Loading...
1#include <linux/kernel.h>
2#include <linux/module.h>
3#include <linux/percpu_ida.h>
4
5#include <linux/blk-mq.h>
6#include "blk.h"
7#include "blk-mq.h"
8#include "blk-mq-tag.h"
9
10/*
11 * Per tagged queue (tag address space) map
12 */
13struct blk_mq_tags {
14 unsigned int nr_tags;
15 unsigned int nr_reserved_tags;
16 unsigned int nr_batch_move;
17 unsigned int nr_max_cache;
18
19 struct percpu_ida free_tags;
20 struct percpu_ida reserved_tags;
21};
22
23void blk_mq_wait_for_tags(struct blk_mq_tags *tags)
24{
25 int tag = blk_mq_get_tag(tags, __GFP_WAIT, false);
26 blk_mq_put_tag(tags, tag);
27}
28
29bool blk_mq_has_free_tags(struct blk_mq_tags *tags)
30{
31 return !tags ||
32 percpu_ida_free_tags(&tags->free_tags, nr_cpu_ids) != 0;
33}
34
35static unsigned int __blk_mq_get_tag(struct blk_mq_tags *tags, gfp_t gfp)
36{
37 int tag;
38
39 tag = percpu_ida_alloc(&tags->free_tags, (gfp & __GFP_WAIT) ?
40 TASK_UNINTERRUPTIBLE : TASK_RUNNING);
41 if (tag < 0)
42 return BLK_MQ_TAG_FAIL;
43 return tag + tags->nr_reserved_tags;
44}
45
46static unsigned int __blk_mq_get_reserved_tag(struct blk_mq_tags *tags,
47 gfp_t gfp)
48{
49 int tag;
50
51 if (unlikely(!tags->nr_reserved_tags)) {
52 WARN_ON_ONCE(1);
53 return BLK_MQ_TAG_FAIL;
54 }
55
56 tag = percpu_ida_alloc(&tags->reserved_tags, (gfp & __GFP_WAIT) ?
57 TASK_UNINTERRUPTIBLE : TASK_RUNNING);
58 if (tag < 0)
59 return BLK_MQ_TAG_FAIL;
60 return tag;
61}
62
63unsigned int blk_mq_get_tag(struct blk_mq_tags *tags, gfp_t gfp, bool reserved)
64{
65 if (!reserved)
66 return __blk_mq_get_tag(tags, gfp);
67
68 return __blk_mq_get_reserved_tag(tags, gfp);
69}
70
71static void __blk_mq_put_tag(struct blk_mq_tags *tags, unsigned int tag)
72{
73 BUG_ON(tag >= tags->nr_tags);
74
75 percpu_ida_free(&tags->free_tags, tag - tags->nr_reserved_tags);
76}
77
78static void __blk_mq_put_reserved_tag(struct blk_mq_tags *tags,
79 unsigned int tag)
80{
81 BUG_ON(tag >= tags->nr_reserved_tags);
82
83 percpu_ida_free(&tags->reserved_tags, tag);
84}
85
86void blk_mq_put_tag(struct blk_mq_tags *tags, unsigned int tag)
87{
88 if (tag >= tags->nr_reserved_tags)
89 __blk_mq_put_tag(tags, tag);
90 else
91 __blk_mq_put_reserved_tag(tags, tag);
92}
93
94static int __blk_mq_tag_iter(unsigned id, void *data)
95{
96 unsigned long *tag_map = data;
97 __set_bit(id, tag_map);
98 return 0;
99}
100
101void blk_mq_tag_busy_iter(struct blk_mq_tags *tags,
102 void (*fn)(void *, unsigned long *), void *data)
103{
104 unsigned long *tag_map;
105 size_t map_size;
106
107 map_size = ALIGN(tags->nr_tags, BITS_PER_LONG) / BITS_PER_LONG;
108 tag_map = kzalloc(map_size * sizeof(unsigned long), GFP_ATOMIC);
109 if (!tag_map)
110 return;
111
112 percpu_ida_for_each_free(&tags->free_tags, __blk_mq_tag_iter, tag_map);
