
1386	struct mutex		block_mutex;	/* protects blocking */
1387	int			block;		/* event blocking depth */
1388	unsigned int		pending;	/* events already sent out */
1389	unsigned int		clearing;	/* events being cleared */
1390
1391	long			poll_msecs;	/* interval, -1 for default */
1392	struct delayed_work	dwork;
1393};
1394
1395static const char *disk_events_strs[] = {
1396	[ilog2(DISK_EVENT_MEDIA_CHANGE)]	= "media_change",
1397	[ilog2(DISK_EVENT_EJECT_REQUEST)]	= "eject_request",
1398};
1399
1400static char *disk_uevents[] = {
1401	[ilog2(DISK_EVENT_MEDIA_CHANGE)]	= "DISK_MEDIA_CHANGE=1",
1402	[ilog2(DISK_EVENT_EJECT_REQUEST)]	= "DISK_EJECT_REQUEST=1",
1403};
1404
1405/* list of all disk_events */
1406static DEFINE_MUTEX(disk_events_mutex);
1407static LIST_HEAD(disk_events);
1408
1409/* disable in-kernel polling by default */
1410static unsigned long disk_events_dfl_poll_msecs	= 0;
1411
1412static unsigned long disk_events_poll_jiffies(struct gendisk *disk)
1413{
1414	struct disk_events *ev = disk->ev;
1415	long intv_msecs = 0;
1416
1417	/*
1418	 * If device-specific poll interval is set, always use it.  If
1419	 * the default is being used, poll iff there are events which
1420	 * can't be monitored asynchronously.
1421	 */
1422	if (ev->poll_msecs >= 0)
1423		intv_msecs = ev->poll_msecs;
1424	else if (disk->events & ~disk->async_events)
1425		intv_msecs = disk_events_dfl_poll_msecs;
1426
1427	return msecs_to_jiffies(intv_msecs);
1428}
1429
1430/**
1431 * disk_block_events - block and flush disk event checking
1432 * @disk: disk to block events for
1433 *
1434 * On return from this function, it is guaranteed that event checking
1435 * isn't in progress and won't happen until unblocked by
1436 * disk_unblock_events().  Events blocking is counted and the actual
1437 * unblocking happens after the matching number of unblocks are done.
1438 *
1439 * Note that this intentionally does not block event checking from
1440 * disk_clear_events().
1441 *
1442 * CONTEXT:
1443 * Might sleep.
1444 */
1445void disk_block_events(struct gendisk *disk)
1446{
1447	struct disk_events *ev = disk->ev;
1448	unsigned long flags;
1449	bool cancel;
1450
1451	if (!ev)
1452		return;
1453
1454	/*
1455	 * Outer mutex ensures that the first blocker completes canceling
1456	 * the event work before further blockers are allowed to finish.
1457	 */
1458	mutex_lock(&ev->block_mutex);
1459
1460	spin_lock_irqsave(&ev->lock, flags);
1461	cancel = !ev->block++;
1462	spin_unlock_irqrestore(&ev->lock, flags);
1463
1464	if (cancel)
1465		cancel_delayed_work_sync(&disk->ev->dwork);
1466
1467	mutex_unlock(&ev->block_mutex);
1468}
1469
1470static void __disk_unblock_events(struct gendisk *disk, bool check_now)
1471{
1472	struct disk_events *ev = disk->ev;
1473	unsigned long intv;
1474	unsigned long flags;
1475
1476	spin_lock_irqsave(&ev->lock, flags);
1477
1478	if (WARN_ON_ONCE(ev->block <= 0))
1479		goto out_unlock;
1480
1481	if (--ev->block)
1482		goto out_unlock;
1483
1484	/*
1485	 * Not exactly a latency critical operation, set poll timer
1486	 * slack to 25% and kick event check.
1487	 */
1488	intv = disk_events_poll_jiffies(disk);
1489	set_timer_slack(&ev->dwork.timer, intv / 4);
1490	if (check_now)
1491		queue_delayed_work(system_freezable_power_efficient_wq,
1492				&ev->dwork, 0);
1493	else if (intv)
1494		queue_delayed_work(system_freezable_power_efficient_wq,
1495				&ev->dwork, intv);
1496out_unlock:
1497	spin_unlock_irqrestore(&ev->lock, flags);
1498}
1499
1500/**
1501 * disk_unblock_events - unblock disk event checking
1502 * @disk: disk to unblock events for
1503 *
1504 * Undo disk_block_events().  When the block count reaches zero, it
1505 * starts events polling if configured.
1506 *
1507 * CONTEXT:
1508 * Don't care.  Safe to call from irq context.
1509 */
1510void disk_unblock_events(struct gendisk *disk)
1511{
1512	if (disk->ev)
1513		__disk_unblock_events(disk, false);
1514}
1515
1516/**
1517 * disk_flush_events - schedule immediate event checking and flushing
1518 * @disk: disk to check and flush events for
1519 * @mask: events to flush
1520 *
1521 * Schedule immediate event checking on @disk if not blocked.  Events in
1522 * @mask are scheduled to be cleared from the driver.  Note that this
1523 * doesn't clear the events from @disk->ev.
1524 *
1525 * CONTEXT:
1526 * If @mask is non-zero must be called with bdev->bd_mutex held.
1527 */
1528void disk_flush_events(struct gendisk *disk, unsigned int mask)
1529{
1530	struct disk_events *ev = disk->ev;
1531
1532	if (!ev)
1533		return;
1534
1535	spin_lock_irq(&ev->lock);
1536	ev->clearing |= mask;
1537	if (!ev->block)
1538		mod_delayed_work(system_freezable_power_efficient_wq,
1539				&ev->dwork, 0);
1540	spin_unlock_irq(&ev->lock);
1541}
1542
1543/**
1544 * disk_clear_events - synchronously check, clear and return pending events
1545 * @disk: disk to fetch and clear events from
1546 * @mask: mask of events to be fetched and clearted
1547 *
1548 * Disk events are synchronously checked and pending events in @mask
1549 * are cleared and returned.  This ignores the block count.
1550 *
1551 * CONTEXT:
1552 * Might sleep.
1553 */
1554unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask)
1555{
1556	const struct block_device_operations *bdops = disk->fops;
1557	struct disk_events *ev = disk->ev;
1558	unsigned int pending;
1559	unsigned int clearing = mask;
1560
1561	if (!ev) {
1562		/* for drivers still using the old ->media_changed method */
1563		if ((mask & DISK_EVENT_MEDIA_CHANGE) &&
1564		    bdops->media_changed && bdops->media_changed(disk))
1565			return DISK_EVENT_MEDIA_CHANGE;
1566		return 0;
1567	}
1568
1569	disk_block_events(disk);
1570
1571	/*
1572	 * store the union of mask and ev->clearing on the stack so that the
1573	 * race with disk_flush_events does not cause ambiguity (ev->clearing
1574	 * can still be modified even if events are blocked).
1575	 */
1576	spin_lock_irq(&ev->lock);
1577	clearing |= ev->clearing;
1578	ev->clearing = 0;
1579	spin_unlock_irq(&ev->lock);
1580
1581	disk_check_events(ev, &clearing);
1582	/*
1583	 * if ev->clearing is not 0, the disk_flush_events got called in the
1584	 * middle of this function, so we want to run the workfn without delay.
1585	 */
1586	__disk_unblock_events(disk, ev->clearing ? true : false);
1587
1588	/* then, fetch and clear pending events */
1589	spin_lock_irq(&ev->lock);
1590	pending = ev->pending & mask;
1591	ev->pending &= ~mask;
1592	spin_unlock_irq(&ev->lock);
1593	WARN_ON_ONCE(clearing & mask);
1594
1595	return pending;
1596}
1597
1598/*
1599 * Separate this part out so that a different pointer for clearing_ptr can be
1600 * passed in for disk_clear_events.
1601 */
1602static void disk_events_workfn(struct work_struct *work)
1603{
1604	struct delayed_work *dwork = to_delayed_work(work);
1605	struct disk_events *ev = container_of(dwork, struct disk_events, dwork);
1606
1607	disk_check_events(ev, &ev->clearing);
1608}
1609
1610static void disk_check_events(struct disk_events *ev,
1611			      unsigned int *clearing_ptr)
1612{
1613	struct gendisk *disk = ev->disk;
1614	char *envp[ARRAY_SIZE(disk_uevents) + 1] = { };
1615	unsigned int clearing = *clearing_ptr;
1616	unsigned int events;
1617	unsigned long intv;
1618	int nr_events = 0, i;
1619
1620	/* check events */
1621	events = disk->fops->check_events(disk, clearing);
1622
1623	/* accumulate pending events and schedule next poll if necessary */
1624	spin_lock_irq(&ev->lock);
1625
1626	events &= ~ev->pending;
1627	ev->pending |= events;
1628	*clearing_ptr &= ~clearing;
1629
1630	intv = disk_events_poll_jiffies(disk);
1631	if (!ev->block && intv)
1632		queue_delayed_work(system_freezable_power_efficient_wq,
1633				&ev->dwork, intv);
1634
1635	spin_unlock_irq(&ev->lock);
1636
1637	/*
1638	 * Tell userland about new events.  Only the events listed in
1639	 * @disk->events are reported.  Unlisted events are processed the
1640	 * same internally but never get reported to userland.
 
1641	 */
1642	for (i = 0; i < ARRAY_SIZE(disk_uevents); i++)
1643		if (events & disk->events & (1 << i))
 
1644			envp[nr_events++] = disk_uevents[i];
1645
1646	if (nr_events)
1647		kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp);
1648}
1649
1650/*
1651 * A disk events enabled device has the following sysfs nodes under
1652 * its /sys/block/X/ directory.
1653 *
1654 * events		: list of all supported events
1655 * events_async		: list of events which can be detected w/o polling
 
1656 * events_poll_msecs	: polling interval, 0: disable, -1: system default
1657 */
1658static ssize_t __disk_events_show(unsigned int events, char *buf)
1659{
1660	const char *delim = "";
1661	ssize_t pos = 0;
1662	int i;
1663
1664	for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++)
1665		if (events & (1 << i)) {
1666			pos += sprintf(buf + pos, "%s%s",
1667				       delim, disk_events_strs[i]);
1668			delim = " ";
1669		}
1670	if (pos)
1671		pos += sprintf(buf + pos, "\n");
1672	return pos;
1673}
1674
1675static ssize_t disk_events_show(struct device *dev,
1676				struct device_attribute *attr, char *buf)
1677{
1678	struct gendisk *disk = dev_to_disk(dev);
1679
 
 
 
1680	return __disk_events_show(disk->events, buf);
1681}
1682
1683static ssize_t disk_events_async_show(struct device *dev,
1684				      struct device_attribute *attr, char *buf)
1685{
1686	struct gendisk *disk = dev_to_disk(dev);
1687
1688	return __disk_events_show(disk->async_events, buf);
1689}
1690
1691static ssize_t disk_events_poll_msecs_show(struct device *dev,
1692					   struct device_attribute *attr,
1693					   char *buf)
1694{
1695	struct gendisk *disk = dev_to_disk(dev);
1696
 
 
 
1697	return sprintf(buf, "%ld\n", disk->ev->poll_msecs);
1698}
1699
1700static ssize_t disk_events_poll_msecs_store(struct device *dev,
1701					    struct device_attribute *attr,
1702					    const char *buf, size_t count)
1703{
1704	struct gendisk *disk = dev_to_disk(dev);
1705	long intv;
1706
1707	if (!count || !sscanf(buf, "%ld", &intv))
1708		return -EINVAL;
1709
1710	if (intv < 0 && intv != -1)
1711		return -EINVAL;
1712
 
 
 