113 if (tags->nr_reserved_tags)
114 percpu_ida_for_each_free(&tags->reserved_tags, __blk_mq_tag_iter,
115 tag_map);
116
117 fn(data, tag_map);
118 kfree(tag_map);
119}
120
121struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags,
122 unsigned int reserved_tags, int node)
123{
124 unsigned int nr_tags, nr_cache;
125 struct blk_mq_tags *tags;
126 int ret;
127
128 if (total_tags > BLK_MQ_TAG_MAX) {
129 pr_err("blk-mq: tag depth too large\n");
130 return NULL;
131 }
132
133 tags = kzalloc_node(sizeof(*tags), GFP_KERNEL, node);
134 if (!tags)
135 return NULL;
136
137 nr_tags = total_tags - reserved_tags;
138 nr_cache = nr_tags / num_possible_cpus();
139
140 if (nr_cache < BLK_MQ_TAG_CACHE_MIN)
141 nr_cache = BLK_MQ_TAG_CACHE_MIN;
142 else if (nr_cache > BLK_MQ_TAG_CACHE_MAX)
143 nr_cache = BLK_MQ_TAG_CACHE_MAX;
144
145 tags->nr_tags = total_tags;
146 tags->nr_reserved_tags = reserved_tags;
147 tags->nr_max_cache = nr_cache;
148 tags->nr_batch_move = max(1u, nr_cache / 2);
149
150 ret = __percpu_ida_init(&tags->free_tags, tags->nr_tags -
151 tags->nr_reserved_tags,
152 tags->nr_max_cache,
153 tags->nr_batch_move);
154 if (ret)
155 goto err_free_tags;
156
157 if (reserved_tags) {
158 /*
159 * With max_cahe and batch set to 1, the allocator fallbacks to
160 * no cached. It's fine reserved tags allocation is slow.
161 */
162 ret = __percpu_ida_init(&tags->reserved_tags, reserved_tags,
163 1, 1);
164 if (ret)
165 goto err_reserved_tags;
166 }
167
168 return tags;
169
170err_reserved_tags:
171 percpu_ida_destroy(&tags->free_tags);
172err_free_tags:
173 kfree(tags);
174 return NULL;
175}
176
177void blk_mq_free_tags(struct blk_mq_tags *tags)
178{
179 percpu_ida_destroy(&tags->free_tags);
180 percpu_ida_destroy(&tags->reserved_tags);
181 kfree(tags);
182}
183
184ssize_t blk_mq_tag_sysfs_show(struct blk_mq_tags *tags, char *page)
185{
186 char *orig_page = page;
187 unsigned int cpu;
188
189 if (!tags)
190 return 0;
191
192 page += sprintf(page, "nr_tags=%u, reserved_tags=%u, batch_move=%u,"
193 " max_cache=%u\n", tags->nr_tags, tags->nr_reserved_tags,
194 tags->nr_batch_move, tags->nr_max_cache);
195
196 page += sprintf(page, "nr_free=%u, nr_reserved=%u\n",
197 percpu_ida_free_tags(&tags->free_tags, nr_cpu_ids),
198 percpu_ida_free_tags(&tags->reserved_tags, nr_cpu_ids));
199
200 for_each_possible_cpu(cpu) {
201 page += sprintf(page, " cpu%02u: nr_free=%u\n", cpu,
202 percpu_ida_free_tags(&tags->free_tags, cpu));
203 }
204
205 return page - orig_page;
206}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Tag allocation using scalable bitmaps. Uses active queue tracking to support
4 * fairer distribution of tags between multiple submitters when a shared tag map
5 * is used.
6 *
7 * Copyright (C) 2013-2014 Jens Axboe
8 */
9#include <linux/kernel.h>
10#include <linux/module.h>
11
12#include <linux/blk-mq.h>
13#include <linux/delay.h>
14#include "blk.h"
15#include "blk-mq.h"
16#include "blk-mq-tag.h"
17
18/*
19 * If a previously inactive queue goes active, bump the active user count.
20 * We need to do this before try to allocate driver tag, then even if fail
21 * to get tag when first time, the other shared-tag users could reserve
22 * budget for it.
23 */
24bool __blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx)
25{
26 if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state) &&
27 !test_and_set_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
28 atomic_inc(&hctx->tags->active_queues);
29
30 return true;
31}
32
33/*
34 * Wakeup all potentially sleeping on tags
35 */
36void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool include_reserve)
37{
38 sbitmap_queue_wake_all(&tags->bitmap_tags);
39 if (include_reserve)
40 sbitmap_queue_wake_all(&tags->breserved_tags);
41}
42
43/*
44 * If a previously busy queue goes inactive, potential waiters could now
45 * be allowed to queue. Wake them up and check.
46 */
47void __blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx)
48{
49 struct blk_mq_tags *tags = hctx->tags;
50
51 if (!test_and_clear_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
52 return;
53
54 atomic_dec(&tags->active_queues);
55
56 blk_mq_tag_wakeup_all(tags, false);
57}
58
59static int __blk_mq_get_tag(struct blk_mq_alloc_data *data,
60 struct sbitmap_queue *bt)
61{
62 if (!data->q->elevator && !hctx_may_queue(data->hctx, bt))
63 return BLK_MQ_NO_TAG;
64
65 if (data->shallow_depth)
66 return __sbitmap_queue_get_shallow(bt, data->shallow_depth);
67 else
68 return __sbitmap_queue_get(bt);
69}
70
71unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data)
72{
73 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
74 struct sbitmap_queue *bt;
75 struct sbq_wait_state *ws;
76 DEFINE_SBQ_WAIT(wait);
77 unsigned int tag_offset;
78 int tag;
79
80 if (data->flags & BLK_MQ_REQ_RESERVED) {
81 if (unlikely(!tags->nr_reserved_tags)) {
82 WARN_ON_ONCE(1);
83 return BLK_MQ_NO_TAG;
84 }
85 bt = &tags->breserved_tags;
86 tag_offset = 0;
87 } else {
88 bt = &tags->bitmap_tags;
89 tag_offset = tags->nr_reserved_tags;
90 }
91
92 tag = __blk_mq_get_tag(data, bt);
93 if (tag != BLK_MQ_NO_TAG)
94 goto found_tag;
95
96 if (data->flags & BLK_MQ_REQ_NOWAIT)
97 return BLK_MQ_NO_TAG;
98
99 ws = bt_wait_ptr(bt, data->hctx);
100 do {
101 struct sbitmap_queue *bt_prev;
102
103 /*
104 * We're out of tags on this hardware queue, kick any
105 * pending IO submits before going to sleep waiting for
106 * some to complete.
107 */
108 blk_mq_run_hw_queue(data->hctx, false);
109
110 /*
111 * Retry tag allocation after running the hardware queue,
112 * as running the queue may also have found completions.
113 */
114 tag = __blk_mq_get_tag(data, bt);
115 if (tag != BLK_MQ_NO_TAG)
116 break;
117
118 sbitmap_prepare_to_wait(bt, ws, &wait, TASK_UNINTERRUPTIBLE);
119
120 tag = __blk_mq_get_tag(data, bt);
121 if (tag != BLK_MQ_NO_TAG)
122 break;
123
124 bt_prev = bt;
125 io_schedule();
126
127 sbitmap_finish_wait(bt, ws, &wait);
128
129 data->ctx = blk_mq_get_ctx(data->q);
130 data->hctx = blk_mq_map_queue(data->q, data->cmd_flags,
131 data->ctx);
132 tags = blk_mq_tags_from_data(data);
133 if (data->flags & BLK_MQ_REQ_RESERVED)
134 bt = &tags->breserved_tags;
135 else
136 bt = &tags->bitmap_tags;
137
138 /*
139 * If destination hw queue is changed, fake wake up on
140 * previous queue for compensating the wake up miss, so
141 * other allocations on previous queue won't be starved.