1713	disk_block_events(disk);
1714	disk->ev->poll_msecs = intv;
1715	__disk_unblock_events(disk, true);
1716
1717	return count;
1718}
1719
1720static const DEVICE_ATTR(events, S_IRUGO, disk_events_show, NULL);
1721static const DEVICE_ATTR(events_async, S_IRUGO, disk_events_async_show, NULL);
1722static const DEVICE_ATTR(events_poll_msecs, S_IRUGO|S_IWUSR,
1723			 disk_events_poll_msecs_show,
1724			 disk_events_poll_msecs_store);
1725
1726static const struct attribute *disk_events_attrs[] = {
1727	&dev_attr_events.attr,
1728	&dev_attr_events_async.attr,
1729	&dev_attr_events_poll_msecs.attr,
1730	NULL,
1731};
1732
1733/*
1734 * The default polling interval can be specified by the kernel
1735 * parameter block.events_dfl_poll_msecs which defaults to 0
1736 * (disable).  This can also be modified runtime by writing to
1737 * /sys/module/block/events_dfl_poll_msecs.
1738 */
1739static int disk_events_set_dfl_poll_msecs(const char *val,
1740					  const struct kernel_param *kp)
1741{
1742	struct disk_events *ev;
1743	int ret;
1744
1745	ret = param_set_ulong(val, kp);
1746	if (ret < 0)
1747		return ret;
1748
1749	mutex_lock(&disk_events_mutex);
1750
1751	list_for_each_entry(ev, &disk_events, node)
1752		disk_flush_events(ev->disk, 0);
1753
1754	mutex_unlock(&disk_events_mutex);
1755
1756	return 0;
1757}
1758
1759static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = {
1760	.set	= disk_events_set_dfl_poll_msecs,
1761	.get	= param_get_ulong,
1762};
1763
1764#undef MODULE_PARAM_PREFIX
1765#define MODULE_PARAM_PREFIX	"block."
1766
1767module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops,
1768		&disk_events_dfl_poll_msecs, 0644);
1769
1770/*
1771 * disk_{alloc|add|del|release}_events - initialize and destroy disk_events.
1772 */
1773static void disk_alloc_events(struct gendisk *disk)
1774{
1775	struct disk_events *ev;
1776
1777	if (!disk->fops->check_events)
1778		return;
1779
1780	ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1781	if (!ev) {
1782		pr_warn("%s: failed to initialize events\n", disk->disk_name);
1783		return;
1784	}
1785
1786	INIT_LIST_HEAD(&ev->node);
1787	ev->disk = disk;
1788	spin_lock_init(&ev->lock);
1789	mutex_init(&ev->block_mutex);
1790	ev->block = 1;
1791	ev->poll_msecs = -1;
1792	INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn);
1793
1794	disk->ev = ev;
1795}
1796
1797static void disk_add_events(struct gendisk *disk)
1798{
1799	if (!disk->ev)
1800		return;
1801
1802	/* FIXME: error handling */
1803	if (sysfs_create_files(&disk_to_dev(disk)->kobj, disk_events_attrs) < 0)
1804		pr_warn("%s: failed to create sysfs files for events\n",
1805			disk->disk_name);
1806
 
 
 
1807	mutex_lock(&disk_events_mutex);
1808	list_add_tail(&disk->ev->node, &disk_events);
1809	mutex_unlock(&disk_events_mutex);
1810
1811	/*
1812	 * Block count is initialized to 1 and the following initial
1813	 * unblock kicks it into action.
1814	 */
1815	__disk_unblock_events(disk, true);
1816}
1817
1818static void disk_del_events(struct gendisk *disk)
1819{
1820	if (!disk->ev)
1821		return;
1822
1823	disk_block_events(disk);
1824
1825	mutex_lock(&disk_events_mutex);
1826	list_del_init(&disk->ev->node);
1827	mutex_unlock(&disk_events_mutex);
1828
1829	sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs);
1830}
1831
1832static void disk_release_events(struct gendisk *disk)
1833{
1834	/* the block count should be 1 from disk_del_events() */
1835	WARN_ON_ONCE(disk->ev && disk->ev->block != 1);
1836	kfree(disk->ev);
1837}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  gendisk handling
   4 */
   5
   6#include <linux/module.h>
   7#include <linux/ctype.h>
   8#include <linux/fs.h>
   9#include <linux/genhd.h>
  10#include <linux/kdev_t.h>
  11#include <linux/kernel.h>
  12#include <linux/blkdev.h>
  13#include <linux/backing-dev.h>
  14#include <linux/init.h>
  15#include <linux/spinlock.h>
  16#include <linux/proc_fs.h>
  17#include <linux/seq_file.h>
  18#include <linux/slab.h>
  19#include <linux/kmod.h>
  20#include <linux/kobj_map.h>
  21#include <linux/mutex.h>
  22#include <linux/idr.h>
  23#include <linux/log2.h>
  24#include <linux/pm_runtime.h>
  25#include <linux/badblocks.h>
  26
  27#include "blk.h"
  28
  29static DEFINE_MUTEX(block_class_lock);
  30static struct kobject *block_depr;
  31
  32/* for extended dynamic devt allocation, currently only one major is used */
  33#define NR_EXT_DEVT		(1 << MINORBITS)
  34
  35/* For extended devt allocation.  ext_devt_lock prevents look up
  36 * results from going away underneath its user.
  37 */
  38static DEFINE_SPINLOCK(ext_devt_lock);
  39static DEFINE_IDR(ext_devt_idr);
  40
 
 
  41static void disk_check_events(struct disk_events *ev,
  42			      unsigned int *clearing_ptr);
  43static void disk_alloc_events(struct gendisk *disk);
  44static void disk_add_events(struct gendisk *disk);
  45static void disk_del_events(struct gendisk *disk);
  46static void disk_release_events(struct gendisk *disk);
  47
  48/*
  49 * Set disk capacity and notify if the size is not currently
  50 * zero and will not be set to zero
  51 */
  52void set_capacity_revalidate_and_notify(struct gendisk *disk, sector_t size,
  53					bool revalidate)
  54{
  55	sector_t capacity = get_capacity(disk);
  56
  57	set_capacity(disk, size);
  58
  59	if (revalidate)
  60		revalidate_disk(disk);
  61
  62	if (capacity != size && capacity != 0 && size != 0) {
  63		char *envp[] = { "RESIZE=1", NULL };
  64
  65		kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp);
  66	}
  67}
  68
  69EXPORT_SYMBOL_GPL(set_capacity_revalidate_and_notify);
  70
  71/*
  72 * Format the device name of the indicated disk into the supplied buffer and
  73 * return a pointer to that same buffer for convenience.
  74 */
  75char *disk_name(struct gendisk *hd, int partno, char *buf)
  76{
  77	if (!partno)
  78		snprintf(buf, BDEVNAME_SIZE, "%s", hd->disk_name);
  79	else if (isdigit(hd->disk_name[strlen(hd->disk_name)-1]))
  80		snprintf(buf, BDEVNAME_SIZE, "%sp%d", hd->disk_name, partno);
  81	else
  82		snprintf(buf, BDEVNAME_SIZE, "%s%d", hd->disk_name, partno);
  83
  84	return buf;
  85}
  86
  87const char *bdevname(struct block_device *bdev, char *buf)
  88{
  89	return disk_name(bdev->bd_disk, bdev->bd_part->partno, buf);
  90}
  91EXPORT_SYMBOL(bdevname);
  92
  93static void part_stat_read_all(struct hd_struct *part, struct disk_stats *stat)
  94{
  95	int cpu;
  96
  97	memset(stat, 0, sizeof(struct disk_stats));
  98	for_each_possible_cpu(cpu) {
  99		struct disk_stats *ptr = per_cpu_ptr(part->dkstats, cpu);
 100		int group;
 101
 102		for (group = 0; group < NR_STAT_GROUPS; group++) {
 103			stat->nsecs[group] += ptr->nsecs[group];
 104			stat->sectors[group] += ptr->sectors[group];
 105			stat->ios[group] += ptr->ios[group];
 106			stat->merges[group] += ptr->merges[group];
 107		}
 108
 109		stat->io_ticks += ptr->io_ticks;
 110	}
 111}
 112
 113static unsigned int part_in_flight(struct request_queue *q,
 114		struct hd_struct *part)
 115{
 116	unsigned int inflight = 0;
 117	int cpu;
 118
 119	for_each_possible_cpu(cpu) {
 120		inflight += part_stat_local_read_cpu(part, in_flight[0], cpu) +
 121			    part_stat_local_read_cpu(part, in_flight[1], cpu);
 122	}
 123	if ((int)inflight < 0)
 124		inflight = 0;
 125
 126	return inflight;
 127}
 128
 129static void part_in_flight_rw(struct request_queue *q, struct hd_struct *part,
 130		unsigned int inflight[2])
 131{
 132	int cpu;
 133
 134	inflight[0] = 0;
 135	inflight[1] = 0;
 136	for_each_possible_cpu(cpu) {
 137		inflight[0] += part_stat_local_read_cpu(part, in_flight[0], cpu);
 138		inflight[1] += part_stat_local_read_cpu(part, in_flight[1], cpu);
 139	}
 140	if ((int)inflight[0] < 0)
 141		inflight[0] = 0;
 142	if ((int)inflight[1] < 0)
 143		inflight[1] = 0;
 144}
 145
 146struct hd_struct *__disk_get_part(struct gendisk *disk, int partno)
 147{
 148	struct disk_part_tbl *ptbl = rcu_dereference(disk->part_tbl);
 149
 150	if (unlikely(partno < 0 || partno >= ptbl->len))
 151		return NULL;
 152	return rcu_dereference(ptbl->part[partno]);
 153}
 154
 155/**
 156 * disk_get_part - get partition
 157 * @disk: disk to look partition from
 158 * @partno: partition number
 159 *
 160 * Look for partition @partno from @disk.  If found, increment
 161 * reference count and return it.
 162 *
 163 * CONTEXT:
 164 * Don't care.
 165 *
 166 * RETURNS:
 167 * Pointer to the found partition on success, NULL if not found.
 168 */
 169struct hd_struct *disk_get_part(struct gendisk *disk, int partno)
 170{
 171	struct hd_struct *part;
 
 
 
 
 172
 173	rcu_read_lock();
 174	part = __disk_get_part(disk, partno);
 175	if (part)
 176		get_device(part_to_dev(part));
 
 
 
 
 
 177	rcu_read_unlock();
 178
 179	return part;
 180}
 
 181
 182/**
 183 * disk_part_iter_init - initialize partition iterator
 184 * @piter: iterator to initialize
 185 * @disk: disk to iterate over
 186 * @flags: DISK_PITER_* flags
 187 *
 188 * Initialize @piter so that it iterates over partitions of @disk.
 189 *
 190 * CONTEXT:
 191 * Don't care.
 192 */
 193void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk,
 194			  unsigned int flags)
 195{
 196	struct disk_part_tbl *ptbl;
 197
 198	rcu_read_lock();
 199	ptbl = rcu_dereference(disk->part_tbl);
 200
 201	piter->disk = disk;
 202	piter->part = NULL;
 203
 204	if (flags & DISK_PITER_REVERSE)
 205		piter->idx = ptbl->len - 1;
 206	else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0))
 207		piter->idx = 0;
 208	else
 209		piter->idx = 1;
 210
 211	piter->flags = flags;
 212
 213	rcu_read_unlock();
 214}
 215EXPORT_SYMBOL_GPL(disk_part_iter_init);
 216
 217/**
 218 * disk_part_iter_next - proceed iterator to the next partition and return it
 219 * @piter: iterator of interest
 220 *
 221 * Proceed @piter to the next partition and return it.
 222 *
 223 * CONTEXT:
 224 * Don't care.
 225 */
 226struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter)
 227{
 228	struct disk_part_tbl *ptbl;
 229	int inc, end;
 230
 231	/* put the last partition */
 232	disk_put_part(piter->part);
 233	piter->part = NULL;
 234
 235	/* get part_tbl */
 236	rcu_read_lock();
 237	ptbl = rcu_dereference(piter->disk->part_tbl);
 238
 239	/* determine iteration parameters */
 240	if (piter->flags & DISK_PITER_REVERSE) {
 241		inc = -1;
 242		if (piter->flags & (DISK_PITER_INCL_PART0 |
 243				    DISK_PITER_INCL_EMPTY_PART0))
 244			end = -1;
 245		else
 246			end = 0;
 247	} else {
 248		inc = 1;
 249		end = ptbl->len;
 250	}
 251
 252	/* iterate to the next partition */
 253	for (; piter->idx != end; piter->idx += inc) {
 254		struct hd_struct *part;
 255
 256		part = rcu_dereference(ptbl->part[piter->idx]);
 257		if (!part)
 258			continue;
 259		if (!part_nr_sects_read(part) &&
 260		    !(piter->flags & DISK_PITER_INCL_EMPTY) &&
 261		    !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 &&
 262		      piter->idx == 0))
 263			continue;
 264
 265		get_device(part_to_dev(part));
 266		piter->part = part;
 267		piter->idx += inc;
 268		break;
 269	}
 270
 271	rcu_read_unlock();
 272
 273	return piter->part;
 274}
 275EXPORT_SYMBOL_GPL(disk_part_iter_next);
 276
 277/**
 278 * disk_part_iter_exit - finish up partition iteration
 279 * @piter: iter of interest
 280 *
 281 * Called when iteration is over.  Cleans up @piter.
 282 *
 283 * CONTEXT:
 284 * Don't care.
 285 */
 286void disk_part_iter_exit(struct disk_part_iter *piter)
 287{
 288	disk_put_part(piter->part);
 289	piter->part = NULL;
 290}
 291EXPORT_SYMBOL_GPL(disk_part_iter_exit);
 292
 293static inline int sector_in_part(struct hd_struct *part, sector_t sector)
 294{
 295	return part->start_sect <= sector &&
 296		sector < part->start_sect + part_nr_sects_read(part);
 297}
 298
 299/**
 300 * disk_map_sector_rcu - map sector to partition
 301 * @disk: gendisk of interest
 302 * @sector: sector to map
 303 *
 304 * Find out which partition @sector maps to on @disk.  This is
 305 * primarily used for stats accounting.
 306 *
 307 * CONTEXT:
 308 * RCU read locked.  The returned partition pointer is always valid
 309 * because its refcount is grabbed except for part0, which lifetime
 310 * is same with the disk.
 311 *
 312 * RETURNS:
 313 * Found partition on success, part0 is returned if no partition matches
 314 * or the matched partition is being deleted.
 315 */
 316struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector)
 317{
 318	struct disk_part_tbl *ptbl;
 319	struct hd_struct *part;
 320	int i;
 321
 322	rcu_read_lock();
 323	ptbl = rcu_dereference(disk->part_tbl);
 324
 325	part = rcu_dereference(ptbl->last_lookup);
 326	if (part && sector_in_part(part, sector) && hd_struct_try_get(part))
 327		goto out_unlock;
 328
 329	for (i = 1; i < ptbl->len; i++) {
 330		part = rcu_dereference(ptbl->part[i]);
 331
 332		if (part && sector_in_part(part, sector)) {
 333			/*
 334			 * only live partition can be cached for lookup,
 335			 * so use-after-free on cached & deleting partition
 336			 * can be avoided
 337			 */
 338			if (!hd_struct_try_get(part))
 339				break;
 340			rcu_assign_pointer(ptbl->last_lookup, part);
 341			goto out_unlock;
 342		}
 343	}
 344
 345	part = &disk->part0;
 346out_unlock:
 347	rcu_read_unlock();
 348	return part;
 349}
 350
 351/**
 352 * disk_has_partitions
 353 * @disk: gendisk of interest
 354 *
 355 * Walk through the partition table and check if valid partition exists.
 356 *
 357 * CONTEXT:
 358 * Don't care.
 359 *
 360 * RETURNS:
 361 * True if the gendisk has at least one valid non-zero size partition.
 362 * Otherwise false.
 363 */
 364bool disk_has_partitions(struct gendisk *disk)
 365{
 366	struct disk_part_tbl *ptbl;
 367	int i;
 368	bool ret = false;
 369
 370	rcu_read_lock();
 371	ptbl = rcu_dereference(disk->part_tbl);
 372
 373	/* Iterate partitions skipping the whole device at index 0 */
 374	for (i = 1; i < ptbl->len; i++) {
 375		if (rcu_dereference(ptbl->part[i])) {
 376			ret = true;
 377			break;
 378		}
 379	}
 380
 381	rcu_read_unlock();
 382
 383	return ret;
 384}
 385EXPORT_SYMBOL_GPL(disk_has_partitions);
 386
 387/*
 388 * Can be deleted altogether. Later.
 389 *
 390 */
 391#define BLKDEV_MAJOR_HASH_SIZE 255
 392static struct blk_major_name {
 393	struct blk_major_name *next;
 394	int major;
 395	char name[16];
 396} *major_names[BLKDEV_MAJOR_HASH_SIZE];
 397
 398/* index in the above - for now: assume no multimajor ranges */
 399static inline int major_to_index(unsigned major)
 400{
 401	return major % BLKDEV_MAJOR_HASH_SIZE;
 402}
 403
 404#ifdef CONFIG_PROC_FS
 405void blkdev_show(struct seq_file *seqf, off_t offset)
 406{
 407	struct blk_major_name *dp;
 408
 409	mutex_lock(&block_class_lock);
 410	for (dp = major_names[major_to_index(offset)]; dp; dp = dp->next)
 411		if (dp->major == offset)
 412			seq_printf(seqf, "%3d %s\n", dp->major, dp->name);
 413	mutex_unlock(&block_class_lock);
 
 414}
 415#endif /* CONFIG_PROC_FS */
 416
 417/**
 418 * register_blkdev - register a new block device
 419 *
 420 * @major: the requested major device number [1..BLKDEV_MAJOR_MAX-1]. If
 421 *         @major = 0, try to allocate any unused major number.
 422 * @name: the name of the new block device as a zero terminated string
 423 *
 424 * The @name must be unique within the system.
 425 *
 426 * The return value depends on the @major input parameter:
 427 *
 428 *  - if a major device number was requested in range [1..BLKDEV_MAJOR_MAX-1]
 429 *    then the function returns zero on success, or a negative error code
 430 *  - if any unused major number was requested with @major = 0 parameter
 431 *    then the return value is the allocated major number in range
 432 *    [1..BLKDEV_MAJOR_MAX-1] or a negative error code otherwise
 433 *
 434 * See Documentation/admin-guide/devices.txt for the list of allocated
 435 * major numbers.
 436 */
 437int register_blkdev(unsigned int major, const char *name)
 438{
 439	struct blk_major_name **n, *p;
 440	int index, ret = 0;
 441
 442	mutex_lock(&block_class_lock);
 443
 444	/* temporary */
 445	if (major == 0) {
 446		for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) {
 447			if (major_names[index] == NULL)
 448				break;
 449		}
 450
 451		if (index == 0) {
 452			printk("%s: failed to get major for %s\n",
 453			       __func__, name);
 454			ret = -EBUSY;
 455			goto out;
 456		}
 457		major = index;
 458		ret = major;
 459	}
 460
 461	if (major >= BLKDEV_MAJOR_MAX) {
 462		pr_err("%s: major requested (%u) is greater than the maximum (%u) for %s\n",
 463		       __func__, major, BLKDEV_MAJOR_MAX-1, name);
 464
 465		ret = -EINVAL;
 466		goto out;
 467	}
 468
 469	p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL);
 470	if (p == NULL) {
 471		ret = -ENOMEM;
 472		goto out;
 473	}
 474
 475	p->major = major;
 476	strlcpy(p->name, name, sizeof(p->name));
 477	p->next = NULL;
 478	index = major_to_index(major);
 479
 480	for (n = &major_names[index]; *n; n = &(*n)->next) {
 481		if ((*n)->major == major)
 482			break;
 483	}
 484	if (!*n)
 485		*n = p;
 486	else
 487		ret = -EBUSY;
 488
 489	if (ret < 0) {
 490		printk("register_blkdev: cannot get major %u for %s\n",
 491		       major, name);
 492		kfree(p);
 493	}
 494out:
 495	mutex_unlock(&block_class_lock);
 496	return ret;
 497}
 498
 499EXPORT_SYMBOL(register_blkdev);
 500
 501void unregister_blkdev(unsigned int major, const char *name)
 502{
 503	struct blk_major_name **n;
 504	struct blk_major_name *p = NULL;
 505	int index = major_to_index(major);
 506
 507	mutex_lock(&block_class_lock);
 508	for (n = &major_names[index]; *n; n = &(*n)->next)
 509		if ((*n)->major == major)
 510			break;
 511	if (!*n || strcmp((*n)->name, name)) {
 512		WARN_ON(1);
 513	} else {
 514		p = *n;
 515		*n = p->next;
 516	}
 517	mutex_unlock(&block_class_lock);
 518	kfree(p);
 519}
 520
 521EXPORT_SYMBOL(unregister_blkdev);
 522
 523static struct kobj_map *bdev_map;
 524
 525/**
 526 * blk_mangle_minor - scatter minor numbers apart
 527 * @minor: minor number to mangle
 528 *
 529 * Scatter consecutively allocated @minor number apart if MANGLE_DEVT
 530 * is enabled.  Mangling twice gives the original value.
 531 *
 532 * RETURNS:
 533 * Mangled value.
 534 *
 535 * CONTEXT:
 536 * Don't care.
 537 */
 538static int blk_mangle_minor(int minor)
 539{
 540#ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT
 541	int i;
 542
 543	for (i = 0; i < MINORBITS / 2; i++) {
 544		int low = minor & (1 << i);
 545		int high = minor & (1 << (MINORBITS - 1 - i));
 546		int distance = MINORBITS - 1 - 2 * i;
 547
 548		minor ^= low | high;	/* clear both bits */
 549		low <<= distance;	/* swap the positions */
 550		high >>= distance;
 551		minor |= low | high;	/* and set */
 552	}
 553#endif
 554	return minor;
 555}
 556
 557/**
 558 * blk_alloc_devt - allocate a dev_t for a partition
 559 * @part: partition to allocate dev_t for
 560 * @devt: out parameter for resulting dev_t
 561 *
 562 * Allocate a dev_t for block device.
 563 *
 564 * RETURNS:
 565 * 0 on success, allocated dev_t is returned in *@devt.  -errno on
 566 * failure.
 567 *
 568 * CONTEXT:
 569 * Might sleep.
 570 */
 571int blk_alloc_devt(struct hd_struct *part, dev_t *devt)
 572{
 573	struct gendisk *disk = part_to_disk(part);
 574	int idx;
 575
 576	/* in consecutive minor range? */
 577	if (part->partno < disk->minors) {
 578		*devt = MKDEV(disk->major, disk->first_minor + part->partno);
 579		return 0;
 580	}
 581
 582	/* allocate ext devt */
 583	idr_preload(GFP_KERNEL);
 584
 585	spin_lock_bh(&ext_devt_lock);
 586	idx = idr_alloc(&ext_devt_idr, part, 0, NR_EXT_DEVT, GFP_NOWAIT);
 587	spin_unlock_bh(&ext_devt_lock);
 588
 589	idr_preload_end();
 590	if (idx < 0)
 591		return idx == -ENOSPC ? -EBUSY : idx;
 592
 593	*devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx));
 594	return 0;
 595}
 596
 597/**
 598 * blk_free_devt - free a dev_t
 599 * @devt: dev_t to free
 600 *
 601 * Free @devt which was allocated using blk_alloc_devt().
 602 *
 603 * CONTEXT:
 604 * Might sleep.
 605 */
 606void blk_free_devt(dev_t devt)
 607{
 