142 */
143 if (bt != bt_prev)
144 sbitmap_queue_wake_up(bt_prev);
145
146 ws = bt_wait_ptr(bt, data->hctx);
147 } while (1);
148
149 sbitmap_finish_wait(bt, ws, &wait);
150
151found_tag:
152 /*
153 * Give up this allocation if the hctx is inactive. The caller will
154 * retry on an active hctx.
155 */
156 if (unlikely(test_bit(BLK_MQ_S_INACTIVE, &data->hctx->state))) {
157 blk_mq_put_tag(tags, data->ctx, tag + tag_offset);
158 return BLK_MQ_NO_TAG;
159 }
160 return tag + tag_offset;
161}
162
163void blk_mq_put_tag(struct blk_mq_tags *tags, struct blk_mq_ctx *ctx,
164 unsigned int tag)
165{
166 if (!blk_mq_tag_is_reserved(tags, tag)) {
167 const int real_tag = tag - tags->nr_reserved_tags;
168
169 BUG_ON(real_tag >= tags->nr_tags);
170 sbitmap_queue_clear(&tags->bitmap_tags, real_tag, ctx->cpu);
171 } else {
172 BUG_ON(tag >= tags->nr_reserved_tags);
173 sbitmap_queue_clear(&tags->breserved_tags, tag, ctx->cpu);
174 }
175}
176
177struct bt_iter_data {
178 struct blk_mq_hw_ctx *hctx;
179 busy_iter_fn *fn;
180 void *data;
181 bool reserved;
182};
183
184static bool bt_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data)
185{
186 struct bt_iter_data *iter_data = data;
187 struct blk_mq_hw_ctx *hctx = iter_data->hctx;
188 struct blk_mq_tags *tags = hctx->tags;
189 bool reserved = iter_data->reserved;
190 struct request *rq;
191
192 if (!reserved)
193 bitnr += tags->nr_reserved_tags;
194 rq = tags->rqs[bitnr];
195
196 /*
197 * We can hit rq == NULL here, because the tagging functions
198 * test and set the bit before assigning ->rqs[].
199 */
200 if (rq && rq->q == hctx->queue)
201 return iter_data->fn(hctx, rq, iter_data->data, reserved);
202 return true;
203}
204
205/**
206 * bt_for_each - iterate over the requests associated with a hardware queue
207 * @hctx: Hardware queue to examine.
208 * @bt: sbitmap to examine. This is either the breserved_tags member
209 * or the bitmap_tags member of struct blk_mq_tags.
210 * @fn: Pointer to the function that will be called for each request
211 * associated with @hctx that has been assigned a driver tag.
212 * @fn will be called as follows: @fn(@hctx, rq, @data, @reserved)
213 * where rq is a pointer to a request. Return true to continue
214 * iterating tags, false to stop.
215 * @data: Will be passed as third argument to @fn.
216 * @reserved: Indicates whether @bt is the breserved_tags member or the
217 * bitmap_tags member of struct blk_mq_tags.
218 */
219static void bt_for_each(struct blk_mq_hw_ctx *hctx, struct sbitmap_queue *bt,
220 busy_iter_fn *fn, void *data, bool reserved)
221{
222 struct bt_iter_data iter_data = {
223 .hctx = hctx,
224 .fn = fn,
225 .data = data,
226 .reserved = reserved,
227 };
228
229 sbitmap_for_each_set(&bt->sb, bt_iter, &iter_data);
230}
231
232struct bt_tags_iter_data {
233 struct blk_mq_tags *tags;
234 busy_tag_iter_fn *fn;
235 void *data;
236 unsigned int flags;
237};
238
239#define BT_TAG_ITER_RESERVED (1 << 0)
240#define BT_TAG_ITER_STARTED (1 << 1)
241#define BT_TAG_ITER_STATIC_RQS (1 << 2)
242
243static bool bt_tags_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data)
244{
245 struct bt_tags_iter_data *iter_data = data;
246 struct blk_mq_tags *tags = iter_data->tags;
247 bool reserved = iter_data->flags & BT_TAG_ITER_RESERVED;
248 struct request *rq;
249
250 if (!reserved)
251 bitnr += tags->nr_reserved_tags;
252
253 /*
254 * We can hit rq == NULL here, because the tagging functions
255 * test and set the bit before assigning ->rqs[].