 
 608	if (devt == MKDEV(0, 0))
 609		return;
 610
 611	if (MAJOR(devt) == BLOCK_EXT_MAJOR) {
 612		spin_lock_bh(&ext_devt_lock);
 613		idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
 614		spin_unlock_bh(&ext_devt_lock);
 615	}
 616}
 617
 618/*
 619 * We invalidate devt by assigning NULL pointer for devt in idr.
 620 */
 621void blk_invalidate_devt(dev_t devt)
 622{
 623	if (MAJOR(devt) == BLOCK_EXT_MAJOR) {
 624		spin_lock_bh(&ext_devt_lock);
 625		idr_replace(&ext_devt_idr, NULL, blk_mangle_minor(MINOR(devt)));
 626		spin_unlock_bh(&ext_devt_lock);
 627	}
 628}
 629
 630static char *bdevt_str(dev_t devt, char *buf)
 631{
 632	if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) {
 633		char tbuf[BDEVT_SIZE];
 634		snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt));
 635		snprintf(buf, BDEVT_SIZE, "%-9s", tbuf);
 636	} else
 637		snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt));
 638
 639	return buf;
 640}
 641
 642/*
 643 * Register device numbers dev..(dev+range-1)
 644 * range must be nonzero
 645 * The hash chain is sorted on range, so that subranges can override.
 646 */
 647void blk_register_region(dev_t devt, unsigned long range, struct module *module,
 648			 struct kobject *(*probe)(dev_t, int *, void *),
 649			 int (*lock)(dev_t, void *), void *data)
 650{
 651	kobj_map(bdev_map, devt, range, module, probe, lock, data);
 652}
 653
 654EXPORT_SYMBOL(blk_register_region);
 655
 656void blk_unregister_region(dev_t devt, unsigned long range)
 657{
 658	kobj_unmap(bdev_map, devt, range);
 659}
 660
 661EXPORT_SYMBOL(blk_unregister_region);
 662
 663static struct kobject *exact_match(dev_t devt, int *partno, void *data)
 664{
 665	struct gendisk *p = data;
 666
 667	return &disk_to_dev(p)->kobj;
 668}
 669
 670static int exact_lock(dev_t devt, void *data)
 671{
 672	struct gendisk *p = data;
 673
 674	if (!get_disk_and_module(p))
 675		return -1;
 676	return 0;
 677}
 678
 679static void register_disk(struct device *parent, struct gendisk *disk,
 680			  const struct attribute_group **groups)
 681{
 682	struct device *ddev = disk_to_dev(disk);
 683	struct block_device *bdev;
 684	struct disk_part_iter piter;
 685	struct hd_struct *part;
 686	int err;
 687
 688	ddev->parent = parent;
 689
 690	dev_set_name(ddev, "%s", disk->disk_name);
 691
 692	/* delay uevents, until we scanned partition table */
 693	dev_set_uevent_suppress(ddev, 1);
 694
 695	if (groups) {
 696		WARN_ON(ddev->groups);
 697		ddev->groups = groups;
 698	}
 699	if (device_add(ddev))
 700		return;
 701	if (!sysfs_deprecated) {
 702		err = sysfs_create_link(block_depr, &ddev->kobj,
 703					kobject_name(&ddev->kobj));
 704		if (err) {
 705			device_del(ddev);
 706			return;
 707		}
 708	}
 709
 710	/*
 711	 * avoid probable deadlock caused by allocating memory with
 712	 * GFP_KERNEL in runtime_resume callback of its all ancestor
 713	 * devices
 714	 */
 715	pm_runtime_set_memalloc_noio(ddev, true);
 716
 717	disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj);
 718	disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj);
 719
 720	if (disk->flags & GENHD_FL_HIDDEN) {
 721		dev_set_uevent_suppress(ddev, 0);
 722		return;
 723	}
 724
 725	/* No minors to use for partitions */
 726	if (!disk_part_scan_enabled(disk))
 727		goto exit;
 728
 729	/* No such device (e.g., media were just removed) */
 730	if (!get_capacity(disk))
 731		goto exit;
 732
 733	bdev = bdget_disk(disk, 0);
 734	if (!bdev)
 735		goto exit;
 736
 737	bdev->bd_invalidated = 1;
 738	err = blkdev_get(bdev, FMODE_READ, NULL);
 739	if (err < 0)
 740		goto exit;
 741	blkdev_put(bdev, FMODE_READ);
 742
 743exit:
 744	/* announce disk after possible partitions are created */
 745	dev_set_uevent_suppress(ddev, 0);
 746	kobject_uevent(&ddev->kobj, KOBJ_ADD);
 747
 748	/* announce possible partitions */
 749	disk_part_iter_init(&piter, disk, 0);
 750	while ((part = disk_part_iter_next(&piter)))
 751		kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD);
 752	disk_part_iter_exit(&piter);
 753
 754	if (disk->queue->backing_dev_info->dev) {
 755		err = sysfs_create_link(&ddev->kobj,
 756			  &disk->queue->backing_dev_info->dev->kobj,
 757			  "bdi");
 758		WARN_ON(err);
 759	}
 760}
 761
 762/**
 763 * __device_add_disk - add disk information to kernel list
 764 * @parent: parent device for the disk
 765 * @disk: per-device partitioning information
 766 * @groups: Additional per-device sysfs groups
 767 * @register_queue: register the queue if set to true
 768 *
 769 * This function registers the partitioning information in @disk
 770 * with the kernel.
 771 *
 772 * FIXME: error handling
 773 */
 774static void __device_add_disk(struct device *parent, struct gendisk *disk,
 775			      const struct attribute_group **groups,
 776			      bool register_queue)
 777{
 
 778	dev_t devt;
 779	int retval;
 780
 781	/*
 782	 * The disk queue should now be all set with enough information about
 783	 * the device for the elevator code to pick an adequate default
 784	 * elevator if one is needed, that is, for devices requesting queue
 785	 * registration.
 786	 */
 787	if (register_queue)
 788		elevator_init_mq(disk->queue);
 789
 790	/* minors == 0 indicates to use ext devt from part0 and should
 791	 * be accompanied with EXT_DEVT flag.  Make sure all
 792	 * parameters make sense.
 793	 */
 794	WARN_ON(disk->minors && !(disk->major || disk->first_minor));
 795	WARN_ON(!disk->minors &&
 796		!(disk->flags & (GENHD_FL_EXT_DEVT | GENHD_FL_HIDDEN)));
 797
 798	disk->flags |= GENHD_FL_UP;
 799
 800	retval = blk_alloc_devt(&disk->part0, &devt);
 801	if (retval) {
 802		WARN_ON(1);
 803		return;
 804	}
 
 
 
 
 
 805	disk->major = MAJOR(devt);
 806	disk->first_minor = MINOR(devt);
 807
 808	disk_alloc_events(disk);
 809
 810	if (disk->flags & GENHD_FL_HIDDEN) {
 811		/*
 812		 * Don't let hidden disks show up in /proc/partitions,
 813		 * and don't bother scanning for partitions either.
 814		 */
 815		disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO;
 816		disk->flags |= GENHD_FL_NO_PART_SCAN;
 817	} else {
 818		struct backing_dev_info *bdi = disk->queue->backing_dev_info;
 819		struct device *dev = disk_to_dev(disk);
 820		int ret;
 821
 822		/* Register BDI before referencing it from bdev */
 823		dev->devt = devt;
 824		ret = bdi_register(bdi, "%u:%u", MAJOR(devt), MINOR(devt));
 825		WARN_ON(ret);
 826		bdi_set_owner(bdi, dev);
 827		blk_register_region(disk_devt(disk), disk->minors, NULL,
 828				    exact_match, exact_lock, disk);
 829	}
 830	register_disk(parent, disk, groups);
 831	if (register_queue)
 832		blk_register_queue(disk);
 833
 834	/*
 835	 * Take an extra ref on queue which will be put on disk_release()
 836	 * so that it sticks around as long as @disk is there.
 837	 */
 838	WARN_ON_ONCE(!blk_get_queue(disk->queue));
 839
 
 
 
 
 840	disk_add_events(disk);
 841	blk_integrity_add(disk);
 842}
 843
 844void device_add_disk(struct device *parent, struct gendisk *disk,
 845		     const struct attribute_group **groups)
 846
 847{
 848	__device_add_disk(parent, disk, groups, true);
 849}
 850EXPORT_SYMBOL(device_add_disk);
 851
 852void device_add_disk_no_queue_reg(struct device *parent, struct gendisk *disk)
 853{
 854	__device_add_disk(parent, disk, NULL, false);
 855}
 856EXPORT_SYMBOL(device_add_disk_no_queue_reg);
 857
 858static void invalidate_partition(struct gendisk *disk, int partno)
 859{
 860	struct block_device *bdev;
 861
 862	bdev = bdget_disk(disk, partno);
 863	if (!bdev)
 864		return;
 865
 866	fsync_bdev(bdev);
 867	__invalidate_device(bdev, true);
 868
 869	/*
 870	 * Unhash the bdev inode for this device so that it gets evicted as soon
 871	 * as last inode reference is dropped.
 872	 */
 873	remove_inode_hash(bdev->bd_inode);
 874	bdput(bdev);
 875}
 
 876
 877/**
 878 * del_gendisk - remove the gendisk
 879 * @disk: the struct gendisk to remove
 880 *
 881 * Removes the gendisk and all its associated resources. This deletes the
 882 * partitions associated with the gendisk, and unregisters the associated
 883 * request_queue.
 884 *
 885 * This is the counter to the respective __device_add_disk() call.
 886 *
 887 * The final removal of the struct gendisk happens when its refcount reaches 0
 888 * with put_disk(), which should be called after del_gendisk(), if
 889 * __device_add_disk() was used.
 890 *
 891 * Drivers exist which depend on the release of the gendisk to be synchronous,
 892 * it should not be deferred.
 893 *
 894 * Context: can sleep
 895 */
 896void del_gendisk(struct gendisk *disk)
 897{
 898	struct disk_part_iter piter;
 899	struct hd_struct *part;
 900
 901	might_sleep();
 902
 903	blk_integrity_del(disk);
 904	disk_del_events(disk);
 905
 906	/*
 907	 * Block lookups of the disk until all bdevs are unhashed and the
 908	 * disk is marked as dead (GENHD_FL_UP cleared).
 909	 */
 910	down_write(&disk->lookup_sem);
 911	/* invalidate stuff */
 912	disk_part_iter_init(&piter, disk,
 913			     DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE);
 914	while ((part = disk_part_iter_next(&piter))) {
 915		invalidate_partition(disk, part->partno);
 916		delete_partition(disk, part);
 917	}
 918	disk_part_iter_exit(&piter);
 919
 920	invalidate_partition(disk, 0);
 921	set_capacity(disk, 0);
 922	disk->flags &= ~GENHD_FL_UP;
 923	up_write(&disk->lookup_sem);
 924
 925	if (!(disk->flags & GENHD_FL_HIDDEN))
 926		sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi");
 927	if (disk->queue) {
 928		/*
 929		 * Unregister bdi before releasing device numbers (as they can
 930		 * get reused and we'd get clashes in sysfs).
 931		 */
 932		if (!(disk->flags & GENHD_FL_HIDDEN))
 933			bdi_unregister(disk->queue->backing_dev_info);
 934		blk_unregister_queue(disk);
 935	} else {
 936		WARN_ON(1);
 937	}
 938
 939	if (!(disk->flags & GENHD_FL_HIDDEN))
 940		blk_unregister_region(disk_devt(disk), disk->minors);
 941	/*
 942	 * Remove gendisk pointer from idr so that it cannot be looked up
 943	 * while RCU period before freeing gendisk is running to prevent
 944	 * use-after-free issues. Note that the device number stays
 945	 * "in-use" until we really free the gendisk.
 946	 */
 947	blk_invalidate_devt(disk_devt(disk));
 948
 949	kobject_put(disk->part0.holder_dir);
 950	kobject_put(disk->slave_dir);
 951
 952	part_stat_set_all(&disk->part0, 0);
 953	disk->part0.stamp = 0;
 954	if (!sysfs_deprecated)
 955		sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk)));
 956	pm_runtime_set_memalloc_noio(disk_to_dev(disk), false);
 957	device_del(disk_to_dev(disk));
 
 958}
 959EXPORT_SYMBOL(del_gendisk);
 960
 961/* sysfs access to bad-blocks list. */
 962static ssize_t disk_badblocks_show(struct device *dev,
 963					struct device_attribute *attr,
 964					char *page)
 965{
 966	struct gendisk *disk = dev_to_disk(dev);
 967
 968	if (!disk->bb)
 969		return sprintf(page, "\n");
 970
 971	return badblocks_show(disk->bb, page, 0);
 972}
 973
 974static ssize_t disk_badblocks_store(struct device *dev,
 975					struct device_attribute *attr,
 976					const char *page, size_t len)
 977{
 978	struct gendisk *disk = dev_to_disk(dev);
 979
 980	if (!disk->bb)
 981		return -ENXIO;
 982
 983	return badblocks_store(disk->bb, page, len, 0);
 984}
 985
 986/**
 987 * get_gendisk - get partitioning information for a given device
 988 * @devt: device to get partitioning information for
 989 * @partno: returned partition index
 990 *
 991 * This function gets the structure containing partitioning
 992 * information for the given device @devt.
 993 *
 994 * Context: can sleep
 995 */
 996struct gendisk *get_gendisk(dev_t devt, int *partno)
 997{
 998	struct gendisk *disk = NULL;
 999
1000	might_sleep();
1001
1002	if (MAJOR(devt) != BLOCK_EXT_MAJOR) {
1003		struct kobject *kobj;
1004
1005		kobj = kobj_lookup(bdev_map, devt, partno);
1006		if (kobj)
1007			disk = dev_to_disk(kobj_to_dev(kobj));
1008	} else {
1009		struct hd_struct *part;
1010
1011		spin_lock_bh(&ext_devt_lock);
1012		part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
1013		if (part && get_disk_and_module(part_to_disk(part))) {
1014			*partno = part->partno;
1015			disk = part_to_disk(part);
1016		}
1017		spin_unlock_bh(&ext_devt_lock);
1018	}
1019
1020	if (!disk)
1021		return NULL;
1022
1023	/*
1024	 * Synchronize with del_gendisk() to not return disk that is being
1025	 * destroyed.
1026	 */
1027	down_read(&disk->lookup_sem);
1028	if (unlikely((disk->flags & GENHD_FL_HIDDEN) ||
1029		     !(disk->flags & GENHD_FL_UP))) {
1030		up_read(&disk->lookup_sem);
1031		put_disk_and_module(disk);
1032		disk = NULL;
1033	} else {
1034		up_read(&disk->lookup_sem);
1035	}
1036	return disk;
1037}
 
1038
1039/**
1040 * bdget_disk - do bdget() by gendisk and partition number
1041 * @disk: gendisk of interest
1042 * @partno: partition number
1043 *
1044 * Find partition @partno from @disk, do bdget() on it.
1045 *
1046 * CONTEXT:
1047 * Don't care.
1048 *
1049 * RETURNS:
1050 * Resulting block_device on success, NULL on failure.
1051 */
1052struct block_device *bdget_disk(struct gendisk *disk, int partno)
1053{
1054	struct hd_struct *part;
1055	struct block_device *bdev = NULL;
1056
1057	part = disk_get_part(disk, partno);
1058	if (part)
1059		bdev = bdget(part_devt(part));
1060	disk_put_part(part);
1061
1062	return bdev;
1063}
1064EXPORT_SYMBOL(bdget_disk);
1065
1066/*
1067 * print a full list of all partitions - intended for places where the root
1068 * filesystem can't be mounted and thus to give the victim some idea of what
1069 * went wrong
1070 */
1071void __init printk_all_partitions(void)
1072{
1073	struct class_dev_iter iter;
1074	struct device *dev;
1075
1076	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1077	while ((dev = class_dev_iter_next(&iter))) {
1078		struct gendisk *disk = dev_to_disk(dev);
1079		struct disk_part_iter piter;
1080		struct hd_struct *part;
1081		char name_buf[BDEVNAME_SIZE];
1082		char devt_buf[BDEVT_SIZE];
1083
1084		/*
1085		 * Don't show empty devices or things that have been
1086		 * suppressed
1087		 */
1088		if (get_capacity(disk) == 0 ||
1089		    (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO))
1090			continue;
1091
1092		/*
1093		 * Note, unlike /proc/partitions, I am showing the
1094		 * numbers in hex - the same format as the root=
1095		 * option takes.
1096		 */
1097		disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0);
1098		while ((part = disk_part_iter_next(&piter))) {
1099			bool is_part0 = part == &disk->part0;
1100
1101			printk("%s%s %10llu %s %s", is_part0 ? "" : "  ",
1102			       bdevt_str(part_devt(part), devt_buf),
1103			       (unsigned long long)part_nr_sects_read(part) >> 1
1104			       , disk_name(disk, part->partno, name_buf),
1105			       part->info ? part->info->uuid : "");
1106			if (is_part0) {
1107				if (dev->parent && dev->parent->driver)
 
1108					printk(" driver: %s\n",
1109					      dev->parent->driver->name);
1110				else
1111					printk(" (driver?)\n");
1112			} else
1113				printk("\n");
1114		}
1115		disk_part_iter_exit(&piter);
1116	}
1117	class_dev_iter_exit(&iter);
1118}
1119
1120#ifdef CONFIG_PROC_FS
1121/* iterator */
1122static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos)
1123{
1124	loff_t skip = *pos;
1125	struct class_dev_iter *iter;
1126	struct device *dev;
1127
1128	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
1129	if (!iter)
1130		return ERR_PTR(-ENOMEM);
1131
1132	seqf->private = iter;
1133	class_dev_iter_init(iter, &block_class, NULL, &disk_type);
1134	do {
1135		dev = class_dev_iter_next(iter);
1136		if (!dev)
1137			return NULL;
1138	} while (skip--);
1139
1140	return dev_to_disk(dev);
1141}
1142
1143static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos)
1144{
1145	struct device *dev;
1146
1147	(*pos)++;
1148	dev = class_dev_iter_next(seqf->private);
1149	if (dev)
1150		return dev_to_disk(dev);
1151
1152	return NULL;
1153}
1154
1155static void disk_seqf_stop(struct seq_file *seqf, void *v)
1156{
1157	struct class_dev_iter *iter = seqf->private;
1158
1159	/* stop is called even after start failed :-( */
1160	if (iter) {
1161		class_dev_iter_exit(iter);
1162		kfree(iter);
1163		seqf->private = NULL;
1164	}
1165}
1166
1167static void *show_partition_start(struct seq_file *seqf, loff_t *pos)
1168{
1169	void *p;
1170
1171	p = disk_seqf_start(seqf, pos);
1172	if (!IS_ERR_OR_NULL(p) && !*pos)
1173		seq_puts(seqf, "major minor  #blocks  name\n\n");
1174	return p;
1175}
1176
1177static int show_partition(struct seq_file *seqf, void *v)
1178{
1179	struct gendisk *sgp = v;
1180	struct disk_part_iter piter;
1181	struct hd_struct *part;
1182	char buf[BDEVNAME_SIZE];
1183
1184	/* Don't show non-partitionable removeable devices or empty devices */
1185	if (!get_capacity(sgp) || (!disk_max_parts(sgp) &&
1186				   (sgp->flags & GENHD_FL_REMOVABLE)))
1187		return 0;
1188	if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)
1189		return 0;
1190
1191	/* show the full disk and all non-0 size partitions of it */
1192	disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0);
1193	while ((part = disk_part_iter_next(&piter)))
1194		seq_printf(seqf, "%4d  %7d %10llu %s\n",
1195			   MAJOR(part_devt(part)), MINOR(part_devt(part)),
1196			   (unsigned long long)part_nr_sects_read(part) >> 1,
1197			   disk_name(sgp, part->partno, buf));
1198	disk_part_iter_exit(&piter);
1199
1200	return 0;
1201}
1202
1203static const struct seq_operations partitions_op = {
1204	.start	= show_partition_start,
1205	.next	= disk_seqf_next,
1206	.stop	= disk_seqf_stop,
1207	.show	= show_partition
1208};
 
 
 
 
 
 
 
 
 
 
 
 
1209#endif
1210
1211
1212static struct kobject *base_probe(dev_t devt, int *partno, void *data)
1213{
1214	if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0)
1215		/* Make old-style 2.4 aliases work */
1216		request_module("block-major-%d", MAJOR(devt));
1217	return NULL;
1218}
1219
1220static int __init genhd_device_init(void)
1221{
1222	int error;
1223
1224	block_class.dev_kobj = sysfs_dev_block_kobj;
1225	error = class_register(&block_class);
1226	if (unlikely(error))
1227		return error;
1228	bdev_map = kobj_map_init(base_probe, &block_class_lock);
1229	blk_dev_init();
1230
1231	register_blkdev(BLOCK_EXT_MAJOR, "blkext");
1232
1233	/* create top-level block dir */
1234	if (!sysfs_deprecated)
1235		block_depr = kobject_create_and_add("block", NULL);
1236	return 0;
1237}
1238
1239subsys_initcall(genhd_device_init);
1240
1241static ssize_t disk_range_show(struct device *dev,
1242			       struct device_attribute *attr, char *buf)
1243{
1244	struct gendisk *disk = dev_to_disk(dev);
1245
1246	return sprintf(buf, "%d\n", disk->minors);
1247}
1248
1249static ssize_t disk_ext_range_show(struct device *dev,
1250				   struct device_attribute *attr, char *buf)
1251{
1252	struct gendisk *disk = dev_to_disk(dev);
1253
1254	return sprintf(buf, "%d\n", disk_max_parts(disk));
1255}
1256
1257static ssize_t disk_removable_show(struct device *dev,
1258				   struct device_attribute *attr, char *buf)
1259{
1260	struct gendisk *disk = dev_to_disk(dev);
1261
1262	return sprintf(buf, "%d\n",
1263		       (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0));
1264}
1265
1266static ssize_t disk_hidden_show(struct device *dev,
1267				   struct device_attribute *attr, char *buf)
1268{
1269	struct gendisk *disk = dev_to_disk(dev);
1270
1271	return sprintf(buf, "%d\n",
1272		       (disk->flags & GENHD_FL_HIDDEN ? 1 : 0));
1273}
1274
1275static ssize_t disk_ro_show(struct device *dev,
1276				   struct device_attribute *attr, char *buf)
1277{
1278	struct gendisk *disk = dev_to_disk(dev);
1279
1280	return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0);
1281}
1282
1283ssize_t part_size_show(struct device *dev,
1284		       struct device_attribute *attr, char *buf)
1285{
1286	struct hd_struct *p = dev_to_part(dev);
1287
1288	return sprintf(buf, "%llu\n",
1289		(unsigned long long)part_nr_sects_read(p));
1290}
1291
1292ssize_t part_stat_show(struct device *dev,
1293		       struct device_attribute *attr, char *buf)
1294{
1295	struct hd_struct *p = dev_to_part(dev);
1296	struct request_queue *q = part_to_disk(p)->queue;
1297	struct disk_stats stat;
1298	unsigned int inflight;
1299
1300	part_stat_read_all(p, &stat);
1301	if (queue_is_mq(q))
1302		inflight = blk_mq_in_flight(q, p);
1303	else
1304		inflight = part_in_flight(q, p);
1305
1306	return sprintf(buf,
1307		"%8lu %8lu %8llu %8u "
1308		"%8lu %8lu %8llu %8u "
1309		"%8u %8u %8u "
1310		"%8lu %8lu %8llu %8u "
1311		"%8lu %8u"
1312		"\n",
1313		stat.ios[STAT_READ],
1314		stat.merges[STAT_READ],
1315		(unsigned long long)stat.sectors[STAT_READ],
1316		(unsigned int)div_u64(stat.nsecs[STAT_READ], NSEC_PER_MSEC),
1317		stat.ios[STAT_WRITE],
1318		stat.merges[STAT_WRITE],
1319		(unsigned long long)stat.sectors[STAT_WRITE],
1320		(unsigned int)div_u64(stat.nsecs[STAT_WRITE], NSEC_PER_MSEC),
1321		inflight,
1322		jiffies_to_msecs(stat.io_ticks),
1323		(unsigned int)div_u64(stat.nsecs[STAT_READ] +
1324				      stat.nsecs[STAT_WRITE] +
1325				      stat.nsecs[STAT_DISCARD] +
1326				      stat.nsecs[STAT_FLUSH],
1327						NSEC_PER_MSEC),
1328		stat.ios[STAT_DISCARD],
1329		stat.merges[STAT_DISCARD],
1330		(unsigned long long)stat.sectors[STAT_DISCARD],
1331		(unsigned int)div_u64(stat.nsecs[STAT_DISCARD], NSEC_PER_MSEC),
1332		stat.ios[STAT_FLUSH],
1333		(unsigned int)div_u64(stat.nsecs[STAT_FLUSH], NSEC_PER_MSEC));
1334}
1335
1336ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr,
1337			   char *buf)
1338{
1339	struct hd_struct *p = dev_to_part(dev);
1340	struct request_queue *q = part_to_disk(p)->queue;
1341	unsigned int inflight[2];
1342
1343	if (queue_is_mq(q))
1344		blk_mq_in_flight_rw(q, p, inflight);
1345	else
1346		part_in_flight_rw(q, p, inflight);
1347
1348	return sprintf(buf, "%8u %8u\n", inflight[0], inflight[1]);
1349}
1350
1351static ssize_t disk_capability_show(struct device *dev,
1352				    struct device_attribute *attr, char *buf)
1353{
1354	struct gendisk *disk = dev_to_disk(dev);
1355
1356	return sprintf(buf, "%x\n", disk->flags);
1357}
1358
1359static ssize_t disk_alignment_offset_show(struct device *dev,
1360					  struct device_attribute *attr,
1361					  char *buf)
1362{
1363	struct gendisk *disk = dev_to_disk(dev);
1364
1365	return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue));
1366}
1367
1368static ssize_t disk_discard_alignment_show(struct device *dev,
1369					   struct device_attribute *attr,
1370					   char *buf)
1371{
1372	struct gendisk *disk = dev_to_disk(dev);
1373
1374	return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue));
1375}
1376
1377static DEVICE_ATTR(range, 0444, disk_range_show, NULL);
1378static DEVICE_ATTR(ext_range, 0444, disk_ext_range_show, NULL);
1379static DEVICE_ATTR(removable, 0444, disk_removable_show, NULL);
1380static DEVICE_ATTR(hidden, 0444, disk_hidden_show, NULL);
1381static DEVICE_ATTR(ro, 0444, disk_ro_show, NULL);
1382static DEVICE_ATTR(size, 0444, part_size_show, NULL);
1383static DEVICE_ATTR(alignment_offset, 0444, disk_alignment_offset_show, NULL);
1384static DEVICE_ATTR(discard_alignment, 0444, disk_discard_alignment_show, NULL);
1385static DEVICE_ATTR(capability, 0444, disk_capability_show, NULL);
1386static DEVICE_ATTR(stat, 0444, part_stat_show, NULL);
1387static DEVICE_ATTR(inflight, 0444, part_inflight_show, NULL);
1388static DEVICE_ATTR(badblocks, 0644, disk_badblocks_show, disk_badblocks_store);
1389
1390#ifdef CONFIG_FAIL_MAKE_REQUEST
1391ssize_t part_fail_show(struct device *dev,
1392		       struct device_attribute *attr, char *buf)
1393{
1394	struct hd_struct *p = dev_to_part(dev);
1395
1396	return sprintf(buf, "%d\n", p->make_it_fail);
1397}
1398
1399ssize_t part_fail_store(struct device *dev,
1400			struct device_attribute *attr,
1401			const char *buf, size_t count)
1402{
1403	struct hd_struct *p = dev_to_part(dev);
1404	int i;
1405
1406	if (count > 0 && sscanf(buf, "%d", &i) > 0)
1407		p->make_it_fail = (i == 0) ? 0 : 1;
1408
1409	return count;
1410}
1411
1412static struct device_attribute dev_attr_fail =
1413	__ATTR(make-it-fail, 0644, part_fail_show, part_fail_store);
1414#endif /* CONFIG_FAIL_MAKE_REQUEST */
1415
1416#ifdef CONFIG_FAIL_IO_TIMEOUT
1417static struct device_attribute dev_attr_fail_timeout =
1418	__ATTR(io-timeout-fail, 0644, part_timeout_show, part_timeout_store);
 