256 */
257 if (iter_data->flags & BT_TAG_ITER_STATIC_RQS)
258 rq = tags->static_rqs[bitnr];
259 else
260 rq = tags->rqs[bitnr];
261 if (!rq)
262 return true;
263 if ((iter_data->flags & BT_TAG_ITER_STARTED) &&
264 !blk_mq_request_started(rq))
265 return true;
266 return iter_data->fn(rq, iter_data->data, reserved);
267}
268
269/**
270 * bt_tags_for_each - iterate over the requests in a tag map
271 * @tags: Tag map to iterate over.
272 * @bt: sbitmap to examine. This is either the breserved_tags member
273 * or the bitmap_tags member of struct blk_mq_tags.
274 * @fn: Pointer to the function that will be called for each started
275 * request. @fn will be called as follows: @fn(rq, @data,
276 * @reserved) where rq is a pointer to a request. Return true
277 * to continue iterating tags, false to stop.
278 * @data: Will be passed as second argument to @fn.
279 * @flags: BT_TAG_ITER_*
280 */
281static void bt_tags_for_each(struct blk_mq_tags *tags, struct sbitmap_queue *bt,
282 busy_tag_iter_fn *fn, void *data, unsigned int flags)
283{
284 struct bt_tags_iter_data iter_data = {
285 .tags = tags,
286 .fn = fn,
287 .data = data,
288 .flags = flags,
289 };
290
291 if (tags->rqs)
292 sbitmap_for_each_set(&bt->sb, bt_tags_iter, &iter_data);
293}
294
295static void __blk_mq_all_tag_iter(struct blk_mq_tags *tags,
296 busy_tag_iter_fn *fn, void *priv, unsigned int flags)
297{
298 WARN_ON_ONCE(flags & BT_TAG_ITER_RESERVED);
299
300 if (tags->nr_reserved_tags)
301 bt_tags_for_each(tags, &tags->breserved_tags, fn, priv,
302 flags | BT_TAG_ITER_RESERVED);
303 bt_tags_for_each(tags, &tags->bitmap_tags, fn, priv, flags);
304}
305
306/**
307 * blk_mq_all_tag_iter - iterate over all requests in a tag map
308 * @tags: Tag map to iterate over.
309 * @fn: Pointer to the function that will be called for each
310 * request. @fn will be called as follows: @fn(rq, @priv,
311 * reserved) where rq is a pointer to a request. 'reserved'
312 * indicates whether or not @rq is a reserved request. Return
313 * true to continue iterating tags, false to stop.
314 * @priv: Will be passed as second argument to @fn.
315 *
316 * Caller has to pass the tag map from which requests are allocated.
317 */
318void blk_mq_all_tag_iter(struct blk_mq_tags *tags, busy_tag_iter_fn *fn,
319 void *priv)
320{
321 __blk_mq_all_tag_iter(tags, fn, priv, BT_TAG_ITER_STATIC_RQS);
322}
323
324/**
325 * blk_mq_tagset_busy_iter - iterate over all started requests in a tag set
326 * @tagset: Tag set to iterate over.
327 * @fn: Pointer to the function that will be called for each started
328 * request. @fn will be called as follows: @fn(rq, @priv,
329 * reserved) where rq is a pointer to a request. 'reserved'
330 * indicates whether or not @rq is a reserved request. Return
331 * true to continue iterating tags, false to stop.