1419#endif
1420
1421static struct attribute *disk_attrs[] = {
1422	&dev_attr_range.attr,
1423	&dev_attr_ext_range.attr,
1424	&dev_attr_removable.attr,
1425	&dev_attr_hidden.attr,
1426	&dev_attr_ro.attr,
1427	&dev_attr_size.attr,
1428	&dev_attr_alignment_offset.attr,
1429	&dev_attr_discard_alignment.attr,
1430	&dev_attr_capability.attr,
1431	&dev_attr_stat.attr,
1432	&dev_attr_inflight.attr,
1433	&dev_attr_badblocks.attr,
1434#ifdef CONFIG_FAIL_MAKE_REQUEST
1435	&dev_attr_fail.attr,
1436#endif
1437#ifdef CONFIG_FAIL_IO_TIMEOUT
1438	&dev_attr_fail_timeout.attr,
1439#endif
1440	NULL
1441};
1442
1443static umode_t disk_visible(struct kobject *kobj, struct attribute *a, int n)
1444{
1445	struct device *dev = container_of(kobj, typeof(*dev), kobj);
1446	struct gendisk *disk = dev_to_disk(dev);
1447
1448	if (a == &dev_attr_badblocks.attr && !disk->bb)
1449		return 0;
1450	return a->mode;
1451}
1452
1453static struct attribute_group disk_attr_group = {
1454	.attrs = disk_attrs,
1455	.is_visible = disk_visible,
1456};
1457
1458static const struct attribute_group *disk_attr_groups[] = {
1459	&disk_attr_group,
1460	NULL
1461};
1462
1463/**
1464 * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way
1465 * @disk: disk to replace part_tbl for
1466 * @new_ptbl: new part_tbl to install
1467 *
1468 * Replace disk->part_tbl with @new_ptbl in RCU-safe way.  The
1469 * original ptbl is freed using RCU callback.
1470 *
1471 * LOCKING:
1472 * Matching bd_mutex locked or the caller is the only user of @disk.
1473 */
1474static void disk_replace_part_tbl(struct gendisk *disk,
1475				  struct disk_part_tbl *new_ptbl)
1476{
1477	struct disk_part_tbl *old_ptbl =
1478		rcu_dereference_protected(disk->part_tbl, 1);
1479
1480	rcu_assign_pointer(disk->part_tbl, new_ptbl);
1481
1482	if (old_ptbl) {
1483		rcu_assign_pointer(old_ptbl->last_lookup, NULL);
1484		kfree_rcu(old_ptbl, rcu_head);
1485	}
1486}
1487
1488/**
1489 * disk_expand_part_tbl - expand disk->part_tbl
1490 * @disk: disk to expand part_tbl for
1491 * @partno: expand such that this partno can fit in
1492 *
1493 * Expand disk->part_tbl such that @partno can fit in.  disk->part_tbl
1494 * uses RCU to allow unlocked dereferencing for stats and other stuff.
1495 *
1496 * LOCKING:
1497 * Matching bd_mutex locked or the caller is the only user of @disk.
1498 * Might sleep.
1499 *
1500 * RETURNS:
1501 * 0 on success, -errno on failure.
1502 */
1503int disk_expand_part_tbl(struct gendisk *disk, int partno)
1504{
1505	struct disk_part_tbl *old_ptbl =
1506		rcu_dereference_protected(disk->part_tbl, 1);
1507	struct disk_part_tbl *new_ptbl;
1508	int len = old_ptbl ? old_ptbl->len : 0;
1509	int i, target;
1510
1511	/*
1512	 * check for int overflow, since we can get here from blkpg_ioctl()
1513	 * with a user passed 'partno'.
1514	 */
1515	target = partno + 1;
1516	if (target < 0)
1517		return -EINVAL;
1518
1519	/* disk_max_parts() is zero during initialization, ignore if so */
1520	if (disk_max_parts(disk) && target > disk_max_parts(disk))
1521		return -EINVAL;
1522
1523	if (target <= len)
1524		return 0;
1525
1526	new_ptbl = kzalloc_node(struct_size(new_ptbl, part, target), GFP_KERNEL,
1527				disk->node_id);
1528	if (!new_ptbl)
1529		return -ENOMEM;
1530
1531	new_ptbl->len = target;
1532
1533	for (i = 0; i < len; i++)
1534		rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]);
1535
1536	disk_replace_part_tbl(disk, new_ptbl);
1537	return 0;
1538}
1539
1540/**
1541 * disk_release - releases all allocated resources of the gendisk
1542 * @dev: the device representing this disk
1543 *
1544 * This function releases all allocated resources of the gendisk.
1545 *
1546 * The struct gendisk refcount is incremented with get_gendisk() or
1547 * get_disk_and_module(), and its refcount is decremented with
1548 * put_disk_and_module() or put_disk(). Once the refcount reaches 0 this
1549 * function is called.
1550 *
1551 * Drivers which used __device_add_disk() have a gendisk with a request_queue
1552 * assigned. Since the request_queue sits on top of the gendisk for these
1553 * drivers we also call blk_put_queue() for them, and we expect the
1554 * request_queue refcount to reach 0 at this point, and so the request_queue
1555 * will also be freed prior to the disk.
1556 *
1557 * Context: can sleep
1558 */
1559static void disk_release(struct device *dev)
1560{
1561	struct gendisk *disk = dev_to_disk(dev);
1562
1563	might_sleep();
1564
1565	blk_free_devt(dev->devt);
1566	disk_release_events(disk);
1567	kfree(disk->random);
1568	disk_replace_part_tbl(disk, NULL);
1569	hd_free_part(&disk->part0);
 
1570	if (disk->queue)
1571		blk_put_queue(disk->queue);
1572	kfree(disk);
1573}
1574struct class block_class = {
1575	.name		= "block",
1576};
1577
1578static char *block_devnode(struct device *dev, umode_t *mode,
1579			   kuid_t *uid, kgid_t *gid)
1580{
1581	struct gendisk *disk = dev_to_disk(dev);
1582
1583	if (disk->fops->devnode)
1584		return disk->fops->devnode(disk, mode);
1585	return NULL;
1586}
1587
1588const struct device_type disk_type = {
1589	.name		= "disk",
1590	.groups		= disk_attr_groups,
1591	.release	= disk_release,
1592	.devnode	= block_devnode,
1593};
1594
1595#ifdef CONFIG_PROC_FS
1596/*
1597 * aggregate disk stat collector.  Uses the same stats that the sysfs
1598 * entries do, above, but makes them available through one seq_file.
1599 *
1600 * The output looks suspiciously like /proc/partitions with a bunch of
1601 * extra fields.
1602 */
1603static int diskstats_show(struct seq_file *seqf, void *v)
1604{
1605	struct gendisk *gp = v;
1606	struct disk_part_iter piter;
1607	struct hd_struct *hd;
1608	char buf[BDEVNAME_SIZE];
1609	unsigned int inflight;
1610	struct disk_stats stat;
1611
1612	/*
1613	if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next)
1614		seq_puts(seqf,	"major minor name"
1615				"     rio rmerge rsect ruse wio wmerge "
1616				"wsect wuse running use aveq"
1617				"\n\n");
1618	*/
1619
1620	disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0);
1621	while ((hd = disk_part_iter_next(&piter))) {
1622		part_stat_read_all(hd, &stat);
1623		if (queue_is_mq(gp->queue))
1624			inflight = blk_mq_in_flight(gp->queue, hd);
1625		else
1626			inflight = part_in_flight(gp->queue, hd);
1627
1628		seq_printf(seqf, "%4d %7d %s "
1629			   "%lu %lu %lu %u "
1630			   "%lu %lu %lu %u "
1631			   "%u %u %u "
1632			   "%lu %lu %lu %u "
1633			   "%lu %u"
1634			   "\n",
1635			   MAJOR(part_devt(hd)), MINOR(part_devt(hd)),
1636			   disk_name(gp, hd->partno, buf),
1637			   stat.ios[STAT_READ],
1638			   stat.merges[STAT_READ],
1639			   stat.sectors[STAT_READ],
1640			   (unsigned int)div_u64(stat.nsecs[STAT_READ],
1641							NSEC_PER_MSEC),
1642			   stat.ios[STAT_WRITE],
1643			   stat.merges[STAT_WRITE],
1644			   stat.sectors[STAT_WRITE],
1645			   (unsigned int)div_u64(stat.nsecs[STAT_WRITE],
1646							NSEC_PER_MSEC),
1647			   inflight,
1648			   jiffies_to_msecs(stat.io_ticks),
1649			   (unsigned int)div_u64(stat.nsecs[STAT_READ] +
1650						 stat.nsecs[STAT_WRITE] +
1651						 stat.nsecs[STAT_DISCARD] +
1652						 stat.nsecs[STAT_FLUSH],
1653							NSEC_PER_MSEC),
1654			   stat.ios[STAT_DISCARD],
1655			   stat.merges[STAT_DISCARD],
1656			   stat.sectors[STAT_DISCARD],
1657			   (unsigned int)div_u64(stat.nsecs[STAT_DISCARD],
1658						 NSEC_PER_MSEC),
1659			   stat.ios[STAT_FLUSH],
1660			   (unsigned int)div_u64(stat.nsecs[STAT_FLUSH],
1661						 NSEC_PER_MSEC)
1662			);
1663	}
1664	disk_part_iter_exit(&piter);
1665
1666	return 0;
1667}
1668
1669static const struct seq_operations diskstats_op = {
1670	.start	= disk_seqf_start,
1671	.next	= disk_seqf_next,
1672	.stop	= disk_seqf_stop,
1673	.show	= diskstats_show
1674};
1675
 
 
 
 
 
 
 
 
 
 
 
 
1676static int __init proc_genhd_init(void)
1677{
1678	proc_create_seq("diskstats", 0, NULL, &diskstats_op);
1679	proc_create_seq("partitions", 0, NULL, &partitions_op);
1680	return 0;
1681}
1682module_init(proc_genhd_init);
1683#endif /* CONFIG_PROC_FS */
1684
1685dev_t blk_lookup_devt(const char *name, int partno)
1686{
1687	dev_t devt = MKDEV(0, 0);
1688	struct class_dev_iter iter;
1689	struct device *dev;
1690
1691	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1692	while ((dev = class_dev_iter_next(&iter))) {
1693		struct gendisk *disk = dev_to_disk(dev);
1694		struct hd_struct *part;
1695
1696		if (strcmp(dev_name(dev), name))
1697			continue;
1698
1699		if (partno < disk->minors) {
1700			/* We need to return the right devno, even
1701			 * if the partition doesn't exist yet.
1702			 */
1703			devt = MKDEV(MAJOR(dev->devt),
1704				     MINOR(dev->devt) + partno);
1705			break;
1706		}
1707		part = disk_get_part(disk, partno);
1708		if (part) {
1709			devt = part_devt(part);
1710			disk_put_part(part);
1711			break;
1712		}
1713		disk_put_part(part);
1714	}
1715	class_dev_iter_exit(&iter);
1716	return devt;
1717}
 
 
 
 
 
 
 
1718
1719struct gendisk *__alloc_disk_node(int minors, int node_id)
1720{
1721	struct gendisk *disk;
1722	struct disk_part_tbl *ptbl;
1723
1724	if (minors > DISK_MAX_PARTS) {
1725		printk(KERN_ERR
1726			"block: can't allocate more than %d partitions\n",
1727			DISK_MAX_PARTS);
1728		minors = DISK_MAX_PARTS;
1729	}
1730
1731	disk = kzalloc_node(sizeof(struct gendisk), GFP_KERNEL, node_id);
1732	if (disk) {
1733		disk->part0.dkstats = alloc_percpu(struct disk_stats);
1734		if (!disk->part0.dkstats) {
1735			kfree(disk);
1736			return NULL;
1737		}
1738		init_rwsem(&disk->lookup_sem);
1739		disk->node_id = node_id;
1740		if (disk_expand_part_tbl(disk, 0)) {
1741			free_percpu(disk->part0.dkstats);
1742			kfree(disk);
1743			return NULL;
1744		}
1745		ptbl = rcu_dereference_protected(disk->part_tbl, 1);
1746		rcu_assign_pointer(ptbl->part[0], &disk->part0);
1747
1748		/*
1749		 * set_capacity() and get_capacity() currently don't use
1750		 * seqcounter to read/update the part0->nr_sects. Still init
1751		 * the counter as we can read the sectors in IO submission
1752		 * patch using seqence counters.
1753		 *
1754		 * TODO: Ideally set_capacity() and get_capacity() should be
1755		 * converted to make use of bd_mutex and sequence counters.
1756		 */
1757		hd_sects_seq_init(&disk->part0);
1758		if (hd_ref_init(&disk->part0)) {
1759			hd_free_part(&disk->part0);
1760			kfree(disk);
1761			return NULL;
1762		}
1763
1764		disk->minors = minors;
1765		rand_initialize_disk(disk);
1766		disk_to_dev(disk)->class = &block_class;
1767		disk_to_dev(disk)->type = &disk_type;
1768		device_initialize(disk_to_dev(disk));
1769	}
1770	return disk;
1771}
1772EXPORT_SYMBOL(__alloc_disk_node);
1773
1774/**
1775 * get_disk_and_module - increments the gendisk and gendisk fops module refcount
1776 * @disk: the struct gendisk to increment the refcount for
1777 *
1778 * This increments the refcount for the struct gendisk, and the gendisk's
1779 * fops module owner.
1780 *
1781 * Context: Any context.
1782 */
1783struct kobject *get_disk_and_module(struct gendisk *disk)
1784{
1785	struct module *owner;
1786	struct kobject *kobj;
1787
1788	if (!disk->fops)
1789		return NULL;
1790	owner = disk->fops->owner;
1791	if (owner && !try_module_get(owner))
1792		return NULL;
1793	kobj = kobject_get_unless_zero(&disk_to_dev(disk)->kobj);
1794	if (kobj == NULL) {
1795		module_put(owner);
1796		return NULL;
1797	}
1798	return kobj;
1799
1800}
1801EXPORT_SYMBOL(get_disk_and_module);
1802
1803/**
1804 * put_disk - decrements the gendisk refcount
1805 * @disk: the struct gendisk to decrement the refcount for
1806 *
1807 * This decrements the refcount for the struct gendisk. When this reaches 0
1808 * we'll have disk_release() called.
1809 *
1810 * Context: Any context, but the last reference must not be dropped from
1811 *          atomic context.
1812 */
1813void put_disk(struct gendisk *disk)
1814{
1815	if (disk)
1816		kobject_put(&disk_to_dev(disk)->kobj);
1817}
 
1818EXPORT_SYMBOL(put_disk);
1819
1820/**
1821 * put_disk_and_module - decrements the module and gendisk refcount
1822 * @disk: the struct gendisk to decrement the refcount for
1823 *
1824 * This is a counterpart of get_disk_and_module() and thus also of
1825 * get_gendisk().
1826 *
1827 * Context: Any context, but the last reference must not be dropped from
1828 *          atomic context.
1829 */
1830void put_disk_and_module(struct gendisk *disk)
1831{
1832	if (disk) {
1833		struct module *owner = disk->fops->owner;
1834
1835		put_disk(disk);
1836		module_put(owner);
1837	}
1838}
1839EXPORT_SYMBOL(put_disk_and_module);
1840
1841static void set_disk_ro_uevent(struct gendisk *gd, int ro)
1842{
1843	char event[] = "DISK_RO=1";
1844	char *envp[] = { event, NULL };
1845
1846	if (!ro)
1847		event[8] = '0';
1848	kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp);
1849}
1850
1851void set_device_ro(struct block_device *bdev, int flag)
1852{
1853	bdev->bd_part->policy = flag;
1854}
1855
1856EXPORT_SYMBOL(set_device_ro);
1857
1858void set_disk_ro(struct gendisk *disk, int flag)
1859{
1860	struct disk_part_iter piter;
1861	struct hd_struct *part;
1862
1863	if (disk->part0.policy != flag) {
1864		set_disk_ro_uevent(disk, flag);
1865		disk->part0.policy = flag;
1866	}
1867
1868	disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
1869	while ((part = disk_part_iter_next(&piter)))
1870		part->policy = flag;
1871	disk_part_iter_exit(&piter);
1872}
1873
1874EXPORT_SYMBOL(set_disk_ro);
1875
1876int bdev_read_only(struct block_device *bdev)
1877{
1878	if (!bdev)
1879		return 0;
1880	return bdev->bd_part->policy;
1881}
1882
1883EXPORT_SYMBOL(bdev_read_only);
1884
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1885/*
1886 * Disk events - monitor disk events like media change and eject request.
1887 */
1888struct disk_events {
1889	struct list_head	node;		/* all disk_event's */
1890	struct gendisk		*disk;		/* the associated disk */
1891	spinlock_t		lock;
1892
1893	struct mutex		block_mutex;	/* protects blocking */
1894	int			block;		/* event blocking depth */
1895	unsigned int		pending;	/* events already sent out */
1896	unsigned int		clearing;	/* events being cleared */
1897
1898	long			poll_msecs;	/* interval, -1 for default */
1899	struct delayed_work	dwork;
1900};
1901
1902static const char *disk_events_strs[] = {
1903	[ilog2(DISK_EVENT_MEDIA_CHANGE)]	= "media_change",
1904	[ilog2(DISK_EVENT_EJECT_REQUEST)]	= "eject_request",
1905};
1906
1907static char *disk_uevents[] = {
1908	[ilog2(DISK_EVENT_MEDIA_CHANGE)]	= "DISK_MEDIA_CHANGE=1",
1909	[ilog2(DISK_EVENT_EJECT_REQUEST)]	= "DISK_EJECT_REQUEST=1",
1910};
1911
1912/* list of all disk_events */
1913static DEFINE_MUTEX(disk_events_mutex);
1914static LIST_HEAD(disk_events);
1915
1916/* disable in-kernel polling by default */
1917static unsigned long disk_events_dfl_poll_msecs;
1918
1919static unsigned long disk_events_poll_jiffies(struct gendisk *disk)
1920{
1921	struct disk_events *ev = disk->ev;
1922	long intv_msecs = 0;
1923
1924	/*
1925	 * If device-specific poll interval is set, always use it.  If
1926	 * the default is being used, poll if the POLL flag is set.
 
1927	 */
1928	if (ev->poll_msecs >= 0)
1929		intv_msecs = ev->poll_msecs;
1930	else if (disk->event_flags & DISK_EVENT_FLAG_POLL)
1931		intv_msecs = disk_events_dfl_poll_msecs;
1932
1933	return msecs_to_jiffies(intv_msecs);
1934}
1935
1936/**
1937 * disk_block_events - block and flush disk event checking
1938 * @disk: disk to block events for
1939 *
1940 * On return from this function, it is guaranteed that event checking
1941 * isn't in progress and won't happen until unblocked by
1942 * disk_unblock_events().  Events blocking is counted and the actual
1943 * unblocking happens after the matching number of unblocks are done.
1944 *
1945 * Note that this intentionally does not block event checking from
1946 * disk_clear_events().
1947 *
1948 * CONTEXT:
1949 * Might sleep.
1950 */
1951void disk_block_events(struct gendisk *disk)
1952{
1953	struct disk_events *ev = disk->ev;
1954	unsigned long flags;
1955	bool cancel;
1956
1957	if (!ev)
1958		return;
1959
1960	/*
1961	 * Outer mutex ensures that the first blocker completes canceling
1962	 * the event work before further blockers are allowed to finish.
1963	 */
1964	mutex_lock(&ev->block_mutex);
1965
1966	spin_lock_irqsave(&ev->lock, flags);
1967	cancel = !ev->block++;
1968	spin_unlock_irqrestore(&ev->lock, flags);
1969
1970	if (cancel)
1971		cancel_delayed_work_sync(&disk->ev->dwork);
1972
1973	mutex_unlock(&ev->block_mutex);
1974}
1975
1976static void __disk_unblock_events(struct gendisk *disk, bool check_now)
1977{
1978	struct disk_events *ev = disk->ev;
1979	unsigned long intv;
1980	unsigned long flags;
1981
1982	spin_lock_irqsave(&ev->lock, flags);
1983
1984	if (WARN_ON_ONCE(ev->block <= 0))
1985		goto out_unlock;
1986
1987	if (--ev->block)
1988		goto out_unlock;
1989
 