332 * @priv: Will be passed as second argument to @fn.
333 */
334void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset,
335 busy_tag_iter_fn *fn, void *priv)
336{
337 int i;
338
339 for (i = 0; i < tagset->nr_hw_queues; i++) {
340 if (tagset->tags && tagset->tags[i])
341 __blk_mq_all_tag_iter(tagset->tags[i], fn, priv,
342 BT_TAG_ITER_STARTED);
343 }
344}
345EXPORT_SYMBOL(blk_mq_tagset_busy_iter);
346
347static bool blk_mq_tagset_count_completed_rqs(struct request *rq,
348 void *data, bool reserved)
349{
350 unsigned *count = data;
351
352 if (blk_mq_request_completed(rq))
353 (*count)++;
354 return true;
355}
356
357/**
358 * blk_mq_tagset_wait_completed_request - wait until all completed req's
359 * complete funtion is run
360 * @tagset: Tag set to drain completed request
361 *
362 * Note: This function has to be run after all IO queues are shutdown
363 */
364void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset)
365{
366 while (true) {
367 unsigned count = 0;
368
369 blk_mq_tagset_busy_iter(tagset,
370 blk_mq_tagset_count_completed_rqs, &count);
371 if (!count)
372 break;
373 msleep(5);
374 }
375}
376EXPORT_SYMBOL(blk_mq_tagset_wait_completed_request);
377
378/**
379 * blk_mq_queue_tag_busy_iter - iterate over all requests with a driver tag
380 * @q: Request queue to examine.
381 * @fn: Pointer to the function that will be called for each request
382 * on @q. @fn will be called as follows: @fn(hctx, rq, @priv,
383 * reserved) where rq is a pointer to a request and hctx points
384 * to the hardware queue associated with the request. 'reserved'
385 * indicates whether or not @rq is a reserved request.
386 * @priv: Will be passed as third argument to @fn.
387 *
388 * Note: if @q->tag_set is shared with other request queues then @fn will be
389 * called for all requests on all queues that share that tag set and not only
390 * for requests associated with @q.
391 */
392void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_iter_fn *fn,
393 void *priv)
394{
395 struct blk_mq_hw_ctx *hctx;
396 int i;
397
398 /*
399 * __blk_mq_update_nr_hw_queues() updates nr_hw_queues and queue_hw_ctx
400 * while the queue is frozen. So we can use q_usage_counter to avoid
401 * racing with it. __blk_mq_update_nr_hw_queues() uses
402 * synchronize_rcu() to ensure this function left the critical section
403 * below.
404 */
405 if (!percpu_ref_tryget(&q->q_usage_counter))
406 return;
407
408 queue_for_each_hw_ctx(q, hctx, i) {
409 struct blk_mq_tags *tags = hctx->tags;
410
411 /*
412 * If no software queues are currently mapped to this
413 * hardware queue, there's nothing to check
414 */
415 if (!blk_mq_hw_queue_mapped(hctx))
416 continue;
417
418 if (tags->nr_reserved_tags)
419 bt_for_each(hctx, &tags->breserved_tags, fn, priv, true);
420 bt_for_each(hctx, &tags->bitmap_tags, fn, priv, false);
421 }
422 blk_queue_exit(q);
423}
424
425static int bt_alloc(struct sbitmap_queue *bt, unsigned int depth,
426 bool round_robin, int node)
427{
428 return sbitmap_queue_init_node(bt, depth, -1, round_robin, GFP_KERNEL,
429 node);
430}
431
432static struct blk_mq_tags *blk_mq_init_bitmap_tags(struct blk_mq_tags *tags,
433 int node, int alloc_policy)
434{
435 unsigned int depth = tags->nr_tags - tags->nr_reserved_tags;