 
 
 
1990	intv = disk_events_poll_jiffies(disk);
 
1991	if (check_now)
1992		queue_delayed_work(system_freezable_power_efficient_wq,
1993				&ev->dwork, 0);
1994	else if (intv)
1995		queue_delayed_work(system_freezable_power_efficient_wq,
1996				&ev->dwork, intv);
1997out_unlock:
1998	spin_unlock_irqrestore(&ev->lock, flags);
1999}
2000
2001/**
2002 * disk_unblock_events - unblock disk event checking
2003 * @disk: disk to unblock events for
2004 *
2005 * Undo disk_block_events().  When the block count reaches zero, it
2006 * starts events polling if configured.
2007 *
2008 * CONTEXT:
2009 * Don't care.  Safe to call from irq context.
2010 */
2011void disk_unblock_events(struct gendisk *disk)
2012{
2013	if (disk->ev)
2014		__disk_unblock_events(disk, false);
2015}
2016
2017/**
2018 * disk_flush_events - schedule immediate event checking and flushing
2019 * @disk: disk to check and flush events for
2020 * @mask: events to flush
2021 *
2022 * Schedule immediate event checking on @disk if not blocked.  Events in
2023 * @mask are scheduled to be cleared from the driver.  Note that this
2024 * doesn't clear the events from @disk->ev.
2025 *
2026 * CONTEXT:
2027 * If @mask is non-zero must be called with bdev->bd_mutex held.
2028 */
2029void disk_flush_events(struct gendisk *disk, unsigned int mask)
2030{
2031	struct disk_events *ev = disk->ev;
2032
2033	if (!ev)
2034		return;
2035
2036	spin_lock_irq(&ev->lock);
2037	ev->clearing |= mask;
2038	if (!ev->block)
2039		mod_delayed_work(system_freezable_power_efficient_wq,
2040				&ev->dwork, 0);
2041	spin_unlock_irq(&ev->lock);
2042}
2043
2044/**
2045 * disk_clear_events - synchronously check, clear and return pending events
2046 * @disk: disk to fetch and clear events from
2047 * @mask: mask of events to be fetched and cleared
2048 *
2049 * Disk events are synchronously checked and pending events in @mask
2050 * are cleared and returned.  This ignores the block count.
2051 *
2052 * CONTEXT:
2053 * Might sleep.
2054 */
2055unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask)
2056{
 
2057	struct disk_events *ev = disk->ev;
2058	unsigned int pending;
2059	unsigned int clearing = mask;
2060
2061	if (!ev)
 
 
 
 
2062		return 0;
 
2063
2064	disk_block_events(disk);
2065
2066	/*
2067	 * store the union of mask and ev->clearing on the stack so that the
2068	 * race with disk_flush_events does not cause ambiguity (ev->clearing
2069	 * can still be modified even if events are blocked).
2070	 */
2071	spin_lock_irq(&ev->lock);
2072	clearing |= ev->clearing;
2073	ev->clearing = 0;
2074	spin_unlock_irq(&ev->lock);
2075
2076	disk_check_events(ev, &clearing);
2077	/*
2078	 * if ev->clearing is not 0, the disk_flush_events got called in the
2079	 * middle of this function, so we want to run the workfn without delay.
2080	 */
2081	__disk_unblock_events(disk, ev->clearing ? true : false);
2082
2083	/* then, fetch and clear pending events */
2084	spin_lock_irq(&ev->lock);
2085	pending = ev->pending & mask;
2086	ev->pending &= ~mask;
2087	spin_unlock_irq(&ev->lock);
2088	WARN_ON_ONCE(clearing & mask);
2089
2090	return pending;
2091}
2092
2093/*
2094 * Separate this part out so that a different pointer for clearing_ptr can be
2095 * passed in for disk_clear_events.
2096 */
2097static void disk_events_workfn(struct work_struct *work)
2098{
2099	struct delayed_work *dwork = to_delayed_work(work);
2100	struct disk_events *ev = container_of(dwork, struct disk_events, dwork);
2101
2102	disk_check_events(ev, &ev->clearing);
2103}
2104
2105static void disk_check_events(struct disk_events *ev,
2106			      unsigned int *clearing_ptr)
2107{
2108	struct gendisk *disk = ev->disk;
2109	char *envp[ARRAY_SIZE(disk_uevents) + 1] = { };
2110	unsigned int clearing = *clearing_ptr;
2111	unsigned int events;
2112	unsigned long intv;
2113	int nr_events = 0, i;
2114
2115	/* check events */
2116	events = disk->fops->check_events(disk, clearing);
2117
2118	/* accumulate pending events and schedule next poll if necessary */
2119	spin_lock_irq(&ev->lock);
2120
2121	events &= ~ev->pending;
2122	ev->pending |= events;
2123	*clearing_ptr &= ~clearing;
2124
2125	intv = disk_events_poll_jiffies(disk);
2126	if (!ev->block && intv)
2127		queue_delayed_work(system_freezable_power_efficient_wq,
2128				&ev->dwork, intv);
2129
2130	spin_unlock_irq(&ev->lock);
2131
2132	/*
2133	 * Tell userland about new events.  Only the events listed in
2134	 * @disk->events are reported, and only if DISK_EVENT_FLAG_UEVENT
2135	 * is set. Otherwise, events are processed internally but never
2136	 * get reported to userland.
2137	 */
2138	for (i = 0; i < ARRAY_SIZE(disk_uevents); i++)
2139		if ((events & disk->events & (1 << i)) &&
2140		    (disk->event_flags & DISK_EVENT_FLAG_UEVENT))
2141			envp[nr_events++] = disk_uevents[i];
2142
2143	if (nr_events)
2144		kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp);
2145}
2146
2147/*
2148 * A disk events enabled device has the following sysfs nodes under
2149 * its /sys/block/X/ directory.
2150 *
2151 * events		: list of all supported events
2152 * events_async		: list of events which can be detected w/o polling
2153 *			  (always empty, only for backwards compatibility)
2154 * events_poll_msecs	: polling interval, 0: disable, -1: system default
2155 */
2156static ssize_t __disk_events_show(unsigned int events, char *buf)
2157{
2158	const char *delim = "";
2159	ssize_t pos = 0;
2160	int i;
2161
2162	for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++)
2163		if (events & (1 << i)) {
2164			pos += sprintf(buf + pos, "%s%s",
2165				       delim, disk_events_strs[i]);
2166			delim = " ";
2167		}
2168	if (pos)
2169		pos += sprintf(buf + pos, "\n");
2170	return pos;
2171}
2172
2173static ssize_t disk_events_show(struct device *dev,
2174				struct device_attribute *attr, char *buf)
2175{
2176	struct gendisk *disk = dev_to_disk(dev);
2177
2178	if (!(disk->event_flags & DISK_EVENT_FLAG_UEVENT))
2179		return 0;
2180
2181	return __disk_events_show(disk->events, buf);
2182}
2183
2184static ssize_t disk_events_async_show(struct device *dev,
2185				      struct device_attribute *attr, char *buf)
2186{
2187	return 0;
 
 
2188}
2189
2190static ssize_t disk_events_poll_msecs_show(struct device *dev,
2191					   struct device_attribute *attr,
2192					   char *buf)
2193{
2194	struct gendisk *disk = dev_to_disk(dev);
2195
2196	if (!disk->ev)
2197		return sprintf(buf, "-1\n");
2198
2199	return sprintf(buf, "%ld\n", disk->ev->poll_msecs);
2200}
2201
2202static ssize_t disk_events_poll_msecs_store(struct device *dev,
2203					    struct device_attribute *attr,
2204					    const char *buf, size_t count)
2205{
2206	struct gendisk *disk = dev_to_disk(dev);
2207	long intv;
2208
2209	if (!count || !sscanf(buf, "%ld", &intv))
2210		return -EINVAL;
2211
2212	if (intv < 0 && intv != -1)
2213		return -EINVAL;
2214
2215	if (!disk->ev)
2216		return -ENODEV;
2217
2218	disk_block_events(disk);
2219	disk->ev->poll_msecs = intv;
2220	__disk_unblock_events(disk, true);
2221
2222	return count;
2223}
2224
2225static const DEVICE_ATTR(events, 0444, disk_events_show, NULL);
2226static const DEVICE_ATTR(events_async, 0444, disk_events_async_show, NULL);
2227static const DEVICE_ATTR(events_poll_msecs, 0644,
2228			 disk_events_poll_msecs_show,
2229			 disk_events_poll_msecs_store);
2230
2231static const struct attribute *disk_events_attrs[] = {
2232	&dev_attr_events.attr,
2233	&dev_attr_events_async.attr,
2234	&dev_attr_events_poll_msecs.attr,
2235	NULL,
2236};
2237
2238/*
2239 * The default polling interval can be specified by the kernel
2240 * parameter block.events_dfl_poll_msecs which defaults to 0
2241 * (disable).  This can also be modified runtime by writing to
2242 * /sys/module/block/parameters/events_dfl_poll_msecs.
2243 */
2244static int disk_events_set_dfl_poll_msecs(const char *val,
2245					  const struct kernel_param *kp)
2246{
2247	struct disk_events *ev;
2248	int ret;
2249
2250	ret = param_set_ulong(val, kp);
2251	if (ret < 0)
2252		return ret;
2253
2254	mutex_lock(&disk_events_mutex);
2255
2256	list_for_each_entry(ev, &disk_events, node)
2257		disk_flush_events(ev->disk, 0);
2258
2259	mutex_unlock(&disk_events_mutex);
2260
2261	return 0;
2262}
2263
2264static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = {
2265	.set	= disk_events_set_dfl_poll_msecs,
2266	.get	= param_get_ulong,
2267};
2268
2269#undef MODULE_PARAM_PREFIX
2270#define MODULE_PARAM_PREFIX	"block."
2271
2272module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops,
2273		&disk_events_dfl_poll_msecs, 0644);
2274
2275/*
2276 * disk_{alloc|add|del|release}_events - initialize and destroy disk_events.
2277 */
2278static void disk_alloc_events(struct gendisk *disk)
2279{
2280	struct disk_events *ev;
2281
2282	if (!disk->fops->check_events || !disk->events)
2283		return;
2284
2285	ev = kzalloc(sizeof(*ev), GFP_KERNEL);
2286	if (!ev) {
2287		pr_warn("%s: failed to initialize events\n", disk->disk_name);
2288		return;
2289	}
2290
2291	INIT_LIST_HEAD(&ev->node);
2292	ev->disk = disk;
2293	spin_lock_init(&ev->lock);
2294	mutex_init(&ev->block_mutex);
2295	ev->block = 1;
2296	ev->poll_msecs = -1;
2297	INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn);
2298
2299	disk->ev = ev;
2300}
2301
2302static void disk_add_events(struct gendisk *disk)
2303{
 
 
 
2304	/* FIXME: error handling */
2305	if (sysfs_create_files(&disk_to_dev(disk)->kobj, disk_events_attrs) < 0)
2306		pr_warn("%s: failed to create sysfs files for events\n",
2307			disk->disk_name);
2308
2309	if (!disk->ev)
2310		return;
2311
2312	mutex_lock(&disk_events_mutex);
2313	list_add_tail(&disk->ev->node, &disk_events);
2314	mutex_unlock(&disk_events_mutex);
2315
2316	/*
2317	 * Block count is initialized to 1 and the following initial
2318	 * unblock kicks it into action.
2319	 */
2320	__disk_unblock_events(disk, true);
2321}
2322
2323static void disk_del_events(struct gendisk *disk)
2324{
2325	if (disk->ev) {
2326		disk_block_events(disk);
2327
2328		mutex_lock(&disk_events_mutex);
2329		list_del_init(&disk->ev->node);
2330		mutex_unlock(&disk_events_mutex);
2331	}
 
2332
2333	sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs);
2334}
2335
2336static void disk_release_events(struct gendisk *disk)
2337{
2338	/* the block count should be 1 from disk_del_events() */
2339	WARN_ON_ONCE(disk->ev && disk->ev->block != 1);
2340	kfree(disk->ev);
2341}