436 bool round_robin = alloc_policy == BLK_TAG_ALLOC_RR;
437
438 if (bt_alloc(&tags->bitmap_tags, depth, round_robin, node))
439 goto free_tags;
440 if (bt_alloc(&tags->breserved_tags, tags->nr_reserved_tags, round_robin,
441 node))
442 goto free_bitmap_tags;
443
444 return tags;
445free_bitmap_tags:
446 sbitmap_queue_free(&tags->bitmap_tags);
447free_tags:
448 kfree(tags);
449 return NULL;
450}
451
452struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags,
453 unsigned int reserved_tags,
454 int node, int alloc_policy)
455{
456 struct blk_mq_tags *tags;
457
458 if (total_tags > BLK_MQ_TAG_MAX) {
459 pr_err("blk-mq: tag depth too large\n");
460 return NULL;
461 }
462
463 tags = kzalloc_node(sizeof(*tags), GFP_KERNEL, node);
464 if (!tags)
465 return NULL;
466
467 tags->nr_tags = total_tags;
468 tags->nr_reserved_tags = reserved_tags;
469
470 return blk_mq_init_bitmap_tags(tags, node, alloc_policy);
471}
472
473void blk_mq_free_tags(struct blk_mq_tags *tags)
474{
475 sbitmap_queue_free(&tags->bitmap_tags);
476 sbitmap_queue_free(&tags->breserved_tags);
477 kfree(tags);
478}
479
480int blk_mq_tag_update_depth(struct blk_mq_hw_ctx *hctx,
481 struct blk_mq_tags **tagsptr, unsigned int tdepth,
482 bool can_grow)
483{
484 struct blk_mq_tags *tags = *tagsptr;
485
486 if (tdepth <= tags->nr_reserved_tags)
487 return -EINVAL;
488
489 /*
490 * If we are allowed to grow beyond the original size, allocate
491 * a new set of tags before freeing the old one.
492 */
493 if (tdepth > tags->nr_tags) {
494 struct blk_mq_tag_set *set = hctx->queue->tag_set;
495 struct blk_mq_tags *new;
496 bool ret;
497
498 if (!can_grow)
499 return -EINVAL;
500
501 /*
502 * We need some sort of upper limit, set it high enough that
503 * no valid use cases should require more.
504 */
505 if (tdepth > 16 * BLKDEV_MAX_RQ)
506 return -EINVAL;
507
508 new = blk_mq_alloc_rq_map(set, hctx->queue_num, tdepth,
509 tags->nr_reserved_tags);
510 if (!new)
511 return -ENOMEM;
512 ret = blk_mq_alloc_rqs(set, new, hctx->queue_num, tdepth);
513 if (ret) {
514 blk_mq_free_rq_map(new);
515 return -ENOMEM;
516 }
517
518 blk_mq_free_rqs(set, *tagsptr, hctx->queue_num);
519 blk_mq_free_rq_map(*tagsptr);
520 *tagsptr = new;
521 } else {
522 /*
523 * Don't need (or can't) update reserved tags here, they
524 * remain static and should never need resizing.
525 */
526 sbitmap_queue_resize(&tags->bitmap_tags,
527 tdepth - tags->nr_reserved_tags);
528 }
529
530 return 0;
531}
532
533/**
534 * blk_mq_unique_tag() - return a tag that is unique queue-wide
535 * @rq: request for which to compute a unique tag
536 *
537 * The tag field in struct request is unique per hardware queue but not over
538 * all hardware queues. Hence this function that returns a tag with the
539 * hardware context index in the upper bits and the per hardware queue tag in
540 * the lower bits.
541 *
542 * Note: When called for a request that is queued on a non-multiqueue request
543 * queue, the hardware context index is set to zero.
544 */
545u32 blk_mq_unique_tag(struct request *rq)
546{
547 return (rq->mq_hctx->queue_num << BLK_MQ_UNIQUE_TAG_BITS) |
548 (rq->tag & BLK_MQ_UNIQUE_TAG_MASK);
549}
550EXPORT_SYMBOL(blk_mq_unique_tag);